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Abstract

Although Global Positioning System (GPS) technique has been widely used in
the field of outdoor localization, GPS signals cannot be effectively transmitted in
a complex indoor environment. Positioning and navigation cannot be performed
in typical situations such as indoor emergency occurrence location determination,
shopping mall guides, and intelligent service robot fixed-point services. To allevi-
ate issues brought by the GPS position, related researchers utilized various signals
(e.g., WiFi, ZigBee and RFID) to achieve more accurate indoor target positioning.
However, most proposed indoor localization algorithms are complex and costly,
and do not consider some specific circumstances where the attached device are
unavailable. In this dissertation, to address the existing problems, we propose
a series of indoor localization frameworks in terms of novel scene modeling and
algorithm improvement.

This dissertation provides triple research focuses. Firstly, we propose a new
algorithm to integrate indoor target positioning and communication based on the
features of WiFi signal. Given in some scenarios, the target may not expect to be
equipped with extra devices. Therefore, we formulate device-free localization issue
as the classification problem and exploit a log regularizer in the objective function
for classification. Finally, to increase the accuracy of device free localization, we
utilize convolution neural networks (CNN) to handle the classification problem.
The organization and contribution of this dissertation are summarized as follows.

Chapter 1 (Introduction) introduces the basic background of indoor and de-
vice free localization. Subsequently, the related techniques used to tackle the
localization problem are presented briefly.

Chapter 2 (WiFi-based Indoor Positioning and Communication: Empirical
Model and Theoretical) proposes a new algorithm to integrate indoor target po-
sitioning and communication based on WiFi signals. The RSS and CSI values
of WiFi signal are used for target location and indoor wireless channel model-
ing, respectively. The experimental results show that the proposed positioning
algorithm can achieve localization within the ideal accuracy range.

Chapter 3 (Device-Free Localization via Sparse Coding with Log-Regularizer)considers
the device free scenario for indoor localization. Therefore,in this chapter, we ex-
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ploit a new log regularizer in the sparse coding objective function for classifica-
tion. With taking the distinctive ability of log-regularizer to measure sparsity,
the proposed approach can achieve an accurate localization process with robust
performance in the challenging environments. Even if the input data is severely
polluted by noise with a level of SNR = -10 dB, our algorithm can still keep a
high accuracy of 99.4%.

Chapter 4 (Image Processing-based indoor device-free localization) presents a
machine learning-oriented device free localization method by using image process-
ing method. We convert the received signal strength (RSS) signals into image
pixels. The localization problem is then formulated as an image clarification prob-
lem. To well handle the variant RSS images, a deep convolutional neural network
is then structured for classification. In particular, we simulated and expanded the
amount of data for the scenarios where the sensors may be dropped or the data
may be tampered by attackers, and trained the proposed CNN model from scratch
with these data in advance. The experimental results show that our system still
works properly and has high localization accuracy in case of the above scenarios.

Chapter 5 concludes the major contributions of this research and illustrates
some potential directions for future work.



概要

全地球測位システム（GPS）技術は、屋外の位置測定の分野で広く利用さ
れているが、複雑な屋内環境では GPS 信号を効果的に伝達することができな
い。屋内の緊急発生位置の決定、ショッピングモールのガイド、インテリジェ
ントサービスロボットの特定サービスなどの典型的な応用では、位置測定と
ナビゲーションが行えなくなる。これらの問題を解決するために、多くの研究
者はより正確な屋内ターゲットの位置測位を達成するために、様々な信号（例
えば、WiFi、ZigBee、RFID）を利用した。しかし、提案されている屋内測位
アルゴリズムのほとんどは、構成が複雑で実装コストが高く、接続されたデバ
イスが利用できないなどの特定状況を考慮していない。本論文では、既存の未
解決問題を対処するため、新規なシーンモデリングを提案し、位置決定アルゴ
リズム改良し、一連の屋内測位フレームワークを提案する。
本論文では、我々は以下の 3 つの研究課題を着目する。１つ目は WiFi 電

波の特徴に基づき、屋内ターゲットの測位と通信を統合する新しいアルゴリ
ズムを提案する。２つ目研究課題は WiFi を搭載していないシナリオを想定し
て追加対策を提案する。そこで、デバイスフリー定位問題を分類問題として定
式化し、分類のための目的関数に対数正則化器を用いることで、デバイスフリ
ー定位を実現する。最後に、3 つ目の研究課題はデバイスフリー局在化の精度
を向上させるために、畳み込みニューラルネットワーク（CNN）を分類問題
の処理に利用した手法を提案する。本論文の構成と貢献は以下のようにまと
められる。
第 1 章の「はじめに」では、屋内およびデバイスフリー定位に関する基本

的な背景を紹介する。続いて位置測位問題に取り組むために使用される関連
技術などの背景知識を紹介する。
第 2 章「WiFi を利用した屋内測位・通信。実証モデルと理論」では、WiFi

電波に基づく屋内目標位置と通信を統合するための新しいアルゴリズムを提
案する。WiFi 電波の RSS と CSI 値は、それぞれターゲットの位置と屋内無
線チャネルのモデリングに使用される。実験結果から、提案する測位アルゴリ
ズムは理想的な精度範囲での測位を実現できることを示す。
第 3 章「対数正則化器を用いたスパース符号化によるデバイスフリーな位

置特定」では、屋内位置測位についてデバイスフリーのシナリオを考える。そ
こで、本章では、分類のためのスパースコーディング目的関数において、新し
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い対数正則化器を導入して利用する。我々の提案手法は、対数正則化器の特徴
であるスパース性を利用することで、厳しい環境下でもロバストな性能で正
確な定位処理を実現する。また、入力データが SNR=-10dB のノイズに汚染さ
れても、99.4% という高い精度を維持することが可能にする。
第 4 章「画像処理に基づくデバイスレス屋内測位」では、画像処理手法を

用いた機械学習指向のデバイスフリー位置測位手法を紹介する。受信信号強
度（RSS）を画像ピクセルに変換する。そして、局在問題は画像分類問題とし
て定式化を行う。この問題に対して、深層畳み込みニューラルネットワークを
構築して分類を行う。特に、センサーが落下したり、攻撃者によってデータが
改ざんされたりするシナリオを想定してシミュレーションを行い、データ量
を拡張し、これらのデータを用いて提案する CNN モデルを事前に一から学習
させました。実験の結果、上記のようなシナリオの場合でも、本システムは正
常に動作し、高い位置特定精度を有することが確認されました。
第 5 章では、本研究の主な成果を結論付け、今後の研究の方向性を示す。
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Chapter 1

Introduction

1.1 Wireless localization
In recent years, with the rapid development of a new generation of mobile

communication technology, mobile network technology has gradually improved
and matured. At the same time, the demand for location services continues to
increase. Currently, many technologies can meet indoor positioning requirements,
and their implementation’s complexity and cost vary. Under the premise of en-
suring a certain accuracy, whether the wireless network can make full use of the
wireless network and at the same time give full play to the communication capa-
bility is a question worthy of consideration and research.

At this stage, outdoor positioning technology has developed very maturely
and is basically complete. With its good performance, Global Positioning System
(GPS) technology has been accepted and widely used. However, because GPS
positioning technology mainly relies on signals propagating in the air, the com-
plex environment indoors hinders the signal’s propagation in the air, thus limiting
the applicability of GPS indoors. In order to meet the huge demand of indoor
positioning technology, many researchers have used wireless communication tech-
nologies such as ultrasonic[1], infrared[2], sensor, RFID, WiFi, UWB, Bluetooth,
etc. to achieve the goal of indoor positioning. The characteristics of low cost and
widely using make WiFi a more promising indoor positioning technology.

1.2 Indoor localization
The typical indoor localization techniques can be categorized into ultrasonic,

infrared, sensor, RFID, WiFi, UWB and Bluetooth. The ultrasonic positioning is
simple and the measurement results have high accuracy. However, the experiment
results are easy to be affected by NLOS, the hardware requirements are high and
the cost is high. The infrared positioning does not spread during transmission.
Moreover, NLOS affects the positioning result, and the transmission distance is
limited. Although the system structure and measurement principle of RFID po-
sitioning are simple, its accuracy is directly proportional to system complexity.
UWB positioning consumes low power and provides strong anti-interference, and
low system complexity. However, the requirement of strict clock synchroniza-
tion at the sender and receiver, and the hardware cost is high. WiFi positioning
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only requires simple equipment, low cost and low implementation difficulty, but
experiment performance owns low accuracy and lacks of effective use of signals.

Furthremore, based on the RSS value of the WiFi signal, the related indoor po-
sitioning technology development has achieved the following achievements. Huang
et al. [2] first analyzed the sources of positioning errors of moving objects based on
RSS algorithm, and based on this, proposed a weighted filtering algorithm based
on motion speed and Kalman filtering. The new fusion algorithm is better than
traditional Kalman filtering algorithms [3]. The error is small, but there are still
problems of low positioning accuracy and low reliability; Ma et al. [4] put forward
the two-phase positioning idea of online and offline on the traditional fingerprint
positioning algorithm. The experimental results show that the weighted fusion of
the two positioning results is more accurate than the WKNN and joint probability
algorithm, but the cost of this algorithm in actual application is greater and it
is more difficult to implement; Wang et al. [5] proposed an improved algorithm
based on RSS fingerprint library in view of the limitations of traditional WKNN
algorithm. Although the improved algorithm improves the positioning accuracy
to some extent, there are still problems that the RSS fingerprint database is dif-
ficult to set up and the filtering is more complicated; Deng et al. [6] proposed an
improved fusion algorithm based on Kalman filtering. Although the positioning
accuracy of the algorithm is higher than that of the WiFi-based positioning algo-
rithm alone, there are still deficiencies such as insufficient applicability. Hsieh et
al. [7] put forward the idea of using deep learning to solve the RSS and CSI values
based on WiFi signals. Although the algorithm has improved accuracy compared
to traditional positioning algorithms, the complexity of the algorithm is too high
and the implementation is difficult. In order to solve the problem of inaccurate
RSS data source, Yu et al. [8] proposed an effective algorithm for extracting RSS
information. Experimental results show that the positioning accuracy of the algo-
rithm can reach 1.5m, but there are still some shortcomings such as large workload
and low accuracy. Lembo [9] analyzed the RSS signal measurement at the physical
structure level, and finally combined the neural network algorithm to improve the
positioning accuracy. However, this method also has the disadvantages of a single
mode and insufficient flexibility. Guo et al. [10] proposed a RTT-RSS ranging al-
gorithm based on WiFi signals in the scenario where a smartphone is used indoors.
The experimental results of the algorithm show that the accuracy of the algorithm
can reach 1.435m. However, the algorithm is still insufficient in scene applicability
and complexity of implementation. Shu et al. [11] proposed a prediction algorithm
based on indoor WiFi data’s queuing time. The experimental results show that the
wheel model proposed by the author is basically consistent with the theoretical
analysis. It has strong applicability, but it has the disadvantage of low accu-
racy. Yang et al. [12] proposed a high-resolution TOA estimation algorithm and
a new AOA estimation algorithm with the help of the new algorithm. Although
the experimental results are improved compared with the traditional algorithms,
they have the disadvantage of requiring high experimental conditions. In terms
of communication function which based on the value of CSI, the wireless channel
system transmission function is analyzed by modeling the indoor wireless channel
to complete the communication function. After analyzing the classical wireless
channel modeling method, Michelson et al. [13] put forward the idea of wireless
channel modeling based on a variety of factors based on the needs of actual life.

