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Trustworthy AI-Enabled System and Algorithms for

Power-Management in Network of Electric Vehicles

ABSTRACT

A virtual power plant (VPP) is a network of distributed power generation units, flexible power con-
sumers, and storage systems that balances load on a power grid by allocating power generated by various
interconnected units during periods of peak demand. However, the fluctuation of energy generated by
renewable resources makes balancing the energy supply a challenge. Demand-side energy devices such as
electric vehicles (EVs) and mobile robots can also balance energy supply and demand if used effectively.
With the innovation of bidirectional charging technology, EVs have become not only energy consumers
but also energy suppliers.

Efficient energy management between the smart grid and EVs requires a charging mechanism that
controls the charging/discharging process of the vehicles. Another challenge is to accurately and quickly
predict the energy consumption of the electric vehicles. State-of-the-art research addresses the problem
of prediction in vehicular networks using a collaborative learning approach based on neural networks.
The prevailing approach is the combination of federated learning and blockchain technology, but it faces
the following problems. First, current federated learning approaches pay little attention to attack scenar-
ios. The assumption that a malicious model can be uploaded in any training round leads to a significant
degradation in model accuracy. Besides, the constant selection of new models for the blockchain so-
lution leads to a heavy load on the network. The efficiency of the blockchain suffers greatly from this
problem, making it challenging to apply in real-world scenarios.

In this dissertation, we propose a trustworthy Al-enabled system and algorithms for power manage-
ment in network of electric vehicles. We summarize the work in four main contributions.

First, a novel EV charging mechanism is proposed, in which an Al system based on reconfigurable
hardware (FPGA) is used to predict the amount of available energy that an EV could supply when idle
to mitigate storage during peak load. The reconfigurable Al system, with high-speed computation and
low-power consumption, can be packaged into an extended electronic control unit (ECU) connected to
the controller area network (CAN) bus of a car.

Second, a multi-stage power consumption prediction method is proposed based on a fully-connected
neural network model. The performance of the prediction demonstrates that the algorithm is accuracy
and suitable for both intra and inter-district travel.

Third, a robust federated learning for qualified learning model selection (FL-QLMS) is proposed
against malicious data and model attacks. The FL-QLMS performs at each training round that selects a
group of best models and filters out the disqualified models.

Fourth, a fully-decentralized and a semi-decentralized blockchain-based collaborative learning are pro-

posed respectively. In the fully-decentralized architecture, the network is formed by a group of EVs, and

Xxi



a Swarm platform is introduced to store the local models in a secure way. In the semi-decentralized archi-
tecture, a VPP aggregator and a group of EVs are integrated together, where the local models are transmit-
ted oft-chain from EVs to the aggregator and only the global models are stored in the blockchain. Both
proposals provide a highly secure solution while significantly increasing the efficiency of the blockchain
network.

The proposed system and algorithms were evaluated with a driving data set and a blockchain simu-
lator. The results demonstrate that the power consumption of EVs can be predicted in an accuracy, ef-
ficient, and secure manner, therefore the proposal is a promising countermeasure against peak demand.
Besides, the proposed collaborative learning scheme has great potential to be applied in various research

fields.
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Introduction

I.I.  VIRTUAL POWER PLANT WITH INTEGRATION OF ELECTRIC VEHICLES

In recent years, the utilization of renewable resources has increased in the energy matrix. At
the end 0f 2021, the global renewable electricity generation capacity reached 3068 gigawatts [1].
Meanwhile, European emission standards limit carbon dioxide emissions from regular cars to
less than 95 g/km by 2020 [2]. Variants of renewable resource providers, e.g., wind power [3],
photovoltaic [4], and hydroelectric [5], serve as power suppliers, directing electrical energy from
generation sites to a power grid [6, 7]. The power grid then distributes electrical energy to all
consumers, including residential areas, hospitals, commercial areas, administrative areas, and
electric vehicle (EV) fleets. To achieve efficient distribution and utilization of renewable en-

ergy, the virtual power plant (VPP) was proposed to act as an intermediary between distributed



energy resources (DERs), the power grid, controllable loads, and EVs [8-11].

In the last decade, many VPP projects have been proposed [12-15]. Current VPP demon-
strations aim to efficiently integrate and distribute resources. Nevertheless, they must also con-
sider the potential security risk of communication between the aggregator, the power grid, and
the consumers. In addition, the VPP provides energy consumers with demand-side manage-

ment technology that contributes to smart storage and consumption on the customer side.

Efficient utilization of electricity remains a challenge in conventional VPP demonstrations.
There have been many studies on the optimal supply-side and demand-side management of
DERs. For the supply side, the authors in [16-21] studied the optimal strategy against the
inherent unpredictability of renewable energy, while there was a lack of discussion on the in-
tegration of electricity consumers. For the demand side, efficient consumer management that
incorporates EVs into the vehicle-to-grid (V2G) network was proposed in [22-28]. The inte-
gration of EVs provides a promising solution to peak demand, for the reason that bidirectional
technology enables EVs to serve as both energy consumers and energy suppliers. The strong re-
lationship between VPP and EVs raises the question of how to efficiently manage energy from

electric vehicles.

Economic dispatch and strategic bidding have been studied in EV and electricity markets
using artificial intelligence (AI) [29-32]. In [33-36], deep learning techniques were used to
predict energy generation and consumption. In [37-39], intelligent integrated approaches for
efficient demand-side management were proposed. However, the conventional aggregator in
these approaches is equipped with a multi-GPU cluster, which requires high power consump-
tion and long-term maintenance [33, 37-39]. Various efforts have been made to outsource edge
computing tasks in vehicles [40, 41]. And a few studies have investigated the framework of ve-
hicle edge computing for the VPP scenario [42—44]. For a complicated smart-vision task in a
driving environment, vehicles must be equipped with high-speed systems that process a large
amount of sensor data (about 1 Gb/s) [45]. However, the computing capacity of local devices
is limited, which remains a bottleneck for high-speed training [46, 47]. Renesas Xtreme, the

latest automotive microcontroller family, for example, includes devices with limited memory
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ranging from 32K Flash/4K RAM to 8 Flash/512K RAM [48]. While it is possible to have a

custom system for local computing, it is very expensive and not portable.

1.2 SECURE CENTRALIZED COMPUTING IN VEHICLE-TO-GRID NETWORKS

The security issue in centralized V2G networks has been studied using differentapproaches [49—
54]. In the centralized architecture of the conventional VPP platform [49-51], as shown in
Fig. 1.1(a), there are still two main problems for the security and stability of the VPP system.
First, the main server is still prone to data leakage. In addition, the stability of the system is
extremely dependent on the main server. That is, if the central database is corrupted, the en-
tire system faces a major challenge. In the robust distributed systems proposed in [52—-54], the
agents were restricted to communicate only with their neighbors. The communication activity
is limited, so global optimization is difficult to achieve One primary focus is on the vulnerabili-
ties of conventional centralized control algorithms in smart grids [49-51]. With the increasing
number of distributed energy resources integrated into the power system, researchers have ad-
vanced the research of the robust distributed system against cyber attacks [52-54]. However,
the conventional aggregator in VPP is still vulnerable to malicious attacks that can easily ma-

nipulate information. In addition, data leakage may occur during the transmission of raw data.

1.3 SECURE DECENTRALIZED COMPUTING IN VEHICLE-TO-GRID NETWORKS

Security and privacy are other concerns in vehicular edge computing (VEC) which has great
significance in avoiding traffic collisions, improving road efliciency, and reducing environmen-
tal impact [55]. As a concrete example, protecting range anxiety functionality is critical for EV
drivers. In addition, a cyberattack on EV or charging stations can result in a large-scale charging
outage that can have a significant impact on the vehicle and the power grid. Secure data sharing
and management [56—58] has been studied, and various federated learning-based frameworks
for vehicular networks [59, 60] have been proposed. Other privacy frameworks, such as differ-
ential privacy, attempt to deal with aggregation issues, however, with the challenge of achieving

an optimal tradeoft between data utility and data leakage [61].



As a decentralized and secure framework, blockchain is a popular solution to replace the tra-
ditional approach in edge computing. It benefits federated learning in secure energy trading,
management, and protection of EVs and driver interconnected data Secure bidirectional energy
trading (charging and discharging) [62-65] for EVs has been investigated using a blockchain
system. Researchin [62, 66] examined both blockchain-based energy trading and data exchange
in vehicle-to-grid (V2G) networks. Works in [67-69] proposed blockchain-based models for
information authentication and trust management in a vehicular network. Other works pro-
posed a variety of incentive-compatible schemes to encourage EV nodes to participate in de-
mand response [70, 71]. While the above works addressed secure blockchain-based decentral-
ized energy trading, EV participation, and data management issues in V2G, they did not specif-
ically investigate secure data communication between the smart grid and the vehicular network.
Moreover, the overall load on the network remains a significant challenge as the number of EVs

continues to increase.

1.4 POWERMANAGEMENTIN VEHICLE-TO-GRID NETWORKS: PROBLEMS

AND MOTIVATION

To the best of our knowledge, none of the previous works have considered the participation
of EVs with electricity consumption prediction, efficient computation for local devices, and
secure communication between VPP aggregator and EV nodes simultaneously. In this work,
we propose an Al-enabled blockchain-based electric vehicle integration system for power man-
agement in smart grid platforms to solve the challenges mentioned above. First, we present a
neural network-based system to predict the charge of electric vehicles for power management in
VPP. The learning process is based on federated learning (FL) technology [72], which ensures
the protection of raw data and improves communication efficiency. We then establish a novel
communication mechanism between the aggregator and individual EV nodes using a recon-
figurable hardware (FPGA)-based Al system to predict the amount of available electricity that
an EV could supply during idling to mitigate storage during peak load. The reconfigurable Al

system with high-speed computation and low power consumption can be packaged into an ex-
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tended electronic control unit (ECU) connected to the controller area network (CAN) bus of
acar [73, 74]. To increase the level of security, we further integrate blockchain technology [75]

into the system.

However, the previous approach has the following shortcomings: (1) The constant choice
of new models for the blockchain solution leads to a heavy load on the network. The efficiency
of the blockchain suffers greatly from this problem, making it difficult to apply in real-world
scenarios. (2) The system is only designed to predict power consumption for a local area, along
with weather information at the start time. In a practical scenario where an electric vehicle
travels to another city, the trained model cannot handle such a complicated case because the
geographical and weather information changes during the journey. (3) State-of-the-art feder-
ated learning approaches pay little attention to attack scenarios. The assumption that a mali-
cious model can be uploaded in any training round leads to a significant degradation of model

accuracy.

1.5 THESIS OBJECTIVES AND CONTRIBUTIONS

Based on all the above facts, in this thesis, we propose a trustworthy Al-based system and
algorithms for power management in a network of electric vehicles. First, we propose a novel
communication mechanism between the aggregator and each EV node using a reconfigurable
hardware (FPGA)-based Al system to predict the amount of available electricity that an EV
could supply when idle to mitigate peak load storage. The reconfigurable Al system with high-
speed computation and low power consumption can be packaged into an extended electronic
control unit (ECU) connected to the controller area network (CAN) bus of a car [73, 74], as
shown in Fig. 4.8 The proposed mechanism includes a new EV battery power consumption pre-
diction algorithm based on a fully-connected neural network model. The performance of the
prediction demonstrates that the algorithm is suitable for both intra-district and inter-district
trips.

Second, to ensure learning of the model in an efficient and secure manner, we introduce a

robust collaborative learning method that integrates federated learning and blockchain technol-
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ogy. We proposed an algorithm called federated learning for qualified learning model selection

(FL-QLMS) that is robust to both data and model attacks. Moreover, the novel blockchain

architecture enables the entire system to maintain a high level of security while significantly

increasing the efficiency of the blockchain network.

The main contributions of this research are as follows:

1.6

* A trustworthy network of electric vehicle (NoEV) system for power management in

smart grid. The blockchain-enabled system is based on an artificial neural-network (AI-
Chip accelerator) and federated learning approach for EV charge prediction, where the
EV fleet is employed as a consumer and as a supplier of electrical energy in VPP. The

AI-Chip is prototyped on FPGA and can be packaged in the CAN bus.

A novel algorithm of data exchange between the power grid and EV fleet for electrical
supply. Whenever the power grid needs electricity and requests vehicular networks, the
amount of electrical supply from each EV can be calculated based on its extra electricity

and driving status.

A multi-stage power consumption prediction method which ensures the accurate pre-

diction performance for intra and inter-district travel.

A fully-decentralized architecture based on the blockchain technology to robustly con-

solidate all the distributed nodes and form a substantial smart power-storage facility.

A semi-decentralized collaborative learning scheme. The system maintains a high-security

level while significantly increasing the efficiency of the blockchain network.

A novel algorithm for robust federated learning, named federated learning for qualified

local model selection (FL-QLMS).

THEs1s OUTLINE

The rest of the thesis is organized as follows:
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In Chapter 2, we first provide an overview of energy management in vehicle-to-grid net-

works. We then introduce the basic idea of federated learning and blockchain.

In Chapter 3, we present related works on optimal operations in VPP, AI deploymentin
VPP, EV power consumption prediction, integration of blockchain and FL in vehicular

networks, and client selection in federated learning.

In Chapter 4, we present the proposed network of EV (NoEV) for power management

in smart grid and the novel algorithm for power consumption prediction of EVs.

In Chapter S, we introduce the robust federated learning for qualified local model selec-

tion (FL-QLMS).
Chapter 6 presents the proposed blockchain-enabled systems.

Finally, in Chapter 7, we end this thesis with the conclusion and plan for future work.



Background

2.1 VIRTUAL POWER PLANT

The influx of renewable energy sources in response to climate change and to protect the en-
vironment has led to a reduction in the use of traditional energy sources [76]. However, due to
dependence on weather conditions, fluctuations in renewable energy sources remain a challenge
in balancing the use of renewable and non-renewable energy sources as well as energy demand
and supply. Therefore, there is a need to remotely coordinate and optimally and quickly con-
trol generation and storage systems. In addition, a platform is needed to respond quickly to

energy demand from electricity users and consumers [77, 78].

