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Abstract 
 

With the rapid economic development and the accelerating pace of life, 

people are confronted with ever-increasing stress from all aspects of the study, 

work, and living. Stress has gradually become one of the main factors affecting 

the physical health of individuals. Some biosignals are applied to evaluate the 

stress including Electrocardiogram (ECG), Electroencephalogram (EEG), and 

Electromyogram (EMG), et al. In the dissertation, ECG signals are used to 

evaluate stress. 

 

ECG is the process of recording the heart's electrical activity over time. It 

is a conventional biosignal of medical diagnosis. There are three main 

components in an ECG signal: the P wave; the QRS complex; and the T wave. 

Detected R peaks can be used to calculate the R-peak to R-peak Interval (RRI) 

to complete heart rate variability (HRV) analysis in time, frequency, and 

nonlinear domain. Since the early commercial ECG device was applied in 1901, 

ECG device has improved with the development of technology. However, these 

devices still have some inconveniences during using. Bathing is a part of the 

daily routine for most Japanese people. In addition to daily cleaning, bathing 

can also be used as a means of daily healthcare monitoring. In the dissertation, 

a bathtub ECG monitoring system is used to collect ECG signals during bathing. 

xii 
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In this dissertation, the bathtub ECG monitoring system is optimized. The 

most suitable electrode for bathtub ECG collection during bathing is selected 

based on the evaluation of the ECG signal quality. Using HRV analysis to estimate 

the optimal bathing time, combined with the stress index, the effect of stress on 

the optimal bathing time is obtained. Stress has an obvious effect on optimal 

bathing time. Stress increases the optimal bathing time. In high-stress situations, 

it takes longer to achieve the comfort of bathing. Bathtub ECG as a potential 

alternative to light stress test in daily life is proposed. The correlation between 

bathing and exercise stress test (EST) is explored. The relationship between 

bathing duration, water temperature, and the EST stage is analyzed. Twenty-three 

HRV features are used to group different bathing conditions corresponding to the 

EST stages using the Voronoi diagram method in terms of HRV behaviors. In all 

equivalent EST stages of bathing tests at the five water temperatures, the low stage, 

medium stage, and high stage account for 17.86%, 52.86%, and 29.29%, 

respectively. The higher water temperatures and longer bathing durations in the 

bathing test correspond to higher stages in the EST. The bathing test at the most 

severe condition of 41C and 15 min corresponds to a high EST stage in terms of 

HRV behavior. Daily bathing can serve not only for cleaning and healthcare 

monitoring but also as a reference for an at-home alternative to the EST. The 

organization and main contribution of this dissertation are briefly summarized in 

the following manner. 

 

Chapter 1 first offers an introduction and background on ECG, HRV, bathtub 

ECG system, and stress monitoring.  

xiii 
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Chapter 2 describes the effect of stress on optimal bathing time. Using HRV 

analysis to estimate the optimal bathing time, combined with the stress index, 

the effect of stress on the optimal bathing time is obtained. Stress has an obvious 

effect on optimal bathing time. Stress delays the optimal bathing time. In high-

stress situations, it takes longer to achieve the comfort of bathing. 

 

In order to improve the bathtub ECG monitoring system, Chapter 3 

describes the bathtub ECG monitoring system is optimized based on the most 

suitable electrode. The most suitable electrode for bathtub ECG collection during 

bathing is selected based on the evaluation of the ECG signal quality including 

four signal quality indices. 

 

Chapter 4 describes the bathtub ECG as a potential alternative to light stress 

test in daily life. A bathtub ECG as a potential alternative to light stress test in 

daily life is proposed. The correlation between bathing and exercise stress test is 

explored. The relationship between bathing duration, water temperature, and the 

EST stage is analyzed. 

 

Finally, the present work is summarized, and future research directions are 

discussed in Chapter 5. 

 

 

xiv 
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Chapter 1  

Introduction 

It has been found a significant increase in anxiety, depression, pathological 

stress, and other stress-related diseases in recent years. Generally, human physical 

and mental health and well-being can be damaged by stress [1,2,3]. Stress is a 

feeling of emotional or physical tension, and it can be caused by anything you 

feel angry, uncomfortable, or nervous about. Stress is your body's reaction when 

feeling under pressure or threatened. It usually can be not controlled when stress 

happens. Stress is your body's reaction to a challenge or demand. It is necessary 

to maintain complex homeostasis in the body. Homeostasis is constant ly 

challenged by stressors including inside or outside adverse forces. Stress arises 

when homeostasis is threatened [4]. In the short term, stress can be positive, such 

as you meet a deadline under stress status. But your health can be damaged under 

continuous stress in the long term. Stress is frequently cited as an important 

contributor to disease, and more and more clinical evidence has been showing the 

effects of stress on the immune and cardiovascular systems. In particular, the risks 

of developing cardiovascular disease, diabetes, stroke, and obesity can be 

increased by chronic stress [5,6,7,8]. Stress affects health in two means including 

direct and indirect. Health can be affected directly through the response of the 
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autonomic nervous system (ANS) caused by stress. Stress also can indirectly 

affect health through changes in health behaviors [9]. 

According to the statistics from the World Health Organization, stress is 

associated with several medical and social problems that disproportionately 

affect not only adults but also the health and well-being of children and 

adolescents [10]. Failure to address adolescent mental health has consequences 

that extend into adulthood, impairing physical and mental health. Consequently, 

there has been great interest in studying the underlying mechanisms of stress and 

monitoring the various physiological and biochemical responses of the body to 

stress [11]. 

 In the past two decades, many excellent studies have confirmed that stress 

affects the brain [12,13,14] and ANS [9,15,16,17]. With the considerable 

development of technology, biosignals can be measured reliably to provide 

accurate monitoring of stress, potentially preventing diseases early. 

Contact monitoring has the potential to place an additional burden on the 

subjects during biosignals monitoring. Therefore, the unconscious, unrestrained, 

and noncontact acquisition method is more suitable for biosignal monitoring for 

stress. Bathing is a part of the daily routine for most Japanese people. In addition 

to the role of daily cleaning, bathing also can be used as a means of daily 

healthcare monitoring. Biosignals monitoring can be unconsciously, 

unrestrainedly, and noncontact implemented during bathing. As a conventional 

biosignal for medical diagnosis, ECG is more convenient to collect during 
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bathing than other biosignals. 

In this dissertation, stress is evaluated during bathing by analysis of bathtub 

ECG. A bathtub ECG monitoring system is used to collect ECG signals during 

bathing. The effect of stress on optimal bathing is explored. The relationship 

among stress, bathtub water temperature, and bathing duration is discussed. The 

relationship between different stressors such as exercise and bathing is explored. 

There are three studies in this dissertation. First study is in Chapter 2. Chapter 

2 describes the effect of stress on optimal bathing time. Using HRV analysis to 

estimate the optimal bathing time, combined with the stress index, the effect of 

stress on the optimal bathing time is obtained. Stress has an obvious effect on 

optimal bathing time. Stress delays the optimal bathing time. In high-stress 

situations, it takes longer to achieve the comfort of bathing. 

To improve the bathtub ECG monitoring system, Chapter 3 describes the 

bathtub ECG monitoring system is optimized based on the most suitable electrode. 

The most suitable electrode for bathtub ECG collection during bathing is selected 

based on the evaluation of the ECG signal quality including four signal quality 

indices. 

Chapter 4 describes the bathtub ECG as a potential alternative to light stress 

test in daily life. A bathtub ECG as a potential alternative to light stress test in 

daily life is proposed. The correlation between bathing and exercise stress test is 

explored. The relationship between bathing duration, water temperature, and the  
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EST stage is analyzed. 

 

 

1.1 Electrocardiogram 

 

 

 

Figure 1: ECG of a heartbeat in normal sinus rhythm 

 

 

ECG is the process of recording the electrical activity of the heart over a 

period of time using electrodes placed on the skin. These electrodes detect the 
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tiny electrical changes on the skin that arise from the heart muscle's 

electrophysiologic pattern of depolarizing and repolarizing during each heartbeat. 

It is very commonly performed to detect any cardiac problems [18]. 

There are three main components in an ECG: the P wave, which represents 

the depolarization of the atria; the QRS complex, which represents the 

depolarization of the ventricles; and the T wave, which represents the 

repolarization of the ventricles, as shown in Figure 1. During each heartbeat, a 

healthy heart has an orderly progression of depolarization that starts with 

pacemaker cells in the sinoatrial node, spreads throughout the atrium, passes 

through the atrioventricular node down into the bundle of His and into the Purkinje 

fibers, spreading down and to the left throughout the ventricles [19]. This orderly 

pattern of depolarization gives rise to the characteristic ECG tracing. To the 

trained clinician, an ECG conveys a large amount of information about the 

structure of the heart and the function of its electrical conduction system [20]. 

Among other things, an ECG can be used to measure the rate and rhythm of 

heartbeats, the size and position of the heart chambers, the presence of any damage 

to the heart's muscle cells or conduction system, the effects of heart drugs, and the 

function of implanted pacemakers [21]. ECG signals are used to diagnose various 

cardiac diseases, including arrhythmia, myocardial infarction, ventricular 

hypertrophy, coronary artery disease, and ischemic heart disease, et al. 