2



1.3. DEVICE FREE LOCALIZATION

The idea is a good balance between theory and practice’s relationship; Kumar
et al. [14] proposed a wireless channel model in the indoor single-transmit and
single-receive scenario. The test results show that although the model can play an
important role in broadband mobile communications, it also has the disadvantages
of poor applicability and inflexibility; Xu et al. [15] modeled the wireless channel
under the conditions of multiple transmissions and multiple receptions. Although
the model can reflect the state of the wireless channel to a certain extent, there
are still the disadvantages that the model is not accurate enough; Kalachikov et
al. [16] theoretically used a matrix analysis method to analyze the model of the
wireless channel in the MIMO scene. The results show that the model designed
by the author is more in line with the characteristics of actual measured values
than the traditional model. The disadvantage is that the system complexity is too
high. , The amount of calculation is too large, it is more difficult to implement;
Stridh [17] modeled the MIMO channel at 5.8GHz. The experimental results show
that the model established by the author basically conforms to the objective law.
The disadvantage is that the model is not applicable and the complexity is high.
Liu et al. [18] modeled the wireless channel from the perspective of a Markov chain.
The experimental results show that although the model can meet the experimen-
tal requirements under certain conditions, it also has the problem of insufficient
accuracy.

1.3 Device free localization
Device free localization does not require the target to carry any mobile devices,

sensors, tags or other electronic equipment and is relatively easy and inexpensive
to implement. Due to these advantages, the use of portable device targeting can be
used in border security, disaster relief, entry check side and smart home. In disaster
rescue, the sensor nodes are quickly deployed in the disaster area, and the specific
location of the trapped person is quickly located through the portable device
targeting technology, which greatly reduces the time spent on search and rescue,
and improves the search and rescue efficiency of the search and rescue personnel,
ultimately allowing the trapped person to get out of the danger area in time and
reducing casualties. For example, in the event of a fire in a building, the use of a
wireless sensor network, either pre-deployed or temporarily deployed around the
building, can help searchers to quickly identify the location of trapped persons in a
building full of smoke and flames, thus enabling them to be rescued more quickly.
Another application of portable device targeting technology is border security. For
example, a portion of low-power sensor nodes are deployed in advance in a long
border area, and when a stowaway enters the detection area, the sensor nodes are
triggered to upload detection data, and the coordinates of the stowaway can be
accurately located by means of the device free targeting technology, so that the
stowaway can be monitored and apprehended in time.
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Chapter 2

WiFi-based Indoor Positioning
and Communication: Empirical
Model and Theoretical Analysis

2.1 Introduction

2.1.1 Background

With the rapid development of the wireless communication, mobile internet
technology has been steadily matured and gradually completed in recent years.
Since positioning service is able to provide more accurate time information and
space information, improve user experience, ensure the property safety of people
in all walks of life, and promote the development of the information society, it
can be regarded as one of the most successful applications of the mobile internet
technology, which has been paid more and more attention.

On the one hand, outdoor positioning technology has made great progress,
where Global Positioning System (GPS) technology has been widely used due
to its performance of low latency, ideal accuracy and high resolution. However,
since GPS positioning technology severely relies on signals propagating in the
air, the complex environment indoors hinders the signal’s propagation, GPS’s
applicability is severely limited in the indoors environment. On the other hand,
as for the indoor positioning aspect, there are many types of technologies to realize
the indoor positioning, such as ultrasonic [19], infrared [20], sensor [21], RFID [22],
WiFi [23], UWB [23], Bluetooth [24], etc., whose comparison of advantages and
limitation are presented in Table I.

Note that despite different positioning method is with different complexity and
cost of implementation, low cost and widely use characteristics make WiFi-based
approach a more promising indoor positioning technology. Furthermore, though
most algorithms and technologies can achieve the goal of indoor positioning, how
to maximize the indoor wireless signal’s utilization, e.g., joint positioning and com-
munication with indoor wireless signal, while keeping certain positioning accuracy
has not been fully considered and investigated.
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2.1. INTRODUCTION

Table 2.1: Comparison of different positioning technology.

Name Advantages Limitations
Ultrasonic
positioning

The equipment is simple, and the
measurement results have high ac-
curacy.

Affected by NLOS, the hardware
requirements are high, and the cost
is high.

Infrared
positioning

Does not spread during transmis-
sion.

Affected by NLOS, the transmis-
sion distance is limited.

RFID
positioning

The system structure and measure-
ment principle are simple.

Accuracy is directly proportional
to system complexity.

UWB
positioning

Low power consumption, strong
anti-interference, and low system
complexity.

Requires strict clock synchroniza-
tion at the sender and receiver, and
the hardware cost is high.

WiFi
positioning

Simple equipment, low cost, and
common implementation difficulty

Low accuracy and lack of effective
use of signals

2.1.2 Related works

As one indispensable metric of the WiFi signal, Received Signal Strength (RSS)
could reflect the geometry distribution of the transmitted signal, where the larger
RSS value is, the closer the target is to the transmitter. Based on such theory, the
WiFi-based indoor positioning approach is put forward, which relates the target’s
position with the RSS value by establishing the WiFi-based signal fingerprinting
databased. At this time, the position of the target can be estimated by compar-
ing the current RSS value with the established fingerprinting. Up to now, lots
of efforts have been made on the RSS-based WiFi indoor positioning technology,
for example, Huang et al. [2] analyzed the reasons for moving objects’ positioning
errors in the RSS-based positioning approach, where a motion speed and Kalman
filtering-based weighted filtering algorithm is proposed. The new fusion algorithm
performs better than traditional Kalman filtering algorithms, whose positioning
error can be greatly reduced [3]. Ma et al. [4] put forward the online and offline po-
sitioning method based on the traditional fingerprint positioning algorithm, whose
experimental results show that the weighted fusion of the two positioning results
can be more accurate than the WKNN and joint probability algorithm. Given
the limitations of the traditional WKNN algorithm, Wang et al. [5] proposed an
improved algorithm based on the RSS fingerprint database, where the positioning
accuracy can be enhanced by the proposed algorithm to some extent. In [6], Deng
et al. proposed an improved fusion algorithm based on Kalman filtering, and the
positioning accuracy of the proposed algorithm is higher than that of the WiFi-
based positioning algorithm. In [7], Hsieh et al. used the deep learning method to
derive the RSS and CSI values of WiFi signals, by which the positioning accuracy
can be enhanced compared to the traditional positioning algorithms. Yu et al. [8]
solved the problem of inaccurate RSS data sources, where a practical algorithm for
extracting RSS information is proposed. Besides, experimental results show that
the positioning accuracy of the algorithm can reach 1.5m. Lembo et al. [9] gave
the detailed analysis on the RSS measurement at the physical structure level and
combined the neural network algorithm to improve positioning accuracy, which
is proved to meet the needs of ideal positioning errors compared with the typical
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baselines. In the scenario where a smartphone is used indoors, Guo et al. put
up an RTT-RSS-based ranking algorithm with WiFi signals, and the experiment
results show that the algorithm’s accuracy can reach 1.435m. Shu et al. [11] pro-
posed a prediction algorithm based on indoor WiFi data’s queuing time, whose
experimental results show that the proposed wheel model is consistent with the
theoretical analysis and has strong applicability. Yang et al. [23] proposed a high-
resolution Time of Arrival (ToA) estimation algorithm, and compared with the
traditional algorithms, the experimental results of the positioning performance are
improved.

In terms of communication function of the WiFi signal, it can be realized based
on the CIS information. Specifically, with the help of CIS value, after modeling
the indoor wireless channel, the transmission function of the wireless communi-
cation system can be derived to complete the communication function. So far,
many researchers have devoted themselves to the CSI-based communication real-
ization, for example, in [13], after analyzing the classical wireless channel modeling
method, Michelson et al. put forward the multiple factors-based wireless channel
modeling algorithm due to the needs in real life. And the experiment results show
that the proposal can trade off theory and practice of communication function
well. Kumar et al. [14] proposed a wireless channel model in the indoor Single
Input and Single Output (SISO) scenario, where the experiments results show
that the proposed model can play an essential role in broadband mobile commu-
nications. Xu et al. [15] modeled the wireless channel under the conditions of
multiple transmissions and multiple receptions, and experiments proves that the
model can reflect the state of the wireless channel to a certain extent. Kalachikov
et al. [16] used a matrix analysis method to analyze the wireless channel model
in the Multi Input and Multi Output (MIMO) scene in theory. The results show
that the designed model is more in line with the characteristics of actual measured
values than the traditional model. Stridh et al. [17] modeled the MIMO channel
at 5.8GHz, where the experimental results show that the established model is fea-
sible. Liu et al. [18] gave the model of the wireless channel from the perspective of
a Markov chain, and the experimental results show that although the model can
meet the practical requirements under various parameter settings.

In summary, despite RSS-based approaches can realize the indoor positioning
with WiFi signal, the tradeoff between high positioning accuracy, smaller position-
ing error, and less implement cost is difficult to achieve. Moreover, the wireless
channel function can be estimated with the CSI information, but the proposed
model has not been comprehensively analyzed and proofed in theory. Therefore,
form the viewpoints of numerical results and theorical analysis, the joint indoor
positioning and communication based on RSS and CSI of WiFi signal has not been
taken into consideration, which would be the work of this paper.

2.1.3 Motivation and contribution
Based on the above analysis, to address the tricky problem, where the com-

plexity and implementation cost, and indoor wireless signal’s utilization are paid
little attention by the state-of-art efforts on indoor positioning, this paper aims at
proposing one WiFi-based indoor positioning and communication scheme, where
RSS information is used to achieve the positioning goal, and communication func-
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2.2. TYPICAL INDOOR POSITIONING TECHNOLOGY

tion is realized with the help of CSI information. In summary, the main contri-
bution of this paper can be summarized as the following threefold:

1) To achieve the indoor positioning goal with WiFi technology, the RSS in-
formation is utilized, where an empirical model is established to replace the tra-
ditional fingerprinting database with the curve fitting approach.

