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Abstract

Over the past few decades, changes in model and data types have created difficulties
in managing heterogeneous data. Various scientific data archives employ diverse methods
to manage such data efficiently. Similar to many other scientific fields, astronomy has
data archives containing vast quantities of data, diverse data models, and various data
types. Images, texts, key-and-value pairs, and graphs comprise a vast amount of available
data in the astronomical domain. Scalability, growth, and performance issues may arise
when managing such data in a single database. It is important to manage heterogeneous
open data on the Internet and develop a query language to combine web services and data
repositories.

Polystores can aid in the integration of disparate heterogeneous data stores for infor-
mation retrieval, data visualization, and the creation of useful web applications. This
dissertation proposes a web-based query system based on the Polystore database archi-
tecture and attempts to provide a solution to expand the size of astronomical data. The
proposed system based on Polystore directly unifies the querying of multiple datasets,
eliminating the need to translate complex queries, and simplifying the work for astronom-
ical domain users. This dissertation articulates and analyzes data integration models,
and incorporates them into a system for managing linked open data provided by the as-
tronomical domain. Data integration integrates data from various sources and presents a
unified view of all sources. The proposed system is scalable, and its model can be applied
to various other heterogeneous data management systems. Hence, we present a workflow
web-based polystore system architecture based on a top-down rather than a bottom-up
strategy that emphasizes language translation. Using a web-based query system, a tech-
nique for managing a local data store and connecting it to a remote cloud store was

developed.
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Chapter 1

INTRODUCTION

1.1 Introduction

Developments in the types of models and variety of data over the past few decades have
given rise to issues in managing heterogeneous data. Data integration is a technique for
merging data from different sources and offering a single perspective over all sources|6].
There are two types of models for data integration: physical and virtual models. Data
ware-housing is a physical architecture in which data is compiled from multiple data
repositories to form a new central database. A data warehouse is a subject-oriented,
integrated, time-variable, and non-volatile collection of data to support management
decision-making processes [7][8]. Other models include virtual ones. The fundamental
components of the virtual architecture are Federated Database Systems (FDBS), Media-
tion, and the newly proposed Polystores. The Federated Database Management System
(FDBMS) is self-sufficient database management system used for viewing and querying
several other databases via APIs. In contrast, the mediator process query is specified
against the federation’s integration schema [9] [10]. The mediator stores metadata by
detailing the integration schemes for each data resource in the federation. Using an API,
the proposed system merges several databases that contain heterogeneous data. The use

of API in different databases relates to the data-integration mediation paradigm [11].



1.2 Big Data Integration

With an emphasis on data exploration and discovery, big data integration has been pre-
sented as a novel method of conceiving data integration across massive, growing data
sources. The need for data analysis drives integration; hence, data discovery was con-
ducted to aid in this analysis. Data analysis requires the identification of data that
correctly combines, aggregates, or joins existing data, a paradigm labelled query-driven
data discovery [12]. Various databases and data-sets are stored in multiple scientific data

repositories. It is laborious to unify searches across databases and data models.

1.2.1 Big Data in Astronomical Domain

Astronomy is the study of the physics, chemistry, and evolution of celestial objects and
events outside Earth’s atmosphere, such as supernovae explosions, gamma-ray bursts, and
cosmic microwave background radiation [13]. Big data in the astronomical field primarily
consists of four Vs: volume, variety, velocity, and value.

Volume refers to the amount of data stored. Terabytes, petabytes, and even exabytes
of data exist. Capturing, curating, integrating, storing, processing, indexing, searching,
sharing, transmitting, mining, analyzing, and visualizing massive amount of data presents
obstacles. Traditional tools are incapable of handling such large amounts of data. Nu-
merous ground- and space-based large-scale sky survey programs have generated a deluge
of data in all areas of astronomy.

Variety indicates data complexity. The most common types of astronomical data
include pictures, spectra, time-series, and simulation data. Most of the information is
stored in catalogues or databases. The fact that numerous telescopes or projects have
their own formats makes it challenging to integrate data from various sources during the
analysis phase. Each data item typically includes thousands or more features, resulting
in significant dimension issues. In addition, data may be structured, semi-structured,
unstructured, or mixed.

Velocity refers to the rates of data production, transmission, and analysis. The LSST

will produce one SDSS per night for a decade in terms of data volume. Batch, stream,



near-time, and real-time data analysis are necessary. The LSST anticipates the discovery
of 1,000 new supernovae each night for a decade, implying that at least 10 to 100,000 alerts
will be requested. Astronomers face a challenging problem in determining how to mine,
correctly categorize, target supernovae candidates, and conduct follow-up observations
within the next decade.

Value: The term value characterizes the high value of data in astronomy. Discovering
strange, rare, unanticipated, and novel objects or events in astronomy is fascinating and
motivating. Similarly, identifying a novel distribution pattern or law is of considerable
significance.

The data rate and volume in optical time-domain astronomy are on the cusps of
exponential development. By 2022, the data are anticipated to have been multiplied
300 times. A significant increase in detected sources will necessitate efficient and well-
structured databases. To classify source types to manage these data, extremely efficient

machine learning algorithms are necessary.

1.3 Motivation

A variety of data have their own language, so managing these data with a federated
database management system (FDBMS) may result in inefficiency and poor performance.
Therefore, we require a Polystore architecture that utilizes various types of data from
many databases. Polystores facilitate uniform querying across many data models [14].
Polystores are required to manage information efficiently across several data models. It is
a database management system (DBMS) comprising of heterogeneous database engines
that communicate via an application programming interface (API) [15]. The primary
objective of this study was to handle astronomical data using Polystore technology. These

data sources are the Zwickly Transient Facility (ZTF) data sources [16].



1.4 Thesis Contributions

This dissertation presents two technical and conceptual contributions in the form of a
Polystore system for maintaining large-scale astronomical data archives, and a workflow-
based query system for visualizing and downloading astronomical images.

This thesis focuses on developing web-based query management tools and method-
ologies for open data from the astronomical domain, extracting data information from
unstructured data and connecting available data to other datasets to enable the discovery
of further data information.

With the ultimate objective of empirically validating our research hypothesis, the em-
pirical contributions of this dissertation include the development of web-based Polystore
applications and methodologies within a variety of case studies. The development phase

comprises data downloading, cloud server connection, and API visualization.

1.5 Thesis Organization

This section provides an outline of the organization of the thesis. This thesis comprises
four main chapters, each of which includes a discussion of related work and is tailored to
the specific problem addressed in the corresponding chapter. This thesis is comprised of
two major sections.

The first section of this thesis provides an overview of the research problem, literature
review, and study of historical and current data management models.

The second section of this study covers the design, development methods, and tools for
web-based Polystore systems. In addition, we provide a comprehensive analysis of data
processing and access through workflow systems and a comparison of existing systems

with other systems.



1.6 Overview of Chapters

Chapter 2 provides a brief overview of the polystore system techniques and their histor-
ical context. A survey of data integration, schema matching, and link data models was
presented. The structure of these models is discussed in detail in this section.

Chapter 3 provides an overview of all types of data, including big data, astronomical
data, open data, and linked open data. Various models have been proposed to manage
these data effectively. As these models cannot handle these data efficiently, the Polystore
concept was elaborated to solve this problem.

Chapter 4 presents data sets, ZTF data processing, a brief description of the sys-
tem, and a query system with numerous databases through query formulation, query
transformation, query execution, and visualization. In addition, we discuss the proposed
method with other polystore system data integration models for managing an extensive
data archive via mediation and API connection to a remote cloud database.

Chapter 5 describes the proposed system’s data integration model with other polystore
system data models for managing a big data archive via mediation and API connections
to a remote cloud database. Workflow-based Polystore query management solutions em-
ploying a top-down methodology were also discussed.

Chapter 6 concludes the thesis by summarizing and highlighting the limitation of the

current study and future research directions.

1.7 Publications

The research and experimental findings of this dissertation have been published in peer-
reviewed journals. The finding of the following studies are presented in Chapters 2, 3,

and 4 of this dissertation.

e Manoj Poudel, Rashmi P. Sarode, Yutaka Watanobe and Subhash Bhalla, A Sur-
vey of Big Data Archives in Time-Domain Astronomy. Applied Sciences: Applied
Science, (2022), 12(12), 6202.



e Manoj Poudel, Rashmi P. Sarode, Yutaka Watanobe and Subhash Bhalla, Process-
ing Analytical Queries over Polystore System for a Large Astronomy Data Reposi-

tory. Applied Sciences: Applied Science, (2022), 12(5), 2663.



Chapter 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

The ”one size fits all” approach employed by (Federated Database Management System)
FDBS encounters issues in supplying data management solutions for heterogeneous data,
as illustrated in Figure 2.1 [14]. If FDBMS is used to manage multiple types of data,
performance and efficiency difficulties may arise. As a result, we require a Polystore
architecture, which is a means of combining data from many databases. Polystores provide
uniform querying across different data models and are required to manage data across
several data models quickly and efficiently. Polystores are a form of database management
system comprising several interconnected heterogeneous database engines communicating
via an application programming interface (API) [15]. Polystore systems, also known as
multi-store systems, provide integrated access to heterogeneous cloud data storage, such
as NoSQL and RDMS.

A previous study [17] examined the taxonomy of a Polystore system and classified it as
either loosely or tightly coupled. A mediator or wrapper is similar to a loosely connected
multi-store architecture. The data store has a unified user interface and can operate
independently of the multi-store locally. The wrapper communicates with the data store
via an API to generate queries, transform, execute, and return the results to the operator
engine. The tightly coupled multi-store system allows for local user engagement and task
sharing across multiple systems, resulting in higher performance. Data are also collected

from various sources. Benefits of loosely coupled multi-store are combined with the help



of a tightly coupled system in the hybrid system. It uses native sub-queries and operator

orders to optimize the querying of various cloud-based data storage sources.

