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Abstract

A payment channel network (PCN) is one of the promising solutions for scal-
able blockchains since it shows great potential in improving blockchain network
throughput. However, the growing number of transactions and the payment-
channel sharing of concurrent transactions can lead to channel congestion. Al-
though many studies have proposed different solutions to solve this problem, they
ignore the fact that applications may have different transaction rates at differ-
ent times. We first propose a priority-aware PCN to meet the requirements of
those transactions. Senders in priority-aware PCNs can specify the priority of
their transactions by paying a corresponding forwarding fee on each hop along
the transaction path. However, capacity competition occurs on the shared hops.
Moreover, we propose a multi-agent DQN-based priority assignment algorithm to
address the competition issue and design a PCN simulator for performance evalu-
ation. Simulation results show that our solution can guarantee a high throughput
of transactions, and assign priorities appropriately to balance the transaction rate
and forwarding fee cost. The experimental results demonstrate that the priority
scheduling scheme can achieve higher transaction throughput and success ratio
than other scheduling methods in a congested PCN environment.

In highly dynamic PCN, concurrent payments compete for channel capacity
on shared payment channels leading to payment failure. All of the established
contracts shall be canceled. To complete the payment, the sender needs to research
a now available path for resending. It brings overhead on pathfinding and contract
reestablishment over overlap channels. Additionally, the prior released channel
capacity can be preempted by other payments. We study the routing issues in
payment channel networks and reveal the path-overlapping phenomenon in the
payment process. We elaborate on the impact of path overlapping on payment
routing. To offset the impact, we present a novel multi-branch routing scheme to

x



build an efficient route for off-chain payments. The path selection and its ordering
are both factors to affect payment efficiency. Hence, we propose a Markov Chain-
based routing algorithm to solve these concerns. Payers in PCNs can obtain near-
optimal payment path planning by employing our algorithm. To verify the high
performance of our algorithm, we develop a Lightning Network (LN) simulator to
simulate the payment routing process in the network layer. The simulation results
indicate that the proposed routing algorithm can reach a higher payment success
ratio compared with other routing schemes. Meanwhile, it requires the same
collateral as most routing methods, lower than the Atomic Multi-Path (AMP)
routing.



概要
ペイメントチャネルネットワーク（PCN）は、ブロックチェーンネットワ

ークのスループットを向上させる大きな可能性を示しているため、スケーラ
ブルなブロックチェーンの有望なソリューションの 1 つです。ただし、トラ
ンザクション数の増加と同時トランザクションの支払いチャネル共有は、チ
ャネルの輻輳につながる可能性があります。多くの研究がこの問題を解決す
るためにさまざまな解決策を提案していますが、アプリケーションがさまざ
まな時間にさまざまなトランザクションレートを持つ可能性があるという事
実を無視しています。まず、これらのトランザクションの要件を満たすため
に、優先度を意識した PCN を提案します。優先度を意識した PCN の送信者
は、トランザクションパスに沿った各ホップで対応する転送料金を支払うこ
とにより、トランザクションの優先度を指定できます。ただし、容量の競合は
共有ホップで発生します。さらに、競合の問題に対処し、パフォーマンス評
価用の PCN シミュレータを設計するために、マルチエージェント DQN ベー
スの優先順位割り当てアルゴリズムを提案します。シミュレーション結果は、
当社のソリューションがトランザクションの高スループットを保証し、トラ
ンザクションレートと転送料金コストのバランスをとるために適切に優先順
位を割り当てることができることを示しています。実験結果は、優先スケジ
ューリング方式が、混雑した PCN 環境で他のスケジューリング方法よりも高
いトランザクションスループットと成功率を達成できることを示しています。
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高度に動的な PCN では、同時に支払いが共有支払いチャネル上でチャネ
ル容量を競合し、支払いに失敗しました。締結したすべての契約はキャンセ
ルしなければならない。支払を完了するには、支払送信者は現在使用可能な
再送信パスを検討する必要があります。オーバーラップチャネル上の経路探
索と契約再構築にオーバーヘッドをもたらします。さらに、先に解放された
チャネル容量は、他の支払いによって優先されてもよい。支払チャネルネッ
トワークにおけるルーティング問題を研究し、支払過程におけるパスオーバ
ーラップ現象を明らかにした。経路重複が支払経路に与える影響について詳
細に述べた。影響を差し引くには、効率なチェーン外支払経路を構築するた
めの新しいマルチブランチルーティングスキームを提案します。パス選択と
そのソートは、支払い効率に影響を与える要因です。そこで、これらの問題を
解決するためにマルコフチェーンに基づくルーティングアルゴリズムをさら
に提案した。PCN 中の支払人は、提案されたアルゴリズムを使用することに
より、最適に近い支払経路計画を得ることができる。私たちのアルゴリズム
の高性能を検証するために、ネットワーク層の支払いルーティングプロセス
をシミュレートするために、稲妻ネットワーク（LN）シミュレータを開発し
ました。シミュレーションの結果、提案されたルーティングアルゴリズムは、
他のルーティングスキームに比べて高い支払い成功率を達成できることが明
らかになった。同時に、ほとんどのルーティング方法と同じ補助装置が必要
であり、原子マルチパス（AMP）ルーティングよりも低い。
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Chapter 1

Introduction

1.1 Introduction

The digital cryptocurrencies(such as Bitcoin [1] and Ether) become an alter-
native payment way for modern payment network. Instead of the traditional
centralized ledger maintained by a trust third party, the cryptocurrencies have
a fully decentralized ledger which updates by consensus protocols(such as proof-
of-work, proof-of-stake [2]) of blockchain and maintained by all of the blockchain
participates. The participates can transfer their money to other parties by on-
chain transaction. Public blockchian allows parties(peers and organizations) to
freely join and leave. The parties requires miners to transport their transactions
to a block. The block is then send to all of the parties for consensus. The consen-
sus process is time-consuming and expensive. Hence, micropayments [3, 4] with
small value may require higher fee for the on-chain processing by miner than its
actually worth in Bitcoin, furthermore, these on-chain transactions also lead to
the performance issue due to the occupancy of block space.

On-chain transactions are limited by the inherent challenges, transactions
per second (TPS), which is involved to block size and consensus mechanism of
blockchain, e.g. bitcoin consensus requires 10 minutes to confirm transactions
in 1MB block. The throughput of bitcoin is limited around 7 TPS. Blockchain
scalability solutions are proposed to improve the transaction throughputs, which
categorised as layer-1 scaling solutions and layer-2 solutions. The layer-1 scaling
solutions are on-chain scaling schemes that upgrades the existing architecture of
public blockchain, such as sharding mechanism [5], directed acyclic graph struc-
ture in avalanche [6]. Blockchain layer-2 solutions are off-chain networks that bring
frequent micropayments to under chain layer, such as payment channel networks
(PCNs) and optimistic rollups [7]. Off-chain transactions avoid costly expensive
on-chain transaction fees and slow consensus process.
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In this dissertation, we mainly focus on off-chain transactions in payment chan-
nel networks. Although blockchain layer-1 scaling solutions increase the TPS of
blockchain, it requires to interact with the blockchain ledger and expensive trans-
action fees. Public blockchains provide strong security, where on-chain transac-
tions are serialized by miner and verified through consensus algorithm. In contrast,
the payment channel network is proposed as a blockchain layer-2 network, which
realizes instant transactions without consensus process and high transaction fees.
However, it is difficult to guarantee the security of off-chain transactions with-
out the endorsement of online miners. The off-chain protocol first formulates a
punishment policy to punish dishonest users who attempt to steal funds from the
payment channel. Additionally, it applies smart contracts to implement atomic
transactions to protect user’s coins from loss.

In PCNs, payment channels are established between parties with a direct peer-
to-peer connection and their deposits as the channel capacity. Both two parties
commit to maintaining the balance of their deposit as a two-party ledger on the
bidirectional channel. The channel capacity is the sum of the channel balance.
Payment channels and parties have jointly constructed a distributed network called
payment channel networks. A well known off-chain implementation in Bitcoin is
Lightning Network (LN) which allows the parties to transfer their money between
each other under Bitcoin blockchain [8]. Off-chain transactions between two par-
ties without a direct channel connection are forwarded through a tailored routing
path, composed of payment channels and intermediate parties. Concurrent trans-
actions can share payment channels on their routing path. Due to the limitation
of the channel capacity, transaction failure incurs when its amount surpasses the
channel capacity on its routing path.

Channel congestion induces frequent transaction failures decreasing the trans-
action throughput of PCN. The congestion issues may be caused by a combination
of limited channel capacity, high volume of transactions and poor scheduling mech-
anism. The channel capacity is the maximum amount of funds that can be used
by transactions on a channel, and it is fixed unless user deposits. High volume of
transactions bring high traffic loads on payment channels. Except for the channel
capacity, transactions consume the smart contract processing resource of payment
channels. The maximum number of concurrent contracts on a channel is a net-
work parameter with different upper bound in off-chain implementations. Due to
the various time requirements of transactions, transaction senders customize ex-
piry times for their transactions. The scheduling mechanism of traditional PCNs
ignores the user requirements and just queues their transactions in a first come
first out order. In a congested network, a large number of blocked transactions
will fail due to expiration, resulting in a decline in network throughput.
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1.2. ORGANIZATION

Transaction path selection will also affect the TPS of PCN. A suitable path
can guarantee high transaction success rate and low transaction time. In general,
short paths have higher opportunities to get lower transaction time. An avail-
able short path must ensure that payment channels over the path have sufficient
capacity to route the transaction. However, payment channels can be shared by
different transactions. Path becomes unavailable when concurrent transactions
consume up the channel capacity, which is common in highly dynamic networks.
If each transaction sender or a centralized server can obtain the path information
of others, the path programming can be optimized. Unfortunately, PCNs protect
user privacy that senders cannot track the channel utilization information. More-
over, centralized control brings security issues. Multi-path routing is a promising
solution to solve these concerns that is normally used in communication networks
like multi-path TCP protocol [9]. It increases the transaction success probability,
but brings redundant loads.

The main idea of this dissertation is to improve the network throughput in
payment channel networks and provide novel off-chain scaling solutions. Due to the
privacy protection of fully distributed PCNs, it’s hard to obtain the status and the
utilization information of payment channels to make a centralized control for off-
chain transaction flows. Furthermore, Highly dynamic network brings fast varying
channel status that leads to congestion issues and inefficient routing. We present
two different proposals to solve the scheduling and routing issues, as illustrated in
Figure 1.1. We first focus on the transaction scheduling issues in PCN and propose
proposal 1, a priority-aware PCN. We then explore the transaction routing issues
and propose proposal 2, a novel multi-path routing scheme. Our contributions are
listed as follows:

• We use real transaction data of the Ripple network to test the transaction
performance of LN and analysis the characteristics of off-chain transactions.

• We develop in terms of two simulators to simulate the transaction scheduling
and routing processes in a PCN.

• We present a multi-agent reinforcement learning-based transaction schedul-
ing method to achieve an efficient scheduling in prioritized PCNs.

• We propose a novel multi-path routing mechanism and implement a dis-
tributed Markov approximation algorithm for efficient routing in PCNs.

1.2 Organization
The rest of the thesis is organized in the following pattern.

3



Figure 1.1: Organization of thesis structure

In Chapter 2, the research background is given, which mainly includes the
fundamental concepts of blockchain and PCNs.

Next, in Chapter 3, we propose a priority-aware PCN to meet the require-
ments of those transactions. Senders in priority-aware PCNs can specify the
priority of their transactions by paying a corresponding forwarding fee on each
hop along the transaction path. However, capacity competition occurs on the
shared hops. Moreover, we propose a multi-agent DQN-based priority assignment
algorithm to address the competition issue and design a PCN simulator for per-
formance evaluation. Simulation results show that our solution can guarantee a
high throughput of transaction, and assign priorities appropriately to balance the
transaction rate and forwarding fee cost. The proposed priority scheduling scheme
can achieve higher transaction throughput and success ratio than other scheduling
methods in a congested PCN environment.

Then, in Chapter 4, we explore the payment routing problem and propose a
multi-branch payment routing scheme. Senders need to prepare multiple routing
paths that contains a primary path and several branch paths as the standby path
for their payments in our scheme. When payment failure occurs, instead of directly
aborting the payment, the failed payment can be prior handled by fork nodes
over its path as they receives the failure message. The fork node forwards the
payment through across a branch routing path to the destination. Only a part of
established contracts requires to be canceled. Our scheme theoretically achieves a
higher payment success ratio than the single-path routing, as the same time avoid
the harsh completion conditions in multi-path routing.

Finally, Chapter 5 concludes this dissertation.
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Chapter 2

Background

2.1 Blockchain
Blockchain, a fully decentralized ledger, is emerged and integrated into peo-

ple’s daily life in recent years. It widely adapts to the modern transaction sys-
tem and the field of economics, education, and politics. According to the dif-
ferent openness of blockchain, the blockchain network can be separated into two
classes: permissionless blockchain and permissioned blockchain. Permissionless
blockchains mainly represent public blockchain which allows participants to freely
join and leave. Bitcoin and Ethereum are typical public blockchains. Permissioned
blockchain can be private or a hybrid of private and public where participants are
required to provide their token to join the system. The network throughput is
an important metric to measure the performance of the transaction system. Gen-
eral networks such as data-center networks, and VISA support more than 100K
and 46000 transactions per second respectively. Permissioned blockchains such
as Hyperledger Fabric, ripple supports 1K - 4K transactions per second [10, 11].
However, the public blockchains can only reach 7 - 15 TPS which cannot satisfy
the demand of modern transaction systems [12].

2.1.1 Blockchain trilemma
On-chain transactions need to reach a consensus across the network to ensure

the consistency of the blockchain ledger. These transactions are first packaged into
blocks by blockchain nodes called miners, which are required to solve a mathe-
matical puzzle as proof of their work. Blocks are then broadcast to the network to
complete the consensus process. Information communication and block broadcast-
ing consume network bandwidth resources. Especially for decentralized systems,
redundant traffic will exhaust network bandwidth and aggravate network trans-
mission pressure. In addition, highly decentralized systems will have more internal
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2.1. BLOCKCHAIN

Figure 2.1: The blockchain trilemma

nodes. Redundant and decentralized storage on these nodes ensures the security
of the system, but reduces the overall transaction verification rate. In a nutshell,
the consensus mechanism of blockchain maintains a secure and trusted distributed
ledger environment, but it also leads to poor scalability.