[22,23,24,25,26]. ECG also has important clinical value for non-cardiac 

conditions such as apnoea, pulmonary embolism, and esophageal disorders 

[27,28].  
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The 12-lead ECG is one of the most commonly clinical cardiac medicine 

diagnostic tools. The 12-lead ECG signals are collected using attaching ten 

electrodes on the surfaces of limbs and the chest as shown in Figure 2. Electrical 

activities of the heart are recorded from the frontal and the horizontal views to 

group 12 channels of ECG signals based on the ten electrodes. 

  

Figure 2: 12-Lead ECG electrode placement 

Of the three main components of ECG signal, the R-peak is the most 

frequently detected for analysis. Detected R-peaks can be used to calculate the 

R-peaks to R-peaks interval (RRI) as shown in Figure 3. The heart rate variability 

(HRV) analysis is implement based on the RRI. The HRV features in time-, 
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frequency-, and nonlinear domain are used to explain the electrical activities of the heart. 

 

Figure 3: RRI between two heartbeats in normal sinus rhythm 
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1.2 Heart Rate Variability 

 

HRV is the physiological phenomenon of variation in the time interval 

between heartbeats. It is measured by the variation in the beat-to-beat interval 

[29]. HRV is thought to reflect the heart’s ability to adapt to changing 

circumstances by detecting and quickly responding to unpredictable stimuli. 

HRV analysis is the ability to assess overall cardiac health and the state of the 

ANS responsible for regulating cardiac activity [30]. The normal variability in 

heart rate (HR) is due to autonomic neural regulation of the heart and the 

circulatory system [31]. The balancing action of the sympathetic nervous system 

(SNS) and parasympathetic nervous system (PNS) branches of the ANS controls 

the HR. Increased SNS or diminished PNS activity results in cardio-acceleration. 

Conversely, a low SNS activity or a high PNS activity causes cardio-deceleration. 

The degree of variability in the HR provides information about the functioning 

of the nervous control on the HR and the heart’s ability to respond. 

The past few decades have witnessed an important relationship between 

ANS and cardiovascular mortality [32, 33, 34]. Numerous papers appeared in 

connection with HRV related cardiological issues reaffirm the importance of 

HRV in assessing the cardiac health [35, 36, 37, 38, 39, 40, 41, 42]. Kovatchev 

et al. introduced the sample asymmetry analysis and demonstrated its utility in 

assessing HR characteristics occurring, early in the course of neonatal sepsis and  
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systemic inflammatory response syndrome [43]. Tulen et al. found HR, diastolic 

blood pressure (DBP), mid-frequency band power of HR and systolic blood 

pressure (SBP), and plasma adrenaline concentrations showed significant increase 

when changed from supine to sitting to standing posture [44]. Verlinde et al. 

compared the HRV of aerobic athletes with the controls and showed that the 

aerobic athletes have an increased power in all frequency bands [45]. With the 

advent of low cost computers with massive computational power, much progress 

was achieved in the field which fueled many advances. HRV has become the 

conventionally accepted term to describe variations of both instantaneous heart 

rate and RRI. 

24 h, short-term (~5 min), and ultra-short-term (<5 min) HRV can be 

described using time-domain, frequency-domain, and non-linear measurements. 

HRV features in time-domain quantify the amount of variability in measurements 

of the interbeat interval (IBI). The IBI is the time between successive heartbeats, 

generally, it is a normal peak to a normal peak interval (NNI). The HRV time 

domain measures as illustrated in Table 1 [46].  
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Table 1. HRV time–domain measures. 

Feature Unit Description 

 

SDNN 

 

ms Standard deviation of all NNIs 

 

SDRR 

 

ms Standard deviation of all RRIs 

 

SDANN 

 

ms 

Standard deviation of the average NNIs 

for each 5 min segment of a 24 h HRV 

recording 

SDNN  

Index 

(SDNNI) 

ms 

Mean of the standard deviations of all the 

NNIs for each 5 min segment of a 24 h 

HRV recording 

NN50 count 

Number of pairs of adjacent NNIs 

differing by more than 50 ms in the entire 

recording 

 

pNN50 

 

% 
NN50 divided by the total number of all 

NNIs 

RMSSD ms 

The square root of the mean of the sum of 

the squares of differences between 

adjacent NNIs 

HR Max 

－HR Min 
bpm 

Average difference between the highest 

and lowest heart rates during each 

respiratory cycle 

 

TINN 

 

ms Baseline width of the RRI histogram 

HRV 

triangular 

index 

 

Total number of all NNIs divided by the 

height of the histogram of all NNIs 

measured on a discrete scale 
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Frequency-domain measurements estimate the distribution of absolute or 

relative power into four frequency bands. The Task Force of the European Society 

of Cardiology and the North American Society of Pacing and Electrophysiology 

(1996) divided HR oscillations into four frequency bands, including ultra-low-

frequency (ULF), very-low-frequency (VLF), low frequency (LF), and high 

frequency (HF) bands as illustrated in Table 2 [46]. 

HRV non-linear measurements can quantify the unpredictability of a time 

series as illustrated in Table 3 [46]. 

  



12 

 

Table 2. HRV frequency–domain measures. 

Feature Unit Description 

ULF ms2 
Absolute power of the ultra-low-frequency band 

(≤0.003 Hz) 

VLF ms2 
Absolute power of the very-low-frequency band 

(0.0033 – 0.04 Hz) 

LF peak Hz 
Peak frequency of the low-frequency band (0.04 – 

0.15 Hz) 

LF ms2 
Absolute power of the low-frequency band (0.04 – 

0.15 Hz) 

LF norm nu 
Relative power of the low-frequency band (0.04 – 

0.15 Hz) in normal units 

LF power % 
Relative power of the low-frequency band (0.04 – 

0.15 Hz) 

HF peak Hz 
Peak frequency of the high-frequency band (0.15 – 

0.4 Hz) 

HF ms2 
Absolute power of the high-frequency band (0.15 

– 0.4 Hz) 

HF norm nu 
Relative power of the low-frequency band (0.15 – 

0.4 Hz) in normal units 

HF power % 
Relative power of the low-frequency band (0.15 – 

0.4 Hz) 

LF/HF % 
Ratio of LF to HF power 
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Table 3. HRV nonlinear measures. 

Feature Unit Description 

S ms Area of the ellipse which represents total HRV 

SD1 ms 
Poincaré plot standard deviation perpendicular to the line 

of identity 

SD2 ms Poincaré plot standard deviation along the line of identity 

SD1/SD2 % Ratio of SD1 to SD2 

ApEn  
Approximate entropy, which measures the regularity and 

complexity of a time series 

SampEn  
Sample entropy, which measures the regularity and 

complexity of a time series 

DFA α1  
Detrended fluctuation analysis, which describes short-

term fluctuations 

DFA α2  
Detrended fluctuation analysis, which describes long-

term fluctuations 

D2  

Correlation dimension, which estimates the minimum 

number of variables required to construct a model of 

system dynamics 
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1.3 Bathtub Electrocardiogram System 

 

 

Figure 4. An early commercial ECG device (1911) 

 

Alexander Muirhead is reported to have attached wires to a feverish patient's 

wrist to obtain a record of the patient's heartbeat in 1872 at St Bartholomew's 

Hospital [47]. It has been more than one hundred years. With the continuous 

advancement of science and technology, many advances in electrocardiography 

have been made over the years. An initial breakthrough came when Willem 
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Einthoven, working in Leiden, the Netherlands, used the string galvanometer (the first 

practical electrocardiograph) he invented in 1901 [23]. In 1937, Taro Takemi invented a 

new portable electrocardiograph machine [24]. From the early commercial ECG device 

as shown in Figure 4, improved to the hospital ECG monitor and the 24-hour Holter ECG 

device. Nowadays, wearable devices have become popular.  

ECG devices are improving smaller and smaller. However, these devices still have 

some inconveniences during using. It is necessary that electrodes are attached to the body 

during using the hospital or Holter ECG monitoring device. Even a wearable smartwatch 

needs to be touched by hand when collecting ECG data. The unconscious, unrestrained, 

and noncontact biosignal collection scheme is the trend and direction of future healthcare 

monitoring and management at home.  