2) To realize the WiFi-based indoor communication target, we establish the
wireless channel modeling under the SISO and OFDM-based MIMO scenarios
respectively, where the proposal is proved to be feasible given the environment
noise existence.

3) To evaluate the feasibility and performance of the proposal, numerical ex-
periments are conducted, and the results have shown that when compared with
other benchmarks, the proposed method can achieve smaller positioning error with
less implement cost.

2.1.4 Outline of the paper

The rest of this paper is organized as follows. In the Section II, the typi-
cal indoor positioning technologies are introduced from three aspects, i.e., ToA-
based positioning, TDoA-based positioning, and CSI-based positioning. Section
III establishes the system model and formulates the problem, where RSS-based
positioning model and Kalman filtering model are detailed. Section IV gives the
empirical model-based indoor positioning scheme with WiFi, where the collection
and process steps of RSS data are presented. In section V, the theoretical analysis
for WiFi-based indoor communication is given, where the derivations of wireless
channels are detailed from SISO, and OFDM-based MIMO scenarios respectively.
The numerical experiments are conducted in Section VI, where indoor position-
ing performance is evaluated with numerical results, and indoor communication
function is verified in theory. Finally, a brief conclusion is given to summarize the
whole paper in Section VII.

2.2 Typical indoor positioning technology

2.2.1 ToA-based indoor positioning

The Round-Trip Time (RTT) refers to the time between the transmitter and
the receiver. With the help pf RTT, the distance between the transmitter and
the receiver can be obtained by multiplying half of RTT and the signal prop-
agation speed. Fig. 2.1. shows the principle of Time of Arrival (ToA)-based
positioning. As shown in Fig. 2.1., MP indicates the object’s position to be
determined, AP1, AP2, and AP3 indicate three access points respectively. Ac-
cording to the measured RTT value, the values of d1, d2, and d3 can be cal-
culated. Denote the positioning information of AP1, AP2, AP3, and MP as
AP1(x1, y1), AP2(x2, y2), AP3(x3, y3),MP (x, y) respectively. Hence, the position
of MP can be solved by combining the following equation:
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(x− x1)
2 + (y − y1)

2 = d21
(x− x2)

2 + (y − y2)
2 = d22

(x− x3)
2 + (y − y3)

2 = d23

(2.1)

Figure 2.1: Principle of ToA -based positioning.

Moreover, it should be noted that despite the ToA-based positioning approach
is with simple operation, and needs no complex transmitting and receiving equip-
ment, it still faces some challenges, such as low positioning accuracy, high posi-
tioning error, and strict requirement time synchronization for the transmitter and
receiver.

2.2.2 TDoA-based indoor positioning
In the Time Difference of Arrival (TDOA) scheme, the node to be located

directly sends two different signals to the reference node that has been set in ad-
vance. Compared with ToA-based positioning scheme, there is no need to perform
strict time synchro nization on the transmitting and receiving end, and only the
arrival time to the reference node for the two different signals needs to be mea-
sured. At this time, the distance between the transmitter and the receiver can
be obtained by multiplying the half difference time and the signal’s propagation
speed. Fig. 2.2 depicts the principle of TDoA-based positioning technology. As
shown in Fig. 2.2, MP indicates the object’s position to be estimated. AP1, AP2

and AP3 indicate three access points with known position information. Hence, the
three access points can make up a hyperbolic line with two random access points
as focus. Since MP must be inside a triangle formed by AP1, AP2 and AP3, the
position of MP can be derived by solving the intersection of the three hyperbolic
lines.

In addition, the advantage of TDoA -based positioning is that there is no need
for strict time synchronization, and the hardware equipment at the receiving end
is simple. However, its limitation is that the transmitter needs to be able to send
two different signals.
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Figure 2.2: Principle of TDoA -based positioning.

2.2.3 CSI-based indoor positioning
Due to the time variability of the wireless channel, the multipath effect will

also change with time going by. To depict the characteristic of the wireless channel
model, indicators including the time delay, frequency attenuation, and Doppler
frequency shift generated on all paths, are adopted to establish the wireless chan-
nel model, which is further represented by the Channel Impulse Response (CIR)
function. When the spectrum of the received and transmitted signals is known, the
Channel Frequency Response (CFR) which reflects the multipath characteristics
of the channel can be calculated. Then, based on the Inverse Fourier Transform
(IFT) approach, the CIR can be calculated, where Channel State Information
(CSI) is the sample version of CIR/CFR under one specific transmission protocol.

To be specific, in the CSI-based indoor positioning scene, according to the sig-
nal attenuation during propagation, the channel model for signal propagation can
be established. After combining the environmental factors in different scenarios,
the position information of the target point can be estimated through related op-
erations. In summary, the advantage of CSI-based indoor positioning is that the
multipath propagation of signals can be better solved and characterized. However,
the complex mathematical model and workload of signal processing also hinder
the implement of this scheme.

2.3 System model and problem formulation
2.3.1 RSS-based positioning model

In the RSS-based positioning scheme, the premise is to establish the finger-
printing database of the WiFi signal, where the RSS value can be related to the
geometry position. Then, for the target object to be located, we only need to
measure the RSS value, and compare such value with the fingerprinting database
to estimate the position by the matching algorithm. Specifically, in the indoor
environment, the sum of multipath signals can be expressed as:

V =
N∑
i=1

|Vi| e−jθit (2.2)
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Where |Vi| and |θi| represent the amplitude and phase of the ith path’s signal,
and N is the total number of paths. At this time, the RSS value can be calculated
as:

RSSI = 20 log10 |V | (2.3)

Without loss of generality, on the one hand, when the target object is within
the plane of two dimensions, at least three access points, i.e., anchor points, with
known position need to be placed in advance. On the other hand, if the target
locates at the space of three dimensions, there are at least four access points with
known position deployed in the indoor environment [25].

2.3.2 Kalman Filtering Algorithm
In the wireless communication system, the Kalman filtering algorithm can

reduce the errors resulted from the environment noise. As far as the Kalman
filtering algorithm is concerned, based on the measured value in the current data
and the predicted value and error at the previous moment, it can calculate the
current optimal amount, and predict the data value at the next moment. It should
be noted that the error is included in the calculation process, which is specifically
divided into prediction error and measurement error, i.e., noise. Besides, the
errors exist independently and are not always affected by data measurement. To
be specific, the general form of the Kalman filtering algorithm is detailed as the
following five steps.

Step1: One step prediction equation of state:

x̂−
k = Ax̂k−1 +Buk−1 (2.4)

Step2: One-step prediction of mean square error:

P−
k = APk−1A

T +Q (2.5)

Step3: Filter gain equation (weight):

Hk =
P−
k HT

HP−
k HT +R

(2.6)

Step4: Filter estimation equation (optimal value):

x̂k = x̂−
k +Kk

(
Zk −Hx̂−

k

)
(2.7)

Step5: Filter the mean square error update matrix:

Pk = (I−KkH)P−
k (2.8)

where x̂k−1, x̂k respectively represent the posterior state estimates at time k−1
and k; x̂−

k represent the prior state estimates at time k; Pk represent the posterior
estimate covariance at k; P−

k represent the prior estimate covariance at k; H
is the transformation matrix from state variables to observations; Zk represents
the measured value; Kk represents the filter gain matrix; A represents the state
transition matrix; Q represents the covariance of the system excitation process; R
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2.4. EMPIRICAL MODEL-BASED INDOOR POSITIONING WITH WIFI

represents the measurement noise covariance, and B represents the matrix that
converts the input to the state.

2.3.3 Problem formulation
Based on the above established models and analysis, in the indoor environment,

the goal of this paper is to minimize the positioning error with less implementa-
tion cost, which is based on the RSS value of the WiFi signal, and maintain the
communication function according to the WiFi signal’s CSI information at the
same time.

2.4 Empirical model-based indoor positioning with
WiFi

2.4.1 Basic idea
In this section, to realize the indoor positioning with WiFi signal’s RSS value,

one empirical model-based positioning scheme is put forward. Specifically, we
firstly determine the indoor environment for RSS data collection. Then, af-
ter Gaussian filtering and Kalman filtering, linear coding of the original data
is adopted to improve the reliability of the data. Finally, we use the processed
RSS data to construct the empirical model, where the least square method is used
to obtain the optimal positioning model.

2.4.2 Data collection
To meet the needs of minimum positioning accuracy, the indoor environment

should be divided accordingly, where the size of the grid points can directly influ-
ence the positioning accuracy. As is known that two-dimensional plane positioning
technology requires three access nodes, and three border nodes are selected as ac-
cess nodes in the grid. At each grid point, we measure and record the grid’s RSS
values, which are from three access nodes in turn. Each grid point is measured
100 times to eliminate the influence of measurement errors on the data.

2.4.3 Data processing
There are two main steps in the data processing stage. To be specific, at

first, the collected RSS data is processed with the Gaussian and Kalman double
filtering operations. Then, we perform linear coding operation on the filtered data,
by which the influence brought by the equipment difference can be eliminated.

2.4.4 Curve fitting-based empirical model
In this subsection, the curve fitting-based empirical model is adopted to re-

alize the RSS-based indoor positioning. In general, three major operations are
performed by the following steps:

Step1：Construct appropriate empirical models (i.e., Gaussian fit, polynomial
fit, and double exponential fit);
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Step2：Adopt the least squares to perform the fit test;
Step3：Add weight to the established empirical model, which can improve the

reliability of the data.
Mathematically, the above illustrations can be further expressed as the follow-

ing four steps:
Step1：Deploy M access nodes in the indoor environment, and divide the

measurement site into N grid points. Hence, there are M sets of raw RSS data,
i.e.,

A =

 A1
...

AM

 =

 (x1, y1,RSSA1(1)) · · · (xN , yN ,RSSAN(N))
... . . . ...

(x1, y1,RSSAM(1)) · · · (xN , yN ,RSSAM(N))

 (2.9)

Step2：After performing the double filtering, linear coding and other signal
processing operations, the RSS data can be denoted as:

A′ = F · · ·C · · ·A (2.10)

Where F is the filtering process, and C represents the linear encoding process.
Step3：Establish the relationship between the processed RSS data and the

geometry position of the measured grid points, which is expressed as:

Y =

 RSSA1
...

RSSAM

 = g

 (x1, y1) · · · (xN , yN)
... . . . ...

