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Abstract

In recent years, the development of information and communication technology (ICT)-based

tools has facilitated human work and increased productivity in solving complex tasks. Computer

programming has become an indispensable skill in ICT development because of its wide range

of applications. At the same time, meeting the growing demand of highly skilled program-

mers in the ICT sector is one of the biggest challenges. However, learning programming is

not an easy and trivial task, because of programming skills are essentially acquired through re-

peated practice. Here online judge (OJ) systems provide uninterrupted programming learning

and practice opportunities in addition to classroom-based learning. Thus, OJ systems have been

adopted by many institutions as an academic tool for programming education, and as a result, a

huge number of programming-related resources (source codes, logs, scores, activities, etc.) are

regularly accumulated in OJ systems. In this dissertation, we leveraged a large number of real-

world source codes, submission logs and scores collected from an OJ system for comprehensive

data analysis, as well as training, validation, testing and experimentation with machine learn-

ing models for code assessment and classification. First, we analyzed the different features and

programming-related problems using a real dataset. We identified various programming errors,

including time limit exceeded, memory limit exceeded, runtime error, and presentation errors in

solution codes, as well as the impact of programming skills on academic performance. Next, we

developed machine learning-based source code assessment and classification models to better

understand the programming code and reduce errors. Finally, the outcome of the dissertation

can assist programmers to understand and improve their programming skills.

In Chapter 2, a comprehensive data analysis framework is proposed to extract hidden fea-

tures and association rules using a real-world dataset of an OJ system. Initially, an unsupervised

modified K-means (MK-means) clustering algorithm is applied for data clustering, and then the

frequent pattern (FP)-growth algorithm is used for association rule mining. We leverage stu-

dents’ program submission logs and academic scores as an experimental dataset. To explore

xvii



the correlation between programming skills and overall academic performance, the statistical

features of students are analyzed and the related results are presented including hidden features,

common errors made by students, submission trends, frequent patterns, association rules, and

so on. A number of useful recommendations are provided for students in each cluster based on

the identified hidden features. In addition, the analytical results of this Chapter can help teach-

ers prepare effective lesson plans, evaluate programs with special arrangements, and identify

the academic weaknesses of students. Furthermore, a prototype of the proposed approach and

data-driven analytical results can be applied to other practical courses in ICT or engineering dis-

ciplines. Based on the data analysis, we identified most common errors made by programmers

during their learning processes. We found that many of the errors encountered could not be eval-

uated or detected by conventional compilers. Moreover, it is difficult to assess and detect logic

errors (e.g., time limit exceeded, run time error, memory limit exceeded, output limit exceeded,

etc.) in the source code with traditional compilers, resulting in erroneous code.

In Chapter 3, we proposed a source code assessment and classification model. The pro-

posed model is developed based on a long short-term memory (LSTM) neural network with an

attention mechanism to assess and classify the source code. The attention mechanism enhances

the accuracy of the proposed model for assessment and classification. Thus, the proposed model

can detect source code errors with locations and then predict the correct word for error. In addi-

tion, the proposed model can classify the source codes whether it is erroneous or not. We trained

the model using source codes and then evaluated the performance. The experimental results ob-

tained show that the accuracy in terms of error detection and prediction of the proposed model

approximately is 62% and source code classification (correct or incorrect) accuracy approxi-

mately is 96% that outperformed a standard LSTM and other state-of-the-art models. Overall,

these experimental results indicate the usefulness of the proposed model in professional pro-

gramming and programming education fields. Furthermore, the proposed model can help pro-

grammers to reduce errors in solution codes that cannot be detected by conventional compilers.

Despite the good performance of LSTM-based model, it still has a shortcoming that it only con-

siders the past context of the input sequences, but cannot consider any future (i.e., subsequent)

context.

In Chapter 4, we proposed a sequential language model for evaluating source codes using

a bidirectional long short-term memory (BiLSTM) neural network. The BiLSTM model can

consider both the past and future context of the input sequences. We trained the BiLSTM model

xviii



with a large number of real-world source codes with tuning various hyperparameters. We then

used the model to evaluate incorrect code and assessed the model’s performance in three prin-

cipal areas: source code error detection, suggestions for incorrect code repair, and erroneous

code classification. Experimental results showed that the proposed BiLSTM model achieved

significant correctness in identifying errors and providing suggestions. Moreover, the model

achieved an F-score of approximately 97%, outperforming other state-of-the-art models such

as recurrent neural networks (RNNs) and LSTM. Furthermore, programmers have recently im-

proved their programming skills and can now write code in many different languages to solve

problems. A lot of new code is being generated all over the world regularly. Since a pro-

gramming problem can be solved in many different languages, it is quite difficult to identify

the algorithm from the written source code. Therefore, a classification model is needed to help

programmers identify the algorithms in source code written/developed in Multi-Programming

Languages (MPLs). The classification model can help programmers learn better programming.

However, source code multi-class classification models based on deep learning are still lacking

in the field of programming education and software engineering. To address this gap, we also

proposed a multilingual source code classification model using stacked BiLSTM. To accom-

plish this task, we collect a large number of source codes from the Aizu Online Judge (AOJ)

system. The stacked BiLSTM model is trained, validated, and tested on the real-world dataset.

Various hyperparameters are fine-tuned to improve the performance of the model. Based on the

experimental results, the stacked BiLSTM model achieved an accuracy of about 93% and an

F1-score of 89.24%. Moreover, the model outperforms the state-of-the-art models in terms of

other evaluation matrices such as precision (90.12%) and recall (89.48%).



Chapter 1

Introduction

1.1 Overview

The demand for information technology (IT)-based tools and services is evolving and chang-

ing day by day. Accordingly, the development and production of technology is an essential part

of this evolving world, in which computer programming plays an important role. So, the infor-

mation and communication technology (ICT) industry needs highly qualified programmers to

develop new technologies. Also, computer programming is one of the fundamental subjects in

ICT discipline. The conventional learning process of computer programming is insufficient to

prepare highly skilled programmers due to the limited number of exercise classes, limited prac-

tice opportunities, and lack of individual tutoring. In addition, most educational institutions,

such as schools, colleges, and universities are struggling to build more educational facilities to

increase academic activity (e.g., additional exercise classes, practice, and individual tutoring)

due to financial, logistical, and organizational constraints [1].

The growing number of people in classrooms in educational institutions, the large number

of students per class, and some lectures are conducted with more than a thousand participants

in the massive open online courses (MOOCs)1 which complicate the individual tutoring pro-

cess [2]. Furthermore, the growing ratio between students and educators raises the question

of how to provide individual support to students to improve their problem-solving skills. Es-

pecially, when learning computer programming, students need a lot of practice and individual

tutoring to improve their programming knowledge and skills. Although, programming practice

and competition can play an important role in acquiring good programming skills [3].

1https://www.mooc.org/
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Recently, a new technology known as smart personal assistants (SPAs) has become avail-

able to end-users. Some examples of SPAs are Siri (Apple)2, Alexa (Amazon)3, and Assistant

(Google)4. These technologies are highly intelligent and interactive, which can be useful for

learning [4]. In addition, SPA technology will be powered by more than 870 million devices by

2022 [5]. An SPA is an application of artificial intelligence (AI) that provides assistance (e.g.,

answering questions, recommendations, executing actions, suggestions, etc.) based on user in-

put (e.g., voice, images, and other types of information) [6]. These systems are hosted by big

technology giants to receive voice or text data and produce the relevant output [7]. Despite the

many advantages of SPA systems for quick answers, they are difficult to use for the purpose of

programming learning and evaluation.

However, research in technology-assisted learning (TAL) has focused on addressing these

challenges by exploiting the potential of IT. Over the past 40 years, educational researchers

have examined the effects of IT on learning outcomes [8]. In the last 5 to 15 years, researchers

have been able to demonstrate the importance of TAL systems which are more effective than

non-personal tutoring conditions [9–11]. Many TAL systems assist students at every step of the

problem-solving session rather than just evaluating the final answer. These systems follow a va-

riety of scaffolding strategies to support students’ learning processes [12]. Scaffolding strategies

transform learning activities into smaller modules, maximizing the use of tools and structures

to support students to gain more knowledge [13]. Scaffolding strategies can be of two types,

namely, dynamic and static [14]. In dynamic scaffolding strategies, TAL systems continuously

analyze student activity and provide the necessary support based on students’ problems and re-

sponses. In contrast, static scaffolding strategies provide static support to students based on the

analysis of students’ previous difficulties and responses.

1.1.1 Online Judge System

An online judge (OJ) system is designed to provide users with a reliable evaluation envi-

ronment in the Cloud where submitted source codes are compiled and tested, and then deliver

evaluation results in the shortest possible time in Cloud [15]. OJ systems are becoming popular

all over the world because of their variety of useful applications, such as job hunting, recruit-

ment, programming competitions, development platforms, education, data mining, etc. We can

2https://www.apple.com/siri/
3https://alexa.amazon.com/
4https://assistant.google.com/
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define the OJ system as follows:

Definition 1 (Online Judge System) The OJ system is a web-based platform that receives

solution code (Si), then evaluates the solution codes (Si) based on a set of test input/output

instances (Ti), and finally produces a verdict (Vi). So, the function of OJ system can be expressed

as O(Si, Ti) −→ Vi.

The possible verdicts (Vi) generated by the OJ systems are listed along with their brief

descriptions. (i) Compile Error (CE) Compilers are unable to compile the submitted solu-

tion codes. (ii) Runtime Error (RTE) A solution code is failed to execute, possible causes

are pointer value has been exceeded, some values have been divided by zero, stack overflow,

etc. (iii) Time Limit Exceeded (TLE) The time allotted for a solution code has exceeded.

(iv) Memory Limit Exceeded(MLE) The memory allotted for a solution code has ex-

ceeded. (v) Output Limit Exceeded (OLE) A solution code produces many outputs. (vi)

Wrong Answer (WA) A solution code generates incorrect output during the test cases. (vii)

Presentation Error (PrE) Output does not match (blank lines, extra spaces, etc.) with the

test cases. (viii) Accepted (AC) A solution code has passed all the test cases [16]. If a solution

code has received the verdict AC for all test instances, then the final verdict of the solution code

is also AC. Otherwise, the final verdict would be different from AC [15].

V = AC ⇐⇒ ∀iVi = AC (1.1)

V = Vj ⇐⇒ (∀i<jVi = AC) ∧ (Vj 6= AC) (1.2)

1.1.2 Programming Learning with Online Judge System

OJ systems introduce an alternative programming learning platform where students and pro-

grammers can conduct their programming learning activities throughout the year [15]. An OJ

system is a type of TAL system used as an academic and professional learning tool (e.g., pro-

gramming, logical implementations, and various types of exercises). In 1970, the idea of the OJ

system was first introduced in the ACM International Collegiate Programming Contest (ICPC)

organized by Texas A&M University [15]. After several decades, the ACM ICPC has become

one of the most prestigious programming competitions in the world. In 2015, more than 40,000

students from 2,000 universities and 102 countries participated in the regional phase of this

3
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event [15]. Programming contests are one of the fastest growing extracurricular activities in

the field of computer science, having a significant impact on the development of programmers’

programming skills [17]. Many educational institutions are developing their own OJ or pro-

gramming assessment systems to provide students with the opportunity to learn better program-

ming. A few examples of OJ systems are AOJ (University of Aizu) [18–20], UVa (University

of Valladolid) [17], URI (Universidade Regional Integrada) [21], and Jutge.org (Universitat Po-

litecnica de Catalunya) [22], which are being used as academic tools for different programming

and exercise courses. OJ systems are not only effective for programming courses but also have

wide adaptations across different domains [23]. Because of these OJ systems, a large number

of solution codes and logs are generated on a regular basis that can be valuable resource for

programming educational research.

1.1.3 Programming Data Analysis

In the last few years, e-learning/OJ platforms have become more popular for a variety of

reasons and demands, including teacher shortage, unbalanced student-teacher ratio, logistical

and infrastructure constraints, natural disasters, high cost of technical and professional courses,

dissemination of education to a large number of people, time saving and easy access to many

courses, and programming education [3, 24]. As the use of e-learning/OJ systems increases,

different types of data are being generated regularly. Some data are structured whereas some

are unstructured. Therefore, it is very difficult to retrieve useful information from this huge

amount of mixed data archives using traditional statistical algorithms [25].

However, clustering techniques are widely used in data analysis and play an key role in

this field. Clustering is an unsupervised machine learning algorithm, and the overview of the

clustering process is shown in Figure 1.1.

Figure 1.1: An overview of unsupervised clustering process
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With the diversification of data, many variations of clustering techniques have been devel-

oped simultaneously to analyze different types of data. The clustering technique is used to

gain insight into the structure of the data, and homogeneous data is grouped by calculating the

Euclidean or correlation-based distance. Each clustering technique has its advantages and disad-

vantages for clustering data. To the best of our knowledge, there is no single clustering technique

that can handle all types of data including text, numbers, images, and videos. Xu and Tian [26]

conducted a comprehensive survey on clustering techniques and discussed their advantages,

disadvantages, evaluations, and their complexity. Clustering techniques can be classified into

different groups (hierarchy, fuzzy theory, distribution, density, graph theory, grid, fractal theory,

and model) based on their working procedures. Here, we present some examples of classical

clustering techniques such as K-means, SVM, KNN, PAM, CLARA, BIRCH, CURE, FCM,

FCS, DBCLASD, GMM, DBSCAN, OPTICS, CLICK, STING, CLIQUE, and COBWEB [26].

There are many improved and extended versions of these classical clustering algorithms. Among

them, K-means is considered one of the most widely used clustering algorithms because of its

simplicity.

If the data is in Euclidean space, the following equation (1.3) can be used to calculate the

objective function (J) that measures the cluster quality in the K-means clustering algorithm.

Usually, K-means is not limited to data in Euclidean space, but is also applied to document data.

In this case, the cosine similarity measure is used according to equation (1.4).

J =

k∑
j=1

n∑
i=1

||x(j)i − cj ||
2 (1.3)

where k is the number of clusters, n is the number of data points, and cj is the centroid of cluster

j.

cos(θ) =
G.H

||G||||H||
=

∑n
i=1GiHi√∑n

i=1G
2
i

√∑n
i=1H

2
i

(1.4)

where G and H are two vectors of attributes, Gi and Hi are components of vector G and H

respectively.

On the other hand, association rule mining (ARM) has been widely used for data mining

purposes [27]. ARM is an unsupervised algorithm and was first introduced in research [28]. As-

sociation rules are considered to be IF-THEN relationships, meaning that if a customer bought

an item A, then there is a high probability that a customer will choose an item B, as shown in
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Figure 1.2.

Figure 1.2: A simple IF-THEN relationship for ARM approach

There are diverse applications of the ARM technique in various fields such as pattern mining,

education, social, medical, census, market-basket, and big data analysis. ARM is an efficient

technique for obtaining frequent items from large datasets [29, 30]. Among the many types

of ARM algorithms, Apriori and frequent pattern (FP)-growth algorithms are the most widely

used [31, 32]. Several terms are important for mining patterns and association rules, such as

support and confidence. Support is useful to know the most frequent items or frequently

purchased items in the data set. Confidence provides information about how often items A

and B occur simultaneously (A −→ B) for item A.

Support (Sup) =
frequency (A,B)

N
(1.5)

Confidence (Con) =
frequency (A,B)

frequency (A)
(1.6)

where N is the total number of transactions in a dataset.

The amount of content on e-learning/OJ platforms is increasing, and at the same time, op-

portunities for research using the resources of e-learning platform are also increasing. Recom-

mending relevant and appropriate content to users (e.g., students, instructors, teachers, etc.) is a

challenging and tough task for any e-learning/OJ platform. Perumal et al. [33] proposed a novel

personalized recommending system (RS) to provide appropriate supportive content to users. Re-

cently, some RSs have been using a mixed approach of content-based filtering and collaborative

filtering to achieve high-quality results in specific context [34]. In addition, most RSs are built

with a collaborative, knowledge-based, content-based, and hybrid approaches [35].

6



1.1. OVERVIEW

1.1.4 Machine Learning in Programming

Over the past few decades, artificial neural networks (ANN) or artificial intelligence (AI)

have achieved high accuracy in solving many complex tasks such as object recognition, com-

puter vision, language translation, program code evaluation and classification, speech recogni-

tion, and so on. In 1956, McCarthy et al. first introduced the concept of ANN at the Dartmouth

Conference, whose structure is completely similar to the nervous system of the human brain.

Since then, many ANN have been developed in recent decades to achieve human-like perfor-

mance, and they show great potential in many fields. The evolution of ANN is shown in Figure

1.3.

Figure 1.3: Evolution of the ANN

In addition, there are many variations of ANNs, including single-layer neural network (NN),

feed forward neural network (FNN), deep neural network (DNN), etc. Here we briefly describe

the mathematical concepts of the basic single-layer NN. A single-layer NN is often referred

to as a perceptron, where X is a set of inputs X = {x0, x1, x3, · · · , xn}, W is a connecting

weight of each input W = {w0, w1, w3, · · · , wn}, and b is a bias value. A single-layer NN

always produces a single output via a non-linear function such as sigmoid, Tanh, and ReLU.

The output of a single layer NN can be calculated by the equation (1.7).

Y = σ(XW + b) (1.7)

In contrast, there is a hidden layer between input and output layers, which is called multi-

layer NN. Basically, the multi-layer NN is a foundation for DNNs such as convolutional neural

networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), etc.
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The output of the multi-layer NN can be written as follows:

Y =

h∑
i=1

oiσ(xi) (1.8)

xi =
n∑

j=1

wijxj + bi (1.9)

where, wij is the weight connecting from the input unit j to the hidden unit i, oi is the weight

connecting from the hidden unit i to the output unit, bi is a bias of the hidden unit i, and σ(xi)

is the sigmoid activation function.

Practically, DNN-based models have yielded some significant results that go beyond human-

level expertise. DNN-based models are used in many complex practical application domains

(i.e., robotics, virtual assistant, gaming, debating, and source code completion) worldwide. For

example, Google has developed a DNN model called AlphaGo that can play Go games 5; in

2017, AlphaGo defeated Ke Jie (then ranked #1 in Go) at the Future of Go Summit in South

Korea 6. This was a major landmark achievement in AI, making people believe that AI is now

a reality and the future of the world. At the same time, graphics processing units (GPUs) made

AI more powerful to learn millions of data through parallel computations. Figure 1.4 provides a

brief overview of AI, machine learning (ML), and DNN and their applications in programming.

Figure 1.4: The AI landscape and the application of DNN in programming

5https://en.wikipedia.org/wiki/Go_(game)
6https://en.wikipedia.org/wiki/AlphaGo and https://deepmind.com/research/

case-studies/alphago-the-story-so-far
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1.1.4.1 RNN-based Code Assessment Models

In recent years, DNNs have shown their potential in programming education, performing a

variety of complex tasks related to programming. The deep architecture of the DNN learns more

complex relationships of the program codes to achieve better performance in programming-

related tasks. Due to the availability of large amounts of program codes generated by e-learning/OJ

platforms, DNN-based models become effective by leveraging these resources. Pu et al. [36]

proposed a source code correction method based on LSTM using code segment similarities.

The study leveraged the sequence-to-sequence (seq2seq) neural network model with natural

language processing tasks for the code correction process. Another study [37] proposed a deep

software language model based on RNNs. The experimental results showed that the model out-

performs traditional language models such as n-gram and cache-based n-gram in a Java corpus.

The software language model shows great promise in the field of software engineering. An ex-

ample of the training and prediction process of a sequential LSTM language model is shown in

Figure 1.5.

Figure 1.5: An example of (a) word embedding and encoding process, (b) LSTM model train-
ing, and (c) token prediction by the trained LSTM model

Terada et al. [38] proposed an LSTM-based model for programming education where the

model predicts the next word by analyzing incomplete source code. Novice programmers often

struggle to write a complete program from scratch. To help them, the model predicts the next

word to complete a program. The LSTM-based model achieved a high degree of prediction

accuracy. Fault detection in source code has become an important research topic [39]. Ram and

Nagappan [40] proposed a hierarchical model that uses CNNs and LSTM for sentiment analysis
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in software engineering. Tai et al. [41] presented a model called Tree-LSTM where an LSTM

network works like a tree. The model evaluates the tasks of prediction of semantic relatedness

based on sentence pairs and sentiment classification. Reyes et al. [42] classified archived source

code by type of programming language using an LSTM network. Fan et al. [43] presented an

attention-based RNN for source code defect prediction.

1.1.4.2 Transformer-based Code Assessment Models

The Transformer-based seq2seq language model has shown excellent performance in lan-

guage translation, classification, speech recognition, code generation, code summarization, and

code completion due to its internal attention and residual structure. The Transformer archi-

tecture was first proposed in 2017 by A. Vaswani et al. [44] and has since become one of the

most innovative models in the field of language modeling. Usually, the Transformer is a type of

NN architecture consisting of a multi-headed self-attention mechanism with an encoder-decoder

structure. A basic architecture of the Transformer model [44] is shown in Figure 1.6.

Figure 1.6: A basic architecture of the transformer model
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Basically, Transformer is all about attention, which uses three (03) primary terms such as

Query (Q), Key (K), and Value (V ) to calculate attention weights. The attention formula (1.10)

can be written as follows:

attention = softmax(
QKT

√
dk

)V (1.10)

where Q is the vector representation of a single word, K is the vector representation of all

words, and V is the vector representation of all words in the sequence.

Transformers offer many advantages over traditional NNs or even RNNs, including (i) the

ability to consider very wide-ranging dependencies, (ii) no possibility of gradient vanishing and

explosion, (iii) fewer training steps, (iv) no recurrence barrier for parallel computations, and

(v) much higher computational efficiency. Various models using Transformer architecture have

been proposed, such as the GPT (Generative Pre-Training) model using the decoder part of the

Transformer [45], the BERT (Bidirectional Encoder Representations from Transformers) model

using the encoder part of the Transformer [46], and the T5 (Text-to-Text Transfer Transformer)

model using the encoder-decoder structure of the Transformer [47]. RoBERTa [48] is an im-

proved model based on the BERT developed by the Facebook AI team, which improves the

performance of BERT in various evaluation metrics.

In particular, the Transformer-based models have also produced state-of-the-art results in

various programming tasks such as code completion, code summarization, code generation, and

error identification. IntelliCode [49] is a Transformer-based model leveraged to complete mul-

tilingual source code. Z. Sun et al. [50] proposed TreeGen for code generation, which uses

the attention mechanism of the Transformer model to overcome the long-term dependency of

source code. CodeBERT [51] is a bimodal pre-trained Transformer-based model used for both

programming and natural languages. CodeBERT can be used for a variety of downstream ap-

plications of programming and natural language-related tasks, such as code completion, gener-

ation, and language translation. In [52], a deep learning-based transformation (DLBT) model is

proposed for automatic generation of Pseudo-code from source codes.

The above research shows that RNN- and Transformer-based models have used for various

programming tasks, including program code evaluation, code generation, code translation, error

detection, code repair, code completion, and classification.
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1.2 Scope and Motivation of the Study

In recent years, OJ systems have been increasingly used for programming learning and

assessment purposes in educational institutions. Usually, OJ systems have stored various pa-

rameters including submission time, verdicts, CPU time, and memory usages when evaluating

solution codes. However, a typical e-learning platform cannot automatically evaluate solution

codes nor store such parameters. These valuable resources (e.g., code archives, verdicts, sub-

mission logs, etc.) from OJ systems provide room for further research and analysis. The results

of this research could reveal programming flaws of students/programmers and thus broaden the

scope of possible improvements. Therefore, we are motivated to use these valuable real-world

resources for data analysis as well as the development of a machine learning-based model to

evaluate solution codes. We are primarily motivated by the following two reasons, which will

be reflected in this dissertation.

1. It is important to develop a data analysis framework using practical (programming,

OJ, etc.) data, the results of which could have an impact on programming education

and industry.

2. A large number of solution codes are regularly archived in OJ systems. These real-

world solution codes can be used in the development of a machine learning model to

support programming learning in academia and industry.

The main goals of this dissertation are to develop (i) a data analysis framework for discover-

ing students’ programming-related activities, invisible features, shortcomings, and (ii) machine

learning-based models for code assessment and classification using real-world data of an OJ

system to address shortcomings. To achieve such targets, the following key components were

used in the proposed data analysis framework and ML models:

• Modified K-means (MK-means) clustering algorithm: K-means clustering is an unsu-

pervised ML algorithm used to group similar data through mathematical processes. It is

one of the simplest and most commonly used clustering algorithms. As an improvement

to the classic K-means algorithm, we proposed an MK-means clustering algorithm in this

dissertation, which contains two modules. The first module is the initial center selection

module (ICSM), which is used to (i) select optimal centers and (ii) form clusters with the

most similar data. The second module is the outlier detection module (ODM), which is
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used to (i) detect outliers (irrelevant/insignificant data points), (ii) remove them from the

dataset, and (iii) improve the overall quality of the cluster. We used solution submission

logs and scores from a programming course (Algorithms and Data Structures) conducted

on an OJ system. After clustering, we extracted hidden/invisible features that are not

clearly visible in the plain data.

• FP-growth algorithm: FP-growth is also an unsupervised ML algorithm used for data

mining, pattern mining and association rule mining purposes. The FP-growth algorithm

is also known as ARM algorithm. This algorithm has been used in many fields such as

educational data analysis, medical data analysis, market-basket analysis, and census data.

Usually, ARM aims to find a set of cooccurring high-frequency items and extract the

correlation among items from large dataset. In this dissertation, we used the FP-growth

algorithm for data mining (i.e., frequent items, pattern mining, etc.) and association rules

mining.

• Recurrent Neural Network: LSTM is a kind of recurrent neural network that can pro-

cess long input sequences using its special gate structures. It consists of four gates such

as input, output, forget, and cell state. Since our solution codes are long sequences of

statements, the LSTM structure can lead to better results. In this dissertation, we also

exploited different variants of LSTM neural network such as attention− based LSTM ,

bidirectional LSTM , and stacked bidirectional LSTM neural network to develop

the models for code evaluation and classification.