FDBS
FDBMS

(X1

Companent Component Componant
DBS 1 DBS 2 DBS n
Component DBMS 1 Component DBMS 2 Component DBMS n
{a centralized DBMS) {a distributed DEMS) {another FDBMS)
e i =
Component Component Component see
Database 1 Database 2-1 Database 2-2

Figure 2.1: Federated Database Management System Architecture [1]

2.2 Polystore System

Many scientific data companies have recently faced difficulties in offering data manage-
ment solutions for large, heterogeneous data sets with variable data and models. Several
solutions have been proposed to address these issues. The Polystore system is one of
the solutions that integrate several data and database management systems. Polystore
systems, also known as multi-store systems, enable integrated access to numerous hetero-
geneous cloud data stores, NoSQL RDMS, etc.

The authors of [17] discussed the classification of polystore systems as weakly coupled,
tightly coupled, and hybrid systems.

A loosely coupled multi-store system utilizes a mediator or a wrapper concept. It offers
a familiar user interface and the ability to locally control data storage independently from
multiple stores. Similarly, a wrapper communicates with a data store via an API for
query formulation, query transformation, and query execution and returns the result to

the operator engine.



Finally, the tightly coupled multi-store system enables a local user interaction interface
for enhanced performance by sharing the workload among multiple systems. Additionally,
it permits the merging of data from disparate repositories.

The hybrid system combines a multi-store design with loose coupling and a system
with tight coupling. It enables native sub-queries and operator ordering to query several

cloud-based data store sources [17].

2.3 General Architecture of a Polystore Database Sys-
tem

The BigDAWG (Big Data Analytics Working Group) Architecture at MIT includes a
query function for multiple huge data sets in the MIMIC II medical domain. BigDAWG’s
architecture has four layers: database and storage engines, islands, middleware, API,
and applications. Initial releases of BigDAWG supported PostgreSQL (SQL), Apache
Accumulo (NoSQL), and SciDB as open-source database engines (NEWSQL). In addition,
it supports relational, array, and text islands. The architecture of BigDAWG is shown in
Figure 2.2. The client is linked to the middle-ware or API. The middle-ware receives a
client query and forwards it to the appropriate island(s) for execution. Shim translated
queries from each island and forwarded them to an appropriate database. Casts are used
for data migration between different databases [15].

The constituents of BigDAWG middle-ware or API consist of four components: the
planner, monitor, executor, and migrator. This is illustrated in Figure 2.2. The planner
element parses the incoming query into a collection of objects and generates query plan
trees. Additionally, the planner aspect emphasizes the potential data engines for each
set of objects. These trees are subsequently transmitted to the monitor elements, which
determine the optimal tree for each object group. The trees are then passed to the
executor elements, that assemble the collection of objects to execute the query. The
executor element can use the migrator element to move items across islands and engines

if required by the query plan [15].
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Query!:{> Planner | Monitor
Performance
Information
Performance
Information

Y

A L
Migrator ’ Executor l::>0utpul

Data Transfer
Request

Figure 2.2: BigDAWG Architecture [2]
2.4 Data Integration for Data Science

Data integration has been achieved using a framework known as query discovery. The
primary goal is to locate a query (or transformation) that translates the data from one
format to another. The purpose was to determine the optimal operators for data joining,
nesting, grouping, connecting, and twisting. A strong focus has been placed on data
science and analysis. Frequently, data science is performed on massive repositories, also
known as data lakes, that include a significant number of diverse data sets. There may
be few or no schema in the data-sets [12]. Consider the following configuration example
for an integration application with many sources.

There are two data sources, S1 and S2, including data information in Figure 2.3.
M12 is the schema-mapping matching operator for sources S1 and S2. G is the mediated
schema produced by a schema merge operator on source schema S1 and S2 and mapping
M12. The merge operator generates a schema comprising all data from sources S1 and
S2. The merge operator also provide mapping from source S1 and source S2 to G, M1G,
and M2G.

Now if we add another source, S3, to our system, suppose that S3 is similar to S1 in

figure 2.4.

10



match merge
) Y > G Mic My

S S3

(3) M3, Mic
Msc
Figure 2.4: Composing mappings by adding new source

From sources S1 and S3, the match helps create a mapping M31. By composing

mappings, M31 and M1G help create a mapping M3G.

2.4.1 Open Data

Globally, governments across the globe are seeking to harness the benefits of technology to
improve the lives of their citizens. The use of data provided through open government data
platforms has the potential to enable innovative services, improve the lives of individuals,
and increase the effectiveness of the government and society. Open data helps bridge the
gap between the government and the people by enabling public institutions to operate as
open, interactive systems. Open data is based on the principle that specific data should
be freely available for general usage without restrictions on previously published data.
Open data were first meant to make government-provided data accessible to anybody,
but they are now utilized by many businesses, organizations, and researchers [18]. The
idea behind open data is that the data must be accessible in its entirety and at a reasonable

cost for reproduction, preferably via Internet download. Additionally, the data must be

11



accessible to the user-friendly and editable format. The data must be made accessible
under terms that permit reuse and redistribution, and in combination with other data
sets [19]. Everyone must be able to use, reuse, and redistribute, and no discrimination

against fields of effort, individuals, or groups should be permitted.

2.4.2 Schema Matching

Schema mapping specifies how data are converted between the schema of an external data
source and the integrated session schema, as depicted in Figure 2.5. The mapping trans-
lates relational database tables and columns into session schema classes and attributes.
The schema of the session is derived from all the data stores from which the data has

been opened.

External Schema [ External Level ] [ External Level }
External / Conceptual
Mapping
Conceptual Schema Conceptual Level

Conceptual / Internal

Mapping

r

Internal Level

Internal Schema

Database

Figure 2.5: Schema Matching Architecture [3]

Mapping transforms requests and responses between different database design levels.
Mapping is ineffective for small DBMS because it is time consuming. Conceptual /internal

mapping is situated between the conceptual and internal levels. Its purpose is to specify

12



the correlation between the conceptual level records and fields and the internal level’s files
and data structures. Exterior/conceptual mapping is positioned between the external and
conceptual levels. Its function is to define the relationship between a specific external and

conceptual view.

2.4.3 Linked Data

Linked data refers to the best practices for publishing and connecting structured data
on the internet. Over the past three years, many data providers have adopted these
best practices, resulting in the establishment of a global data space containing billions of
assertions, known as the Web of Data [20]. The Semantic Web encompasses much more
than merely uploading data to the internet. It involves creating connections so that a
person or machine can inspect the data network. When linked data are available, related
data can be discovered. Similar to hypertext web, a data web was developed using web
documents. In contrast to the hypertext web, where links are anchors for relationships in
hypertext pages written in Hypertext Markup Language (HTML), data links are between
arbitrary entities defined by the Resource Description Framework (RDF) [20]. URIs can
be used to identify anything or notion. However, the exact needs apply to HTML and
RDF to help expand the web.

Utilize URIs to identify objects

Utilize HTTP URIs to enable users to look up those names.

When someone searches for a URI, relevant information is provided using industry

standards (RDF*, SPARQL) [21].

Include hyperlinks to additional URIs. That they can continue to learn new things

13



Chapter 3

MANAGEMENT OF BIG DATA ARCHIVES IN

TIME-DOMAIN ASTRONOMY

3.1 Introduction

Considerable research has been conducted on the management of heterogeneous data
as a result of the abundance available data sources. Large or complex data that canot
be processed using typical methods are known as "big data.” For a long time, large
amounts of data have been stored and accessed for analytical purposes [22]. Structured
and unstructured data are the two types of big data. A large portion of structured data
consists of data that have already been entered into databases and spreadsheets by the
organization. The term "unstructured data” refers to data not being arranged in a model
or format in advance. It incorporates information gleaned from social media platforms,
which helps organizations learn more about their clients’ wants and needs. Personal
electronics and apps, surveys, product purchases, and electronic check-ins are ways to
collect large amounts of publicly available data and data provided voluntarily by users.
In smart devices, sensors and other inputs enable the collection of a wide range of data in
various contexts. In most cases, big data are stored in computer databases and analyzed
using software specifically designed to deal with large and complex data sets [23].
Interlinking data in a machine-readable format is at the core of linked data and, a
set of design principles for sharing data across the web. This called linked open data

when combined with open data (data that can be freely used and distributed). Graph
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DB from onto text is an example of an LOD database. It can handle large datasets
from various sources and link them to open data for efficient data-driven analytics and
knowledge discovery. Linked data is one of the central pillars of the Semantic Web, often
known as the Web of data. The Semantic Web is about creating machine- and human-
understandable linkages between data sets, and linked data provides the best practices
for making these links possible. Linked Data is, in other words, a set of design principles
for exchanging machine-readable interrelated data on the Web [24].

In recent years, open data has received significant attention due to: a constant in-
crease in the number of openly published data sets, primarily by governments and public
institutions can be considered as the demand for open data increases. However, many
potential suppliers are still reluctant to disclose their data sets, and users frequently en-
counter challenges when seeking to implement such data in practice. This implies that
there are still several hurdles surrounding the use and publication of open data, but it is
difficult for researchers to systematically collect and evaluate the impact of these obstacles
[25].

As in many other scientific fields, astronomy is confronted with a data deluge that
requires modifications to the techniques and methods employed in scientific studies. This
new era of astronomy has dramatically enhanced research on the entire universe. The
study of astronomical topics such as the nature of dark energy and dark matter, the
origin and evolution of galaxies, and the structure of our own Milky Way, is advancing
rapidly. Research in astronomy is shifting from hypothesis-driven to data-driven and
data-intensive [13].

Similar to other data-rich disciplines such as physics, biology, geology, and oceanog-
raphy, astronomy is facing a data avalanche as a result of advances in telescope and
detector technology, the exponential increase in computing capabilities, improvements in
data-collection methods, and successful applications of theoretical simulations. An effec-
tive federation of database technologies is required for the proper management and pro-
cessing of large data collections. However, the ultimate objective is to extract knowledge

from massive quantities of data, making the development of data mining tools essential.
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Knowledge discovery in databases (KDD) is the extraction of valuable information from
data. Data mining, the application of certain algorithms to identify uncommon or previ-
ously unidentified types of objects or phenomena, is a specific step in the process [26]. In
Section 3.4, mining in astronomy is discussed.