(x1, y1) · · · (xN , yN)

 (2.11)

Among them, g represents the mapping relationship of functions.
Step4：Determine the weighting coefficient of each RSS function, mathemati-

cally,

(xi, yi) = K · g−1[Y] (2.12)

where K is a matrix of weighting coefficients, and

K =

 k1
...
km


ki =

RSSi(i)∑n
j=1 RSSj(j)

(2.13)

2.5 Theoretical analysis for WiFi-based indoor
communication

In this section, we use theoretical analysis to derive the mathematical expres-
sion of the indoor wireless channel transmission function. Besides, we also optimize
the derived transmission function by considering the noise and inter-channel ef-
fects in theory. At last, a more applicable transmission function model is derived
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in the mathematical form.

2.5.1 Wireless channel modeling in SISO scenario

Figure 2.3: Wireless channel model of SISO scenario.

As shown in Fig. 2.3, the wireless channel model of SISO scenario is presented.
When there are n paths in the wireless channel, the expression of the CIR function
h(t) can be further written as:

h(t) = [α1, α2, α3 · · ·αn] ·

 δ (t− τ1) 0
. . .

0 δ (t− τn)


·
[
e−j2πfqqt , e−j2πfqd t, e−j2πfϕjt , · · · e−j2πfϕnt

]
= α · δ · fd

(2.14)

where the matrix α represents the fading, the matrix δ means the delay, and
the matrix fd represents the Doppler frequency shift generated on the propagation
path.

2.5.2 Wireless channel modeling in OFDM-based MIMO
scenario

Multiple orthogonal subcarrier signals are used in the Orthogonal Frequency
Division Multiplexing (OFDM) technology, where the data is divided into several
sub-data streams, thereby reducing the transmission rate of the sub-data streams.
Then, the divided data is utilized to modulate several carriers respectively, which
is essentially a frequency division multiplexing technology. In summary, OFDM
can effectively resist the effects of multipath.

Assume that the input signal is x(t), after analog-to-digital conversion, x(n)
is obtained. Specifically, when the number of subcarriers is N , after serial-to-
parallel transformation, a set of sequences with the same number of subcarriers
(N) is obtained, i.e., x1(n), x2(n), x3(n)...xN(n). After the carrier modulation
operation (which is performed by IFFT in OFDM), the data is sent to the wireless
channel. Since there are many multipaths of the wireless channel, M is selected as
the main object of the channel modeling (the energy proportion of these M paths
should reach more than 80% of the total energy). At this time, the attenuate and
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delay of OFDM symbols is performed by the M paths the accordingly. Finally, the
signal is sampled at the receiving end to obtain various sets of CSI values, where
CSI values contains the corresponding phase and amplitude information of each
subcarrier. Mathematically,

x(t) A/D→ {

x1(n)
x2(n)
x3(n)

...
xN(n)

wireless channel→ {

CSI1 : α1e
j2π(f1+τ1), α2e

j2π(f1+τ2), · · ·αMej2π(f1+τM )

CSI2 : α1e
j2π(f2+τ1), α2e

j2π(f2+τ2), · · ·αMej2π(f2+τM )

CSI3 : α1e
j2π(f3+τ1), α2e

j2π(f3+τ2), · · ·αMej2π(f3+τM )

...
CSIM : α1e

j2π(fM+τ1), α2e
j2π(fM+τ2), · · ·αMej2π(fM+τM )

(2.15)
In addition, the above process can be further expressed as:

[X · S] ∗ [α ·H] = Y (2.16)
where the * sign indicates a convolution operation, X represents an original

signal, S means a serial-to-parallel transformation, α is fading on each path, and
system transfer function is denoted by H.

Figure 2.4: Wireless channel model of MIMO.

As shown in Fig. 2.4, in a MIMO system. When the the ith antenna in the
transmitting end is selected to send the data, and the the jth antenna is in charge
of receiving signals in the receiving end. At this time, the state of sending and
receiving can be viewed as the process of using OFDM technology under the SISO
condition. When p transmitting antennas and q receiving antennas are adopted,
the expression of the sending signal is:

X(t) =
[
xT1 (t), xT2 (t), xT3 (t) · · · xTp (t)

]T (2.17)
The expression of the received signal is:

Y(t) =
[
yT1 (t), yT2 (t), yT3 (t) · · · yTq (t)

]T (2.18)
Hence, the CSI at this time can be expressed as follows:

Y(t) =
[
yT1 (t), yT2 (t), yT3 (t) · · · yTq (t)

]T (2.19)
where hpq is a complex number representing the amplitude and phase of the

subcarriers in the antenna stream. Besides, the above process can also be expressed
in the matrix form as:
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H (fk) =


h11 h12 · · · h1q

h21 h22 · · · h2q

· · · · · · · · · · · ·
hp1 hp2 hpq

 (2.20)

In summary, when that the ith antenna transmits data and the jth antenna
receives information. After the above analysis, the system transfer functions of
LOS and several other non-LOS paths can be obtained. Under the premise of
transmitting signals at a known transmitting end, by performing convolving the
transmitting signal with the transmission function, the received signal can be
obtained.

2.6 Evaluation results and performance analysis
2.6.1 Experiment settings

Figure 2.5: The interface of different signal RSS value.

The RSS-based indoor positioning experiment is conducted in the aisle, third
floor, Research Building, University of Aizu. Besides, the experimental mobile
device is the smartphone with android [26]. Fig. 2.5 shows the measurement of
different signal’s RSS values, where the interface is the screenshot of smartphone
application named WiFi ANALYSIS ASSISTANT, and the deployment of the
access points is shown in Fig. 2.6

Figure 2.6: The deployment of the access points.
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2.6.2 Indoor positioning performance evaluation with nu-
merical results

After Gaussian filtering and Kalman filtering processing, the position of each
point in the aisle is represented by two-dimensional coordinates, and the best RSS
value corresponding to each point is obtained.

Table 2.2: RSS value of different position.

(x, y) (m) (RSSO, RSSA,RSSB)
(-dBm)

(X, Y)
(m)

(RSSO, RSSA,RSSB)
(-dBm)

(0.00, 0.00) (-34, -74, -82) (0.86, 0.00) (-66, -76, -63)
(0.00, 0.60) (-57, -72, -79) (0.86, 0.60) (-67, -71, -65)
(0.00, 1.20) (-69, 70, -78) (0.86, 1.20) (-74, -70, -66)
(0.00, 1.80) (-78, -62, -75) (0.86, 1.80) (-76, -66, -68)
(0.00, 2.40) (-81, -25, -72) (0.86, 2.40) (-77, -64, -73)
(0.43, 0.00) (-61, -73, -77) (1.29, 0.00) (-70, -75, -35)
(0.43, 0.60) (-63, -68, -76) (1.29, 0.60) (-71, -74, -48)
(0.43, 1.20) (-65, -75, -75) (1.29, 1.20) (-72, -78, -70)
(0.43, 1.80) (-73, -69, -73) (1.29, 1.80) (-75, -77, -66)
(0.43, 2.40) (-71, -58, -70) (1.29, 2.40) (-80, -85, -77)

At this time, after adopting the curve fitting-based approach, we can draw the
three-dimensional images of the coordinates and the RSS values of each measured
point separately. For ease of presentation, we have taken the absolute value of the
signal strength.

Figure 2.7: Relation between RSSO and position.

It can be seen from Fig. 2.7, Fig. 2.8 and Fig. 2.9 that after the fitting
process, the three graphs respectively represent the functions between the RSS of
access point O, RSS of access point A, RSS of access point B, and the geometry
coordinates (x, y) of the plane. To be specific, the upper half of the Figure
shows the three-dimensional relationship, and the lower half shows the top view.
From these results, the closer the signal access points are, the denser it is, which
evaluates the correctness of the proposal.

In the judgment process, the weighted fusion method in data fusion is adopted
for the confidence of the three access points’ RSS values, and the weights of the
three points are set as follows:
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Figure 2.8: Relation between RSSA and position.

Figure 2.9: Relation between RSSB and position.

(
RSSO(O)

RSSO(O) + RSSA(A) + RSSB(B)
,

RSSA(A)

RSSO(O) + RSSA(A) + RSSB(B)
,

RSSB( B)

RO(O) + RSSA(A) + RSSB(B)

)
= (K1, K2, K3) =

(
34

94
,
25

94
,
35

94

)
= (0.36, 0.27, 0.37)

(2.21)
where the RSS values of the RSSO(O), RSSA(A), RSSB(B) corresponds to

the three access points measured at three access points of O, A, and B in order.
In order to prove the effectiveness of the proposed scheme, we use the position-

ing error indicator to make comparison experiment with the traditional WKNN
algorithm and the traditional joint probability algorithm here. The expression of
the positioning error is:

pos err =
√

(x− x0)2 + (y − y0)
2 (2.22)

where (x, y) represents the estimated coordinates of the object, and (x0, y0)
represents the actual coordinates of the object.

After estimating the position of the object 100 times, the accuracy comparison
results of several traditional positioning algorithms are as follows:

1. The positioning error of the traditional WKNN algorithm is 0.37m.
2. The positioning error of the traditional joint probability algorithm is 0.53m.
3. The positioning error of the WKNN algorithm based on the joint probability

class is 0.48m.
4. The positioning error of our algorithm is 0.25m.
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2.6.3 Indoor communication function verification in theory
In this subsection, we verify the indoor communication function in theory. At

first, the number of multipath channels is set as 6, the modulation method is
BPSK modulation, and the ambient noise is additive white Gaussian noise. The
detailed derivation process is listed as following steps.

Step1: The analog signal after digital-to-analog conversion can be transformed
into signal X, which is denoted as:

X =

 a1 · · · f1
... . . . ...
a6 · · · f6

 (2.23)

Step 2: After BPSK modulation, the signal can be further expressed as:

XM =

 a′1 · · · f ′
1

... . . . ...
a′6 · · · f ′

6

 (2.24)

Step 3: When the data is transmitted through wireless multipath channel, it
can be denoted as:

C = (CSI1, · · ·CSI6)T =

 a′1 ·m1 · ejwt1 . . . a′6 ·m6 · ejwt1

... . . . ...
f ′
1 ·m1 · ejwt1 . . . f ′

6 ·m6 · ejwt1

 (2.25)

where the model of the wireless multipath channel is:

(H1 · · ·H6) =
(
m1 · ejwt1 · · ·m6 · ejwt6

)
(2.26)

h(t) =
6∑

i=1

miδ (t− ti)⇒ H(w) =
6∑

i=1

mie
jwti (2.27)

Step4: Denote H as the channel matrix,

H =

 H1 0
. . .