The blockchain trilemma is finding a balance between decentralization, secu-
rity, and scalability [11] as shown in Fig. 2.1. Public blockchains like Bitcoin,
Ethereum ensure a secure and decentralized environment but poor scalability.
Permissioned blockchains like Hyperledger and Ripple improve the scalability but
abandons the characteristics of full decentralization. Nano chain takes into ac-
count decentralization and scalability, but poor security. Centralized systems are
more scalable but less secure. Centralized computing capacity speeds up transac-
tion verification rate, but reduces its ability to resist attacks. For example, the
sharding mechanism [13], as a promising layer-1 scaling solution, divides the en-
tire network into several shards that guarantee partial decentralization. Nodes
in a shard take less time to reach consensus than those in a public blockchain.
However, it will be cheaper for attackers to attack these shards.

2.1.2 Layer-2 solutions of blockchain

The main network of public blockchain or called the blockchain layer-1 network
can be regarded as a congested highway. In order to improve the traffic through-
put, a new road (layer-2 network) can be laid to connect with the highway to divert
the traffic from the main road. Blockchain layer-2 networks are proposed to solve
the scalability issue of the public blockchain. It is established over the layer-1
network and offloads the on-chain transactions to off-chain networks. There are
four blockchain layer-2 solutions:

• Payment channel is a bidirectional channel that maintains the deposit of
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connected users. Transactions can be routed through payment channels
that update their balances to transfer coins. It avoids the slow on-chain
consensus process and expensive transaction fees. Only the final state of
deposits on the channel will be released onto the blockchain.

• Rollups, bundle multiple transactions into a batch. These transactions are
performed in an off-chain network and then submitted to Rollup servers for
validity verification. The final state of transactions will be sent back to the
layer-1 network and recorded.

• Sidechains is an independent blockchain network bridged to the public blockchain.
They have a customized consensus mechanism for transaction verification
that reduces the burden of the public blockchain.

• Nested blockchain, is an internal blockchain embedded within the public
blockchain. Public blockchains can set the network parameters and operat-
ing rules for their nested blockchain but do not participate in transaction
execution.

In this dissertation, we mainly focus on the payment channel network which is a
promising scaling solution for public blockchains.

2.2 Payment channel network

2.2.1 Payment channel

Payment channel creates a logical channel between two users over the peer-to-
peer(P2P) connection, which allows off-chain users to perform multiple payments
and does not require them to commit to the public blockchain [14]. A direct
physical connection between the two peers on the channel is unnecessary. The
two peers are connected with each other via logical links. The payment channel
between the two peers is different from a general network connection, which opens
up a special channel for peers to transfer their money. The general network is used
for information exchange between peers and payment channels, including message
and data packet transmission. The payment channel can use the received packets
and messages for transaction commitment and channel state (ledger) updating.

Hash Time-Lock Contract (HTLC) is proposed to handle the atomicity prob-
lem for a multi-hop payment [8]. To establish and cancel a contract on the payment
channel, the two connected peers requires to update their signature and synchro-
nize the channel status. There are only two necessary on-chain operations that
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upload the initial and final state of channel balance to the blockchain for con-
sensus while the channel is initialized and closed. The initialization of a channel
attempt to deposit the balance from one or both party, which require an open
channel commitment on the public blockchain. Each off-chain payment on the
channel just shifts the channel balance along the payment direction, in a nutshell,
it atomically increases the balance for the payee side, at the same time reduces the
balance for the payer side. After the closing channel commitment is completed,
the deposits in the released channel are sent back to associate parties. According
to the bidirectional characteristic of the payment channel, a simple PCN can be
considered as a directed graph with a set of blockchain users as the vertices and
payment channels as weighted edges. At least one payment channel is needed for
an independent user to connect the entire network.

To support channel and node discovery in LN, the gossip protocol is applied
to exchange messages between all peers in the network [15]. Each peer broadcasts
three gossip messages to their neighbors: node announcements (peer ID, host,
and port), channel announcements, and channel update messages (announces the
fees and minimum time lock). Once the gossip message has been processed, it’s
added to a list of outgoing messages, destined for the processing node’s peers,
replacing any older updates from the origin peer. This list of gossip messages will
be flushed at regular intervals, such a store-and-delayed-forward broadcast is called
a staggered broadcast. Each peer can positively gather information on the network
topology and forwarding fees from the blockchain itself or be disseminated by a
gossip protocol [12]. A node should flush outgoing gossip messages once every 60
seconds, independently of the arrival times of the messages [15]. In this manner, a
peer can observe all of the nodes in PCNs, because the network topology is known
to every peer.

The instantaneous information of a payment channel can be only known to the
two peers on the channel, which includes [16]:

• Channel ID, is the unique channel ID for the channel.

• Capacity, is the total amount of funds held in this channel.

• Local/remote balance, is the current balance of this node/ the counterparty
in this channel.

• Commit (forwarding) fee, is the amount calculated to be paid in fees for the
current set of commitment transactions.

• Unsettled balance, is the unsettled balance (balance locked by HTLCs) in
this channel.
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• Pending HTLCs, is the list of active, uncleared HTLCs currently pending
within the channel.

Due to the privacy protection of PCNs, each peer can only obtain partial in-
formation (e.g. the capacity, the forwarding fee) of any non-directly connected
payment channels. Additionally, each peer can only observe a snapshot of non-
directly connected payment channels within the network. Network delay reduces
the availability of the observed channel information. Hence, it’s difficult to ensure
high payment throughput in a highly dynamic network.

2.2.2 Payment routing in PCNs
PCNs apply source routing to payment routing so that senders are able to

fully specify the intermediate nodes in their routes [17] or employ a path-finding
algorithm to find an available payment path. Current LN implementation uses a
revised version of Dijkstra’s algorithm to find a single shortest path between the
source node and the destination [18]. In a decentralized network at intervals, PCN
nodes first run a pseudo-random process to decide on beacon nodes at the begin-
ning of the path-finding process. Neighbors of each beacon node broadcast their
shortest route to the beacon node. The neighbors of the neighbor of each bea-
con node get the shortest path information and in turn, broadcasts their shortest
route. When every reachable node receives the shortest path from the neighbor
to the beacon node, they update its shortest path to the beacon node. Finally, a
new round of beacon node selection is started.

The payment path is sensitive information associated with the sender’s pri-
vacy. Each sender has no knowledge about the payment path information of
other senders. Hence, the sender cannot directly observe the congestion that
shares payment channels on the payment path with others. Due to the informa-
tion restriction, senders cannot get such information (like how many payments are
on the intermediate hops, and how many coins are carried by other payments) on
the payment path. But the sender can learn the congestion information from the
payment results. When frequent payment failure occurs, the routing path must
be congested. As aforementioned, channel congestion causes payment failure.

There are two terms of overhead when a failed payment changes its path for
re-routing. The first overhead induces by hash time-locked contract (HTLC) es-
tablishment and revoking. The HTLC is used by transactions to lock coins on
channels for their use within a specified timeout. A successful transaction requires
establishing HTLC on each hop along its path. When the transaction is failed on
an intermediate hop, all of the prior established HTLC will be revoked. Then,
after path re-finding, the failed transaction establishes new HTLCs along its new
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Figure 2.2: The HTLC in a transaction process

path. The second overhead induces by path re-finding. In a large-scale PCN, the
pathfinding algorithm will be time-consuming. It traverses the nodes around the
destination in the topology and analyzes the node’s features, including fees and
time-lock settings. Since PCN is a highly dynamic network, it cannot guarantee
that failed transactions can be sent to their destination through new paths. The
frequent retry operation brings higher overhead.

2.2.3 Implementing atomic payments in PCNs

An HTLC is comprised of a hash lock and a time lock. The hash lock H
requires the payment recipient to reveal a key value R to unlock. The time lock is
a payment expiration time, which unlocks automatically after a waiting timeout.
The detailed process to set and settle the HTLC is depicted in Fig. 2.2. First,
the payment recipient C initializes a random key R and gets the hash value H
= H(R). The hash value H is then sent from C to the sender A. A holds H and
sets a hash lock between her and the intermediate node B. The condition for B
to unlock the hash lock is to provide the key R. The sender then locks her funds
for the payment and sets a time lock to get the funds back. The intermediate
node B receives the request while he cannot get the funds without providing the
key. Such HTLCs with a diminishing timeout are then established at the rest hop
from B to the recipient C. Once the payment recipient receives the request and
thus reveals the key R to the intermediate node B, the established HTLCs and
associated channel capacity updating can be settled from the final hop to the first
hop as long as the key is routed to payment sender over the payment path.

In this manner, a payer can send payment to the payee without opening a
new channel between them. In case of an uncooperative intermediate user on
the payment path attempts to interrupt the payment process, the influenced user
can unilaterally close the channel between them and publish the last commitment
transaction on the public blockchain for arbitration. Although the contract pro-
tected payments privacy and security in PCNs, it also induces the limitation on
information exchange of each mutually independent payment. This limitation is
one of the challenges to implementing a decentralized scheduling scheme.
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2.2.4 Existing PCNs
The Lightning Network (LN) is an off-chain payment protocol that performs

transactions under the Bitcoin blockchain layer. Payments are instant in LN with-
out running a cost-time consensus of proof-of-work (6 blocks or one hour for con-
firmation in the Bitcoin Network). As a complete implementation of an LN node,
Lightning Network Daemon (LND) has been designed for the Bitcoin blockchain,
which is widely adopted modern alternative monetary payment system. The trans-
action rate of LND is effectively only limited by the network bandwidth between
the participating peers.

The Raiden Network (RN) is an off-chain scaling solution for Ethereum blockchain,
which aims to realize near-instant, low-fee, and scalable transactions [19]. This
project is now in progress and supports ERC20 compatible tokens. On-chain
transactions bring large costs on transaction fees. The RN reduces fee costs close
to 7 orders of magnitude lower than on-chain transactions [20].
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Chapter 3

Priority-Aware Payment Channel
Networks

3.1 Introduction

Since the digital cryptocurrency emerged as an alternative monetary payment
method, blockchain such as Bitcoin [21] has flourished in recent years. Its low
transaction throughput brings scalability issue that becomes a bottleneck restrict-
ing the development of public blockchain. Payment channel network (PCN), as a
scaling solution of on-chain network, has been proposed for improving the public
blockchain scalability. Without frequently interacting with the slow blockchain,
PCNs significantly reduces transaction latency and increases blockchain through-
put. PCN is an off-chain transaction network consisting of cryptocurrency users
and payment channels. Transactions between two PCN users without direct pay-
ment channel connection are forwarded through a routing path consisting of in-
termediate users and multiple channels with sufficient funds. Senders need to
pay forwarding fee to intermediate users for transaction forwarding. However,
concurrent PCN has serious congestion issues.

To solve the congestion problem in PCN, there exist some efforts on routing
mechanisms, transaction flow scheduling, and congestion control protocols. Yu
et.al [22] have proposed a fast routing mechanism that finds other available rout-
ing paths to transfers the overload transactions. Their work can solve the partial
payment channel congestion problem. When the entire network is congested, the
mechanism brings a large overhead. A multi-path scheduling method is proposed
in [23] that sends a transaction over across different routing paths to resist trans-
action failures, but it spawns extra transaction load. Sivaraman et.al [24] explore
a novel multi-path transaction flow scheduling method called Spider. Its basic
idea is to split transactions into several parts and send them through multiple
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routing paths. They develop a congestion control algorithm to control the num-
ber of transaction units allocated for each path. Their approach can achieve high
utilization of payment channel funds, but transaction latency will be higher in a
congested network. Because a successful transaction requires all its transaction
units to be settled. The transaction latency depends on the complete time of the
last transaction unit. In a congested PCN, concurrent transactions compete for
the forwarding capacity of payment channels, resulting in fast varying path status.
It causes transaction latency and rate jitter which makes the network performance
unpredictable.

In this chapter, we first propose a priority-aware payment channel network
(PAPCN) in which transactions are assigned different priority classes. The trans-
actions with higher priority will be first forwarded to avoid transaction failure due
to transaction deadline expiration. Each intermediate user maintains a priority
queue to forward transactions according to their specified priorities. Hence, trans-
actions in our PAPCN can make a multi-hop priority decision to be assigned with
different priorities along its path. Due to the PCN is a distributed network with-
out centralized control, we select the forwarding fee as a general priority identifier
to classify transactions with various demands. Since the forwarding fee is specified
by the transaction sender and encoded into the transaction payload, the priority
assignment needs to be completed to determine the forwarding fee of each hop be-
fore the transaction is issued. In addition, the priority scheduling method is widely
adopted for traffic control and solving the latency and rate jitter issue [25–27] in
communication networks.

Each lightning user can be a transaction initiator (normally called a sender),
and an in intermediate user serving for other senders. As a sender, it requires the
knowledge about the forwarding fee information of intermediate users to initiate its
transactions. As an intermediate user, it specifies the forwarding fee corresponding
to each priority, aiming to formulate its forwarding policy and feed the policy
back to associated senders. In our design, the forwarding policy defines a finite
and discrete set of forwarding fees corresponding to different priorities. Senders
specify the priority for their transactions according to their demand and adhere
to the policies to determine the required forwarding fees. Meanwhile, different
link statuses also affect priority assignment. For instance, the sender pays more
forwarding fee for a higher priority to achieve a higher transaction forwarding rate
on the congested hop. In contrast, low-priorities are assigned to uncongested hops
for saving coins . Therefore, we elaborate a multi-priorities solution for senders to
assign multi-priorities (one for each intermediate user over the transaction path)
for their transaction flow.

To implement an efficient multi-priorities scheme, we need to overcome several
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challenges: 1). Unpredictable path status. PCN provides strong privacy protec-
tion that users on the transaction path only have the knowledge of the status of
the connected channels. Moreover, dynamic transaction rate causes rapid changes
in the number of transaction packets on channel links that lead to unpredictable
path status. Hence, it’s impossible for senders to track the path status of their
transactions under the highly dynamic PCN environment. 2). Link capacity com-
petition. On the shared hops, concurrent transactions compete for forwarding
capacity. Due to the capacity of each hop is fixed, the forwarding rate of low-
priority transaction flows drops when a higher priority is assigned to other flows.
To offset the impact of priority adjustment, senders need to improve the priority of
their transaction flows to compete channel capacity with others. 3). Large space
for priority assignment. The space of a priority assignment solution for a transac-
tion flow depends on the number of hops and each hop’s priority classes over the
routing path. Merging the solution of each flow to find the optimal solution for
the entire network results in a large solution space.

As a promising technique, Reinforcement learning (RL) is proposed for solv-
ing the problem in an uncertain, potential complexity situation, which guides the
learning agent to maximize its cumulative reward by taking actions according
to the status of dynamic environment [28]. We introduce RL into our PAPCN
to solve the priority assignment problem under the environment without much
information. But single-agent learning cannot ensure solution convergence in a
competitive environment [29]. Hence, we propose a multi-agent RL-based priority
assignment scheme to assign priorities to each transaction flow by controlling the
forwarding fee paid to intermediate users. To handle the large dimensional solu-
tion space, we apply the deep Q-leaning (DQN) [30] into our scheme and propose
multi-agent DQN-based priority assignment algorithm. In order to guarantee the
convergence of the learning process, each participant is required to share partial
information of historical priority assignment schemes with others. To achieve a
high transaction rate, senders can choose to pay more forwarding fees to inter-
mediate users to ensure that their transactions can be forwarded quickly. When
their transaction rate cannot rise to higher in the congested PCNs, they can try to
lower the forwarding fee to save their coins. Our goal is to balance the forwarding
fee cost and achievable transaction rate by adaptively adjusting the transaction
forwarding fee paid to each intermediate user.