Here, we explore big data archives in time-domain astronomy and propose a method

for efficiently managing large data repositories.

3.2 Big Data in Time-domain Astronomy

Big data refers to the ever-increasing quantity of information available in various forms and
formats. Traditional relational data are not the only source of increasing unstructured
data. Large data sets commonly originate from numerous sources. Machine-generated
data, for instance, develops quickly and contains a wealth of information that will be
unearthed in the future. However, even if human-collected data are predominantly textual,
they can still yield valuable insights [27].

Optical time-domain astronomy is close to the tipping point in terms of data rate and
volume. By 2022, it is anticipated that the volume of data will increase by a factor of three.
As recognized sources increase, efficient and well-designed databases are required. To
effectively manage these data, highly effective machine learning algorithms for categorizing
source types are required [4].

Numerous scientific disciplines such as astronomy, have become data-intensive in the
era of big data and archiving. The rapid development of technology, especially in computer
hardware (with low-cost, high-capacity storage and processing) and microelectronics (such
as CCD: Charge-coupled Device) devices, has revolutionized most natural science through
an explosion in the number of measurements and simulation data [28].

The discovery of an optical telescope and its application to the study of the night sky
significantly advanced astronomy in the early 1600s. The objective of global astronomical
research projects is to satisfy the data volume and computational challenges associated
with solving cutting-edge research issues. The virtual observatory has been proposed as

an astronomical community response to the new challenges posed by massive and complex

16



data sets [29].

Palomar Transient Factory (PTF) is the primary focus of astronomical surveys. One
of the primary objectives of this survey was to monitor the northern night sky, observe
changes in astronomical bodies, and study optical transients and variable sources, such as
stars, supernovae, asteroids, comets, fast-moving solar system objects, and other stellar
explosions, using a variety of telescopes. The PTF performs two types of data processing:
real-time stream processing and data maintenance with an image archive. Real-time
processing of data for sky information updates. It has been maintained as an archive for
research studies on various heavy domains. Grant agencies require all astronomy data to
be made accessible to astronomers worldwide. These archival data are accessible to the
public via a web-based infrared science archive (IRSA/IPAC) system [4]. The PTF has
been in operation since 2009 using a 7.2 deg2 camera mounted on the Palomar Samuel
Oschin 48-inch (1.2 m) Schmidt telescope [30].

Beginning in 2013, the Intermediate Palomar Transient Factory (iPTF) project ex-
panded upon the legacy of the Palomar Transient Factory (PTF) led by Caltech. Through
the historical Palomar Transient Factory data and rapid follow-up studies of transient
sources, the iPTF enhanced software was used for data reduction and source classifica-
tion [4]. The image processing and differencing pipeline innovations made it possible to
receive transient candidates significantly more quite quickly than usual (from 30 min to
60 min to 10 min in iPTF). The PTF /iPTF generated approximately 0.05 petabytes per
year or 1 gigabyte of data every 90 s [31].

In 2017, an iPTF telescope was transformed into the Zwicky Transient Factory (ZTF)
telescope. ZTF utilizes a new camera to generate new reference image catalogs, lightcurves,
and transient candidate images [4]. Using a 48-inch Schmidt Telescope, ZTF has the
largest instantaneous field of view of any camera on a telescope with an aperture greater
than 0.5 meters [16]. The ZTF Observing System provides time-domain astrophysics anal-
ysis with high-speed, wide-field-of-view, and multi-band optical imagery. Large amounts
of data from the ZTF will serve as a reference for the next Legacy Survey of Space and

Time (LSST). The LSST will conduct measurements of position, fluxes, and shapes, as
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well as lightcurves and calibrated images [4].

3.3 A Research Agenda

A machine learning-based classification broker for petascale mining of large-scale astron-
omy sky survey databases requires a number of major research ideas to be addressed.
Data mining and computational science experts have already taken on several research
ideas in their own work [32].

Classification labels are useful only if the community as a whole agrees with the correct
set of semantic ontological, taxonomical, and classification terminology. Research into the
completeness, utility, and usability of ontology’s currently being developed in astronomy
is required. To design, develop, and implement a user-oriented petascale data mining sys-
tem, we must do research on user requirements and scientific use cases. A comprehensive
set of classification standards for all conceivable astronomical events and objects must be
developed and explored. Robust rules and classifiers are required to detect outliers and
novelty in objects and events that are currently unknown [32].

To classify all the different types of training sets, we will have to conduct extensive
research and gather a large number of classes. These samples were used to train and
validate the classification brokers. Research, development, and validation of algorithms for
web service-based classification and mining of distributed data are required. A text-and-
numerical data mining technique may be the most effective and should thus be researched.
Prototypes and demonstrations of the classification broker user interface and interaction
models are required [32].

The astroDAS system components must be integrated in a sturdy manner. Various
forms of interaction and integration, such as grids, web services, RSS feeds, ontology’s, and
linked databases, will have to be researched in this regard. The functioning, usefulness,
bottlenecks, failure modes, and scalability of a working classification broker on a real-time
astronomical event message stream are tested. Security (from the current few events per
night to many tens of thousands of events per night in the coming decade). Interestingly,

similar event message feeds are already accessible, albeit on a considerably more limited
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scale than that projected to be provided by the LSST in the near future [32].

3.4 Existing Astronomical Data Mining

Owing to the rapid growth in data volume from various sky surveys, the size of data
repositories has increased from gigabytes to terabytes and even petabytes. This field
of study analyzes massive astronomical collections and surveys using data mining tech-
nologies. Large-scale data analysis is referred to as ”big data analysis.” Data mining is
a collection of techniques used to reduce, enhance, and purify large quantities of data.
These methods include summarization, classification, regression, clustering, association,
time-series analysis, and outlier/anomaly detection [27].

The primary emphasis of the data-mining overview is knowledge discovery in databases
(KDD). Nevertheless, the term 'database’ encompasses all machine-readable astronomical
data [33].

Numerous terms are associated with data mining, and we begin by defining them as

follows:

e Data collection: Data collection encompasses all the actions necessary to gather
the desired data in a digital format. As part of the research procedure, data col-
lection methods include collecting new observations, querying existing databases,
and completing data mergers (data fusion). Cross-referencing massive data sets can
result in confusing matches, disparities in the point spread function (object res-
olution) within or between data sets, adequate processing time, and data transit
requirements. A few arc seconds of astrometric tolerance were employed when each

database item lacked a specific identifier.

e Processing of Data: Preprocessing may be necessary during the data collection
process, such as sample cuts in database searches, may be necessary during the
data collection process. It is crucial to exercise caution when preprocessing the data
because the input data can substantially affect numerous data-mining techniques.

Preprocessing can be divided into two types for a given algorithm: procedures that

19



make the data readable and processes that alter the data in some way.

Selection of Attribute: Some of an object’s numerous properties are not required
for a proper operation. It is possible to utilize all the qualities to maximize the per-
formance. This has created numerous low-density habitats and voids. Data cannot
be easily mined for novel concepts. Dimension reduction is essential for retain-
ing as much information as possible while employing fewer attributes algorithms
are hindered by the presence of superfluous, redundant, or otherwise unimportant
characteristics. The location of a survey with a uniform mask is an example of an
unnecessary characteristic, because the color observed in two apertures with the

same waveband would be extremely redundant.

Use of machine learning algorithms: Methods for machine learning are classi-
fied as supervised or unsupervised. Semi-supervised approaches utilize two sets of
objects for which the target property, such as classification, is known confidently.
The algorithm is trained on these objects before being applied to others that lack
target attribute. These additional items were included in the test set. In the ma-
jority of instances in astronomy, a photometric sample of an object can predict
characteristics that generally require a spectroscopic sample. The parameter space
spanned by the input attributes must encompass the application of an algorithm.
This may initially appear limiting, but combining data sets can frequently circum-

vent this limitation [34] [35].

The ability to handle large and distributed data sets and execute complicated knowl-

edge discovery tasks is a common requirement in a wide range of scientific fields. To

complete a variety of data-mining jobs in various industries, data-mining experts have

created numerous pieces of software and tools as described below. Scientists from a vari-

ety of fields are joining to build astronomical data mining software and tools [13].

e StatCodes is a Web meta site that provides hypertext links to a large variety of

statistical codes that are beneficial for astronomy and related subjects [36].
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e VOStat is a statistical web service hosted by Penn State University and its a R
language-based GUI wrapper. The primary goal was to encourage astronomers to
applied statistical methods and spread the use of R among astronomers. Interactive
3D visuals are also possible because of the program’s ability to execute a variety of
statistical studies including data smoothing and time series analysis, as well as a

wide range of statistical tests [37].

e Weka used machine learning techniques to complete various data mining task, such
as data pre-processing, classification, regression, clustering, association rules, and
visualization. It can also be used to create new algorithms for machine learning. It
is a user-friendly, open-source data mining tool that can be applied to a wide range

of data mining jobs [38].

e AstroWeka is a set of enhancements to Weka specifically designed for astronomical
data mining. For data loading, it uses the Astro Runtime and Starlink Tables

Interchange Library [39].

e AstroML is a Python module for machine learning and data mining, based on as-
tropy and other libraries. The purpose was to provide a repository of rapid Python
implementations of common statistical data analysis tools and procedures used in
the field of statistical astrophysics, as well as an interface for freely available astro-

nomical datasets [40].

e Data Mining and Investigation (DAME) specializes in the exploration of enormous
data sets using machine learning methods, and is a web-based and distributed
data mining infrastructure. Photometric redshift, photometric quasar candidate
extraction, globular cluster search, active galactic nuclei classification, photometric
transient classification in multi-band, and multi-epoch sky surveys are some of the

examples that have been used [41].

e Auton Lab led by Artur Dubrawski and Jeff Schneider, focuses on novel methods

of statistical data-mining. They are interested in underlying computer science,
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mathematics, statistics and artificial intelligence to find patterns in data and exploit

them [42].