For most Japanese people, bathing is a part of daily routine. In addition to the daily 

cleaning, bathing also can be used as a scheme of healthcare monitoring at home. The 

unconscious, unrestrained, and noncontact biosignal collection can be achieved during 

daily bathing. However, there is a risk during bathing. Figure 5 shows the transition of 

drowning number in domestic bathtub from 2004 to 2018 according to statistics from the 

Ministry of Health, Labour and Welfare of Japan. The number is 5536 in 2017 and 

increased to about 2 times compared to 2,870 in 2004. Security monitoring can also be 

implemented during bathing. Biosignals monitoring during bathing can achieve not only 

unrestrained healthcare monitoring but also a bathing safety guarantee.  
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  Figure 5. Transition of drowning number in domestic bathtub 

 

Home healthcare management has gradually become ubiquitous, and 

bathtub ECG is an indispensable part of it. The bathtub ECG system has its own 

unique advantages in all methods of ECG acquisition. Bathtub ECG system 

typically uses noncontact electrodes to collect ECG signals. The noncontact 

electrodes reduce the discomfort of the subject  compared to the contact 

electrodes. The data acquisition method is made more convenient by the 

unconscious data acquisition method of the bathtub ECG system. Ogawa et al. 

used the bathtub ECG signal for personal identification and the result showed 

that more than 91% of ECG data could be identified correctly among a family 

of five members [50]. Kawarada et al. designed a fully automated monitoring 
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system of health status in daily life that integrated with three monitoring devices 

of body and excreta weight in lavatory, ECG in bathtub and ECG in bed, and 

demonstrated the system are useful and helpful to measure the daily physiological 

information unconsciously in the young and elderly subjects [51]. Compared with 

conventional ECG collection, bathtub ECG is more convenient for health 

monitoring at home. 
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1.4 Stress Monitoring 

There are two kinds of stress, including acute and chronic stress. Acute 

stress is the immediate response to a stressor. Chronic stress is the state caused 

by a constant stress stimulus [52]. Many changes in the body are triggered 

because the stress response is activated. These changes are caused by stimulation 

of SNS and inhibition of PNS. The heart rate, the blood supply to the muscles, 

respiratory rate, skin temperature, and cognitive activity increase, among several 

other responses. The biomarkers affected by the stress response are commonly 

used to evaluate or monitor stress [3,11,53]. 

Stress can be evaluated subjectively through questionnaires. It is the 

standard clinical practice. Stress also can be evaluated objectively by measuring 

various responses of the body to stress [54]. The most common methods in 

clinical stress evaluation are based on self-reported questionnaires such as 

Cohen’s perceived stress scale, and self-reported visual scales such as the visual 

analogue scale for stress. Using biochemical markers to detect stress is more 

attractive for biomedical researchers, such as cortisol and α-amylase [55]. The 

subjects' stress states are triggered based on the Trier Social Stress Test [56]. 

There are multiple studies for stress evaluation using measuring biosignals of the 

body in response to stress [57].  

Biosignals can be divided into two main categories, including physical 

signals and physiological signals [58]. Physical biosignals include respiration, 
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facial expressions, voice, pupil size, eye movements, blinks, et al. Physiological 

signals include ECG, EEG, EMG, et al. Evaluating stress based on EEG, the 

decrease of alpha and the increase of beta activity provide reliable estimators of 

stress [59].  

In this dissertation, a bathtub ECG monitoring system is used to collect ECG 

signals during bathing. The bathtub ECG monitoring system is optimized. The 

most suitable electrode for bathtub ECG collection during bathing is selected 

based on the evaluation of the ECG signal quality. Using HRV analysis to estimate 

the optimal bathing time, combined with the stress index, the effect of stress on 

the optimal bathing time is obtained. Stress has an obvious effect on optimal 

bathing time. Stress increases the optimal bathing time. In high-stress situations, 

it takes longer to achieve the comfort of bathing. Bathtub ECG as a potential 

alternative to light stress test in daily life is proposed. The correlation between 

bathing and EST is explored. The relationship between bathing duration, water 

temperature, and the EST stage is analyzed. Daily bathing can serve not only for 

cleaning and healthcare monitoring but also as a reference for an at-home 

alternative to the EST.   
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Chapter 2  

Effect of Stress on Optimal 

Bathing Time 

 

It is common for Japanese people to take bathing in daily life. According to 

reliable research, over 80% of respondents said that they like to take a bath [60]. 

Daily bathing can clean the skin and promote the body’s metabolism, which can 

bring relaxation to the body and mind, and contribute to physical and mental 

health. However, bathing has a risk for seniors and patients. Seniors generally 

decline physical and mental functions and environment self-adaptability during 

bathing, so the bathroom becomes a place where accidents are likely to occur. 

The number of drownings in a domestic bathtub was 5,536 in 2017 and 

increased to about 2 times over 13 years compared to 2,870 in 2004 [61]. 

Therefore, it is indispensable to perform biological signal monitoring during 

bathing. Moreover, the stress problem is getting worse in Japan. Consequently, 

the effect of stress on the optimal bathing time is explored in this study. 
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2.1 Data Collection 

 

In this study, a noncontact bathtub ECG monitoring system was used to 

collect ECG signals during bathing. Figure 6 shows the scheme of the bathtub 

ECG monitoring system. The noncontact electrodes used in the bathtub ECG 

monitoring system were made of thin stainless-steel plates. The stainless-steel 

plate was fixed in a plastic case with a rubber, as shown in Figure 7. The 

dimensions of the stainless-steel plates were 120 mm × 45 mm × 0.3 mm and the 

specific gravity of the stainless-steel plates was 7.93. The dimensions of the plastic 

cases were 125 mm × 70 mm × 37 mm. There were three noncontact electrodes 

attached to the inner wall of the bathtub. The first one electrode was on the right 

side of the right arm as the negative of lead II ECG. The second one was on the 

side of the left leg as the positive of lead II ECG. The last one was on the side of 

right leg as the ground. 

The participant sat in a relaxed position during bathing as shown in Figure 6. 

Lead II ECG signals were measured at a sampling rate of 500 Hz. The collected 

ECG signals were recorded in the data recorder (NF handy data recorder EZ7510, 

NF Corporation, Yokohama, Kanagawa, Japan) after amplifying. The ECG data 

were transferred to the personal computer through the universal serial bus (USB) 

cable and stored on the computer for processing and analysis. 
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   Figure 6. Scheme of the bathtub ECG monitoring system 

 

 

 

  Figure 7. Electrode attached on bathtub wall 
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One healthy male participant was enrolled in the experiment. Informed 

consent was obtained from the participant before data collection. The participant 

was at the fifties without cardiac disease. ECG data were measured during his 

bathing on a daily basis over one year. Daily data acquisition begins after the 

participant had finished the day's work in the evening. The water temperature was 

set at 39 Celsius degrees (℃). The bath time was controlled in 15 minutes. 

Participant's physical indexes before and after bathing were measured and 

recorded in the working diary, including blood pressure (BP), HR, body 

temperature (BTp) and body weight (BW). Changes in the bathroom environment 

before and after bathing were also measured and recorded in the working diary, 

including temperature and humidity. The water temperature in the bathtub and the 

working and living conditions of the participants on the day were also recorded in 

the working diary. The participant's working diary was taken as a reference for the 

study. 

 

 

 

2.2 Data preprocessing 

 

The preprocessing included two steps: noise suppression and R-peak 

detection. Raw ECG signal was first decomposed into seven levels by multilevel 

one-dimensional wavelet decomposition. The final approximation coefficients 

were taken as the baseline drift and were subtracted from the original signal. Then,  
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a notch filter and a low-pass filter were implemented to remove power-line noise 

and high frequency (HF) distortions to achieve noise suppression. After noise 

suppression, R-peaks were detected and RRIs were calculated. Error detections 

or irregular heartbeats (arrhythmia, etc.) were removed as outliers. Figure 8 

shows an example of one minute ECG signal before and after preprocessing. 

 

 

 

Figure 8. An example of one minute ECG signal before and after preprocessing 
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2.3 Stress Index Calculation 

 

In previous studies, HRV features in time domain, frequency domain, and 

nonlinear domain were extracted for stress index (SI) calculation function, which 

consisted of four HRV features: root mean square of successive N-N interval 

(NNI) differences (RMSSD), normalized HF power (HFnu), sample entropy 

(SampEn), and noise limit (NL) [62]. 

 

 

Figure 9. The variations of HRV features over six months 

 



26 

 

There is a consensus, among the different studies, that RMSSD and HF 

decreased during acute mental stress [63]. Reduced irregularity is also reported 

during stress condition [64]. The values of SampEn and NL can provide relative 

measures of nonlinear intensity [65], [66]. As shown in Figure 9, used HRV 

features are negatively correlated with stress. All features are calculated from 15 

min NNI data. 

HF: Power spectral analysis is applied to NNI data using an autoregressive 

model. The high frequency component (HF: 0.15 ~ 0.4 Hz) is estimated. 

RMSSD: Detailed formula of RMSSD is shown by the following equation: 

𝑅𝑀𝑆𝑆𝐷 =  √
1

𝑛 − 1
∑[𝑁𝑁𝐼(𝑖) − 𝑁𝑁𝐼(𝑖 − 1)]2

𝑛

𝑖=2

 

where n is the data length, and i is the ith data point of NNI series. 

Sample entropy: SampEn provides a generalized measure of complexity in 

a time series [65]. Lower values of SampEn indicate more self-similarity in the 

time series. Conversely, higher values of SampEn indicate greater irregularity 

and complexity in time series data. SampEn values can be calculated by: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =  −𝑙𝑛 [
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
] 

where N is the length of the input NNI series, and r is the tolerance for accepting 

matches. Bm(r) is the probability that two sequences will match for m points, 

whereas Am(r) is the probability that two sequences will match for m+1 points. 

In this study, a SampEn index is used with an embedded dimension (m) of 4 and  
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a tolerance (r) of 0.15. 