1.3 Dissertation Contributions

In this section, we summarize the contributions of this dissertation. We start our research

in two challenging directions. First, we developed a novel data analysis framework using

real-world data from OJ system to identify the programming-related problems encountered by

students/programmers. The framework helped us to extract various unseen features and analyt-

ical results from the programming data. Second, we developed machine learning models for

programming code assessment and classification. The model enabled us to evaluate the code

with human-like accuracy and detect the errors in codes that could not be recognized by the

conventional compilers. The detailed research methodology and experimental results are pre-

sented in Chapter 2, Chapter 3, and Chapter 4. The main contributions of each chapter are
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summarized as follows:

1.3.1 Chapter 2: A Comprehensive Data-driven Analysis to Explore the Impact

of Programming in Education

The OJ systems are now widely used by educational institutions as learning tools in pro-

gramming and other exercise-based classes. These platforms play an important role in improv-

ing students’ programming skills, knowledge, and overall academic performance. The vast

resources (e.g., code archives, submission logs, etc.) generated by these systems can help re-

searchers to find students’ flaws in programming and thus expands the scope of available im-

provements. Therefore, in Chapter 2, we proposed a novel data analysis framework to extract

hidden features, analytical results, patterns, and association rules from programming-related

data. This Chapter makes the following contributions:

• We proposed a data analysis framework for programming education. To demonstrate

the effectiveness of the proposed framework, experiments are conducted on real-world

programming/problem-solving data.

• The correlation between programming skills and academic performance are presented.

• Various programming and academic weaknesses and strengths are highlighted through

empirical analysis.

• Important and relevant features, rules, and patterns from the submission logs and scores

are extracted that are not plainly visible in a simple form of data.

• Useful recommendations are generated for students and educators on the basis of the

extracted features, rules, and patterns.

• The proposed framework and its data analysis process can be useful for other related

academic courses and disciplines to discover hidden features/correlations in e-learning

data. For example, this framework can be applied to a course that consists of theory and

hands-on activities and collects resources/data, like a programming course.

• The proposed data analysis framework can be integrated into e-learning platforms and OJ

systems.
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• The MK-means clustering algorithm was proposed, and the effectiveness of data cluster-

ing in Euclidean space was also demonstrated.

1.3.2 Chapter 3: Code Assessment and Classification Using Attention-Based LSTM

Neural Network

A large amounts of solution codes are regularly accumulated by OJ systems at the academic

and industrial levels. Typically, the solution codes contain various types of errors including

syntax, semantics, communication, computation, and logic errors. Depending on the nature

of these errors in the solution codes, the OJ systems have made different verdicts including

CE, RTE, TLE, MLE, OLE, PrE, AC, and WA. It is sometimes difficult for students

or professional programmers to detect logic errors (TLE, MLE, OLE, WA etc.) in solution

codes, even with the help of traditional compilers. Helping programmers, especially novice

programmers, to correctly evaluate solution codes and classify codes has become an important

research topic. Given the importance of this research gap, we proposed a machine learning

model for solution code evaluation and classification in Chapter 3. We trained the model with

real-world solution codes collected from an OJ system. To strengthen the proposed model, we

combined the attention mechanism with LSTM to enhance the model performance for solution

code assessment and classification. We also fine-tuned various parameters of the network to

achieve better results. The main contributions of this Chapter are summarized below:

• The proposed machine learning based model can help students, novice and professional

programmers to evaluate their solution codes.

• The proposed model can detect such errors (TLE, MLE, OLE, WA, etc.) that cannot

be identified by conventional compilers.

• The proposed model accuracy is approximately 62% that outperformed other state-of-the-

art models.

• The proposed model can classify (correct or incorrect) the source codes based on the de-

tected errors. The classification accuracy is 96% that is much higher than other compared

models.

• The proposed model highlights defective position with location/line number in source

codes.
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• The proposed model improves the ability of learners to fix errors in source code easily by

using the location/line numbers.

1.3.3 Chapter 4: Code Assessment and Classification Using Bidirectional LSTM

Basically, LSTM neural networks only consider past input sequences for model training

and predictions. However, the functions, classes, methods, and variables of a source code may

depend on both past and subsequent sections or lines of code. In such cases, the LSTM may

not provide optimal results. To address this gap, we proposed a bidirectional LSTM (BiLSTM)

language model for source code assessment and classification. A BiLSTM neural network can

combine both past and future code sequences to produce output. Furthermore, a stacked BiL-

STM model for classifying codes built in multi programming languages (MPLs) is proposed.

Since methods, classes, variables, tokens, and keywords have both short-term and long-term

dependencies, the stacked BiLSTM layers make the model deeper and provide a better under-

standing of the context of the codes. In Chapter 4, we made incremental improvements to

Chapter 3 and also developed a novel multi-class classification model for identifying algorithms

in codes. The main contributions of the Chapter are summarized as follows:

• The proposed BiLSTM language model for code assessment can effectively detect errors

including logical errors (TLE, MLE, OLE, WA, etc.) and provide corrections for

erroneous codes.

• The BiLSTM model can be helpful to students, programmers (especially novice program-

mers), and professionals who often struggle to resolve code errors.

• The model can be used for different real-world programming learning and software engi-

neering platforms and services.

• The stacked BiLSTM model classifies source codes based on the algorithms. The model

can help students and programmers to identify the algorithms used in the source code.

Programmers can understand the code better if they know the written algorithm in the

code.

• The stacked BiLSTM model can be deployed in the field of software engineering to rec-

ognize code in the large code archives.
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1.4 Dissertation Outline

The visualized outline of this dissertation is illustrated in Figure 1.7. In this dissertation,

we mainly focus on two issues: (i) developing a data analysis framework to explore the invisi-

ble information from programming and academic data, and (ii) developing a machine learning

model for program code evaluation, binary classification (correct or incorrect), and multi-class

classification. The remainder of this dissertation is organized as follows. Chapter 1 presents

the background of the research, which primarily includes TAL and its impact on education.

The application of OJ systems in conducting programming and other exercise-based courses in

educational institutions is also discussed. Chapter 1 also presented the research opportunities

for using the outcomes of these learning tools, including OJ systems. In addition, Chapter 1

presents the practical implementation of machine learning techniques for data analysis as well

as code evaluation and classification.

Figure 1.7: Outline of the Dissertation

Chapter 2 provides the framework for data analysis that can handle both OJ system data

and academic data. It also shows the impact of programming skills on academic outcomes
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through a comprehensive analysis of these data. Particularly, the background and related works

are presented in Section 2.2. Section 2.3 describes the dataset and preprocessing. In Section

2.4, the proposed approach is presented. The experimental results are presented in Section 2.5

and discussed in Section 2.6. Section 2.7 summarizes the Chapter 2.

Chapter 3 focuses on developing a machine learning model for code evaluation and bi-

nary classification using real-world solution codes collected from an OJ system. Particularly,

the background and prior researches are presented in Section 3.2. Section 3.3 focuses on the

overview of language models and RNNs. In Section 3.4, we present the proposed machine

learning based approach for code assessment. Data collection and problem description issues

are presented in Section 3.5. The experimental results are presented in Section 3.7. Section 3.8

discusses the experimental results. The summary of this Chapter in Section 3.9.

Chapter 4 develops a model for program code evaluation, binary classification, and multi-

class classification using BiLSTM neural networks. In particular, the research background and

related works are described in Section 4.2. The architecture and mathematical background of

the proposed BiLSTM model are presented in Section 4.3. In Section 4.3.4, we present the

experimental results of code assessments and classification using BiLSTM. Section 4.4 presents

stacked BiLSTM model for multi-class classification task. In Section 4.4.6, we present the

experimental results of multi-class classification using stacked BiLSTM. Section 4.5 concludes

the Chapter.

Finally, we summarize this dissertation in Chapter 5 with outlooks on the future research

directions.
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Chapter 2

A Comprehensive Data-driven

Analysis to Explore the Impact of

Programming in Education

2.1 Introduction

Most courses in information and communication technology (ICT), computer science, and

engineering-related disciplines are designed with a practical basis. Basically, each course con-

sists of two parts namely, theory and exercise where theory develops students’ theoretical knowl-

edge, ideas, and memorization. In contrast, exercise or practical application develops logic,

critical thinking, problem-solving skills, and implementation skills. Computer programming is

an example of a practical course in these disciplines. The necessity of programming educa-

tion is rapidly growing in pace with the increasing expansion of computers into our daily lives;

thus, computer programming is among the key courses in the ICT discipline and has become a

foundational course in other disciplines, as well [53]. In a recent effort to encourage students, in-

cluding children, to take an increased interest in programming, numerous online programming

platforms have become available. Here, it should be noted that because the primary require-

ment of programming education is to ensure that students achieve computer literacy [53], most

educational institutions that teach programming have redesigned their academic curriculum to

effectively meet the basic literacy requirements of programming education.

Basic computer programming courses are normally available in the first semester of uni-

versity studies. Initial programming classes have the ancillary role of attracting students to the

21



CHAPTER 2. A COMPREHENSIVE DATA-DRIVEN ANALYSIS TO EXPLORE THE IMPACT OF
PROGRAMMING IN EDUCATION

field of computer programming. Because students may make decisions based on these initial

programming classes, it is essential that those classes impart positive programming experiences.

Note that, introductory programming courses have a significant rate of failure and dropout [54].

However, due to limited amounts of class time, classrooms and teachers, and limitations in other

forms of logistic support, it is difficult to fully educate students in programming through tradi-

tional programming classes alone. To overcome these problems, OJ systems provide additional

platforms that enable students to continue their programming studies over a period of years [15].

Such systems normally contain large collections of interesting programming problems [55] that

students can pursue independently or teachers can assign to stimulate students’ interest. The

concept of the OJ system was first introduced at the 1977 International Collegiate Programming

Contest (ICPC) [17, 56], which is now held annually. Furthermore, because OJ systems have

proven useful, many universities and colleges are now attempting to develop online support

systems for programming education [21, 22, 57].

Today, OJ systems are used by many educational institutions to conduct courses related

to programming, computing, and software engineering [58, 59]. Many universities have created

their own automated program assessment (APA) systems for programming courses to accelerate

students’ learning [60–62]. As a result, a large number of programming-related submission

logs are created every day by OJ or APA systems in various organizations worldwide, which

can be valuable resources for research and analysis [63, 64]. Therefore, this Chapter aims to

use programming-related resources (submission logs and scores) for empirical research and

analysis.

Educational data collected from various e-learning platforms such as Moodle, MOOCs, OJs,

and APAs are not unified, structured, well-organized, neat and in a collected format because the

data archiving format differs from one e-learning platform to another. Therefore, educational

data mining (EDM) and learning analytics (LA) techniques are effective in transforming these

big educational data into useful knowledge and patterns that can be applied to improve over-

all education. EDM has become an effective technique for exploring invisible knowledge and

useful patterns in educational data [27]. Nowadays, traditional education is changing at an un-

precedented pace and many academic activities are conducted on e-learning platforms. The

collection of this vast amount of educational data has opened up opportunities for research and

analysis to understand and improve learning outcomes. V. Hegde and S. Rao H.S. [65] presented

an EDM-based framework to analyze students’ performance in programming. The results of the
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analysis helped students to improve their weak concepts through frequent faculty support and

also offered benefits to institutions. Ang et al. [66] conducted a comprehensive survey and

presented architectures and their challenges for growing big educational data.

On the other hand, LA refers to the collection, analysis, and visualization of educational

data to understand and improve the learning processes and outcomes better. LA provides inter-

ventions based on the analysis of educational data to improve both learning and the learning en-

vironment [67]. Also, LA encompasses broader components of other disciplines such as EDM,

academic analytics, learning sciences, cognitive sciences, human factors, psychology, and so

on. Maher et al. [68] proposed a Personalized Adaptive Gamified E-learning (PAGE) model

to enhance MOOCs LA and visualization in the learning process. The PAGE model helped

learners in learning adaptation and visualization.

In this Chapter, our goal is to investigate the impact of practical/programming skills on aca-

demic performance through a comprehensive analysis using real-world e-learning data. Consid-

ering the context of this Chapter, these two important terms such as practical skills and academic

performance are defined as follows.

Practical skills relate to reasoning, critical-thinking, problem-solving, and implementation

skills. Let consider a basic programming course that consists of two learning activities such as

theory-based and practice-based. The practice-based activities include programming, programming-

related assignments, and coding tests. In this Chapter, performance in practice-based activities

is referred to as practical skills. On the other hand, academic performance refers to theoretical

knowledge, innovative ideas, and memorization. Performance in various theory-based activi-

ties includes algorithmic-based assignments, theory-based assignments, and paper-based tests

which are referred to as academic performance.

To accomplish this study, a novel framework is proposed to extract students’ hidden features,

patterns, and association rules. Hidden features derived from submission logs and scores carry

significant meaning. Chapter 2 makes the following contributions:

• We proposed a data analysis framework for programming education. To demonstrate

the effectiveness of the proposed framework, experiments are conducted on real-world

programming/problem-solving data.

• The correlation between programming skills and academic performance are presented.

• Various programming and academic weaknesses and strengths are highlighted through
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empirical analysis.

• Important and relevant features, rules, and patterns from the submission logs and scores

are extracted that are not plainly visible in a simple form of data.

• Useful recommendations are generated for students and educators on the basis of the

extracted features, rules, and patterns.

• The proposed framework and its data analysis process can be useful for other related

academic courses and disciplines to discover hidden features/correlations in e-learning

data. For example, this framework can be applied to a course that consists of theory and

hands-on activities and collects resources/data, like a programming course.

• The proposed data analysis framework can be integrated into e-learning platforms and OJ

systems.

• The MK-means clustering algorithm was proposed, and the effectiveness of data cluster-

ing in Euclidean space was also demonstrated.

The rest of the Chapter is structured as follows. In Section 2.2, the background and related

works are presented. Section 2.3 describes the dataset and preprocessing. In Section 2.4, the

proposed approach is presented. The experimental results are presented in Section 2.5 and

discussed in Section 2.6. Section 2.7 summarizes this Chapter.

2.2 Background and Related Works

In this section, we briefly introduce OJ or APA systems and their applications in program-

ming education. In addition, supervised and unsupervised learning algorithms, association rule

mining (ARM) algorithms, educational data mining and learning analytics are also presented.

2.2.1 Online Programming Learning Platform

OJ or APA systems are now widely used by educational institutions as academic learning

tools in programming and other exercise-based classes. These platforms play an important role

in improving students’ programming skills, knowledge, and overall academic performance. The

vast resources (e.g., code archives, submission logs, etc.) generated by these systems can help
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researchers to find students’ flaws in programming and thus expands the scope of available im-

provements. As a result, numerous studies have focused on programming education, educational

data mining, and data-driven analysis using resources from OJ or APA systems.

In [57], the authors used learning log data extracted from the M2B system. A recurrent

neural network is used to predict student performance. This study showed that numerous useful

hidden features can be extracted by analyzing the M2B system’s data. Mekterović et al. [60]

proposed an APA system for conducting programming courses and created the educational soft-

ware Edgar to automatically evaluate programming assignments and other programming-related

tasks. Edgar provides a variety of services, including content writing, course administration,

system monitoring, and troubleshooting. Furthermore, Edgar produces the results of various

statistics in a visual format. APA systems provide many benefits for students as well as instruc-

tors. Meanwhile, a ranking system [69] based on student performance and quick responses has

positively impacted programming learning. APA systems have extended the conventional use of

the OJ systems for evaluating programming assignments and their use significantly stimulates

students’ interest in programming.

In [70], the authors extended the BOCA OJ system to improve its suitability for program-

ming classes. The resulting PROBOCA project was used to aid classroom teachers. This method

identifies problems by degree of difficulty, thus making it easier for teachers to match prob-

lems with each student’s programming experience. Another study [71] presents a continuous

programming assessment system for programming courses using automated assessment tools

(AATs). A quantitative analysis was performed based on the relationship between the student

and the AAT outcome. The submitted solutions are analyzed in depth using an AAT and judg-

ments (either correct or incorrect) are provided. The experimental results showed that AATs

help students to better understand computer programming. Lu et al. [72] presented program-

ming education via an OJ system that has increased student performance levels in programming

and other academic activities. Their experimental results show that the OJ system enhanced per-

formance levels, as well as stimulated students’ interest throughout the year- or semester-long

course.

Toledo et al. [73] presented a fuzzy recommender system for OJ programming that provides

suggestions to learners regarding their upcoming problems based on their past performance in

the OJ system. That method also provided useful information to students via recommendations.

In [74], OJ programming problems were classified using two topic-modeling algorithms, latent
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dirichlet allocation and non-negative matrix factorization in order to extract relevant features

from problem descriptions. The classification of OJ programming problems can help novice

and advanced students to pick and solve appropriate problems.

Our approach differs from that of existing research by focusing on discovering hidden fea-

tures from submission logs and scores to improve programming skills and academic perfor-

mance. We also focus on finding the correlation between practical skills and academic perfor-

mance based on the extracted hidden features. To the best of our knowledge, no study has been

conducted to address this issue by using submission logs and scores.

2.2.2 Supervised and Unsupervised Learning Algorithms

Within the context of artificial intelligence and machine learning (ML), supervised and

unsupervised algorithms are frequently used in real-world applications. In short, both input

data and output labels are known in supervised learning (SL) algorithms. Formally, SL in-

volves ML algorithms that are trained with known input data and associated output labels. Let

U = {u1, u2, u3, · · · , un} be the set of input data and V = {v1, v2, v3, · · · , vn} be the set of

corresponding output labels of the input data U . Thus, the output function can be written as

V = f(U), where the output V depends on the input U and f is a mapping function. After

training, the ML algorithm can predict the output label for all new input data. SL algorithms are

divided into two categories such as classification and regression.

Classification is an SL approach that classifies a given set of data into classes. The classifi-

cation model predicts the target class for a given data point. After training, the model predicts

class names for data it has not seen before. There are two types of classification in ML such as

binary classification (true or false) and multi-class classification. Typically, the evaluation of

a classification model is done by computing the precision, recall, and accuracy scores. Ex-

amples of some classification algorithms include support vector machine, decision tree, random

forest tree, artificial neural network, similarity learning, and k-nearest neighbor [75]. Similarly,

regression is an SL approach used to predict the continuous output variable based on one or

more independent (predictors) variables. Mainly, this approach is used for forecasting, time

series modeling, prediction, and determining market trends. Examples of regression algorithms

include linear regression, logistic regression, polynomial regression, decision tree regression,

and random forest regression [75].

In contrast, unsupervised learning (USL) is a kind of ML algorithm in which models are
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trained with unlabeled datasets. The USL algorithm can group the data based on their similarity

features by applying some mathematical procedures. The USL algorithms have the following

advantages over SL including hidden feature extraction, useful insights, human-like learning,

handling unlabeled and uncategorized data. USL algorithms are divided into two categories such

as clustering and association. Clustering is a USL algorithm used to group data into clusters,

similarity characteristics of the data in a group are high, on the other hand, there is a minimal

similarities with the data of another group. Examples of clustering algorithms include k-means,

k-medoids, Density-based Spatial Clustering of Applications with Noise (DBSCAN), Clustering

Large Applications based on RANdomized Search (CLARANS), and Clustering Large Applica-

tions (CLARA). Association is a USL algorithm that is used to find relationships between items

in a large database. This algorithm determines the set of items that co-occur in a database. For

example, if three items M , N , and O exist in the database, the algorithm can generate pattern-

s/rules that co-occur such as M −→ N , (M & N) −→ O, and N −→M . These patterns/rules

are useful for analyzing market-basket, educational data, and so on. Examples of association

algorithms include Apriori and frequent pattern (FP)-growth.

In [76], students have been classified by a clustering approach based on their learning behav-

iors. The clustering by fast search and finding of density peaks via heat diffusion (CFSFDP-HD)

algorithm has achieved a better clustering performance than other clustering algorithms. The au-

thors also proposed an e-learning system architecture that detects and responds to teaching con-

tent based on student learning capabilities. Tabanao et al. [77] proposed a method that classifies

programmers using submission log data, such as compilation profiles, error profiles, compila-

tion frequency, and error quotient profiles produced during an introductory programming course.

This study identified correlations between the submission log data and the midterm examination

scores of students.

In case of our dataset, the output labels are unknown because the submission logs and class

performance scores have not yet output information that could be used for labeling (e.g., poor,

good, very good, or genius). Accordingly, as it is necessary to select an algorithm that can

group students based on their source code submission logs and class performance scores, we

expected that a clustering approach would provide the best-suited solution to group the students

from unlabeled datasets. The most commonly used and effective clustering approaches, such

as k-means, k-medoids, DBSCAN, agglomerative hierarchical cluster tree, and other variations

of k-means were found based on a review. The MK-means clustering algorithm [78], which
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we found to be a robust, scalable, and effective tool, is a variant of the conventional k-means

clustering algorithm.

2.2.3 Association Rule Mining Algorithms

ARM algorithm is a USL algorithm used for data mining in big data. ARM was first pro-

posed by Agrawal [28] and has since been used in many fields, such as educational data analysis,

medical data analysis, market-basket analysis, and census data. Usually, ARM aims to find a

set of cooccurring high-frequency items and extract the correlation among items from large

dataset. Although the Apriori algorithm [28] is often used for data mining, many enhancements

are proposed based on Apriori to improve performance and scalability, such as the sampling

approach [79], hashing technique [80], dynamic counting [81], partitioning technique [82], and

incremental mining [83]. Prior studies showed that the Apriori algorithm achieved significant

results, but some methods also reported the worse results by generating a large number of can-

didate item sets, additional scans, etc.

Subsequently, a new algorithm called FP-growth was proposed without the leverage of can-

didate item set generation [84]. This method used a partitioning-based divide-and-conquer ap-

proach. Previous studies have shown that it significantly reduced the search space and time

compared to Apriori [85]. Similarly, many extensions are added to the FP- growth algorithm

to improve efficiency. Some examples of enhanced FP-growth algorithms are h-mine [86],

depth-first mining [87], pattern-growth mining in both directions (bottom-up and top-down),

and tree structures [88, 89]. In contrast, Zaki [90] proposed the Equivalence CLASS Transfor-

mation (Eclat) algorithm for ARM applied to vertical data. The Eclat uses the same candidate-

generation process like Apriori. In brief, Apriori, FP-growth, and Eclat ARM algorithms are

most the frequently used in many applications, and also serve as the foundation of many other

ARM algorithms. In this Chapter, an FP-growth algorithm is used.

2.2.4 Rule-based Recommendation Systems

The volume and variety of content on e-learning platforms are increasing at an unprece-

dented rate, and at the same time the opportunities for research using the resources of e-learning

platforms are also increasing. Recommending relevant and appropriate content to users (e.g.,

students, instructors, and teachers) is a challenging and tough task for any e-learning platform.

Perumal et al. [33] proposed a novel personalized RS to provide appropriate supportive content
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to users. In their approach, FP-growth algorithm is applied to generate frequent items patterns,

and fuzzy logic is used to partition the content into three levels. Recently, some RSs have

been using a mixed approach of content-based filtering and collaborative filtering to achieve

high-quality results in specific contexts [34]. In addition, most RSs are built with a collabo-

rative, knowledge-based, content-based, and hybrid approaches [35]. Conventional e-learning

platforms are insufficient to assess exercise-based content such as programming solution codes

automatically, instead they can assess exercise-based contents semi-automatically [91]. Thus,

usual RS in e-learning platforms have limited suitability for programming and exercise-based

education.

2.2.5 Educational Data Mining and Learning Analytics

EDM is the same as traditional data mining, except that it is applied to educational fields.

EDM is used to extract hidden knowledge and discover patterns from the data in different ed-

ucational learning platforms [92]. In the study [92], various data mining techniques including

clustering, classification, ARM are exploited to discover useful information from the educa-

tional data. They used EDM tools (Rapid Miner and Weka) to analyze data from Moodle in

a programming course. Fernandes et al. [93] presented a predictive analysis of students’ aca-

demic performance. The Gradient Boosting Machine (GBM) classification model was applied

to predict students’ academic performance at the end of the school year. In another study [94],

a semi-supervised learning algorithm was used to predict the students’ performance in the fi-

nal exams. In the study [95], a survey of EDM and its future directions is presented. It also

discusses some recent trends in the field of EDM research.

LA has become an important research topic in the field of educational technology. This

involves understanding and analyzing real-world educational data to provide useful support for

improving learning and teaching. Tran et al. [96] used LA for a learning management system

(LMS). The experimental results showed that LA plays an important role in improving produc-

tivity, learning, and support for LMS user. Ang et al. [66] discussed LA from five different

perspectives: learning and assessment analysis, personalized learning, behavior learning, col-

laborative and interactive learning and social network analytics. Current LA trends and practices

to improve teaching and learning in education are presented in [97, 98].

In addition, numerous studies have been conducted using the resources of OJ or APA sys-

tems. These systems are actively used for education, e-learning, computing, programming com-
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petitions, and software engineering. The importance of empirical data-driven analysis to make

critical decisions, and even to change algorithm configurations automatically, is growing [99].

However, this data-driven analytical research differs from previous research in that a real-world

dataset has been used. The analytical findings of this Chapter are beneficial to assist students in

improving their academic and practical performance, as well as for educational planning.

2.3 Dataset and Preprocessing

In this section, we introduce the Aizu Online Judge (AOJ) system, which is the source of the

submission logs. Moreover, we describe submission logs and class performance scores collected

from the AOJ and a programming course, respectively as our datasets. The data types, structure,

and preprocessing steps are also presented.

2.3.1 Aizu Online Judge System

The AOJ system [18–20] is a popular OJ platform in Japan and worldwide. It has been

running for more than 15 years to host programming competitions, practices, assignments, and

education. In addition, the AOJ system is officially employed to conduct programming- and

algorithm-related courses at the University of Aizu, Japan. The AOJ’s typical courses include

Introduction to Programming I (ITP1), Algorithms and Data Structures I (ALDS1), Introduc-

tion to Programming II (ITP2), Datasets and Queries, Discrete Optimization Problems, Graph

Algorithms, Computational Geometry, and Number Theory. Thus, plenty of source codes and

submission logs are generated on a regular basis. AOJ has a rich repository with approximately

100,000 users, 3,000 problems, and 5.5 million code archives and submission logs. All the

problems are systematically categorized [100]. The AOJ’s resources have been used for various

research and application purposes [101] [102]. Recently, AOJ’s dataset has been used in the

IBM CodeNet Project [103].