3.5 Time-domain Astronomical Archives
The following Scientific Archives and Services are accessible on the Web:

1. SIMBAD (Set of Identification, Measurements, and Bibliography for As-
tronomical Data): SIMBAD [43][44] is the primary database for the identification
and bibliography of astronomical objects. e Centre de Donn’ees astronomiques de
Strasbourg (CDS) has developed and managed the SIMBAD. Several astronomical
objects are included in the database, bibliography, and observational measurements.
Priority is given to catalogues and tables covering a broad spectrum of wavelengths

and supporting large-scale research initiatives [35].

A systematic review of the literature provides an overview of contemporary astro-
nomical research, including its diversity and more significant trends. A WWW

interface for SIMBAD is available at:http://simbad.u-strasbg.fr/Simbad.

2. SMOKA (Subaru-Mitaka-Okayama-Kiso-Archive):

The SMOKA [45] science archive system contains data from multiple telescopes.
Currently, the server stores almost 20 million astronomical frames, totaling more
than 150 gigabytes. In addition, the search interface allows searches based on various

search limitations and FITS-header keyword values for certain data sets.

The search interface provides access to the following data from telescopes and ob-

servatories: Subaru (Subaru), OAO (Okayama), Kiso (Kiso), and MITSuME (MIT-
SUME) equipment and reduction tools [35].
3. IRSA (NASA/IPAC Infrared Science Archive):

The Infrared Processing and Analysis Center (IPAC) [46] provides support for sev-
eral NASA [47] programs, including Spitzer, the (NEO) WISE and 2MASS satellites,
and IRAS. TPAC manages NASA’s data archives. In conjunction with NASA, IRSA
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also provides access to data from ESA missions, including Herschel and Planck.
Data from Infrared Telescope Facility (IRTF) and Stratospheric Observatory for In-
frared Astronomy (SOFIA) are archived at IRSA. IPAC’s non-NASA or non-infrared
projects, including the Palomar Transient Factory (PTF), Zwicky Transient Facil-
ity (ZTF), and Vera C. Rubin Observatory (VCRO), benefit from IPAC’s archiving
technology (formerly known as LSST) [48]. The IRSA contains one petabyte of data
from more than fifteen projects. IRSA provides access to more than 100 billion as-

tronomical measurements, including coverage of the entire sky in 20 bands.

Astronomers can only retrieve data from various celestial bodies using query tools.
Images and information linked to them are the most commonly researched topics.
Depending on the circumstances, users may have a variety of needs. Users may wish
to access information by querying a single item or a collection of objects. To locate
exact information inside the astronomical domain, the user must create elaborate

programs or formulate complex queries.

For decades, large-scale data management has relied on parallel DBMS. In addi-
tion to conventional relational DBMSs such as MySQL and Oracle, new data stores
based on the ACID (Atomicity, Consistency, Isolation, Durability) [49] principles
have been proposed to manage vast amounts of data. Numerous big data appli-
cations do not require strict ACID compliance and favor performance in terms of
consistency and reliability. Systems for large-scale data storage and warehousing,
such as Megastore, Mesa, and Spanner, are designed using SQL-based query lan-
guages. In addition, NewSQL databases are designed for high-throughput online

OLTP while maintaining ACID properties [50].

3.6 Challenges of the Future Data Management in
Existing Time-domain Archives

The current trends in database management necessitate the employment of numerous

models and data repositories. Previous methods such as Federated Database Systems
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(FDBS) and data warehouses work well with relational data but cannot store many data
types (arrays, graphs, and images). Different data stores manage various data types, each
have their own native language.

Federated database systems (FDBS) consist of cooperative but autonomous databases.
With FDBS, decentralized local databases can exert greater control over the exchange
of information. FDBS uses federated query agents (FQA) to process the queries. These
agents function as intermediates (mediators) between the two to store and execute queries.
Data in FDBS is stored in a relational database, the only data model the system supports
[51] [35].

A data warehouse is a relational database designed for analysis instead of transaction
processing. It often comprises historical data gathered from transactions, although it may
also include information from other sources. It permits businesses to combine data from
numerous sources while segregating analytical and transactional tasks. Several programs
that manage to obtain and distribute data to business users may be found in a data
warehouse environment. A central data warehouse or repository contains data warehouses
[52].

Owing to the emergence of big data, models such as FDBS and data warehouse ap-
pear inefficient, as they can only integrate databases with a single data model that is
no longer relevant. In addition, the expansion of the data volume and velocity cannot
be accommodated. These models also lack the price and performance. It is now safe to
say that multiple heterogeneous data management strategies provided by past data inte-
gration models have failed. Managing vast quantities of unstructured data from diverse
data repositories is gaining increasing interest in the database community. Owing to the
increase in data size, rate of data growth, and emergence of new data types in numerous
scientific data archives, this issue has attracted more attention. In contemporary database
engineering, the ”one size fits all” approach [53] is no longer applicable. The underlying
database management system must have full liberty to optimize queries. Using a unified
query language, a model that can bridge heterogeneous data sources is required. In ad-

dition, data virtualization through mediation is required to achieve these requirements
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[35).

3.7 Proposed Data Management Model to handle Time-
domain Archives

A Polystore can span several data management systems without the need for an under-
lying data location or storage engines, and it can be queried using a single language [2].
Polystores will enable a many-to-many connection between information islands and data
management systems across diverse data models and query languages [15]. Polystores also
enable seamless access to several cloud data stores. The CloudMdsQL Polystore provides
an SQL-like query language for accessing various data sources (relational, NoSQL, and
HDFS) [54].

Polystore systems or multi-store systems have recently been introduced as a novel so-
lution to data integration that allows integrated access to heterogeneous data stores via a
unified single query language. In addition, Polystore Systems solves heterogeneity prob-
lems by providing a communication protocol within the underlying database management
systems using islands/shims, mediation, or APIs (application programming interface).

Polystore aids astronomers in integrating database content into their own data portals,
thereby offering scientific content to their respective communities of users. Polystores can
help integrate sky surveys, robotic telescopes, and other data sources. Astronomers can
view an integrated database for query analysis (either manually or through web services).
Ontology’s, semantics, dictionaries, annotations and tags are used along with data/text
mining, machine learning and information extraction algorithms as part of Polystores.
It can also access database repositories, grids, and web services. Finally, it can share

databases in a collaborative, dynamic, and distributed manner [35].
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3.8 Summary

Every type of data has been addressed, including big data, astronomical data, open data,
and connected open data. These data are extensive, heterogeneous, and complex. In
addition, we explored big data in astronomy and in existing archives. Several astronomical
archives and their respective query languages have been described. The single-data-model
models of the past, such as FDBS and Data warehouse, are ineffective for managing
massive amounts of data. The Polystore concept, which uses a uniform query language
to efficiently span multiple heterogeneous data models, can be used to address this issue.

It is necessary to manage heterogeneous open data on the Internet and create a query
language to combine web services and data repositories. Polystores can facilitate the inte-
gration of disparate heterogeneous data stores for information retrieval, data visualization,

and the development of useful online applications.
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Chapter 4

DESIGN AND DEVELOPMENT OF WEBBASED

POLYSTORE SYSTEMS

4.1 Zwicky Transient Facility (ZTF) Overview

The Zwicky Transient Facility (ZTF) is a new time-domain survey that uses a wide-field
survey camera to detect and analyze supernovae, variable stars, binaries, active galactic
nuclei (AGN), and asteroids [55]. The ZTF was design to detect near-Earth asteroids,
unique and rapidly changing flux transients, and all types of variable galactic plane sources
[56]. In 2013, the Intermediate Palomar Transient Factory (iPTF) project was initiated,
building on the legacy of the Caltech-led Palomar Transient Factory (PTF) [57]. Through
historical PTF data and rapid follow-up investigations of transient sources, the iPTF
improved data reduction and classification tools. In 2017, the iPTF was transformed
into the Zwicky Transient Factory (ZTF), utilizing a reconstructed version of the same
telescope that the iPTF utilized. The Samuel Oschin 48-inch (1.2m) Schmidt telescope
was outfitted with a brand-new camera with a 47-square-degree field of vision for ZTF
observations. [58]. The camera comprises 16 CCDs separated into four quadrants for the
readout. Consequently, each ZTF exposure generated 64 CCD quadrant images [59]. A
CCD-quadrant is the primary image unit for pipeline processing and the origin of all the
output scientific data. The Legacy Survey of Space and Time (LSST) uses ZTF’s huge
amount of data as a reference for its next endeavor [60]. The LSST will perform location

surveys, flux and shape measurements, light curve analysis, and calibrated images. The
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Table 4.1: ZTF science data product

Project Duration | Data Down- | No. of FITS | Product

name load File

PTF(Level 0, | 2009-2012 0.1 TB per | Around 3 mil- | Epochal images, Photo-

Level 1) night lion metric catalogs

iPTF (Level 2) | 2013-2017 0.3 TB per | Around 5 mil- | Deep reference,

night lion Lightcurves

ZTF(Data re- | 2017-2021 1.4 TB per | Around 50 mil- | New reference,

lease 1 to 8) night lion Lightcurves, Transient
canididates, catalog

LSST 2022-2024 3 TB per night | Around 500 | Calibrated images,measure

million of position, flux and

shapes, and Lightcurve

development of the PTF and ZTF projects, as well as the product specifications, are
detailed in Table 4.1.