0 H6

 (2.28)

Then, we have

CT = XM ·H (2.29)

which can also be expressed as:

H = [XM ]−1 · CT (2.30)

Based on Equation 28, the multipath transmission function in the wireless
channel can be obtained. In addition, under the AWGN conditions, the coefficient
matrix K is introduced to improve the accuracy and reliability of the transmission

18



2.7. CONCLUSION AND FUTURE WORK

function. Specifically, the effect of introducing the coefficient matrix K mainly
focuses on twofold: 1) Reduce the effect on the system transfer function after
addictive Gaussian white noise; 2) Reduce the mutual influence between adjacent
channels. At this time, denote the coefficient matrix K as:

K =

 k11 · · · k16
... . . . ...
k61 · · · k66

 (2.31)

When taking the addictive noise and the influence between adjacent channels
into consideration, XM becomes X ′

M , mathematically,

X ′
M −XM =

 σa1 . . . σf1
... . . . ...

σa6 · · · σf6

 (2.32)

Hence, the following Equation holds on:{
XM ·H = CT

X ′
M ·K ·H = C ′T (2.33)

Next, we can use the minimum mean square error criterion to calculate the
coefficient matrix K, and figure out K to minimize the following equation,∣∣C ′T − CT

∣∣2 = |X ′
M ·K ·H −XM ·H|2

= |X ′
M ·K −XM |2 · |H|2

⇔

∣∣∣∣∣∣∣
 k11 · · · k16

... . . . ...
k61 · · · k66

 ·
 a′1 + σa1 · · · f ′

1 + σf1
... . . . ...

a′6 + σa6 · · · f ′
6 + σf6

−
 a′1 · · · f ′

1
... . . . ...
a′6 · · · f ′

6


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
6∑

i,j=1

Kij ·

 6∑
A′={a′...f}

A′
i + σAi

− 6∑
A′={a′···f}

A′
i

∣∣∣∣∣∣
2

At last, the transmission function Ĥ, which represents the communication
function of the wireless communication system, can be determined as:

Ĥ = K ·H = K ·X−1
M · C

T (2.34)

2.7 Conclusion and future work
The method for realizing indoor positioning and communication based on WiFi

signals is of practical significance, and it is not difficult to implement and the cost
is low. This paper proposes a new algorithm for indoor target positioning and
communication integration based on WiFi signals. The RSS and CSI values in
the WiFi signal are used to achieve indoor target positioning respectively, and
the derived indoor wireless channel system transfer function is used to achieve the
purpose of communication. In the positioning part based on the RSS value, the
accuracy of the algorithm can reach 0.25m, which can meet the indoor positioning
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requirements under certain conditions. In the communication part based on the
CSI value, the transmission function of the indoor wireless channel is creatively
described using the CSI value. The transmission function of the system is opti-
mized under the conditions of noise and interference between adjacent channels.
Finally, the goal of integration of positioning and communication based on WiFi
signal level was achieved for the first time. In the next work, we need to further
improve this algorithm, taking into account factors such as the movement of people
indoors, the location of access points, and the transmission power of WiFi signals,
so that our algorithm is more accurate, and the model we build is more complete
to meet the characteristics of indoor complex wireless channel environment.

20



Chapter 3

Device-Free Localization via
Sparse Coding with
Log-Regularizer

3.1 Introduction
Wireless localization has been acknowledged as a critically important element

of smart city. Many current localization techniques, e.g., global positioning system
(GPS) [27] or radio frequency identification (RFID) [28], are device-based which
means the target must be equipped with an electronic device (e.g., smart phone or
tag). However, for many practical applications, such as intruder detection/track-
ing in security safeguards, aging monitoring at a smart home, patient tracking in
a hospital, etc., the target may not expect to be equipped with extra devices [29].

Therefore, device-free localization (DFL) [30], as an emerging technology, has
attracted extensive interest recent years because it locates targets who do not
equip with any attached devices in wireless sensor networks [31, 32]. As shown
in Fig. 3.1, in the Internet-of-Things (IoT) [33–35] baesd DFL system, wire-
less sensors, termed as anchor points (AP), are used to collect location-data by
transmitting and receiving signals collaboratively. These transmitting-receiving
correspondences, i.e., signal patterns induced by the targets, are different when
the target appears at different locations. Therefore, the target’s location can be
known by analyzing the variations of radio frequency (RF) signals.

Since sensors generate the location-data with a pattern, i.e. feature, which is
specific according to target’s location, the sensing data with pattern information
can be collected for location estimation. Thus, if the monitoring area is divided
into a number of grids, each grid can be viewed as a potential class. From this
point of view, many previous studies report that DFL problem can be transformed
into a classification problem. The localization problem is consequently solved by
many popular classification methods, for example, deep neural network (DNN)
with auto-encoder [36], convolutional neural network (CNN) [29] and so on.

For such various classification methods, sparse coding [37] is famous for many
distinctive advantages, e.g., simple decision rule, high accuracy and high efficiency
in DFL field. Particularly, since the number of targets is generally far smaller than
the grid number of detection area, localization problem can be further converted to
a sparse-representation-classification (SRC) problem that can be effectively solved
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Figure 3.1: Illustration of a device-free localization (DFL) system applied to in-
trusion detection and tracking in security safeguard.

by sparse coding algorithm [38, 39].
It is worth noting that, for an SRC problem, the objective function usually

consists of loss term and regularization term. Employing different regularization
terms lead to different sparse-coding algorithms. Among those regularizers [40–
42], the most famous ones are l0 norm and l1 norm which have been popularly
adopted in the DFL field [37,38,43]. Generally, a (sparse) solution can be obtained
by executing sparse-coding algorithm. Since the element index of solution are
associated with the reference-point (RP) ID of DFL area, the location of the
target is estimated by selecting the maximum element-value of a sparse solution
when l0 norm or l1 norm is applied.

For the localization experiments in most of existing studies, the location-based
signals are usually collected in a relatively clean and static experimental environ-
ment [1]. This leads their methods to achieving an accurate localization result.
However, in practical scenarios, the detection environment may be very challeng-
ing, due to the vibration of sensors caused by wind, electromagnetic interference
caused by surrounding smart phone or other wireless devices, etc. These nega-
tive effects result in the DFL data being collected with a certain degree of noise.
This means DFL data is possible to be polluted, which is a serious negative condi-
tion for locating targets. In addition, for the privacy-preservation need, a common
method is adding Gaussian noise in the original DFL data to keep network privacy
from stealing by attackers. Thus, a robust algorithm is significant for locating the
target in extreme environments or emergency scenarios.

Hence, to solve the aforementioned DFL problems, in this paper, we exploit
a new log-regularizer in the objective function for classification. With taking the
distinctive ability of log-regularizer to measure sparsity, the proposed approach is
expected to achieve an accurate localization process with robust performance in
the challenging environments. In addition, the objective function is not straight-
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3.2. PROBLEM FORMULATION

forwardly solvable because the log-regularizer is non-differentiable in some places.
For overcoming this challenge, we exploit the proximal operator method to trans-
form the non-smooth optimization problem, and then solve it by our proposed
algorithm. Finally, through the proposed sparse coding with log-regularizer (SC-
LR) algorithm, a sparse solution can be obtained for locating the target, which
is expected to achieve more accurate localization results and a robust localization
performance for DFL.

The major contributions of this article are summarized as follows:
• We exploit the log-regularizer to extend the applications of sparse-representation-

based frameworks for DFL.

• We propose an accurate and robust DFL algorithm. Particularly, we exploit
the effective optimization method with the proximal operator by transform-
ing the original objective function.

• we validate the performance of the proposed approach on the real-world
dataset of outdoor DFL, especially in severe noisy conditions.

The remainder of this paper is organized as follows. Section 3.2 introduces
the system model and problem formulation. Section 3.3 introduce the objective
function and the proposed algorithm. Section 3.4 conducts the performance eval-
uation. Finally, Section 3.5 shows the conclusions of this study.

3.2 Problem Formulation
3.2.1 The description of DFL problem

As shown in Fig. 3.2, a number of wireless devices is deployed around the DFL
area. These wireless devices are normally called anchor points (APs), which can
communicate with each other. Additionally, N is defined as the number of APs in
the DFL system. Here, when there is no target in the DFL area, let Rvacant

i,j denote
the measurement of received signal strength (RSS) that is transmitted from the
j-th AP to the i-th AP. Rtarget

i,j denotes the measurement of RSS collected when
there exit a target. Then, let ∆Ri,j denote the measurement variation between
Rtarget

i,j and Rvacant
i,j as

∆Ri,j = Rtarget
i,j −Rvacant

i,j (3.1)
Then an RSS matrix ∆R, considering all D×D pairs, can be established as

follows:

∆R =


∆R1,1 ∆R1,2 · · · ∆R1,N

∆R2,1 ∆R2,2 · · · ∆R2,N
... ... . . . ...

∆RN,1 ∆RN,2 · · · ∆RN,N

 (3.2)

As shown in Fig. 3.2, the target absorbs and scatters some of the transmitted
signals in the DFL area. When the target is in different locations, RSS measure-
ments of the affected links are different. Therefore, the measurement variation
could be used to estimate the target’s location.
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Figure 3.2: Illustration of a device-free localization (DFL) system model.

3.2.2 Sparse representation model
3.2.2.1 Dataset construction

There are two steps for dataset construction:
Step 1 is for building up a sensing matrix, or called dictionary. Discrete

the DFL area into many small grids, as shown in Fig. 3.2, assuming the to-
tal number of them is C. Each grid is regarded as one location at which we
perform a number of trials. Therefore, all the potential localization are divided
into C classes in this DFL problem. For each class c = 1, 2, · · · , C, we perform
experiments of l = 1, · · · , L trials with a target at each grid. After data collec-
tion, for each trial, we can get an matrix data shown as ∆Rcl ∈ RN×N . Then
convert the matrix ∆Rcl to a variation vector dcl by merging all the columns
into the vector. Finally, stacking all the variation vectors together, we can ob-
tain the sensing matrix with location information for all grids and trials as D =
[d11,d12, · · ·d1L, · · · ,dc1, · · · ,dcL, · · · ,dC1, · · · ,dCL]. This sensing matrix D is
normally termed as dictionary with a size of m× n, where m = N2, n = CL.

Step 2 is for processing the test signal. When a testing target is put into the
DFL area, the same procedure is taken for processing the observation signal. we
can obtain the vector of observation signal as y ∈ Rm.