We make the following contributions:

• We make a measurement on the real transaction trace in a complete imple-
mentation of the off-chain network to explore the traffic characteristics of
off-chain transactions.
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(a) The PDF of the transaction la-
tency of two transaction flows in the
sample.

(b) The breakdown of the transaction
latency of transaction flow-1.

Figure 3.1: Transaction latency analysis of Lightning Network.

• We first propose a priority-aware transaction forwarding mechanism, which
allows senders to flexibly assign priorities for their transaction flow to balance
the transaction rate and its forwarding fee cost.

• We implement a multi-agent DQN-based transaction forwarding mechanism
for efficient priority assignment and develop a simulator of LN to simulate
the transaction scheduling process in network layer. The learning approach
is then applied to the simulator to be proved its efficiency.

The rest of this Chapter is organized as follows. Chapter 3.2 reveals the mo-
tivation of our work, while Chapter 3.3 discusses the related works in PCNs and
RL. We overview our system design and objective, the challenges of our work
in Chapter 3.4. Chapter 3.5 details the multi-agent DQN-based priority assign-
ment algorithm. Chapter 3.6 describes the system implementation. Chapter 3.7
presents the evaluation results, while we conclude this work in Chapter 3.8.

3.2 Motivation
Lightning Network (LN) is an off-chain protocol of the Bitcoin blockchain.

To solve the congestion problem of LN, we first study the interaction between
concurrent transactions and investigate the characteristics of these transactions.
However, the difficulty we encounter is that it is impossible to access the real
transactions that occurred in LN channels, due to the privacy protection policy
of LN. As one of the off-chain network implementations, Ripple provides real
transaction records for developers [31]. We collect 3000 Ripple transactions from
[32] and randomly map all sender-receiver pairs into a simulated payment channel
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network (the simnet mode of LND) with the Watts-Strogatz small-world topology
[33]. The timestamp of the first transaction in the transaction records is served as
the starting point of the simulation. We launch a thread for each transaction to
monitor the transaction process. Through the LND gRPC APIs [34], we get the
response of the transaction result and record the transaction latency information.
We select two transaction flows that share channels with other transactions and
show the probability distribution function (PDF) of their transaction latency in
Fig. 3.1(a). It reveals transaction latency jitter when concurrent transactions
exist.

From the result, we observe that the transaction latency is not stable. The
value of the latency is around 10s ∼ 20s. At the same time, we monitor various
delays in different phases of transaction execution and find that the transaction
latency mainly includes the following three parts. 1) The first part denotes the
transmission delay, which is the sum of the latency spending on transmitting the
transaction through channels along the transaction’s path. 2) The queuing delay
represents the waiting time when the transaction is in the queues. Intermediate
users receive transactions from the upstream channels and insert them into the
forwarding queues. All of the transactions in this queue are then forwarded to the
corresponding downstream channels in a First-in First-out (FIFO) manner. 3) The
settlement delay is defined as the duration from the reception of the transaction
to the moment the sender is acknowledged the response of this transaction. The
transaction is settled as the transaction fulfill message is delivered to the sender
along the opposite of the transaction path. The fulfill message is also queued on
intermediate users and transferred through the channels over the transaction path.
Hence, the settlement delay contains the queuing and transmission delay of the
fulfill message. The Fig. 3.1(b) shows the breakdown of the transaction latency.
We can see that the queuing delay (include its part in the settlement delay) is the
key part of the total transaction latency. To solve the congestion problem and
lower the transaction latency, we need to formulate a scheme for transaction flow
controlling to reduce the queuing delay on the intermediate users.

In particular, the user demand on transaction latency is reflected in the time-
lock of contracts in traditional PCNs. This time-lock is generally used for aborting
the expired transaction but does not affect transaction scheduling. According to
the different requirements of transactions submitted by diverse users, we clas-
sify all transactions into some categories. However, the scheduling method of
traditional PCNs has inherent flaws in handling the transactions with different
categories, which motivates us to find a scheduling method to facilitate efficient
transaction forwarding of intermediate participants in PCNs. Then, our priority-
aware scheduling method is proposed to solve this concern. The intermediate user
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applies this method to schedule transactions with different priorities specified by
senders. Senders pay forwarding fees associate with different priorities to inter-
mediate users. Compared with the low-priority transactions, the high-priority
transactions have higher probabilities to achieve a lower and stable transaction
latency.

Since the actual transaction rates may be varying, senders need to dynami-
cally assign priority to their transactions to play games with other adversaries in
congested LN. In particular, the issued transactions cannot be intervened by re-
allocating more forwarding fees on the congested hops. Meanwhile, asynchronous
and distributed transaction flows result in a highly dynamic instantaneous sta-
tus for each hop, which is still a huge challenge for developing a global priority
assignment scheme. Multi-agent reinforcement learning is suitable for solving dis-
tributed parallel tasks online [35]. Without a centralized node, each transaction
flow can be regarded as a single learning agent gathered in a partially observable
environment to play a Markov game. Our motivation is to design a multi-agent
RL-based priority assignment scheme for all participants to balance the forwarding
fee cost and transaction rates in this game.

3.3 RELATED WORK
Current researches focus on the different queuing discipline like Last-in First-

out in Spider [24], and provide some congestion control methods [9,36] to achieve
high throughput. However, these researchers ignored that different transactions
may have different rate requirements. Transactions with high rate requirements
require to be serviced immediately to ensure a higher success ratio. In general,
the capacity of the forwarding queue of an intermediate user to route transactions
is fixed. These algorithms do not essentially improve the utilization efficiency of
the congested hops but balance the transaction flow to other available transaction
paths. These methods require several available paths to balance the transaction
flow may increase the risk of sensitive information leakage leads to security issues.

Compared with the public communication network, PCNs have unique charac-
teristics such as ’in-flight’ transactions and Hash Time-Lock Contracts (HTLCs).
Mizrahi et al. [37] introduced a channel congestion attack induced by the unre-
solved HTLCs to hold channel funds ’in-flight’ that reduces the liquidity [38] of
PCN. Considering that the unidirectional transactions may cause an imbalanced
(skewed) payment channel issue, Sivaraman et al. [24] and Khalil et al. [20] pro-
posed different solutions for balancing channel deposit. Based on their works, we
focus on the rate issues instead of the issue induced by transaction amount in the
scheduling process. Some approaches [22,39] focus on the routing issue to improve
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Figure 3.2: System overview of the priority-aware PCN. The trajectory shows the
transaction process between payer S and payee R. The module with the gray font
is not involved in S-to-R transactions.

the TPS of PCNs.
There are many works on different learning methods to solve multi-agent RL-

based problems in the dynamic environment [40, 41]. Geng et al. [42] use Deep
RL to solve the distributed multi-region traffic engineering problem. By the col-
laboration of two types of learning agents for different categories of traffics, the
learning method finds near-optimal routing decisions to minimize the maximum
edge cost. Liang et al. [43] focus on the spectrum sharing problem in dynamic ve-
hicular networks by using a multi-agent Deep Q-network (DQN) based approach
to allocate the vehicular-to-vehicular spectrum and power. In [44], they present a
multi-agent advantage actor-critic policy for video caching to reduce the content
access latency and traffic cost in a highly dynamic network edge. Similarly, in
dynamic PCNs, it is desirable to use a multi-agent RL-based approach to solve
the priority assignment problem. Agents must find a suitable scheme to ensure
a high transaction rate and low forwarding fee in highly dynamic PCNs. Some
of them influence and restrict each other to play a mixed cooperative-competitive
game [45].

3.4 SYSTEM DESIGN AND CHALLENGES

3.4.1 System Design

In this session, we present the design of the priority-aware payment channel
network. The basic idea is to schedule transactions by assigning them different
priorities on their routing path. The overview of our design is shown in Fig. 3.2
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and described as follows: We design a priority-aware forwarding queue to schedule
transactions for the LN user. Each LN user maintains its own forwarding queue
and formulates a forwarding policy for the queue to reveal the forwarding fee cor-
responding to each priority. The policy and its updated message are broadcast
to other participants by a gossip protocol. Based on the original structure of the
transaction, our design extends it with an additional field. This field reveals the
specified priorities of the transaction on its routing path like {x1, ..., xh} (e.g. xh

indicates the priority assigned by the sender for the transaction at hop h). Addi-
tionally, we update the way to calculate the total forwarding fee of a transaction.
The transaction sender calculates the fee based on the field of priority and the
forwarding policy of each intermediate user. In the transaction process, interme-
diate users learn the priority of the current hop from the received transaction and
charge the corresponding forwarding fee. If the remaining transaction amount
matches the amount that needs to be forwarded within the routing information,
the incoming transaction is then added to the tail of the queue associated with
this priority. Otherwise, the transaction is aborted. All of the transactions in the
priority queue wait for forwarding until it reaches the destination or the expiration
time.

Although the priority scheduling scheme can realize the classified scheduling
of transactions, concurrent transactions competing for resources on their shared
intermediate users will affect the efficiency of transaction forwarding. In addition,
priority selection is directly related to the user’s expenditure on forwarding fees.
Therefore, the sender needs to assign appropriate priorities to control the expendi-
ture on forwarding fees while increasing the network throughput. Due to the PCN
being a fully distributed system, we further design a multi-agent RL-based priority
assignment algorithm. Our purpose is to balance the forwarding fee expenditure
and network throughput. Since the sender cannot track the routing path statuses
of the transaction, the learning algorithm uses the transaction response to esti-
mate the degree of congestion of each intermediate user. We launch an additional
process for each sender to execute the learning algorithm. This process collects
the transaction response and makes a short-time decision on priority assignment
for the transactions sent to a specific destination. In highly dynamic PCNs, it’s
hard to guarantee a stable transaction rate by a determined priority assignment
scheme. According to the current state of the transaction sender, the learning al-
gorithm can dynamically adjust the scheme to achieve a customized performance
objective.
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Figure 3.3: The illustration of the priority scheduling in PAPCN.

3.4.2 Performance objective

We consider a PAPCN as a direct graph G = (V,E), where V is the set of all
PCN nodes and E is the channel set. Each PCN node has at least one channel
connecting to others. Assume that there are N sender-receiver pairs transactions
in G. Each sender has a transaction sending rate λp, and they use their pre-
specified path to route transactions. We consider the transaction sending rate
of each sender is varying but fixed in a short time interval. In the PAPCN,
intermediate user transactions in the forwarding queue can be partitioned into K

different priority classes. We focus on each transaction flow with independently
dynamic priority assignment schemes to analyze the transaction process.

For the transaction flow of pair p, we assume the transaction path is given
as Rp which is a sequence of intermediate users (hops) over the routing path of
pair p. ckh is the forwarding fee of the corresponding queue with priority k of
hop h. xpk

h is a binary priority assignment indicator with xpk
h = 1 implying the

transaction of pair p is assigned with priority k at hop h and xpk
h = 0 otherwise.

As shown in Fig. 3.3, the c1u is the forwarding fee of the queue with the highest
priority of intermediate user u. The capacity of the forwarding queue restricts the
transaction forwarding rates of the intermediate user. As transactions compete
for the forwarding capacity of each shared intermediate user, the transaction rate
may gradually decrease along its routing path. Hence, there can be a bottleneck
λ∗
p in the transaction rate for each pair of transactions: λp ≤ λ∗

p.
We use f p

h to denote the real forwarding fee that the transaction flow of pair p
needs to be paid on hop h. It can be determined by ckh and the specified priority xpk

h .
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(a) Simply set priorities on each
hop for transactions

(b) An efficient solution for priority
assignment

Figure 3.4: Capacity competition challenge in the priority-aware PCN.

The total forwarding fee fp can be calculated by:
∑

h∈Rp

∑
k x

pk
h ckh, k ∈ [1, .., K]. A

transaction is only allowed to be assigned a unique priority on each hop. Then, we
get a constraint on xpk

h :
∑

k x
pk
h = 1, k ∈ [1, .., K]. In a crowded PCN, the sender

who wants to speed up their transactions can increase the transaction priority
to ensure they can be forwarded immediately but lead to higher forwarding fees.
Additionally, senders can lower the forwarding fee and maintain lower transaction
rates to save their coins. Therefore, we explore how to efficiently allocate forward-
ing fees for transaction flows with different rate requirements. The basic idea is to
allow part of them to be forwarded quickly to achieve a higher TPS and enhance
network performance. Our goal is to find a global priority scheme to maximize
the gap between the achievable transaction rate λ∗

p and required forwarding fee
fp: max

∑
p(α | λ∗

p | −(1− α) | fp |) where α is a weighted coefficient that satisfies
the user preference.

Payers with high transaction rate requirements can augment the value of α
to attenuate the impact of fees on decision-making. A big/small α indicates the
system goal is to achieve a higher transaction throughput/a lower cost on forward-
ing fees. For example, when α = 1, the goal is to find a maximum transaction
throughput regardless of the cost. When α = 0, the system prefers to find a
minimal total forwarding fee regardless of the throughput. However, due to the
privacy protection of PCNs, each transaction sender cannot get the instantaneous
capacity information of the forwarding queue of each intermediate user. PCNs
are fully decentralized, and there are no centralized servers for overall planning.
Therefore, the achievable transaction rate λp cannot be directly obtained before
the transactions are issued.

3.4.3 Challenges

Information restriction. Due to the privacy protection of PCNs, senders
cannot track the status of their issued transactions to adjust the assigned priorities.
The priority assignment should be completed before issuing the transaction. As

22



3.5. RL-BASED PRIORITY ASSIGNMENT SCHEME

aforementioned, the path congestion information is crucial for senders to assign
priorities to their transactions. However, transactions are unpredictable in highly
dynamic PCNs. Senders cannot determine the definite initialization time and
path information of other users’ transactions. They are required to conjecture
future states of each hop over their transaction path base on their knowledge and
determine suitable priorities for forwarding fees assignment before the transaction
is issued. Additionally, the security and privacy restrictions in PCNs make it
impossible to dynamic planning priority assignment based on global information.