According to study [57], all image data are available in the Flexible Image Transport
System (FITS) format, which includes epochal (single exposure) photos and photomet-
ric catalogs. The images were captured using 64 CCD (Charge-coupled Device) cameras
outfitted with various image-quality filters. Photometric catalogs provide image informa-
tion in key-value pairs and header information. These key-value pairs are convertible to
relations and can be stored in relational database management systems (RDBMS). Only
a subset of the data is downloaded for indexing, depending on the size of the data and
the available resources. Consequently, header files containing astronomical image data
were downloaded. The header files were downloaded from the hierarchical file system
(HFS) of the IRSA online service and replicated on the local server. The catalogs also
include header files containing the meta-data (HTML elements) required to connect to
the IRSA web service and retrieve the images. The key values and header information
for the images obtained from the IRSA/IPAC were stored in PostgreSQL. Images were
accessible through the IRSA/cloud IPAC service. The repository currently houses data

for 2017-2020, totaling approximately 50 Terabytes.
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4.2 7ZTF Data Processing Overview

The Infrared Processing and Analysis Center (IPAC) developed the PTF and ZTF Science
Data Systems (ZSDS) [56]. The ZSDS was designed to provide a processing and archiv-
ing system capable of producing scientific-grade output. It is maintained as a repository
for research in various astronomical fields. The data were analyzed in real-time to pro-
vide real-time updates to sky information. These data are processed in several ways
to produce various outputs for use in other scientific endeavors. Example include data
processing pipelines, data archives, long-term curation infrastructure, and data retrieval
user services. Nine pipelines run on different timescales: raw data ingestion pipeline, im-
age splitting pipeline, calibration derivation pipelines (Bias-image Generation, Flat-field
Image Generation), instrumental and photometrical pipeline, reference image pipeline,
real-time image subtraction and extraction pipeline, light curve pipeline, and ZMODE:
ZTF moving object discovery engine [56]. As required by grant agencies, all astronom-
ical data must be made publicly available to astronomers worldwide. These archival
data are freely available to the public via the Infrared Science Archive’s (IRSA/IPAC)
browseable web directory [61]. The ZTF Science Exposure Metadata, calibration meta-
data, raw metadata, and reference image metadata can all be accessed via their online
system. Algorithm 1 describes the steps involved in the real-time data processing in the

ZTF archive.

4.2.1 IRSA Archive

IRSA/IPAC is responsible for curating and distributing the images and catalogues. In
2019, roughly 6.9 million single-exposure images, 135,000 co-added images, 106 billion
source catalogue files, and 2 billion lightcurves will be generated using single-exposure
extractions with previously available catalogues [62]. All image data, including scientific
images, calibration image metadata, raw image metadata, and reference image metadata,
are stored in the Flexible Image Transport System (FITS) format [63]. The ZTF archived
web directory structure is presented in Table 4.2. The IRSA stores the ZTF FITS file in

its web directory in the B-tree data structure defined in a previous study, as shown in
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Algorithm 1: Real-time data processing in ZTF Archive

Input: New raw CCD-based data set (CCD_RAW) with corresponding raw
image data (raw), calibration product (cal), epochal science product
(sci) and reference science product (ref) are generated by checking some
predefined requirement with all FITS HDUs in ZTF Archive

Output: New CCD-Based Images (CCD_RAW)

CCD_RAW < Identify New_CCD _Images (raw, cal, sci, ref )

for Archive e CCD_RAW do

if Requirement_verified (Archive(raw, cal, sci, ref)) then
| CCD_RAW < CCD_RAW+Archive

end

end
for Archive e CCD_RAW do
Requirement_fails < Fails_status_flag(Archive(raw, cal, cal, sci) )
if (Requirement_fails) = (CCD_-RAW) then
| CCD_RAW <« CCD_RAW — Archive
end

end

Figure 4.1 [4]. The top node is the root node of the IRSA web directory, and the index
is stored in the leaf node. The ZTF FITS image data are stored in leaf nodes, where all
insertions and updates occur.

The i** record contains an absolute identity z; used to identify the base record. The
components with x; are year, two-digit month, two-digit day, fractional day, field, and
filtercode, CCDID, image type code, and quadrant ID, as shown in Figure 4.2. There are
approximately 106 billion records in the ZTF archive. Each record has up to one billion
data unit fields, which are identified as y; j(y;1.....Yi 1biion) Where (7, j) indicate the record

identity (z;), and the position of the field ((y;;) in the individual record.

Table 4.2: ZTF FITS file index in web archive

Header Data Unit
Yij
T, Yij, Size and index for the data (1, .... 50 million) | Name, Size of Data | Data type
Night, field... FITS,Log ...

In the Figure 4.2,

e /raw = raw image data file;
e /cal = calibration product file;

e /sci = epochal science product file and difference images;
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Root Directory Root Dir of ZTF Data
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Figure 4.1: ZTF Science Images Generic Root Path in The Archive [4]
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~====raw/<YYYY>/<MMDD>/<dddddd>/
ztf_<YYYYMMDDdddddd>_<fieldID>_<filterID>_c<ccdID>_<imgtype>.fits.fz

------- Ical/<YYYY>/<MMDD>/<caltype>/<filteriD>/ccd<ccdID>/g<quadID>/
ztf_ <YYYYMMDD>_<filterlD>_c<ccdID>_qg<quadlD>_<ptype>
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Figure 4.2: ZTF Archive [5]
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/ref = reference image (co-adds) and catalog files;

o <fff> = first three (leftmost) digits of <fieldID>;

e <caltype> = calibration type, e.g., "bias”, "hifreqflat”;

e <imgtype> = single character label in raw camera image file;
e <ptype> = product type suffix string from pipeline;

e YYYY = year;

e MMDD = month and day (all UT-based);

e dddddd = fractional time of day of exposure (all UT-based);

e fieldID = 6-digit survey field ID if targeted science (on-sky) exposure, otherwise
“000000” for calibrations;

o filterID = 2-letter filter code:zg, zr, zi for exposure acquired in g, R, or i respectively

(for on-sky & flat-fields) bi, dk for bias and dark images, respectively (filter neutral);
e ccdID = 2-digit detector chip ID: 01, 02, ... 16;

e quadID = 1-digit quadrant ID in ccd: 1, 2, 3, or 4 imgtype o: on-sky object
observation or science exposure, b: bias calibration image, d: dark calibration image,

f: dome/screen flatfield calibration image, c: focus image, g: guider image;

e ptype = fits, txt format image product type.

All image data, including scientific images, calibration image metadata, raw image
metadata, and reference image metadata, are stored in the Flexible Image Transport
System (FITS) format [64]. Access control is only applicable to password-protected, and
non public data. There are instructions on the access control pages for using IRSA APIs
with a password. Using the IRSA ZTF-LC-API form of HT'TP URLs, ZTF Lightcurve
data can be queried or retrieved via the specified ZTF objects by their identifiers (ID),
by position (POS), by a collection of ZTF files (COLLECTION), and by the format of

the output table (FORMAT) parameters.
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The IRSA/IPAC directory indexes image URLs to support ZTF FITS files with API
support for images visualization. This makes it simple to embed the archive directly into

the user’s software.

4.2.2 ZTF Released Products

IRSA has archived all raw metadata, processed data, and data archives and made them
accessible to the public using data exploration tools. As stated in Table 4.1, ZTF image
data products are made accessible to the public in a number and variety of formats.
All image data were made publicly available in the Flexible Image Transport System
(FITS) format, including CCD-based image metadata data files, CCD-quadrant-based
image metadata files, single-exposure science images, source catalogues, and reference
images per CCD-quadrant. According to Table 4.1, a CCD-quadrant is the core image
unit for pipeline processing, from which all scientific data outputs (DR1, DR2, DR3, DR4,

DR5, DR6, DR7, and DR8) are generated.

4.2.3 Access to ZTF Data

Using the IRSA ZTF graphical user interface (GUI), ZTF data can be retrieved, visualized,
and analyzed from file-based products, such as single-exposure science images or reference
images, and their catalogues or other files [65]. The IRSA offers two graphical user
interfaces for gaining access to ZTF data, ZTF Images services and catalogue services.
The IRSA /TPAC provides a download platform for these data via a web-based, navigable
directory. Using a graphical user interface, users can query the ZTF images service to view
and download ZTF images and search for astronomical objects by position, ZTF field 1D,
or solar system object/orbit. IRSA image services implement a low-level search method
for metadata tables associated with astronomical images. TRSA image search services
provide both single-object and multiple-object queries. The single-object search capability
of the system enables the user to locate astronomical bodies by name or position. The
query returns CCD-quadrant images that intersect these spots, together with metadata

for additional filtering. The results are displayed in a web browser in a table with multiple
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columns. The graphical user interface (GUI) offers previews and interactive analysis of
selected images. The user must manually construct a complex SQL query and upload it
to the system to conduct a multi-object search. The system permits the user to load a
file from a local disk or workstation in an infrared scientific repository.

Users can retrieve, view, and assess catalogue services using GUI services in three
stages. The ZTF catalogue services contain numerous tables, including ZTF DR1, DR2,
DR3, DR4, DR5, DR6, DR7, and DRS8 objects. Each table is independent and can be
queried separately. The user can search for a single object using a single location, either
a search radius or box size centred on that location. To locate an astronomical object,
a single object search, multi-object search, or all-sky search can be used. Upon clicking
"Run Query”, all objects and related light curves were displayed in a web browser using a
multi-column table based on user input. To obtain images from the multi-object search,
the user must manually construct a complex query and submit it to the workstations of
the infrared scientific archive. All-sky searches retrieve counts from the entire database
table, regardless of whether they are in ASCII (IPAC-table), HTML, or XML format.
The all-sky search option does not return light curves.

On the results screen that follows the query in step 1, the user can click the ”Time
Series Tool” to retrieve the lightcurves of user input items. In step 2, the user can select
a specific object from the list of object IDs containing lightcurve data and transfer its
lightcurve to the Time Series Tool by clicking on it. These tools provide an object centered

epoch-based scientific image and period locator.

4.2.4 Retrieving the catalog file from IRSA Remote Resource

The real-time identification and classification of astronomical objects, such as variable
stars and super-novae, is the major purpose of the ZTF project. This initiative also seeks
to organize and analyze a database containing additional celestial objects for an in-depth
examination. Astrometric calibration outputs (ZTF CCD-quadrant images) were in the
FITS format. Fach image within an FITS file consists of a header data unit (HDU) and

image data. HDU is observational metadata, which is the information associated with an
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Figure 4.3: Local three-level architecture connected to remote cloud data source

image file.