3.2.2.2 Sparse representation of testing signal

According to the last part 3.2.2.1, in the testing step, when a target enters
the DFL area, a (testing) observation signal y will be obtained. Suppose that
the target is, approximately, at the p-th grid, it means that target belongs to the
p-th class. If sufficient samples are given, i.e. conducting enough trials at the p-th
grid in Step 1 of constructing dictionary, the testing signal y can be represented
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3.3. PROPOSED ALGORITHMS

with the corresponding sample-set of dictionary D. The representation is given
as follows:

y = Dα+ e

=
C∑
c=1

L∑
l=1

dclαcl + e

≈
L∑
l=1

dplαpl

for 1 < p < C,

(3.3)

where α = [0 · · · αp1 · · ·αpL · · · 0]T ∈ Rn is a vector comprised of coefficients,
αpj ∈ R (for 1 < j < L) are the non-zero coefficients belonging to the p-th class
and e indicates the noise.

In summary, due to the sparse nature of DFL that the number of targets’
locations is far less than all grids of the monitoring area, the linear representation
of observation signal y can be sparsely represented in terms of n basis samples of
the dictionary D. From this point of view, (3.3) becomes a sparse representation
problem for target localization, where α is corresponding to a sparse coefficient
vector. In the vector of α, nonzero elements are associated to targets’ locations.
To make it more clear, we present the entire model in Fig. 3.3. It is worthy of
note that one target may have several corresponding components in α.

3.3 Proposed Algorithms
According to the above description, if the sparse coefficient vector α is ob-

tained, the location of the target can be obtained. Hence, the DFL problem is
transformed to computing the sparse vector. As mentioned previous, in practical
applications, a robust DFL algorithm is necessary for working in the extreme en-
vironments. In this section, we introduce the proposed algorithm that it used to
solve the DFL problem.

3.3.1 Sparse coding
Sparse coding is a process of computing the sparse solution based on the ob-

servation signal y and the pre-built dictionary D. In practice, it is essential to
employ a large number of trials to build the dictionary. Thereby, the total number
of basis samples n is larger than m for the dictionary as shown in Fig. 3.3. The
above mentioned condition leads to (3.3) a undetermined system, which means
the solution is not unique and the problem is ill-posed.

However, by selecting the sparsest solution, the problem can be converted into
well-posed one. We can find the sparsest solution by solving the optimization
problem with a sparsity regularization.

3.3.2 objective function
For solving the DFL problem in challenging environment, in this article, we

proposed a new sparsity regularizer and called it as log-regularizer. The objective
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Figure 3.3: Illustration of the sparse model and the procedure of sparse coding for
target localization.

function is given as follows:

J(α) : α∗ = argmin
α

1

2
∥y −Dα∥22 + λ

∑
i

log(1 + ξ|αi|) (3.4)

where the first term ∥ · ∥22 is a measure of fitting error between observation signal
and estimated signal; the second term is sparsity regularizer; λ is a scalable param-
eter which trades off the fitting error and the sparsity; ξ is a scalable parameter
about the regularizer.

3.3.3 Sparse coding via the proximal operator

Since (3.4) is a non-smooth optimization problem, sub-gradient method is nor-
mally applied. If let the derivative of (3.4) to zero, we get an α∗,

α∗ = (DTD + λ
∂(∥α∥2,1)

∂α
)−1DTy (3.5)
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However, calculating (3.5) with sub-gradient method is not easy. The reason
is, solving (DTD)−1 will result in a high computational cost if dictionary D is
with very large dimensions. Also, (DTD)−1 may not be invertible.

In this section, to well solve this problem, we exploit the proximal operator
method to search the sparse solution. Proximal operator is efficient for solving
the non-smooth and non-differentiable optimization problem. If different regu-
larization term is adopted in a objective function, there will be a corresponding
proximal operator derived. Regarding the case of (3.4), a general formula is given
as follows,

P (v) : argmin
v

η∥u− v∥22 + γ
∑
i

log(1 + ξ|νi|) (3.6)

Coinciding with (3.6), we need make a modification to (4). Through a trans-
formation, let us consider a simpler one than (3.4),

P (α) : argmin
α

µ

2
∥b−α∥22 + λ

∑
i

log(1 + ξ|αi|) + K (3.7)

where the term K does not depend on α, it is processed as a constant; µ, as
a scaling parameter, is fixed with a value larger than the largest eigenvalue of
(DTD), e.g., 1.02 × the largest eigenvalue; b is a intermediate variable that is
given as follows,

b = α(k) +
1

µ
DT (y −Dα(k)) (3.8)

α(k+1) = proxlog(b)

= proxlog(α(k) +
1

µ
DT (y −Dα(k)))

(3.9)

where α(0) = 0; proxlog(·) is the proximal operator，corresponding to the log-
regularizer, given by

prox∥·∥log(bi) =



1

2ξ

(
(ξbi + 1)−

√
(abi − 1)2 − 2λξ2

)
,

bi < −
λξ

2
1

2ξ

(
(ξbi − 1)−

√
(abi + 1)2 − 2λξ2

)
,

bi >
λξ

2
0, otherwise

(3.10)

where bi is the i-th element of vector b.
The optimization process mainly updates parameters via (3.8)-(3.10) at each

iteration. Until reach the convergence or the stop rule is met, the optimal solution
α∗ is then fixed.

Further, we estimate target’s locations according to the optimal sparse solution
α∗. Since the elements ofα∗ are associated with the reference grid of monitoring
area, the related grid can be estimated as target’s location. For example, for a
monitoring area with the total C grids, the target is located at the φ-th grid,
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Algorithm 1 Sparse Coding with Log-Regularizer (SC-LR)
Require: y ∈ Rm, D ∈ Rm×n, µ, λ, α0 = 0
Ensure: φ or {φ1, . . ., φS}

1: for k = 0 to maxiteration do
2: b← α(k) + 1

µ
DT (y −Dα(k))

3: α(k+1) ← prox∥·∥log(b)
4: Until convergence or reach the maxiteration number.
5: end for
6: α∗ ← α(k+1)

7: Target is located at the φ-th grid according to (3.11)
8: Return φ

where φ is given by

φ = argmax
φ
{α∗

11, · · · , α∗
φi, · · · , α∗

CL} (3.11)

Since the proposed algorithm is with the log-regularizer, it is named sparse
coding with log-regularizer (SC-LR). The corresponding pseudo-code is shown in
Algorithm 1.

3.4 Performance Evaluation
3.4.1 Experimental settings

We use a real-world dataset from the SPAN Lab of University of Utah [1]. As
shown in Fig. 3.4, the experiment setup is as follows. The monitoring area is
with a 21x21 foot square and is divided into 36 grids. 28 wireless (TelosB) sensor
nodes are employed in this system and work in the 2.4 GHz frequency band. The
interval is 3 feet between two neighbour nodes and all the nodes are placed at 3
feet off the ground.

The base station is refitted with a TelosB node which listens to the whole
network traffic. It collects the real-time data from the other sensors and deliveries
them to the computer by a USB port. At each grid, 30 RSS samples are collected
with a very short time-interval.

In our following experiments, the samples collected at each grid are partitioned
into two parts, of which 25 samples are for constructing dictionary while the others
are used as test samples. The dimension dictionary is with 784× 900 while a test
sample is with 784× 1. All the experiments are performed in MATLAB® R2019a
and executed on a computer of Windows10 64-bit with 32GB RAM and IntelR⃝
CoreTM i7 CPU.

3.4.2 Compared methods
To present the distinctive performance of the proposed scheme, several machine-

learning methods that perform on the same dataset are compared in the following
contents. Among these compared algorithms, Autoencoder (AE), deep CNN and
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3.4. PERFORMANCE EVALUATION

Figure 3.4: Experimental setup of DFL system illustrated as the SPAN Lab of
University of Utah [1].

Convolutional Auto-Encoder (CAE) are state-of-the-art for classification and are
commonly used in DFL field. Additionally, we also compare the performance of
the proposed SC-LR with other two sparse coding algorithms, i.e., Sparse Coding
with Orthogonal Matching Pursuit (SC-OMP) and Sparse Coding with Iterative
Shrinkage-Thresholding Algorithm (SC-ISTA). SC-OMP and SC-ISTA are with ℓ0
and ℓ1 regularization terms, respectively. Both of them are the most famous sparse
constraints for DFL [37,38,43,44]. According to the experiment setup of [37,38,43],
the original data is used without the preprocess of background elimination.

3.4.3 Other settings and metrics
For a clear presentation on the performance evaluation and comparison, we

employ the localization accuracy as a metric to evaluate the performance of all
algorithms. It means the percentage of the count of correctly estimated samples
to the count of all test samples.

Considering the privacy preservation, we add Gaussian noises in the pure RSS
signals to keep the network privacy from leaking to attackers. In addition, in many
practical scenarios, DFL system may be unavoidably disturbed by the ambient
environment noise. Therefore, the robustness and the signal recovery performance
are very important for localization algorithm. Here, we use signal-to-noise-ratio
(SNR) to measure the signal quality. SNR is with a definition of SNR(dB) =
10 log10(Psignal/Pnoise), where the Psignal and Pnoise denote the signal power and
the noise power, respectively.
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(a) Rtarget (b) Rvacant (c) Signal variation, ∆R

Figure 3.5: Example of data pre-processing by background elimination. Here, the
example is randomly selected in which the target is at the 11 th grid. Note that,
(c) is obtained by signal Rtarget subtracting signal Rvacant.

(a) Noiseless testing signal (b) Noisy testing signal (c) Recovery signal

Figure 3.6: Imaging the noiseless testing signal, noisy testing signal and recovery
results of the proposed SC-LR algorithm. Here, we present an example when the
target is at the 20 th grid of DFL area. The noise level of (b) is with SNR = -10
dB.

3.4.4 Experimental Result and Discussion
3.4.4.1 Data pre-process of background elimination

Since each RSS signal contains many useless signal components that are stronger
than the useful signal variation, this results in an adverse effect for classification.
For example, the base signal of the background is relatively stable, no matter
whether there is an object in the monitoring area or not. Thus, a pre-process of
background elimination is necessary. From Fig. 3.5, we perform the pre-process
via subtracting the background component Rvacant from Rtarget. After this pre-
process, many useless signal components can be eliminated. Therefore, the signal
variation is apparent with a distinctive feature, as shown in Fig. 3.5(c).

3.4.4.2 Localization performance and comparison

Fig. 3.6 shows the images of the noiseless testing signal, noisy testing signal and
recovery results of the proposed SC-LR algorithm. Here, we present the example
when the target is at the 20 th grid of the DFL area. The noise level of Fig. 3.6
(b) is with SNR = -10 dB. Considering the high similarity between the original
signal and the recovery one, it can be concluded that the proposed algorithm has a
strong signal recovery ability. Table 3.1 shows the average localization accuracies
obtained by the previously mentioned approaches. In this table, there are three
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Table 3.1: Comparison of Localization performance

Noisy testing Noisy testing Noisy testing
data (0 dB) data (-5 dB) data (-10 dB)

100% 100% 99.4%
100% 94.0% 51.5%
97.0% 72.7% 30.0%
97.0% 77.9% 40.0%
44.1% 17.1% 13.0%
24.1% 8.0% 3.0%

experimental conditions, including SNR of noisy testing data as 0 dB, -5 dB and
-10 dB. From this table, it can be seen that the proposed SC-LR algorithm shows a
strong robust performance in the heavy noisy environments for target localization.