Capacity competition. In general, the sender who requires a high trans-
action rate pays more forwarding fees to compete for more forwarding capacity
on shared hops with others. However, other senders may also raise their priority
to ensure sufficient capacity, which causes all these transactions to gather in the
highest priority queue. Transaction senders trends to assign high priorities for
their transactions to achieve a high transaction rate like sender s1 in Fig. 3.4(a).
Obviously, it is inappropriate for s1 to assign a high priority for the transaction
flow Tx1 on hop A which is uncongested. For example in Fig. 3.4(3.4a), if the
high-priority queue of hop B,C are congested, sender s2 can specify low priorities
for the transaction flow Tx2 on hop B,C rather than to assign a high priority for
a weak improvement on transaction rate. After the priorities of Tx2 are adjusted,
sender s1 can also adjust the priority assignment for Tx1. Then, we obtain a more
efficient priority assignment solution as shown in Fig. 3.4b. Hence, senders should
carefully make their decisions on transaction priority assignments.

While the reinforcement learning technique paves a way to solve the priority
assignment problem with limited information. We propose a global transaction
priority assignment scheme by developing a multi-agent reinforcement learning
algorithm. To enhance the performance of PCNs, the proposed method needs to
find an adversarial equilibrium between each transaction flow. None of them can
obtain more benefits by breaking the balance. Once a transaction flow modifies its
scheme, other transaction flows passively adjust their schemes at the same time to
protect their profits. More details of the designed learning method are introduced
in Section 3.5.

3.5 RL-BASED PRIORITY ASSIGNMENT SCHEME
In this section, we model our priority assignment problem and propose an

RL-based transaction priority assignment scheme to enhance the performance of
PCNs. The PCN is fully distributed, and each sender has a partial observation of
the PCN environment and determines its priority assignment scheme to achieve a
high transaction throughput. Therefore, we exploit to apply the multi-agent RL-

23



based scheme where each agent learns to find their appropriate priority assignment
scheme by interacting with others to maximize their rewards.

3.5.1 Priority assignment problem formulation

A priority assignment problem can be considered as an N -pair transactions
Decentralized Partially Observable Markov Decision Process (Dec-POMDP) [46]
consisting of a tuple M = 〈Φ,S,A,R,P ,O, γ〉. Each transaction session is a
learning agent that maintains a transaction flow to interact with a dynamic PCN
environment by sequentially specifying the policy on priority assignment in discrete
time. At each time slot, a agent p selects an action ap from a set of their priority
assignment policies Φp ∈ Φ, jointing with other agents’ actions, which can be
expressed as $a = 〈a1, ..., ap, ..., aN〉 ∈ A for the current state s ∈ S. Then, each
agent p can make a partial observation op = O(s, p) ∈ Op from the PCN and obtain
their current observation of state s, where O(s, p) is a observation function :S ×
{1, ..., N}→ O. The state transition of PCN depends on a probability Pr(s′|s,$a)
that has a function P : S × A → [0, 1],P(s,$a) = Pr(s′|s,$a). γ denotes the
discount factor, 0 < γ < 1. When senders use the specified policies to route their
transactions, each agent can observe the total forwarding fees and the influenced
transaction rate to measure the reward r : S × A → R. Meanwhile, each agent
learns, from its experience which contains each step observations and associated
rewards, a policy πp(ap|op) : Op × Φp → [0, 1] to conduct a joint policy $π =

〈π(a1|o1), ..., π(ap|op), ..., π(aN |oN)〉. From [47], the goal of each agent is to find
an optimal policy $π∗ to maximize its expected cumulative discounted rewards:

$π∗(o0p) ∈ argmax
!at∈A

[ ∞∑

t=0

γtrp(o
t
p, $at)

]
(3.1)

Fig.3.5 shows the agent-environment interaction in the priority assignment
game. In this game, the state, and observation space, action space and reward are
defined as follows:

State and observation space. The practical state st of PCN environment
at time t, includes the behaviors of all agents and statistics (e.g. the current status
of the forwarding queue and connected channels) aggregated from different nodes.
However, most state information cannot be obtained or effectively used by each
agent since it only observes the status of their transaction flow. In our proposal,
the learning agent’s observation space is composed of local success rates and
the forwarding fees information. The local success rate is a cumulative ratio of
successful transactions and issued transactions. The λ̂∗

p(t) defines the status of
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3.5. RL-BASED PRIORITY ASSIGNMENT SCHEME

Figure 3.5: The interaction between multi-agents and the PCN environment in
priority assignment game.

the local success rate of an agent, which can be directly measured at time step t.
The learning agents can assign priorities accordingly, i.e., when the rate is lower
than the requirement, the agent can assign high priorities on certain hops. The
achieved transaction success rate is significant feedback to affects the decision of
the learning agent. The forwarding fee information is the current forwarding fee
paid to each intermediate user on the transaction path. In addition, although
the total forwarding fee may be the same, the different fee allocation scheme for
each hop leads to a different transaction success rate. For example, a 3-hops
transaction with two fee allocation schemes: {1, 1, 2} and {2, 1, 1} may achieve a
different transaction success rate. Hence, the observation function can be denoted
as:

O(st, p) = {λ̂∗
p(t), f̂p(t)}

where f̂p(t) = {f 1
p (t), ..., f

h
p (t)}, h ∈ Rp is a vector of each hop’s forwarding fee

at time step t. The time steps t includes the value 0. Moreover, the information
on forwarding fees will be randomly initialized when t = 0.

General approaches handle the multi-agent RL problems by using indepen-
dent Q-learning [48] in which the agent learns a discount return to measure an
action-value function defined as Q-value. Q-learning is used for estimating the
optimal Q-value function but restricted by its tabular property with no approx-
imation, thereby combines with a deep neural network to handle the problems
with large action space. However, in a multi-agent environment, each agent com-
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petes for the capacity of the forwarding queue on the shared hop (intermediate
user), which leads to a non-stationary issue for independent Q-learning since the
behavior of each agent interacts with each other. Especially, this issue seriously
affects the convergence of the learning process in the Deep Q-learning (DQN)
with experience replay. A fingerprint-based method is proposed in [49] to address
the non-stationary issue that the agent learns from the behavior information of
other agents. The agent makes current decisions by estimating other agent’s de-
cisions. However, due to introducing all DQN parameters of other agents brings
a large-dimension observation space, [49] provide alternative methods that use a
low-dimensional fingerprint. We adopt this method by appending a vector of the
previous decisions of all agents to the observation space since it implicitly reflects
the changing status of the environment. Therefore, the improved observation
function can be expressed as:

O(st, p) = {λ̂∗
p(t), f̂p(t),$πt−1}

Action space. The action space is the decision of priority selection on each
hop over the transaction path. An agent takes an action atp = {xhk

p (t)} based
on the current priority assignment policy at the beginning of each time step t.
The sender sends transaction packets with the assigned priorities in the action of
the current time step. For example, the learning method specifies a priority set
atp = {(1, 0, 0), (0, 0, 1), (0, 1, 0)} ⇔ {0, 2, 1} as an action to route packet for the
transaction flow of pair p with three intermediate users on its path at time step t.
The first intermediate user receives the transaction packets and inserts it into the
queue with priority 0. Similarly, the other two intermediate users insert it to the
2nd-level and 1st-level of their priority queues, respectively.

Reward. From the model, our objective function is to maximize the gap
between the transaction rate and the cost of forwarding fees. In reward design,
we tread to use an independent reward for each agent in our learning method.
We also need to collect the successful transactions and track the success time of
each transaction to obtain the actual transaction success rate of different actions
in each time step since they are measured in discrete time. Then, the transaction
rate λ∗

p(t) of transaction flow p sent in time step t can be calculated. Note that
the λ̂∗

p(t) and λ∗
p(t) are different. The total forwarding fee fp(t) is easily calculated

with a determined action of priority assignment. To better balance the impact of
the two metrics, we use normalized rate and fee values. The weighted coefficients
α is applied to reveal the user preference. To this end, the independent reward of
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an agent at each time step t can be represented as:

rp(t) = α|λ∗
p(t)|− (1− α)|fp(t)|

The balance shifts with the value of α. While α is increasing, the learning method
trends to find the minimized forwarding fee that guarantees the achieved trans-
action rate satisfies the requirement. In opposite, it trends to find the maximized
achievable transaction rate under a certain forwarding fee.

3.5.2 Multi-agent DQN-based priority assignment scheme

Although traditional PCNs limit the number of hops on the transaction path
to less than 20, some agents may have a high-dimensional action space since it
corresponds to the hops on the transaction path. In this dissertation, we use the
deep Q-learning method to solve our priority assignment problem because it is
recommended for processing the action spaces with high dimension [29]. Hence,
we develop a multi-agent DQN-based priority assignment algorithm to provide
priority assignment policies as actions of each agent. To train our network, each
agent selects an action at time t based on a policy π(at|ot) to get the reward
r(ot, at). Define the expected total discounted rewardQp(o, a) as the value function
of a state-action pair of the agent p with a given policy π, which can be expressed
by:

Qp(o, a) = E[
∞∑

t=1

γtrp(ot, at)|o1 = o, a1 = a,π] (3.2)

The goal of this agent is to find a policy which maximises the cumulative value
of Qp(o, a) from the start state. Other agents can adjust their policy to protect
their profits while it affects the entire environment as a result to decrease the
value of Qp(o, a). The optimal policy for a multi-agent environment guarantees a
maximized total reward under an adversarial equilibrium. Hence, combining with
Eq.3.1 and Eq.3.2, we get the expected cumulative discounted reward of p :

Vp( $π∗) =

[
Qp(o

t
p, a

t
p)|atp ∈ $at, $π∗ ∈ argmax

!at∈A

N∑

i=1

Qi(o
t
i, $at)

]

Deep Q-learning supports Q-value approximation by applying a deep Q-networks
(DQNs) [30] in which each agent pmaintains their action-value functionQp(op, ap, θp)

with a local DQN parameter θp. The DQN stores each agent’s transition history
〈
otp, a

t
p, r

t
p, o

′t
p

〉
into a replay memory Mp. By sampling batches of B transitions
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from Mp, the action-value function is learned to minimize the error function:

Lp(θp) =
B∑

j=1

[
(y∗p −Qp(op, ap, θp))

2
]

where y∗p = rp + γmaxa′p Qp(o′p, a
′
p, θ̂p). θ̂p are the target network parameters

intermittently updated by θp.

3.6 SYSTEM IMPLEMENTATION
The current Basis of Lightning Technology (BOLT) [50] describes the detailed

Bitcoin off-chain protocol which guides several LN implementations such as Light-
ning Network Daemon (LND) [51], c-lightning. In this dissertation, we mainly
focus on the LND, an out-and-out implementation of a lightning node, that uses
the Lightning service to manage their channel link to transmit transaction packets
between each Lightning node.

3.6.1 Lightning network daemon (LND)

We carry out the system in the LND version 0.11.99-beta, a GO version im-
plementation of LN [51]. In the LND implementation, the recipient first generates
a transaction request (invoice) which contains basic information of a transaction.
The transaction request is then sent to the transaction sender as a parameter of
the sendpayment function for path-finding and the transaction session initializa-
tion. For privacy protection, the transaction is encrypted to a sphinx onion packet
composed of per-hop payloads by using the onion routing protocol in BOLT #4.
Subsequently, the onion packet is dispatched to the first hop by using sendHTLC.
When intermediate nodes receive an onion packet from their upstream channel,
they verify the integrity of the packet and decode the packet containing the next-
hop information and the internal payload. The internal payload is then queued
from the switch module to the mailbox module. The mailbox uses a mailCourier
to fetch the packets from the forwarding queue in order by the packet memory
address. The fetched packet is then forwarded to the downstream channel until it
reaches the destination.

3.6.2 priority-aware LND Implementation

The priority-aware LND implementation is divided into two stages: LND mod-
ification and learning algorithm implementation. We show the network structure
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in Fig. 3.6 and elaborate on four parts (Transaction initialization, Switch and link
module, MailBox module, and Forwarding policy) of LND modification as below:

Figure 3.6: The network structure of PAPCN.

Transaction initialization: is the stage from the transaction request generation
to the transaction attempt creation. Firstly, sender s uses sendPayment command
to send a transaction to recipient r with basic transaction information {s, r, t},
where t is the expiry time. Combining with the current priority assignment action
x provided by the learning module, the request is sent to the rpc server by using
the updated rpc protocol. The rpc server calls the routing module to find a routing
path R and register the transaction. The transaction amount F is then calculated
through real amount v that the sender wants to pay and each hop’s forwarding
fee fh: F = v+

∑
h∈R fh. After that, the transaction attempt is created with the

information {s, r, F,R, t, x} and dispatched to the switch module. In the priority-
aware LND implementation, we just use an available short path for transaction
routing instead of implementing a new path-finding mechanism.

Switch and link module: The transaction attempt is first delivered to the switch
module, a central messaging bus that handles transaction packet forwarding. The
switch calls the forwarding policy of the connected link h to check if the forwarding
fee fh is sufficient, and then sends a UpdateAddHTLC message containing trans-
action packet to link h according to its priority. We update the structure of this
message to include the priority information of the current hop. The channel link
h receives the transaction packet with a new HTLC packet htlcpkt and current
hop’s priority xh, then delivers it to the mailbox module of this link. The detailed

29



Figure 3.7: The priority implementation in mailbox module.

design and packet scheduling in the mailbox module is shown below. Packets are
dequeued sequentially and waiting to forward to the next peer. After that, a new
HTLC is established on the channel link h which requires a uniquely identifier
called circuit key to identify this HTLC. We update the circuit key Ch to include
xh and record xh in the payment descriptor which is used for channel commitment.

MailBox module: The mailbox module modification mainly focus on the struc-
ture of mailbox interface in htlcswitch package. In our implementation, a prior-
ity queue with 3-level priorities (high, middle, and low) is applied for observing
the impact of priority on transaction forwarding in the LND. The priority was
represented by the demand level in our implementation, which can be manually
specified together with other basic transaction information or uses the lowest as
default. We also adjust the relevant part of the source code to support priority
delivery. The detailed process of transaction packets scheduling is shown in Fig-
ure.3.7. There are some forwarding transaction packets with different priorities
on the link. Firstly, the selector delivers transaction packets to the corresponding
priority queue based on its priority. The memory addresses of the assigned pack-
ets are returned and sequentially inserted into the packet memory address queue.
At the same time, a signal is sent to the mail courier that there is an additional
packet to consume. Mail courier catches transaction packets by packet memory
addresses. The order is from high priority to low priority and first in first out
for same priority. The signal wakes the mail courier to adjust the access location
(pointer) and deliver the packet. When the packets in the high priority queue
are exhausted, the mail courier turns to fetch the packets from the lower priority
queue.

Forwarding policy: In traditional LN, the intermediate user can customize the
charged forwarding fee that generally depends on two factors that are base fee and
fee rate. While the forwarding fee is extended to the fees associate with different
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priority classes in PAPCNs. As the priority raising, the forwarding fee is gradually
increasing. Similar to the original information broadcast mechanism in the PCNs,
the forwarding fee of a regular user can be broadcast to all users to update their
local knowledge through the gossip protocol [52].