2.3.2 Solution Submission logs

In this Chapter, submission logs from a programming course (ALDS1) were collected for

experiments. Usually, the problems in the ALDS1 course are assigned to students to solve, as

shown in Table 2.1. The overall topic-wise success rate (%) of this course is also mentioned in

Table 2.1. The ALDS1 course has 13 topics, and each topic consists of three (03) or four (04)
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Table 2.1: Topic-wise problem list of ALDS1 course

No. Topic Theme Average Success (%)

1 Getting Started

Insertion Sort

36.81
Greatest Common Divisor
Prime Numbers
Maximum Profit

2 Sort I

Bubble Sort

44.92
Selection Sort
Stable Sort
Shell Sort

3 Elementary Data Structures

Stack

39.57
Queue
Doubly Linked List
Application of Stack

4 Search

Linear Search

40.10
Binary Search
Dictionary
Application of Binary Search

5 Recursion/Divide and
Conquer

Exhaustive Search

42.74
Merge Sort
Koch Curve
The Number of Inversions

6 Sort II

Counting Sort

43.18
Partition
Quick Sort
Minimum Cost Sort

7 Tree

Rooted Trees

43.95
Binary Trees
Tree Walk
Reconstruction of a Tree

8 Binary Search Trees

Binary Search Tree-I

54.96
Binary Search Tree-II
Binary Search Tree-III
Treap

9 Heaps
Complete Binary Tree

38.43
Maximum Heap
Priority Queue
Heap Sort

10 Dynamic Programming
Fibonacci Number

51.82Matrix Chain Multiplication
LCS of Strings

11 Graph I

Graph

47.16
Depth First Search
Breadth First Search
Connected Components

12 Graph II
Minimum Spanning Tree

54.38Single Source Shortest Path I
Single Source Shortest Path II

13 Heuristic Search
8 Queens Problem

45.768 Puzzle
15 Puzzle
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problems which we call problems A, B, C, and D.

Table 2.2: Sample submission logs generated by the AOJ system

UID JID P Verd Lang
CPU
time
(1/100 s)

Memory
usage
(KB)

Code
size
(Byte)

Submission
date (ms)

u1 3573821 p1 RTE Python3 0 0 71 1557999872496
u2 3574251 p2 AC C++11 0 3444 1885 1558007384660
u3 3573537 p3 CE C++ 1 3404 1684 1557998419203
u4 3556699 p4 WA C++ 2 3104 1708 1557482997985
u5 3536901 p5 TLE C++ 399 3280 2199 1556795320402
u4 3383318 p10 AC C 29 5748 936 1550129425882

The logs are generated by the AOJ system based on the submitted solution codes by the

students over two semesters, the size of the submission logs is approximately 69,000. Each

solution log has a set of information, such as the judge id (jid), user id (uid), problem id (pid),

language (C, C++, python, etc.), accuracy, verdict (accepted, wrong answer, compile error, etc.),

CPU time, memory usage, code size, submission date, and judge date. Let UID be a set of

users (students) i.e., UID = {uid1, uid2,· · · , uidn}, n ≥ 1. JID is a set of judge IDs JID =

{jid1, jid2, · · · , jidm}, m ≥ 1; Prob is a set of problems Prob = {prob1, prob2, · · · , probk},

k ≥ 1 where prob1, prob2, · · · probk are unique problems; judge verdicts are V erd = {AC,

WA, CE, RTE, MLE, TLE, OLE, PrE} where AC = Accepted, WA = Wrong Answer,

CE =Compile Error, RTE = Run Time Error, TLE = Time Limit Exceeded, OLE = Output

Limit Exceeded, MLE = Memory Limit Exceeded, and PrE = Presentation Error; and the

programming languages are Lang = {C, C++, C++11, Ruby, Python 2, Python 3, Java,

Haskell, C#, PHP , Rust, · · · }. A corresponding submission log is created immediately

after submitting a solution code to the AOJ system. Thus, a sample output log of AOJ system

can be written as Ologs = {ur, js, pt, vu, lv, ct, mu, cs, sd, jd}, where ur ∈ UID, js ∈ JID,

pt ∈ Prob, vu ∈ V erd, lv ∈ Lang, ct = CPU time, mu =Memory usage, cs =Code size,

sd =Submission date, jd =Judge date. Some sample logs generated by the AOJ system are

listed in Table 2.2.

2.3.3 Class Performance Scores

In addition to the submission logs, we collected various test (exam) scores for the ALDS1

course from 357 students in two different years at the University of Aizu, Japan. Usually, most

students take the ALDS1 course as part of their regular study. This course consists of vari-
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ous tests, such as algorithm assignment (AA), programming assignment (PA), code validation

(CV al), coding test (CoT ), and paper-based test (PT ). Note that PA and CV al are calculated

based on the student’s program submission to the AOJ system. To check the plagiarism/simi-

larity/duplication of submitted solution codes, a plagiarism checking software (PCS) has been

developed and integrated into the management system of AOJ. The PCS checks solution codes

submitted by the students against the existing source codes in the AOJ. The PCS generates a

CV al score for submitted codes based on the degree of similarity, and the codes are collected

from a specific time period and users. A score of 1 means that there is no copying/duplication,

0.5 means that a few codes are copied from others, and 0 means that a number of codes are

copied from others. In addition, CV al is used to justify the scores of PA. Some sample data

distribution of student evaluations are listed in Table 2.3.

Table 2.3: Sample data distribution of student evaluations

UID AT AA PA CVal PT CoT T Prac
u1 12 85 90 1 80 75 82.5 82.2
u2 10 75 85 0.5 85 70 79.8 38.6
u3 11 80 100 1 75 90 77.5 94.9
u4 13 90 110 0.5 90 110 90.0 55.0
u5 9 65 70 0.5 75 60 69.8 32.4
u6 13 95 105 1 90 100 92.5 102.5
u7 10 78 85 0 60 70 68.4 0.0

Definition 2 The CV al score refers to the degree/level of program code plagiarism.

Example 1 If a user u15 copies/replicates programs from others, then u15 receives a CV al

score of 0.5; if user u15 copies/replicates the code from others with malicious intent, CV al is 0.

Each exercise class is divided into two parts. First, students are asked to submit an AA,

which consists of a few questions and is also considered student attendance (AT ). Second,

three or four problems are given to the students as a PA. The students are then encouraged to

submit their solutions through the AOJ system. Students are allowed to consult with each other,

teachers, and teaching assistants to solve problems during PA. In contrast, CoT is conducted in

exercise rooms with a separate workstation for each student, providing a process by which each

student’s actual programming capabilities can be verified. Note that it is strictly forbidden for a

student to consult with other students during the CoT . Similarly, the PT is a closed-book test

that is given to check the true level of each student’s theoretical understanding. The test scores

distribution can be expressed as Tscore = {UID, AT , AA, PA, CV al, PT , CoT , T , Prac},
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where AT ∈ N and 0 ≤ AT ≤ 13, AA ∈ N and 0 ≤ AA ≤ 100, PA ∈ N and 0 ≤ PA ≤ 120,

CV al ∈ R and 0 ≤ CV al ≤ 1, PT ∈ N and 0 ≤ PT ≤ 120, CoT ∈ N and 0 ≤ CoT ≤ 120,

T ∈ N and 0 ≤ T ≤ 120, Prac ∈ N and 0 ≤ Prac ≤ 120. To better evaluate the students

of the ALDS1 course by considering the importance of theoretical and practical knowledge, the

equations (2.1), (2.2), and (2.3) are developed for the Theory (T ), Practical (Prac) and Final

Score (FS) calculations, respectively, based on the different test scores. Note that the equations

for the ALDS1 course are approved by the course coodinator.

T =
√
AA× PT (2.1)

Prac =
√

(PA× CoT )× CV al (2.2)

FS = min(100, b
AT+1

10
c ×

√
(T × Prac)) (2.3)

For explanation, the student evaluation process is compared using the following two scenar-

ios: (i) the conventional case and (ii) the proposed case (based on the equations).

Conventional Case: In this case, the final results are usually generated by averaging Prac and

T scores. For example, if student s1 gets 10 points on the Prac test and 90 points on the T test,

the final result of s1 using the conventional method is (10 + 90)/2 = 50.

Proposed Case: In this case, Prac and T scores are given equal priority to generate final re-

sults, so the equations (2.1 − 2.3) are introduced to emphasize both the Prac and T scores. Let

us assume that if student s1 gets 10 points on the Prac test and 90 points on the T test, the

final result of s1 using our equations will be
√

10× 90 = 30. We observed that the proposed

evaluation method considers both the Prac and T scores, although there is no balance between

the Prac and T scores when calculating the final result using the conventional method.

For statistical feature extraction and ARM, Tables 2.2 and 2.3 are joined (Ologs 1 Tscores)

to produce the operational data, as shown in Table 2.4. In addition to the existing attributes, a

new attribute (Accuracy) has been added to the operational data.

Definition 3 The number of accepted solutions out of total submissions is called the solution

Accuracy of users.

Accuracy(Accu) =

∑pn
i=1 TASi∑pn
i=1 TSi

(2.4)

where pn = number of problems, TAS = total accepted solutions, and TS = total submissions.
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Table 2.4: Sample operational data distributions by joining submission logs (Table 2.2) and
evaluation scores (Table 2.3)

UID P Verd Accu (%) mu cs CVal PA CoT PT
u1 p1 AC 70 1164 116 1 90 75 80
u2 p2 WA 65 1072 125 0.5 85 70 85
u3 p7 RTE 84 1124 239 0.5 100 90 75
u1 p2 TLE 70 1064 96 1 90 75 80
u5 p1 AC 88 1143 209 0.5 70 60 75

Example 2 Let u5 be a user who has submitted a total of 39 solutions to the AOJ system,

of which, a total of 28 have been accepted. Then, the solution accuracy of the user u5 is

(28/39) = 71%, according to (2.4).

Another important term is trial and error (T&E), we use the T&E method to estimate a

programmer’s ability to solve problems. In this Chapter, the following definition is adopted for

the T&E method.

Definition 4 A number of repeated attempts are taken until a problem is successfully solved;

this process is called trial and error (T&E).

T&E =

∑pn
j=1 TSj∑pn

j=1 TASj
(2.5)

where pn = number of problems, TS = total submissions, and TAS = total accepted solutions.

Example 3 Suppose that u10 is a user who has received a total of 25 accepted (AC) verdicts

from the AOJ for 5 problems, but has taken a total of 129 attempts (T&E) to achieve it. Then,

the average T&E of user u10 for each solved problem is (129/25) = 5.16, according to (2.5).

2.4 Approach

Figure 2.1 shows an overview of the proposed framework of the data-driven approach. We

employed the framework to a real-world dataset to extract the hidden features and association

rules of students to explore the importance of practical skills. Experimental data are collected

from AOJ system and ALDS1 programming course, respectively. The proposed approach con-

sists of four main steps: (i) data collections and preprocessing, (ii) data clustering, (iii) sta-

tistical hidden features extraction from clusters, and (iv) patterns and association rules mining

from clusters. A MK-means clustering algorithm is applied for data clustering, where the elbow
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method used to select the optimal k values for the MK-means. Furthermore, the FP-growth

ARM algorithm is leveraged to extract the association rules from each cluster. The methods and

algorithms used for the proposed approach are discussed below.

Figure 2.1: The overall framework of the data-driven approach

2.4.1 Elbow Method

The elbow method is a proven technique to determine the optimal number of clusters k for

the k-means algorithm. It uses the sum of squared errors (SSE) of each cluster to calculate the

optimal number of clusters. The SSE is calculated by the equation (2.6).

SSE =
k∑

i=1

∑
x∈Ci

dist2(mi, x) (2.6)

where k is a number of clusters, x is a data point in cluster Ci, and mi is the center of cluster

Ci.

The elbow method reduces unnecessary clustering in the dataset, where a small SSE value

indicates a better cluster. Normally, increasing the value of k automatically decreases the SSE

value. When the SSE value is drastically decreased, that point is caught as the ideal number

(k) of clusters for k-means. The elbow method was applied to our dataset to obtain the optimal

k value (k = 4) for the MK-means clustering algorithm, as shown in Figure 2.2.

2.4.2 Modified K-means Clustering Algorithm

Usually, the k-means clustering algorithm randomly chooses the initial centroid, so it is pos-

sible to select an irrelevant data point as the initial centroid. In addition, conventional k-means

algorithms cannot detect and remove outliers from the dataset. Consequently, the results may

have a negative impact on the overall clustering process and results. To address these problems,

the MK-means clustering algorithm [78] integrates two important modules, (i) optimal initial
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Figure 2.2: Elbow method for optimal k selection

centroid selection and (ii) outlier detection and removal.

Algorithm 1 Initial Centroid Selection Module (ICSM)
Define: Distance: D, Origin: O(0, 0), Cluster Number: K
Input: Dataset: X = {x1, x2, x3, · · · , xn}
Output: Optimal initial centroids Cn=[]
for xj ∈ X do

D ←− distance(xj , O)
end
for di ∈ D do

Apply sorting on D
D ←− d1, d2, d3, · · · , dn

end
if K ≤ |X| then

Divide sorted data D into K subsets
s1 ⊆ D, s2 ⊆ D, s3 ⊆ D, s4 ⊆ D, · · · , sk ⊆ D

end
while k ≤ K do

Calculate Mean value of each subset
Mk =

∑
xx∈Sk
|Sk|

for xj ∈ Sk do
Cn ←− mindistance(Mk, xj∈Sk

)
end

end

To the best of our knowledge, this is a unique modification of the k-means clustering al-

gorithm, and these two modules makes the algorithm more efficient, robust, and scalable. The

MK-means algorithm takes approximately 17.33% fewer iterations to construct clusters for our

dataset than other random initial centroid-selection algorithms. The first module is initial cen-

troid selection module (ICSM) which leverages to (i) select optimal centroids and (ii) build

clusters with the most similar data. The pseudocode of ICSM is provided in Algorithm 1.

The second module is the outlier detection module (ODM), which is used to (i) detect out-

liers (irrelevant/insignificant data point), (ii) remove them from the datasets, and (iii) improve

the overall cluster quality. The pseudocode of the ODM is presented in Algorithm 2. More-
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over, the MK-means algorithm showed the effectiveness of clustering multidimensional data in

Euclidean space.

Algorithm 2 Outlier Detection Module (ODM)
Define: Number of Cluster: K, Cluster: C
Input: Dataset: X = {x1, x2, x3, · · · , xn}, Distance: D
Output: Outliers: O, SSE
Run ICSM and Calculate min-max average (MMA) using sorted distance d ∈ D
MMA = dmin+dmax

2

while k ≤ K do
for xi ∈ XCk

do
if distance(xi, centerCk

) > MMA then
Remove xi from the cluster Ck

O ←− xi
Recalculate SSE

end
end

end

2.4.2.1 Multidimensional Data Clustering in Euclidean Space

The growing collection of structured, unstructured, and multidimensional data in a variety

of media has created challenges in the field of data science. However, clustering of multidimen-

sional data is a tricky and challenging task. Conventional clustering algorithms have limitations

in clustering multidimensional data. To alleviate this problem, the MK-means clustering al-

gorithm can efficiently handle multidimensional data (numerical data) in Euclidean space for

clustering. Table 2.5 shows an example of a four-dimensional (A1, A2, A3, A4) data set. Ac-

cording to the ICSM module of the MK-means clustering algorithm, the distance from the origin

(O) is calculated for each data point. Here we describe a mathematical procedure for calculating

the distance of multidimensional data points.

Table 2.5: An example of 4-dimensional dataset

Data Points A1 A2 A3 A4 Distance
z1 14 5 9 12 21.12
z2 7 10 11 21 26.66
z3 15 9 6 10 21.02
z4 20 28 17 13 40.52
z5 18 24 19 15 38.55

The mathematical model for multidimensional data normalization for clustering by ICSM

(Algorithm 1) is as follows:

Let Z = {A1, A2, A3, · · · , An} and O = {O1, O2, O3, · · · , On} be the multidimensional
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data point and the origin, respectively, where n is the number of dimensions. Now, the distance

between Z and O can be expressed by Equation 2.7.

D(O,Z) =
√

(01 −A1)2 + (02 −A2)2 + · · ·+ (0n −An)2 (2.7)

The generalized formula for the distance calculation between multidimensional data points

and the origin is shown in Equation 2.8.

Distance D(O,Z) =

√√√√ N∑
i=1

(O − ZAi)
2 (2.8)

whereN is the number of dimensions,O is the origin, and ZAi is the data in each dimension

of a data point.

Here we calculated the distance according to Equation 2.8 for each data point (in Table 2.5)

as follows:

dz1 =
√

(0− 14)2 + (0− 5)2 + (0− 9)2 + (0− 12)2

= 21.12

dz2 =
√

(0− 7)2 + (0− 10)2 + (0− 11)2 + (0− 21)

= 26.66

dz3 =
√

(0− 15)2 + (0− 9)2 + (0− 6)2 + (0− 10)

= 21.02

dz4 =
√

(0− 20)2 + (0− 28)2 + (0− 17)2 + (0− 13)

= 40.52

dz5 =
√

(0− 18)2 + (0− 24)2 + (0− 19)2 + (0− 15)

= 38.55

Furthermore, as per the ICSM module (Algorithm 1), the data points are sorted (in ascend-
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ing or descending order) based on their calculated distance values. Subsequently, the data points

are partitioned according to the specified k values. In addition, optimal initial centers are se-

lected and other clustering tasks are performed. In the clustering process, ODM is another

effective module (Algorithm 2) that can detect and remove the most irrelevant data points from

the dataset. In this way, the probability of selecting irrelevant data points as optimal initial cen-

ters is reduced. Figure 2.3 shows an example of two-dimensional data distribution in Euclidean

space, where the distance of the data points from the origin can be calculated.

Figure 2.3: An example of two-dimensional data distribution in Euclidean space

2.4.3 FP-growth Algorithm

In the field of data mining, the Apriori, Eclat, and FP-growth algorithms are the most com-

monly used [32]. The FP-growth algorithm is much more efficient and faster than Apriori

because the Apriori algorithm repeatedly scans the database, whereas the FP-growth algorithm

only scans twice to complete the process. The FP-growth algorithm [84] basically consists of

two (2) main steps, namely (i) construction of the FP-tree and (ii) FP mining based on the FP-

tree. Let L = {l1, l2, l3, l4, · · · , ld} be the set of all items in the database. The databases are

built based on a set of tuples/transactions T = {t1, t2, t3, t4, · · · , tN}, where each transaction

ti is a subset of L(ti ⊆ L). The formula of an association rule can be written as R = X −→ Y ,
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where X , Y is a subset of L (X ⊆ L, Y ⊆ L) and X ∩ Y = φ. The set of items in X is often

called the preceding (if ), and the set of items in Y is called the subsequent (then). Mathemati-

cally, the support count for item set X is expressed as ς(X) = |{ti|X ⊆ ti, ti ∈ T}|, where |.|

denotes the number of elements in a set. The minimum support (minSup) and minimum confi-

dence (minConf ) are two important terms that are used to create association rules and patterns.

The minSup threshold is used to find item frequencies in a database, whereas the minConf

threshold value is applied to these frequent items to construct the association rules. The support

(Sup) and confidence (Con) are represented by the equations (2.9) and (2.10), respectively.

Sup(X −→ Y ) =
ς(X∪Y )

N
(2.9)

Con(X −→ Y ) =
ς(X∪Y )

ς(X)
(2.10)

where N = total number of transactions.

2.5 Experimental Results

In this section, the experimental results are presented. We first cluster students based on

their submission logs and scores, and then extracted the hidden features from each cluster. The

association rules are generated from each cluster using the FP-growth algorithm to validate the

features. Finally, all the correlated features are accumulated for discussion.

2.5.1 Clustering the Data

According to the proposed framework (Figure 2.1), the MK-means clustering algorithm is

applied to the Table 2.3 for the clustering process. Before clustering begins, the elbow method

is applied to the same data to generate the optimal number (k = 4) of clusters, as shown in

Figure 2.2. Now, four clusters have been formed, named clusters P , Q, R, and S. Note that

multidimensional data (Table 2.3) are clustered. To visualize the data distribution of each cluster,

we applied principal component analysis (PCA) technique [104] to multidimensional clustered

data to convert it into a two-dimensional (2D) shape. For this reason, the first two components

(PCA 1 and PCA 2) of the PCA that explain the majority of the variance in the data are used for

the 2D visualization. The visualized clusters are shown in Figure 2.4.
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Figure 2.4: 2D visualization of the clusters

First, the preliminary statistical information related to each cluster, (i) the number of stu-

dents per cluster and (ii) the total number of problems solved by the students in each cluster, is

presented in Table 2.6. We found that approximately 33.33% of the students are in cluster Q,

which is the largest, and approximately 16.01% of the students are in cluster P , which is the

smallest. On the other hand, the students in cluster Q generated the largest submission log of

22,110, and the students in cluster S produced the smallest submission log of 5,153.

Table 2.6: Preliminary statistical information of each cluster

Cluster Submission logs Students (%)
P 13099 16.01
Q 22110 33.33
R 17274 32.02
S 5153 18.62

2.5.2 Extracting Hidden Features

In this section, different features of students are extracted from clusters P , Q, R, and S.

We calculated the solution verdicts (considering problems A, B, C, and D) in each cluster,

as denoted in Table 2.7. Each submission log contains at least one judge verdict out of many

(AC,WA,CE, etc.). Therefore, each verdict determined the ultimate result of a submitted

solution. A few observations can be illustrated from the Table 2.7: (i) clusters P and S have

the highest AC rates, (ii) the students of cluster R achieved the lowest AC rates, and (iii) the

students of cluster R received higher error verdicts than those in other clusters.

Also, we enumerated problem-wise statistics of the submitted solutions to find out how

many submissions belong to each problem such as A, B, C, and D in each cluster, as presented
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Table 2.7: Overview of the judge verdicts of ALDS1 course

Verdict Cluster P Cluster Q Cluster R Cluster S
AC (%) 40.88 36.34 32.70 39.19
WA(%) 26.71 28.92 29.46 25.69
CE (%) 7.37 11.95 14.88 18.59
RTE (%) 8.81 8.80 8.71 6.29
PrE (%) 4.76 7.02 7.94 6.46
TLE (%) 10.19 6.48 6.11 3.80
MLE (%) 1.20 0.44 0.16 0.00
OLE (%) 0.03 0.04 0.04 0.00

in Table 2.8. A few observations can be drawn from the Table 2.8: (i) Students of cluster P

submitted the fewest solutions to problem A, at 30.99%, compared to clusters Q, R, and S.

(ii) Cluster P students submitted the highest number of solutions for problems C and D, at

32.82% and 10.55%, respectively, compared to clusters Q, R, and S. (iii) Students of clusters

R and S submitted the fewest solutions for problems C and D, compared to clusters P and Q,

respectively.

Table 2.8: Overview of the submission statistics for each type of problem

Problem Cluster P Cluster Q Cluster R Cluster S
A 30.99% 39.17% 48.73% 49.19%
B 25.65% 30.28% 32.19% 29.09%
C 32.82% 25.04% 16.02% 18.11%
D 10.55% 5.51% 3.06% 3.61%

In contrast, the error verdicts of each cluster are also calculated. The segmentation of error

verdicts received by the students in each cluster are shown in Figure 2.5. For that, the error

verdicts are divided into five (05) categories based on the error types in codes such as (i) WA,

(ii) CE, (iii) RTE, (iv) PrE, and (v) Resource Limitation (TLE, MLE, OLE) i.e., RL.

Detailed error statistics for each cluster are presented in Figure 2.5.
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Figure 2.5: Segmentation of error verdicts received by the students
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Now, the solution accuracy and T&E are calculated for each cluster, as enumerated in

Table 2.9. A few observations can be drawn: (i) the students of clusters P and Q have more

T&E as well as higher solution accuracy, and (ii) both the solution accuracy and T&E of

cluster R are lower than those of other clusters. Note that the solution accuracy and T&E are

calculated by equations (2.4) and (2.5), respectively.

Table 2.9: Cluster-wise solution accuracy and problem-solving T&E

Cluster Avg. solution accuracy (%) Avg. T&E
P 55.71 12.40
Q 48.45 10.14
R 43.15 9.52
S 45.18 9.86

Next, the average score and standard deviation (σ) for each cluster are calculated, as shown

in Table 2.10 and the comparative views presented in Figure 2.6. Standard deviation (σ) is used

to measure the variation of values in a cluster. Thus, a low value of σ indicates that the values

are likely close to the mean (average). The following observations can be drawn: (i) the CoT ,

PA, and PT scores of cluster P are much higher than those of clusters Q, R, and S; (ii) the

PA, CoT , and PT scores of cluster Q are higher than those of clusters R and S; (iii) the CoT

score of cluster R is comparatively lower than the other PA and PT scores of this cluster; (iv)

the CoT score of cluster S is also much lower than those of clusters P , Q, and R.

Table 2.10: Overview of the average scores and standard deviation (σ) in each cluster

Cluster PA σ-PA CoT σ-CoT PT σ-PT
P 97.46 13.95 78.55 16.70 98.79 11.67
Q 81.43 15.97 48.21 12.61 84.51 15.15
R 60.92 17.80 28.46 10.68 68.26 16.60
S 65.19 34.96 16.55 14.48 53.79 30.05

We found more interesting features from the clusters. For example, students solved numer-

ous additional problems beyond their regular exercise assignments through the AOJ platform,

solely for their own interests and amusement. The cluster-wise extra problem solution statistics

are listed in Table 2.11. The following observations can be drawn from the Table 2.11: (i) the

students of cluster P solved a huge number of problems beyond their regular exercise assign-

ments, which clearly indicates their enthusiasm for programming, and (ii) the students in other

clusters (Q, R, and S) did not solve a significant number of extra problems.