Noise limit: Noise titration is a technique to identify the determinism of a 

short time series even in the presence of significant noise contamination [66]. In 

essence, this approach is analogous to a chemical titration process: incremental 

amounts of noise are deliberately added as a contrasting agent for nonlinearity. A 

discrete Volterra–Wiener–Korenberg series is used to model the predicted time 

series data. The nonlinear determinism is indicated if the best nonlinear model 

provides a significantly better fit to the data than the best linear model at the 1% 

significance level. Afterward, the indicator called the NL is calculated as the 

percent of signal power added as noise to “titrate” the data to the point of neutrality. 

Under this scheme, nonlinearity is indicated by NL > 0, and the value of NL 

provides a relative measure of nonlinear intensity. 

SI was computed using the reciprocal of selected HRV features because they 

were negatively related to the stress level. The reciprocal of HRV feature was 

firstly normalized by:                               

 

𝑍 =
𝑥−1 − 𝑚𝑖𝑛(𝑥−1)

𝑚𝑎𝑥(𝑥−1) − 𝑚𝑖𝑛(𝑥−1)
 

 

where 𝑥 is the HRV feature, Z is the normalized value of the HRV feature. Then, 

SI was calculated by the formula as follows: 

 

𝑆𝐼 = 𝑍𝑟𝑚𝑠𝑠𝑑 × 𝑍ℎ𝑓 × 𝑍𝑠𝑎𝑚𝑝𝑒𝑛 × 𝑍𝑛𝑙 
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The bathing ECG data were classified into two sorts, one with low SI value 

during off days and another one with a high SI value, extracted for analysis of 

optimal bathing time. 

Bathing ECG data during off days with low SI and without events were 

extracted for reference. The standard deviation of all NNIs (SDNN) per minute 

was calculated. The large SDNN value indicates that the HRV signal was highly 

complex. the HRV signal of healthy people was irregular and complex. 

Conversely, the SDNN small indicates that the HRV signal was simpler, 

indicating that the health status was not good. When the HRV drops significantly, 

it indicated that the body was in a state of disease. [30,34] Therefore, It was 

defined that the derivation of the optimal bathing time is the time of the SDNN’s 

highest score when a graph was made that SDNN’s value of every on time. 

However, the result of ECG data with low SI shows two sorts of waveforms had 

appeared, as shown in Figure 10. In pattern II, the SDNN after the first peak was 

less than the normal range, at this time the participant was under an 

uncomfortable state. Considering the age of the participant, the derivation of 

optimal bathing time was the time of the first SDNN's peak. Determining the 

optimal bathing time of high SI days by the same method, as shown in Figure 

11. The comparative analysis was completed with optimal bathing time between 

low SI and high SI days. 
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Figure 10. Pattern I and II of SDNN per minute during bathing on off day 

 

 
Figure 11. SDNN per minute during bathing on high SI day 
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2.4 Results 

 

As shown in Figure 12 (a) – (d), the SI over one year was calculated to select 

the low and high SI days. Higher values of SI indicate higher stress, lower values 

indicate normal or relaxing conditions. Based on the value of SI and working 

diary, 30 high SI days and 40 low SI days were selected for analysis.  

Figure 10 and Figure 11 show the different waveforms’ sorts of SDNN per 

minute during bathing on off day and high SI day. There are two peaks of the 

SDNN value during the fifteen minutes of bathing in Figure 10. It indicates that 

the best comfort of bathing is achieved twice during bathing. And the periodic 

existence of the optimal bathing time is explained.  
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Figure 12. The variations of stress indexes over one year (a) 
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Figure 12. The variations of stress indexes over one year (b) 
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Figure 12. The variations of stress indexes over one year (c) 
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Figure 12. The variations of stress indexes over one year (d) 
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Figure 13 shows all the SDNN per minute during bathing on off days, and 

Figure 14 shows all the SDNN per minute during bathing on high SI days. It shows 

that the optimal bathing time on off days is within the first ten minutes of bathing, 

and the optimal bathing time on high SI days is within the last five minutes of 

bathing. The optimum bathing time is longer under high SI. It indicates achieving 

the best comfort needs a longer bathing time under high SI.  

 

 

 

Figure 13. SDNN per minute during bathing on off days 
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Figure 14. SDNN per minute during bathing on high SI days 

 

Figure 15 shows the percentage of each optimal bathing time on off days. 

On off days, 87% of optimal bathing times are concentrated in 3 mins to 7 mins. 

Figure 16 shows the percentage of each optimal bathing time on high SI days. 

On high SI days, 82% of optimal bathing times are concentrated in 11 mins to 

15 mins. The presence of stress severely delays the optimal bathing time. 
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Figure 15. The proportion of each optimal bathing time on off day 

 

 

 

 

Figure 16. The proportion of each optimal bathing time on high SI day 
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2.5 Summary 

 

In this study, the effect of stress on the optimal bathing time is explored. 

ECG signals are collected from one participant during bathing over one year. 

HRV analysis is completed after data preprocessing. SDNN is extracted to define 

the optimal bathing time. SI is calculated to determine the stress of each day. 

High SI days and off days are selected based on SI and working diary. Comparing 

the optimal bathing time of high SI day and off day, the optimal bathing time is 

longer on high SI day than on off day. The result shows that stress delays the 

optimal bathing time. Stress has an obvious effect on optimal bathing time. On 

the other hand, in high-stress situations, it takes longer to achieve the comfort of 

bathing. In future work, the extension of the bathing time is necessary to further 

verify the periodicity of the optimum bathing time. And participants of different 

ages and genders need to be increased to analyze the effect of stress on the 

optimal bathing time for different ages and genders. 
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Chapter 3  

Bathtub Electrocardiogram 

Monitoring System 

 

ECG is a common biosignal that can be collected during bathing [60,67,68]. 

In general, there are two non-contact approaches to collecting ECG during bathing. 

One uses direct contact of measurement electrodes on the inner wall of the bathtub 

with water [60,67]. Another uses the capacitive coupling electrodes placed outside 

the bathtub wall [69]. The valid ECG signals can be acquired with both methods, 

but there is a lot of noise in the acquired ECG signals. 

There is a lot of noise during the acquisition and transmission of ECG. For 

example, power line interference, EMG noise, baseline wander, channel noise, 

electrode contact noise, motion artifacts, etc. [70,71,72,73,74]. In order to reduce 

the impact of these noises on data analysis, there are many methods to denoise 

during the data preprocessing before data analysis [70,71,73,75]. The noise in 

ECG during bathing is more than ECG in the case of using conventional 

conductive electrodes, mainly due to power line interference and movement of the 

bathing person [76]. In the study of bathing ECG, the collected ECG signals are 

greatly affected by the electrodes. But little research has focused on bathtub 

electrodes. 
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In this study, four different sizes of electrodes on the inner wall of the 

bathtub were used to collect the ECG signals during bathing. The performances 

of bathtub electrodes are assessed by estimating ECG signal quality. In the 

literature, some methods for assessing ECG signal quality are mentioned 

[77,78,79].  

Several indices of ECG quality evaluation have been proved their 

effectiveness. Several indices of ECG signal quality assessment are used to 

assess the quality of ECG signals collected by electrodes of different sizes. The 

suitable bathtub electrode in the experiment is selected based on the performance 

of the electrodes. 

 

 

 

3.1 Data Collection for Electronics Selection 

 

A non-contact bathtub ECG monitoring system is used to collect the ECG 

signal. As shown in Figure 17, there are four sizes of non-contact electrodes 

(electrodes 1-4) attached to the inner wall of the bathtub. There are four 

electrodes of each size, for a total of sixteen electrodes. Four sizes of electrodes 

constitute an electrode group, as shown in Figure 17. The electrodes are stainless 

steel hemispheres with diameters of 50 mm, 32 mm, 25 mm, and 19 mm, and 

placed on the sides of the limbs. The electrodes and OpenBCI Cyton + Daisy  
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Biosensing Boards are connected with shielded cables. The OpenBCI Cyton 

Board and OpenBCI Daisy Module (which plugs into the OpenBCI Cyton Board) 

can be used to sample up to 16 channels of Electroencephalography (EEG), 

Electromyography (EMG), and ECG. The system communicates wirelessly to a 

computer via the OpenBCI USB dongle using RFDuino radio modules. It can also 

communicate wirelessly to any mobile device or tablet compatible with Bluetooth 

Low Energy (BLE). The CytonDaisy Board samples data at 125 Hz on each of its 

16 channels. 

 

Figure 17. Non-contact bathtub ECG monitoring system and four sizes of 

electrodes 
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The participants sit in a relaxed position during bathing as shown in Figure 

17. Limb leads (lead I, II, and III) ECG signals are measured at a sampling rate 

of 125 Hz. The ECG signals of 12 channels are collected simultaneously. And 

the ECG signals of 3 channels are collected via each size electrodes. The 

collected ECG signals are transferred to the computer through BLE and stored 

on the computer for processing and analysis.  

Seven male participants are enrolled in the experiment. The participants are 

university students at twenties without cardiac disease. Informed consent is 

obtained from the participants before data collection. ECG data are measured 

once per participant during bathing. The water temperature is set at 39℃ and 

the room temperature is set around 27℃. The bathing time is controlled in 15 

minutes. Physical indices of participants before and after bathing are measured 

and recorded in the experiment diary, including BTp, BW, and body height. 