As illustrated in Figure 2.1, a virtual power plant is a cloud-based control system that ag-
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Figure 2.1: An illustration of a virtual power plant (VPP). A VPP integrates power grid,
electricity market, renewable and non-renewable resources, energy storage system, and
energy consumers, etc.

gregates various distributed energy resources (DERs) to provide reliable power. These energy
resources include wind farms, photovoltaics, hydropower, heat pumps, and storage facilities
such as electric vehicles. The VPP acts as an intermediary between DERs and the wholesale
electricity market. It trades energy on behalf of DER owners who cannot participate in this
market themselves, and provides greater efficiency and flexibility in energy distribution than
traditional power plants. The main objective of the VPP is to manage electricity peaks by in-
telligently managing the generation capacity of individual units. The interconnected units are

coordinated by the VPP control system but operate independently [79].

In addition, the VPP provides ancillary services to the grid operator to maintain grid stabil-
ity [80, 81]. A successful VPP should consider several key factors in its ancillary services. (1)
the generation capacity of the DER; (2) the consumption of energy consumers; (3) the geo-

graphical information of the power plant; (4) the status of large energy storage facilities such
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as gas or heat storage (size capacity and electricity storage); and (5) the status of smaller energy
storage facilities such as local houses and electric vehicles. When it receives signals from the grid
operator, the VPP algorithm must be able to integrate different units and respond in a timely

manner with precise control instructions and schedules.

Another important point of VPP is the business model [82, 83]. The main advantage of VPP
is flexibility, which helps stablizing the grid. This flexibility comes from distributed energy pro-
ducers who are paid to ensure the reliability of the energy flow. The VPP interacts with energy
markers while hosting a variety of energy storage facilities that generate revenue by providing

power through the ancillary services market.

In March 2011, Japan’s Fukushima nuclear power plant was damaged by an earthquake and
tsunami, causing widespread power outages. Automaker Nissan sent a fleet of first-generation
LEAFs to the disaster area and started exploring how electric vehicles could be used to share
their power [84]. Also, Mitsubishi provided 45 i-MiEV electric cars to assist rescue workers,
transport relief supplies and provide heating [85]. This was also the launch of a new technology
that allows electricity stored in batteries to be shared with buildings and homes. Vehicle-to-
grid (V2G) technology allows stationary vehicles to be integrated into smart grid systems to sell

electricity back to the grid at a higher price or at times of peak demand.

V2G technology, also known as bidirectional charging, not only draws power from the grid
to charge the vehicle’s battery, but also uses the energy from the vehicle’s battery to supply
power into the grid. Charging a conventional electric vehicle requires a one-way charger that
converts AC power from the grid to DC power. With a bidirectional charger, the energy stored
in the EV battery can be fed back into the grid by converting DC to AC. Vehicles with bidi-
rectional charging capabilities allow users to store excess energy that can then be used to power
their homes or sold back to the grid, demonstrably saving users money. A consortium including
energy companies OVO Energy and Nissan conducted a three-year trial, installing more than
three hundred bi-directional chargers in UK homes. Charging an electric car costs an average of
just over 500 pounds per year, nearly 35% compared to the cost of gasoline or diesel. Charging

an electric car at home is generally cheaper and sometimes free on campuses or workplaces [86].
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2.2  AI-ENABLED VEHICULAR NETWORK

The emergence of artificial intelligence technology has replaced the traditional manual pro-
duction model, and the accuracy and efficiency of this technology has made it a popular choice
for all sectors of society [87]. In the automotive industry, the use of artificial intelligence tech-
nology has not only improved production efficiency, but also optimized the performance of all
aspects of the vehicle, providing significant economic benefits to the automotive industry. Al

can be quite beneficial, as shown in Fig. 2.2 at the following key points:

* Autonomous Driving
* Route Optimization
* Big Data in Internet of Vehicle

* Battery Maintenance and Charging

Self-driving cars have been around for decades in the 20th century and are showing a trend
toward near-practicality at the beginning of the 21st century [88, 89]. Self-driving cars rely on
artificial intelligence, visual computing, radar, surveillance devices, and global positioning sys-
tems working together to allow computers to control motor vehicles automatically and safely
without human initiative. The intelligence of the car is expressed in the degree of separation
between the car and the driver. The less the driver is involved in decision making while driving,
the more intelligent the car. If a person does not need to be involved at all in the entire process of
driving the car, then it can be considered that the car is truly driverless. The Society of Automo-
tive Engineers has developed the classification standard for autonomous driving, which divides
autonomous driving technology into six levels from L0-L5 [90]. Each level describes the extent
to which a car takes over tasks and responsibilities from its driver, and how car and driver inter-
act. Levels 0 through 5 are defined according to the relative degree of automation. Level 0, ”’No
Automation,” means that the driver controls the car without assistance from a driver assistance
system. Level 1, "Driver Assistance,” means that driver assistance systems support the driver

but do not take control. Inlevel 2, "Partly Automated Driving,” the driver remains responsible
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for operating the vehicle, while the systems can also take over control. Level 3, "Highly Auto-
mated Driving,” level 4, "Fully Automated Driving,” and level 5, ”Full Automation” are still in
the test phase. Level 1 driver assistance systems are most widespread today. As of March 2022,
vehicles with level 3 and higher will make up only a marginal portion of the market. In March
2021, Honda became the first manufacturer to provide a legally approved level 3 vehicle, and
Toyota operated a potential level 4 service around the Tokyo 2020 Olympic Village [91, 92].
Uber Eats and Nuro have signed a 10-year partnership to use autonomous vehicles for food

delivery [93].

The route optimization problem was first proposed by Dantzig and Ramser [94]. The clas-
sical route optimization problem can be described as follows: There is a starting point and mul-
tiple customer points, the geographic location and demand of each point are known, subject
to various constraints, how can an optimal route be planned so that it can serve each customer
point and eventually return to the starting point. The vehicle routing problem plays a great
role in practical applications in production and life, such as logistics and distribution, trans-
portation planning, transportation network design, etc. For most gasoline-powered vehicles,
conventional navigation algorithms ignore refuelling considerations because gas stations are
usually readily available and refuelling times are generally short. Route optimization in electric
vehicle networks is used to address mileage anxiety, the fear that a car will run out of power
before it reaches a charging station [95]. This concern is so widespread that it is considered one
of the barriers to widespread adoption of electric vehicles. Second, charging an electric vehicle’s
battery is an even more decision-intensive task because charging time can account for a signifi-
cant portion of total travel time and can vary significantly depending on the charging station,
vehicle type, and battery level [96]. In addition, charging times are nonlinear. For example, it
takes longer to charge a battery from 80% to 90% than from 10% to 20%. Google has recently
developed a routing algorithm that recommends charging stations to EV owners of electric ve-
hicles based on their location, the remaining driving distance of the vehicle, and the plug type

of the vehicle [97].

One of the problems in the internet of vehicles is the large amount of data that is transmitted,
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including data from cars, roads, users, etc [98, 99]. On the one hand, the internet of vehicles
processes the road data coming from the autonomous cars in real time in the cloud and iden-
tifies what can be applied through later data processing and updating. On the other hand, the
internet of vehicles must determine what data needs to be processed in real time and transmit
the appropriately understood data to the electric cars. In the implementation, the architecture
of the big data processing technology must realize the autonomous transmission of the road
data stored in the cloud and the data of traffic signage data on the road to the terminal for
data preparation according to the purpose of autonomous driving and the road conditions in
real time; it can also transmit its understanding of objects and various models that will have an
impact on autonomous driving to the computing terminal according to the real-time percep-
tion data of autonomous driving, such as for buses. In the case of buses, for example, models
for understanding the route, arrival, and historical behaviour of the bus can be passed to the

terminal.

In every aspect of a vehicle, battery performance is a critical factor. AI helps analyze bat-
tery usage and charging data, as well as optimize fast charging behavior, which ensures battery
performance and lifecycle management. This benefits the driving range, charging time, and ve-
hicle life. Al-driven hardware has been developed to automate the identification and repair of
defects in electric vehicle lithium-ion batteries [100]. Researchers are developing batteries that
are safer, recharge faster, and are more sustainable than the current generation of lithium-ion
batteries. In addition, charging information from car users will be collected and analyzed by
Al to provide a more accurate and faster charging service. Toyota has announced plans to in-
vest 5.6 billion in research and development of new energy battery materials based on artificial

intelligence to further improve the performance of current car batteries and fuel cells [101].

With a variety of promising applications such as autonomous driving, intelligent navigation
systems, and user behavior monitoring, Al is playing a key role in the EV industry. A broader

field is expected to be explored with AI devices.
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2.3 SECURITY IN POWER MANAGEMENT OF SMART GRIDS

Power management security remains a major issue for smart grids, as attackers can both gain
economic advantage and cause catastrophic damage by, for example, plunging a city into dark-
ness [102, 103]. A defence mechanism should therefore be able to detect and prevent potential
attacks. The cybersecurity of the smart grid is not only about the resilience of the entire smart
grid, but also about keeping hackers out and protecting the privacy of personal data. Hundreds
of trials have been conducted worldwide to test systems that allow consumers to sell directly to
each other using peer-to-peer transactions and smart contracts [104, 105]. In addition, tradi-
tional suppliers are looking for more efficient and accurate ways to read electricity meters and
send bills. However, none of this would be possible without strong cybersecurity for every-
thing related to electricity management. There are four areas where the grid and electricity

management can be made more secure.

* Strong digital identities: All connected devices should have their own unique digital
identity that is used to identify each device. If all devices have their own unique iden-

tity, only that device is at risk, even if a device is hacked.

* Mutual authentication: This means that two connected devices can only "talk” to each
other if they have successfully answered a digital challenge, the answer to which is known

only to those two devices.

* Encryption: Data should always be encrypted when it is transferred between devices and

when it is not moving to protect it from tampering.

* Constantly updated security: A secure smart grid should constantly evolve and update
its security regularly, with keys and digital challenges for mutual authentication updated

every two to three years.

With recent advances in mobile energy storage technologies, electric vehicles (EVs) have be-
come a crucial component of smart grids that support power management. When EVs par-

ticipate in a demand response program, an optimal EV charge/discharge control strategy can
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Figure 2.3: The process of a FL-based scheme. First, each client trains a local model using
local data set and then uploads the model to an aggregator. Second, the aggregator gener-
ates a global model using the collection of local models. Third, the aggregator distributes
the global model to each client. Fourth, the client updates its own model and continues
training.

be performed within a secure collaborative learning scheme based on federated learning and
blockchain technology [106, 107].

In recent days, machine learning approaches have centralized the data set on a server center.
The standard method requires a lot of data sharing and transmission, leading to potential data
leakage and heavy load on the network. Motivated by such challenges, a concept called federated
learning is proposed that allows local devices to keep their local data instead of uploading it to
the data center [108]. In this paradigm shift, the training tasks are performed locally while the

server only works on aggregating the local models, as shown in Fig. 2.3. The original federated

learning process named federated average (Fed Avg) works as follows.

1. Atfirst, each EV node 7 trains its local model AL fm , using the collected data set Dfm - In
each local model, the gradient Vg7 is calculated by the following formula:
- EWY
= 2.1

where IW; denotes a set of weights, and E(77;) denotes the loss function with respect to

W,. E(W;) is used for measuring the model error and finding an optimal solution. Also,
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J indicates partial derivatives.
. Each client 7 uploads the local model A4; to the aggregator.

. Before aggregating the models, we need to calculate the contribution of each model con-

cerning the corresponding data size:

. D
G = e e N (22)
Zz’ZI |D /

)
ocal ’

. The local models are aggregated, resuling in a global model with weights and biases:

N
W etobal = Z Wyooat W (2.3)
=1
N
;Zolml - Z wéomlW; (24)
=1

. Once the edge nodes receive the global model from server site, they update the parameters

as follows:
Wi = W — 7Y€ (2.5)
U = Ve — 7V (2.6)

where W7 and & denote the weights and biases of node 7 in the 7, training round, re-

spectively. 7 denotes the learning rate.

Traditional transactions are recorded in written ledgers that can be viewed in financial institu-

tions but are only accessible to a certain group of people. The blockchain manages transaction

data by removing secrecy [109]. A blockchain is a type of distributed ledger technology (DLT)

that offers shared, immutable, and transparent storage of transactions with cryptographic sig-

natures. A blockchain facilitates electronic recording of transactions and tracking of assets in

digital format [110]. Each transaction in the distributed ledger is authorized by the owner’s dig-
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ital signature and cannot be altered, hacked, or tampered with by the system, thusitis protected
at a high level of security. Blockchain is a particularly promising and revolutionary technology
as it helps reduce security risks, eliminate fraud and provide transparency in a scalable way. As
the first and most popular application, Bitcoin is a representative cryptocurrency that relies
on blockchain technology for security. Blockchain is a technology that can support a broader
range of applications in various industries, including finance, supply chain, and manufactur-
ing [109, 111, 112]. One of the main issues blockchain addresses is trust. Previously, records
of data and transactions were kept by third parties. This information is not shared between
the recorder and the participants in the transaction. If this information is easily accessible and
modified, the entire system fails due to data leakage and loss of trust. The blockchain avoids this
problem by excluding third parties, and there are no nodes in the system responsible for data
storage. A blockchain has a structure of blocks and chains that record historical transactions.
Each block is "chained” to the previous block in a sequence and is recorded immutably on a
peer-to-peer network. Each transaction is cryptographically encrypted. All participants main-
tain an encrypted record of each transaction in a decentralized, highly scalable and resilient

recording mechanism that cannot be denied.

When a client creates a new transaction on the blockchain network, the digital signatures are
used to validate it Fig. 2.4 illustrates the verification process. First, the client passes the transac-
tion data to the hash function and generates the hash value of the data. Then, the hash value is
fed to the signing algorithm with the client’s private key, generating an encrypted signed mes-
sage. Then, the new transaction is sent to all nodes, containing the original transaction infor-
mation (the signed message and the public key). Each recipient can thus perform a verification.
First, one will use the same hash function and generate the hash value of the original message.
Since hash mapping always produces the same output, this value is unique and should be iden-
tical to the values generated by the creator of the transaction. The signed message is then de-
crypted using the public key, which should make the resulting value match the previous hash
value. If the decrypted hash value matches the recalculated hash value for the same data, the dig-

ital signature is proven to be valid. Therefore, this transaction is considered trustworthy and is
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added to the transaction pool of each node. Otherwise, the different values of the hash show

that the message has been tampered with. In this case, the message is rejected by the recipients.