The tendency to submit each assignment in the ALDS1 course is analyzed for more infor-

mation. There are a few rules to submit each PA task through the AOJ platform: (i) problems
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Figure 2.6: Comparison of scores in different tests

Table 2.11: Statistics of extra problem solutions

Cluster Average number of extra problem solutions
P 56.14
Q 0.68
R 2.31
S 0.00

A and B must be solved by a certain predetermined deadline, where students usually have eight

(08) days to submit each assignment, and (ii) problems C and D can be submitted by the end

of the semester. One of our goals is to observe students’ submission trends for each topic, how

they submitted solutions to problems A and B within the allotted time, because problems A and

B are mandatory for scoring. The average submission trend among all clusters over a period of

time (08 days) is shown in Figure 2.7. The following observations can be illustrated from the

Figure 2.7: (i) the students of cluster P tried very hard to solve and submit their assignments

(problems A and B) on the very first day of the submission period, (ii) the students of clusters

R and S made less effort in submitting assignments during the first few days of the submission

period compared to clusters P and Q, and (iii) more students from clusters R and S submitted

their assignments on the last day (8th) of the submission deadline than students from clusters P

45



CHAPTER 2. A COMPREHENSIVE DATA-DRIVEN ANALYSIS TO EXPLORE THE IMPACT OF
PROGRAMMING IN EDUCATION

and Q.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0

10

20

30

40

50

60

Days

To
ta

lS
ub

m
is

si
on

s
(%

)

Cluster P
Cluster Q
Cluster R
Cluster S

Figure 2.7: Tendency to submit assignments within the allotted period (08 days)

Sometimes students submitted their solutions after the deadlines. The topic-wise accepted

(AC) solution rate and average accepted (AC) rate for all clusters are calculated and listed in

Table 2.12. Moreover, a visual comparison between all topics for all clusters is presented in

Figure 2.8. A few observations can be found: (i) the students of cluster P received the highest

acceptance against all their assignment submissions and (ii) the students of cluster R obtained

the lowest acceptance rate compared to those in clusters P , Q, and S.

Table 2.12: Topic-wise average accepted (AC) solution rate

Topic Accepted Solution (%)
Cluster P Cluster Q Cluster R Cluster S

1 29.70 25.60 22.04 25.24
2 60.03 46.71 38.19 35.73
3 43.10 33.65 27.37 27.57
4 45.56 38.41 32.71 38.43
5 47.10 35.81 36.12 28.69
6 47.35 34.62 32.62 40.51
7 29.87 28.74 22.08 36.57
8 52.04 50.55 42.62 37.77
9 41.78 38.10 35.07 38.67
10 48.11 43.75 40.10 53.68
11 59.70 49.82 40.38 42.27
12 54.15 46.29 44.59 55.56
13 42.95 48.71 47.25 72.95
Average 46.24 40.06 35.47 41.05

We also analyzed the data across all clusters to find the assignment submission trends on the
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Figure 2.8: Comparison of topic-wise accepted (AC) rate

last (8th) day of the allotted time. A comparative analysis of the tendency to submit assignments

on the last day of each topic is presented in Figure 2.9. The average submission rate on the last

day is also calculated across all topics, as shown in Table 2.13.

It can be observed that among all clusters, (i) students of clusters R and S submitted most

solutions on the last day and (ii) students of cluster P submitted the fewest solutions on the last

day.

Table 2.13: Average submission rate on the last day

Cluster Average submission rate (%)
P 2.90
Q 10.28
R 20.06
S 22.22

To obtain more interesting hidden features that are not plainly visible in the dataset, we

analyzed the data of each cluster and found that many students repeatedly solved problems

(already accepted) for optimization in terms of memory usage, CPU time, code refactoring, etc.

The repetition tendency (only for accepted problems) of students in each cluster is calculated.

The ALDS1 course has thirteen topics, each with four problems (A, B, C and D), for a total of

52 unique problems (say, total problem TP = 52). We determined how many students in each

cluster repeatedly solved 25%, 50%, and 75% of the TP , as enumerated in Table 2.14.

The students participation (maximum and minimum) from each cluster are enumerated as

follows: (i) 92.86% students of cluster P repeatedly solved 25% of the TP whereas 28.21%
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Figure 2.9: Tendency to submit assignments on the last day

Table 2.14: Repetition tendency of accepted problems

Problems Number of students (%)
Cluster P Cluster Q Cluster R Cluster S

25% of TP 92.86 80.90 63.16 28.21
50% of TP 44.05 24.16 5.85 5.13
75% of TP 9.52 3.37 0 0

of students of cluster S participated, which is the lowest; (ii) for 50% TP repetition, 44.05%

and 24.16% of students from clusters P and Q participated, respectively; and (iii) for 75% TP

repetition, 9.52% students participated from cluster P , which is the largest and no students (0%)

participated from clusters R and S.

Here, the CV al scores are calculated for each cluster, with average scores of 1, 0.96, 0.96,

and 0.44 for clusters P , Q, R, and S, respectively. The students in cluster S received an average

CV al score of 0.44, indicating poor coding skills. According to the Definition 2, they likely

copied someone else’s code to solve the assignments. In contrast, the students of clusters P , Q,

and R obtained higher CV al scores.

2.5.3 Discovering Frequent Data Patterns for Clusters

In this part of the experiment, the FP-growth algorithm is used to discover the frequent data

patterns in each cluster. Before the FP-growth algorithm is applied, we prepare clusters’ data

in a uniform data format. Therefore, the prominent attributes such as Prob, Accu, V erd, PA,

CoT , and PT are selected for ARM. Let W = {{Prob}, {Accu}, {V erd}, {PA}, {CoT},
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{PT}} be a set of attributes, where Prob = {catId | catId ∈ N, 1 ≤ catId ≤ 59}, Accu = {catId

| catId ∈ N, 60 ≤ catId ≤ 69}, V erd = {catId | catId ∈ N, 70 ≤ catId ≤ 79}, PA = {catId |

catId ∈ N, 80 ≤ catId ≤ 89}, CoT = {catId | catId ∈ N, 90 ≤ catId ≤ 99}, and PT = {catId

| catId ∈ N, 100 ≤ catId ≤ 109}. Thus, the sets Prob, Accu, V erd, PA, CoT , and PT are

a subset of W , i.e., Prob ⊆ W,Accu ⊆ W,V erd ⊆ W,PA ⊆ W,CoT ⊆ W,PT ⊆ W .

The values of the elements in each set have been converted into uniform categorical IDs (catId)

according to the dictionary in Table 2.15. After the cluster data is converted into uniform catId,

the sample data formats of the tuples are as follows: W1 = {29, 60, 70, 81, 90, 100}, W2 =

{17, 61, 71, 80, 92, 102}, and W3 = {32, 58, 70, 81, 91, 101}.

Table 2.15: Dictionary for the set attributes

catId Categorization of values Attributes
1-59 prob1, prob2, prob3 · · · prob57 Problems (Prob)
60 ≥ 75%

Accuracy (Accu)
61 60%−74%
62 45%−59%
63 < 45%
70 Accepted (AC)

Verdicts (V erd)

71 Compile Error (CE)
72 Memory Limit Exceeded (MLE)
73 Output Limit Exceeded (OLE)
74 Presentation Error (PrE)
75 Run Time Error (RTE)
76 Time Limit Exceeded (TLE)
77 Wrong Answer (WA)
80 ≥ 80%

Programming Assignment(PA)
81 65%−79%
82 45%−64%
83 < 45%
90 ≥ 80%

Coding Test (CoT )
91 65%−79%
92 45%−64%
93 < 45%
100 ≥ 80%

Paper-based Test (PT )
101 65%−79%
102 45%−64%
103 < 45%

First, the frequency of different attributes in each cluster is calculated, then, the ranking of

the attributes based on frequency is also enumerated. Finally, we compute the frequent data

patterns for each cluster by varying the minimum support (minSup) value. Note that minSup

is used to find frequent itemsets from transactions in the database. For better understanding, we

assume minSup = 3 for a transactional database (TDB). In this case, an item a appears 4 times
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Figure 2.10: Overview of the frequency of attributes in different clusters

out of total 8 transactions in TDB, and since item a satisfies the minSup value (a ≥ minSup),

item a is called a frequent item. In Figure 2.10, we enumerate the frequency of each attribute to

investigate interesting patterns of attributes in each cluster. Since the values of the attributes are

divided into different groups, and each group is represented by a specific ID. So, in each sub-

figure of Figure 2.10, the X-axis represents the ID of the attribute, and the Y -axis represents

the frequency.

Several observations can be made from this figure. (i) As shown in Figure 2.10a, most

students are interested in solving the first 30 problems, but out of this common trend, students in

cluster P attempted to solve all problems. In addition, students in clusters Q and R solved more

problems than the other clusters. (ii) In Figure 2.10b, students in cluster Q achieved the most

AC and WA verdicts among the other clusters based on their submissions. (iii) As shown in

Figure 2.10c, students in all clusters maintain the same pattern for Accu. Most of the students

in cluster Q achieved high Accu than those of clusters P , R, and S, at the same time students in

clusters Q and R obtained the most number of low Accu. (iv) For the PA scores, as shown in

Figure 2.10d, most of the students in cluster P obtained high scores, while most of the students

in cluster R obtained low scores. (v) As shown in Figure 2.10e, students in clusters R and S

did not achieve high scores (below 65%) in the CoT , instead most of them received low scores.

However, more students from cluster P achieved high scores in the CoT than those of cluster
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Figure 2.11: Overview of attribute ranking using frequencies for each cluster

Q. (vi) As shown in Figure 2.10f, most students in clusters P and Q obtained high scores in the

PT , in contrast, more students from clusters R and S obtained low PT scores.

Attribute ranking was calculated on the basis of the frequency values in each cluster. Fig-

ure 2.11 shows the frequency distribution of attributes. The X-axis shows the ranking of the

attributes in order of frequency values, and the Y -axis shows the frequency of the attributes.

From this figure, the following observations can be drawn: (i) the distribution of attribute

frequency is a long tail (or exponential) distribution; (ii) the frequency of a small num-

ber of attributes (especially the top 20 attributes) is high, and the frequency of the remaining

attributes is relatively low; (iii) there are similarities in the frequency-based ranking patterns

of each cluster. The attributes of clusters Q and R are more frequent (higher frequency) than

those of the other clusters.
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Figure 2.12: Overall ranking-trend of the attributes based on frequencies of clusters

Here, we summarized the frequencies of all clusters and created a ranking curve for the

attributes, as shown in Figure 2.12. This ranking curve is similar to the curves for the individual

clusters, reflecting the fact that the distribution of attribute frequencies is a long tail, with the

first few attributes achieving high frequencies.
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Next, we generated frequent patterns from each cluster. Figure 2.13 shows the number of

frequent patterns available for each cluster at various minimum support (minSup) values. In

order to generate patterns for each cluster, we diversified the value of minSup in the range of

500 to 3,500. From this figure, several observations can be made. (i) As the minSup value

for each cluster increases, the number of frequent patterns decreases. Because of many patterns

could not satisfy the increasing minSup value. (ii) Clusters Q and R have the highest number

of patterns generated with any number of minSup values. Cluster S has the lowest number of

patterns generated with any number of minSup values.
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Figure 2.13: A number of generated frequent patterns based on different minSup values

2.5.4 Association Rule Mining

The FP-growth algorithm is applied to the clustered data to find the association rules, which

help identify the actual relationship between programming skills and academic performance. In

addition, the association rules are used to verify the extracted statistical features of each cluster.

Interesting and relevant association rules are obtained from each cluster by setting the optimal

minimum support (minSup) and confidence (minConf ) threshold values. For cluster P , we

set minSup = 1500 and minConf = 90%. Consequently, the frequent rules shown in Table

2.16 are obtained.

Table 2.16: Association rules for the students of cluster P

Rules
R1: PT ≥ 80% && V erd == AC && PA ≥ 80%→ Accu(≥ 75%)
R2: PT (65%− 79%) && V erd == AC → Accu(≥ 75%)
R3: PT ≥ 80% && V erd == AC → Accu(≥ 75%)
R4: V erd == AC && PA ≥ 80%→ Accu(≥ 75%)
R5: V erd == AC && CoT (45%− 64%)→ Accu(≥ 75%)

In Table 2.17, the association rules extracted from cluster Q using the values minSup =
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2000 and minConf = 90% are listed.

Table 2.17: Association rules for the students of cluster Q

Rules
R1: PT (65%− 79%) && V erd == AC → Accu(≥ 75%)
R2: PT (45%− 64%) && V erd == AC → Accu(≥ 75%)
R3: V erd == AC && PA(65%− 79%) && CoT < 45%→ Accu(≥ 75%)
R4: PT (65%− 79%) && V erd == AC && CoT < 45%→ Accu(≥ 75%)
R5: V erd == AC && CoT < 45%→ Accu(≥ 75%)
R6: V erd == AC && CoT (45%− 64%)→ Accu(≥ 75%)
R7: V erd == AC && PA(65%− 79%)→ Accu(≥ 75%)
R8: V erd == AC && PA(45%− 64%)→ Accu(≥ 75%)
R9: V erd == CE → Accu(< 45%)

Similarly, valuable rules are also extracted from cluster R when minSup = 3000 and

minConf = 90%. The generated rules are listed in Table 2.18.

Table 2.18: Association rules for the students of cluster R

Rules
R1: PT (45%− 64%) && Accu < 45%→ CoT < 45%
R2: PT (65%− 79%)→ CoT < 45%
R3: V erd == AC → Accu ≥ 75% && CoT < 45%
R4: Accu < 45%→ CoT < 45%
R5: PT (45%− 64%) && Accu ≥ 75%→ CoT < 45%
R6: Accu ≥ 75% && V erd == AC → CoT < 45%
R7: Accu < 45% && PA(45%− 64%)→ CoT < 45%
R8: Accu < 45% && V erd == WA→ CoT < 45%
R9: Accu < 45% && PA < 45%→ CoT < 45%
R10: PA < 45%→ CoT < 45%
R11: V erd == AC && CoT < 45%→ Accu(≥ 75%)
R12: Accu ≥ 75% && PA(45%− 64%)→ CoT < 45%
R13: PT (45%− 64%) && PA(45%− 64%)→ CoT < 45%
R14: PT < 45%→ CoT < 45%

Finally, rules are generated for cluster S when we set minSup = 1500 and minConf =

90%, as shown in Table 2.19.

As shown in Figure 2.14, we varied the values of minConf and minSup and showed

the number of relevant rules in each cluster. First, we set several values of minSup, such as

500, 1000, 1500, 2000, 2500, and 3000. For each value of minSup, we varied the value of

minConf to 50%, 60%, 70%, 80%, and 90%. As a result, clusters Q and R generated the most

association rules based minSup and minConf values. On the other hand, relatively few rules

are generated on the basis of different minSup and minConf values in clusters P and S.

The following observations can be obtained based on the association rules from different
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Table 2.19: Association rules for the students of cluster S

Rules
R1: Accu >= 75%→ CoT < 45%
R2: V erd == AC → CoT < 45%
R3: PT < 45% && Accu < 45% && PA < 45%→ CoT < 45%
R4: PT < 45% && Accu < 45%→ CoT < 45%
R5: PT < 45% && PA < 45%→ CoT < 45%
R6: Accu ≥ 75% && V erd == AC → CoT < 45%
R7: PA < 45% && CoT < 45%→ PT < 45%
R8: Accu < 45% && PA < 45%→ CoT < 45%
R9: V erd == AC && CoT < 45%→ Accu(≥ 75%)
R10: Accu < 45%→ CoT < 45%
R11: Accu < 45% && PA < 45% && CoT < 45%→ PT < 45%

clusters: (i) in cluster P , association rules are involved with higher accuracy, PA, PT , and

CoT , as well as the most frequent accepted (AC) verdicts; (ii) students of cluster Q showed

with higher accuracy, PA, and PT but lower scores in CoT ; (iii) students of cluster R tended

to have lower scores in CoT , PT , and PA, as well as infrequent AC verdicts; (iv) cluster S

students showed lower scores in CoT , PT , and PA, as well as lower accuracy; and (v) clusters

Q and R yielded the most association rules for any minSup and minConf values.

2.5.5 Accumulation of Correlated Features

Many significant features are generated from each cluster by employing the proposed frame-

work. These features are deeply correlated to each other and meaningful. These correlated

features and rules are accumulated for each cluster.

Students of the cluster P (i) took an average problem-solving T&E of 12.40 (Table 2.9),

(ii) solved an average of 56.14 extra problems beyond their academic assignments (Table 2.11),

(iii) repeated more accepted (AC) solutions for optimization than those of other clusters (Table

2.14), (iv) submitted their assignments on the very first day more than those in other clusters

(Figure 2.7), and (v) had the lowest average last-day submission rate of approximately 2.90%

than clusters Q, R, and S (Table 2.13). These features are interdependent and deeply correlated

to each other. The features mentioned above have interesting meanings; overall, these features

indicate that students in this cluster are committed to programming, which has a positive impact

on their programming and academic performance.

Cluster P also had an overall AC rate (considering problems A,B,C, and D) of 40.88%

(Table 2.7), topic-wise AC rate (considering problems A and B) of 46.24% (Table 2.12), aver-
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50 60 70 80 90 100
0

10

20

30

40

minConf(%)

N
um

be
ro

fa
ss

oc
ia

tio
n

ru
le

s

Cluster P
Cluster Q
Cluster R
Cluster S

(d) minSup = 2000
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(f) minSup = 3000

Figure 2.14: Overview of association rules generated using differentminSup (500, 1000, 1500,
2000, 2500, 3000) and minConf (50%, 60%, 70%, 80%, 90%, 100%) values

age solution accuracy of 55.71% (Table 2.9), and higherCV al score of 1. These higher success

rates in programming enabled higher scores in PA, CoT , and PT that are also validated by the

association rules (Table 2.16).

In cluster Q the overall AC rate considering all problems is 36.34% (Table 2.7) and the

topic-wise average AC rate (considering problems A and B) is 40.06% (Table 2.12), which are

lower than those of clusters P and S. The students of cluster Q consistently maintained a high

AC rate throughout the thirteen topics (Figure 2.8) but solved minimal extra problems beyond

their academic assignments (Table 2.11). They had a lower tendency to submit solutions on

the last day than students of clusters R and S instead submitted their assignments early (Table

2.13). The students of cluster Q obtained higher scores in PA and PT than in CoT (Table

2.10), as shown by the association rules (Table 2.17). Most of the features involved high values,

indicating that they put a great effort into programming. However, the lower attempt to solve

additional problems likely affected the CoT scores in this cluster.

Students of cluster R (i) took an average of 9.52 attempts/trials to solve problems, (ii)

did not solve many additional problems outside of regular academic assignments (Table 2.11),

(iii) submitted their assignments on the deadline or the day before (Figure 2.7), and (iv) rarely

repeated the AC problems more than once (Table 2.14). These features are related to their
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various programming activities and indicate that they did not put much effort into programming.

These students also received the highest error (WA, CE, RTE, TLE, etc.) verdicts of 67.30%

and the lowest AC rate of 32.70% compared to clusters P , Q, and S. Their topic-wise AC

rate is not coherent across all thirteen topics. Students in cluster R obtained good scores in PA

(60.92) and PT (68.26), but lower scores in CoT (28.46) (Table 2.10). The association rules

showed that students were involved with lower scores and infrequentAC verdicts. Note that the

coding test (CoT ) is used to verify the students’ core programming skills. Thus, less effort in

programming negatively affects this CoT score.

Students of cluster S (i) undertook an average of 9.86 attempts/trials to solve problems (Ta-

ble 2.9) (ii) solved no additional problems (Table 2.11), (iii) had the highest rate of last-day

submission for each assignment with an average of 22.22% solutions submitted on the last day

(Figure 2.7 and Table 2.13) compared to clusters P , Q, and R, and (iv) obtained very low

CV al score of 0.44. Furthermore, an insignificant number of students attempted to repeat the

AC problems more than once (Table 2.14). Collectively, these features indicate that students in

cluster S did not perform well in programming. Most features are negatively prioritized. Conse-

quently, students in this cluster obtained the lowest scores inCoT (16.55), which is alarming for

actual coding performance. Most of the association rules are connected with lower CoT scores

(Table 2.19). In addition, we found an interesting correlation: most of the students submitted

their solutions on the last day, but achieved higher AC rates and accuracy. This trend differs

from that of clusters P and Q.

2.6 Discussion

In this Chapter, many hidden features are obtained by employing the proposed framework,

where MK-means is applied for data clustering and then FP-growth is applied to the clustered

data to discover the association rules. Interesting features and behaviors are observed that are

not readily apparent in the base dataset. After applying the elbow and MK-means algorithms

to the dataset, four (04) clusters are found. Different features and rules are extracted from each

cluster considering the different conditions presented in the experimental results section (2.5).

Next, we discuss the features and the resulting explanations, recommendations, assessments,

practical applications, and limitations.

For a better understanding, ten main features are listed in Table 2.20 with three indicator
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Table 2.20: List of the main features

No. Features Values
a Trial and error (T&E) H/M /L
b Extra problem solutions beyond academic assignments H/M /L
c Tendency to submit programming assignments E/M /D
d Topic-wise average last day submission H/M /L
e Number of students who repeatedly solved accepted (AC)

problems for optimization
H/M /L

f Accepted (AC) rate (both topic-wise and problems) H/M /L
g Overall accuracy (Accu) H/M /L
h Scores in programming assignment (PA) H/M /L
i Scores in coding test (CoT ) H/M /L
j Scores in paper-based test (PT ) H/M /L

values: higher (H), medium (M ), and lower (L). Feature c, which indicates when the assign-

ments are submitted within the alloted time, uses indicator values of early (E), mid-time (M ),

and delay (D).

2.6.1 Analysis and Recommendations

In the summary graph of the main features shown in Figure 2.15, we observe that the stu-

dents of cluster P performed extraordinarily well in different programming activities and aca-

demic tests. Importantly, most students in this cluster are highly enthusiastic about program-

ming, with more than 62% of total solutions (Figure 2.7) submitted on the very first day of

all assignments. They also solved an average of 56.14 extra problems in addition to their aca-

demic assignments. The tendency to submit solutions on the last day is approximately 2.90%

which is the lowest compared to clusters Q, R, and S (Table 2.13). For solution optimization,

a large number of students repeated their AC solutions (Table 2.14). In addition, these students

achieved higher AC rates of 46.24% for problems A and B (Table 2.12), accuracy of 55.71%

(Table 2.9), and scores on various tests of 81.22%, 65.46%, and 82.33% for PA, CoT , and PT ,

respectively than those of clusters Q, R, and S (Table 2.10), as reflected by the association rules

(Table 2.16). In contrast, the total error verdict is analyzed from this cluster, with approximately

45% error due to WA, 19% due to resource limitations (TLE, MLE, OLE), and 15% due to

RTE (Figure 2.5).

Note that, to develop students’ programming skills and ensure the efficiency of the solution

codes, several constraints are set for problems such as input and output limits/numbers, space

and time complexity. In this case, a solution code must satisfy the set of constraints to be
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Figure 2.15: A summary graph of the main features

accepted, otherwise it receives error verdicts such as TLE and MLE. Figure 2.5 shows that

students in clusters Q, R, and S received 10.87%, 9.32%, and 6.25% errors due to TLE and

MLE, respectively. In contrast, the students of cluster P received about 19.28% errors due to

TLE and MLE, which is the highest compared to clusters Q, R, and S. However, students in

cluster P took about 12.40 attempts (T&E) to solve a problem, which is higher than students

in clusters Q, R, and S (Table 2.9). In general, problems C and D are comparatively more

difficult and contain tough constraints than problems A and B. Students in cluster P submitted

the highest percentage of solutions, about 43.36%, for problems C and D compared to clusters

Q, R, and S (Table 2.8). Moreover, each student in cluster P solved an average of 56.14

additional problems, which is significantly higher than students in clusters Q, R, and S (Table

2.11).

Students in cluster P attempted many additional and challenging problems, resulting in a

high percentage of errors in TLE and MLE. Usually, complex algorithm-based problems

contain various tough constraints, and sometimes it is very difficult to deal with these kinds of

constraints alone without prerequisite knowledge. Our analysis shows that students in cluster P

have a high tendency to take on difficult problems independently (Table 2.8), and have achieved

significant success in solving problems with tough constraints (Table 2.7). Besides, students

in this cluster still have the opportunity to further improve their programming skills in dealing

tough constraint-based problems. Based on the overall empirical and analytical results, we can

summarize that the students of cluster P are highly skilled and enthusiastic about programming

and perform well on academic tests.

Similarly, students in cluster Q achieved higher values in most features, as shown in Figure
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2.15. More than 40% of their assignments were submitted on the very first day (Figure 2.7), with

higher accuracy, AC rate, repetition tendency, and scores in PA and PT . The error verdicts

of this cluster have been analyzed approximately 45% of the errors occur due to WA, 19% due

to CE, 11% due to PrE, 11% due to resource limitation (TLE, MLE, OLE), and 14% due

to RTE (Figure 2.5). These students can be understood by analyzing the reasons for each type

of error. In addition to these positive features, we found some flaws. The students in cluster Q

achieved medium (M ) scores inCoT and did not solve a significant number of problems outside

of their regular assignments. Usually, CoT is used to verify actual programming ability; a

medium score inCoT means students need to pay more attention in programming. Accordingly,

to improve programming skills, students can practice more outside of their academic workload.

Considering all the results and analysis, we determined the following recommendations for

clusters P and Q: (i) special attention to these students can further improve their skills and

knowledge; (ii) more difficult problems can be assigned to these students because they find

general assignments are very easy; and (iii) they can be involved in real-world problem-solving

tasks.

For the students of cluster R, the rate of last-day submission was approximately 20.06%

(Figure 2.7) which indicates a tendency to delay submission, and they show inconsistent accep-

tance (AC) for all topics (Figure 2.8). Moreover, this cluster had the lowest acceptance (AC)

and accuracy rates among all clusters; very few students repeated their accepted solutions for

optimization and solved extra problems. Students of this cluster obtained the highest error rate

(67.30%) among all the clusters. The extracted association rules show that most of these stu-

dents achieve lower CoT scores, accuracy, AC rate, and WA verdicts. The students in this

cluster scored much higher in PA (60.92) than CoT (28.46). During PA, students can consult

with others to solve problems. This may allow some students to solve problems with the help

of other students without understanding the problems properly. In contrast, students are not

allowed to consult/talk with others during CoT , in which students of this cluster rarely obtain

good scores. The average CoT score is 28.46 out of 120. Considering all the features, it is con-

cluded that (i) students may solve assignments with the help of others without understanding

the problems and this cluster (ii) lacks actual programming skills, and (iii) has less effort in

programming.

Figure 2.15 shows that students of cluster S achieved lower values in most features. Their

last-day submission rate is 22.22%, which is the highest among all clusters. They achieved
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lower scores in coding and paper-based examinations (CoT and PT ), but obtained relatively

high scores in PA. Similarly, they had fewer T&E attempts but achieved higher accuracy

and AC rate. Most of the association rules are involved with lower scores (CoT and PT ) and

accuracy, as well. The following observations can be obtained from the extracted features: (i)

while a large number of solutions were submitted on the last day, there may have been some

students who waited for other solutions to become available; this is justified by the CV al score.