To provide an Information Requirements Elicitation (IRE)-style query interface for
ZTF data, a three-level architecture in the ANSI dictionary relational form is used to
retrieve the data, as shown in Figure 4.3 [66]. The conceptual level comprises local catalogs
with an index that is stored. A local RDBMS (Postgres) is used to store catalogs. In
addition, the current three-level architecture is linked to a remote cloud service on the
IRSA server to download and transfer data using various APIs (Astropy and JS9) [67].
Because of the identical schema design, any modifications to the remote data repository
can be reflected in the local architecture. If necessary, the conceptual schema can be
expanded by adding additional indices to the local catalogues. Additional external views
that support additional user workflows can be added.

We developed a local repository for this study. The IRSA remote server retrieves the
table header information, image data, and key-value pairs. The downloaded unstructured
data are rearranged into a relational database schema. The download process was auto-
mated using a Python script that generates SQL on the fly, and then optimized and stored
in a PostgreSQL database on a local LINUX server with 16GB of memory and 5TB of

disk space. SQL script helped optimize and create a new entity-relationship-based tables
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(key and value) from the local database. (see 4.4). These database tables are Nights,

Exposures, CCD, Filters, Fields, procimages, and Host Galaxy.

_NIGHTS _PROCMAGES _FIELDS
PK | DBNID[tex{]{Database Night ID} PK | DBPID[texi]{Dalabase processed-image ID} PK | DBFIELD[textl{Database ID}
FK | OBS-DATE[textl{Observation Date} PROCDATE [texti{Process datetime {Pacific timej}} FK | DBHOSTRtexti{Host Galaxy ID}

OBJRA [degl{Requested field J2000.0 Ra.}

DBJDEC [degKRequested field J2000.0 Dec}

_FILTERS
b

PK | DBFID[text]{Database Filter ID} _EXPOSURES

OBJRAD [degl{Requested field J2000.0 Dec}

OBJDECD[degl{Requested field J2000.0 Dec}

FILTERS[text]{Filters Name(g, ir, i)} PK | EXPID[textl{Database Exposure ID} i

FK | DENID[text{Database Night ID}

FK | DBFIELD[text]{Database 1D}

FK | DBFIDtext{Database Filter 1D} _HOST_GALAXY
_CCDS FK | DEPID[texi{Database processed-image ID} PK | DBHOST[texf{]{Host Galaxy 1D}
PK | CCDID [text]{CCD number (0,15)} f’( FK | CCDID [text{CCD number (0,15)} DBFIELD[text{Database ID}
CCD_QUADRANT {4 readout quadrant (1,2,3,4)} OBJRA [degi{Requested field J2000.0 Ra.} HOST_TAG[textf{HOST tag}
CCDNAME [textl{Detector mig serial numbery OBJDEC [degH{Requested field J2000.0 Dec} HOST_NAME [text{Host Galaxy Name}

Figure 4.4: ER Model of the Database with Relations and Attributes [5]

e Nights: Nights contain the date or time of the images taken, with the unique index

nid and alternative key—nightdate.

e Fields: Fields database table stores images according to the X and Y coordinate
and assigned identification ID. In this table, fieldid is a unique index and field is an

alternative key.

e Exposures: Exposure tables contain information from both night database table
and fields database table. Exposure tables also contain detailed information on the
CCD, such as CCD ID, exposure time, image type, etc. The expid is a unique index

and obsdate is an alternative key.

e Procimages: Procimages contains processed-images metadata, i.e., image file names.

The unique index is processed-images number pid.

e Filters: Filters includes a record for each camera filter that was used to acquire the

exposures. The unique index is fid.

e CCDS: CCD (16 charge-coupled devices) contains the camera details numbered
CCDID 1,...16. The unique index is ccdid.

e Host_galaxy: Host galaxy consists of the names of the galaxies.
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4.3 Proposed System Overview

Domain experts in astronomy require query tools to retrieve data from astronomical bod-
ies. Popular domain specialists in astronomy require demand query tools to retrieve data
from a range of celestial bodies. The most popular method is for images and image-related
information. Depending on these conditions, the user may have a range of requirements.
To acquire information, users may wish to query a single object or a collection of objects.

Given the current state of data access in ZTF, this research focuses on developing
an alternative top-down workflow web-based query management system for accessing
ZTF data when searching for images and image-related information. Depending on these
conditions, the user may have a range of requirements. To acquire information, users may
wish to query a single object or a collection of objects. Current methods for astronomical
domain-specific searches require the user to write complex scripts or formulate complex
queries to acquire meaningful insights. Current methods for astronomical domain-specific
searches require the user to construct elaborate scripts or formulate complex queries to
acquire meaningful insights. Given the current status of ZTF data access, this research
focuses on developing an alternative top-down workflow web-based query management

system for ZTF data access.

4.3.1 Proposed System Architecture

The proposed system was a web-based information system. The HTML/CSS defines
the layout based on the design of the user interface. Both JavaScript and PHP provide
dynamic multi-stage table querying. The Figure 4.5 represents the architecture of the
proposed system. Each file’s header information was downloaded and stored on the local
server (RDBMS), whereas the image file and all other associated data were stored on the
IRSA cloud server. Consequently, the proposed query system supports the conversion of
keys to addresses and the movement of image retrieval queries from the local server to
the IRSA cloud server. In the proposed system, users can select objects and enter values
based on their search criteria in an input box.

This system allows users to select and add predefined IDs or names. Users can associate
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Figure 4.5: Proposed Web-Based Polystore System architecture [5]

numerous objects with a query based on its needs. Each time a user selects an object, a
query is generated. Combining searches and linking several items makes the fundamental
queries more complex. The term multi-stage querying refers to the process of adding
queries in multiple stages [68]. The server then stores the query, and upon clicking the
results button, the results are loaded into a table. The user can select the table content by
clicking on the relevant result. The FITS image viewer JS9 is connected by selecting the
desired result, and the images were displayed [67]. The interface for the query language
implements a set-theoretic query language to resolve the relationships between objects
of interest. It is based on SQL queries and is accessible to people with limited database

programming experience.

4.3.2 Workflow Web-based Query Management System with Top-

down approach

As depicted in Figure 4.6, the proposed web-based Information Requirements Elicitation
(IRE) system has a workflow mechanism for user convenience and a query language that
is simple to use. Using IRE, users can interact with a system to obtain objects of interest
by generating queries. Users can choose objects via a graphical user interface (GUI) and
assign a range of values to conduct this query within the IRE process. Whenever a value

was assigned, and a search was conducted. The web application includes a visualizer, the
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API named JS9 FITS viewer [67]. The JS9 image viewer API specifies the communication
protocol between local and remote data storage. All ZTF data products are accessible via
online (GUI-based) web tools and API services of NASA/IPAC Infrared Science Archive
(IRSA), which can be accessed at https://irsa.irsa.caltech.edu/Missions/ztf.html. After
transferring the data from the IRSA cloud to the web application via URL links, JS9 API
helps visualize the requested images. Combining these searches and linking numerous

objects makes the fundamental inquiry increasingly complex, as seen in Algorithm 2.

Algorithm 2: Query Workflow across the multiple data sources
1 <— objects ; // Nights, Fields, CCDS,
J < attributes ; // nid, fid, ccdid, obj,
k < attributes properties ; // nid=443,444.., fid=436, 836.., ccdid=0 16,

n < number of objects
for (i=1;i<=n; i++ )do
if (k € j;) then
R[] « GeneratedImagesList
satisfied < TRUFE
else
‘ v+ -+ // append with related object
end

end
R [ ] < GeneratedImagesList
r =1
for each r in R [ | do
Select in R [r] + SQL query is converted to server requests to obtain images
from the IRSA cloud

end

4.3.3 Query Processor

The proposed web application includes an integrated query processor for mapping queries,
converting data, and transferring them to a local database from a distant data store. Be-
tween the query processor, the web application, and the underlying database management
system, SQL is utilized for communication. The Local RDBMS processes SQL query
statements generated by the user’s interaction with the system. The SQL query is then
joined to the Processed Images (Proclmages) database, which includes serial numbers for

each image. The query processor then compares the SQL query with the unique serial
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numbers of the images in the IRSA cloud, which are then translated into image URLs.
The SQL query is then transformed to server requests to retrieve images from the IRSA
data cloud, and matched images with the same unique serial number are displayed in the
visualizer of the web application. In addition, the query system permits users to link and
mix objects to construct a multi-object search. A query is generated each time a user
picks an object. Combining searches and linking several items makes the fundamental

queries more complex.

e Query 1: Find the image information from a field where the user selects example

records from the object list (e.g fields, nights, exposures, procimages, ccd, etc.)

SQL for Query 1:

select distinct on (A."DBFIELD") A.x from "_FIELDS" A\\

Image SQL for Query 1:

select A.*,B.* from "_Exposures" A, "_PROCIMAGES" B,
(select distinct on (A."DBFIELD") A.*x from "_FIELDS" A)
C where A."DBFIELD" = C."DBFIELD" and A."DBRID"= B."DBRID"

order by B.'"DBPID" offset O limit 10

e Query 2: Find the information of image from a certain place field and exposures.

SQL for Query 2:

select distinct on (A."DBEXPID") A.* from "_exposures" A,
(select distinct on (A."DBFIELD") A.*x from "_FIELDS" A)

B where A."DBFIELD"=B."DBFIELD"

Image SQL for Query 2:

select A.*,B.* from "_PROCIMAGES" B,
(select distinct on (A."DBRID") A.* from "_exposures" A,

(select distinct on (A."DBFIELD") A.*x from "_FIELDS" A)
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B where A."DBFIELD"=B."DBFIELD" ) A where A."DBEXPID"= B."DBEXPID"

order by B."DBPID" offset O limit 10;

e Query 3: Find the information of image where field, night exposure is exactly the

same in the tables.