3.6.3 Learning Algorithm Implementation
The learning algorithm is implemented in Python code. We launch an in-

dependent learning algorithm process for each transaction sender to periodically
provide the action for priority assignment. We build the interface for the learning
algorithm to supply the current priority set (action) for sendpayment request and
receive its response as the feedback of the PCN environment for state analysis.
As aforementioned, the state of the learning algorithm is the current transaction
success rate, current forwarding fees allocation, and the last decision of all other
senders. The transaction result can be applied to measure the current transac-
tion success rate. The allocation of current forwarding fees is known at the end
of the last step. We assume senders are geographically close and connected by
a peer-to-peer network with low latency. Payers share the previous action on
priority assignment to collaborate with others by broadcasting the action’s index.
Meanwhile, the learning algorithm tracks the transactions affected by each action
and obtains corresponding rewards to build new MDPs, which will be used to
train the learning model. In practice, transactions can be intermittent between
two peers. Some users cannot provide the current round decisions for the next
round of training since they might be offline when they have no transactions. To
address this issue, we give a simple solution that extends the action space with a
consensus field to indicate the offline status of cooperators in the system. When
a sender is offline, cooperators use this field to construct the observation space.

3.6.4 Security analysis
We first build the attack model in which we consider an efficient attacker can

spawn users and use them to pretend to be normal nodes and forward transactions.
We then identify the security and privacy notions of interest:

• Priority value security. Priority value security ensures that the at-
tacker cannot change the priority values on the honest users. This goal
can be achieved since the priority information of each hop is separated and
encapsulated in the onion routing package.

• Priority assignment privacy. The leakage of priority assignment in-
formation can give an adversary some advantages in channel resource com-
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petition. However, the adversary also needs to know the transaction path
information to carry out the attack.

In our model. The attacker has two ways to attack the transaction process by
changing the priority:

First, we assume the attacker is an intermediate node that can freely schedule
the transaction packet and insert it into any priority queue. As an attacker, the
node may charge the forwarding fee but leave the packet in a low-priority queue.
On the sender’s side, the learning method tries to assign different priorities
to each intermediate node. The transaction results reflect the feedback on the
priority assignment policy. It learns from the transaction result that the achievable
transaction rate is lower and doesn’t change with priority. The learning method
will assign the lowest priorities on each hop for cost-saving. Then, the attacker
cannot benefit from the transaction forwarding.

If the attacker is outside of the path. To protect the security and privacy of
transactions, the LN applies the onion routing protocol into transaction execu-
tion [17]. Furthermore, source routing is utilized to allow transaction senders to
complete control of the transaction path within the LN. These methods decrease
the risk of the release of transaction path information so that the attacker cannot
track the transaction of a specified sender. If an external attacker changes the pri-
ority of a transaction package, the transaction will fail due to a mismatch in the
priority and the corresponding fee. By analyzing the failure message, the sender
can know the existence of the attacker. A simple way for senders to protect their
transactions is to change the routing path.

3.7 Performance Evaluation
Our experiments are composed of two parts: 1) we build a testbed under the

simnet mode of LND and show the performance of our learning approach in a
small-scale PCN; 2) we develop a Python-based simulator to simulate the network
layer of the LN, and then show the performance of the proposed multi-agent DQN-
based priority assignment algorithm.

3.7.1 Testbed
Settings

We set up two small-scale PCN environments: Original Lightning Network
(ORI_LN) and Priority-aware Lightning Network (PALN). To create the wallet
and establish the network, the LND version 0.11.99-beta [51] is applied. We use a
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(a) The change in transaction latency
of a certain transaction flow in differ-
ent environments.

(b) The transaction success ratio and
average latency comparison in differ-
ent environments.

Figure 3.8: The experimental results in the real lightning network daemon.

Watts-Strogatz small-world topology [33] with 18 nodes and 36 payment channels.
We specify ten pairs of sender-to-recipient transaction flows and guarantee that
each flow shares payment channels with others. The transaction sending rate of
each flow is fixed and within the range [2, 8] transactions per second (Tx/s) in our
experiment. In the PALN environment, we test two priority scheduling methods:
1). Intelligent approach (I_PALN). Senders use our learning-based algorithm to
obtain the priority setting for their transaction flows. In our experiments, we first
train our model in the developed simulator (Section 3.7.2). The training results
are applied to assign the priority for each transaction flow with a static transaction
sending rate in the built PALN environment. 2). Unbiased method (U_PALN).
Senders assign the priority of each hop along the routing path with no bias for
their transaction flows.

Results

We first track the latency of a certain transaction flow in these environments
and show its changes in Fig. 3.8a. The transaction latency gradually stabilized and
was different under different environments. It reveals that the priority scheduling
method affects the transaction latency. Although the transaction flow in learning-
based PALN reaches a higher transaction latency, the average transaction latency
of the entire network is decreased. Fig. 3.8b shows the transaction success ra-
tio and average transaction latency in different environments. The success ratio
of transactions in the learning-based priority-aware PCN is 97.8%, while it only
reaches 74% in the traditional PCN. Even if there is no bias for priority assignment
in the priority-aware PCN, the success ratio of transactions can reach 92.2%. In
our learning-based PALN, the average transaction latency is about 146.7s, which
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rises to 164.05s in traditional LN. Compared with the traditional LN, our im-
plementation achieves a lower average transaction latency and higher transaction
success ratio. The reason is that high-priority transaction packets will be sched-
uled first leading to a lower delay. Meanwhile, it increases the probability that
the transaction packets can be scheduled before the transaction expires, thereby
improving the transaction success ratio.

3.7.2 Simulations

Settings

We have developed a Python-based real-time simulator to evaluate our multi-
agent priority assignment algorithm. In the simulation, we set up a PCN en-
vironment with a small-world topology consisting of 50 nodes and 100 payment
channels. We create 3 priority classes whose forwarding fees are {8, 4, 2}, respec-
tively. In practice, we can specify more priority classes to achieve more precise
scheduling for different user needs. Each user has a fixed transaction processing
rate (forwarding capacity) of 20 Tx/s. The per-hop delay is set to 20ms [24]. There
are 15 pairs of sender-to-recipient transactions with dynamic transaction sending
rates. We assume the transaction path is fixed and specified by its sender. The
length of the transaction path is within the range from 4 to 8 and the average
value is 6, which is similar to the real LN [53]. The initial transaction rates are
randomly selected from the range [4,9] (Tx/s). The changing of transaction rate
conforms to the normal distribution. The expiry time of each transaction flow is
manually specified, which depends on the length of the routing path and user de-
mands. For example, the expiry time is set to a short time like 1 for a transaction
with 5 hops on its path.

Each sender launches a learning process for priority assignment to balance
their TPS and total forwarding fee by using our multi-agent DQN-based priority
assignment algorithm. The action refresh time interval is 1s. The batch size,
discount factor, and learning rate are128, 0.99, and 0.0001, respectively. ε has an
initial value of 0.5 and linearly increases to 0.9 with a step 1e− 5. The algorithm
selects a new priority sequence for each transaction flow per second. A replay
memory with a fixed capacity can store 10000 records of MDP. We set checkpoints
in our algorithm to check the staged cumulative rewards. Each checking period is
about 100 seconds. A check point is a flag that inspects the training process and
stores priority assignment transition tracks.
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(a) The success ratio comparison in
steady-state.

(b) The transaction throughput com-
parison in steady-state.

Figure 3.9: The two metrics comparison with different scheduling methods.

(a) The success ratio comparison in
steady-state.

(b) The transaction throughput com-
parison in steady-state.

Figure 3.10: The two metrics comparison with different priority assignment algo-
rithms.

Scheduling methods and algorithms comparison

Firstly, we compare our learning-based priority scheduling (LPS) method with
other scheduling methods: 1) General scheduling method in the current lightning
network (represented by LN in figures), and Last-in First-out (LIFO). Compari-
son mainly focuses on the two important metrics: network throughput and suc-
cess ratio. Comparing with original algorithm and other scheduling method, our
LPS method achieves a higher success ratio and network throughput than other
scheduling methods that shows in the Fig. 3.9(a) and Fig. 3.9(b). The LPS
method can control the rate of certain transaction flows by adjusting their pri-
orities assigned for the intermediate users on their path, thereby allowing more
transactions to achieve a higher transaction rate. For example, a transaction flow
shares different channels with the other two transaction flows on its path. When
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Figure 3.11: The comparison on
transaction throughput by apply-
ing different scheduling methods.

Figure 3.12: The comparison on
the average forwarding fee under
different weight coefficients.

the flow has a demand to save coins by lowering the priorities assigned to each
intermediate user, the occupied forwarding capacity of this flow in the queue cor-
responding to the previous priority will be released. In contrast, the other two
transaction flows may utilize the released forwarding capacity to reach a higher
transaction rate as well as improves the network throughput. Additionally, we
compare our learning-based priority assignment algorithm with other two priority
assignment algorithms, e.g. unbiased priority scheduling (UPS) and earlier dead-
line first (EDF) in [24]. The simulation results are shown in Fig. 3.10(a) and Fig.
3.10(b). Compared with other priority assignment algorithms, our LPS algorithm
achieves higher transaction throughput and success ratio, especially in the case of
network congestion. We show the change in transaction throughput by applying
different scheduling methods in Fig. 3.11 when the forwarding capacity is fixed to
20 Tx/s.

Learning algorithm evaluation

To achieve a higher transaction rate and a lower expenditure on forwarding
fees, we appropriately reconfigure the parameters in our multi-agent DQN-based
priority assignment algorithm. We show the change of average forwarding fee
of the entire network under different values of the weighting coefficient α within
400 checking periods in Fig. 3.12. We notice that the average forwarding fee of
the entire PCN is decreased when the α has a small value. With the value of
α increasing, the lowest average forwarding fee will be higher. Hence, the value
of α can be used to meet different user demands on transaction throughput and
forwarding fee costs. The Fig. 3.13(b) and the Fig. 3.13(a) show the achieving
rewards of our learning algorithm under different values of α. We find the achieving
reward is relatively stable as the value of α increases. The reason is that priority
assignment can directly affect forwarding fees which fluctuate in a discrete set. In
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contrast, throughput gradually stabilizes.
From the figure of reward evaluation, the system achieves a long convergence

time of about 5 hours. Here we give some reasons: 1) The transaction sending rate
of each sender is varying (normal distribution). An unstable rate brings challenges
to the dynamic priority decision of each hop along the transaction path. 2) Each
sender needs to assign a priority to each hop along the transaction path. The
combination of different priorities brings up a huge decision space resulting in a
high solution searching time. 3) We set a very small learning rate (0.0001) for the
learning process. In the context of machine learning, a model with a too-small
learning rate would be a slow learner and it would need more iterations. 4) Every
node is greedy and will compete for the forwarding capacity with other transaction
senders. A bad case is that all senders assign high priorities to their transactions
for fast scheduling on intermediate nodes. All of their packets will be aggregated
in the high-priority queue that offsets the benefit of priority scheduling.

As we know, machine learning methods require large amounts of data to train
their model. In our proposal, the training data is generated in real-time as the
transaction proceeds. In the initialization phase of the algorithm, the learning
method needs to collect the transaction data for model training. The speed of
training data generation is related to the frequency of transaction requests. In
practice, some nodes (like banks, markets, and exchanges) with frequent trans-
action requests can collect a large amount of transaction data in a short time.
The learning model of these nodes may quickly converge. For other nodes without
frequent transaction requests, some training data needs to be prior collected. This
is also the challenge that methods using reinforcement learning algorithms face at
the beginning of training. Furthermore, some nodes in the network can cooperate
to form a stable group. The entire network can be divided into many groups. The
overall optimization will be split into optimizations within each group. New nodes
or pairs of transactions only affect the group they belong to. At the same time,
node grouping also speeds up the convergence of the model.

Priority expansion evaluation

We expand the number of priority classes to {4, 5, 6}, respectively. The for-
warding fee of each intermediate user is in the range [2, 8] and increases with the
priority increasing. For example, the forwarding fees of each intermediate user
in the PCN with 4 priority classes are {2, 4, 6, 8}. We compare our learning al-
gorithm with the unbiased priority scheduling (UPS) algorithm. The simulation
results are shown in Fig. 3.14. In Fig. 3.14(a) and Fig. 3.14(b), we find that the
success ratio of the entire network gradually decreases and the average forwarding
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(a) The rewards in each checking period
when α = 0.2.

(b) The rewards in each checking period
when α = 0.8.

Figure 3.13: The rewards of the learning method under different weight coeffi-
cients.

(a) Transaction success ratio comparison
of the entire network.

(b) The average forwarding fee compar-
ison of the entire network.

Figure 3.14: Different metrics comparison under the different number of priority
classes.
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3.8. SUMMARY

fee of the entire network is slightly increased as the number of priority classes
increases. Due to the network congestion, transactions belonging to the same
transaction flow will also compete with each other for the forwarding resources of
intermediate users, resulting in a lower transaction success ratio. As the selectable
priority classes increase, the learning algorithm can accurately specify appropriate
priorities for the transactions. This leads to the priority selection of concurrent
transactions on the shared channel to be scattered and increases the corresponding
forwarding fees.

3.8 Summary
In this work, we observe the transaction time jitter in LND simnet which con-

firms the impact of concurrent transactions on transaction rates. To meet different
transaction demands on transaction rates, we propose a priority-aware PCN for
efficient transaction scheduling to achieve a high transaction throughput. In par-
ticular, priority assignment is essential to improve the utilization of the forwarding
fee for a transaction flow. We further propose a multi-agent DQN-based priority
assignment algorithm and develop a real-time simulator to verify the efficiency
of our learning algorithm. The simulation result shows that our priority-aware
scheduling method can achieve a higher transaction success ratio and network
throughput when network congestion occurs in PCNs. We define a regulatory fac-
tor to meet different user demands on transaction rate and forwarding fees. Users
can balance the trade-off between the achievable transaction rate and forwarding
fees by changing the factor value.
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Chapter 4

Multi-Branch Routing
Mechanism

4.1 INTRODUCTION

In PCNs, payment channels are established between parties with a direct peer-
to-peer connection and their deposits as the channel capacity. Off-chain payments
between two un-directed parties are forwarded through a tolerant routing path
composed of payment channels and intermediate parties. Concurrent payments
can share payment channels on their routing path [12]. Due to the limitation of
the channel capacity, payment failure incurs when the payment amount surpasses
the channel capacity on its routing path. A failure message is then generated
and sent back to the payment sender. Meanwhile, all of the established contracts
by the payment are revoked immediately. It raises several problems like delaying
payments and overhead on contract establishment and revoking, which leads to
lower throughput. Additionally, the payment sender needs to find another routing
path to route the failed payment. The new path may partially overlap with the
old path. The path finding process and contract reconstruction bring additional
overhead, thereby decreasing the network performance.