The transaction pool is where all valid transactions wait to be confirmed by the blockchain
network. However, with the increase of unconfirmed transactions, memory consumption and
computational efficiency become a challenge. To tackle this problem, the Merkle tree [113] was
introduced to significantly reduce memory and computation requirements as shown in Fig. 2.5.
Given a sequence of transactions 7X;, 7X5, ..., TX,,, each of them is hashed to form a leaf node
of the Merkle tree. The collection of these leaf nodes is denoted by h(7X;),c,. Following that,
a binary implementation is used to merge every two nodes into a new node belonging to the

next layer, as described in equation 2.7.

b(Hl + TXz) - b(H(]X1) + b(TXZ))
W(TXs + TX,) = h(H(TX3) + h(TX,))

W(TX,— + TX,) = h(H(TX,—.) + h(TX,))

If n is odd, then h(TX,,) is added to the next layer without a binary operation. Recursively, each
pair of new nodes in the next layer is hashed until the root node is reached, which is a single hash

of all nodes below it.

The entire process of building a Merkle tree results in a single hash value called a Merkle
root. The block header consists of a 32-byte previous block hash, 32-byte Merkle root, 4-byte
timestamp, 4-byte difficulty target, and 4-byte nonce. We denote the set of metadata other than
the nonce by M. Given a pre-determined value 7; the goal is to find a nonce that satisfies the

requirement shown in equation 6.2.

Hash(M + nonce) = 0...0 x..x (2.8)

n bits
Once a perfect nonce is found, it is added to the hashed block. The block header is rehashed
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h(AB...H)| Merkle root

-

h(ABCD) h(EFGH)
h(AB) h(CD) h(EF) h(GH)

N N N N

h(A) h(B) h(C) h(D) h(E) h(F) h(G) h(H)

TXA TX B TX C TXD TXE TXF TXG TXH

Figure 2.5: Illustration of Merkle tree structure with eight nodes. Each node represents
a transaction that is fed into a hash function, and the hashed transaction is denoted
by /(A) to h(H) in the figure. Then a bottom-to-up operation is performed, in which
h(AB) = h(b(A)) + h(h(B)), H(CD) = h(h(C)) + h(h(D)), etc. The operation ends up
with a single hash value, which is referred to Merkle root. In this case, the Merkle root is
h(ABCDEFGH).

along with the successful nonce, then the block, including header and body, is added to the

chain. Therefore, the blocks in the chain are shared, immutable, and trusted.

Table 2.1: Comparison of three data storage methods on the blockchain.

Public Blockchain | Private Blockchain Consortium Blockchain
* Anyone * Single organization | * Multiple organizations
Access . .. . ..
* Anonymous * Known identities * Known identities
Permission * Permissionless ¢ Permissioned * Permissioned
* Managed by a * Managed by a consortium
Concensus  All the nodes . §eC By g, i Y
single node of participants
Transaction Speed | * Slow * Fast * Depend on configuration

There are three types of blockchain technologies: (1) public blockchain; (2) private blockchain;
(3) consortium blockchain, as summarized in Table 2.1. A public blockchain allows anyone to
freely participate in network activities and serves as the backbone of almost any decentralized
solution [114, 115]. In addition, the large number of network participants joining a secure
public blockchain makes it immune to privacy breaches, hacking attempts, or other cyberse-

curity issues. The main disadvantage of a secure public blockchain is the significant energy
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consumption required to maintain it. Other problems include the lack of complete privacy
and anonymity. A public blockchain allows anyone to view the amount of the transaction and

the address involved. If the owner of the address is known, the user loses anonymity.

In a private blockchain, participants can only join the network by invitation, and their iden-
tity or other required information is authentic and verified [116]. Authentication is performed
by the network operator or by a predefined protocol implemented by the network through a
smart contract or other approved method. A private blockchain is not considered decentral-
ized. It is a distributed ledger that operates as a closed database and is secured by the concept
of encryption and the requirements of the organization. Only those who have access can oper-
ate a full node, perform transactions, or verify/authenticate changes to the blockchain. In this
regard, private blockchains are vulnerable to data breaches and other security threats. This is
because only a limited number of verifiers are usually able to reach consensus on transactions

and data when a consensus mechanism is available.

Consortium blockchains are a hybrid of public and private blockchains [117, 118]. Consor-
tium blockchains allow anyone to join the permission network after the authentication process.
The purpose of forming a consortium blockchain is to facilitate collaboration between a group
of complementary blockchains that help each other address challenges and develop solutions
for the system as a whole. Because a consortium blockchain includes multiple organizations,
each organization is involved in the decision-making process, ensuring that the blockchain is
not controlled by a single entity. Therefore, collaboration between private organizations in a
consortium blockchain offers faster transaction operation while maintaining privacy and scal-
ability. However, there are still some issues with consortium blockchains, such as the more
complicated network structure and the effectiveness of protocol updates when a new organiza-

tion joins the network.

2.4 CHAPTER SUMMARY

In this chapter, we introduce the architecture of the virtual power plant and how it works.

We explain various applications of artificial intelligence in vehicular networks. We also discuss
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the security problem and power management solutions for smart power grids. The employ-
ment of collaborative learning using federated learning and blockchain technology is described.
In the next chapter, we will discuss related works, including optimal operations in virtual power
plant, Al deployment in virtual power plant, electric vehicle power consumption prediction,
integration of blockchain and federated learning in vehicular networks, and client selection in

federated learning.
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Related Works

3.1 OprTIMAL OPERATIONS IN VIRTUAL POWER PLANT

Distributed energy resources and variants of consumer participation are increasingly being
integrated into current VPP platforms. The fluctuation of resource generation and unpre-
dictable electricity consumption raises a challenge to the energy balance and economic benefits
of VPP. Therefore, related studies have focused on the optimal operation of VPP in conjunc-

tion with efficient integration of distributed energy resources and end-user participation

The authors in [16] developed an optimal control and bidding strategy for VPP with renew-
able energy generations and inelastic demand, formulating the problem as a two-stage stochastic

optimization. In [17], a quantile regression forest model was applied to the prediction of wind
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and photovoltaic energy generation. In [18-21], information gap decision theory was used to
study the uncertainty of wind energy integrated with electricity and natural gas systems. While
these studies have mainly focused on power generation and electricity markets, the participa-

tion of end consumers was barely investigated.

Some works addressed the importance of EV fleet participation [22-28]. In [22], the optimal
operations for EV aggregator participation in day-ahead energy and regulation markets were
proposed. In [23], the authors proposed optimal scheduling algorithms for V2G energy sales
and multiple ancillary services. In [24], the authors studied the tradeoff between energy and
reserve markets and proposed optimal operation for uncertain EV battery degradation. In [25],
alook-ahead power scheduling algorithm was proposed to manage EV aggregation revenue risk

against fluctuating power generation and electricity prices.

However, these studies hardly emphasized the practical power consumption of EVs, which
could be predicted based on static and dynamic information (e.g., driver behavior, usage time,
and weather conditions). In [27, 28], a solution to quantify preferences based on unknown
EV types was investigated. However, since the aggregator has to wait for the interaction until
a number of EVs arrive at the parking lot, instead of predicting the electricity consumption of
EVs in advance, there is an inevitable delay in energy trading, which also affects the utilization

of EVs in car-sharing markets [119].

3.2 Al DEPLOYMENT IN VIRTUAL POWER PLANT

In recent years, Al technologies have seen a steady increase in various VPP applications.
Works in [29, 30] approached economic dispatch using reinforcement learning (RL) or non-
dominated genetic sorting algorithms. Variants of intelligent energy management methods
based on RL [37-39, 120, 121] and recurrent neural networks (RNN) [33, 34] have also been
proposed. Works in [35] employed explainable Al tools and artificial neural networks for pho-
tovoltaic power prediction, while [36] proposed an ensemble learning-based model for wind
power prediction. In [122], demand-side energy management with price forecasting based on

a multilayer perceptron was proposed. The authors in [31] integrated an RL method for an

26



EV bidding strategy. In [47], a novel centralized learning algorithm for electric vehicle energy
demand prediction was presented. Considering that most of these works perform the experi-
ments on a single centralized server, the system faces the following problems. First, there might
be a latency and cost bottleneck when the center collects all the distributed data and performs
thelearning. Second, the stability of the whole system depends heavily on the centralized server.

That s, if the server fails, the queries from all the distributed nodes will not be answered.

Moreover, once attackers access the centralized server, the private data is easily fetched or
modified. On the contrary, in some edge computing paradigms [47, 120], the computation is
moved from data centers to local devices. However, there remain limitations in the storage and

speed of the edge nodes.

3.3 ELECTRIC VEHICLE POWER CONSUMPTION PREDICTION

Vatanparvar et al. [123] proposed a novel context-aware methodology for estimating driving
behavior with respect to future vehicle speeds for up to 30 seconds. In [124], a speed opti-
mization framework is modeled for both battery life and power consumption of smart electric
vehicles during acceleration. Since these works focused only on the acceleration process, they
are not suitable for long-trip scenarios. Ferro et al. [125] presented a detailed energy consump-
tion model that considers all aspects affecting vehicle dynamics. Baek et al. [126] presented
a general methodology to predict and optimize the operating range of EVs. Zhao et al. [127]
proposed a combined machine learning model to predict the remaining range of EVs based on
real driving data. A shortcoming of these methods is the complexity of their models. That
is, prediction for a single route requires a large amount of vehicle, route, and battery data. In
addition, careful and elaborate route-planning for a terrestrial EV involves high time and data
storage costs. Features, such as weather conditions and geography were not investigated.

Gomez-Quiles etal. [128] proposed a novel ensemble method to predict the power consump-
tion of electric vehicles by examining the non-stationary time series of consumption. Although
the algorithm is used for predictions for the next one to two months, it is unsuitable for specific

driving activities.
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3.4 INTEGRATION OF BLOCKCHAIN AND FEDERATED LEARNING IN VE-

HICULAR NETWORKS

The work in [129] discussed communication costs, resource allocation, incentive learning,
and security and privacy issues. Weng et al. [130] proposed DeepChain, a framework with a
value-based incentive mechanism based on blockchain for secure collaborative training. Wang
etal. [131] studied two types of Byzantine attacks in a blockchain-empowered decentralized, se-
cure multi-party learning system. Pokhrel et al. [60] proposed a local on-vehicle machine learn-
ing (oVML) method in an autonomous blockchain-based FL design. Bao etal. [132] proposed
a decentralized FL system that provides incentives and disincentives for collaborative modeling.
To analyze the latency performance and robustness of the blockchain system, decentralized ar-
chitectures named BlockFL and FL-Block, were introduced in [133] and [134] respectively.
Despite the consideration of communication and computation costs as well as incentive mech-
anisms, the increasing number of parties in the blockchain-based FL network poses a significant

challenge to the efficiency and applicability of the systems described in the works above.

3.5 CLIENT SELECTION IN FEDERATED LEARNING

The original FedAvg algorithm in [108] randomly selects a group of clients in each training
round, which means that communication quality and delay are difficult to evaluate. The au-
thors in [135] investigated performance degradation due to non-independently and identically
distributed (non-IID) data in the FL protocol. The approach focuses on client resource con-
straints, including data heterogeneity, computation limitation, and communication capability.
In [136], the authors proposed a multicriteria-based approach for client selection in FL that
aims to group many clients in each round to reduce communication rounds. However, none
of these works considered the importance of local data affecting learning performance.

He et al. [137] proposed a different scheme for data selection and resource allocation based on
the importance of data in the FL system to improve learning efficiency. The authors in [138]

identified a fundamental property of FL, namely the temporal pattern and varying significance
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of different learning rounds. They formulated a long-term client selection and bandwidth al-
location problem under finite energy constraints and proposed a new Lyapunov-based online
optimization algorithm to guarantee the long-term performance. Cho et al. [139] presented
a convergence analysis of FL with limited client selection and demonstrated how local losses
affect the convergence speed. Zhang et al. [140] proposed a weight-based client selection mech-
anism to detect the non-IID degrees of local data. However, the above strategies were applied
only when the clients’ reputation remained unchanged. Considering that an edge node is vul-
nerable to attacks in any training round, the quality of the model decreases due to tampering.

Therefore, a long-term client selection mechanism is required to achieve a robust FL model.

3.6 (CHAPTER SUMMARY

This chapter presents related works on the optimal operation of a virtual power plant, the
use of Al in a virtual power plant, the prediction of electric vehicle power consumption, the
integration of blockchain and federated learning in vehicular networks, and client selection
in federated learning. In addition, the remaining challenges of related works are highlighted.
In the next chapter, we present the proposed network of electric vehicles (NoEV) for power

management in smart grid and the prediction method for power consumption.
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Power Consumption Prediction for Electric

Vehicles

4.1 NETWORKOF ELECTRIC VEHICLES (NOEV)FORPOWER MANAGEMENT

IN SMART GRID

This section presents the proposed system and fundamental algorithms for power manage-
ment in the smart grid. As shown in Fig. 4.1, the network of EV (NoEV) is integrated into a
virtual power plant with energy consumers and power grid. The main idea is that the NoEV
communicates with the VPP when the consumers need energy, and delivers the energy from

the EVs to the consumers through the power grid. The EV battery discharge decision is made
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by the EV charging mechanism, which is explained as follows.

A battery should be charged when there is no reservation or no request from the power grid
to provide the electricity back. Therefore, the main task is to predict the amount of electrical
supply (discharge) from the EV fleet to the power grid. Fig. 4.2 describes the proposed algo-

rithm for calculating the energy that each EV should return to the power grid when needed.