(ii) There is an unusual trend where students obtained lower scores in CoT while achieving

higher AC rate, accuracy, and PA scores; this suggests (iii) a lack of actual programming

skills and (iv) less effort in programming, and that (v) the students may solve their assignments

through collaboration with others.

After analyzing the features and association rules from different perspectives, some defi-

ciencies have been identified in the programming and academic fields for the students of clus-

ters R and S. Accordingly, we provide some recommendations that may help improve students’

programming skills and academic performance: (i) special assistance can be provided in the

development of algorithms and mathematical logic; (ii) encourage students to solve problems

with self-knowledge and understanding; (iii) students can participate in different programming

activities, such as competitions, programming lectures, and workshops; and (iv) teachers should

give these students additional attention and support in theory and exercise classes and observe

their responses.

2.6.2 Pattern and Association Rule Mining

Data patterns and associated rules are mined from the programming/problem-solving data

of each cluster using the FP-growth algorithm. Based on the data segmentation (Table 2.15) and

mathematical models. This process is useful for visualizing data patterns in detail. Figure 2.10

shows the frequencies of the data, where the frequencies of the individual segmented attributes

are also calculated. Figure 2.10 provides some important insight, such as Figure 2.10a showing

that students in cluster P attempted and solved all problems, and Figure 2.10e showing that

students in clusters R and S did not obtain a high score (below 65%) on the final coding test.

Thus, the segmentation of the scores provides a deeper insight into the patterns of the data that

would not be visible without the segmentation. The ranking of attributes based on frequencies is

shown in Figure 2.11. A long-tail (or exponential) data distribution is observed, with the first 20

attributes having higher frequencies. Figure 2.13 shows the number of patterns generated based
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on theminSup values. ClusterQ and clusterR generated the highest number of patterns for any

minSup value. Furthermore, Figure 2.14 shows the number of association rules for different

values of minSup and minConf . It can be seen that cluster R has the highest number of

association rules, no matter how many values of minSup and minConf are used. In addition,

some extracted association rules are listed in Tables 2.16, 2.17, 2.18, 2.19 for clusters. The

whole process of pattern and rule mining exposed the hidden information from the problem-

solving data and can be useful for other real-world educational applications.

2.6.3 Learning and Teaching Strategies for Programming

One of the main objectives of this research is to understand what difficulties students have

in solving programming problems, identify the main influencing factors in their programming

learning process, and determine what strategies, methods, or technologies can be used in teach-

ing and learning to improve students’ programming skills. In Table 2.6, it can be seen that

although the number of students in cluster S is higher (18.62%) than in cluster P , the students

of cluster S submitted the lowest number of solution codes (7.36%) for evaluation compared

to the other clusters (P , Q, and R). These statistics also indicate that students in cluster S put

less effort in solving the problems. Another important statistic we found in Table 2.7 is that

students in clusters P , Q, R, and S received about 51.75%, 51.71%, 52.42%, and 42.22% error

verdicts (WA, RE, PE, TLE, MLE, and OLE) respectively in the solution codes that can-

not be identified by the compilers or correctly recognized by the students. Understanding and

reducing these errors (WA, RE, PE, TLE, MLE, and OLE) in the solution code is also a

challenging task. Since students in all clusters rated about 50% of the submitted solutions as

incorrect excluding compile error (CE), and these errors involved semantic, mathematical, and

logical errors. To improve students’ mathematical and logical skills, they need different types

of problems and a suitable practice environment. In addition, some other strategies may be

useful, such as rapid response and continuous monitoring of students’ programming activities,

programming workshops to address students’ weaknesses.

2.6.4 Overall Assessments and Practical Applications

Considering all the empirical results and analysis, we see that the students of cluster P

obtained the highest acceptance rate of 40.88% for all problems (A, B, C, and D) (Table 2.7),

average solution accuracy of 55.71% (Table 2.9), solved the average additional problem of 56.14
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(Table 2.11), a faster propensity to submit assignments early (Figure 2.7), topic-wise accepted

solution rate of 46.24 for problems (A and B) (Table 2.12), lowest submission rate on the last

day of 2.90% (Table 2.13), highest number of repetitions (Table 2.14), highest PA, CoT , and

PT scores of 81.22%, 65.46%, and 82.33%, respectively (Table 2.10). All the features indicate

that the students of cluster P invested great efforts in programming-related tasks. In addition,

the summary graph (Figure 2.15) of the features shows that the students of cluster P are involved

in better indicators in all the features. Similarly, students in cluster Q received an acceptance

rate of 36.34% for all problems (A, B, C, and D) (Table 2.7), solution accuracy of 48.45%

(Table 2.9), high tendency to submit assignments early (Figure 2.7), the topic-wise acceptance

rate of 40.06% for problems (A and B) (Table 2.12), last-day submission rate of 10.28% (Table

2.13), and PA, CoT , and PA scores of 67.86%, 40.18%, and 70.43% respectively (Table 2.10).

As shown in Figure 2.15, most of the features are associated with good indicators. It can be seen

that the students of cluster Q also performed well in programming.

On the other hand, students in cluster S did not solve any additional problems (Table 2.11),

had a less repetition tendency (Table 2.14), a higher last day submission rate of 22.22% com-

pared to clusters P , Q, and R (Table 2.13 and Figure 2.7), and received the lowest CV al score

of 0.44 compared to clusters P , Q, and R. Besides, students scored 54.33%, 13.79%, and

44.83% on PA, CoT , and PT , respectively, which is very poor compared to clusters P , Q, and

R (Table 2.10). The overall results show that the students in this cluster did not perform well

in programming. In addition, the summary graph (Figure 2.15) of the features and association

rules (Table 2.19) show that they were involved with lower indicators in most features.

From the above results, it can be seen that the students of clusters P and Q made a good

effort in programming and obtained good results in various tests, while the students of cluster S

made less effort and therefore achieved poor results in various tests. So, we can conclude that

if students (especially in ICT-related disciplines) perform well in practical applications (e.g.,

programming, logical implementation) then they are also likely to perform well in different

academic activities, including tests. In addition, the current research provided some recommen-

dations for students based on the identified features and flaws. Teachers, instructors, and faculty

advisors can use these analytical results and recommendations to improve students’ program-

ming and academic performance levels. Furthermore, the proposed framework, experiments,

and overall analytical results can be applied to other related courses/disciplines.

However, the ultimate goal of this Chapter is to support and improve student learning by
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identifying their weaknesses and strengths. For this purpose, a real-world dataset from a pro-

gramming course was used. The proposed framework included EDM techniques and LA to find

invisible knowledge from the e-learning data. The knowledge was then analyzed and visualized

from various perspectives. The results of these analyses highlight the weaknesses and strengths

of the students and improve their learning. The proposed research can be suitable for practical

applications for the following reasons: (i) the proposed research can provide a useful direc-

tion, that is, how to deal with e-learning data, (ii) e-learning data processing has always been

a challenging task, in this regard, the proposed research shows the way of handling real-world

e-learning data. As the proposed research has already processed OJ (e-learning) data for EDM

and LA, (iii) the process of data analysis and its results can be helpful for other related courses

to improve students’ learning, and (iv) the proposed framework can be integrated with existing

e-learning platforms for EDM and LA purposes.

2.6.5 Limitations

The proposed framework is leveraged for data clustering, and then the hidden features and

association rules are extracted from each cluster. The results are generated based on a dataset

comprising submission logs and scores collected from the AOJ system; they may vary for other

datasets due to noise or irrelevant data. The number of association rules may vary depending on

the threshold values of minSup and minConf . The value of k for the MK-means clustering

algorithm may differ based on the dataset. Therefore, the proposed framework can produce

better or worse results for other datasets.

2.7 Summary

In this Chapter, a novel framework is proposed for exploring the effects of programming ed-

ucation. Subsequently, a programming course was selected as a sample course for experiments

and analyses. By employing the framework, many meaningful and significant features were

extracted from the dataset. The extracted features are deeply correlated to the students’ behav-

ior. The analytical results showed that better practical (e.g., programming) skills have a positive

effect on academic performance. Moreover, the interaction and interdependence between prac-

tical skills and academic performance are presented based on the experimental results. Thus,

we have concluded that if a student of an ICT or engineering discipline performs well in prac-
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tical assignments (e.g., programming, logical implementation, PL/SQL), then they are likely to

perform well in other academic activities. The overall approach of this Chapter is applicable to

other fields such as education, EDM, LA, data analytics, and behavior analysis.
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Chapter 3

Code Assessment and Classification

Using Attention-Based LSTM Neural

Network

3.1 Introduction

Programming is one of mankind’s most creative and effective endeavors, and vast num-

bers of studies have been dedicated to improving the modeling and understanding of source

code [105]. The outcomes of many such studies are now supporting a wide variety of core

source code assessment purposes, such as error detection, error prediction, error location iden-

tification, snippet suggestions, code patch generation, developer modeling, and source code

classification [105]. Since learners and professionals around the world are constantly creating

large numbers of new programs to improve our lives, it is a general truism that no program is

ever released without undergoing a comprehensive post-development debugging process. Al-

most every software product/solution code goes through different testing phases in the software

engineering (SE) cycle. In fact, once errors are detected in the solution code at the production or

testing phases, the debugging process begins immediately to find and fix the errors. This means

that learners and professionals are spending vast amounts of time attempting to find errors in

solution codes.

To find a single error, it is often necessary to verify an entire program code, which is a very

lengthy process and time-consuming. This adverse situation has resulted in the emergence of

a new SE research window [106]. There are significant numbers of errors that are commonly
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made by students, novice and professional programmers. These include missing semicolons,

delimiters, irrelevant symbols, variables, missing braces, incomplete parentheses, operators,

missing methods, classes, inappropriate classes, inappropriate methods, irrelevant parameters,

and logic errors (TLE, MLE, OLE, PrE). Although such errors often indicate inexperi-

ence, insufficient concentration to detail, and other unsuitable behaviors. A Google study on

programming showed that such errors can creep into the works of even the most experienced

programmers [107].

Usually, programming is a very sensitive and error-prone task and a single mistake can

eventually be harmful to software end-users. Furthermore, the source code is highly error-

prone during development, so the intelligent support model for code assessment has become

interesting research area. Among the solutions now being explored, the use of AI offers fas-

cinating potential for solving source code related complications. In the past few years, natural

language processing (NLP) developers have produced some extraordinary outcomes in different

domains such as language processing, machine translation, and speech recognition. The rea-

sons for the wide-ranging success of NLP is founded on its corpus-based methods, statistical

applications, messenger suggests, handwriting recognition, and increasing large corpora of text.

For example, n-gram models are among the stochastic language model forms that can be used

for predicting the next item based on corpus. Different n-gram models such as bi-gram, tri-

gram, skip gram [36], and GloVe [108] are all statistical language models that are very useful

in language modeling applications. This burgeoning usage has stimulated the availability of

a large text corpus and is helping NLP techniques to become more effective on a day-by-day

basis. However, the NLP language model is not particularly effective when used in complex

source code assessment endeavors but still useful for the intuitive language model. As a result,

numerous researchers have focused their efforts on source code assessment tasks using neural

network-based language models.

Z. Tu et al. [109] proposed a local cache model that dealt with localness of source code,

but still encountered problems with small-context source code using an n-gram model. Their

study determined that neural network-based language models could provide robust substitutes

for source code assessments. Additionally, another study [37] showed that the RNN model,

which is capable of retaining longer source code context than traditional n-gram and other lan-

guage models, has achieved mentionable success in language modeling. However, the RNN

model faces limitations when it comes to representing the context of longer source codes due
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to gradient vanishing or exploding [110], which makes it is hard for it to be trained using long

dependent source code sequences. As a result, it is only effective for a small sequence of source

codes. To minimize gradient vanishing or exploding problems, the RNN model has been ex-

tended to LSTM neural networks [110]. An LSTM network is a special kind of RNN that can

remember longer source code sequences due to its extraordinary internal gate structure.

In this Chapter, we are presenting an intelligent support model for source code/solution code

assessment that was designed using an LSTM in combination with an attention mechanism (then

known as LSTM-AM) which increases the performances than a standard LSTM model. The

attention mechanism is a useful technique that takes into account the results of all past hidden

states for prediction. The attention mechanism can improve the accuracy of neural network-

based intelligent models. We trained LSTM, RNN, and LSTM-AM networks with different

hidden units (neurons) such as 50, 100, 200, 300 using a bunch of solution codes taken from an

OJ system. Erroneous solution codes were then input into all models to determine their relative

capabilities in regards to predicting and detecting code errors. The obtained results show that the

proposed LSTM-AM network extends the capabilities of the standard LSTM network in terms of

detecting and predicting such errors correctly. Even some solution codes contain logical errors

(i.e., TLE, OLE, and MLE) and other errors (i.e., PrE and WA) that cannot be detected by

the usual compilers whereas the proposed intelligent support model can detect these errors.

Additionally, the LSTM-AM network can retain a longer sequence of solution code inputs

and thus generate more accurate output, than the standard LSTM and other state-of-the-art net-

works. Furthermore, we diversified with different settings and hidden units to create the most

suitable model for our research in terms of cross-entropy, training time, accuracy and other per-

formance measurements. Also, proposed model can classify the solution codes based on the

defects in codes. We expect that the proposed model can be useful for students, novice pro-

grammers, and professionals as well as overall programming education and other aspects of SE.

The main contributions of this Chapter are listed below:

• The proposed intelligent support model can help students, novice and professional pro-

grammers for the source code completion.

• The intelligent support model detects such errors (logical) that cannot be identified by the

conventional compiler.

• The proposed intelligent support model accuracy is approximately 62% that outperformed
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other benchmark models.

• The proposed model can classify the solution codes based on the detected errors. The

classification accuracy is 96% that is much better than other models.

• The proposed model highlights defective spots with location/line number in solution

codes.

• The proposed model improves the ability of learners to fix errors in source code easily by

using the location/line numbers.

The remainder of the Chapter 3 is arranged as follows. In Section 3.2, we present the back-

ground and related works. Section 3.3 describes the overview of natural language processing

and artificial neural networks. In section 3.4, we present the proposed approach. Data collection

and problem description issues are presented in Section 3.5. Evaluation metrics are defined in

Section 3.6. The experimental results are presented in Section 3.7. In Section 3.8, we discuss

the results. To that end, Section 3.9 concludes the Chapter 3 with some future work proposals.

3.2 Background and Related Works

Modern society is flourishing due to advancements in the wide-ranging fields of ICT, where

programming is a crucial aspect of many developments. Millions of source codes are being

created every day, most of which are tested through manual compiling processes. As a result, an

important research field that has recently emerged involves the use of AI systems for source code

completion during development rather than manual compiling processes. More specifically,

neural network-based models are using for source code assessments in order to achieve more

human-like results. Numerous studies have been completed and a wide variety of different

methods proposed regarding the use of neural networks in programming-related fields, some of

which will be reviewed below.

In [105], the authors present a language model for source code testing that uses a neural

network instead of an existing language (i.e. n-gram) model. In most cases, n-gram language

models cannot handle long source code sequences effectively, so neural network-based lan-

guage models were developed to improve source code analyses. In the cited study, in which

RNN and LSTM language models were trained and the obtained results showed that LSTM

model performed better than the RNN model. That study used a Java project corpus to evaluate
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the performance of the language models. In [36], the authors proposed a novel LSTM-based

source code correction method that used segment similarities. More specifically, the study uti-

lized the seq2seq model for source code correction process. The seq2seq model is a machine

learning approach which is very effective for language modeling such as machine translator,

conversational model, text translator, and image captioning.

White et al. [37] proposed a deep software language model using RNN. The obtained exper-

imental results using a Java corpus showed that the proposed software language model outper-

formed conventional models like cache-based n-gram and standard n-gram. That software lan-

guage model showed significant promise for use in SE fields. In [41], authors presented a novel

Tree-LSTM based model where each LSTM unit used as a tree. That model assesses semantic

relatedness prediction tasks based on sentence pairs and sentiment classification. Meanwhile,

in [42], the authors proposed a method that classified archived source codes by language type

using an LSTM. Their experimental results demonstrated that the proposed LSTM surpassed

the linguist classifier, Naive Bayes (NB) classifier and other similar networks.

In [111], the authors proposed a technique that automatically identifies and corrects source

code syntax errors using an RNN. Their proposed SYNFix algorithm finds the error location of

the next predicted token sequence, after which the identified error is solved by either replacing

or inserting a proper word. A significant limitation of this technique is that it cannot recover

or handle multiple syntax errors in a source code sequence. Pedroni et al. [112] is studied to

find the appropriate type of compiler messages that can assist novice programmers in order to

identify source code errors and what actions are needed for the error messages? In that study,

the authors experimentally showed that certain message types help novice programmers.

In [113], the authors presented a model for source code syntax error correction that was

written in the C programming language. That model, called DeepFix, uses a multi-layered

seq2seq neural network combined with an attention mechanism. The authors also proposed a

trained RNN that can predict an error with its location number, as well as fix the error with a

proper token. The experimental results obtained showed that, out of a total of 6971 source code

errors, this approach completely fixed about 27% and partially fixed about 19%. Rahman et

al. [63] proposed a language model using LSTM for fixing source code errors. That proposed

model was combined attention mechanism with LSTM which increases the effectiveness of

standard LSTM. Experimental results showed that the model significantly corrected errors in

the solution codes. In [114], authors proposed a source code bug detection technique that works
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by varying the hyperparameters of an LSTM in order to investigate perplexity issues and training

time. The results obtained show that LSTM produces significant results for source code error

detection.

Bahdanau et al. [115] proposed a language translation model that uses RNN. More specif-

ically, the encoder-decoder technique is used as a translator when it is necessary to encode a

source text into a fixed-length vector. By utilizing the vector length, decoder can translate the

sentences. The paper extends fixed-length limitations by allowing (soft) search from the source

sentence to predict a target word instead of the using the hard segments of the source code

sentences. Li et al. [116] points out the limitations of neural network language models. To

overcome those problems, the authors proposed two new approaches: an attention mechanism

enhanced LSTM and a pointer mixture network. The attention mechanism enhanced LSTM is

used to alleviate fixed-size vectors and improve memorization capability by providing a variety

of ways for gradients to back propagate. In contrast, the pointer mixture network predicts out of

vocabulary (UoV) words by considering locally repeating tokens. That study also proposed the

use of an abstract syntax tree (AST)-based code completion method.

Li et al. [117] presented a source code defect prediction model using a CNN is called DP-

CNN. AST has used to convert the source code into token vectors. Using the word embedding

map, each token vector is converted into a numerical vector. CNN used a numerical vector for

training. Thereafter, the CNN model creates the source code’s semantic and structural features.

By comparing with the traditional defect prediction features, DP-CNN is improved the perfor-

mances by 12% than other state-of-the-art and 16% than other traditional feature basis methods.

Also, the CNN model [118] is used to identify the code algorithm based on structural features

of the programming code. Dam et al. [119] presented a deep learning model for software defect

prediction. The model has used the AST that incorporated with the LSTM network. Each node

of the AST structure is treated as an LSTM unit. A deep tree-based LSTM model is stored syn-

tactical and structural information of source codes for accurate prediction. The learning style of

the tree-based LSTM model is unsupervised. The model does not clean or replace any erroneous

words by predicting correct words. It is used to generate error probability from a source code

thereafter a classifier identifies the source code’s defect by using the value of probability.

Pham et al. [120] used a CNN as a language model based on FNN. Experimental results

demonstrated that the performance of the CNN language model is better than the normal FNN.

As for recurrent models, the CNN language model performs well than the RNN, but below
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the state-of-the-art LSTM model. In [43], authors proposed an RNN based model for the source

code fault prediction. There are two familiar evaluation methods such as the area under the curve

(AUC) and F1-measures are used to measure the performance. The proposed attention-based

RNN model improves the accuracy of source code classification. The AUC and F1-measure

achieved 7% and 14% more accuracy than the other benchmark models.

In summary, a wide variety of methods and techniques have been proposed in various stud-

ies, most of which used RNN, LSTM, and CNN models for source code assessments and other

applications. It is very difficult to explain which proposed research work is superior over other

researches. RNNs perform comparatively better than conventional language models, but RNNs

have limited ability to handle long source code inputs [37]. An LSTM is a special kind of

RNN network that can remember longer source code sequences due to its extraordinary internal

structure, and thus overcome RNN’s shortcomings. The model proposed in this Chapter is un-

like from other models. The proposed LSTM-AM further extends the capabilities of a standard

LSTM to the point where it can be used for detecting and predicting solution code errors as well

as code classification. Standard LSTM network only uses the last hidden state to make predic-

tions. In contrast, LSTM-AM network can take the outcomes of all previous hidden states into

consideration when making predictions. Therefore, it is a more promising technique for use in

source code assessment than other state-of-the-art language models.

3.3 Overview of Language Model and Recurrent Neural Networks

3.3.1 N -gram Language Model

The resources of natural text corpora are being enriched by the accumulation of text from

multiple sources on a daily basis. The success behind natural language processing is based on

this rich text corpus. For this reason, and because of their simplicity and scalability, n-gram

models are popular in the field of natural language processing. An n-gram model predicts the

upcoming word or text of a sequence based on probability, and the probability of an entire word

sequence P (w1, w2, · · · , wn) can be calculated by using the chain rule of probability.

P (Wn
1 ) = P (W1)P (W2|W1)P (W3|W 2

1 ) · · ·P (Wn|Wn−1
1 ) (3.1)

P (Wn
1 ) =

m∏
i=1

Wi|W i−1
1 (3.2)
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The Markov assumption, which is used when the probability of a word depends solely upon the

previous word, is described in

P (Wn|Wn−1
1 ) ≈ P (Wn|Wn−1) (3.3)

Thus, the general equation of an n-gram used for the conditional probability of the next

word sequence is as follows:

m∏
i=1

Wi|W i−1
1 ≈

m∏
i=1

Wi|W i−1
i−n+1 (3.4)

In practice, the maximum likelihood can be estimated by many smoothing techniques [121],

as shown in the following equation:

P (Wi|W i−1
i−n+1) =

C(W i−1
i−n+1Wi)

C(W i−1
i−n+1)

(3.5)

Cross-entropy is measured to validate the prediction goodness of a language model [122].

Low cross-entropy values imply better language models.

Hp ≈ −
1

m

m∑
i

log2P (Wi|W i−1
i−n+1) (3.6)

3.3.2 Recurrent Neural Networks

An RNN is a neural network variant that is frequently used in natural language processing,

classification, regression, etc. In a traditional neural network, inputs are processed through

multiple hidden layers and then output via the output layer. In the case of sequential dependent

input, a general neural network cannot manufacture accurate results. For example, in the case

of the dependent sentence “Rose is a beautiful flower”, a general neural network takes the

“Rose” input to produce an output based solely on “Rose”. Then, when the word “is” input is

considered, the network does not use the previous of “Rose” result. Instead it simply produces

the result using the word “is”. Similarly, a simple neural network takes other words “a”,

“beautiful”, and “flower” to generate results without considering previous result of inputs. To

address this problem RNN has emerged with an internal memory that retains previous time step

results. A simple RNN structure is shown in Figure 3.1.

Mathematically, an RNN can be presented using equation (3.7). The current state of the
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Figure 3.1: A simple RNN structure

RNN can be expressed as

ht = f(ht−1, xt) (3.7)

ht = f(whhht−1 + whxxt) (3.8)

where ht is the current state, ht−1 is the previous state, xt is the current state input, whh is the

weight of recurrent neuron and whx is the weight of input neuron.

Equation (3.9) is used as an activation function (tanh) of RNN:

ht = tanh(whhht−1 + whxxt) (3.9)

Finally, the output function can be written as follows:

yt = softmax(wyhht) (3.10)

where wyh is the weight for the output layer and yt is the output.

RNN has multiple input and output types such as one to one, one to many, many to one,

and many to many. Despite all the advantages, RNN is susceptible to the major drawbacks of

gradient vanishing or exploding.
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3.3.3 Gradient Vanishing and Exploding

In this section, we discuss the gradient vanishing and exploding problem of RNN. It seems

simple to train the RNN network, but it is very hard because of its recurrent connection. In

case of forward propagation, multiply all the weight metrics and a similar procedure needs to

apply for the backpropagation. For the backpropagation, the signal may be strong or week that

causes the exploding and vanishing. Gradient vanishing makes a complex situation to determine

the direction of model parameters to improve the loss function. On the other hand, exploding

gradients make the learning condition unstable. Training of the hidden RNN network is passed

through different time steps using backpropagation. The sum of distinct gradient at every time

step is equal to the total error gradient. The error can be expressed by considering total time

steps T in the following equation:

∂E

∂L
=

T∑
t=1

∂Et

∂L
(3.11)

Now, apply the chain rule to calculate the overall error gradients:

∂E

∂L
=

T∑
t=1

∂E

∂yt

∂yt
∂ht

∂ht
∂hk

∂hk
∂L

(3.12)

The term ∂ht
∂hk

is involved with the product of Jacobians ∂hi
∂hi−1

as shown in the following

equation:

∂ht
∂hj

=
∂ht
∂ht−1

∂ht−1
∂ht−2

∂ht−2
∂ht−3

∂ht−3
∂ht−4

· · · ∂hj+1

∂hj
(3.13)

∂ht
∂hj

=
t∏

i=j+1

∂hi
∂hi−1

(3.14)

The term ∂ht
∂ht−1

in equation (3.13) is evaluated by equation (3.8).

t∏
i=j+1

∂hi
∂hi−1

=

t∏
i=j+1

W Tdiag[f
′
(hi−1)] (3.15)

Now, by the Eigen decomposition on the Jacobian matrix ∂ht
∂ht−1

given byW Tdiag[f
′
(hi−1)],

we obtain the eigenvalues λ1, λ2, λ3 · · · , λn where λ1 > λ2 > λ3 · · · > λn and the correspond-

ing eigenvectors are v1, v2, v3 · · · , vn. If the direction of a hidden state ∆ht is moved to vi by

any modifications, then the gradient will be λi∆ht. From equation (3.15) the product of the
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Jacobians of the hidden state sequences is λ1i ∆h1, λ
2
i ∆h2, λ

3
i ∆h3 · · · , λni ∆hn. It is easy to vi-

sualize the term λti dominating ∆ht. In summary, if the greatest eigenvalue is λ1 < 1, then the

gradient will vanish and λ1 > 1 causes the gradient exploding [123]. To alleviate the gradient

vanishing or exploding problems, the gradient clipping, input reversal, identity initialization,

weight regularization, LSTM, etc. techniques can be used.