SQL for Query 3:

select distinct on (A."DBNID") A.x from "_NIGHTS" A,
(select distinct on (A."DBEXPID") A.*x from "_EXPOSURES" A,
(select distinct on (A."DBFIELD") A.*x from "_FIELDS" A)

B where A."DBFIELD"=B."DBFIELD" ) B where A."DBNID"=B."DBNID" ;
Image SQL for Query 3:

select A.x,B.*x from "_EXPOSURES" A, "_PROCIMAGES" B,

(select distinct on (A."DBNID") A.* from "_NIGHTS" A,

(select distinct on (A."DBEXPID") A.x from "_EXPOSURES" A,
(select distinct on (A."DBFIELD") A.* from "_FIELDS" A)

B where A."DBFIELD"=B."DBFIELD" ) B where A."DBNID"=B."DBNID" )
C where A."DBNID" = C."DBNID" and A."DBEXPID"= B."DBEXPID"

order by B."DBPID" offset O limit 10;

The proposed system can execute simple queries, such as Queries 1 and Queries 2 and
sophisticated questions such as Query 3. Given the current status of ZTF data access,
current research can concentrate on establishing an alternative top-down workflow web-

based query management system for ZTF data access [5].

4.3.4 Querying in Time-domain Astronomy

Domain experts in astronomy require query tools to access various types of data on
several astronomical entities. The most common searches were for images and image-

related information. To acquire information, users may wish to query a single object or
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a collection of objects. Depending on the circumstances, the user can request various
requests. The user may also include specific logical operators (and, or) between multiple
objects to refine the query further. Other known techniques for accessing PTF data
require users to build complicated programs to execute complex queries.

The proposed system permits the formulation of inquiries using an interactive system
in which users may select objects and enter their associated IDs and predefined object
names. The user can relate numerous objects according to query criteria. Each time
a user picks an object when querying, the query is generated. Combining searches and
linking several items makes the fundamental queries more complex. The term multi-stage
querying refers to the process of adding queries in multiple phases. The query is then
saved on the server, and the information is returned to the table when the results button
is clicked. The system connects to the FITS image reader and enables image visualization

by selecting an item from a database [5].

e Query 1: Find the information of image where Fields ID is 00836 and CCDID is 11.
SQL for Query 1:

SELECT *FROM exposures WHERE ccdid = 16 OR field = 00836;

e Query 2: Find the images information from a certain place where the Field ID is
00424 and ccd id is 11.
SQL for Query 2:

SELECT field, ccdid, qid, rcid, pid FROM exposures where

ccdid = 11 and field = 424;

e Query 3: Find the information of image where field and CCDID is exactly the same
in the tables “CCD”, "FIELD” and “EXPOSURES”.
SQL for Query 3:

SELECT a.fid, b.ccdid FROM exposures AS a, ccds AS b WHERE

a.fid = b.ccdid;
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4.4 Summary

There are numerous types of astronomy data and the amount of data available in repos-
itories, such as PTF, iPTF, ZTF, and LSST. We used ZTF repository data to create
databases and unify them in a common query language. Thus, we proposed a work-
flow web-based Polystore system architecture based on a top-down approach instead of
a bottom-up approach system that prioritizes language translation. The query processor
unifies queries from various databases into a common relational query language by pro-
cessing the queries in the proposed system. This system is capable of querying multiple
objects using the workflow method, because a query is generated via GUI interaction.
The results are presented in tables and images. When an object is queried, the system
generates two SQLs, one for the graphical user interface and the other for the FITS im-
age viewer (visualizer) for linked open data in the ZTF. The image SQL connects to a
remote image database, which is then converted into server URL requests to retrieve im-
ages and display them in the visualizer via the API. In addition, current top-down and
bottom-up approach-based systems, and the latest approach, Polystores, are addressed.
We compared the Polystore system to existing systems and compared the features of the

proposed system with those of Polystore systems [5] [4].
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Chapter 5

RESULTS AND DISCUSSION

5.1 Comparison with Existing Systems

The massive amount and variety of data available in the astronomical domain presents
a formidable management challenge. Relational databases are utilized by most current
astronomical solutions. Moreover, most solutions require users to wite complex programs
to collect valuable insight. This study proposes a solution to the problems associate with

big data and the lack of a suitable query tool for astronomy.

e Provide an optimal multi-database architecture to manage heterogeneous data in

astronomy, as discussed in Section 4.3.1 System Overview.

e Provide a query language that will federate the information, transform, and effec-
tively migrate data within the underlying data stores, as discussed in Section 4.3.3

query processor.

e Manage heterogeneous data via a fully automated workflow based query manage-

ment system as discussed in Section 4.3.2.

e Minimize the local execution time in the data stores, by pushing down select oper-

ations in the data store sub queries and exploiting the bind join by query rewriting.
e Minimize global execution time by operator ordering.

e Minimize communication cost and network traffic by reducing data transfers be-

tween nodes.
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Additionally, the solution should preserve the data integrity compared to the original
source of the ZTF data. We consider implementing the data set of Data Release 1.
Multiple criteria, including data support, query support functions, architecture flexibility,
and users, can be used to evaluate the query management system. Query management
systems focus on providing a uniform/single query language from multiple heterogeneous
data sources with varying similarities and differences.

An evaluation of the previous work is presented in Table 5.1. We compared the IRSA
ZTF Images GUI and DatawntO GUI to the GUI of our proposed systems. Unlike IRSA,
DatawntO lacks data support for reference images and catalog files, despite containing
features such as multi-object search and supporting relate and join operations. The pro-
posed system has few parameters in common with IRSA, such as providing data support
for reference images and catalog files, and a filtering option in the result table. However,
the proposed system has additional parameters, such as QBE support, and can be used

by novice users (who lack SQL knowledge), unlike the IRSA and Datawnt0.

5.2 Comparison with others Polystore Systems

Data archives have dealt with various data models and storage engines in their native
formats over the past several decades. The data sets were utilized without being converted
into a standard data model. Recent advancements in Polystore systems adhere to a
bottom-up methodology in which incoming data from the source environment is the basis
for information processing. As shown in Figure 5.1, the bottom-up approach to creating
Polystore emphasizes language translation as the primary task.

The features of the proposed system were compared to those of BigDAWG and Cloud-
MdsSQL, which are existing systems. The result of this evaluation are presented in Table
5.2. Instead of using islands/shims or mediators/wrappers to manage heterogeneity and
multiple data stores, the proposed system used APIs to process queries. The proposed
system uses native API calls, such as BigDAWG or CloudMdsSQL, to achieve autonomy,
rather than wrappers. The proposed system specifies no data repositories because it aims

to achieve ultimate transparency. In contrast to existing systems, which require the speci-
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Table 5.1: Evaluation based on Existing Work

Evaluation IRSA ZTF Images | DatawntO0 GUI (Past | Proposed systems
framework GUI work) GUI
Data support

e Reference images e Epochal sci- e Reference images

and catalog files

Epochal
ence images and
catalog files

sci-

ence images and
catalog files

and catalog files

Epochal sci-
ence images and

catalog files

Query Support
Function

e Single Object e Single Object e Single Object
Search Search Search
e Multi-object e Multi-object e Multi-object
Search user up- Search Search
load  manually ) )
predefined table e Query by Fields, e Query by Fields,
CCDs, Nights CCDs, Nights,
e Querying by Galaxies name
Fields, CCDs, * Support Re-
and Galaxies late and Join e Support Re-
name Function late and Join
Function
e No Relate and e Filtering option is
Join Function not present in the e Filtering option
result table present in the
e Filtering option result table
present in the e No Query by Ex-
result table ample Function e Support  Query
by Example
e No query by Ex- Function
ample Function
Architecture
Flexibility
e Local: Catalogs e Local: Catalogs e Local: Catalogs
and images with index with index
e Remote: Mul- e Remote: Single e Remote: Multiple
tiple directories directory for im- directory for im-
with images and ages accessible ages accessible
logs files
Users

Expert SQL users

Amateur
users

SQL

Novice users
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fication of data stores or information islands, the proposed method automatically switches
to a table representation and hides it. Although the schema can be manually updated
and a standard and QBE SQL define the workflow, the proposed system lacks schema
flexibility. Active query transformation with user-defined data migration is proposed
to enhance the BigDAWG’s data transformation and active data migration capabilities.

CloudMdsSQL does not support these features [69].

5.2.1 Existing Bottom-up design Polystore Systems

Language translation is regarded as the most important task in a bottom-up approach for
creating a Polystore. The existing data sets contain vast amount of data from numerous
sources. L1, L2, and L3 are examples of languages that can be used to access these diverse
data sets, as shown in Figure 5.1. These might or might not have employed SQL. If a
large amount of data come from various sources and environments that support different
languages and schemes, the bottom-up method is not recommended. Consequently, the
data and information in these systems create database connectivity and compatibility
issues [4].

Using a bottom-up methodology, HYBRID.POLY analytical Polystore was developed
to manage this type of data. HYBRID.POLY is a platform for storing, analyzing, and
gaining access to many heterogeneous data sets. The in-memory storage engine supports
many data models, and the query interface of HYBRID.POLY accepts queries written in
a hybrid language, which, as a superset of SQL, can generate complex analytical queries
on non-relational data (JSON, XML, media files) and relational data. The hybrid op-
timizer optimizes queries and can process large queries with numerous nodes. The HY-
BRID.POLY query processing engine includes a query parser, a query compiler, and a
query optimizer. HYBRID.POLY has a single combined data storage capable of storing
any data, which improves its performance by decreasing query processing and communi-
cation costs [70].