To achieve higher throughput in PCNs, Sivaraman et al. [24] propose Spider
which splits payments into payment units. Spider routes payment units over
multiple edge-disjoint paths and handles channel imbalance issues. However, this
proposal delays payments since it needs to wait for the payments from the opposite
direction. Wang et al. [31] split payments across multiple probed paths. The
path selection depends on the probed information, which may be outdated before
payments are issued. Furthermore, payment splitting imposes strict conditions
on payment success, which requires all payment units to reach the destination
resulting in long payment latency. In [22,54], the route construction also depends
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4.1. INTRODUCTION

Figure 4.1: The illustrative example of our multi-branch routing system.

on the probe while the validity of time-sensitive probed information cannot be
promised in highly dynamic PCNs. Bagaria et al. [55,56] present redundant path
schemes to route payments over multiple paths, but these schemes bring redundant
resource occupation and require high collateral [57]. Existing works either delay
payments or bring extra traffic loads. Moreover, they lack the reaction mechanism
for payment failures.

In this chapter, we explore the payment routing problem and propose a novel
multi-path payment routing scheme, in which the payment route is constructed as
a leaf-like structure. Payers prepare multiple available routing paths, including a
primary path and several standby paths for their payments. Some special nodes
on these paths, called fork nodes, cache the information of standby paths during
the payment process. When a payment fails, the returned failure message can
be prior handled by fork nodes to activate the cached standby path. The fork
node forwards the payment through across its cached path to the destination.
Only a portion of locking funds requires to be released. Our scheme theoretically
achieves a higher payment success ratio than the single-path routing, at the same
time avoiding redundancy of the multi-path routing. In highly dynamic PCNs, it’s
impractical for a payer to track the instantaneous capacity of each channel over
the payment path. Hence, payers cannot either predict payment failure before
their payments are issued, or track payment status during the payment process.
The fork node cannot be specified immediately when the payment fails. Instead, a
couple of nodes can be prior reserved as fork nodes, combined with corresponding
standby paths to construct the pay packet.

To realize the proposed routing scheme, several challenges require to be over-
come: 1) Privacy. The payment path is regarded as an important part of payment
privacy to estimate the risk in [58,59]. The adversary can attack intermediate hops
of a payment path to disturb the payment. The privacy protection issue should
be considered to reduce the risk of privacy leakage. 2) Distribution. A PCN is

41



a fully distributed network without centralized control. Every payer prefers to
reserve standby paths as many as possible to prevent their payment from failing.
But the capacity limitation of fork nodes leads to the overflow of standby path
information. Therefore, the fork node selection is cortical to facilitate resource uti-
lization. 3) Efficiency. As the number of standby paths increases, the probability
of payment success theoretically increases. Payers prefer to select the path with a
higher payment success probability as the primary path to reduce the opportunity
of payment failure. But this path does not ensure a short payment time. There
is a trade-off between the payment success ratio and payment time. We need to
balance the two metrics to ensure payment efficiency.

Modern PCNs like Lightning Network (LN) [60] use an onion routing protocol
to protect user privacy in payment routing. The Basis of Lightning Technology
(BOLT) reveals the specification of LN [50]. We design a tailored onion routing to
adapt our routing scheme. Standby path information is embedded into the onion
packet as the branch of the primary path. Upon receiving a payment packet, the
standby path information is cached on the fork node and waits for the payment
failure message to activate. To implement an efficient system, we proposed a
distributed Markov chain-based path selection algorithm for our multi-path pay-
ment routing scheme. It requires payers to corporate with each other to achieve
a relatively stable network state. Payers first collect a set of candidate paths to
their destination. Each payer applies the proposed scheme to pick a set of paths
consisting of the primary path and the standby paths as the current routing path
configuration.

Our goal is efficient utilization of the channel capacity to increase the through-
put of PCNs. We list our contributions below:

• We reveal the path overlapping phenomenon in the off-chain payment pro-
cess and analyze the concerns of routing schemes in current research.

• We first propose a novel multi-path payment routing mechanism, which al-
lows senders to prepare several standby paths for payment routing to achieve
a higher payment success ratio and a stable latency.

• We implement a distributed Markov approximation algorithm for efficient
routing and develop a simulator of LN to simulate the payment routing
process in the network layer.

The organization of this chapter is shown as follows. We first present path
overlap issues and elaborate on our motivation in Chapter 4.2. In Chapter 4.3, we
give an overview of the system design and describe our system model. Chapter
4.4 details the Markov chain-based approximate algorithm for path selection. The
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system implementation is described in Chapter 4.5. We conduct experiments in
Chapter 4.6 to evaluate the performance of the proposed scheme. Chapter 4.7
concludes this work.

4.2 MOTIVATION
A payment channel network is an off-chain distributed network consisting

of peers and payment channels connecting them. Without the participation of
on-chain miners, the implementation of off-chain payments depends on payment
channels, thereby avoiding expensive on-chain operations. In general, payments
between two peers indirectly connected by payment channels require multi-hop
transmission to reach the destination. To guarantee the atomicity of payment, a
contract called Hash Time-Lock Contract (HTLC) is proposed. The contract is
established on the payment channel along the payment path, at the same time
partial channel deposit is locked for the associate payment. In highly dynamic
PCN, concurrent payments compete with channel funds on shared payment chan-
nels leading to payment failure. All of the established contracts shall be canceled.
To complete the payment, the sender needs to research a now available path for
resending. It brings overhead on pathfinding and contract reestablishment over
overlap channels. Additionally, the prior released channel capacity can be pre-
empted by other payments.

In current implementations of PCNs, almost systems use source routing mech-
anisms. To further increase the throughput and payment opportunity of PCNs,
many researchers focus on the routing method and congestion control algorithm.
Such proposals like Atomic Multi-Path Payments (AMP) design a routing mech-
anism to transfer payments through multiple paths [55, 56]. But it requires high
collateral [57] that more coins would be locked in channels as ‘in-flight’coins.
The in-flight coins cannot be used by other payments leading to reduced channel
capacity. A special multi-path routing scheme called spider was proposed in [24],
which splits payments into several units to scatter the payload on a single path.
However, the success of payment depends on the final completed unit which in-
duces higher payment latency.

By analyzing the routing mechanism of LND, we find that it deploys a devel-
oped Dijkstra [52,61] algorithm for pathfinding. Considering the case of payment
failures, senders actually route their payments by switching between the short-
est paths and a set of short paths with similar lengths. These paths may overlap,
causing failed payments to transfer through certain channels repeatedly. To verify
the conjecture, we explore the current LN topology and sample a set of short paths
between the specified payer-payee pair. In Fig. 4.2, we show the overlap ratio of
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Figure 4.2: The change in the path overlap ratio under different numbers of avail-
able paths within different positions of LN.

paths under different numbers of available paths within different network environ-
ments. The ratio is calculated by the count of overlapping channels and the total
number of channels in the path set. LN core/edge denotes the cropped topology
close to LN’s core/edge network. Since each payer within the core network has
numerous channels, the path overlap ratio is lower relatively than the payer at the
edge. Insufficient channel balance causes payment failure, which leads to frequent
locking and release of resources on overlapping channels. It brings communication
costs on updating channel state and rapid changes in channel balance to affect
subsequent payments using the channel.

We attempt to propose a novel routing mechanism to prevent the payment
from failure as well as solve the path overlap issue. Inspired by the restoration
approaches in [62, 63], we try to apply path restoration to the payment process,
so that payments can react to the failure caused by insufficient channel capac-
ity. When a payment is failed at an intermediate hop, 1) the original routing
path is discarded, 2) a standby path is activated, and 3) the payment proceeds
along the standby path. However, PCNs like LN apply source-routing in the pay-
ment process, which gives senders full control over their payment path within the
network [50]. The payload needs to be packaged before payment is issued. In
addition, the sender cannot track the status of their issued payments in real-time
nor update the routing strategy for the issued payment. Therefore, the payment
requires an adaptive adjustment strategy to cope with changes in the link state.
A mitigation approach is to prepare a set of standby paths in advance. The in-
formation of standby paths cached in intermediate users waiting for downstream
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Figure 4.3: The system overview.

payment failure message to activate.

4.3 SYSTEM OVERVIEW AND MODEL

4.3.1 System Overview
In this section, we make an overview of the design of the multi-branch routing

mechanism. As shown in Fig. 4.3, the payload of payment is initialized at sender S
and sent to destination R. Different from the original payment routing mechanism
to find the shortest path in LN, sender S collects a set of candidate paths to route
payments. To eliminate the redundant communication cost of the overlapping
channels, the route should be pre-processed to build a multi-branch route. It can
be represented figuratively as the construct of a leaf composed of a sender as the
petiole, a receiver as the leaf apex, the primary path as the mid-vein, and standby
paths as secondary veins leading to the leaf apex. The sender applies the multi-
branch routing mechanism to route payments to the destination, which can be
treated as the transportation of nutrients from the petiole to the apex in leaves.

In our design, a fork node is a bifurcation point of two independent paths
with overlapping channels. A multi-branch route can have multiple fork nodes.
Senders first transfer their payments along the primary path. Fork nodes forward
the payment along its current path and cache the corresponding information of its
standby paths. For the example in Fig. 4.3, sender S forwards the payload of the
payment to the fork node A. A receives the payload and forwards it to the next
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peer B along the primary path. The information of the standby path is cached in
fork node A. When payment failure occurs, instead of immediately aborting the
payment, we take the failure message as a signal to activate the upstream nearest
standby path. The fork node receives the signal and removes the primary path
information of the corresponding payment. The cached standby path information
is used to rebuild a new payment path. Then, the fork node forwards the payment
to the destination via the new path. The details of implementation is described
in Chapter 4.5.

4.3.2 Assumptions
We consider each channel in the PCN to have a static capacity. And there

are some concurrent payments with different senders, destinations, and payment
amounts. Due to the privacy protection in PCNs, each sender has no knowledge
about the route information of the payments launched by other senders. Addi-
tionally, we assume that the set of candidate paths is given in which each path
has at least one other path overlapping with it. Perhaps a routing table can save
the path-finding time for senders. However, it’s unfeasible for a sender to build a
large routing table to reach all nodes of the entire network. In this chapter, we
assume senders can efficiently collect a set of available short paths to use and leave
the path-finding algorithm as an interesting direction but an orthogonal problem.

4.3.3 Problem Definition
As the participants of a PCN, senders prefer to reserve more standby paths to

achieve a higher probability of successful payment. However, the decision of each
sender mutually interacts with each other. Each sender needs to measure some
factors to make their decisions. We characterize these factors in the following.

Path ordering. The multi-branch routing mechanism allows senders to pre-
pare several available paths to route their payments. The ordering of those paths
is crucial to building the multi-branch route. Firstly, it directly determines the
primary path. After that, the sender can identify the fork nodes on the primary
path by intersecting the primary path with each standby path. Secondly, it can
be used for fork nodes to activate the cached standby paths sequentially. We no-
tice that the fork node may capture multiple standby paths for a single payment.
For the example in Fig. 4.3, fork node A captures two standby paths and caches
them in the memory. The ordering of the standby paths is associated with the
path index in the set, like 1 : [F,G,R], 2 : [D,E,R]. The cache pops the standby
path with the small index first. Hence, the payload first chooses the standby path
[F,G,R] to reach the destination R. In some cases, the bifurcation point of the
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two alternate paths may exist independently of the primary path. Furthermore,
each path carries different probabilities of successful payments, which can be used
for path ordering.

Latency. Payment latency can be regarded as a period of time from the
moment that the sender sends out a payment to the moment that the payment
result returns back to the sender. In practice, senders prefer their transactions to
be completed quickly to prevent the payment from expiring. The fast completion
of payments frees up the resources locked in the contract to be used by other
payments. It makes the resource utilization of the entire network more efficient.
Payment latency can also be a factor to neutralize the impact caused by the
probability of payment success. For example, when a payment is through across
a set of payment channels with a large capacity, the probability of successful
payment is higher, but it brings high latency. In contrast, a short path with low
channel capacity leads to a low success ratio.

Fees. The Fees mainly represent the total forwarding fee charged by interme-
diate users. In our design, we take the forwarding fee corresponding to the longest
path in the path set used to create the multi-branch route as the total forwarding
fee. The explanation is described in Section 4.5. It constraints the routing mech-
anism to choose the path with a shorter length and the user over the path with a
lower forwarding fee requirement.

Amount. The payment amount determines whether the selected path is avail-
able at the beginning of path selection. Due to the distributed PCN having strong
privacy protection, each sender has no knowledge about the payment amount of
others to make a global routing path planning. Different from the communication
networks, the growing number of payments in the forward direction leads to an in-
creased channel deposit in the reversed direction. In general, payments with large
amounts occupy more channel capacity, thereby decreasing the probability of suc-
cessful payment. However, senders can only get a snapshot of the instantaneous
state of a payment channel but cannot track the deposit status of the bidirectional
channel along the path in real time. Rapid changes in channel deposit result in a
highly dynamic network that invalidates some available paths. The impact of the
payment amount on the payment process is unpredictable but can be reflected in
the probability of payment success.

4.3.4 System Model

To simplify the exploration, we consider a PCN can be modeled as a graph
G(V,E), where there are N lightning nodes in node set V and a set of established
channels E between them. There are a set of payment sessions S in G. Each
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payment session s (s ∈ S) has different pair of payer-payee. The network topology
of our model is a subset of the real LN. Each sender of session s collects a set of
candidate paths, denoted as Ps. The length of a single path p is the value of |p|.
Senders choose a set of paths from Ps as reserved paths Rs (Rs ⊆ Ps) to route
their payments. The reserved paths consists of one primary path and |Rs| − 1

standby paths, |Rs| ≥ 2.
The target of our multi-branch routing mechanism is to find an optimal paths

set for each payment session in our system. We define a binary variable xp
s to

denote whether the path p (p ∈ Ps) is selected as a reserved path. It can be
denoted as:

xp
s =






1, if the candidate path p is selected by
session s as a reserved path.

0, otherwise

(4.1)

Then, we define a integer variable yps to denote the ordering of the selected paths
in Rs, xp

s ≤ yps ≤
∑

p x
p
s = |Rs|. The following constraint can be obtained:

(xp
s−1)yps = 0, p ∈ Rs Furthermore, yps affects the number of overlapping channels

between two reserved paths.
The onion-routing protocol of LN specifies the maximum number of hops al-

lowed in an onion packet. We use ∆ to denote this upper bound number of
hops. The function H(|p|, yps) is used to calculate the hops of a reversed path
in a multi-branch route. It equals the difference between |p| and the number of
overlapping channels on the reversed path p. The condition of hop limitation can
be expressed as:

∑
p∈Rs

xp
s ·H(|p|, yps) ≤ ∆ Excessive cached path information on

a fork node reduces the efficiency of path switching. Hence, each fork node i on
path p maintains a buffer with a limited size to store information of standby paths:
∑

s∈S
∑

p∈Rs,i∈p x
p
s ≤ Bi. In our design, we take the forwarding fee corresponding

to the longest path in the path set used to create the multi-branch route as the
total forwarding fee. The explanation is described in Chapter 4.5. We ignore the
impact of fee limitation on the path selection.