First, we calculate the current remaining power for each vehicle considering the maximum
battery capacity and state of charge (SoC). After that, we compare the current remaining power
with the expected power consumption based on a fully-connected neural network. We collect
information about past trips, including weather data, geographical data, driver data, and power
consumption data for model training, as shown in Fig. 4.3(a). When a trained model is available,
the future data, including weather data, geographical data, and driver data, are input for model
inference, i.e., power consumption prediction, as shown in Fig. 4.3(b). The detailed structure
of the neural network model is shown in Fig. 4.4. The neural network model is trained collabo-

ratively under a blockchain architecture, as shown in Fig. 4.5. First, each EV client 7 trainsalocal

model M, , using local data D), _,. In each local model A1), , the gradient Vg7 is calculated
according to the following formula:
 E(W)
Vg, = 4.1

Here 77; denotes a set of weights, and E(77;) denotes the loss function with respect to 7.
E(W;) is used for measuring the model error and finding an optimal solution. Also, J indi-
cates partial derivatives. Each local model is stored as a transaction 72X; and uploads on the
blockchain. Each transaction is verified and added into the transaction pool regarding one or
more clients, which is then packed into a block. To be added to the blockchain, each block
must contain the answer to a complex mathematical problem created using an irreversible cryp-
tographic hash function, as explained in Section 2.3. After mining completed, each client can

download the set of local updates. Before aggregating the local models, we need to calculate the
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contribution of each model concerning the corresponding data size:

w} ;= —|D§”“’Z| ieN (4.2)
oca N . ) .
Zz’:l ’Déoml‘

Then the local models are aggregated, resulting in a global model with weights and biases:

N

W;lolml = Z Wyoeat W (4.3)
=1
N

glvbal = Z wéomlb; (44)
=1

The edge node 7 then updates the parameters as follows:

Wit = Wy — 194, (4.5)
U = G — 7V (4.6)

Where 77 and &/ denote the weights and biases of node 7 in the 7, training round, respectively.
7 denotes the learning rate. The model is finished training until convergence, when the power
consumption is predicted. This Al-enabled blockchain-based electric vehicle integration sys-
tem (AEBIS) can be built in the controller area network (CAN), as illustrated in Fig. 4.8.
When the remaining power is less than the expected consumption or the electric vehicle is
on the road, it cannot supply the power at that time. Therefore, Eevatable \which indicates the
maximum amount of power that the EV can deliver, is set to zero. Nevertheless, the remaining
power is useful information for the next driver to make a reservation. On the other hand, if the
vehicle is parked in the charging station and the power remains until it is consumed in the next

period, the available power is calculated as follows:

Freaiatle — Rp — ECP (4.7)

where RP denotes the remaining power, and £CP denotes the expected consumed power.
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At some point, we have the information of the available energy of each EV in the EV fleet,

which is referred to as {Ef“”ll"ble} where 7 denotes the identification (ID) of the vehicle,

{ERN?

and NN is the number of EVs. The total power that the EV fleet can supply is simply described

: available .
as the summation of {Ei }z'eJRN'

N
el — ZE?miZﬂbIe (48)

i=1

Following that, a decision rule is needed to decide the amount of electricity the power grid
should request. A parameter, p, is used to denote the discharge rate for each EV. When there
is an extra electrical load (EEL) on the power grid’s side, a request to the EV fleet is made. If
B < EEL, then all the remaining power is required as the countermeasure against the
power shortage, in which case the discharge rate p is set to 100%. If E"Y > EEL, it means the
available power from the EV fleet is sufficient for electrical supply, and the vehicles do not need

to supply 100% of their remaining electricity. The proportion of supply will be:

p = EEL/E"" (4.9)

After that, each EV’s amount of electrical discharge is the multiplication of the discharge
rate and the available power:

Eézkcbarge — « E?uaz'lﬂblf (410)

z
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Figure 4.2: Flowchart for calculating the electrical supply from the EVs to power grid. In
stage I, the available electricity of the EVs is output. In Stage II, the electrical supply from
each EV is then calculated.
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Figure 4.3: Overview of the data collection, model training and inference for power con-
sumption prediction. (a) Collection of weather data, geographical data, driver data, and
power consumption data for model training; (b) Collection of weather data, geographical
data, and driver data for model inference.
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Figure 4.4: The four-layer neural network. The input layer contains 11 input features.
Two hidden layers have eight and six hidden neurons respectively. The output layer has
one output neuron, i.e., power consumption prediction.
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4.2 CAN Bus COMMUNICATION PROTOCOL

The Controller Area Network was introduced by the Robert Bosch Company in 1986 at
the Society of Automotive Engineers conference in Detroit, Michigan, USA. A year later, the
first CAN controller chip, the 82526, was produced by Intel [141]. In 1991, Mercedes devel-
oped the S-Class W140, which was the first car with a CAN-based vehicle network [142]. In
November 1993, ISO officially published the Controller Local Area Network CAN Interna-
tional Standard (ISO 11898), which paved the way for the standardization and promotion of
the Controller Local Area Network [143]. The CAN bus enables the electronic control units
(ECUs) to communicate with each other over a twisted pair wire, CAN high and CAN low for
signal integrity. ECUs are used to control the driving condition of the car and realize its various
functions. The main purpose is to use various sensors and collect and exchange bus data to de-
termine the vehicle status and driver’s intention, and control the car via actuators. Nowadays,
ECUs have become one of the most common components in automobiles and can be divided
into different types according to their functions. The most common ones are: Engine control,
transmission control, body control, electronic stability program, battery management and ve-
hicle control. A central control node is not required for the CAN standard. When the bus is
idle, any node can send messages to the bus. In addition, the node that first sends messages to
the bus is granted the right to send messages to the bus. If several nodes send messages to the
bus at the same time, the node with the higher priority of the sent messages gets the right to send
messages to the bus. The priority of a message is represented by its message ID. In the standard
CAN, as shown in Fig. 4.6, the message ID is an 11-bit identifier that sets the priority of the
message. The lower the value, the higher the priority. A detailed explanation of the standard
CAN and its extended version, extended CAN, can be find in the report [144]. An ECU, for
example, the weather ECU as shown in Fig. 4.8, can collect its sensor data and broadcast the
message to all other nodes on the CAN bus. Each ECU can decide to receive or discard the

message after accepting it.
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Figure 4.6: The Standard CAN: 11-Bit Identifier.
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Figure 4.7: The integration of the proposed AEBIS into the built-in Controller Area Net-
work (CAN) of Electrical Vehicles (EVs). A CAN bus is a robust vehicle interconnect
standard allowing microcontrollers and devices to communicate with each other. Each
blue box indicates a built-in electronic controller unit (ECU), which shares with other
ECUs its data via the CAN bus. The green box on the left shows a customized ECU for
data storage, collecting and processing the data from other ECUs. The data storage ECU
then transmits the data to the AEBIS ECU hardware for training and inference.
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4.3 ANALYSIS OF RESPONSE TIME

For an active consumer, the response time is defined as the time from then the consumer
submits an energy demand until the start of the energy supply. We consider a group of en-
ergy consumers {¢;},7 € N, N is the number of consumers. A group of EVs is defined as
{evj} .J € M, M is the number of vehicles. We divide the entire process into six phases: 1)
Energy demand reception and organization; 2) Energy request notification; 3) Available energy
prediction and energy ofter reply; 4) Discharge task allocation; S) Discharge task notification;

6) Energy transmission.
4.3.1 ENERGY DEMAND RECEPTION AND ORGANIZATION

The time at which a consumer ¢; sends a demand to the virtual power plant is denoted by
t.. The time at which the VPP receives all demands depends on the last consumer, which is
formulated as follows:

) (4.11)

ceey by

¢ = max(8}, 65,

We denote the time for organizing the energy demand by #7¢. Thus, the total time for energy

demand reception and organization is:
Ty =¢+1% (4.12)

4.3.2 ENERGY REQUEST NOTIFICATION

After collecting and organizing the energy demands, the VPP sends the energy request to the

network of EV. The time required for this phase is denoted by 75.
4.3.3 AVAILABLE ENERGY PREDICTION AND ENERGY OFFER REPLY

When an EV e receives the energy request, it predicts the available energy it can offer based
on the state of charge (S0C) and predicted power consumption, taking the time cost of lf . ev;
then responds to the VPP for its energy offer information. The time required for transmitting

the offer is denoted by z;’ . In addition, a timeout £

2. 1s specified to control the maximum waiting
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time for EV nodes. The time to respond to the virtual power plant depends on the last EV,

which is formulated as follows:
tr:Wde(zlll—i_t(l)?t]Z;—i_t;f” ,f[:‘—i—fi) (413)

We denote the time for organizing the energy demand by #”¢. Therefore, the total time for
energy demand reception and organization is:

Ty = min(max(& + 6,6+ 6, £+ 1), to) (4.14)

n

4.3.4 DISCHARGE TASK ALLOCATION AND NOTIFICATION

After receiving the energy offers from the EV fleet, the VPP starts allocating the discharge
tasks based on the demand and offer information, where the time cost is denoted by 7% Then,
the VPP notifies the EV fleet of the discharge tasks, where the time cost is denoted by 7 The

total time for assigning the discharge tasks and notifying is:

T4 — zﬂlloc + tnot’f (415)

4.3.5 ENERGY TRANSMISSION

When an EV ev; receives the notification, it starts executing the discharge task. The delay in
discharging the battery is denoted by t]d . The energy transmission from the EV ev; to the power
grid is denoted by tju and from the power grid to the consumer ¢ is denoted by the value £~
If the energy delivered to ¢; comes from ev;, the time required for energy transmission regarding
¢ 1s:

Ts =t/ + 65+ 4 (4.16)



In summary, the response time for an energy demand with respect to a consumer ¢; is:

765:711+T2+T3+T4+T5

=+ Ty + min(max( + 6,8+ £, L), o)+ (4.17)

n

tallac_i_zﬁotz]”_i_t]{i_’_t]tf_‘g_'_lf_c

4.4 MULTI-STAGE POWER CONSUMPTION PREDICTION METHOD

To present the multi-stage power consumption prediction method, we consider a single trip
from a start city to a destination, as shown in Fig. 4.9(a). The start city is located in Area 1 and
is denoted by Cizy,. The destination is located in Area N and is denoted by Ci¢y,. Each city is
associated with latitude and longitude, e.g. Cizy, is associated with latitude Lat, and longitude
Long,. The duration of driving is abbreviated as DoD. We assume that DoD takes only integers
and ranges from 1 to 12 hours to simplify the problem. The start time is denoted by #,. We also
assume that the EV moves at a constant speed in a straight line. Therefore, we can calculate the
position of the EV at each time #, # € {#,, 7, + 1, ..., + DoD — 1}. Each calculated position
City, is called an “equal point” because the distance between two adjacent points is the same.
The equal points are marked by green dots, as shown in Fig. 4.9(a). These equal points divide
the entire path into multiple sections. We then predict the power consumption for each sec-
tion and sum up the results. For each section, we need the following features: 1) start time 7, 2)
weather information at time #, 3) geographic information (latitude and longitude), 4) user in-
formation, and 5) duration of driving. For each equal point, we use the weather data from the
nearest weather station, which is highlighted in yellow in Fig. 4.9(a). Algorithm 4.1 describes
the proposed approach to predict power consumption method in detail.

For ease of understanding, we split the entire algorithm into the following four stages: 1)
Initialization (Line 1-4), 2) Intermediate Position Calculation (Line 5-8), 3) Practical Position
Calculation (Line 9-23), and 4) A1 Prediction (Line 24-33).

First, a start city City, (Lat,, Long,), a destination City, (Lat, Long,), DoD, and start time

¢, are given. Latitude and longitude of all cities are stored in { La#; } . , and { Long; }, ., respec-

44



Equal points
Area N q P

City, (Lat,, Long)

o 0

‘ Cityy

Weather Stations (Laty, Longy)

=

(a) Illustration of Power Consumption Prediction Method for A Single Trip. The green dots in-
dicate positions that the car will pass through. Icons in yellow denote the nearest weather stations
with respect to the green dots.

. Start City
(Lat,, Long,)

§

. Destination
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(b) An Example of Power Consumption Prediction Method for A Single Trip from Sendai to
Tokyo in Japan. Each yellow star denotes a city associated with an explicit weather record. Created
from Google Map [145].

Figure 4.9: Illustration of the optimized power consumption prediction.
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Algorithm 4.1: Multi-Stage Power Consumption Prediction Method

Require: Lat,, Lat;, Long;, Long, DoD, t;, {Lat} ;g \ Longi} e { Weathery, ,

User_Info, Npa1, M

Ensure: Predicted Power Consumption PCj,.,

1:

e T
S

DN N NN = = e =
Rl S ol SR N R~ B SN N VAT

24:
25:
26:
27:
28:

Initialize empty arrays Lat,, Long,, Lat, and Long,

Initialize City_ID

Initialize temporary variables £D and ED,,;,

Initialize sample S of size 11, which will be fed into model A/
for Vi € [0, DoD)

Lat,[i] = Lat, + L%;DL‘% i
; Long;—Long; .
Long |d] = Long, + =551

for V7 € [0, DoD)
ED, = \/(Lat ) — Laty)” + (Long.l1 — Longo)’
Laty[i] = Laty
Long,|i] = Longo
City_ID[i] = 0

: foer € [laMotﬂ/)

ED — \/(Lﬂtc[l.] — Lﬂtj)z + (Longc[l'] - Longj)2

: If ED < ED,,,;, then

ED,,;, = ED
Laty|i] = Lat;
Long,|i] = Long;
City_ID[i] =
PCpreq =0

: for Vi € [0, DoD)

S[0], S[1] < hour, weekday from #, + 7 — 1

S[2], S[3], S[4], S[5] < temperature, rainfall, humidity, and wind speed from
WgﬂtberCz'ty_ID[z] Jt+i—1

Sl6] = Laty|d], S[7] = Long,li]

S[8], S[9] < gender, age from User_Info

S[10] = DoD

P Cprfd =P Cprcd +M (S)
return PCy,y
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tively, where K denotes the set of city IDs. The weather information is presented by { Weathery +}c . . 1>
including temperature, rainfall, humidity, and wind speed, where 7"is the time period of the
weather data and is given by each hour. User_Info contains information about the driver’s gen-

der and age. NN, denotes the total number of cities, and A1 is the neural network model for

power consumption prediction.

In Stage 1, the empty arrays Lat,, Long, are initialized for recording equal points. Lat,, Long,,
and Ciry_ID are used to record nearest cities to each equal point. As shown in Line 6 and 7,
we find coordinates of point that divide the line segment, Czty,City,, into multiple equal parts.
The length of each array is set to DoD. The temporary variables £D and ED,,;, are initialized
for calculation and storage of distance information. An empty sample S is prepared as input
for model prediction. In Stage 2, the latitude and longitude of each equal point are calculated,
given Lat;, Long,, Lat,, Long. and DoD. In Stage 3, for each equal point, we traverse all practical
cities and find the nearest one by Euclidean distance. In Stage 4, we prepare samples with respect
to each section and perform prediction. We extract the hour and day of the week from time
t,+i—1,7 € [0, DoD). We extract gender and age from User_Info. Given the weather data at
time £, + 7 — 1 and a city with Cizy_ID|[i], we obtain temperature, rainfall, humidity, and wind
speed. We also obtain the latitude Laz, and the longitude Long,. Finally, we input the sample
S into the model 2. When the prediction is completed for each driving section, we obtain the

final result PC,.y.