 

 

 

3.2 Signal Quality Index 

 

In previous studies, the effectiveness of bathing ECG has been verified. 

After preliminary investigations, four signal quality indices (SQIs): kurtosis 

(kSQI), the relative power in the QRS complex (pSQI), principal component  
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analysis SQI (pcaSQI), and undetected error of R peaks (rSQI) are used to assess 

ECG signal quality [79,80]. The detailed information is as follows:  

 

•kSQI 

We segment each signal with the duration of 15 minutes to 180 signals with 

5 s duration, then we calculate the kSQI of each 5s fragment and the equation of 

sSQI as follows:  

𝑘𝑆𝑄𝐼 =  
𝐸 { 𝑋 −  𝜇 }4 

𝜎4
−  3 

 

•pSQI 

Because the frequence of QRS complex is in the range of [5Hz, 15Hz], we 

hope a good quality ECG signal has the significant QRS complex. Thus, we 

calculate the energy ratio of QRS at the main frequency of ECG (5 Hz－40 Hz), 

the equation of pSQI as follows:  

𝑝𝑆𝑄𝐼 =  ∫ 𝑃(𝑓) ⅆ𝑓
15

5

 ∕  ∫ 𝑃(𝑓) ⅆ𝑓
40

5

 

When calculating pSQI, we need to remove baseline wander with a high-pass filter. 

 

•pcaSQI  

We use principal component analysis (PCA) to calculate the ratio of the first five 

eigenvalues over the sum of all eigenvalues of the signal with 15 minutes. For pSQI and 

pcaSQI, we use the average value of three leads (I, II, III). 
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•rSQI 

Usually, R-peak is basic and important data in heart rate variability analysis. 

Whether calculating heart rate or analyzing in time- and frequency- domain, it 

starts from the RRI calculation. Therefore, the R-peaks detection is important 

from the collected ECG signals. The algorithm of Pan & Tompkins (TP) is used 

to detect R-peaks on the raw signals and denoised signals. Each 15 mins ECG 

signal is segmented into 90 signals with 10 s duration. After noise removal, the 

TP algorithm is used to find the number of R-peaks of each filtered 10 s signals, 

and the number is as the gold standard (N1). Next, the same TP algorithm is used 

to find the number of R-peaks of each 10 s signals without filtering (N2), after 

that, the difference between N1 and N2 is calculated. This difference is defined 

as undetected error of R-peaks (rSQI). For this index, three leads' signals are 

used to calculate the average detection error. And the number of R-peaks error 

detection is calculated.  

All indices are calculated from 15-min ECG data. 

 

3.3 Results 

 

Figure 18 shows 10 s participant's raw lead I ECG signals of each 

size electrode. The ECG signal collected by electrode 1 has obviously 

more hum noise than other sizes. The ECG signal collected by electrode 

3 has the least hum noise. The amount of noise in each segment signal 

can be intuitively compared. 
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Figure 19 shows the kSQI of the four sizes electrodes for each participant. 

The kSQI values of participants 2 and 5 are smaller than the other participants. 

The kSQI values of electrode 1 for participant 1, participant 3, and participant 5 

are larger than the other electrodes. The kSQI values of electrode 2 for 

participants 6 and 7 are larger than the other electrodes. The kSQI value of 

electrode 4 of participant 4 is larger than the other electrodes. The smaller the 

value of kSQI, the better the signal quality. Among the four size electrodes, the 

signal quality of electrode 3 is determined to be the best based on the value of 

kSQI. 

 

 

Figure 19. Absolute kSQI. The first electrode has an extreme absolute kSQI 

for subject 1, the second electrode also shows a maximum kSQI for subject7, 

the electrode 3 always keep a small and normal kSQI for the 7 subjects. 
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Figure 20 shows the results of pSQI of four sizes electrodes. The pSQI values 

of four sizes electrodes are between 0.45 and 0.8. The median of pSQI values for 

electrode 2 is the largest. The median of pSQI values for electrode 4 is the smallest. 

The larger the value of pSQI, the better the signal quality. Among the four size 

electrodes, the signal quality of electrode 2 is determined to be the best based on 

the value of pSQI. 

 

 

Figure 20. pSQI. Electrode 2 shows the highest pSQI, electrode1 and 

electrode3 almost have the same value about 0.6. 

 

Figure 21 shows the results of pcaSQI of four sizes electrodes. The pcaSQI 

values of four sizes electrodes are between 0.72 and 0.92. The median of pcaSQI 

values for electrode 4 is the largest. The median of pcaSQI values for electrode 2 

is the smallest. The larger the value of pcaSQI, the better the signal quality. Among  
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the four size electrodes, the signal quality of electrode 4 is determined to 

be the best based on the value of pcaSQI. 

 

 

 

Figure 21. pcaSQI. Electrode 2 shows the smallest pcaSQI, the rest three 

electrodes almost have the same pcaSQI with about 0.85. 

 

Figure 22 shows the rSQI of the four sizes electrodes for each participant. 

The rSQI values of participant 2 and 3 are smaller than the other participants. 

The rSQI values of electrode 2 for participant 1, 5, and 7 are larger than the other 

electrodes. The rSQI values of electrode 1 for participant 4 and 6 are larger than 

the other electrodes. The rSQI values of electrode 4 for participant 2 and 3 are 

larger than the other electrodes. The rSQI values of electrode 3 for participant 2,  
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4, 5, 6, and 7 are smaller than the other electrodes. The smaller the value of rSQI, 

the better the signal quality. Among the four size electrodes, the signal quality of 

electrode 3 is determined to be the best based on the value of rSQI. 

 

 

Figure 22. rSQI. Electrode 2 has an extreme undetected error value for subject 5 

and subject 7, electrode 3 almost has the lowerest undetected error for each subject. 

 

The result of performance evaluation of each size electrode in the four SQIs as 

illustrated in Table 4. The performance of electrode 3 is determined good two times in 

kSQI and rSQI. In pSQI, electrode 3 is determined the second level. Due to the 

experimental environment of the bathtub, small electrodes are more suitable. Therefore, 

electrode 3 is the most suitable electrode in this study. 
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Table 4. Performance evaluation of each size electrode in all SQI. 

Evaluation 

SQI Good ← ← Bad 

kSQI 3 4 1 2 

pSQI 2 3 1 4 

pcaSQI 4 1 3 2 

rSQI 3 1 4 2 

 

 

 

3.4 Summary 

 

The results obtained indicate that the performance of the four sizes 

electrodes for different indices is not consistent. The closer kSQI is to 0, the 

better the signal quality. pSQI and pcaSQI get higher value, the signal quality is 

better. The smaller value of rSQI, the higher the accuracy. The performance of 

electrode 2 is the best on pSQI, so the signal quality of electrode 2 is the best. 

But the performance of electrode 2 on pcaSQI is the worst. The performance of 

electrode 4 is the best on pcaSQI, so the signal quality of electrode 4 is the best. 

But the performance on pSQI is the worst. As shown in Figure 19, the kurtosis  
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of electrode 3 for each participant is close to 0. The signals quality of electrode 3 

is the best based on kSQI. And the performance of electrode 1 is stable on pSQI 

and pcaSQI. As shown in Figure 22, the rSQI value of electrode 3 is the smallest, 

and the performance on each participant is stable. The performance of the four 

sizes electrode for different participants is not consistent. As shown in Figure 19, 

the performance of electrode 1 on participant 2, 4, 5, and 6 is better than on 

participant 1, 3, and 7. The performance of electrode 2 on participant 6 and 7 is 

worse than others. The difference in the performance of each electrode is not 

significant on pSQI and pcaSQI. However, it is easy to distinguish between good 

and bad based on kSQI and rSQI.  

Combing the indices, the performance of electrode 3 is better and more stable. 

Considering that HRV analysis is essential in future study, electrode 3 is suitable 

based on the best performance of rSQI. Due to the experimental environment of 

the bathtub, small electrodes are more suitable. In summary, compared with other 

electrodes, electrode 3 is the most suitable for bathtub ECG collection in this study. 
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Chapter 4  

Bathtub ECG as a Potential 

Alternative to Light Stress Test 

in Daily Life 
 

 

The exercise stress test (EST) is a safe procedure as a common cardiological 

test that doctors use to diagnose coronary artery disease (CAD). The EST has 

been developed to apply widely so far, including evaluation of the anatomic and 

functional severity of CAD, evaluation of exercise-related symptoms, and 

assessment of the response to medical interventions [81]. In addition to the 

diagnostic value of screening cardiovascular disease, EST also has a significant 

prognostic value. Goldschlager et al. confirmed that EST can be used for 

diagnosing myocardial ischemia and CAD based on ESTs on 269 patients and 

141 normal subjects [82]. Théroux et al. implemented a limited EST before 

hospital dis-charge of 210 patients after acute myocardial infarction and proved 

that this test is safe and can predict mortality in the subsequent year [83]. EST 

has also been used for valvular heart disease patients to quantify disability and  
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reproduce exercise-induced symptoms and assess responses to medical and 

surgical interventions [84]. There are multiple proto-cols for EST, the Bruce 

protocol is one of the most popular protocols [85]. It has been 59 years since the 

introduction of the Bruce protocol in 1963, and the protocol has developed from 

the first version of four stages to the modified Bruce protocol [86]. The EST is 

generally safe but there have been reports of myocardial infarction, arrhythmia, 

and deaths during tests, expected to occur once every 2,500 tests [87,88]. The EST 

should be implemented under the supervision of a physician [89]. Therefore, EST 

is not suitable for daily application. 