Each sender in G enforces the multi-branch routing mechanism to improve the
system performance, which is measured by the following objectives:

1). The maximum probability of successful payments. For a candidate path of
payment session s, this probability is related to the payment amount zs, denoted
as π(zs). The payment success probability of session s can be represented as:

πs =
∑

p∈Rs

E(xp
s · πp

s(y
p
s)) (4.2)

2). The minimal payment latency. We use lps to denote the payment latency
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of a payment session s on path p. Similarly, the payment latency of session s can
be expressed as:

ls =
∑

p∈Rs

E(xp
s · lps(yps)) (4.3)

Consequently, the objective function of overall weighted system utility can be
described as:

φ = max
∑

s∈S

(πs − α | ls |) (4.4)

where α is a positive weighted coefficient to balance the payment success ratio and
the payment time, the | · | is a normalization function.

4.4 DISTRIBUTED MULTI-BRANCH ROUT-
ING ALGORITHM

The path selection problem with resource limitation is NP-complete [64, 65].
Since the PCN with privacy protection is fully distributed, it’s impractical for
users to share the sensitive path information to make a centralized optimization
for routing path planning. In this section, we provide a decentralized algorithm to
handle the path selection problem. Our proposal augments the success opportunity
for payments, which reduces the risk of payment failure to achieve high throughput
for PCNs.

4.4.1 Log-sum-exp Approximation
Let F be a set of all feasible configurations for the MBR problem. A payer

can obtain the local performance φs(f) of his payment session s under a given
solution f . Then, the system objective function can be computed by aggregating
the performance of each payment session:

∑
s φs(f), (s ∈ S). We use πf to denote

the percentage of time that the available solution f is in use. By adopting the
approximation approach proposed in [66], our MBR problem can be approximated
as:

max
∑

f∈F

πf

∑

s∈S

φs(f)−
1

β

∑

f∈F

πf log πf

s.t.
∑

f∈F

πf = 1
(4.5)

where β is a positive constant. The approximation approach introduces an entropy
term − 1

β

∑
f∈F πf log πf with an enhance approximation gap bounded by 1

β logF .
As the value of β increases, the approximated function of our MBR problem
becomes more exact. We use π∗

f , f ∈ F to represent the optimal solution of the
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approximated function, which can be derived via solving the Karush-Kuhn-Tucker
(KKT) conditions [67] and expressed as:

π∗
f =

exp (β
∑

s∈S φs(f))∑
f ′∈F exp (β

∑
s∈S φs(f ′))

, ∀f ∈ F . (4.6)

Then, the MBR problem can be approximately solved through a time-sharing
manner among different configurations based on π∗

f .

4.4.2 Markov Chain Design
We construct a time-reversible Markov Chain (MC) on which a single state

is an available configuration within the state space, and the stationary distribu-
tion is π∗

f , f ∈ F . The transition between two states is to replace a reserved
path or reorder the reserved paths for any payment session. The best solution to
achieve a near-optimal performance is to train the transitions to converge to the
stationary distribution π∗

f . To describe the transition process intuitively, we use
a non-negative value qf,f ′ to denote the transition rate between the two configu-
rations f and f ′ and set it to zero, unless the two configurations satisfy the two
conditions: 1). | f ∪ f ′ | − | f ∩ f ′ | = 2. 2). f ∪ f ′ − f ∩ f ′ ∈ Pŝ. where ŝ is the
involving payment session to make the path swapping or ordering. Besides, the
Markov chain has to guarantee that any two states can be reachable mutually, and
the detailed balance equation π∗

fqf,f ′ = π∗
f ′qf ′,f , ∀f, f ′ ∈ F needs to be satisfied.

For the two direct-connect configurations (f, f ′), we let the transition rate qf,f ′

and the difference in system performance be positively correlated. From [66, 68],
the transition rate can be expressed as:





qf,f ′ = ω exp (12β

∑
s∈S(φs(f)− φs(f ′))).

qf ′,f = ω exp (12β
∑

s∈S(φs(f ′)− φs(f))).
(4.7)

where ω is a positive constant. We can find that transition rates qf,f ′ and qf ′,f

are symmetric. If the system performance is improved under the configuration f ′,
the performance gap will be positive, increasing the probability of jumping to this
configuration, and vice versa.

4.4.3 Distributed Markov Chain Based Routing Scheme
The detailed implementation of our algorithm is shown in Algorithm 1. Each

payment session launches a processing thread on the corresponding end-host of its
payer. To guarantee algorithm convergence in a distributed system, each payer
needs to share the local performance with other payers in the system. Furthermore,
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Algorithm 1 Online Distributed MC-Based Routing Algorithm
1: for each s ∈ S do
2: execute Initialization()
3: execute Set-timer(s)
4: end for
5: while system is still running do
6: /*Listen to State-Transit*/
7: if Ts expires then
8: switch operation do
9: case x

10: xp
s ← 0

11: xp′
s ← 1

12: case y
13: yps ↔ yp

′
s

14: execute Set-timer(s)
15: broadcast a RESET(φs(f ′)) signal with local performance φs(f) to

other payers
16: end if
17: /*Listen to RESET Signals*/
18: if a payer receives the RESET(φs(f ′)) signal then
19: φs(f)← φs(f ′)
20: refresh and reset the timer Ts

21: end if
22: end while

Algorithm 2 Initialization()
Input: a payment session s ∈ S, candidate paths Ps

Output: Rs

1: launches a processing-thread for s on corresponding payer
2: Rs ← randomly chooses several independent paths from Ps

3: shuffles the ordering of the reserved path Rs randomly
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Algorithm 3 Set-timer()
Input: a payment session s ∈ S
Output: Ts,operation, p, p′

1: p← randomly chooses a reserved path from Rs

2: p′ ← randomly chooses a path from Ps \ p
3: if p′ ∈ Rs then
4: operation ← y
5: else if p′ ∈ Ps \Rs then
6: operation ← x
7: end if
8: measures current system performance

∑
i∈S\s φi(f) + φs(f) with the collected

performance information and local performance.
9: estimates the system performance

∑
i∈S φi(f ′) under the target configuration

that swaps p with p′

10: generates a new exponentially distributed timer Ts for the payment session s
with mean value as:

ω exp (12β
∑

i∈S(φi(f)− φi(f ′)))

| Rs | ·(| Ps | −1)
(4.8)

the configuration of path selection is sensitive information involving the payer’s
privacy. Each payer cannot collect it from other payers to construct the current
configuration of the system.

From the assumption of the Markov approximation in [66], the performance of
the configuration requires to be prior computed by each payer. As aforementioned,
an important metric to evaluate the system performance is the real payment time
which is unpredictable for each payment with the different amounts in fast time-
varying PCN. An obverse condition for the payment time is no longer than the
expiration of the time-lock of the first hop. The expectation of payment time
becomes longer as the number of hops augments because of the extra transmission
time. In our algorithm, we assume that the payment time is only correlated to the
transmission time of each hop on the route. Another metric is the payment success
ratio which reflects the payment success probability and increases theoretically
with the growing number of payment paths. For example, if we get two available
routing paths for a payment and assume that the payment success probability
of two paths is π1 and π2, π1, π2 ∈ [0, 1], the success probability of multi-path
payment can be expressed to 1−π1π2, which is bigger than either of the two single
paths. However, the payment success probability is corresponding to the payment
amount and other network parameters. The current LN protocol provides an
estimation method to estimate the success probability of payment on the payment
path. In this manner, we can estimate the system’s performance.

The algorithm is executed on each distributed payer. These payers cooperate
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with each other to obtain the current system performance of the entire network.
A detailed description of our algorithm is shown as follows.

• Initialization(): The payer launches a processing thread for his payment
sessions. Each payment session randomly chooses several independent paths
as reserved paths and then shuffles the ordering of the selected paths.

• Set-timer(): For each payment session s ∈ S, the corresponding payer
first randomly selects a reserved path p from Rs, and then selects another
path p′ 1= p from Ps. If the path p′ is in the reserved path set Rs, the
operation of the payer is to update y by swapping the ordering of the two
paths. If the selected path p′ is not in the reserved paths, the operation
of the payer is to update x by swapping the old reserved path to a new
path. The system performance can be computed by local performance and
pre-collected performance information from other payers. By estimating
the performance under the new configuration f ′, the payer can trigger a
timer Ts with an exponentially distribution for the corresponding payment
session s with mean value: ω exp (12β

∑
i∈S(φi(f)− φi(f ′))) · (| Rs | ·(| Ps |

−1))−1. The payer then broadcasts the RESET(φs(f ′)) signal carrying the
local performance φs(f ′) of payment session s to other payers for further
system performance computation.

• State-Transit signal: If a timer expires, the corresponding payer does
the operation: (x). swapping the selected reserved path p with the unre-
served path p′. (y). swapping the ordering of reserved path p with another
reserved path p′.

• RESET signal: When a RESET signal is received by a payment session s,
the corresponding payer refreshes timers of his payment sessions invoking
4.8.

The convergence of the proposed algorithm can be proved according to the algo-
rithm analysis in [66, 68]..

4.5 SYSTEM IMPLEMENTATION

In this section, we first elaborate on the design of the multi-branch onion route
in our system and then describe the details for the implementation of the payment
routine.
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Figure 4.4: The difference of the onion-routing between our multi-branch routing
mechanism and LN.

(a)

(b)

Figure 4.5: Two special cases in onion-routing.

4.5.1 Onion Routing

To protect the security and privacy of payments, the LN applies the onion
routing protocol to payment execution. Source-routing mechanism allows payment
senders to complete control of the payment path within LN. It highly adapts LN,
that senders can customize some conditions (such as ignored peers, maximum
fee, and total worst-case time-lock period) to query a satisfied routing path. The
quarried path information can be decomposed into the instructions of each hop
as per-hop payload encoding into the onion route, as shown in Fig. 4.4. The
payment is successful when the final payload reaches the payee. In our multi-
branch routing scheme, we employ the onion routing protocol to guarantee the
security and privacy features of LN. The onion packet is encapsulated with a
multi-core structure, which only has a single-core within the LN. The information
on standby paths is stored in each sub-onion packet. For the example in Fig.
4.4, the information of standby path from fork node ui to payee, is encapsulated
into a sub-onion packet, combined with the rest information of the primary path
as the payload of i-th hop. Each node opens up a buffer with a certain size for
packet caching within the proposed system. Policy update. There are two pieces
of information in the payload required to be updated against the change of the
onion route: 1) Forwarding fee. In basic LN, peers use a gossip protocol to probe
the existence of payment channels with the public charging fee [52]. The total
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4.5. SYSTEM IMPLEMENTATION

forwarding fee is a cumulative fee that the sender pays to intermediate users for
payment forwarding. Due to the length difference of each reserved path, the total
forwarding fees over each path are uneven. In our scheme, we recommend the
maximum forwarding fee among the reserved paths as the total forwarding fee of
a multi-branch route. A payment carries its forwarding fee through a reserved
path with a short length incurs overflow forwarding fees. The overflow fee is used
to pay each fork node for caching the standby path information. 2) Time lock.
The time lock is the expiry time for a payment to lock required coins on each
channel over its path. The value of the time lock is gradually decreasing along the
payment path [12]. For example, a payment sets a time lock on hop i, denoted
as ti. The time lock of previous hop i − 1 is represented as ti−1 = ti +∆, where
∆ is a positive value. In our implementation, we assume a multi-branch route
has several branches starting at hop i. The time lock of previous hop i − 1 is
ti−1 =

∑
i∈p,p∈R(t

p
i ) + ∆, where p are relevant paths gathering at hop i − 1 in

reserved path set R.
Multi-branch onion packet. To build the multi-branch onion packet, the

sender first prepares reserved paths and prunes their overlapping hops. Reserved
path preparing is done by the path selecting algorithm. Hop information in the
packet can be obtained by pruning overlapping hops and orderly merging the rest
hops in reserved paths. Each standby path should be a complete and continuous
path from the fork node to the destination. There are two special cases in overlap-
ping hops handling: a) Multiple overlapping segments on the path. As shown in
Fig. 4.5a, the primary path (blue arrow) overlaps with the standby path (orange
arrow) at hop {[S,A], [G,R]} and node-D. In this case, the fork node is node-A,
the standby path is [C,D, F,G,R]. b) Forks on standby paths. The two standby
paths overlap at hop {[S,A], [A,C], [C,D], [G,R]} as shown in Fig. 4.5b. Here,
the fork nodes are nodes [A,D], the standby paths are {[C,D,E,G,R], [F,G,R]}.

4.5.2 Construction Details

In this part, we describe the details of the operations in our routing mechanism.
BOLT#04 describes the detailed onion routing protocol within the LN including
onion packet construction and forwarding. We first update the payment initial-
ization process as shown in Fig. 4.6. Lines 1-3 describe the path pre-processing
in onion-routed packet generation. The sender needs to prepare tokens for failed
payment to extract the standby path on each fork node in line 4. Lines 5-6 elabo-
rate the time-lock and fee initialization. According to the protocol, an ephemeral
cryptographic key should be computed for each hop and gathered by the sender
to generate the payment session key. It is iteratively computed from the sender,
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Pay:

Initialize: a payment attempt as Tx with N candidate paths.
1: Select a set of n reserved paths R = [R0, R1, ..., Rn] for Tx from candidate

path set, n ≤ N .
2: Get the set of m fork nodes B = [b1, ..., bm] from R,m ≤M .
3: Clip the overlap channels to build a multi-branch route R′ with H payment

channels.
4: Specify a token vi for each fork node bi, ∀bi ∈ B and obtain a sequence of

token set V = [v1, ..., vm].
5: Assign the Time-Lock Delta (TLV) ∆th to each channel h, ∀h ∈ H and

get ∆T = [∆t1, ...,∆tH ]. For a fork node bi with an upstream channel h and
downstream channels u,w on R′, ∆th > ∆tu+∆tw. Otherwise, ∆th > ∆th+1.

6: Find the path with max fees as the total forwarding fee (fees) that requires
to prepare. fees are precisely allocated to each hop. The overflow fees will
be paid to fork nodes on the route

7: Compute cryptographic keys to generate the session key and construct the
onion packet Tx(R′, B, V,∆T, fees).

Send: the packet to the first hop.