3.5 Conclusion
For addressing the problem of device-free localization (DFL) via sparse coding

approach, in this paper, we exploit a new log-regularizer in the objective function
for classification. With taking the distinctive ability of log-regularizer to measure
sparsity, the proposed approach has achieved an accurate localization process with
robust performance in the challenging environments.

The experimental results on the real-world dataset show that the proposed
approach demonstrates a superior localization performance to that of other com-
pared DFL approaches, especially when the noise in the environment is serious.
In detail, the SR-LR can achieve a localization accuracy of 100% when SNR of
noisy testing signal is greater than -5 dB. Even when SNR of noisy testing signal
equals -10 dB, it can obtain a localization accuracy of 99.4%, which is sufficiently
accurate for localization.
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Chapter 4

Image Processing-based indoor
device-free localization

4.1 Introduction
Since localization has been a hot research topic from the last decade, a great

number of work has been developed. Especially for outdoor localization, related
positioning techniques are mature such as Global Position System (GPS), Cell
Identification (Cell-ID) and Direction or Angle of Arrival (AOA), which can lo-
cate the target in an accurate and fast manner. However, the current indoor
positioning system cannot achieve the high-precision localization result due to the
complex surrounding environment and dense signal interference. For example, the
traditional GPS cannot be used for localization in a complex building. Since the
GPS signal travels from the satellite, the long-distance leads to the lower–barely
GPS signal. Besides, heterogeneous Internet of Things (IoT) with various com-
munication standards (e.g., WiFi, ZigBee and Bluetooth) coexist in the building,
which will result in severe signal interference. Moreover, the transmission sce-
nario has a high penetration loss when the signal passes through rooms and stairs,
significantly influencing the data quality for localization. As usual, the target
must be equipped with a mobile device for indoor localization, which can receive
and transmit related signals to the corresponding sides for distance measurement.
However, sometimes the target does not carry a mobile device. At this time, the
device-free localization technique rises to the surface, which localizes people with-
out any specific devices or is actively involved in the whole process. As shown
in Fig. 1, device-free localization consists of Wireless Sensor Networks (WSNs),
where a great number of sensors have been deployed in advance for signal collec-
tion and analysis [46, 47]. For example, in the application of intrusion detection,
once a thief gets into the house, the received signal strength indicator (RSSI) of
on-premise sensors will be changed. Subsequently, all the sensing data will be
transmitted back to the server, which aggregates all the RSSI and utilizes some
pre-trained deep learning networks to find out the current position of the thief.
Finally, the administrator will be alerted. Rather than intrusion detection, the
device-free localization also have been applied to fall detection and remote moni-
toring of the elderly, occupancy detection for energy-efficient heating, ventilation,
and air conditioning (HVAC) and lighting [48].

However, the different RSS values cannot directly reflect the position informa-
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tion of target. Furthermore, the surrounding noise interferes with the signal RSS,
deviating the final judgment of location distinction. Hence, we need to transform
RSS values into vectors and adopt some deep learning techniques which can ex-
clude noise inference to detect abnormal features more accurately. A great number
of machine learning-based work have been proposed to solve the device-free local-
ization problem such as the compressive sensing method [49], radio tomographic
imaging (RTI) method [1], an artificial neural network (ANN) method [50] and
convolutional neural network (CNN) method [51]. In the above-mentioned tech-
niques, the CNN-based device-free localization is the most attractive since the
CNN can fastly extract essential features from a cluster of image pixels and re-
move the embedded noise, which is helpful for RSS signal modeling and localization
confirmation.

Although CNN-based device-free localization can find the target in high preci-
sion, some sensors are attacked to the extent that their signal strength values are
tampered with, or some sensors are physically damaged and do not work properly.
This situation can lead to low accuracy and unreliability in the positioning results.
Even worse, the whole system cannot work properly during this period and miss
some critical information. To solve this problem, based on the pre-training con-
cept, we propose a CNN-based attack defense for device-free localization. First,
deep learning techniques are used to transform the localization problem into an
image classification problem. In contrast to traditional algorithms, we design and
simulate a partial sensor attack or dropout scenario and train the neural network
accordingly. This allows the system to function normally and obtain reliable and
relatively accurate localization information even if some sensors are disconnected
or attacked. The experiments and analysis show that our algorithm is more re-
silient to attacks than previous work, and the localization accuracy in the case of
partial sensor failure or attack can be guaranteed. The contribution of this paper
is illustrated as follows:

1. We propose a CNN-based attack defense for device-free localization, which
can defend against sensor dropout and compromised attacks.

2. We utilize the random seed to perturb the training data and generate an
anti-interference device-free localization model in the pre-training stage.

3. The experiment results on a real-world dataset verify that our proposed
scheme can still achieve the accurate localization result in case of potential
attacks.

4.1.1 Organization of this paper

The rest of this paper is organized as follows. Section 2 illustrates the related
works about device-free localization. In Section 3, we formulate the DFL problem
as a classification problem and also devise the BE scheme. Section 4 presents the
algorithm. Section 5 evaluates the performance of our proposal. Finally, this work
is concluded in Section 6.
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Figure 4.1: Traditional device-free localization framework.

4.2 Related work

The concept of device-free localization has been proposed by Youssef et al. [52],
which analyzed dynamic RF signals changed by the object movement in the envi-
ronment and correlate their locations. To achieve better localization performance,
in a real environment, Moussa et al. [53] modelled the localization problem into a
fingerprint identification problem, which was solved by a new algorithm based on
Maximum Likelihood Estimator (MLE) and improved the performance of initial
device-free localization system. Wilson et al. [1] firstly used radio tomographic
imaging to extract the attenuation of RF wavelength when penetrating physical
objects. The proposed method is able to realize the RF attenuation for object
localization. Zhang et al. [54] proposed a new device-free object tracking system
called RASS, which transforms the tracking field into various triangle areas and
multiple channels are used to mitigate noise interference among different nodes.
Seifeldin et al. [55] presented Nuzzer device free localization system, which utilized
RSS variance to measure the number of entities in the target area and find the
exact position of these objects. Based on real-environment data sensing from sur-
roundings, Guo et al. [56] proposed the RSS model, which consists of small-scale
reayleigh enhancement part and large-scale exponential attenuation part. The
experiment results show their proposed framework can solve the unpredictable
device-free localization issue resulted from the multipath interference. Wang et
al. [57] designed a novel BGA framework, which consists of shadowed links and
the prior information in the estimation period. The proposed BGA framework
shows a good performance that tracking error is greatly reduced in the device-free
localization phase. Ciuonzo et al. [58] utilized sensors to measure a random signal
resulted from the distance between transmitter and the receiver, and then sent to
a fusion centre for device-free detection performance improvement. For decentral-
ized device-free detection, Ciuonzo et al. [59] proposed a general version of Rao
test arises from maximization of Rao decision statistics family, which can improve
the previous performance of device-free localization. Sabek et al. [60] transformed
multi-agent device free localization problem into an energy-minimization frame-
work, which can maintain temporal and spatial smoothness and consistency. The
proposed solution can map the localization problem into a binary graph-cut prob-
lem. Moreover, the noise and accuracy are reduced and enhanced by the clustering
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techniques, respectively. Xiao et al. [61] designed a CSI-based passive device-free
localization system called Pilot, which makes use of the features of CSI to monitor
the abnormal information. Especially, the three blocks design can increase the
efficiency of passive device free localization problem. Wu et al. Wu et al. [62] pro-
posed FILA, which is cross-layer method that can achieve the aim of high accurate
indoor localization in WLANs, which includes two parts: CSI-based propagation
model and CSI-based fingerprinting. The FILA is implemented in commodity
802.11 NICs and the experiment evaluates the correctness and feasibility of pro-
posed method. Wang et al. [50] proposed a deep-learning-based indoor fingerprint
framework according to the CSI value. Besides, the offline training and online lo-
calization phases. The experiment result shows the proposed method can achieve
good performance under signal propagation environments.

4.3 Problem Statement

4.3.1 Device-free localization problem illustration

As shown in Fig. 4.1, D wireless sensor nodes which compose of the monitoring
area sense the signal strength from the target and figure out the current position.
Note that all the sensors transmit and receive wireless signals in turn. At the
beginning time, there is no object in the system, so the RSS matrix derived from
the RSS matrix is empty, which can be defined as RSSnull. As we know the
number of wireless sensor is D, the RSS measurement can be computed as D×D.
If the target enters into the measurement area, the total RSS matrix from all the
wireless sensors can be computed as RSStarget. Note that the RSS value from
the ith sensor to the jth sensor can be defined as RSStarget

i,j , whose summation
derives the RSStarget. As we have mentioned, if the target is not in the target
area, the RSStarget will be 0. When the target appears in the detection area, the
surrounding signal transmitted and received by the corresponding sensors will be
greatly influenced. For example, the initial value of 5th sensor is RSSnull

5 will be
changed to RSStarget

5 . Since the feature of RSS value has strong connection with
the target position, the object can be localized by the RSS measurements at the
end of device side. In the following subsections, we will talk more details about
this transformation.

4.3.2 Problem modelling

The target localization problem can be transformed into RSS matrix computa-
tion. From the Fig. 4.1, we firstly collect the signal strength from all the sensors
under two circumstances (e.g., target non-existence and target existence). Note
that the significant components of the signal are extracted by the background
elimination method. Note that the background elimination can make the features
of matrice variation more obvious. The signal variation can be formulated as:
∆RSSi,i = RSStarget

i,j − RSSempty
i,j . After collecting all data from the sensors, the
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RSS matrix can be established as:∆RSS =


∆RSS1,1 ∆RSS1,2 · · · ∆RSS1,D

∆RSS2,1 ∆RSS2,2 · · · ∆RSS2,D

∆RSS3,1 ∆RSS3,2 · · · ∆RSS3,D
... ... . . . ...

∆RSSD,1 ∆RSSD,2 · · · ∆RSSD,D

.
We can observe from the ∆RSS, RSS matrices can reflect the features of each
target position. Once we consider the RSS matrix as the image matrix, we can
transform object localization issue into image identification problem. Especially
the different hot spots derived from the matrices can directly show the variations
of RSS value. The feature image obtained from the RSS matrices also owns the
same patterns for target position recognition. Hence, we can utilize some tradi-
tional image process technique such as CNN and ResNet to figure out the exact
position of target.