In Japan, bathing is popular in daily life with many people and has become 

an al-most routine activity [60]. Multiple studies on bathtub ECG exist. Kwatra et 

al. proposed a different method from the conventional bioelectric measurement 

for recording ECG signals from a home bathtub setup [90]. Tamura et al. designed 

a bath-tub heart rate monitor and applied it in a fully automated monitoring system 

of health status at a pilot house [51,91]. Ogawa et al. completed identifying the 

bathtub ECG signal using a neural network with wavelet transform [50]. 

Mizukami et al. confirmed that a bathtub ECG is a suitable method to follow up 

patients with a pacemaker implanted [92]. Xu et al. confirmed that HRV using a 

bathtub ECG is impacted by water temperature during bathing [93]. In our 

previous study, the SI was calculated to evaluate daily stress using a bathtub ECG 

and using a convolutional neural network personal identification with a bathtub 

ECG [62,94]. A bathtub ECG is confirmed as convenient for collection and 

suitable for daily healthcare monitoring. 
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Exercise is one of many tolerable physiological stresses that can induce 

cardiovascular abnormalities that are not present at rest. In an EST, the most 

common exercise-induced stressor is an exercise on a treadmill or a bicycle 

ergometer. Sympathetic discharge is maximal and parasympathetic stimulation 

is withdrawn during strenuous exertion [95]. In bathing, the stressful load is from 

water pressure and thermal irritation. Gorman et al. identified sympathetic 

activation and parasympathetic withdrawal during thermal stress in a baboon 

[96]. There are potential shared mechanisms of action between thermal stress 

and exercise stress. 

HRV is a reliable reflection of the many physiological factors modulating 

the cardiac rhythm [30]. Karthikeyan et al. used short-term ECG and HRV 

signals of the Stroop color word-based stress-inducing task to detect stress and 

achieved an overall average classification accuracy of 91.66% and 94.66% using 

probabilistic neural network algorithm and k-Nearest Neighbor (KNN) 

algorithm classifiers [97]. Munla et al. used a support vector machine with radial 

basis kernel function to complete driver stress detection based on HRV analysis 

and achieved an accuracy of 83% [98]. Ferdinando et al. used KNN to implement 

emotion recognition based on new features from short ECG signals and HRV 

features, and offered an approach to emotion recognition based on short ECG 

signals [99]. Orphanidou et al. proposed a quality assessment system based on 

wavelet entropy measurements of the HRV signal for wearable sensors [100]. 

Zarei et al. proposed an algorithm using new features extracted from HRV and 

ECG-derived respiration signals for the detection of obstructive sleep apnea 

[101]. In this study, HRV analysis is implemented to extract features of the EST  
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and bathing test (BT), using the features to investigate the HRV behaviors of the 

BT and EST for similarity. 

The scheme of the implementation procedure of this study is shown in Figure 

23. The ECG signals are collected during the EST and BT. Extraction of HRV 

features is implemented after raw signal denoising and R wave peak detection on 

preprocessing. The PCA is used for data dimensionality reduction of HRV features. 

The data after dimensionality reduction via the Voronoi diagram are used to 

evaluate the equivalent EST stages in terms of HRV behaviors of the BT. EST 

Stages 1–7 are grouped to low stage (Stages 1 and 2), medium stage (Stages 3 and 

4), and high stage (Stages 5, 6, and 7) for investigating and evaluating the 

equivalent EST stage of the BT. 
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Figure 23. Scheme of the implementation procedure of this study. Blue arrows represent 

the EST. Pink arrows represent the BT. 
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4.1 Data Collection 

 

Data collection consists of two parts in this study, including the BT and the 

EST. Ten healthy male subjects were enrolled in this data collection. All the 

subjects were university students in their twenties to thirties without cardiac 

disease. The data collection procedure was explained to subjects and written 

informed consent was obtained from all subjects before data collection. Basic 

information of subjects, including age, gender, body weight, height, and health 

status, was recorded in the experiment diary before data collection. 

 

 

4.1.1. Bathing Test 

 

A bathtub ECG monitoring system was built for data collection of the BT as 

shown in Figure 24. This system consists of three components: bathtub electrodes, 

an ECG monitoring device (OpenBCI Ganglion system, OpenBCI, Inc., Brooklyn, 

NY, USA), and a computer (MacBook Pro, Apple, Cupertino, CA, USA). There 

are four electrodes attached to the inner wall of the bathtub. The electrodes are 

hemispheres (stainless steel, Dragonmarts Co. Ltd, Hong Kong S.A.R. of China) 

with diameters of 25 mm and placed on both sides at the same level as limbs. The 

electrodes are connected to the ECG monitoring device with shielded cables.  
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OpenBCI Ganglion Board is the biosensing hardware for providing imaging and 

recording of EMG, ECG, and EEG signals. The board communicated wirelessly 

to a computer via BLE. The board's sample rate is limited by the BLE bandwidth. 

BLE radio rate is limited to 200 Hz. Therefore, data were sampled at 200 Hz on 

each of the four channels and recorded on a computer. ECG signals were 

collected during subjects’ bathing in a relaxed position as shown in Figure 24. In 

previous studies, the impact of different water temperatures on HRV during 

bathing was proved. With the increase in water temperature, some HRV features 

were different degrees of impact such as reduction or rising [93,102,103]. In 

Japan, the water temperature almost is between 38℃ and 42℃ during bathing 

[104]. Some subjects can’t complete taking a bathing at a water temperature of 

42℃ during rehearsal. Therefore, each subject completed five BTs at different 

water temperatures, 37 ± 0.5℃, 38 ± 0.5℃, 39 ± 0.5℃, 40 ± 0.5℃, and 41 ± 

0.5℃. The initial water temperature was set before data collection. After the 

subjects entered the bathtub, a thermal insulation film was covered on the 

bathtub to reduce the loss of water temperature during bathing. The duration of 

each BT was controlled to 15 min. The lead II ECG signals were collected and 

used in this study. 
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Figure 24. Scheme of the bathtub ECG monitoring system for BT 

 

 

 

 

4.1.2. Exercise Stress Test 

 

To collect the EST data, a treadmill ECG monitoring system was used. A 

schematic image is shown in Figure 25. This system consists of two components: 

an ECG monitoring device (BIOPAC MP36, BIOPAC Systems, Inc., Goleta, CA, 

USA) and a computer (Think-Pad X1 Carbon 7th, Lenovo, Hong Kong S.A.R. of  
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China). The exercise-induced stressor was an exercise on a treadmill (MATRIX 

T5x, Johnson Health Tech Japan Co. Ltd, Minatoku, Tokyo, Japan). Three 

adhesion-type electrodes (BlueSensor SP-00-S, Ambu A/S, Ballerup, Denmark) 

were attached to the subject’s right chest, left subcostal, and right subcostal 

during data collection as shown in Figure 25. The electrodes were connected to 

the ECG monitoring device. The ECG monitoring device sampled the ECG 

signal at 1 kHz on one channel during the EST. 

 

 

 

Figure 25. Scheme of the treadmill ECG monitoring system for EST 
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Data collection of the EST included the resting stage (R1) before the EST, the 

EST, the recovery stage (R2), and the relax stage (R3) after the EST. Data 

collection started at R1 and completed at R3. The EST was terminated before 

completion at the request of the subject or poor signs, e.g., fatigue, shortness of 

breath, wheezing, claudication, leg cramps, chest pain, being observed. 

The modified Bruce protocol was used in this EST. As one of the most popular 

protocols utilized in exercise laboratories, the Bruce protocol has also been 

considered before data collection of the EST. Because of the heavy workload of 

the Bruce protocol for subjects as illustrated in Table 5, no subject completed it in 

its entirety during rehearsal. Therefore, the modified Bruce protocol that was 

utilized had a lower workload than the standard test as illustrated in Table 5 [89]. 

In R1, R2, R3, and the EST, the duration of each stage was 3 min, and the total 

duration of data collection was 30 min. Each subject completed data collection of 

the EST twice. The lead II ECG signals were collected for processing and analysis 

in this study. 
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Table 5. Bruce protocol and modified Bruce protocol for EST. 