3.3.4 Long Short-Term Memory Neural Network

An LSTM neural network is a special kind of RNN network that is often used to process

long inputs. An LSTM is not limited to a single input, but can also process complete input

sequences. Usually an LSTM is structured with four gates such as forget, input, cell state and

output. Each gate has a separate activity where the cell state keeps complete information of the

input sequences and others are used to manage the input and output activities. Figure 3.2 shows

the structure of a basic LSTM unit.

Figure 3.2: Internal structure of an LSTM unit

At the very beginning, processing starts with the forget gate to determine which information

to discard from (or retain in) the cell state. The forget gate in cell state ct−1 can be expressed by

the following equation (3.16) where ht−1 is hidden state and xt is current input. The output (0

or 1) of the forget gate is produced through a sigmoid function. If the result of the forget gate is

1 then keep the data in the cell state otherwise discard the data.
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ft = σ(wf .[ht−1, xt] + bf ) (3.16)

The input gate determines which cell state value should be updated when new data appears.

Through the tanh function, the candidate value c̃t for the cell state is now created.

it = σ(wi.[ht−1, xt] + bi) (3.17)

c̃t = tanh(wc.[ht−1, xt] + bc) (3.18)

Now, the old cell state ct−1 is updated by the ct.

ct = ft ∗ ct−1 + it ∗ c̃t (3.19)

The filtered version of the cell state will be output ot via the sigmoid function and the weight

will also be updated.

ot = σ(wo.[ht−1, xt] + bo) (3.20)

ht = ot ∗ tanhct (3.21)

Recognizing the strength of LSTM, we were motivated to apply this neural network to error

detection, prediction, correction, and classification in source codes.

3.4 Approach

The proposed LSTM-AM network has an effective deep learning architecture that is used

as an intelligent support model for source code assessment. Accordingly, we trained the model

using source codes and then used it successfully detect errors and predict correct words in erro-

neous source codes based on trained corpus. Moreover, proposed model can classify the source

codes using the prediction results. The proposed model can produce correct words for each er-

roneous source code after assessment where learners and professionals can benefit from it. The

workflow of the proposed model is depicted in Figure 3.3.
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Figure 3.3: The main workflow of our model: (a) conversion of source code to token IDs, (b)
model training using token IDs, and (c) results produced by the softmax function.

3.4.1 Proposed LSTM-AM Neural Network Architecture

Over the years, attention mechanisms have been adapted to a wide variety of diverse tasks

[124–131], the most popular and effective of which is seq2seq modeling. Typically, in seq2seq

modeling the output of the last hidden state is used as the context vector for further considera-

tion. It is very difficult to process long sequenced inputs using the seq2seq model [132]. The

attention mechanism makes it possible to map all previous hidden state outputs, including the

latest hidden state output, to produce the most relevant and accurate results.

With this point in mind, we incorporated an attention mechanism into a standard LSTM to

make LSTM-AM model, as shown in Figure 3.4. This strengthens the proposed model’s ability

to predict longer source code sequences. Usually, attention improves the performance of the

language and translator model by merging all hidden state outputs with the softmax function,

sometimes attention mechanism work as a dense layer. Recently, attention mechanisms have

been used in machine translation tasks with great success. Furthermore, sometimes it is neces-

sary for a machine translator model to compress entire input sequences into a smaller size vec-

tor, so there is a possibility of information loss. The use of attention mechanisms has fixed this

problem. Although the abilities of a standard LSTM to capture long-range dependencies are far

superior to those of an RNN. It still encounters when a hidden state has to carry all the necessary

data in a small-sized vector [132]. The introduction of attention mechanisms and their alignment

with neural language models such as LSTM are aimed at overcoming these problems [115]. The

attention mechanism offers neural language models to bring and use appropriate information in

all secret states of the past. As a result, the network’s retention ability is improved and diverse

paths are provided for gradients to back propagate. More detailed mathematical illustrations of

attention mechanism can be found in [116].
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Figure 3.4: An architecture of the proposed LSTM-AM network

For our attention mechanism, we took the external memory of E for the previous hidden

states, which is denoted as Mt = [ht−E · · ·ht−1]εRk∗E . The proposed model used attention

layer by considering ht and Mt at the time t, attention weight αt, and context vector Ct.

At = Mt.ht (3.22)

αt = softmax(At) (3.23)

Ct = Mtα
T
t (3.24)

To predict the next word at time step t, judgment is based not only on current hidden states

ht but also on context vector Ct. At that point, focus turns to the vocabulary spaces to produce

the final probability ytεRv via softmax function. Here, Gt is an output vector.

Gt = tanh(wg[wh(ht) + wm(ct)]) (3.25)
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yt = softmax(wvGt + bv) (3.26)

where wgεRk∗2k and wvεRv∗k are trainable projection matrices, and bvεRv is a bias and v

is a vocabulary/dictionary size.

Based on the above aspects, we can see that the use of an attention mechanism helps to

effectively extract the exact features from input sequences. As such, the use of LSTM-AM can

increase the capability of the proposed model.

3.5 Data Collection and Problem Description

An OJ system is a web-based programming environment that compiles and executes submit-

ted solution codes and returns judgments based on test data sets. OJ system is an open platform

for programming practice as well as competition. To conduct the experimental work, source

codes are collected from the AOJ system [18, 19]. Currently, the AOJ system is effortlessly

performing for various programming competitions and academies. As of May 2021, about

100,000 users are regularly playing their programming activities on the AOJ platform, with

2500 autonomous problem sets. All problem sets are classified based on different algorithms

and branches of computer science [63]. As a result, about 5.5 million solution source codes have

been archived on the AOJ platform, encouraging better research in the field of programming.

All the experimental solution codes are collected from the AOJ system for training, validation,

and testing purposes. For model training, we selected all of the correct solution codes written

in C language of the three problems such as Greatest Common Divisor (GCD), Insertion Sort

(IS), and Prime Numbers (PN). There are a total of 2285 correct source codes for the IS prob-

lem and the overall solution success rate is 35.16%. The total number of correct source codes

for the GCD problem is 1821 and the overall solution success rate is 49.86%. Considering the

GCD problem, we see that there are two inputs (a and b) given in a line, after which the greatest

common divisor of a and b will be output, as shown in Figure 3.5(a).

The total number of correct source codes for the PN problem is 1538 and the overall solution

success rate is 30.8%. In the PN problem description, the first line contains an integer N . The

code needs to count the number of prime numbers in the following list of N elements, as shown

in Figure 3.5(b).
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Figure 3.5: Input and output sample of GCD and PN problems

3.5.1 Data Preprocessing and Training

Before the model training, raw source codes were filtered by removing unnecessary ele-

ments. To accomplish this, we followed the procedure applied to [63] for source code embed-

ding and tokenization. First, we removed all irrelevant elements from codes like lines (\n),

comments, tabs (\t). After that, all the remaining elements of the code were converted into

word sequences where numbers, functions, tokens, keywords, variables, classes, and characters

were treated as simple words. The whole code transformation process is called tokenization

and vocabulary creation. Then, each word was encoded with IDs in which the function names,

keywords, variable names, and characters were encoded as listed in Table 3.1.

The flowchart of the training and evaluation process of the proposed model is shown in

Figure 3.6.

(a) Training Process (b) Evaluation Process

Figure 3.6: The flowchart of the training and evaluation process of the proposed model

At the very beginning of the training phase, the source codes were first converted into word

sequences, and then encoded into token IDs as shown in Figure 3.7. This conversion process is

called word embedding and tokenization.
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Table 3.1: A partial list of Ids for characters, special characters, numbers, keywords

ID Word ID Word ID Word ID Word
30 auto 46 int 62 78 .
31 break 47 long 63 ! 79 /
32 case 48 register 64 ? 80 0
33 char 49 return 65 81 1
34 const 50 short 66 “ 82 2
35 continue 51 signed 67 # 83 3
36 default 52 sizeof 68 $ 84 4
37 do 53 static 69 % 85 5
38 double 54 struct 70 & 86 6
39 else 55 switch 71 ‘ 87 7
40 enum 56 typedef 72 ( 88 8
41 exturn 57 union 73 ) 89 9
42 float 58 unsigned 74 * 90 ;
43 for 59 void 75 + 91 :
44 goto 60 volatile 76 , 92 <
45 if 61 while 77 ˜ 93 >
94 = 110 O 126 ‘ 142 p
95 @ 111 P 127 a 143 q
96 A 112 Q 128 b 144 r
97 B 113 R 129 c 145 s
98 C 114 S 130 d 146 t
99 D 115 T 131 e 147 u
100 E 116 U 132 f 148 v
101 F 117 V 133 g 149 w
102 G 118 W 134 h 150 x
103 H 119 X 135 i 151 y
104 I 120 Y 136 j 152 z
105 J 121 Z 137 k 153 {
106 K 122 [ 138 l 154 |
107 L 123 \ 139 m 155 }
108 M 124 ] 140 n
109 N 125 ˆ 141 o

Figure 3.7: Source code word embedding and tokenization process
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Upon completion of the embedding and tokenization process, we trained the proposed model

and other related state-of-the-art models with the correct source codes of IS, GCD, and PN

problems. The simple training process of an LSTM-based language model is shown in Figure

3.8.

Figure 3.8: Training process of an LSTM language model

At the end of the training process, the next step is to check the performance of the model

for the source code assessment task. How accurately identify errors and predict corrections?

The proposed model created the probability for each word. A word is considered as an error

candidate if its probability is below 0.1 [63]. Additionally, the cross-entropy for each epoch at

the softmax layer is calculated to test the model loss function. Cross-entropy is defined as the

difference between actual and predicted results. Softmax is an activation function that creates

probabilities. Typically, softmax is used as the last layer of neural networks. The output range

of the softmax function is between 0 and 1. The softmax layer received x = [x1, x2, x3, · · · , xn]

and returns probability p = [p1, p2, p3, · · · , pn], as defined in equation (3.27). Cross-entropy is

an effective performance measurement indicator for the probability-based model. Cross-entropy

is calculated by the equation (3.6). Low-valued cross-entropy indicates a better model.

Pi =
exp(xi)∑k
j=1 exp(xj)

(3.27)

A simple example of the prediction process used by the proposed model is shown in Figure

3.9. An example of input sequence is {“=”, “x”, “+”, “y”} then model calculates the next

probable correct word based on the source code corpus. Finally, the word with the highest

probability is the winner of the next predicted word. Based on the input sequence in the example

above, the correct predicted word is {“;”}.
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Figure 3.9: LSTM-AM network prediction process

3.6 Evaluation Metrics

Our primary goal is to evaluate the performance of the proposed model in terms of how

accurately it assesses and detects errors in source code as well as classification. For that, we

adopted three evaluation indices such as correction words accuracy (CWA), error detection ac-

curacy (EDA), and model accuracy (MA), shown in equations 3.28, 3.29, and 3.30. In particular

evaluated the proposed model and other benchmark models using Equation (3.30).

EDA =
True Errors (TE)

Total Detected Errors (TDE)
∗ 100% (3.28)

CWA =
True Correct Words (TCW )

Total Predicted Words (TPW )
∗ 100% (3.29)

MA =
EDA+ CWA

2
(3.30)

In most cases, the proposed model detects potential errors in the codes. Among these errors,

there are a few actual errors, which are called True Errors (TE). Similarly, among the total

predicted words, there are a few actual correct words, which are called True Correct Words

(TCW).

The precision, recall, and f-measure scores are used to evaluate the classification perfor-

mance. The formulas for precision, recall, and f-measure are shown in Equations (3.31), (3.32),

and (3.33), respectively.
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Precision(P ) =
tpe−→e

tpe−→e + fpc−→e
(3.31)

Recall(R) =
tpe−→e

tpe−→e + fne−→c
(3.32)

F −measure =
2 ∗ P ∗R
P +R

(3.33)

where tpe−→e is called true positive, the case e −→ emeans defective source code classifies

as erroneous, fpc−→e is called false positive, the case c −→ e means clean source code clas-

sifies as erroneous. The term fne−→c is called false negative where e −→ c means erroneous

source code classifies as a clean source code. F-measure is called the harmonic mean of recall

and precision. Generally, it is difficult to achieve optimal results simultaneously for recall and

precision. For example, if all the source codes are classified as defective, the resulted recall

score will be 100% where the precision score will be small. Therefore, F-measure is a trade-off

between recall and precision. The range of the F-measure score is between 1 and 0, the higher

score implies to the better classification model.

3.7 Experimental Results

The proposed intelligent support model can be useful for source code assessment. More-

over, it is a general model and can be adapted to different types of programming language-based

source codes for model training and testing. In the proposed model, we defined a minimum

probability value by which the model can identify error candidate words based on the train-

ing corpus. Accordingly, some incorrect source codes (IS, GCD, and PN) are used to evalu-

ate the model performance. Here, we should note that all of our research work and language

model training were performed on an Intel® Core(TM) i7-5600U central processing unit (CPU)

personal computer clocked at 2.60GHz with 8GB of RAM in a 64-bit Windows 10 operating

system.

3.7.1 Hyperparameters

For the proposed model, we defined several experimental hyperparameters in order to obtain

better results. To avoid overfitting, a dropout ratio (0.3-0.5) was used for the proposed model.
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The LSTM network was optimized using Adam, which is a stochastic optimization method

[133, 134]. The learning rate is an important factor for neural network training because the

value of the learning rate can control the learning speed of the model. Network learning becomes

faster and slower on the basis of higher and lower value of learning rates, respectively. For the

proposed model, we determine the learning rate l = 0.002 and the network weights during

training are updated by the value of l. β1 is the exponential decay rate for the first-moment

estimate and the second-moment estimate of the exponential decay rate is β2. The values of the

β1 and β2 are 0.001 and 0.999 respectively. The value of chosen to avoid any division by zero

which is ε = 1e−8. We trained the proposed network in 50, 100, 150 and 200 hidden units.

Each model type was named in reference to the number of units, such as the 100-unit model,

200-unit model, and so on. After training, we assessed the ability of the proposed LSTM-AM

model to pick the best number of hidden units from the created models.

3.7.2 Selection of Hidden Units and Cross-entropy Measurement

Various number of hidden units including 50, 100, 150, and 200 are used to train the pro-

posed LSTM-AM and other state-of-the-art models. In training, the source codes of IS, GCD,

and PN problems are used separately as well as all the source codes of IS, GCD, and PN are

used combinedly. The number of source codes of each type of problem is listed in Table 3.2.

Table 3.2: Number of source codes of each problem

Problem Type Number of Source Codes
Greatest Common Divisor (GCD) 964
Insertion Sort (IS) 1518
Prime Numbers (PN) 972
Total 3454

We trained the proposed LSTM-AM and different state-of-the-art models using the source

codes. Table 3.3 is presented the cross-entropy in 30 epochs during training using PN source

codes. The 50-, 100-, 150- and 200-unit models took total 11483, 20909, 38043, 59065 seconds

to train the LSTM-AM model using the PN problem, respectively.

Tables 3.4 and 3.5 are presented cross-entropy of different models during training using

GCD and IS source codes respectively. The 50-, 100-, 150- and 200-unit models took total

19005, 24110, 24273, 30420 seconds to train the LSTM-AM model using the GCD problem,

respectively and for the IS problem it took total 39643, 62756, 80100, 100803 seconds respec-

tively. In contrast, other models such as LSTM and RNN took relatively less time for training.
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Table 3.3: Cross-entropy comparison using PN source codes

Model Units (Neurons)
50 100 150 200

RNN 6.35 4.72 4.21 3.95
LSTM 4.75 3.31 2.37 2.02
LSTM-AM 4.35 3.90 2.87 2.23

Table 3.4: Cross-entropy comparison using GCD source codes

Model Units (Neurons)
50 100 150 200

RNN 5.11 4.36 3.50 3.23
LSTM 2.56 1.91 1.80 1.39
LSTM-AM 2.22 1.80 1.75 1.30

To evaluate the efficiency of the proposed model, epoch wise cross-entropy during the train-

ing periods using 200-unit was calculated which is depicted in Figure 3.10.

As mentioned above, the efficiency of a model strongly depends upon the value of cross-

entropy. During training, the 200-unit model produced the lowest cross-entropy using each type

of problem set. The cross-entropy of the 200-unit model using IS, PN and GCD problems are

shown in Figure 3.11.

We aimed to find the best-suited hidden units for the LSTM-AM model and other state-of-

the-art models. In this regard, we put together all the source codes (about 3442) to train the

proposed and other state-of-the-art models. The cross-entropies and total times are recorded at

the last epoch of all the models as presented in Table 3.6. The cross-entropy of the 200-unit

model is lower than other models.

Based on the above aspect, it is ensured that the 200-unit model provides the best results

because its cross-entropy is the lowest value among all the units, thus we selected a 200-unit for

the LSTM-AM and other state-of-the-art models.

Table 3.5: Cross-entropy comparison using IS source codes

Model Units (Neurons)
50 100 150 200

RNN 4.99 3.78 2.89 3.11
LSTM 3.26 1.63 1.48 1.26
LSTM-AM 3.12 1.55 1.40 1.27
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Figure 3.10: Epoch-wise cross-entropies of 200-unit model using a) IS, b) PN, and c) GCD
source codes

Table 3.6: Cross-entropy comparison of different models using all source codes

Model Units (Neurons)
50 100 150 200

RNN 5.11 4.36 3.87 3.53
LSTM 3.89 3.26 2.500 2.31
LSTM-AM 3.96 2.99 2.75 2.17
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Figure 3.11: Cross-entropies of the 200-unit model using IS, GCD, and PN problems

3.7.3 Error Detection and Correction Word Prediction

In the evaluation process, we tested LSTM-AM and other state-of-the-art models using er-

roneous source codes. Probable error locations were marked by changing the text color and

underlining the suspected erroneous portions. Also, the proposed model generates error candi-

date words and predicted words’ probability. Since both the standard LSTM and the LSTM-AM

networks identified source code errors quite well than the RNN and other networks when the

200-unit model was used. Therefore, 200-unit model was used in all the empirical experiments.

Figure 3.12: Erroneous source code evaluated by the standard LSTM

An erroneous source code sequence evaluated by the standard LSTM network is shown in

Figure 3.12. Here, it can be seen that errors were detected in lines 2, 6, 15, and 16. In line 2,

the word “a” in the “gcd” function was detected as an error candidate, after which the correct
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word was predicted to be “)” with a probability 0.62435395. The model decided that the “gcd”

function might be without arguments, the word “)” was predicted instead of the word “a”.

In line 6, the error word is “if” and the predicted word is “else” with a probability 0.5808078.

Additionally, in line 15 the predicted word is “blank space” in the place of “double quotation”.

Finally, in line 16, the model detected “c” as an error element and suggested with a high rate of

probability that it be replaced by the word “b”. The word “c” is irrelevant within the context of

the program, it can be confirmed that the standard LSTM model successfully detected the error

candidates shown in Figure 3.12, as listed in Table 3.7.

Table 3.7: List of detected errors and predicted words in Figure 3.12 by the LSTM model

Erroneous words Erroneous word’s
probability

Location Predicted words Probability

a 0.000496462 2 ) 0.6243539
if 0.014852316 6 else 0.5808078
double quotation 0.029112648 15 blank space 0.6583209
c 8.5894303e−10 16 b 0.9261215

Figure 3.13: Erroneous source code evaluated by the LSTM-AM

The same incorrect source code was then evaluated by the LSTM-AM network, as shown in

Figure 3.13. The error locations are in lines 2, 15, and 16. The word “a” in the “gcd” function

was detected as an error candidate and the predicted word “)” was suggested. In line 15, the

word “double quotation” was identified as a bug and the predicted word “blank space” was

suggested. The word “c” in line 16 was recognized as an error and the corresponding predicted

word “b” was suggested with a probability of 0.9863272, as shown in Table 3.8.

Another erroneous source code, which exist some logical errors (WA), was evaluated by

the standard LSTM network, as shown in Figure 3.14. All the detected error words and their

corresponding predicted words of Figure 3.14 are listed in Table 3.9.
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Table 3.8: List of detected errors and predicted words in Figure 3.13 by the LSTM-AM model

Erroneous words Erroneous word’s
probability

Location Predicted words Probability

a 0.000309510 2 ) 0.5722154
double quotation 0.045484796 15 blank space 0.7051629
c 2.838025e−07 16 b 0.9863272

Figure 3.14: Erroneous source code evaluated by the LSTM

Similarly, the same erroneous source code was tested by the LSTM-AM network, as shown

in Figure 3.15. The detailed error descriptions of Figure 3.15 are listed in Table 3.10, where it

can be seen that the LSTM-AM network detected all of the potential error candidates, including

the true logical error (WA) candidate, successfully.

For further experiments, we trained the proposed model with additional datasets including

IS, GCD, PN, Bubble Sort (BS) and Selection Sort (SS). Here, we tested the accuracy of error

detection in source codes by the proposed model according to equation (3.28). In this case, we

used faulty source codes that received CE verdicts for syntax errors and WA, TLE, MLE,

PrE, and RTE verdicts for various logical errors from the AOJ. The assessment results of

detecting syntax errors (CE) and logic errors (WA, TLE, MLE, PrE, and RTE) using the

Table 3.9: List of detected errors and predicted words in Figure 3.14 by the LSTM model

Erroneous words Erroneous word’s
probability

Location Predicted words Probability

for 0.049593348 31 i 0.1376049
rst 0.02372846 38 rmd 0.6147145
} 0.0470908 39 return 0.95013565
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Figure 3.15: Erroneous source code evaluated by the LSTM-AM

Table 3.10: List of detected errors and predicted words in Figure 3.15 by the LSTM-AM model

Erroneous words Erroneous word’s
probability

Location Predicted words Probability

a 0.034574546 12 x 0.9269715
= 0.012642788 13 b 0.9468921
rmd 0.03553478 23 } 0.6362259
for 0.037460152 31 while 0.5292723
rst 0.025345348 35 i 0.8597483

proposed model and other baseline models are shown in Table 3.11 and Table 3.12, respec-

tively. The results show that the proposed model achieves better accuracy in both types of error

detection.

Table 3.11: Assessment results of syntax errors (CE) detection for erroneous source code

Problem RNN LSTM LSTM-AM
Insertion Sort 83 88 98
Greatest Common Divisor 81 90 95
Prime Numbers 74 85 93
Bubble Sort 80 80 96
Selection Sort 69 78 92
Average 77.4 84.2 94.8

3.7.4 Classification of Source Codes

In this section, we present the source code classification performance of the proposed LSTM-

AM and existing state-of-the-art models. We considered various kinds of error in source code,
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Table 3.12: Assessment results of logic errors (WA, TLE, MLE, PrE, and RTE) detection
for erroneous source code

Problem RNN LSTM LSTM-AM
Insertion Sort 60 75 95
Greatest Common Divisor 57 81 96
Prime Numbers 63 77 90
Bubble Sort 65 80 91
Selection Sort 56 78 89
Average 60.2 78.2 92.2

including CE, RTE, TLE, MLE, WA and PrE. We evaluated the source code classification

performance of the proposed model and state-of-the-art models by considering error occurrences

in the source code. The proposed model calculated the error probability of each error candidate

word to classify the source code. Each variable, keyword, operator, operand, class, function, etc.

in the source code are considered as a normal word. The model generates the error probability

for each error candidate word followed by the softmax layer. The proposed model detects errors

in source codes where all the detected errors are not True errors (TE). So, only TEs are consid-

ered for the classification process. An error is called a TE when its predicted probability is more

than 0.90. We aligned the term true positive tpe−→e with the proposed model when the model

detects TE in erroneous source codes. Again, in case of the term false positive fpc−→e, at least

a single TE is detected within correct source codes. Finally, the term false negative fne−→c, not

a single TE is detected in erroneous source code that means classify the erroneous source code

as clean code. As mentioned above, all the models are trained by using correct source codes and

tested on 500 randomly chosen source codes from each problem sets (IS, GCD and PN).

To evaluate the classification performance, we compared our model with some baseline

methods such as i) Random Forest (RF) [135] method, ii) Random Forest (RF) method trained

with secret attributes by Restricted Boltzmann Machine (RBM) [136] and iii) Random Forest

(RF) method learned with secret attributes by Deep Belief Network (DBN) [137]. The classifi-

cation results are listed in Table 3.13, Table 3.14 and Table 3.15 for the IS, GCD and PN source

codes respectively.

3.8 Discussion

In this section, we discuss the results presented in Section 3.7. During the evaluation pro-

cess, a few models obtained high cross-entropy, while the standard LSTM achieved very low
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Table 3.13: Classification performance comparison using Insertion Sort (IS) source codes

Models Precision (P) Recall (R) F-measure
LSTM-AM 0.99 0.97 0.97
LSTM 0.90 0.88 0.88
RNN 0.82 0.79 0.80
RF 0.62 0.55 0.58
RF + RBM 0.66 0.65 0.65
RF + DBN 0.71 0.66 0.68

Table 3.14: Classification performance comparison using Greatest Common Divisor (GCD)
source codes

Models Precision (P) Recall (R) F-measure
LSTM-AM 0.98 0.95 0.96
LSTM 0.87 0.89 0.87
RNN 0.80 0.81 0.80
RF 0.64 0.59 0.61
RF + RBM 0.70 0.63 0.66
RF + DBN 0.75 0.80 0.77

cross-entropy, thus we discarded the results. Therefore, we validated both the standard LSTM

and LSTM-AM mosels using several randomly chosen erroneous source codes. Figure 3.12 and

Table 3.7 are presented detail of error detection and prediction by standard LSTM. The stan-

dard LSTM detected errors in lines 2, 6, 15, and 16, and provided the corresponding candidate

words “a”, “if”, “double quotation”, and ”c”, respectively. The predicted correct words are

“)”, “else”, “blank space”, and “b”. Although these results show the standard LSTM had de-

tected the most probable erroneous words and locations, not all of the candidate errors are TEs.

In line 2, the model detects “a” as an error candidate by guessing that “gcd” is a function with-

out arguments. Then, as a consequence, it predicts a close parenthesis “)” as the correct word.