4.3.3 Data collection
For easy measurement, we divide the whole sensing area into many small sec-

tions, which can be regarded as a class. T grids compose of T classes for image
identification problem. The training data for target localization can be constructed
as V = [V11, V12..., VTP ], where pmeans that the number of experiment times. Note
that Vs(s = 1, 2, ..., S) is the training dataset.

4.3.4 Potential attack
In this venue, we assume a potential attacker would like to interfere sensing

data collection or crack some normal devices for the entire system. To simulate the
behaviours the adversary, we replace some random RSS value with training data,

which is transformed to ∆RSS ′ =


∆RSS ′

1,1 ∆RSS ′
1,2 · · · ∆RSS ′

1,D

∆RSS ′
2,1 ∆RSS ′

2,2 · · · ∆RSS ′
2,D

∆RSS ′
3,1 ∆RSS ′

3,2 · · · ∆RSS ′
3,D

... ... . . . ...
∆RSS ′

D,1 ∆RSS ′
D,2 · · · ∆RSS ′

D,D

.
Note that ∆RSS ′ means the RSS value after interference. Subsequently, the
training set also will be changed to V ′ = [V ′

11, V
′
12..., V

′
TP ]. Hence, in our proposed

method, we should conduct device-free localization even under attack scenario
accurately.

4.4 Proposed Method
CNN is a powerful tool to process image and has been applied to many appli-

cation fields such as facial recognition, documents analysis and climate estimation.
In our proposed framework, we also utilize the CNN to train a device-free local-
ization model in the pre-training process including normal data for attack defense.
The detailed process is illustrated as follows:

1. Firstly, all the wireless sensors send and receive the signals from the remain-
ing sensors collaboratively. If no object enters in the monitoring area, the
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Figure 4.2: Detailed process of our proposed method.

RSS received by the each sensor will be a constant value RSSNull
i,j . Once

an object appears, the RSS will be changed into another value which is ob-
viously different from the RSSNull

i,j as RSStarget
i,j . After aggregating all the

RSStarget
i,j , we start to analyse the exact location of target.

2. Since some useless noise is included in the received RSStarget
i,j , the original

signal may be interfered for further analysis. As shows in Fig. 4.2, when
a set of RSStarget

i,j is presented in the image format, the background color
is very obvious and even may affect the judgement of object localization
features. Hence, we need to apply some image pre-processing technique
to removing these unnecessary factors. Background elimination (BE) is a
widely used approach to remove background element and reduce storage
cost. Thus, we utilize the BE technique to handle our figures as ∆RSSi,i =
RSStarget

i,j − RSSempty
i,j , where ∆RSSi,i can reflect the significant location

features of the object in some degree.

3. Since the whole monitoring area has been divided into some grids, the loca-
tion dataset can be represented as V = [V11, V12...Vlp...V LP ]. Then, we can
apply the CNN technique to establishing the device-free localization model
in the pre-training process. As shown in Fig. 4.2 , two-dimensional ker-
nels in the convolution layer will scan the whole space in the source image
to extract features, which will be the input for the subsample layer. Sub-
sampling can reduce the reliance of precise positioning within feature maps
and construct a more accurate device-free localization model. The related
formulation is ys = f(c + W ∗ U ), where W and c are the parameters
in the convolutional layer, ∗ means the convolution operation. f(·) refers
to the rectified linear unite (ReLU) as f(z) = max(0, z), where z is ob-
tained by the each layer. Besides, we also adopt the filter concatenation
method to extract features of different data. The final classification perfor-
mance can be improved by this filter. The previous mentioned sub-sampling
is executed by the max pooling and dropout can decrease the positives of
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some neural, which can avoid over-fitting situation in possible. Note that
the cross-entropy error function is adopted in our framework to update our
model as (W , c) = 1

S

∑S
s=1 ys × log (y′

s(W , c)), where y′s, ys, J means the
model prediction, label value and corss-entropy error. Finally, we get a
device-free localization model in the pre-training process.

4. In our assumed scenario, an adversary tries to interfere the received RSS
value at each sensor’s side or some sensors may be compromised. To simulate
the behaviours of adversary, we add some random data into the partial
training. Hence, RSS value will be changed to∆RSS ′ and the corresponding
dataset turns V ′. Then we use the pre-trained device free detection model
to recognize the abnormal data. After a few turns training, the previous
localization model can be transformed into the attack defense device-free
localization model.

5. When a real adversary tries to conduct some attacks, the attack defense
device-free localization model can fastly and accurate exclude the adverbial
interference and localize the object without error.

The detailed process of method is illustrated in 4.2.

Figure 4.3: The experiment layout for device-free localization scenario for the used
dataset.

4.5 Performance Evaluation
In this section, we evaluate the performance of our proposed CNN attack de-

fense device-free localization model under on a real-world dataset collected by
the SPANLab of University of Utah. The experiments are conducted on ere per-
formed in the tensorFlow 1.15.0 open source software, which is on the windows 10
operation system with a Tesla T4 GPU and 16 GB of memory.
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4.5.1 Dataset description
In the used dataset, wireless sensor network consists of Crossbow TelosB nodes,

whose protocol and frequency band are 2.4 GHz and IEEE 802.15.4, respectively.
Moreover, this node takes the role of base station for data collection and process.
From the figure. 4.3 , we can see the monitoring area is divided into 36 grids
consisting of 28 TelosB nodes, whose total area is 21 × 21. Besides, the distance
between two adjacent nodes is three feet. In our experiment, when a target enters
into range, the total measurement times for RSSI value is 30. The obtained
training dataset is 25 samples, the testing data is 5, and the total selected reference
points are 36. Moreover, the following equation is used to evaluate the accuracy
of all the models: Accuracy = Ccorrect

Ctotal
× 100%. The detailed reference point

distribution can be referred to Fig. 4.3. Note that the noise is embedded into
original dataset for attack-defense device-free localization method during the pre-
training process.

Figure 4.4: Localization accuracy for BE-CNN and our proposed device free lo-
calization method.

4.5.2 Attack-defense parameter setting
For our attack-defense device free localization, we need to obtain some opti-

mized parameters (i.e., the number of filters, the number of convolutional layers,
sub-sampling layers and kernel size) for CNN training. According to the expected
result from the attack-defense localization method, we can get the optimal param-
eters for our method, which is 2 convolutional layers, 9*9 concatenated convolu-
tional filter size, 32 filter number for each layer, 100 epoches, 10−4 learning rate,
300 batch size and 0.4 dropout rate for avoiding overfitting.

4.5.3 Method performance
Our proposed attack-defense device-free localization protocol is trained in the

pre-training process, where some random noise are replaced with normal RSS
valune. To evaluate the performance between our proposed CNN-based attack
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Figure 4.5: Cumulative distribution function (CDF) for our method and BE-CNN
for device-free localization.

defense device free localization method and BE-CNN, we need to adjust the signal-
noise-rate for comparison. Firstly, we evaluate the converge rate for our proposed
method and BE-CNN [29] under different noise distribution, where the related
experiments are conducted on fix number of sensors. Moreover, we set the distance
for two adjacent for two is 12 feet. As can be seen from Fig. 4.4, when there is no
noise interference in the environment, both our proposed protocol and BE-CNN
can achieve the 100% localization accuracy rate. When the noise level is increased,
our proposed protocol can still achieve the accuracy which is still close to 100%.
However, the localization accuracy for BE-CNN is suddenly decreased when the
SNR is adjusted to a low value. When the SNR arrives the 5db, the BE-CNN can
only achieve 90 % accuracy rate compared with the nearly 100% that our proposed
attack-defense device-free localization method. Moreover, we also conduct the
experiment to test the cumulative distribution function (CDF) performance for
BE-CNN and our proposed attack defense device free localization method under
5 db. As shown in Fig. 4.5, after 30 times experiment, our proposed method can
always achieve 100% localization accuracy which is better than the performance
achieved by BE-CNN in general. Finally, to evaluate the necessities and superiority
for our selected CNN-based attack defense for device free localization, we also
change the deep learning method to SVM and KNN. From the Fig. 4.6, the result
shows that our proposed CNN-based attack defense method can achieve the 100%
localization accuracy which is better than 89% and 51% achieved by the SVM and
KNN, respectively. From the above-mentioned multiple performance evaluation
experiments, we can see our proposed CNN-based device free localization protocol
can defend sever noise interference and achieve the good localization accuracy.
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Figure 4.6: Accuracy comparison of different deep learning techniques for device
free localization.

4.6 Conclusion and Future work
To defend potential device compromised and sever signal interference dur-

ing device-free localization, we propose a CNN-based attack defense device-free
localization method in this paper. The multiple experiments verify that our pro-
posed method can achieve better localization accuracy compared with other deep
learning-based technique and defend mostly possible attacks [63,64]. In the future
work, we will explore the popular CNN framework such as AlexNet or ResNet,
which can maintain the localization accuracy under more sever circumstances.
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Chapter 5

Conclusions and Future work

5.1 Conclusions
In this dissertation, we firstly propose a new algorithm to integrate indoor

target positioning and communication based on the features of WiFi signal. The
method for realizing indoor positioning and communication based on WiFi signals
is of practical significance, and it is not difficult to implement and the cost is low.
The RSS and CSI values in the WiFi signal are used to achieve indoor target
positioning respectively, and the derived indoor wireless channel system transfer
function is used to achieve the purpose of communication. In the positioning part
based on the RSS value, the accuracy of the algorithm can reach 0.25m, which
can meet the indoor positioning requirements under certain conditions.

Given in some scenarios, the target may not expect to be equipped with extra
devices. Therefore, we formulate device-free localization issue as the classification
problem and exploit a log regularizer in the objective function for classification.For
addressing the problem of device-free localization (DFL) via sparse coding ap-
proach, in this paper, we exploit a new log-regularizer in the objective function
for classification. With taking the distinctive ability of log-regularizer to measure
sparsity, the proposed approach has achieved an accurate localization process with
robust performance in the challenging environments.

5.2 Future work
In future research we will continue to work on indoor localization, as the chan-

nel state information CSI can provide more detailed and specific carrier counts.
We will try to build an experimental platform to collect CSI from different loca-
tions, and then try to solve the indoor DFL problem by using the classification
methods covered in this thesis, sparse coding and CNN and other networks on
them. On the other hand, we will design some multi-target identification schemes
and experiments using the CSI characteristics to solve the indoor multi-target
localization problem.
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