4.5 EvarLuaTION

4.5.1 EV CHARGING ALGORITHM
EvALUATION METHODOLOGY

We evaluate the performance of the proposed EV charging algorithm in terms of energy ful-
fillment and mistaken decision. We consider a total demand of 2000 kwh, an EV battery capac-
ity of 40 kwh, and an EV number of 100. The state of an EV is parking or driving. Also, each
EV may or may not have future tasks. Energy fulfillment means how much energy the EV fleet

can provide to meet the total energy demand. Mistaken decision means an EV makes a wrong
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Figure 4.10: Comparison between random EV charging and the proposed EV charging
algorithm in terms of energy fulfillment.

decision whether to provide energy or not.
EvALUATION RESULTS

The evaluation results demonstrate that the proposed EV charging algorithm achieves an
average energy fulfillment of 0.58 compared to the random EV charging of 0.46. Moreover, less
than 10% of EVs make wrong decisions when the proposed algorithm is applied. In comparison,
random EV charging results in almost 33% wrong decisions. We conclude that the proposed
EV charging algorithm achieves better performance in both energy demand response and local

EV management.

4.5.2 MULTI-STAGE POwER CONSUMPTION PREDICTION METHOD
EvaruvuaTioN METHODOLOGY

As discussed previously, the data set for the power consumption prediction includes weather,
geography, and user information. We collected weather data from December 2019 to Novem-
ber 2020 in 63 cities in Japan [146]. The start time of vehicle reservation was set from 0:00

to 23:00 and the duration of driving from 1 to 12 hours. We considered the age of drivers
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Figure 4.11: Comparison between random EV charging and the proposed EV charging
algorithm in terms of mistaken decision.

ranging from 21 to 69 years old. The daily power consumption was measured considering the
input characteristics and the measurement model [147]. We summarize the detailed informa-
tion of the data set in Table 4.1. The data set contains a total of 66000 samples. We compared
the proposed multi-stage power consumption prediction with the original power consumption
prediction (PCP). We investigated the performance of the two methods under difterent driving
activities — (a) short-distance journey, (b) mid-distance journey, and (c) long-distance journey.

We summarize our definition of the above three activities in Table 4.2.
EvALUuATION RESULTS

A comparison between PCP and the proposed multi-stage PCP is illustrated in Fig. 4.12.
The overall prediction results are shown in Fig. 4.12(a), where the multi-stage PCP achieves
5.7% lower RMSE compared to PCP. We observed that the multi-stage PCP performs better in
scenarios with a short distance. This resultis surprising because the original PCP mainly focuses
on local driving activities and has achieved decent performance. Our most compelling case is
long-distance driving. As can be seen in Fig. 4.12(d), the multi-stage PCP still achieves better

results by achieving 14.3% lower RMSE. We also analyzed the performance variance of the two
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Table 4.1: Multi-stage vehicle energy consumption data set.

Input Feature Value Unit and Datatype
Start Time 0to23 -, Int

Weekday lto7 Mon. to Sun., Int
Temperature -13.6t0 39.5 °C, Float

Rainfall 0to97.5 mm, Float
Humidity 0.05to 1 %, Float

Wind Speed 0to26.2 m /s, Float

Latitude 34.09 to 41.30 °N, Float
Longitude 134.84 to 141.94 | °E, Float

Gender Oorl Male/Female, Int
Age 21 to 69 Years old, Int
Duration of Driving | 1to 12 Hours, Int

Output Value Unit and Datatype
Power Consumption | 5.43 to 139.97 kWh, Float

Table 4.2: Driving activities.

Driving Activity

Duration of Driving

Driving Distance

Short Distance
Mid Distance
Long Distance

1 -2 Hours
4 — 6 Hours
8 - 12 Hours

<250 KM
250 KM - 500 KM
> 800 KM

50




methods in each case. At medium and long distances, the variance of the RMSE of the multi-
stage PCP is significantly larger than that of the PCP. The multi-stage approach may explain
the reason for this. In the multi-stage PCP, when the distance is long, the trip is first divided
into several sections and then the prediction model is run for each section. When the prediction
results are summed, the errors caused by each prediction are also accumulated. Therefore, the
multi-stage PCP leads to higher variability. On the other hand, for a short trip, e.g., one or two
hours, the multi-stage approach has little effect, and therefore the variance of the multi-stage
PCP is lower. Moreover, the unit RMSE, i.e., the RMSE per section, decreases from 0.90 to

0.52 as the driving distance increases as shown in Fig. 4.13.

4.6 CHAPTER SUMMARY

This chapter introduces the proposed system and fundamental algorithms for power man-
agement in smart grid. An overview of network of electric vehicles (NoEV) for power man-
agement in smart grid is illustrated. The flowchart of charge mechanism for EVs is presented.
Besides, we demonstrate the neural network model and multi-stage algorithm for power con-
sumption prediction. The proposed collaborative learning scheme using federated learning and
blockchain is also introduced. In the next chapter, a robust federated leaning algorithm for

qualified local model selection (FL-QLMS) will be presented.
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Figure 4.12: Comparison between PCP and the multi-stage PCP (this work) in different scenarios.
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Robust Federated Learning Algorithm

5.1 POISONING ATTACKS TO FEDERATED LEARNING

Since federated learning was used to achieve data protection by avoiding the transmission
process, malicious local clients or attackers controlling local devices will produce fake local up-
dates without being detected. Depending on the attacker’s strategy, poisoning attacks can be

classified into data attacks and model attacks [148, 149].

e Data Attacks
Data attacks refer to the malicious modification of data of any local participants. Datain-
jection can occur either in input features or in the output of a data sample before training

begins. In random data poisoning, the targeted data points are replaced with a set of ran-
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dom data. In targeted data poisoning, attackers prepare a group of specific data points

to inject the desired data samples that will yield the desired prediction.

* Model Attacks
Model attacks on local models can be carried out after local training or while the model
is being transmitted. There is also another scenario where the global model is manipu-
lated. This can happen on the server side or even during the transmisson. One attack
strategy is to replace a set of parameter values of the model. The other strategy is model
replacement, where a clean model is directly replaced with a prepared malicious model.
Compared to data attacks, model attacks are considered more effective [150]. Since a
malicious model can be faked without real training or even without a real data set, this is

the preferred attack strategy.

5.2 FEDERATED LEARNING FOR QUALIFIED LoCAL MODEL SELECTION

As we explained in section 3.5, the original FL approaches (i.e., the work in [108]) randomly
select a group of clients in each training round, which means that communication quality and
delay are difficult to evaluate. Moreover, this approach makes the model vulnerable to client at-
tacks, which eventually leads to a severe degradation in prediction performance (e.g., accuracy
in classification or root mean squared error in linear regression). Therefore, to ensure a robust
learning environment, it is necessary to always select the “gualified” local models for aggrega-
tion, where qualified models are considered non-polluted and contribute to the performance
of the global model.

In the proposed FL-QLMS algorithm, we focus on selecting a group of “gualified” local mod-
els for model aggregation. In general, if the distribution of the data is similar, the convergence
trend of a local model should also be similar to that of the centralized model [151]. Thus, if
the parameters of a local model are similar to those of the centralized model, i.e., if the param-
eter diversity between the two models is low, the local model is considered to contribute to
model aggregation. On the other hand, if a local model is contaminated by a malicious attack,

the diversity between the contaminated model and the centralized model should be high. The
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diversity between two models can be expressed as follows:
DI, ;, = ||P, — P| (5.1)

where DI, ; denotes the diversity between model parameters P, and P,

Consider a FL process with N clients, each training round consists of the following six steps:

1. First, each client trains its local model using the collected local data set. In each local

model 1

ocal®

the gradient Vg7 is calculated using adaptive moment estimation (Adam)

optimizer [153], as shown in the following formula:

 SE(W
Ve, = L (52)

where W, denotes a set of weights, and E(77;) represents the loss function with respect
to W;. E(W;) is used to measure the model error and find an optimal solution. Also, 9

denotes partial derivatives.

2. Each client uploads the local model A1, , to the aggregator. Besides, the aggregator is
informed of the local data size | D, ,| from each client, where Dj,_, denotes the local

data set of the client 7, 7 € .

3. The aggregator selects a group of uploaded models based on the FL-QLMS algorithm.
The number of selected models is determined by the parameter «, i.e., 2% of all models

used for aggregation. Given a total set of N models, the number of selected models is

Neteea = [@% - N|. The list of selected models is denoted by Mz eu-

4. Before aggregating the models, we need to calculate the contribution of each selected

model with respect to the corresponding data size [108]:

. D |

‘ _ local .

Wipeal = ZNwlected D yL,m € ]\[:elected (53)
m

local

]VJE' cre
where ) < | D}

local

| is the total data size with respect to the selected models.
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5. The selected models are aggregated to produce a global model with weights and biases:

N

W;Zobal = Z w?pml W: (54)
=1
N

Btopar = Z WieatV; (5.5)
=1

6. Once the edge nodes receive the global model from the server side, they update the pa-

rameters as follows [153]:

Wi = Wi — 7V (5.6)
U = by — 7V (5.7)

where 177 and & denote the weights and biases in the 7-th training round, respectively.

y denotes the learning rate.

We present the FL-QLMS algorithm with and without auxiliary model. Algorithm 5.1 de-
scribes how FL-QLMS works when an auxiliary data set is available. The auxiliary dataset is
prepared on the aggregator side. We denote the auxiliary model as A4,,,,,. First, we store all pa-
rameters (weights and biases) of A4, as a one-dimensional vector, denoted by P,,,. We treat
each local model A1), in the same way and obtain the flattened vector P,. P, and P; have the
same size, i.e., | Py.| = |2]. Then, for each model, we calculate the diversity between P, and

P; using the Manhattan distance:

‘Pﬂux|

D[dux,z‘ = Z ‘]}imx _pi
P

(5.8)

where fl,.. is a parameter of P,,,, and #/, is a parameter of P;. Then, [« - N] models with the
lowest D1, ; are selected for aggregation.
Algorithm 5.2 describes how FL-QLMS works when no auxiliary data set is available. For

eachlocal model A1), ,, we store all parameters (weights and biases) as a one-dimensional vector,
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Algorithm 5.1: FL-QLMS with Auxiliary Model

Require: Auxiliary model M., local models { M/ jm n
clients /N, and parameter
Ensure: List of selected models for aggregation

P the total number of

1: Initialize an empty list M0, which is used to store the selected local models

2: Store all parameters of M, as a one-dimensional array, denoted by P,,,

3: Store all parameters of each Mfm ; as a one-dimensional array, denoted by PZ@ ;

4: foreach7 € Ndo

5:  Calculate the diversity between P, and P, using the Manhattan distance,
denoted by DI,

end for

7: Select [2% - N| models with lowest DI, ; and store them to the list M,.req

8: return M, ..u

I

Algorithm 5.2: FL-QLMS without Auxiliary Model

Require: Local models {A4),,}, » the total number of clients NN, parameter 2
Ensure: List of selected models for aggregation
1: Initialize an empty list M j,...q used to store the selected local models

2: Store all parameters of each Af),_, as a one-dimensional array, denoted by P, _,
3. for each7 € Ndo

4 for eachj € Nand; # 7 do

5 Calculate the diversity between P; and P; using the Manhattan distance,

denoted by DI, ;
¢:  end for
7 DI; = 7= Zjli 1j: Pli; /" Calculate the average diversity
between P; and {P;M /
JEN#i
8: end for

9: Select [2% - N| models with lowest DI; and store them to the list M sea
10: return M ecreq

denoted by P, ;. We then calculate the diversity DI; ; between P, ,andeach P;M . Wherej € N
and j # 7. Therefore, the average diversity of M), _, can be computed as follows:
] N
Dl =~ Z 'D[[,j (5.9)
J=L#

A model with alower average diversity is considered more representative. In other words, the
data set associated with the model is assumed to have a similar distribution to the entire data

set. For this purpose, [« - N| models with the lowest DJ; are selected for aggregation.
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5.3 EVALUATION

5.3. CONVENTIONAL VS FL-BASED APPROACHES

EvALUATION METHODOLOGY

The data set for the power consumption prediction includes weather, geography, and user
information features, as discussed in the previous section. We collected weather data from Jan-
uary 2020 to July 2020 in the Fukushima, Kanagawa, and Tokyo regions of Japan [146]. The
start time of vehicle reservation was set from 0:00 to 23:00, and the duration of use was set from
0 to 24 hours. We considered the age range of the driver according to the requirements of Class
2 license [152]. The daily power consumption was measured, given the input features and the

measurement model [154]. We summarize the detailed information of the data set in Table 5.1.

Table 5.1: Vehicle energy consumption data set.

Input Feature Value Unit and Datatype
Start Time 0to23 -, Int

Duration of Use 0to 24 Hours, Int
Weekday lto7 Mon. to Sun., Int
Temperature -11.61 to0 33.83 °C, Float

Rainfall 0to 19.04 mm, Float
Humidity 0.07to 1 9%, Float

Wind Speed 0.24 to 23.45 m /s, Float

Latitude 35.15t0 37.29 °N, Float
Longitude 139.09to 139.76 | °E, Float

Gender Oorl Male/Female, Int
Age 21 to 69 Years old, Int
Output Value Unit and Datatype
Power Consumption | 0 to 140 kWh, Float

We considered the scenario where each client’s data is independently and identically dis-
tributed (IID). We allocated the entire data set into three clients; each subset contains 1000
samples following a similar distribution. However, in most practical cases, the local data on
each EV node is usually non-IID, which comes from the fact that the data is collected at a differ-

ent time or from different drivers. Therefore, we investigated how the distribution of non-IID
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data affects performance. An interesting case is when each EV is reserved at different times of
the day, i.e., morning, afternoon, evening, and night. We considered a group of four clients,
each of which is associated with the period from 6:00 to 11:59, 12:00 to 17:59, 18:00 to 23:59,
and 0:00 to 5:59, respectively. In addition, we are interested in the scenario in which the EVs are
reserved by users in a different age group. Five clients are included in this case, each of whom
is associated with the age ranging from 21 to 29, 30 to 39, 40 to 49, 50 to 59, and 60 to 69,
respectively. For each FL training, the simulation was repeated SO times. We used the R score

to measure the performance of the model.
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Figure 5.1: Comparison between the conventional model, individual learning model, and
the FL-based model using IID data distribution.