According to [71], BigDAWG has multiple data sets in the medical domain MIMIC-II,

which is an advantage of tightly coupled Polystore. MIMIC-II contains numerous types
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Table 5.2: Evaluation based on features of Polystore systems

Evaluation BigDAWG CloudMdsQL Proposed system
framework
Heterogeneity
e Multiple Data e Multiple Data e Multiple Data Stores
Stores with Stores with with Single Query
Multiple  Query Single Query Interface
Interfaces Interface
e Query Processed
e Query Processed e Query Pro- through APIs
through Islands cessed through
and Shim Opera- Media-
tors tors/Wrappers
Autonomy
e Use of Shims, e Use of Wrap- e Use of APIs where
where catalog pers where catalog updated
information catalog up- automatically and
updated auto- dated  auto- manually
matically matically and
manually e Native API calls
e Multi-object
Search user up- e Native  API
load manually calls
predefined table
e Native API calls
Transparency
e Specify informa- e Specify data e No need to spec-
tion islands with stores, data ify data store, au-
SCOPE oper- types and tomatic transforma-
ators and hide automatic tion into table rep-
transformation transforma- resentation which is
detail with CAST tion into table hidden
operators representation
Flexibility
e No schema flexi- e No schema e No schema flexibil-
bility flexibility ity (Can be updated
manually)
e Query interfaces e Subquerying
of fixed islands, and user de- e User defined work-
not readily exten- fined MFR flow with standard
sible functions and QBE SQL
Optimality
e Query Rewriting, e No active e Active query trans-
data transforma- transforma- formation with user
tion and active tion and defined data migra-
data migration migration tion

S
©




. RDBMS
| Relational Query L2
Language (L)
User (SQL)
L3 MongoDB

Figure 5.1: Bottom-up design Polystore System

of data, including patient metadata, physician and nurse notes, and lab results. Conse-
quently, this system must support various data types, including standard SQL analytics,
complex analytics, text search, and real-time monitoring of data stored in SciDB, Post-
gres, S-Store, and Apache Accumulo. These databases migrate data via casts, whereas

shim translates queries from the island to the database [71].

5.2.2 Top-down design for Web Polystore Systems

As shown in Figure 5.2, the workflows query over the database engines is organized using
the relational query language in the top-down approach. The IRE Workflow has been
demonstrated to query various databases using the data retrieval API. The function of
the API is to retrieve data for input key values. This is the most basic form of the
component workflow for the databases and data sets being accessed. Many types of
querying exist, such as QBE (Query by Example) Workflow or set-theoretic toolkits,
which serve as informative toolkits for users in the astronomical domain by saving time
when writing complex queries. The idea is to unify queries across multiple data models
to manage data more efficiently. The polystore database system serves as the foundation
for this workflow. Compared with the bottom-up approach, the top-down approach is

superior because most components can be customized for simplicity. All information is
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Figure 5.2: Web Polystore System top-down design approach

distributed, allowing it to be queried easily [4].

PostgreSQL was used to query the IRSA server data sets containing all PTF data
information. The query is unified on the IRSA server and the local server in the proposed
system. It contains cloud data directories (for raw PTF images, Proclmages, and other
data) and PTF data information (image header information). Managing all the data on
servers as databases with language translation would have been a time-consuming task
that would have reduced efficiency and performance. Consequently, the proposed query
system focuses on efficiently managing heterogeneous data distributed across multiple
storage engines.

The main advantage of the proposed system is that it can perform recursive queries
without no data loss. RDBMS headers can support both QBE workflow and set-theoretic
toolkit. The QBE workflow employs visual tables from which the user can select condi-
tions, enter commands, or select objects. Other operations such as inserting, updating,
and deleting are also possible. This workflow converts the action of a user into a set of
SQL-like commands.

A set-theoretic workflow will be a useful tool for astronomers because it can perform all

set-theoretic operations such as union, intersection, and joins. This is more like a relational
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algebra toolkit, simplifying the work of dealing with heterogeneous data. Consequently,
this top-down approach can support a calculator-like tool in which sequences can be saved
and used to generate results. The proposed system can be easily scaled by integrating
various distributed databases. The query processor unifies queries from different databases
into a common relational query language, thus making multiple heterogeneous data sets
easily accessible through design uniformity. These are easily accessible owing to the
growing number of new user workflows. Consequently, query conversion was not required

in this approach.

5.3 Experimental Setup

We chose 20 queries for the experiment and compared the current system with the IRSA
web-based system to assess the state of querying and analysis of large-scale astronomical
data. The evaluation confirms that the current query system can handle more queries and
may be useful for novice users unfamiliar with the query languages. Query by positions,
query by observation date and time, query by host galaxies name, query by camera details,

and query by example features are the most popular queries.

e Query by position: Uses galactic coordinates to specify the exact position to map

the exact fields of the galactic plane. Find all objects in a certain galactic position.

e Query by observational date and time: Uses built-in calendar input function (OBJ-
DATE) details and Night details, which include the date (DD:MM:YYYY) and time
(HH:MM:SS) per observed astronomical body. Find all objects within a certain time

period.

e Query by host galaxies: Uses a target search for catalogs of nearby galaxies Find

all the objects related to the specific galaxies.

e Query by camera details: Uses 16ccds cameras as per the different object filters

used by ZTF, namely, zg, zr, and zi for exposure acquired in g,R, I, respectively,
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and bi, dk for bias and dark images, respectively. Find all objects from the camera

filters. Find all objects from the camera name.

5.4 Query Comparison Analysis

ZTF DRI data were used and analyzed to evaluate the workflow-based query system.
This data set includes images, metadata containing image header information, and re-
lationships. The metadata and relations were saved in the local Postgres database, as
stated in Section. We downloaded the data, created a schema, and created 20 queries for

the performance evaluation, as shown below.

1. Find all the images where Fields ID = 841;
2. Find all the images where Exposures ID = 44316126;
3. Find all images from fields where OBSJD = 2458197.6612616;
4. Find all the images where Night ID = 443;
5. Find all the images where Host galaxies where HOSTTAG = m81,;
6. Find all images by observation date between 2018-04-01 and 2018-04-30;
7. Find all the images where Filters = 2;
8. Find all the images with R-band filters = zr;
9. Find all the images with CCD ID = 16;
10. Find all the images with Night ID = 443 and Fields ID = 809;
11. Find all the images with Night ID = 443 and CCD ID = 5;
12. Find all the images with Night ID = 443 and filtercode = zg;
13. Find all the images with Field ID = 841 and Exposure ID = 44316126;

14. Find all the images with Field ID = 809 and filtercode zg;
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15.

16.

17.

18.

19.

20.

Find all the images where Exposures ID = 44316126 and Filters ID = 2;

Find all the images from date 2018-04-01 and 2018-04-30 and Field ID = 841 and
CCD ID = 5 with R-band filters;

Find all the images with Night ID = 443 and Fields ID = 809 and CCD ID = 12

with g-band filter;

Find all the images from the Fields table or exposures tables;

Find all the Science Exposures images where Host galaxies name = m81;

Find all the References Images and Science Images where Host Galaxies name = ngc 13.

To validate the queries, the proposed system and the source of the ZTF data (IRSA

web system) were used. Queries may involve retrieving data from a single or multiple

objects. We used all possible queries as examples, which were already predefined by the

proposed system for users who were unfamiliar with query languages (for novice users).

Figure 5.3 depicts a comparison of the query results.

Proposed System
20

Total © IPAC

Figure 5.3: Query Comparison

Example of a Single Object Query (Q4): Find all changes from 2018-01-01 to

2018-12-31
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Find all the images where Night ID = 443;

Process: The user selects the Nights object and provides the requested calendar
information. When the search button was clicked, the results were tabulated. The user

can view and/or download images of any search result.

Dynamic Multi-Stage Query Interface (DMSQI) for Astronomical ZTF Data Repository

[ 2 Query by Nigat D: DBNID—443 igtts) ] Yo 208 20003011265 .

0232_co1 s

Related Object:

Select Object: Nights i ‘
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Figure 5.4: Workflow Web-based Polystore System of ZTF Archives

A polystore method for integrating massive heterogeneous PTF data is developed and
demonstrated in Figure 5.4. A workflow-based query solution is described to assist users
with simple database-like queries across IRSA services.

Twenty queries were evaluated using an example data set. A superior query per-
formance was observed when compared with the existing system. A list of queries was
distributed to colleagues and feedback was provided based on their observations. The
feedback indicates that the proposed (or developed or whatever) system provided access
to more queries. The interface was found to be easy to use. The feedback from user
testing indicated that the usability of the system was enhanced because of search based
on graphical data and metadata. The results table generated the metadata from the local

database and the image data were then fetched from the cloud server by clicking a button.
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Chapter 6

CONCLUSION AND FUTURE SCOPE

In the past few years, there has been a surge of interest in the database community for
managing large amounts of unstructured data from disparate data stores. This problem
has received special attention owing to the size of data, the rate at which data is added,
and the emergence of new data types in various scientific data archives. Numerous het-
erogeneous data stores have developed as a consequence of the rise in big data. Although
numerous models exist for integrating these data, it remains difficult to combine these
enormous amounts of data into a single model. There is a demand for database man-
agement circles to manage large volumes of unstructured data originating from unrelated
and unconnected sources.

Astronomy is also evolving into a science that is increasingly based on data process-
ing, and involves a wide range of data. This information is retained in the domain-
specific archives. Several astronomical studies have generated massive data archives.
These archives were then made public as data repositories. These primarily consist of
unstructured images and text, as well as data with certain structures, such as relations
with key values. When archives are published as remote data repositories, it is difficult
to organize the data in light of their increased diversity and to meet user information
requests.

To address this issue, the a Polystore system was created to manage user workflows and
visualize astronomical domain data using an integrated single query language. There are
many different types of astronomy data, and the amount of data available in repositories

such as PTF, iPTF, ZTF, and LSST. ZTF has linked open data available in FITS format,
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and we created databases using data from ZTF repositories in order to unify them into
a common query language. As a result, we proposed a workflow web-based Polystore
system architecture that is top-down rather than bottom-up, with language translation
as the primary task.

In the proposed system, the query processor unifies queries from different databases
in a common relational query language. Because a query is generated through user inter-
action in the GUI, this system supports querying for multiple objects using the workflow
method. The results are visualized in the form of tables and images. When an object
is queried in the ZTF, the system generates two SQLs: one for the GUI and one for the
FITS image viewer (visualizer). The image SQL is used to connect to a remote image
database, which is then transformed into server URL requests to fetch images and display
them in the visualizer via the API.

A method for managing a local data store and communicating with a remote cloud
data store using a web-based query system is demonstrated. In addition, we addressed
the current top-down and bottom-up approach-based systems, along with Polystores. We
also evaluated the Polystore system against existing works and compared the features of
the proposed system to those of Polystore systems.

In future work, we will attempt to test the performance of the proposed system and
calculate the precision and recall. We also add the latest updated data to analyze the

query requirements for managing multiple data stores.
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