Similarly, in line 6, the model detected “if” as a candidate error word and predicted “else” as

a corresponding correction. In this case, the model calculated that the word “if” started at line

3 and ended at line 5, and that the word after line 5 should be “else”. As a result, the standard

Table 3.15: Classification performance comparison using Prime numbers (PN) source codes

Models Precision (P) Recall (R) F-measure
LSTM-AM 0.95 0.94 0.94
LSTM 0.88 0.86 0.86
RNN 0.76 0.79 0.77
RF 0.59 0.60 0.59
RF + RBM 0.63 0.62 0.62
RF + DBN 0.65 0.66 0.65
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LSTM predicted the word “else” in line 6 instead of the word “if”. However, both the error

predictions in lines 2 and 6 were incorrect, even though they were hypothetically reasonable.

It should be noted that the error candidate word “c” in line 16 is a TE and the predicted word

“b” is correct. The evaluation results using the standard LSTM for the erroneous source code in

Figure 3.12 are presented in Table 3.16.

Table 3.16: The evaluation results based on Figure 3.12 using standard LSTM

Evaluation Indices Results (%) Descriptions
EDA 25 TE=1, TDE=4
CWA 25 TCW=1, TPW=4
MA 25 EDA =25 %, CWA=25%

In Figure 3.13, the LSTM-AM model detected a total of three errors in lines 2, 15, and 16,

with the predicted corresponding correct words are “)”, “blank space”, and “b” respectively, as

shown in Table 3.8. The evaluation results using the LSTM-AM for the erroneous source code

in Figure 3.13 are presented in Table 3.17.

Table 3.17: The evaluation results based on Figure 3.13 using LSTM-AM

Evaluation Indices Results (%) Descriptions
EDA 33.33 TE=1, TDE=3
CWA 33.33 TCW=1, TPW=3
MA 33.33 EDA =33.33 %, CWA=33.33%

To further evaluate the performance of the proposed model, we then took another erroneous

source code and verified it using both the standard LSTM and LSTM-AM networks, as shown

in Figures 3.14 and 3.15, respectively. The erroneous source code contains a logical error in

line 23. In this source code, two inputs were taken from the keyboard as “a” and “b” variables.

The higher value was assigned to variable “x” and the lower value was assigned to variable “y”.

Initially, variable “x” was thought to be a dividend and variable “y” was designated as a divisor.

However, line 23 was checked to find the initial greatest common divisor used by the modular

arithmetic operator where the small valued variable “y” was considered to be a dividend and

higher valued variable “x” was considered to be a divisor. By following the code sequence,

the correct logic would be x%y. Based on that aspect, the LSTM-AM network identified the

logical error correctly by considering the previous source code sequence, whereas the standard

LSTM could not detect the logical error in line 23. The evaluation results for erroneous source

codes in Figures 3.14 and 3.15 are listed in Table 3.18, where it can be seen that the LSTM-AM

network performance was even better in the case of the long source codes and complex codes
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with logical or other errors.

Table 3.18: Evaluation results by the standard LSTM and LSTM-AM

Models EDA CWA MA
LSTM 66% 30% 48%
LSTM-AM 90% 72% 81%

In addition to the above-mentioned source code evaluations and examples, we evaluated

about 300 randomly chosen erroneous source codes using the LSTM and LSTM-AM models

and found that their average accuracy values were approximately 31% and 62% respectively.

Those detailed statistics are shown in Table 3.19.

Table 3.19: Overview of the average evaluation statistical results using various erroneous source
codes

Name Codes LSTM LSTM-AM
EDA CWA MA EDA CWA MA

GCD 100 34.27 32.13 33.20 65.47 59.04 62.26
PN 100 28.00 31.00 29.50 64.60 57.30 60.95
IS 100 31.40 29.80 30.60 63.60 61.00 62.30

MA 31.1 61.84

Additionally, some syntax and logical errors in source codes cannot be identified by tradi-

tional compilers. In such cases, the proposed LSTM-AM-based language model can provide

meaningful responses to learners and professionals that can be used for the source code debug-

ging and refactoring process. This can be expected to save time when working to detect errors

from thousands of lines of source code, as well as to limit the area that must be searched to

find the errors. Furthermore, use of this intelligent support model can assist learners and profes-

sionals in more easily find the logical and other critical errors in their source codes. Moreover,

the classification accuracy of the proposed model is much better than the other state-of-the-art

models. The average precision, recall and f-measure scores of the LSTM-AM model are 97%,

96%, and 96% respectively that outperformed other state-of-the-art models.

3.9 Summary

In this Chapter, we proposed a neural network-based source code assessment model to assist

students, novice and professional programmers. The proposed model is expected to be effec-

tive in providing end-to-end solutions for the programming learners and professionals in the

SE fields. The experimental results obtained in this Chapter show that the accuracy of error
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detection and prediction using the proposed LSTM-AM model is approximately 62%, whereas

standard LSTM model accuracy is approximately 31%. In addition, the proposed model pro-

vides the location numbers for the predicted errors, which effectively limits the area that must be

searched to find errors. Thereby reducing the time required to fix large source code sequences.

Furthermore, the proposed model predicted correction words for each error location and de-

tects logical errors (WA,TLE,PrE,MLE,RTE) that cannot be recognized by conventional

compilers. Also, the LSTM-AM model shows great success in source code binary classification

(correct or incorrect) than other state-of-the-art models. As a result, it is particularly suitable

for application to long source code sequences and can be expected to contribute significantly to

source code debugging and refactoring process. Despite the above-mentioned advantages, the

proposed model also has some limitations. For example, error detections and predictions are not

always perfect, and the model sometimes cannot understand the semantic meaning of the source

code because of the incorrect detections and predictions that have been produced.
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Chapter 4

Code Assessment and Classification

Using Bidirectional LSTM

4.1 Introduction

Programming is among the most critical skills in the field of computing and software en-

gineering. As a consequence, programming education has received an ever-increasing level

of attention. Many educational institutions (universities, colleges, and professional schools)

offer extensive programming education options to enhance the programming skills of their stu-

dents. Indeed, programming has become recognized as a core literacy [53]. Programming

skills are developed primarily through repetitive practice, and many universities [17, 18, 21, 22]

have created their own programming learning platforms to facilitate such practice for their stu-

dents. These platforms are often used for programming competitions and serve as automated

assessment tools for programming courses [60]. Novice programmers tend to have difficulty

developing and debugging source code due to the presence of various types of errors (i.e.,

TLE, MLE, WA, PrE, OLE) and the insufficiency of conventional compilers to detect

these errors [138, 139].

Consider a simple program that takes an integer input n from the keyboard and generates an

output sum s that repetitively adds integers from 1 through n. The solution code is written in C

programming language to implement the procedure and is compiled by a conventional compiler.

After compiling, the user inputs n = 6 and the program correctly produces sum s = 21 as the

output; similarly, input n = 7 produces an output sum s = 28.
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#include <stdio.h>

int main(){

int j, l, totalsum=0;

printf("Give a number: ");

scanf("%d", &l);

for (j=1; j<=l; j++){

totalsum= totalsum +j;

}

printf("Total sum of 1 to %d is: %d", l, totalsum);

return (0);

}

Now consider the code below in which a novice programmer has made a mistake (a small

logic error) but the compiler executes the program normally and generates output, which, in this

case, is incorrect. Specifically, the program has taken input n = 6 and produced output sum s =

15; similarly, input n = 7 produces output sum s = 21.

#include <stdio.h>

int main(){

int j, l, totalsum=0;

printf("Give a number: ");

scanf("%d", &l);

for (j=1; j<l; j++){

totalsum= totalsum +j;

}

printf("Total sum of 1 to %d is: %d", l, totalsum);

return (0);

}

No compiler has the ability to detect the coding error here. In more complex examples, such

logic errors can be difficult to resolve. Environment-dependent logic errors, such as forgetting

to include “= 0” for totalsum in the above example, are not uncommon, and even experienced

programmers can make errors in source code [107]. It is widely accepted that many known and
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unknown errors go unrecognized by conventional compilers, which means that programmers

often spend valuable time identifying and fixing these errors. To help programmers, especially

novice programmers, deal with such source code errors quickly and efficiently, research seeking

to shed light on the issue is being actively conducted in programming education [39, 106].

A variety of methods have been proposed, such as source code classification [140, 141],

code clone detection [142, 143], defect prediction [144], program repair [36, 113], and code

completion [64, 145] to address source code related problems. Recently, NLP has been used in

a number of domains, including speech recognition, language processing, and machine transla-

tion. The most commonly used language models, including bi-gram, GloVe [108], tri-gram, and

skip-gram, are examples of NLP-based language models. However, while these models may be

useful for relatively short, simple codes, they are considerably less effective for long, complex

codes. Today, deep neural network models are being used for language modeling due to their

ability to consider long input sequences, and DNN-based language models are being developed

for source code bug detection, logic error detection, and code completion [38, 63, 64, 114, 146].

RNNs have been used but are less effective due to gradient vanishing or exploding [147]. LSTM

has overcome gradient vanishing or exploding problem.

LSTM neural networks consider previous input sequences for prediction or output. How-

ever, the functions, classes, methods, and variables of a source code may depend on both pre-

vious and subsequent code sections or lines. In such cases, LSTM may not produce optimal

results. To fill this gap, we propose a BiLSTM language model to evaluate and repair source

codes. A BiLSTM neural network can combine both past and future code sequences to produce

output [148, 149]. In constructing and applying BiLSTM model, we first perform a series of

pre-processing tasks on the source code, then encode the code with a sequence of IDs. Next,

we train the BiLSTM neural network using the encoded IDs. Finally, the trained BiLSTM

model is used for source code evaluation and repair. The proposed model can be used for dif-

ferent systems (i.e., online judge type, or program/software development where specifications

and input/output are well defined) where problems (questions), submission forms (editors), and

automatic assessments are involved. We can use the proposed model for an intelligent cod-

ing environment (ICE) [150] via API (Application Programming Interface). ICE is one of the

examples of many services. On the other hand, there are many powerful and intelligent IDEs

(i.e., grammatical support) available, but the proposed BiLSTM model (which can be applied

for online judge type systems) can provide much smarter feedback by identifying errors (i.e.,
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WA, TLE, RTE, MLE, etc.) than conventional IDEs.

Over the past few years, programmers have improved their programming skills and can write

code in many different programming languages to solve problems. As a result, a huge amount

of source code written in various languages is regularly pushed to the Cloud repositories [151].

However, due to the large size of source code repositories, manual classification of source code

is quite expensive and time-consuming [151]. In a study [152], a CNN was used to classify

the source codes based on the algorithms used in codes. In [151], experiments conducted using

source codes were written in the C++ programming language. Rahman et al. [102] proposed a

BiLSTM neural network to classify the source codes written in C programming language. Sim-

ilarly, an attention-based LSTM language model has been applied to classify the programming

codes [63, 64].

In addition to programming, multilingual applications are spreading in a variety of fields,

including social media, audio, video, text, business, and medicine. ML algorithms are increas-

ingly being applied to classify multilingual data resources, such as sentiment analysis [153] and

texts related to medicine [154]. In [155], the single-layer BiLSTM model used for sentiment

classification, and three different movie review databases consisting of public opinions about

movies were used in their experiment. The experimental results show that the single-layer BiL-

STM model was better than the other models compared. Furthermore, programmers have been

upgrading themselves in terms of skills, applications, and adaptation to new programming en-

vironments and languages. As a result, the nature of source code archives has become more

heterogeneous and challenging for researchers. Nowadays, novice programmers spend a lot of

time identifying problems in source code that are solved using MPLs (e.g., C, C++, Java, Python,

Python 3, etc.). This is a hindrance to learn programming, not only for novice programmers but

also for experienced programmers.

In this Chapter, we also present a stacked BiLSTM model for classifying source codes

built/written in MPLs. Since methods, classes, variables, tokens, and keywords have both short-

term and long-term dependencies, the stacked BiLSTM layers make the model deeper and pro-

vide a better understanding of the context of the codes. Using a large number of real-world

source codes, we trained LSTM, BiLSTM, and stacked BiLSTM models. We tweak various

hyperparameters and observe the performance of the models. The main contributions of this

Chapter are summarized below:

• The proposed BiLSTM language model for code assessment can effectively detect errors
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including logical errors (TLE, MLE, OLE, WA, etc.) and provide corrections for

erroneous codes.

• The BiLSTM model can be helpful to students, programmers (especially novice program-

mers), and professionals who often struggle to resolve code errors.

• The model can be used for different real-world programming learning and software engi-

neering platforms and services.

• The stacked BiLSTM model classifies source codes based on the algorithms. The model

can help students and programmers to identify the algorithms used in the source code.

Programmers can understand the code better if they know the written algorithm in the

code.

• The stacked BiLSTM model can be deployed in the field of software engineering to rec-

ognize code in the large code archives.

The remainder of this Chapter is organized as follows. In particular, the research background

and related work are described in Section 4.2. The architecture and mathematical background

of the proposed BiLSTM model are presented in Section 4.3. In Section 4.3.4, we present the

experimental results of code assessments and classification using BiLSTM. Section 4.4 presents

stacked BiLSTM model for multi-class classification. In Section 4.4.6, we present the exper-

imental results of multi-class classification using stacked BiLSTM. Section 4.5 concludes the

Chapter.

4.2 Background and Related Works

The wide range of application domains and the functionality of DNNs make them powerful

and appealing. Recently, ML techniques have been used to solve complex programming-related

problems. Accordingly, researchers have begun to focus on the development and application of

DNN-based models in programming education and software engineering. In [138], logic errors

(LEs) are a type of error that persists after compilation, whereas typical compilers can only

detect syntax and semantic errors in codes. They proposed a practical approach to identify and

discover logic errors in codes for object-oriented-based environments (i.e., C# .Net Framework).

Their proposed Object Behavior Environment (OBEnvironment) can help programmers to avoid
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LEs based on predefined behaviors by using Alsing, Xceed, and Mind Fusion Components.

That approach is not similar to the proposed BiLSTM model, as their model is developed for

the C# programming language in the .Net framework. Al-Ashwal et al. [139] introduced a

CASE (computer-aided software engineering) tool to identify LEs in Java programs using both

dynamic and static methods. Programmers faced difficulties in identifying LEs in the codes

during testing; sometimes it is necessary to manually check the whole code, which also takes a

large amount of time, effort, and cost. They used PMD and Junit tools to identify LEs on the

basis of a list of some common LEs related to Java. Their study is only suitable for identifying

LEs in Java programs, but not for other programming languages.

In [156], an automated LE detection technique is proposed for functional programming

assignments. A large amount of manual and hand-made efforts are required to identify LEs

in test cases. Their proposed technique uses a reference solution for each assignment (written

in OCaml programming language) of students to create a counter-example that contains all the

semantic differences between the two programs. That method identified 88 more LEs that were

not identified by the mature test cases. Moreover, the technique can be effective for automatic

code repair. The disadvantage of this method is that a reference program is needed to identify

LEs for each incorrect code. In [157], the authors studied a large number of research papers on

programming languages and natural languages that were implemented using probabilistic mod-

els. They also described how researchers adapted these models to various application domains.

Raychev et al. [145] addressed code completion by adopting an n-gram language model and

RNN. Their model was quick and effective in code completion tasks. Allamanis et al. [158] pro-

posed a neural stochastic language model to suggest methods and class names in source codes.

The model analyzed the meaning of code tokens before making its suggestions and produced

notable success in performing method, class, and variable naming tasks. S. Wang et al. [159]

proposed a model for predicting defective regions in source codes on the basis of the code’s

semantics. The DBN was trained to learn the semantic features of the code using token vectors

derived from the code’s AST, as every source code contains method, class, and variable names

that provide important information. On the basis of the semantic meaning, Pradel et al. [160]

introduced a name-based bug detection model for codes.

Song et al. [161] proposed a BiLSTM model to detect malicious JavaScript. In order to

obtain semantic information from the code, the authors first constructed a program dependency

graph (PDG) for generating semantic slices. The PDG stores semantic information that is later
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used to create vectors. The approach was shown to have 97.71% accuracy, with an F1-score

of 98.29%. In articles [38, 114], the authors proposed an LSTM-based model for source code

bug detection, code completion, and classification. Both methods were used to develop the pro-

gramming skills of novice programmers. Experimental results, obtained by tuning the various

hyper parameters and settings of the network, showed that both models achieved better results

for bug detection and code completion in comparison with other related models. In [63, 64],

the authors proposed error detection, LE detection, and the classification of source codes on the

basis of an LSTM model. Both approaches used an attention mechanism that enhanced model

scalability. On the basis of various performance scales, both models achieved significant success

compared to more sophisticated models. As noted earlier, however, an LSTM-based model con-

siders only previous input sequences for prediction but is unable to consider future sequences.

The proposed BiLSTM model has the ability to consider both past and future sequences for

output prediction. In brief, there have been a number of novel and effective neural network and

probabilistic models proposed by researchers to solve problems related to source codes. The

proposed BiLSTM model is unlike from other models in that it considers both the previous and

subsequent context of codes to detect errors and offer suggestions that enable programmers and

professionals to make the needed repairs efficiently.

Furthermore, various research methodologies have been introduced and proposed for classi-

fication in different domains. In addition to traditional classification methods, ML-based models

have recently been effectively employed for classification tasks. In [162], three well-known clas-

sifiers such as KNN, relevance feedback, and Bayesian independence were combined to classify

medical texts. Different combinations of these classifiers yielded better results than the single

classifier. On the other hand, the uni-gram language model was used to classify text [163]. Re-

cently, many supervised and unsupervised classification models such as ANNs, support vector

machines (SVMs), and RF trees have been applied to various classification tasks. Meanwhile,

in [164], a large number of source codes were classified based on SVM, the model correctly

classified the source code into topics and languages .

Despite the use of traditional classification methods, DNN-based models have recently been

used moderately in code-related classification tasks. In the last few years, techniques based

on ML have shown promising results for text processing and classification, especially DNN

techniques (e.g., RNN, CNN, LSTM, BiLSTM). A single-layered BiLSTM model used for

binary (0 or 1) sentiment classification, BiLSTM model was reported to be computationally
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efficient than other models [155]. In [42], an LSTM-based model was proposed for automatic

classification of source code archives based on programming languages. The RNN model gave

more significant results than the Naive Bayes classifier. In [63, 64, 102, 152], CNN, LSTM, and

BiLSTM based models were used to classify source code, and these models yielded significant

results compared to supervised classification methods, but all of them used source codes written

on a specific programming language (such as C or C++). Since it is difficult to explain which

model is better, but the proposed multi-class source code classification model using BiLSTM is

different from the existing models.

4.3 Proposed BiLSTM Model for Code Assessment and Classifica-

tion

In this section, we describe the proposed BiLSTM model. First, Figure 4.1 shows the work-

flow of the model, proceeding from source code collection to code evaluation by the trained

BiLSTM model.
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4.3.1 BiLSTM Model Architecture

Let I = {i1, i2, i3, . . . . . . . . . , it} be the set of encoded IDs of source codes. An RNN then

executes for each encoded ID it for t = 1 to n. The output vector of RNN yt can be expressed by
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the following equations:

ht = tanh (Wxhxt +Whhht−1 + bh) (4.1)

yt = Whyht + by (4.2)

where ht is the hidden state output, W is a weight matrix (Wxh is a weight connecting input (x)

to hidden layer (h)), b is a bias vector, and tanh is an activation function of the hidden layer.

Equation (4.1) is used to calculate the hidden state output, where the hidden state receives the

results of the previous state.

However, due to the problem of gradient vanishing/exploding [147], not all input sequences

are used effectively in an RNN. To avoid the problem and produce a better result, the RNN is

extended to LSTM. Conceptually, an LSTM network is similar to an RNN, but the hidden layer

updating process is replaced by a special unit called a memory cell. LSTM is implemented by

applying the following equations:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (4.3)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (4.4)

ct = ftct−1 + ittan h (Wxcxt +Whcht−1 + bc) (4.5)

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (4.6)

ht = ottan h (ct) (4.7)

where σ is a sigmoid function; c, f, i, and o are the cell state, forget gate, input, and output,

respectively; and all b are biases. However, there is still a shortcoming in LSTM insofar as it

considers only the previous context of the input but cannot consider any future (i.e., subsequent)

context.

To overcome this limitation, we adopted the BiLSTM model [165], which enables us to

consider both the past and future context of source codes, as shown in Figure 4.2. Here, there

are two distinct hidden layers, called the forward hidden layer and backward hidden layer. The

forward hidden layer hft considers the input in ascending order, i.e., t = 1, 2, 3, ..., T. On the other

hand, the backward hidden layer hbt considers the input in descending order, i.e., t = T, ...,3,2,1.
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Finally, hft and hbt are concatenated to generate output yt. The BiLSTM model is implemented

with the following equations:

hft = tan h
(
W f

xhxt +W f
hhh

f
t−1 + bfh

)
(4.8)

hbt = tan h
(
W b

xhxt +W b
hhh

b
t+1 + bbh

)
(4.9)

yt = W f
hyh

f
t +W b

hyh
b
t + by (4.10)
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Figure 4.2: Architecture of the BiLSTM neural network

The training and evaluation processes of the proposed model are shown in Figure 4.3. The

BiLSTM network is used as the core processing unit for training and code evaluation. The figure

shows the typical input and output pattern of the model.
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4.3.2 Dataset and Experimental Setup

In this Chapter, all real-world source codes (data) are collected from the AOJ system. The

data preprocessing and model training steps mentioned in Section 3.5.1 are performed. All

experiments are conducted using the source codes of GCD and IS problems. A total of 2482

codes were included in the experiments: 90% for model training, 5% for model validation, and

5% for testing. The average length or number of lines in the GCD and IS solution codes were

18.9 and 30.91, respectively. Moreover, the average sizes of GCD and IS solution codes were

262.45 and 532.28 bytes, respectively. The difficulty or complexity level of solution codes was

moderate. To balance the evaluation of the experimental results, we selected an equal number

of correct (50%) and incorrect (50%) source codes from each type of problem (GCD and IS).

The nature of the error was heterogeneous in the incorrect source codes. We did not select

similar or common error typed source codes for training, validation, and testing. Instead, we

randomly selected a variety of faulty source codes. To obtain the best results, we tuned the

network configurations using hidden neurons of different sizes (e.g., 100, 200, 300, and 400)

for the BiLSTM and other models. Training data were saved as .npz format for each type of

hidden neuron (200, 300, 400, etc.). Similarly, for the output (error identification and providing

suggestions), the model used the same number of hidden neurons. A value of 0.50 was used for

the dropout [133] layers to avoid network overfitting. The Adam optimization algorithm [134]

was adopted during model training. Particularly in deep learning, Adam optimizer is effectively

used for the purpose of model learning. It balances model parameters and loss functions to

efficiently update network weights.

S (zi) =
exp (zi)∑n
j=1 exp (zj)

(4.11)

Our proposed model is a seq2seq language model that predicts next words in incorrect codes on

the basis of probability. The Softmax activation layer (as defined in Equation (4.11)) is used to

transform the output vector to probability where Softmax takes vector Z = [z1, z2, z3, . . . , zn]

and produces a vector S(z) = [s1, s2, s3, . . . , sn] for probabilities. The Softmax layer generates

the probability for each word (token or ID) if the probability is too low (less than 0.1), which

is considered as an error candidate and immediately mark the entire line. At the same time, the

model generates a possible correct word instead of the error. To predict the correct word (token

or ID), the model (BiLSTM) calculates the code sequences (both forward and backward) to find

107



CHAPTER 4. CODE ASSESSMENT AND CLASSIFICATION USING BIDIRECTIONAL LSTM

the best possible word on the basis of the highest probability.

4.3.3 Evaluation Metrics for Code Assessment

In this section, we have defined terms ”Error identification accuracy (EIA)”, ”Suggestion

accuracy (SA)”, and ”Correctness of the model (CoM)” as model evaluation metrics for code

assessment. Furthermore, we used precision, recall, and F-score to evaluate the classification

results of the BiLSTM model. For this purpose, we adopted equations 3.31, 3.32, and 3.33 for

precision, recall, and F-score, respectively.

Definition 5 (Error identification accuracy) The model identifies erroneous candidates (words)

in the solution codes; the number of correct or actual error candidates (words) out of the total

identified error candidates (words) is called error identification accuracy (EIA). The “Number

of correctly detected errors” are the errors that actually exist in the code and the “Total number

of detected errors” are the errors (may exist or not in the code) detected by the model.

EIA =
Number of correctly detected errors in code

Total number of detected errors in code
× 100% (4.12)

Example 4 If a model m identifies a total of 11 error candidates (words) in solution code s1,

and only 5 of the identified candidates (words) are actually present in the code, the EIA of model

m for s1 is approximately 45.45%.

Definition 6 (Suggestion accuracy) The model generates suggestions for each identified error

candidate; the number of correct or actual code repair suggestions out of the total suggestions

for error candidates is called suggestion accuracy (SA).

SA =
actual suggestion for error candidates

total suggestions
× 100% (4.13)

Example 5 If model m generates a total of 20 suggestions in solution code s2, and only 13 of

the total suggestions are correct or true, the SA of model m for s2 is 65%.

Definition 7 (Correctness of the model) Correctness of the model is calculated as the average

of EIA and SA values.

Correctness of Model (CoM) =
EIA+ SA

2
(4.14)

108



4.3. PROPOSED BILSTM MODEL FOR CODE ASSESSMENT AND CLASSIFICATION

Example 6 If model m has an EIA value of 45.45% and an SA value of 65%, the correctness of

model m will be approximately 55.23%.

4.3.4 Experimental Results

In this section, we present the hidden units and epochs selection, code assessment and clas-

sification results based on the BiLSTM model.

4.3.4.1 Selection of the Number of Epochs and Hidden Units

An epoch is a complete cycle with the full training dataset. Using the optimal number of

epochs can improve the performance of the model as well as save time for model training. Our

training dataset consists of the solution codes of the two problems GCD and IS. We trained the

model separately for each of the two types using different hidden units.
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Figure 4.4: Effect of cross-entropy on selecting epochs and hidden units for BiLSTM. (a) GCD
problem set, (b) IS problem set.

Figure 4.4 shows the results of the cross-entropy calculations used to select the optimal

number of epochs and hidden units (neurons) for the BiLSTM model. Figure 4.4(a) gives the

results for the GCD case. First, we identified the appropriate number of hidden units for model

training. In this case, 200 hidden units produced the lowest cross-entropy. Moreover, cross-

entropy was lowest when the number of epochs was between 20 and 25. The indication is that,

for the GCD case, the model produced its best performance when the number of hidden units

was 200 and the number of epochs was between 20 and 25, and that using these values saves

model training time. Similarly, Figure 4.4(b) shows that, in the IS case, cross-entropy for the
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BiLSTM model was lowest when 400 hidden units and between 25 and 30 epochs are used.
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Figure 4.5 shows the cross-entropy results for the LSTM model. Figure 4.5(a) indicates that,

in the GCD case, the cross-entropy of the LSTM model reached its lowest level when 300 hidden

units and between 22 and 25 epochs were used. Figure 4.5(b) provides the results of when IS

codes were used for model training. Here, the LSTM model had minimum cross-entropy when

400 hidden units and between 25 and 30 epochs were used.