EvaLuaTiON RESULTS

For the first experiment, where the data from each client is independently and identically
distributed, the result is shown in Fig. 5.1. We observe that the performance of the FL approach
in the R* score is 0.922 on average, which is less than the conventional model (0.938). The
slightly imbalanced data distribution explains the degradation in accuracy.

Figures 5.2 and 5.3 show experiments of the FL model on non-IID data distributions. In
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Figure 5.2: Comparison between the conventional model, individual learning model, and
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Figure 5.3: Comparison between the conventional model, individual learning model, and
the FL-based model using non-IID data distribution. There are five clients in the experi-
ment; each client is associated with a data set concerning ages ranging from 20 to 69. The
FL-based model has proven to be robust in the non-IID setting.
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this evaluation, we observe that the performance of the single client deteriorates significantly
compared to the conventional model due to highly skewed non-IID data. However, the FL
-based model has proven to be robust in both cases. For the current EV sharing community,
accurate power prediction allows drivers to know the remaining power consumption of EVs in

advance, making reservation management more efficient.
5.3.2 FEDERATED LEARNING FOR QUALIFIED LocAL MoDEL SELECTION (FL-QLMYS)
EvALuATION METHODOLOGY

We considered a set of N = 63 clients in the federated learning environment. We used the
data set as illustrated in Table 4.1. The data set contains 63000 training samples and 3000 test
samples. First, we studied the effects of the model initialization methods — a) global initializa-
tion and b) local initialization. We considered an independent and identically distributed (IID)
setting and employed the Fed Avg (Federated Average) algorithm [108]. Then we considered
a scenario where the local data is non-IID. Finally, we went a step further and compared the
robustness of the different FL algorithms against client attacks. For each algorithm, the simu-
lation was repeated 20 times. Each simulation included 50 iterations. We used the root mean

square error (RMSE) to measure the performance of the model.
EvaLuaTioN REsULTS

We considered a set of N = 63 clients for the FL schedule. We split the whole data set D into
the training set D,,,;, of 63000 samples and the test set Dy, of 3000 samples. First, we evalu-
ated two approaches to model initialization: a) global initialization and b) local initialization.
Global initialization means that the aggregator creates an initial model and distributes it to all
clients. Local initialization, on the other hand, means that each client creates its own initial
model and performs the training task. FedAvg is used for model aggregation. We randomly
assigned 1000 samples to each client. Thus, each subset D), follows an independent and iden-
tical distribution (IID), where D,,,,, = D}, U D%, U - -- U D¥,. Fig. 5.4 illustrates the impact
of two model initialization options on training performance. The red and blue shaded areas

indicate the performance variations for local and global initialization, respectively. While local
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initialization leads to slower convergence in the first 20 iterations, it achieves a lower average
RMSE of 7.77 than global initialization at the end of training. This shows that it makes more
sense to build the initial models on the client side rather than on the server side. Therefore, we
implement local initialization in the following FL simulations.

We then considered a scenario where all local data is non-IID We refer to this scenario as Scenario-
I. We distributed the entire dataset across /N = 63 clients, each of which is associated with 1 to 5
start cities. Besides, each local dataset I, .., contains different reservation times, i.e., morn-
ing, afternoon, or evening. For each I, / € N, the data size ranges from 200 to 2000.

non—iid>

. . . _ 1 2
Similar to the IID scenario, we have D,,,;, = D,,, .,UD; .. UJ---U DN

von—iid- We com-
pared the performance of FedAvg, FCS, and the proposed FL-QLMS with or without auxiliary
model M. As shown in Fig. 5.5, the FL-QLMS with an additional model has similar perfor-
mance to FedAvg, while both algorithms cannot keep up with FedCS with an average RMSE
of 7.28. The reason is the robustness of FedAvg and FedCS to the non-IID. setting to some
extent. Also, compared to FedCS and FL-QLMS, FedCS allows two times as many clients in
each training round. We then found that the average RMSE of FL-QLMS without an auxil-
iary model is higher than the other methods, reflecting the importance of an additional model
during training.

We further investigated the impact of hacked clients on various FL algorithms. We refer to
this scenario as Scenario-II. We assume that £% of all clients are hacked in each training round.
Each hacked client uploads a malicious model where all parameters range from -1 to 1 randomly.
Compared to Scenario-I, we used the same setting for data distribution and training simula-
tion. From Fig. 5.6 we can see how each method performs against model attacks of varying
severity. FL-QLMS (with A,,,.) is shown to be robust when 10% to 40% of clients are hacked,
holding average performance constant. In contrast, FedAvg and FedCS are highly sensitive to

attacks, as the training process hardly converges as the number of faked models increases. For

FL-QLMS (without M,,,.), it always leads to convergence, but with slightly worse performance

than FL-QLMS (with A1,,..).
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Shaded regions denote the fluctuation of the performance. The meaning of iteration is
the number of times that the models were aggregated.
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severity of the attack is considered. Shaded regions denote the fluctuation of the performance.
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5.4 CHAPTER SUMMARY

This chapter presents the robust federated learning algorithm for qualified local model selec-
tion (FL-QLMS). There are two versions of FL-QLMS, named FL-QLMS with auxiliary data
and FL-QLMS without auxiliary data. The first version uses an auxiliary dataset on the aggre-
gator and trains an auxiliary model. Local models that are more similar to the auxiliary model
based on the model parameters are considered more representative. The second version is based
on the similarity between local models. The evaluation results demonstrate that the proposed
FL-QLMS achieves high robustness when 10% to 40% of the models are attacked. Compared to
state-of-the-art methods, FL-QLMS maintains the training performance throughout the learn-
ing phase. Next chapter will presents two variants of the proposed blockchain architecture for

collaborative learning.
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Blockchain-Enabled Collaborative Learning

The whole process of the decentralized system is divided into four main steps: (1) The local
models are trained and then uploaded to the blockchain network. (2) In the blockchain net-
work, the whole process involves broadcasting, verification, mining, etc., after which the dis-
tributed ledgers are generated. (3) Each edge node receives a corresponding ledger with a set of
local models. (4) Once an edge node collects the models, a global model is created and replaces
the current local model. The whole process is repeated for each node until local convergence is

achieved.
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Algorithm 6.1: Decentralized FL-based learning scheme based on blockchain and
Swarm platform

Require: Real-time data collected from EV
Ensure: Predicted Power Consumption
1: Initialize the aggregator to wait for collecting local models
2: While do not converge do
3: Train local model A1), in edge Al system
4 Upload A1, , from Al system to Swarm for storing, obtain hashed value b,(addr)
with respect to the address of stored model
s: Record each collection of b;(addr), its signed message and a pubilc key of node
as a whole transaction from node 7 to , which is denoted by 72X
Broadcast a request to the whole blockchain network
As soon as TXj; is verified, it will be added to the mempool
All transactions in a mempool is packaged and then added to the block
Mining begins. A successful mined block is added to the public ledger
10:  Participants download local models from the public ledger to update the global
model as Mglolml — % Z?:l VMZMZ
11: M1 < Miopar /” Update local model
12: End While

13: Return Predicted Power Consumption

6.1 (COLLABORATIVE LEARNING BASED ON BLOCKCHAIN AND SWARM PLAT-

FORM

As illustrated in Fig. 4.5, in the decentralized architecture, there is no interaction with the
conventional aggregator. Each node has the same public ledger in the blockchain network that
records all the trained local models stored in the transactions. However, considering that the size
of the model can sometimes be large and thus lead to a significant workload on the blockchain,
we use the Swarm —a distributed storage platform [155] to store the models. In this way, only
the model’s address is uploaded on the blockchain, giving us a more efficient system. The whole

procedure is summarized in Alg. 6.1.

To implement the blockchain network, we start by creating user accounts on Ethernet. Then
we initialize the nodes in the Swarm, which is used to allocate memory to each client to store
the data, as shown in Fig. 6.1. In the Swarm cluster, discontinuous storage is allocated to each

client. Each time a client uploads data, it is partitioned into many segments, which are then
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Figure 6.1: The communication between the blockchain network and the Swarm plat-
form. The distributed storage platform is used to record user information and the up-
dated files. 72X: Transaction.

stored in different volumes. After that, the cluster generates a hash code representing the ad-
dress corresponding to the collection of data fragments. Based on the information of the user
account and this hash code, access to the complete data is possible. In this work, the data refers

to the training model with the parameters of the network.

At the blockchain side, when a client, C;, uploads a file to Swarm and receives the encrypted
hash code, it sends the hash value to another node, C,, automatically creating a new transaction.
However, to ensure that this transaction is trustworthy, digital signatures are used for verifica-
tion. The transaction pool is where all valid transactions wait to be confirmed by the blockchain
network. However, with the increase in unconfirmed transactions, memory consumption and
computational efficiency become a challenge. To tackle this problem, the Merkle tree [113] was
introduced, which significantly reduces the requirement concerning both memory and com-

putation as shown in Fig. 2.5.

The entire process of building a Merkle tree results in a single hash value referred to as the
Merkle root. The block header consists of a 32-byte previous block hash, 32-byte Merkle root,
4-byte timestamp, 4-byte difficulty target, and 4-byte nonce. We denote the set of metadata

except for nonce by M. Given a pre-determined value 7, the goal is to find a nonce that satisfies
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Table 6.1: Comparison among centralized (conventional and FL-based) and decentralized

(blockchain-based) system.

Conventional Federated Federated Learning
Method Learning with Blockchain
Third Party Involvement | Yes Yes No
Data Management Between server and clients | Kept by clients Kept by clients

More prone to hacking

Prone to hacking,

Less prone to hacking,

Safety and data leakage safe data storage safe data storage
Stability Low Medium High
System Complexity Low Medium High
C " £ Medium-high
.onsump onoe High Low (depends on difficulty
Time and Energy ..
of mining)

Table 6.2: Comparison of three data storage methods on the blockchain.

Blockchain Blockchain + Swarm | Blockchain + Cloud
. Hash on blockchain, | Hash on blockchain,

Data Storage Model on blockchain model on Swarm model on Cloud

Less prone to hacking, | Less prone to hacking, | More prone to hacking
Safety

safe data leakage safe data leakage and data leakage
Ease of Use Medium Not easy to use Easy to use
System Load .
on Blockchain High Low Low

the requirement shown in equation 6.2.

Hash(M + nonce) = 0...0 x...x

n bits

(6.1)

Once a perfect nonce is found, it is added to the hashed block. The block header is re-hashed

along with the successful nonce, then the block, including header and body, is added to the

chain. It is worth noting that in our case a relatively high frequency of information exchange

between ledgers is required. Therefore, 7 is chosen small to pave the way for mining. With the

public information in the blockchain, each node can quickly retrieve the data used to access

Swarm. This allows them to download the latest models and update their own. A comparison

among the conventional centralized model, federated learning model, and federated learning
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with blockchain architecture is summarized in Table 6.1.

6.2 WRITING METADATA IN TRANSACTIONS

In general, the return operator (OP_RETURN), which is part of the Bitcoin script language,
is used to allow metadata to be stored on the blockchain [156]. However, the limit for storing
datain an OP_RETURN is a maximum of 83 bytes according to release 0.12.0 [156]. This re-
veals a significant advantage of using Swarm for data storage. It is also comparatively short and
saves time for writing metadata in a transaction. Each time a model is stored in Swarm, it gener-
ates a hash value with a fixed length of 32 bytes, regardless of the size of the model. Therefore,
it can always be written in a single OP_RETURN. Next, we implement the communication
between blockchain and client where the trained model is uploaded. For the fully-connected
network in our experiment, which has 11 input neurons, two hidden layers (8 and 6 neurons,
respectively), and one output, the total number of parameters is the sum of the number of
weights and biases, i.e., 11 X 8 + 8 X 6+ 6 x 14 (84 6 +1) = 157. Each parameter in floating
point format occupies 4 bytes, so if we extract only the parameters from the model, the data
size is 157 X 4 = 628 bytes. At least eight transactions are required for each model. With an
enormous model size, the increased number of transactions leads to a significant degradation
in storage and computation efficiency. An alternative way to store data is to utilize distributed
cloud storage instead of Swarm. However, there is still a high risk of data leakage here, although

the apparent simplicity offers the advantage. A comparison of the above methods is summa-

rized in Table 6.2.

6.3 SECURE SEMI-DECENTRALIZED FL-BASED FRAMEWORK

As we explained in the previous section, the proposed system is based on a semi-decentralized
architecture. Asshown in Fig. 6.2, the solid black lines mean that the local models are uploaded
from the clients to the aggregator. This communication does not take place in the blockchain.
Other activities indicated by dashed lines in blue belong to the blockchain network. A VPP

aggregator, EV fleets, and a group of miners are integrated into the blockchain network. In the
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Figure 6.2: Overview of the proposed secure semi-decentralized FL -based framework.
The black solid lines mean that the local models are uploaded from the clients to the ag-
gregator. This communication does not take place in the blockchain. The activities in the
blockchain network are indicated by blue dashed lines. A VPP aggregator, EV fleets, and
a group of miners are integrated into the blockchain network. The workflow is briefly
divided into five steps: 1) Each EV node trains a local model. From the second round of
training, each EV node updates the local model until convergence. 2) Each EV node up-
loads the local model to the aggregator. 3) We apply the FL-QLMS algorithm to select the
qualified models for aggregation, resulting in a global model. 4) The aggregator creates
and broadcasts a transaction (containing the global model) in the blockchain. After val-
idation and mining, a distributed ledger is created. 5) Each client downloads the global
model from the distributed ledger to update the model.

proposed architecture, the miners are the vehicles themselves, while in Fig. 6.2 EVs and miners
are shown separately for explanation. The overall workflow for each training round is described

as follows:

1. In the first training round, each EV node initializes and trains a local model A4},,;. From

the second training round, each EV node updates the local model until convergence.
2. Each EV node uploads the local model A, to the aggregator.