 Bruce Protocol 
Modified Bruce 

Protocol 

Stage 
Duration 

(min) 

Speed 

(km/h) 

Grade 

(%) 

Speed 

(km/h) 

Grade 

(%) 

1 3 2.7 10 2.7 0 

2 3 4.0 12 2.7 5 

3 3 5.5 14 2.7 10 

4 3 6.8 16 4.0 12 

5 3 8.0 18 5.5 14 

6 3 8.9 20 6.8 16 

7 3 9.7 22 8.0 18 

 

 

 

 

4.2 Data Preprocessing 

 

All the signal processing procedures were implemented using MATLAB 

(R2020b, The MathWorks, Inc., Natick, MA, USA). The ECG signals were 

collected using different devices at different sampling rates. The ECG signals of 

the EST were sampled using BI-OPAC MP36 at 1 kHz. The ECG signals of the 

BT were sampled using OpenBCI Ganglion at 200 Hz and were upsampled from 

200 Hz to 1 kHz for compromising with the former. 
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First, the ECG signals of the BT and EST were decomposed into seven levels 

by multilevel one-dimensional wavelet decomposition using one of Daubechies 

wavelets, “db8,” the final approximation coefficient was taken as the baseline drift 

and subtracted from the original signal. Second, a Butterworth bandpass filter was 

implemented to remove powerline noise and HF distortions. Then, R wave peaks 

detection was implemented after noise removal. The RRI is defined as the 

sequence of the time intervals occurring between each pair of consecutive R wave 

peaks. The RRIs were calculated based on the ECG signal R wave peaks detected. 

Finally, the NNI was calculated based on the RRI where unreliable RRI were 

excluded. The NNI dataset of the EST was calculated based on 3 min ECG signals 

of each stage. The NNI dataset of the BT was calculated based on each 30 s 

segmentation ECG signal. Figure 26 shows an example of fully BT and EST ECG 

signal preprocessing in 10 s, including signal detrending, signal denoising, and R 

wave peaks detection. In Figure 26, (a) shows the signal processing of a BT ECG 

and (b) shows the signal processing of an EST ECG signal. The 10 s BT and EST 

ECG signals are extracted from the ECG signals of subject V’s BT and EST. The 

collection condition of BT ECG signals is at the water temperature of 39 ℃. The 

EST ECG signals are 10 s of stage 5 of test I. 
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4.3 HRV Feature Extraction 

 

In this study, the obtained NNI data after signal preprocessing including 

denoising and R wave peak detection were used to extract HRV features. To reflect 

the heart functionalities comprehensively during the EST and BT, HRV features 

were extracted in the time domain, frequency domain, and nonlinear domain. All 

extracted HRV features are common features in use. In the nonlinear domain, 

features alpha 1 and alpha 2 of detrended fluctuation analysis (DFA) describe 

short-term and long-term fluctuation, respectively. Therefore, DFA alpha 1 was 

extracted. The extracted HRV features are summarized in Table 6 [34,46,105]. 

 

 

Table 6. Selected HRV features in the time domain, frequency domain, and 

nonlinear domain. 

 

 Time Domain Frequency Domain Nonlinear 

HRV 

Feature 

NNmax Total power SD1 

NNmin VLF SD2 

NNmean LF DFA alpha1 

NNmedian HF  

SDNN LF norm  

NN50 HF norm  

pNN50 LF peak  

RMSSD HF peak  

HRmean LF/HF  

SDHR   

HRV triangular index   
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4.4 Principal Component Analysis 

 

Twenty-three HRV features in the time domain, frequency domain, and 

nonlinear domain were extracted, some of which have strong correlations. The 

high-dimensionality limits exploration of the data, therefore, it is necessary to 

extract the important information from the 23 HRV features. PCA is a 

multivariate technique that analyzes the data and de-scribes several 

intercorrelated quantitative dependent variables. It is used to extract the 

important information from the data and represent the data as new variables 

called principal components. It has become one of the most useful tools for data 

modeling, compression, and visualization [105,106,107]. PCA was implemented 

for each of the 23 HRV features data of the BT, and all the sum of percentages 

of the first two principal components (PCs) are above 95% as shown in Figure 

27. 

Therefore, the first two PCs as the two main PCA components were used to 

approximate the 23 HRV features data. The 23 HRV features data of the BT were 

implemented in dimensionality reduction to two-dimensional (2-D) HRV data of 

the BT. The new 2-D HRV data of the EST were calculated using the PC 

coefficients of the BT HRV features data. 
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Figure 27. The first five PCs in PCA of BT HRV features 

 

Therefore, the first two PCs as the two main PCA components were used to 

approximate the 23 HRV features data. The 23 HRV features data of the BT were 

implemented in dimensionality reduction to two-dimensional (2-D) HRV data of 

the BT. The new 2-D HRV data of the EST were calculated using the PC 

coefficients of the BT HRV features data. 
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4.5 Correlation Analysis of the Bathing Test and  

Exercise Stress Test 

 

To explore the potential correlation between the BT and EST, the Voronoi 

diagram was used to cluster the BT data based on the Voronoi diagram generated 

from the EST da-ta. In the 2-D HRV data of the BT and EST after PCA, two 

main PCA components (PC1 and PC2) were selected. PC1 and PC2 of the EST 

were used to generate a 2-D Voronoi diagram of EST Stages 1–7. For the 2-D 

HRV data of each subject’s two ESTs, the mean of PC1 and mean of PC2 of 

each stage were calculated to be the site point in the Voronoi diagram of each 

stage in the Voronoi diagram. PC1 is the abscissa value and PC2 is the ordinate 

value. The site point of each stage was used to generate a Voronoi region on the 

Voronoi diagram. As shown in Figure 28, St. 1–7 are the site points of Stages 1–

7, and the seven Voronoi regions correspond to the seven stages of the EST. The 

2-D HRV data after PCA of 30 s duration before and after per minute during the 

BT are calculated as the mean of the data for the corresponding duration. In each 

duration of the BT, the mean of PC1 and mean of PC2 are the feature point’s 

abscissa value and ordinate value, respectively. To evaluate the equivalent EST 

stage of each duration of the BT, the EST site point closest to the BT feature 

points was queried. The HRV behaviors of the EST stage correspond to the 

closest site point and this BT feature point has the highest similarities. The EST 

stage corresponding to the closest site point serves as the equivalent EST stage  
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of this BT feature point. Euclidean distance is used to query the EST site point 

closest to the BT feature points. The Euclidean distance can be calculated using 

the following equation: 

 

𝐷 =  √(𝑋𝐵𝑇 − 𝑋𝐸𝑆𝑇)2 + (𝑌𝐵𝑇 − 𝑌𝐸𝑆𝑇)2  

 

where XBT is the abscissa value of the BT feature point, YBT is the ordinate value 

of the BT feature point, XEST is the abscissa value of the EST site point, YEST is the 

ordinate value of the EST site point, and D is the Euclidean distance between the 

BT feature point and EST site point. The EST site point with the smallest distance 

from the BT feature point is the site point with the most similar feature. The EST 

stage represented by this site point is the stage to which the highest probability of 

the BT at the present bathing conditions represented by this feature point is 

equivalent. The equivalent EST stage in terms of HRV behaviors of the BT feature 

point was determined based on the corresponded EST stage of the closest EST site 

point. 
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Figure 28. A distribution sample of the two main PCA components in the HRV of the BT 

at five water temperatures on a Voronoi diagram generated by EST Stages 1–7 (subject 

V) 

 

As shown in Figure 28, the BT feature points of 37℃ water temperature are 

mostly located in the Voronoi region of Stage 2. The BT feature points of 38℃ 

water temperature are mostly located in the Voronoi region of Stages 3 and 4. 

The BT feature points of 39, 40, and 41℃ water temperature are mostly located 

in the Voronoi region of Stages 4 and 5. 

To explain the similarity of HRV behaviors between the BT and EST more 

clearly, the original seven EST stages are grouped into three exercise stages,  
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namely, low stage, medium stage, and high stage. Stages 1 and 2 in the EST are 

merged as the low stage. The medium stage consists of Stages 3 and 4 in the EST. 

The high stage contains Stages 5, 6, and 7 in the EST. The mean of Stages 1 and 

2 of two ESTs is used as the site point for the low stage. The site point of the 

medium stage is generated by the mean of Stages 3 and 4. The mean of Stages 5, 

6, and 7 of two ESTs is used as the site point for the high stage. A 2-D Voronoi 

diagram of the three regions for the low, medium, and high stages was generated 

using the same method. The regions where the BT feature points are located are 

confirmed in the Voronoi diagram with the same method. As shown in Figure 29, 

for BTs at the five water temperatures of one subject, the BT feature points are 

located on a 2-D Voronoi diagram. The Voronoi diagram is generated and three 

Voronoi regions are generated by the site points of low, medium, and high stages. 
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Figure 29. A distribution sample of the two main PCA components in the HRV 

of the BT at the five water temperatures on a Voronoi diagram generated by low, 

medium, and high stages (subject V) 

 

For all subjects, the equivalent EST stages of BTs at the five water 

temperatures were calculated. The means of the corresponding stage of all 

subjects under the same water temperature and bathing duration during the BT 

were calculated. With water temperature as the x-axis, bathing duration as the y-

axis, corresponding stage as the z-axis, the fitting surface was implemented using 

cubic spline interpolation and polynomials. 
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4.6 Results 

 

4.6.1. Biometric Information of Subjects and 

Completion Status of Data Collection 

 

All the biometric information of subjects was obtained, and the completion 

status of the EST and BT is illustrated in Table 7. Fifty BTs were implemented 

completely, and the end-stages in 7 of 20 ESTs are Stage 7. Three subjects reached 

Stage 7 at the end-stage in tests I and II. According to the experiment diary, 

subjects who completed Stage 7 exercise frequently. To avoid chance, ensure more 

accurate results and reduce errors, two ESTs were implemented. As illustrated in 

Table 7, the number values of tests I and II indicate the reached end-stage. 