Figure 4.6: The payment initialization process in the pay routine of our multi-
branch routing scheme.

independent of the entire path. Hence, it’s possible for the sender to compute
cryptographic keys for each standby path and encapsulate them into the multi-
branch onion packet. The encapsulated multi-branch onion packet is then sent to
the first hop on the primary path.

We modify the forwarding logic of intermediate users as shown in Fig. 4.7.
Upon receiving an onion packet, Intermediate users parse it to get the correspond-
ing hop information and the inside onion packet. Except for route verification and
fee-charging, the intermediate users need to determine whether they are identified
as fork nodes. As shown in Decision(Tx), if a user is a fork node, this user will
hold relevant standby path information. Then, the inside onion packet will be
forwarded along the current path. A message (Msg) carrying the payment result
is initialized and sent back to the payment sender when the payment fails or is
fulfilled. A fork node receives the message and verifies whether the payment is
fulfilled or expired. If so, the node deletes the cached standby path information
of this payment. Otherwise, the node activates the standby path if the token
carried by the failure message is valid. Due to the message being transferred in
the opposite direction of payment routing, the fork node closer to the message
initialization node will be activated first.

56



4.5. SYSTEM IMPLEMENTATION

Decision:

Receive Tx packet or downstream message Msg.
Decision(Tx)

1: if node i in B then
2: Hold standby onion packet Oi

3: end if
4: Forward Tx to (i+ 1)− th node

Decision(Msg)

1: if node i in B then
2: if Msg is fulfill or expiry then
3: Del standby onion packet Oi

4: else if Msg is fail and token v == vi then
5: Activate standby onion packet Oi

6: Del Msg
7: end if
8: else
9: Forward Msg to (i− 1)− th node

10: end if

Figure 4.7: The decision making on the intermediate user when an upstream Tx
packet or downstream Msg is received.
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4.5.3 Security analysis
We first build the attack model in which we consider an efficient attacker can

spawn users and generate massive transaction flow to clog channels.
We then identify the security and privacy notions of interest:

• Forwarding security. Although the sender determines the ordering of
reserved paths, the fork node has full control over the forwarding order of
cached payloads in actual execution. If a fork node forwards a payment along
its longest path, it can not receive the redundant fee for holding the standby
payloads of this payment. From the perspective of a fork node, forwarding
payments over a shorter path has the opportunity to get higher forwarding
fees. On the other hand, the time lock limits the utilization of the channel
funds. For a single payment, fork nodes prefer to forward the payload with
a small time lock to efficiently utilize their funds on connected channels.
These potential factors may reduce the utility of sender decisions, causing
system instability. In general, senders can finalize the actual payment rout-
ing path when their payment is settled. A sender can detect whether the fork
node is greedy based on the path statistics of successful payments, thereby
implementing some countermeasures such as adding them to a block list [69].

• Path selection privacy. The leakage of path selection information can
give an adversary some advantages in path planning and implementing clog
attacks. Due to PCN applies source-routing in transaction process, the path
information will be encapsulated in the transaction packet. To protect the
path selection information, we upgrade the onion packet to carry out the
information on standby paths.

4.6 PERFORMANCE EVALUATION
To evaluate our multi-branch routing mechanism, we first develop a simulator

for PCNs. The details of our simulation are described in 4.6.1. We then present the
experimental results under different settings and make a comparison with other
routing schemes.

4.6.1 Settings
Simulator. We develop a Python-based simulator to model a lightning net-

work. The simulator is constructed with basic payment modules that can ac-
curately simulate the payment process. Each node (peer) maintains a forward-
ing queue in which queues received payment packets (payloads) to corresponding
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channels. The payment initialization module allows a node to instantiate payment
objects and build routed messages as payloads. Payers send payments along the
payment path generated by the specified routing scheme. Each node can observe
the topology of the entire network to enable the routing scheme to prepare suitable
routes. We set up a buffer for each node to cache the standby path information,
enabling the simulator to adapt to our multi-branch routing scheme.

The bi-direction channel carries certain funds deposited by the connected peers.
It delivers payments and updates its balance by shifting the balance to the side of
the downstream node along the payment path. Payments in a channel consume
the channel funds and lock the funds as in-flight to avoid the occupation by others
until their results (settlement/failure) are received. After the payee receives the
payment packet, it registers for payment and sends a settlement message to the
payer. Payment failure occurs when a channel over the payment path has insuf-
ficient balance. A failure message is then generated and sent along the reverse
path, extending with a field that carries a computed token to activate the cached
standby paths.

In our simulation, we use an intel Core i7-10700 CPU @2.90GHz × 16 to
run our python-based multithreading simulator. We assume that CPU computing
power will not drop when simulating small-scale networks. Task processing in each
independent thread is highly parallel. By suspending the execution of threads, we
can approximate network communication delays. The computer has the same
initial state when we run each routing algorithm.

Benchmarks: We implement five routing schemes proposed within LN into
our simulator for performance evaluation.

MBR: Multi-Branch Routing scheme picks up to k paths with overlapping
channels as candidate paths. A payer can choose multiple paths from the candidate
path set to route a payment to the payee. Except for the primary path, the
information of standby paths will be cached on fork nodes waiting for the activation
by the failure message.

LND: The routing scheme implemented in the current Lightning Network Dae-
mon (LND) allows payers to find an available shortest path to route their pay-
ments. Once a payment fails at a channel with insufficient balance, the payer
updates the local observation to ignore that channel during the pathfinding pro-
cess. The ignored channels will be reconsidered in pathfinding after 5 seconds.

MPR: Multi-Path Routing scheme randomly chooses a set of n available paths
for payers to route their payments to associate payees within the payment network.
The payer first initializes a payment session containing n payment instances with a
uniform payment hash and then assigns different paths to these payment instances.
If any instance of this payment session reaches the payee, the payment is successful.
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(a) Successful payments. (b) Average payment time.

Figure 4.8: Comparison of different scheduling methods under different payment
density conditions.

The follow-up arriving instances with the same payment hash will be aborted as
this hash is already recorded in the transaction database.

SR: Split Routing [31] also employs multiple paths to route payments between
each pair of payer-payee. Different from other multi-path routing schemes, SR
splits a payment to payment units and sends them out across a set of candidate
paths. Each payer collects candidate paths and records the bottleneck capacity of
each candidate path to allocate the payment units. By dynamically adjusting the
path selection, SR places payment units to relevant paths with lower payment fees.
When all payment units arrive at the payee, the payer gets a successful payment.

Topology and payments: We clip a small-scale network topology from the
main network of LN with 25 LN nodes and 33 payment channels. We select
10 pairs of payer-payee to simulate the payment process. The payment workloads
with Poisson distribution are randomly generated by a procedure in the simulator.
The amount of each payment is normally distributed in the range [2, 7] with a mean
equal to 5. The initial balance and delay of a channel are normally distributed
in the range [80, 160] and range [0.2s, 1s], respectively. Without the re-funding
operation, the capacity of each channel is fixed. The expiry of each payment
is set to 30s. The buffer size of each node is 100, which means each node can
cache 100 standby path information within the network applying the proposed
routing scheme. We sample available routing paths in the network to construct
the candidate path set before starting our simulation. Different from the edge-
disjoint paths used in [24], the candidate paths in our experiment have overlapping
edges. The weighted coefficient is set to 0.5.
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(a) Successful payments. (b) Average payment time.

Figure 4.9: Comparison of different scheduling methods under different link delay
conditions.

4.6.2 Performance under different network parameter

We deploy the five routing schemes above into our simulator and show their
performance under different settings.

We use new payments initiated per second to denote the payment density of
a PCN with 20 pays/s as default. As payment density increases, interactions
between concurrent payments on shared payment channels are more frequent,
especially for multi-path routing schemes with many redundant payments. We
show the change in the number of successful payments and average payment time
under different payment densities in Fig. 4.8. Our method can achieve a higher
success ratio compared with other methods. The number of available payment
paths is critical for routing schemes that employ multiple paths. There are 12K
payments sent by 10 pairs of payer-payee within 400 seconds in our simulator. Fig.
4.10 shows the performance of relevant routing schemes under different numbers
of available paths. We first measure the metric on the payment success ratio as
shown in Fig. 4.10b. We then measure another important metric on averaged
payment time (Fig.4.10a.). Our multi-branch routing scheme outperforms other
multi-path methods to achieve a relatively stable payment time.

The ability of large amount handling is also a critical metric to evaluate the
efficiency of routing schemes. Due to the channel capacity limitation, the pay-
ment with large amounts has enhanced the challenge to be transferred across a
PCN. However, off-chain network shows the advantage of lower payment fees to
encourage users to pay in an off-chain manner. Hence, our experiment contains
the analysis of routing schemes to route payments with a large payment amount.
Fig. 4.11 shows the comparison of different scheduling methods under different
payment amounts. The payment amount is randomly sampled from each range
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(a) Successful payments. (b) Average payment time.

Figure 4.10: Comparison of different scheduling methods under different number
of reserved paths.

(a) Successful payments. (b) Average payment time.

Figure 4.11: Comparison of different scheduling methods under different payment
amounts.

set. We can obtain that the number of successful payments gradually decreases
with the payment amount arguments. MBR can achieve a relatively higher success
payment ratio than others. As the payment amount augments, the payment time
of AMP and SR becomes unstable as shown in Fig. 4.11b. Especially for the SR,
the payment time is gradually increasing because of the strict payment success
conditions.

Fig. 4.12a shows the change in the number of success payments with time
increases. We reset the channel balance and link delay to range [100, 200] (USD)
and range [0.1s, 0.3s], respectively. Notice that the total number of successful
payments finally stabilized under different routing schemes. The reason is that
payments in the bi-direction channel are imbalanced, thereby leading to a unidi-
rectional channel [20] with no sufficient balance for further payments. Changes in
funds at both ends of a payment channel will affect its payment forwarding ca-
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(a) The number of successful payments
over time within the entire network.

(b) The transaction throughput compar-
ison in steady-state.

Figure 4.12: The two metrics comparison with different scheduling methods.

(a) The number of successful payments
under different payment densities with
buffer size increases.

(b) Change in average buffer occupation
of the entire network with different link
delay.

Figure 4.13: The impact of buffer size and buffer occupation.

pability, which is different from communication networks. The number of skewed
channels gradually increases as the payment executes, and becomes a bottleneck
restricting the overall payment success ratio [20]. The proposed routing scheme
can also achieve a higher payment success ratio. It benefits from the lower collat-
eral requirements. Besides, the final number of successful payments is slightly less
than the SR method. Because the SR method splits payments to micro-payment
units increases the liquidity [70] of funds in low-latency networks. For example,
the payer cannot transfer 5 coins through two paths with a maximum capital of
4. But it can be done by applying SR method. Due to the workloads exceeding
the network processing capacity under the specified configuration, the slopes of
the lines for these methods are close. Another metric is payment time as shown
in Fig. 4.12b. The AMP scheme achieves lower latency than other methods. The
average payment latency of MBR is a little higher than others.
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4.6.3 Resource utilization in Payment process
We anticipate the buffer size of the LN node to affect the payment success ratio.

A large buffer size allows LN nodes to cache more route information for payments.
Each LN node can set up a buffer with a suitable size, which is close to the peak of
routing information to be cached. It can be affected by the payment density and
link delay. We first analyze the buffer occupation under different link delays. The
buffer size of each node is set to a fixed value of 100. Fig. 4.13b shows the average
buffer occupation under different link delays and payment densities. The buffer
occupation becomes higher as the link delay and payment density increase. We find
that the network with high payment density and large transmission delay requires a
large size buffer to cache route information for payments. In contrast, if a network
with low payment density and high responsiveness, the issued payments can be
quickly settled which cannot demonstrate the caching advantages of our routing
scheme. Fig. 4.13a shows the changes in the number of successful payments under
different payment densities as the buffer size increases. The link delay is set to
the range [0.2s, 1s]. A larger buffer size brings much more successful payments.
But the channel capacity limits the network throughput reflected in the number
of successful payments. Therefore, LN nodes need to find a tailored buffer size in
crowded LN with poor link connections for payment routing.

4.7 CONCLUSION
In this work, we study the routing issues in payment channel networks and

reveal the path-overlapping phenomenon in the payment process. We elaborate
on the impact of path overlapping on payment routing. To offset the impact, we
present a novel multi-branch routing scheme to build an efficient route for off-chain
payments. The path selection and its ordering are both factors to affect payment
efficiency. Hence, we further propose a Markov Chain-based routing algorithm
to solve these concerns. Payers in PCNs can obtain near-optimal payment path
planning by employing our algorithm. To verify the high performance of our
algorithm, we develop a simulator of LN to simulate the payment routing process
in the network layer. The simulation results indicate that the proposed routing
algorithm can reach a higher payment success ratio compared with other routing
schemes. Meanwhile, the collateral requirement of the proposed method is close
to that of single-path routing methods but lower than most multi-path routing
schemes.
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Chapter 5

Conclusions

In this chapter, we conclude the dissertation by summarizing the conclusions of
chapters 3, 4. To improve the network throughput of PCNs, we first focus on the
congestion control problem within PCNs. Particularly, we propose a priority-aware
PCN for efficient transaction scheduling to achieve a high transaction throughput.
By applying the priority scheduling, the transaction with different demands can
be classified that we can fine-grained control over transaction flows. Additionally,
the transaction in PCNs is source-routing, which is required to prepare a routing
path to route transaction and specify the priority of each hop among the path.
We further propose a multi-agent DQN-based priority assignment algorithm and
develop a real-time simulator to verify the efficiency of our learning algorithm. The
simulation result shows that our priority-aware scheduling method can achieve a
higher transaction success ratio and network throughput when network congestion
occurs in PCNs.

However, we cannot ensure that all of the issued transactions will be successful.
Our further work takes attention to the failure transaction processing and trans-
action routing issues. In highly dynamic PCN, concurrent transactions compete
channel capacity on shared payment channels leads to transaction failure. All of
the established contracts shall be canceled. To complete the payment, the sender
needs to research a now available path for re-sending. It brings overhead on path
finding and contract reestablishment over overlap channels. We propose a novel
multi-branch routing scheme to build an efficient route for off-chain payments. It’s
similar to the cold-backup protection strategy in the OpenFlow network. In order
to achieve a higher performance, we further propose a Markov Chain based rout-
ing algorithm for transaction path selection and ordering. And finally, we develop
a simulator of LN to simulate the payment routing process in network layer to
verify the high performance of the proposed algorithm. The extensive numerical
results show that our proposed algorithm has increased the payment success rate
by up to %15 compared with other routing schemes. Meanwhile, it requires the
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lower collateral than general multi-path routing schemes.
In this work, we address the throughput problem of off-chain networks from

two different directions, and propose two different solutions. The experimental
results proves that the proposed methods are efficiency.
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