3. After collecting local models, we apply the FL-QLMS algorithm to the model selection

process. Then, the qualified models are selected for aggregation, resulting in a global
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4. (a)

(2)

At first, the global model is recorded as metadata in a new transaction 72X,. The

aggregator feeds the transaction into a the hash function A and generates a hash

value H(7X,).

The aggregator feeds H(7X,) to a signature algorithm with aggregator’s private

key, whereby an encrypted message is produced.

The aggregator then creates a transaction 72X that contains the original transaction

TX,, the encrypted message and a public key.

The transaction will be sent from the aggregator to one of the nodes and then

broadcasted to all miners.

Each miner can start performing validation. One will use the same hash function
H and generate the hash value of 7X,. We denote the hash value by H;. Since the
same hash function always produces the same output, A should be identical to
H(TX,). Besides, the encrypted message will then be decrypted using the public
key. If the resulted value matches Hj, the digital signature is proven to be valid.
Therefore, 7Xis considered valid and added to each node’s transaction pool. Once

TX is confirmed by the blockchain network, it is added to the block.

A block header contains a 32-Byte previous block hash, 32-Byte Merkle root, 4-
Byte timestamp, 4-Byte difficulty target, and 4-Byte nonce. A nonce is a 32-bit

target that is guessed by miners by solving the following equation:

H(nonce) = 0...0 x,41...-%56 (6.2)
n bits

where, 7 is a pre-determined value controlling the mining difficulty.

Once the nonce is found, the mined block is added to the distributed ledger.

S. Each client downloads the global model from the distributed ledger for model update.
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The local model is transmitted and merged without blockchain support. To ensure the ro-
bustness of the model aggregation, we introduce a novel algorithm called Federated Learning
for Qualified Local Model Selection (FL-QLMS) in Section 5.2. With this, the fake models
are excluded and thus do not affect the model aggregation. The proposed semi-decentralized
FL -based platform drastically reduces blockchain congestion while maintaining a high level of
system security. A functionality comparison between the decentralized (i.e., AEBIS) and the

proposed semi-decentralized (i.e., NoEV) systems can be found in Table 6.1.

6.4 EVALUATION

6.4.1 BLoCKCHAIN NETWORK ON SWARM PLATFORM
EvaLuaTiON METHODOLOGY

For the blockchain solution, we used Geth [157], a Golang implementation of the Ethereum
protocol. The Swarm platform was used for data storage and distribution. We conducted the
experiments on Ubuntu 18.04.3. We also used Geth to set up a private Ethereum blockchain
network, creating a genesis file for each node. A genesis file contains the entire configuration of

the initial states, with information about several important parameters described in Table 6.3.

Table 6.3: Key configurations in a genesis file.

Description

ChainID ID of the chain (49344). It is unique for each chain
Difficulty Set to a small value (0x20000) for the ease of mining
Hash of the previous block. For the genesis block, it is
setto 0

ParentHash

EvaLuaTIiON RESULTS

For each node, multiple accounts are created with a private and public key pair, with the first
account used for mining and associated with the node’s address. The address is derived from the
last 20 bytes of the public key. We created two blockchain nodes, each containing two accounts.

Each account address is used to create a node on Swarm. Then, a local directory with a specific
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Swarm ID is automatically created. When both services are set up on blockchain and Swarm,

the communication between clients, Swarm and blockchain starts correctly (refer to 6.1).
6.4.2 SEMI-DECENTRALIZED FL-BASED FRAMEWORK
EvALUATION METHODOLOGY

To show the advantage of our proposed system in terms of cost efficiency, we studied the
network load in a blockchain system and compared the proposed NoEV with AEBIS, oVML,
and DeepChain. We mainly focused on the number of blocks and transactions generated in
a given time period. We used an extensible simulation tool BlockSim for blockchain systems
presented in [158]. The configurations are summarized in Table 6.4. We simulated 63 nodes
for AEBIS, oVML, and DeepChain, and 63+1 nodes (1 additional node for the aggregator) for

NoEV. We performed ten runs for each simulation, with each run lasting 6000 seconds.

Table 6.4: Configuration for BlockSim simulation.

Parameters Value Description

TI 30, 60, 120 seconds ~ Time interval of block generation

Bz 1 MB Block size

Belay 1,3,6,12seconds  Block propagation delay

Tisze 650 bytes Transaction size

Nodes Hash Power Description

Ny 1.587% In total, 63 nodes (miners) are considered in AEBIS,
Ny 1.587% oVML and DeepChain.

e e Each miner has the same computing power.
Ny 1.587% For NoEV, the aggregator acts as an

N 0% additional node with a hash power of 0.

Note: We collected the data set regarding 63 cities. Therefore, to simply the preparation of data set
allocation and federated learning schedule, we simulate 63 EV nodes for model training. Besides,
in our blockchain proposal, each EV nodes also acts as a miner, thus we use 63 nodes in this work.

To fairly compare the proposed work with other state-of-the-art works, we use 63 nodes for
AEBIS, oVML and DeepChain too.

EvaLuaTiON RESULTS

The block size was set to 1 megabyte (A1B). We considered different combinations of 77 and
Bieiay, Which represent the average time to generate a new block and the propagation delay of

a block, respectively. In [158], the transaction size 7, is 572.5 bytes by default. In our ex-
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periment, T, is larger because each transaction must additionally store a portion of a model.
The total number of parameters for our fully connected network (11-8-6-1) is 157. Each pa-
rameter in floating-point format occupies 4 bytes; thus, if we extract the parameters from the
model, the total size is 157 x 4 = 628 bytes. In general, the return operator (OP_RETURN),
which is part of the Bitcoin script language, is used to allow storing metadata on the blockchain
with a maximum storage limit of 83 bytes according to release 0.12.0 [156]. Therefore, at least
eight transactions are required for each model. The updated transaction size 7, is 572.5 bytes
+ 628/8 bytes = 650 bytes. We implemented 63 nodes (/N to Ng,) for AEBIS, oVML, and
DeepChain simulation with respect to a total of 63 EV clients. For simplicity, we consider a
simple scenario that each miner has the same hash power. Therefore, given 63 nodes and the
total hash power of 1, each of them will have a hash power of approximately 1.587%. For the
NoEV simulation, the aggregator is introduced as an additional node Ng. Since Ngs is not as-
signed any mining task, its hash power is set to 0%. We assume that the number of transactions
(7},) created per second is eight in NoEV. Accordingly, 7, = 8 x 63 = 504 in AEBIS since 63

nodes are considered.

Table 6.5 summarizes the results of AEBIS, NoEV, 0oVML, and DeepChain on the BlockSim
simulator. As the average block interval increases, the total number of blocks decreases accord-
ingly. In addition, as the block propagation delay increases, the number of blocks included in
the main chain decreases, while the number of stale blocks increases. The stale blocks have been
successfully mined but are not included in the current best chain. Therefore, the overall rate of
stale blocks increases. When comparing with other methods, itis observed that NoEV generally
requires the fewest transactions, especially for short 77. For example, for a short block interval
(7T = 30) and short block propagation delay (B, = 1), NoEV requires an average of 25166
transactions, which is 38%, 37%, and 35% less than AEBIS, oVML, and DeepChain, respec-
tively. The significant decrease in NoEV can be explained by the lower number of transactions,
since NoEV requires only one global model transmission to the block, while the other methods
require frequent local model transmission. DeepChain averaged model updates every 10 to 20

iterations rather than at every iteration to increase communication efficiency, as in AEBIS and
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oVML. However, DeepChain and oVML still require the exchange of local models over the

blockchain network.

Table 6.5: The blockchain simulation results of AEBIS, NoEV, oVML, and DeepChain for
different combinations of parameters.

Parameters AEBIS [147] NoEYV (this work)
17 Bdelay Biotal Binain  Biale 7y X Biotal  Bmain  Bstale 75 X
1 196.4 190.8 5.6 2.9% 40619 | 200.1 1939 6.3 3.12% 25166
30 3 200.25 1829 174 8.7% 38141 | 197 180.6 164 8.31% 24532
6 197.5 170.1 274 13.9% 33425 | 209.5 1763 333 15.87% 23299
12 194.5 148.4 46.1 23.7% 30467 | 203.9 1554 48.5 23.79% 20560
1 103.4 102 1.4 1.3% 21296 | 98.5 96.9 1.6 1.7% 17201
60 3 104.1 97.5 6.6 6.4% 19851 | 100.8 95.4 5.4 5.33% 16811
6 102.1 94.5 7.6 7.5% 19925 | 100.9 93.3 7.8 7.68% 15782
12 100.1 84.8 154 15.4% 18160 | 106.8 90 16.8  15.7% 15287
1 46.8 46.1 0.6 1.3% 9031 48.4  48.4 0 0.00% 8727
120 3 50.2 48.6 1.6 3.2% 10021 | 51 49.6 1.4 2.7% 9620
6 52.6 49.9 2.8 5.2% 11673 | 50 47.1 2.9 5.8% 8768
12 55.3 50.4 4.9 8.8% 10419 | 50.4  46.5 3.9 7.7% 9086
Parameters oVML [60] DeepChain [130]
17 Bdeldy Biotal Binain  Bitale 75 X Biotal  Bmain  Bsale 7 X
1 196.6 1919 4.8 2.4% 39805 | 198.3 192.6 5.6 2.8% 38807
30 3 192.4 175.6 16.8 8.7% 36892 | 195.8 180.5 153 7.8% 35937
6 193.4 164.8 28.6 14.8% 37477 | 197.6 1679 298 15.1% 30397
12 203.1 152.1 s1 25.1% 30204 | 203 154.5 485 23.9% 29601
1 101 99.6 1.4 1.4% 21750 | 102.1 100.1 2 2.0% 21224
0 3 101.1 96.4 4.8 4.7% 20652 | 103.3 98 5.3 5.1% 18598
6 103.6 93.5 10.1  9.8% 19640 | 95 86.5 8.5 9.0% 17374
12 95.6 81.5 141 14.8% 16767 | 97.3 84.9 124 12.7% 16510
1 50 49.6 0.4 0.8% 8418 49.3 48.8 0.5 1.0% 10375
120 3 50.5 49.1 1.4 2.7% 10623 | 50.6 S0 0.6 1.2% 9504
6 51.1 48.4 2.8 5.4% 9446 52.1 48.9 33 6.2% 9741
12 48.8 44.1 4.6 9.5% 8522 48.3 44.4 3.9 8.0% 9284

Biorar: The total amount of blocks generated.

B,uin: The number of blocks included in the main chain.

Byta1 Blocks that were successtully mined but not included in the current best chain.
7s: Stale block rate.
TX: Transactions.

6.5 CHAPTER SUMMARY

In this chapter, we propose two architectures for federated learning based on blockchain.

The first proposal leverages the conventional blockchain with the Swarm platform, where the
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hash values of the local models are stored on the blockchain instead of the models themselves.
The second proposal introduces an aggregator to the conventional blockchain, where the local
models are only transmitted to the aggregator and not to the blockchain. Both of these works
help reduce the heavy load on the blockchain and improve the efficiency of the system without
compromising security. The next chapter summarizes the thesis and discusses the remaining

issues and future research directions.
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Thesis Summary and Discussion

We conclude this dissertation with a summary chapter where we summarize the main con-
tributions of this research. We discuss the results of the conducted simulation. Finally, we
conclude this dissertation with a discussion of how this work can be improved, as well as other

considerations not addressed in this dissertation.

7.1 CONTRIBUTIONS SUMMARY

In this thesis, we propose a trustworthy Al-based system and algorithms for power manage-

ment in network of electric vehicles.
We establish a novel communication mechanism between the aggregator and each EV nodes

using an Al system based on reconfigurable hardware (FPGA) to predict the amount of avail-
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able power that an EV could supply when idle to mitigate storage during peak load. The recon-
figurable Al system with high-speed computation and low power consumption can be packaged

into an extended electronic control unit (ECU) connected to a vehicle’s controller area network

(CAN) bus.

The proposed EV charging mechanism incorporates a new EV battery power consumption
prediction algorithm based on a fully-connected neural network model. The prediction of
power consumption is performed by dividing a long trip into multiple sections. Each small

section is associated with a list of features that are used as inputs to the network.

Taking a step further, to guarantee the model learning in an efficient and secure way, we in-
troduce a robust collaborative learning scheme thatintegrates federated learning and blockchain
technology. We proposed an algorithm called federated learning for qualified learning model se-
lection (FL-QLMS) that is robust to both data and model attacks. The FL-QLMS is performed
in each training round to find a group of the best local models and filter out the malicious or
disqualified models. In addition, the novel blockchain architecture consists of a VPP aggrega-
tor and an EV fleet, and only global models are transmitted to the blockchain. The local models

are collected on the aggregator side in an off-chain manner.

7.2 RESULTS SUMMARY

In this research, we focused on the performance of the proposed prediction of electric vehicle
power consumption. We also focused on the performance of the proposed Fl algorithm and

blockchain architecture.

The proposed multi-stage PCP shows better performance in scenarios with short-distance
journey. Besides, the multi-stage PCP achieves a greater advantage in long-distance travel sce-
narios. We also analyzed the performance variation of the two methods in each case. For
medium and long distances, the variance of the RMSE of the multi-stage PCP is significantly
larger than that of the PCP. The multi-stage approach may explain the reason for this. In the
multi-stage PCP, when the distance is long, the trip is first divided into several sections and then

the prediction model is run for each section. When the prediction results are summed, the er-
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rors caused by each prediction are also accumulated. Therefore, the multi-stage PCP leads to
higher variability. On the other hand, for a short trip, e.g., one or two hours, the multi-stage

approach has little effect, so the variance of the multi-stage PCP is lower.

We also studied the impact of hacked clients on various FL algorithms with non-IID data.
FL-QLMS (with A1,,,) proves robust when 10% to 40% of clients are hacked, holding aver-
age performance constant. In contrast, FedAvg and FedCS are highly sensitive to attacks, as
the training process hardly converges as the number of faked models increases. For FL-QLMS

(without M), it always leads to convergence, but with slightly worse performance than FL-

QLMS (with M,,.).