Comparative statistics for the lowest cross-entropy of the LSTM and BiLSTM models are

given in Table 4.1. For the LSTM model, 300 and 400 hidden units produced the minimum

cross-entropy for the GCD and IS solution codes, respectively. On the other hand, for the

BiLSTM model, 200 and 400 hidden units, respectively, produced the lowest cross-entropy for

the GCD and IS solution codes. Therefore, we chose these numbers of hidden units (i.e., those

producing the minimum cross-entropy) for model training and code assessment.

Table 4.1: Comparative lowest crossentropy of LSTM and BiLSTM models for different hidden
units

SL Hidden Units (neurons) LSTM BiLSTM
GCD IS GCD IS

1 100 1.89 1.75 1.35 1.24
2 200 1.72 1.35 1.24 1.07
3 300 1.62 1.24 1.25 1.05
4 400 1.66 1.20 1.25 1.04
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4.3.4.2 Erroneous Source Code Assessment

We evaluated erroneous source codes using the LSTM and BiLSTM models and compared

the performance of the two models. In Figure 4.6(a), an incorrect GCD solution code was

evaluated by the LSTM model. Errors were identified in lines 13, 15, 16, and 18 of the code.

According to the context of the code, an error occurred in line 14, which was supposed to be l =

m%n; however, the LSTM model was unable to accurately detect the error. Figure 4.6(b) shows

an erroneous solution code to an IS problem assessed by LSTM. Most of the errors (logical and

syntactic) were identified by the model, but an irrelevant error (actually, no error at all) was

identified in line 3.
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To compare the error assessment efficiency of the two models (LSTM and BiLSTM), we

assessed the same erroneous codes by the BiLSTM model. In Figure 4.7(a), a solution to the

GCD problem is evaluated by the BiLSTM model. The model detected errors in lines 13, 14,

and 16. On the basis of the context of the code, the model considered the output statement

in line 18 to identify the errors. As a result, the BiLSTM model correctly identified logical

errors in lines 13 and 14 on the basis of the output details in line 18. In Figure 4.7(b), where an

incorrect solution to the IS problem was assessed by the BiLSTM model, the BiLSTM model

was able to identify all the errors (logical and syntax) in the code. Errors are identified in lines

6, 16, 17, and 18, considering the full context of the erroneous code. In contrast, it is all but

impossible to determine logical errors using a conventional compiler or to even consider the

later context of the code. Figures 4.6 and 4.7 show that the BiLSTM model properly evaluated

the erroneous codes on the basis of later context. On the other hand, the LSTM model was

slightly less efficient of considering later context to detect errors.
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4.3.4.3 Suggestions for Code Repair

The two models provided suggestions for code repair for each detected error location. Table

4.2 lists the suggestions based on the GCD problem evaluation described above.

Table 4.2: Suggestions for GCD problem evaluated in Figures 4.6(a) and 4.7(a)

Location in Code LSTM BiLSTM
Detected Suggested Detected Suggested

13 = ! = !
14 n, m m, n
15 m, n n, m
16 l l; l l;
18 printf }

Similarly, Table 4.3 lists the suggestions based on the IS problem evaluations by the LSTM

and BiLSTM models.

Table 4.3: Suggestions for IS problem evaluated in Figures 4.6(b) and 4.7(b)

Location in Code LSTM BiLSTM
Detected Suggested Detected Suggested

3 main int main
6 = < <= n < n
16 < > < key > key
17 i j a[i] a[j]
18 +,+ -,- j++ j–

Both the LSTM and BiLSTM models provided relevant suggestions for correcting the de-

tected errors. Such suggestions can be useful to programmers, especially novice programmers,

to help them quickly repair erroneous codes. However, not all errors are straightforward; some

may rely on previous or subsequent lines in the code. In such cases, the BiLSTM model is more

efficient than the LSTM model.
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4.3.4.4 Overall Model Performance for Error Detection and Binary Classification

Table 4.4 shows the comparative performances of the BiLSTM, LSTM, and RNN models for

the GCD source code dataset. The CoM of the BiLSTM model was approximately 52.4%, which

was much higher than the CoM of the other two models. Note that CoM (as per Equation (4.14))

was determined on the basis of the correctness of error detection and the suggestions provided

for erroneous code. We calculated standard deviation (σ) on the basis of model performance

in terms of error identification and suggestion accuracy. The BiLSTM model achieved the

lowest deviation (σ: 4.55) compared to other models, which determines that the performance

distribution of the model was consistent. Although the BiLSTM model also had the highest

precision rate of 98%, there were very few correct codes classified as incorrect. The 95.5% recall

rate indicated that there were relatively few FP. As noted earlier, the F-score is the harmonic

mean of the recall and precision ratios and is an important metric to describe model performance.

As Table 4.4 shows, the F-score of the BiLSTM model was highest among the three models, at

96.7%, indicating that the proposed model produced superior TP with a low rate of FP.

Table 4.4: Performance of the models based on the GCD dataset

Model EIA CoM σ Precision (P) Recall (R) F-Score
BiLSTM 66 52.4% 4.55 98% 95.5% 96.7%
LSTM [64] 45 33.2% 7.67 87% 89% 87.0%
RNN [64] 33 25% 7.76 80% 81% 80.0%

Table 4.5 shows the comparative results when the models were applied to the IS dataset.

In this case, the BiLSTM model outperformed the LSTM and RNN models (CoM: 49.35%; σ:

3.12; precision: 97%; recall: 97%; F-score: 97.0%).

Table 4.5: Performance of the models based on the IS dataset

Model EIA CoM σ Precision (P) Recall (R) F-Score
BiLSTM 62 49.35% 3.12 97% 97% 97.0%
LSTM [64] 41 30.6% 6.09 90% 88% 88.0%
RNN [64] 29 22% 7.15 82% 79% 80.0%

4.4 Proposed Stacked BiLSTM Model for Multilingual Source Code

Classification

One variation of the BiLSTM model is stacked BiLSTM, which uses several BiLSTM layers

to train the neural network with better contextual information. Stacked BiLSTM uses the same
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update formula as BiLSTM that described in Section 4.3.1.

4.4.1 Stacked BiLSTM Model Architecture

In stacked BiLSTM model, we used a two-layer BiLSTM neural network. In this model,

the output of hidden state of each BiLSTM layer is given as input to the next BiLSTM layer.

The stacked BiLSTM architecture improves the ability of neural networks to learn more con-

textual information and has been used effectively in various applications [166]. The stacked

RNN had achieved state-of-the-art performance for a language modeling tasks [167]. Fig. 4.8

shows the overall architecture using the stacked BiLSTM that employs for the multi-class code

classification.

Figure 4.8: Architectural overview of the stacked BiLSTM model

4.4.2 Dataset and Preprocessing

For this multiclass classification model, we collected a real-world dataset from the AOJ

system [18,19]. We collected about 35,000 solution codes written in MPLs for this experiments.
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Each solution code belong to a specific problem title (e.g., insertion sort, bubble sort, stack, 15-

puzzle, graph, Shell Sort, etc.). A summary of source codes with problem’s title/name shown in

Table 4.6. According to Table 4.6, the solution codes are distributed among 25 unique classes.

Table 4.6: A summary of solution codes with problem title/class name

Sl. Problem title/class name Number of codes
1 Insertion Sort 4208
2 Greatest Common Divisor 3054
3 Prime Numbers 2907
4 Bubble Sort 3381
5 Selection Sort 2945
6 Stable Sort 1545
7 Fibonacci Number 1750
8 Longest Common Subsequence 1257
9 Matrix Chain Multiplication 1090
10 Graph 1410
11 Breadth First Search 1006
12 Depth First Search 1300
13 Minimum Spanning Tree 1077
14 Single Source Shortest Path I 957
15 Single Source Shortest Path II 615
16 Maximum Profit 3255
17 Shell Sort 1309
18 8 Puzzle 198
19 Connected Components 613
20 8 Queens Problem 309
21 15 Puzzle 146
22 Naive String Search 263
23 String Search 206
24 Pattern Search 67
25 Multiple String Matching 131

The statistics for each programming language in the dataset are shown in Fig. 4.9. In the

experiment, source codes written in about 14 different languages are used. The diversity of the

dataset is shown by these statistics.

Data preprocessing is one of the most important steps in machine learning. The irrelevant

and irrational information can cause the poor results in any machine learning model. In order

to get better performance from the machine learning model, data preprocessing is considered

as a major step. However, when writing code, irrelevant information such as comments, line

breaks, tabs, and spaces are included in the code. Therefore, we have removed all unnecessary

information from the source codes. The Natural Language Toolkit (NLTK) [168] is used to
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C(31.3%)

JavaScript(0.06%)

JAV A(8.3%)

Python(2.2%)

Python3(8.6%)

PHP (0.2%)

C + +(33.4%)

C#(2.3%)

C + +11(5.3%)

Ruby(2.7%)

C + +14(5.1%)

D(0.18%)

Figure 4.9: Statistical overview of the programming languages based on solution codes

preprocess the data. We considered each keyword, token, variable, function, class, operator,

operand, etc. in the source code as a normal word. First, we created a vocabulary list containing

the unique words and assigned a natural number to each unique word. This process is called

tokenization and encoding, as shown in Fig. 4.10.

Figure 4.10: Tokenization and encoding

4.4.3 Hyperparameters

Source code is a complex collection of statements such as variables, keywords, tokens,

functions, classes, and mathematical operations. These statements are highly dependent on each

other. Therefore, neural networks, especially DNN, have the ability to learn the complex context

of the source code and solve various tasks associated with the source code. DNN can also learn

the complex relationships between the inputs and outputs of source code [169]. However, the

training and performance of a neural network is highly dependent on the selection of optimal

hyperparameters. We have fine-tuned the hyperparameters for the proposed classification model

to obtain better performance. The values of the hyperparameters are shown in Table 4.7.
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Table 4.7: List of the hyperparameters and settings used in the proposed model

Name of the hyperparameter Values
Vocabulary size (v) 10000
Maximum sequence length (m) 500
Embedding Size (e) 64
Truncating type (trunc type) post
Padding type (padding type) post
Out of vocabulary token (oov tok) < OOV >

Optimizer adam
Loss function (cross entropy) sparse categorical crossentropy
Activation functions ReLU and Tanh
Epochs (epoch) 25, 50, 100, and 150
BiLSTM nodes 128
Training portion of the dataset 80%
Validation portion of the dataset 15%
Testing portion of the dataset 5%

4.4.4 Activation Functions

Activation functions are used to add non-linearity to a NN. The activation function expands

the learning opportunities of the NN and ensures that the output of the NN is not reproduced

from similar combinations of inputs. The activation function plays an important role in im-

proving the overall performance of the network [170]. In the absence of activation functions,

each layer of the NN behaves like a single layer perceptron or simple linear regression model;

the activation functions of the NN include Linear, Sigmoid, Tanh, Rectified linear unit (ReLU),

Leaky ReLU, and so on [170]. In this experiment, we used tanh and ReLU activation functions

separately and the performance of both functions is investigated.

Hyperbolic Tangent or Tanh: The Tanh function takes any real number from NN as input

and produces an output in the range of -1 to 1 [170]. The Tanh function outputs 1 for large

values and -1 for small values according to the following equation (4.15).

f(x) =
1− e−2x

1 + e−2x
(4.15)

ReLU: In DNNs, the ReLU activation layer has a positive impact on the performance of

the network. The ReLU activation function is used to avoid the gradient vanishing problem in

DNNs. If the value of the input is less than 0, ReLU generates 0, and if it is greater than 0, it

generates the same value [170]. In this way, ReLU speeds up the network compared to other
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activation functions. The following Equation 4.16 is used in the ReLU layer. Figure 4.11 shows

the activation function curves for Tanh and ReLU.

f(x) = max(0, x) (4.16)

Figure 4.11: Tanh and ReLU activation functions

Softmax: The Softmax function is used for multi-class classification. The Softmax function

takes a vector of real values from the NN and converts it into a vector of probabilities that sum

to 1. This is used as the output layer for multi-class classification of the DNN model [170]. To

calculate the probability, the following Softmax formula (4.17) is used.

σ( ~X)i =
eXi∑Z
j=1 e

Xj
(4.17)

where X is the input vector received from the NN, Xi is the elements of the input vector X ,

eXi is the exponential function applied to each element of X , and the
∑Z

j=1 e
Xj term ensures

that the probability of each element is in the range of 0 to 1, and the sum of the probabilities of

all elements is 1, and Z is the number of class.

4.4.5 Evaluation Metrics

The performance of a classification model using NN depends on the elements of the confu-

sion matrix. The confusion matrix has four elements: precision, recall, F1-score, and accuracy.

Each element is evaluated based on four terms: true positive (TP ), false positive (FP ), true neg-

ative (TN ), and false negative (FN ). For example, c is the true class for a given problem p, and c

is the opposite of the true class of c. TP classifies problems in class c as class c, (c −→ c), while

FP classifies problems in class c as incorrect class c, (c −→ c). On the other hand, TN classifies

problems in class c as class c, (c −→ c), and FN classifies problems in class c as incorrect class
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c, (c −→ c). Precision(P :) It is used to measure the correctness of a classification model.

It indicates how many of the positive classifications are correct. Equation 3.31 is used for the

precision. Recall(R :) This is used to measure the completeness of a classification model and

is calculated as the ratio of TP to the total number of actual classes (TP + FN ). Equation 3.32

is used for the recall. F1 − score : It is calculated using the scores of P and R and is the har-

monic mean of P and R. The F1-score is useful when the distribution of FP and FN is uneven.

Equation 3.33 is used for the F1-score. Accuracy : It is an important metric to measure the

performance of a model. The accuracy of a model is evaluated by the ratio of the total number

of correct predictions to the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.18)

4.4.6 Experimental Results

In this section, we show the experimental results generated based on different hyperparame-

ter settings. In addition to the proposed stacked BiLSTM model, several state-of-the-art models

such as LSMT and BiLSTM were trained and validated to compare the performance of the

proposed model.

Figures 4.12, 4.13, and 4.14 show the accuracy and loss per epoch for the LSTM, BiLSTM,

and stacked BiLSTM model during training and validation, respectively. We trained the models

with different numbers of epochs and activation functions such as ReLU and tanh, and most of

the models performed better when 150 epochs and ReLU activation function were used.

Figure 4.12: Accuracy and loss per epoch during training and validation for the LSTM model

The following observations can be drawn from these above figures: (i) the proposed model

obtained higher training and validation accuracy than the LSTM and BiLSTM models and (ii)

the proposed model has less loss than other two comparative models.

Considering these evaluation metrics, i.e., precision, recall, and F1 score, we compared
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Figure 4.13: Accuracy and loss per epoch during training and validation for the BiLSTM model

Figure 4.14: Accuracy and loss per epoch during training and validation for the stacked BiLSTM
model

the classification results with other state-of-the-art models. The results show that the proposed

stacked BiLSTM model significantly outperforms the other models. Table 4.8 shows the average

precision, recall, and F1 scores of all the models considering the epoch number 150 and the

activation function ReLU. It can be seen that the proposed stacked BiLSTM model outperforms

the other state-of-the-art models in all three evaluation metrics.

Table 4.8: Average precision, recall, and F1-score of all models

Model Precision Recall F1-score
LSTM 0.8248 0.8380 0.8116
BiLSTM 0.8456 0.8508 0.8348
Stacked BiLSTM 0.9012 0.8948 0.8924

The accuracy of all the models was also calculated considering the different number of

epochs and activation functions as shown in Table 4.9 and Table 4.10, respectively. The pro-

posed stacked BiLSTM model achieved better accuracy with both activation functions at differ-

ent epochs.

Figure 4.15 shows a confusion matrix to visualize the prediction results of the proposed

model. In the confusion matrix, the x−axis and y−axis represent the predicted label and the

true label, respectively. The proposed model predicted the correct class for most of the test data,
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Table 4.9: Average accuracy of the models using ReLU activation function

Epochs Models
LSTM BiLSTM Stacked BiLSTM

25 0.89 0.89 0.91
50 0.90 0.90 0.91
100 0.88 0.92 0.93
150 0.91 0.91 0.93

Table 4.10: Average accuracy of the models using Tanh activation function

Epochs Models
LSTM BiLSTM Stacked BiLSTM

25 0.88 0.87 0.92
50 0.89 0.91 0.92
100 0.89 0.91 0.93
150 0.90 0.90 0.93

but misclassification occurred for a very small amount of data.

In brief, the proposed BiLSTM model achieves better results than LSTM and other models

for code evaluation and providing suggestions for code repair. We used two datasets, GCD and

IS, for model training and evaluation. We presented the results of code assessments, sugges-

tions, and overall performance of the model based on various evaluation metrics. In addition,

we used stacked BiLSTM, a variation of BiLSTM, to classify multilingual source codes. In this

classification task, the source codes used belonged to 25 different classes and were written in 14

different programming languages. The proposed stacked BiLSTM model produced satisfactory

results compared to other state-of-the-art models. The model is applied to classify multilingual

real-world source codes using various hyperparameters. The model outperforms the other mod-

els in each evaluation matrix such as precision, recall, F1 score, and accuracy. These results

indicate that the proposed model has the potential to learn complex contexts of source codes of

different programming languages. All the experimental results suggest that the stacked BiLSTM

model can also be applied to other purposes of complex task classification.

4.5 Summary

It is generally recognized that conventional compilers and other code evaluation systems are

unable to reliably detect logic errors (WA, TLE, MLE, OLE, PrE) and provide proper
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Figure 4.15: Confusion matrix for all classes using the stacked BiLSTM model

suggestions for code repair. While neural network-based language models can be effective in

identifying errors, standard FNN or unidirectional RNNs have proven insufficient for effective

source code evaluation. There are many reasons for this, including code length and the fact that

some errors depend on both previous and subsequent code lines. In this chapter, we proposed

an efficient BiLSTM neural network model for code assessment, repair, and binary classifica-

tion (correct or incorrect). Importantly, the BiLSTM model has the ability to consider both the

previous and subsequent context of the code under evaluation. In developing the model, we

first trained the BiLSTM model using a large number of source codes. After that, we used the

trained BiLSTM model for error detection and to provide suggestions for code repair. Experi-

mental results showed that the BiLSTM model outperformed existing unidirectional LSTM and

RNN neural network-based models. The CoM value of the BiLSTM model was approximately

50.88%, and F-score for binary classification was approximately 97%. The proposed BiLSTM

model thus appears to be effective for detecting errors and providing relevant suggestions for

code repair.
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Furthermore, we proposed a multi-class classification model based on a stacked BiLSTM

neural network. The architecture of the stacked BiLSTM neural network enables learning more

complex features from the source codes for the multi-class classification task. For this experi-

ment, we collected 35,000 real-world source codes written in different languages and classified

them into about 25 classes. The proposed model and other state-of-the-art models were trained

using these codes for the source code classification task. In the proposed model, the hyper-

parameters of the network were fine-tuned to achieve optimal results. The proposed model

showed relatively good performance in terms of various evaluation metrics for multi-class clas-

sification. The average precision, recall, F1-score, and accuracy of the proposed model are

90.12%, 89.48%, 89.24%, and 93%, respectively, which are better than other state-of-the-art

models such as LSTM and BiLSTM. Moreover, the performance of the proposed stacked BiL-

STM model was evaluated for each class, and significant classification results were achieved.
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Chapter 5

Conclusion and Future Research

5.1 Conclusion

OJ systems have recently become an important academic tool for automated programming

assessment in educational institutions. Although traditional e-learning platforms offer many ser-

vices, including online classes and lectures, various theory-based tests, assessments, and grad-

ing. However, the services of these traditional e-learning platforms are limited when it comes to

assess the computer programming or other exercises. In this area, OJ systems are playing a key

role in automated programming assessment. Since the OJ system regularly stores a large number

of codes and a variety of information, these valuable data resources open up opportunities for

educational research. In this dissertation, we focus on exploiting the real-world data resources

collected from an OJ system to extract valuable features, hidden relationships, and flaws through

educational data mining and learning analytics. Furthermore, we developed machine learning

model for evaluating and classifying programming codes to improve programming learning.

In Chapter 2, a novel framework for exploring the effects of practical skills on academic

performance is proposed. Subsequently, a programming course is selected as a sample course

for experiments and analyses. By employing the framework, many meaningful and significant

features are extracted from the dataset. The extracted features are deeply correlated to the stu-

dents’ behavior. The analytical results showed that better practical (e.g., programming) skills

have a positive effect on academic performance. Moreover, the interaction and interdependence

between programming skills and academic performance are presented based on the experimental

results. Thus, we have concluded that if a student of an ICT or engineering discipline performs

well in practical assignments (e.g., programming, logical implementation, PL/SQL), then they
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are likely to perform well in other academic activities. The overall approach of Chapter 2 can

be applicable to other fields such as education, big data analytics, and behavior analysis.

In Chapter 3, we proposed a neural network-based source code assessment model to assist

students and programmers. The experimental results obtained in Chapter 3 show that the accu-

racy of error detection and prediction using the proposed LSTM-AM model is approximately

62%, whereas standard LSTM model accuracy is approximately 31%. In addition, the proposed

model provides the location numbers for the predicted errors, which effectively limits the area

that must be searched to find errors. Thereby reducing the time required to fix large source

code sequences. Furthermore, the proposed model predicted correction words for each error

location and detects logical errors (WA,TLE,PrE,MLE,RTE,OLE) that cannot be rec-

ognized by conventional compilers. Also, the LSTM-AM model shows great success in source

code binary classification (correct or incorrect) than other state-of-the-art models. As a result,

it is particularly suitable for application to long source code sequences and can be expected

to contribute significantly to source code debugging and refactoring process. So, the proposed

model is expected to be effective in providing end-to-end solutions for the programming learn-

ers and professionals. Despite the above-mentioned advantages, the proposed model also has

some limitations. For example, error detections and predictions are not always perfect, and the

model sometimes cannot understand the semantic meaning of the source code because of the

incorrect detection and prediction that have been produced.

Lastly in Chapter 4, we proposed an efficient BiLSTM neural network model for code

assessment, repair, and binary classification (correct or incorrect). Importantly, the BiLSTM

model has the ability to consider both the previous and subsequent context of the code under

evaluation. In developing the model, we first trained the BiLSTM model using a large number of

source codes. After that, we used the trained BiLSTM model for error detection and to provide

suggestions for code repair. Experimental results showed that the BiLSTM model outperformed

existing unidirectional LSTM and RNN neural network-based models. The CoM value of the

BiLSTM model was approximately 50.88%, and F-score for binary classification was approxi-

mately 97%. The proposed BiLSTM model thus appears to be effective for detecting errors and

providing relevant suggestions for code repair.

Furthermore, we proposed a multi-class classification model based on a stacked BiLSTM

neural network in Chapter 4. The architecture of the stacked BiLSTM neural network enables

learning more complex features from the source codes for the multi-class classification task.
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For this experiment, we collected 35,000 real-world source codes written in different languages

and classified them into about 25 classes. The proposed model and other state-of-the-art models

were trained using these codes for the source code classification task. In the proposed model,

the hyperparameters of the network were fine-tuned to achieve optimal results. The proposed

model showed relatively good performance in terms of various evaluation metrics for multi-class

classification. The average precision, recall, F1-score, and accuracy of the proposed model are

90.12%, 89.48%, 89.24%, and 93%, respectively, which are better than other state-of-the-art

models such as LSTM and BiLSTM. Moreover, the performance of the proposed stacked BiL-

STM model was evaluated for each class, and significant classification results were achieved.

To summarize, we first proposed (in Chapter 2) an educational data mining framework

to analyze the data collected from an OJ system. By employing the framework, many hidden

features, patterns, and association rules are extracted from the data. The extracted features are

deeply correlated to the students’ behavior. Furthermore, the experimental results show that

students made many errors (WA,TLE,PrE,MLE,RTE,OLE) in their solution codes that

were not detected by the conventional compilers. In order to reduce the error rate in solution

codes that cannot be detected by conventional compilers, we proposed (in Chapters 3 and

4) a machine learning-based source code assessment and classification model. The proposed

machine learning-based models achieved significant results that can help students to reduce the

error in their solution codes as well as improve programming learning.

5.2 Future Research

Although we have achieved significant results, there is still room for improvement in this

dissertation for future research. First, the data analysis in Chapter 2 was done using a program-

ming course (ALDS1). We believe that this alone is not sufficient for an effective recommen-

dation model for broader area. Therefore, in the future, we can focus on collecting data from

a large number of programming and exercise courses for comprehensive analysis and recom-

mendations. In addition, we plan to develop such a model that can be integrated with typical

e-learning platforms (i.e., OJs and APAs) to provide more accurate recommendations that can

help to improve the overall learning process.

On the other hand, we developed source code assessment and classification models using

RNNs (i.e., LSTM, BiLSTM, and Stacked BiLSTM). In particular, we leveraged some specific
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types of source code (i.e.,C andC++) for training and testing to assess source codes. However,

the ML-based source code assessment and classification models proposed in Chapters 3 and 4

have achieved significant results and have provided a direction for future research in this area.

Nevertheless, we believe that the current model is insufficient as a general-purpose model for

evaluating all types of source codes (written in multi programming languages). Therefore, we

plan to develop such a model for source code evaluation using a large amount of source codes

written in different programming languages. Further, we consider to integrate that model with

programming learning platforms (i.e., OJs and APAs) to provide learners with a more human-

like assessment experience.

However, in this dissertation, we only focus on RNN-based models for code evaluation and

classification. In recent years, Transformer-based models have achieved benchmark results in

various language modeling tasks, such as programming code generation, Pseudo-code gener-

ation, code summarization, error detection, and classification. Therefore, as future works, we

consider to develop a Transformer-based model for source code assessment and classification.

Moreover, the benchmark dataset with real-world source codes is still sparse for AI research

in the code domain. Since the AOJ system has a large number of real-world source codes, we

are considering to build several benchmark datasets with these source codes, which will provide

opportunities for various AI researches in this domain.
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