We summarize the results of AEBIS, NoEV, oVML, and DeepChain on the BlockSim simu-
lator. As the average block interval increases, the total number of blocks decreases accordingly.
Moreover, as the block propagation delay increases, the number of blocks included in the main
chain decreases, while the number of stale blocks increases. The stale blocks have been suc-
cessfully mined but are not included in the current best chain. Therefore, the overall rate of
stale blocks increases. When compared to other methods, it is observed that NoEV generally
requires the fewest transactions, especially for short 77. The significant decrease in NoEV can
be explained by the fewer number of transactions, since NoEV requires only one global model
transmission on the block, while the other methods require frequent local model transmission.
DeepChain averaged model updates every 10 to 20 iterations rather than at every iteration to
increase communication efficiency, as in AEBIS and oVML. However, DeepChain and oVML
still require the exchange of local models over the blockchain network. The results demonstrate
that the proposed NoEV blockchain architecture allows the entire system to maintain a high

level of security while significantly increasing the efficiency of the blockchain network.

7.3 DISCUSSION

The presented network of electric vehicles considers the same type of electric vehicles. Since
different types of electric vehicles may have different impacts due to different battery capac-

ities, charging speeds, driving behaviors, etc., the discharge allocation mechanism needs to be
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redesigned in the face of such a complicated scenario. Based on the proposed multi-stage power
consumption method, the use of the global positioning system will help contribute to more re-
alistic route planning. In addition, different road conditions in different locations may affect
power consumption. Air resistance, surface resistance, and high or low battery temperatures
also significantly affect battery performance. Therefore, these variables should be considered
in future research. It is expected that the proposed method can be applied to other types of

engines, vehicles, trams, and trains given a specific driving task.

Moreover, the efficient division of the whole trip into several sections remains a problem to
be optimized. In addition, there are a number of factors that have not yet been considered in
our research that can have a large impact on energy consumption, such as the vehicle model, the
age of the vehicles, the driving style of the driver, etc. Since any change will affect the prediction,
we would like to regularize the data set and propose a new learning scheme that is compatible

with new data features.

Although the proposed FL and blockchain-based architecture shows great potential for effi-
cient and robust collaborative learning, there are still some challenges that need to be pointed
out. First, generic neural networks have a large scale that cannot be stored in a single transac-
tion in practice. Given the theoretical limit of 4 MB for current transactions, dealing with large
models remains a problematic issue. One possible solution is to first apply knowledge distil-
lation, a model compression method in which a small model is trained to mimic a pre-trained
larger model, and then the model is divided into a group of small segments. Each segment is fit
into a single transaction, and the model segments are finally reconstructed by local devices. Sec-
ond, current studies, including this work, use a large, single blockchain that integrates a large
portion of local devices. Such architectures have the problem of high latency, high maintenance
cost, vulnerability to single point of failure attacks, etc. To solve this problem, we are aiming
for a multi-blockchain architecture in the future. The new architecture is to divide the original
computing society into a group of clusters. Each cluster is responsible for a part of the work and
communicates with the others. In this way, we could achieve a system with higher efficiency

and scalability. Third, an incentive mechanism is preferable in vehicular networks, especially
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when private vehicles are considered in the edge computing scenario. To attract more partic-
ipants for data sharing, model training, and block mining, a series of reward mechanisms can
be proposed to provide incentives for private car owners. In addition, based on the incentive
mechanism, we will propose a novel trading system to enable smooth energy trading for the
V2G network.

Besides, qualified local model selection is essential to ensure the robustness of federated learn-
ing. The FL-QLMS algorithm demonstrates robustness to model attacks during the federated
process. However, the performance of the current FL-QLMS algorithm is highly dependent
on a prepared auxiliary data set, which raises two critical issues. First, the supplemental data
should ideally have the same distribution, as the entirety of the data is not guaranteed. More-
over, since the client-side data is updated daily, the auxiliary information is unreliable for local
model selection. Second, edge nodes must not pass raw data to the server for privacy and secu-

rity reasons.
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Distance measures

This appendix provides the distance measures commonly used to calculate the distance be-
tween two vectors. We analyze whether the following distance measures are appropriate for
calculating the diversity between two models.

Consider the calculation of diversity between two models A4, and AM; with corresponding
parameter vectors P; and P;. The length of P; and P is 7. The parameters of P; are denoted by
P} to p. We start introducing the following distance measures.

* Manbattan distance
The Manhattan distance, also refers to as L1 distance, is used to indicate the sum of the
absolute axis distances at two points in a standard coordinate system. The Manhattan
distance of P; and P, is calculated as:

Dmanlmttan (P], PZ) = Z
k=1

v~ 1 (A1)

One advantage of the Manttanan distance is its fast computational speed. Although it
seems less intuitive compared to Euclidean distance, it is a useful distance measure for
high-dimensional vectors.

* Euclidean distance
The Euclidean distance, also refers to as L2 distance, is the true distance between two
points in n-dimensional space. The Euclidean distance formula uses the Pythagorean
theorem to calculate the distance from the Cartesian coordinates of these points. The
Euclidean distance of P; and P, is calculated as follows:

Deuclzdeﬂn (Pb PZ) = (AZ)
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Euclidean distance is not scale invariant, it works if the metric of each component of the
vector is uniform. For calculating diversity, the Euclidean distance measure is consid-
ered appropriate because the magnitude of the parameters is the same. Nevertheless, a
normalized Euclidean distance can be used as a more general measure:

Dnormdlz‘zed(l)hpz) — \/(1)1 _ Pz)TS_l(P1 — PZ) (A3)

euclidean
where S is the covariance matrix.

* Chebyshev distance
The Chebyshev distance between two vectors is defined as the maximum of the absolute
value of the difference between the values of their coordinates. The Chebyshev distance
of P, and P, is calculated as follows:

Dchebyxhev(PhPZ) = max( Pi _PJI ) PZZ _PJZ JREES)

p-r) e

The Chebyshev distance is often used for special applications, which complicates its use
as a general distance measure like the Manhattan or Euclidean distance. In this work, the
Chebyshev distance is inappropriate for calculating model diversity because the param-
eter vector is high dimensional and diversity is unlikely to depend on a single parameter.

* Cosine distance
Cosine similarity is the calculation of the cosine of the angle between two vectors. The
cosine distance is the cosine similarity obtained by subtracting this value from 1. The
cosine distance of P; and P, is calculated as follows:

PP,

Dm:z'm’(Ph Pz) =-1- —=
2] - 2]

(A.5)

The cosine distance focuses more on the differences between the dimensions and less on
the numerical differences. While cosine similarity does not account for the difference
in rating scale between different vectors, it is inappropriate for two vectors with similar
directions but very different magnitudes.

* Minkowsk: distance
Minkowski distances are a set of definitions of distances, which are generalized expres-
sions of multiple distance metric formulas. The Minkowski distance of P; and P; is cal-

culated as:
n 1/r

sz‘n/eokaz'<P17 PZ) = Z(xi - _)’z')r (A6)

=1
If » = 1, the Minkowski distance is converted to a Manhattan distance; if » = 2, the
Minkowski distance is converted to a Euclidean distance; if » = o0, the Minkowski
distance is converted to a Chebyshev distance.
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Example of the FL-QLMS algorithm using
Manhattan distance

This appendix demonstrates examples of the FL-QLMS algorithm using Manhattan distance
with and without auxiliary models. In the example, we consider five local models A4 to A5
with a size of 157 (11-8-6-1). A local model is to be selected. An auxiliary model M4, with the
same size is provided. The detailed parameter vectors of the models are shown in Table B.1, B.2
and B.3. We begin by demonstrating how FL-QLMS is performed with an auxiliary model to
select a qualified model from A4, to Ms. We calculate the model diversity as follows:

¢ D](MluMamc) - /1::71 |P/1€ _P/;ux =15.14

* D[(MZaMﬂux) - 1165:71 LD/; _p/;ux| =15.23

© DI(M;, M) = 3,7 | — Pl = 15.62
¢ D[(M47Maux) - /1::71 |P//i _Pﬁux =16.23
© DI(Ms, M,.) = >, |pt — ph..| = 15.44

Therefore, M, with lowest diversity of 15.14 is selected as the qualified model in this case.
Then we show how FL-QLMS without the auxiliary model is performed. We calculate the
model diversity for each local model as follows:

* For M;:
DI(M;, My) = 32,7 |t — ph| = 20.87
DI(M,, My) = 3.7, |pt — ph| = 20.10
DI(M;, M) = 3.7 |t — pl| = 20.77
DIM;, Ms) = 32,7, |pt — p| = 20.51
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* For M,:

DI(M,, My) = DI(M,, M,) = 20.87
DI(M, M) = 3,7 |ph — ph| = 21.15
DI(M,, M,) = 157 |4 — 24| = 20.06
DI(M,, Ms) = 157 7Pk — P = 21.07
* For Mj:
D](M3,M1) = D[(MI,M3) = 20.10
D[<M3,M2) == D](M27M3> = 21. 15
DI(My, M) =37 s — pt| = 22.23
DI(M;, Ms) = 157 | = pE| = 20.70
° FOI‘M41
DI(M,, My) = DI(M;, M) = 20.77
DI(M,, M,) = DI(M,, M,) = 20.06
DI(M,, M) = DI(M3,M4) =22.23
DI(M, Ms) =37 |pt — pt| = 21.69
* FOI'MS
D](Ms,Ml - ](MlaMS) — 20 52

We obtain the average diversity for each model subsequently as follows:

* DI, = {(DI(My, My) + DI(M,, Ms) + DI(M,, M,) + DI(M,, Ms)) = 20.565

* DI, = Y(DI(M,, My) + DI(My, M) + DI(M,, M) + DI(M,, Ms)) = 20.788
* DI, = Y(DI(M;, M) + DI(Ms, M,) + DI(Ms, M) + DI(Ms, Ms)) = 21.045
* DI, = L(DI(M,, M,) + DI(M,, M,) + DI(M,, M;) + DI(M,, Ms)) = 21.188
* DIs = Y(DI(Ms, M) + DI(Ms, M,) + DI(Ms, Ms) + DI(Ms, M,)) = 20.995

Therefore, M, with lowest average diversity of 20.565 is selected as the qualified model in this
case.
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Table B.2: The parameter vector of models 115 and A4,.

Local model M43

Weights of Layer 1

0.66 [-0.97 064 [-1 [086 [10 [092 [-03 [-0.86]025 [0.94 [-0.49[-07 [-02 [-0.44]-0.95]0.93 [0.09]005 [0.32
-0.46 | -0.92 | 0.17 | -0.65 | 0.41 | 0.33 | 0.84 | 0.86 | -0.56 | -0.13 | 0.52 | 0.06 | 0.98 | -0.43 | -0.53 | -0.47 | -0.41 | 0.87 | 0.22 | 0.84
-0.47 | 0.07 | 021 | -0.59 | -0.76 | -0.24 | 0.56 | 0.64 | -0.54 | -022 | 0.2 | -022| 035 |-0.22|0.17 | 0.68 | 0.19 | 0.55 | -0.19 | 0.55
-0.57 | 0.42 | -0.81 | 0.19 | -0.45 | -0.62 | 0.76 | 0.37 | 0.76 | -0.22 | -0.61 | -0.48 | -0.11 | -0.59 | 0.28 | -0.28 | -0.65 | 0.95 | 0.46 | 0.81
-0.65 | 0.51 | -0.63 | -0.71 | 0.12 | 0.33 | -0.57 | 0.46

Biases of Layer 1

057 [ 088 [0.95 [0.95 |-0.06[0.58 [ 077 |-0.69 ] | | | | | |

Weights of Layer 2

-0.96 | -0.51 [ 0.16 |-0.74 [ 0.67 | -0.04 [ 0.41 [ -085[0.6 [-0.88[0.13 [087 [0.18 [-023[093 [037 [04 [031]-0.62]0.82
0.11 | 0.65 | -0.53 | 0.74 |-0.23 | -0.37 | -0.44 | 0.68 | -0.42 | -0.31 | -0.21 | 0.05 | -0.63 | -0.38 | -0.43 | -0.8 | 0.86 | 0.19 | -0.14 | -0.25
-0.95 | 0.47 | 029 | -0.64 | 0.34 | -0.9 | -0.94 | -0.53

Biases of Layer 2 Weights of Layer 3 Biases of Layer 3

0.58 | 0.63 [0.07 [-092]052 [08 | [ -0.17 [ 0.73 [ -0.19 | -0.26 | 0.05 | -0.83 | 051 | |

Local model A1,

Weights of Layer 1

0.97 [-0.6 [059 [-0.81]0.94 [091 [0.66 |[-034[-1 [022 [0.63 [-0.15][-0.66[-0.32]-0.45[-0.64 | 1 -0.0 | -0.02 | 0.15
0.82 | -1 | 028 |-0.42 | 048 | 025 | 0.9 | 0.78 | -0.49 | -0.12 | 0.56 | 0.03 | 0.79 | -0.35 | -0.44 | -0.61 | -0.44 | 0.89 | 0.01 |1
026 | 013 | 0.13 |-0.32 | -1 | -0.26 | 0.36 | 0.91 | -0.44 | -0.22 | 0.08 | -0.55 | 0.3 | -0.44 | 0.01 | 0.61 | 0.49 | 0.65 | -0.47 | 0.34
-0.63 | 0.17 | -0.91 | 0.28 | -0.65 | -0.6 | 0.82 | 0.59 | 0.8 | -0.4 |-0.38|-0.8 |-0.36|-0.78 | 0.01 |-0.39 | -0.55 | 0.83 | 0.56 |1
-0.57 | 0.73 | -0.79 | -0.85 | 0.25 | 0.31 | -0.58 | 0.11

Biases of Layer 1

0.41 [0.7 [o0.62 [091 [013 [0.86 [0.66 [-0.75 | | | | | | |

Weights of Layer 2

07 [-055[-017[-1 [065 [-004]062 [-1 [076 [-1 [034 [078 [0.13 [-035]0.64 [032 [028 [0.39]-0.86 [ 0.65
0.44 | 0.65 | -0.77 099 [-0.1 |-041|-0.74 | 0.46 | -0.29 | -0.15 | -0.4 | 0.13 | -0.63 | -0.23 | -0.25 | -0.81 | 0.89 | 0.13 | -0.19 | -0.26
0.8 | -0.56 | 0.24 | -0.39 | 0.36 | -0.96 | -0.69 | -0.67

Biases of Layer 2 Weights of Layer 3 Biases of Layer 3

043 [ 05 03 [-078]0.55 [0.65 | [ -0.11 [ 0.73 [ -0.08 | -0.22 [ -0.09 | -0.63 | 048 | |
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