Decimals indicate the test of the stage is started but not fully implemented. 3, 5, 

and 7 after the decimal point represent 1 min, 1.5 min, and 2min respectively. For 

example, 5.3 indicates Stage 5 is completed and Stage 6 is completed for 1 min; 

6.5 represents Stage 6 is completed and Stage 7 is implemented for 1.5 min; 6.7 

indicates Stage 6 is finished and Stage 7 is stopped at 2 min. 
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Table 7. Biometric information of subjects and test completion status. 

Subject 
Age 

(Years) 

Body 

Weight 

(kg) 

Height 

(cm) 

Test Completion Status 

Bathing 

(1–5) 

Exercise Stage (1–7) 

Test I Test II 

I 39 72 176 

5 

6.0 5.5 * 

II 29 67 179 6.0 5.3 * 

III 28 80 173 6.7 * 6.3 * 

IV 28 71 176 6.5 * 5.3 * 

V 26 69 172 7.0 7.0 

VI 25 70 177 5.5 * 6.0 

VII 24 75 173 6.0 5.5 * 

VIII 29 69 184 6.5 * 7.0 

IX 28 68 168 7.0 7.0 

X 25 70 175 7.0 7.0 

Note: all subjects were healthy males. 

 

* Decimals indicate the test of the stage is started but not fully implemented. 6.7 

indicates Stage 6 is completed and Stage 7 is implemented for 2 min. 3 and 5 after 

the decimal point represent 1 min and 1.5 min, respectively. 
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4.6.2. Evaluation of the Relationship Between 

Bathing Conditions and EST Stages 

 

EST stages are grouped into three stages (low, medium, and high) with a 

Voronoi diagram using the 2-D HRV data of the EST after PCA analysis of each 

subject. The EST stages with the highest probability corresponding to the BT 

conditions at different water temperatures and bathing durations were calculated. 

In all equivalent EST stages of the BTs, the low stage accounts for 17.86%, 

medium stage accounts for 52.86%, and high stage accounts for 29.29%. The 

means and standard deviations of water temperatures of equivalent low, medium, 

and high stages are 38.21 ± 1.28, 38.93 ± 1.38, and 39.61 ± 1.28℃, respectively. 

Of water temperatures corresponding to the low stage, 37℃ accounts for 40.80% 

and 38℃ accounts for 24.00%. Of water temperatures corresponding to the 

medium stage, 37, 38, 39, 40, and 41℃ account for 19.19%, 23.51%, 20.54%, 

18.92%, and 17.84%, respectively. 39, 40, and 41℃ account for 21.84%, 25.73%, 

and 32.04%, respectively, of the water temperatures corresponding to the high 

stage in terms of HRV behaviors. The details of investigating the relationship 

between water temperature and the equivalent EST stage (Bruce and grouped) in 

terms of HRV behaviors are illustrated in Tables 8 and 9, respectively. As shown 

in Table 8, in the BT at 37℃ water temperature, the equivalent EST Bruce stages 

are mainly concentrated in Stages 2 (23.57%) and 3 (38.57%). In the BT at 38℃, 

the equivalent EST Bruce stages are mainly centralized in Stages 3 (36.43%) and  
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4 (27.14%). About the BT at 39℃, the equivalent EST Bruce stages are mainly 

distributed in Stages 3 (27.14%), 4 (33.57%), and 5 (21.43%). In the BT at 40℃, 

the equivalent EST Bruce stages are mainly centered in Stages 4 (35.71%) and 

5 (20.71%). In the BT at 41℃, the equivalent EST Bruce stages are mainly 

distributed in Stages 4 (37.14%) and 5 (26.43%). As the water temperature 

increases from 37℃ to 41℃, the main distribution of equivalent EST Bruce 

stages is from stages 2 and 3 up to stages 4 and 5. The relationship between water 

temperature and the equivalent EST grouped stages is more obviously il-

lustrated in Table 9. As the water temperature increased from 37℃ to 41℃, the 

proportion of the low stage of the equivalent EST grouped stage decreased from 

36.43% to 5.71%, and the proportion of the high stage increased from 12.86% 

to 47.14%. 

 

 

Table 8. Relationship between water temperature and the equivalent EST Bruce 

stage. 

Stage 

Water Temperature (C) 

Count (%) 

37 38 39 40 41 

1 23 (16.43) 13 (9.29) 12 (8.57) 5 (3.57) 5 (3.57) 

2 33 (23.57) 18 (12.86) 9 (6.43) 16 (11.43) 5 (3.57) 

3 54 (38.57) 51 (36.43) 38 (27.14) 26 (18.57) 27 (19.29) 

4 17 (12.14) 38 (27.14) 47 (33.57) 50 (35.71) 52 (37.14) 

5 13 (9.29) 9 (6.43) 30 (21.43) 29 (20.71) 37 (26.43) 

6 0 (0) 2 (1.43) 4 (2.86) 3 (2.14) 1 (0.71) 

7 0 (0) 9 (6.43) 0 (0) 11 (7.86) 13 (9.29) 
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Table 9. Relationship between water temperature and the equivalent EST 

grouped stage. 

Stage 

Water Temperature (C) 

Count (%) 

37 38 39 40 41 

Low 51 (36.43) 30 (21.43) 19 (13.57) 17 (12.14) 8 (5.71) 

Medium 71 (50.71) 87 (62.14) 76 (54.29) 70 (50.00) 66 (47.14) 

High 18 (12.86) 23 (16.43) 45 (32.14) 53 (37.86) 66 (47.14) 

 

 

The means of the corresponding stage of all subjects under the same water 

temperature and bathing duration during the BT were calculated. The 3-D 

relationship diagram between water temperature, bathing duration, and EST stage 

is shown in Figure 30. Cubic splines were used to interpolate in Figure 30. 
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To show the relationship more intuitively between water temperature, bathing 

duration, and equivalent EST stage, surface fitting was implemented using 

polynomials. Figure 31 shows the relationship surfaces fitted by the 1st-order (a), 

2nd-order (b), 3rd-order (c), and 4th-order (d) polynomial surfaces. At the water 

temperature of 41℃, the equivalent EST stage after 14 min of bathing is the 

highest. As the water temperature and bathing duration increase, so does the 

equivalent stage in terms of HRV behaviors. 

 

 

Figure 31. Relationship surfaces using polynomial fitting. (a) to (d), 1st- to 4th-order 

polynomials, respectively, are implemented. 
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The approximation formulas of 1st- to 4th-order polynomials are as follows: 

 

𝑆𝑇 =  −4.558 + 0.1607 × 𝑊𝑇 + 0.05389 × 𝐵𝐷 (1) 

  

𝑆𝑇 =  −27.1 + 1.353 × 𝑊𝑇 − 0.112 × 𝐵𝑇 − 0.01582 × 𝑊𝑇2 + 0.005516 × 𝑊𝑇 × 𝐵𝐷 − 0.003283 × 𝐵𝐷2 (2) 

  

𝑆𝑇 =  −185.6 +  14.03 ×  𝑊𝑇 −  2.533 ×  𝐵𝐷 −  0.3526 × 𝑊𝑇2  +  0.1267 ×  𝑊𝑇 ×  𝐵𝐷 

+  0.005415 × 𝐵𝐷2  +  0.002976 × 𝑊𝑇3  −  0.001523 × 𝑊𝑇2  ×  𝐵𝐷 

−  0.000158 ×  𝑊𝑇 × 𝐵𝐷2  −  0.0001128 × 𝐵𝐷3 

(3) 

  

𝑆𝑇 =  41910 −  4375 ×  𝑊𝑇 +  343 ×  𝐵𝐷 +  171.1 × 𝑊𝑇2  −  26.2 ×  𝑊𝑇 ×  𝐵𝐷 −  0.7042 × 𝐵𝐷2  

−  2.973 × 𝑊𝑇3  +  0.6657 ×  𝑊𝑇2  ×  𝐵𝐷 +  0.04253 ×  𝑊𝑇 × 𝐵𝐷2  −  0.011 × 𝐵𝐷3  

+  0.01935 ×  𝑊𝑇^4 −  0.005623 ×  𝑊𝑇^3 ×  𝐵𝐷 −  0.000623 ×  𝑊𝑇^2 ×  𝐵𝐷^2 

+  0.00002624 ×  𝑊𝑇 × 𝐵𝐷3  +  0.00002185 × 𝐵𝐷4 

(4) 

 

where 𝑊𝑇 is the water temperature of the BT, 𝐵𝐷 is the bathing duration of 

the BT, and 𝑆𝑇 is the equivalent EST stage. 

Formulas (1) to (4) are approximation formulas of 1st- to 4th-order 

polynomials of the relationship fitting surface (a) to (d) in Figure 31, respectively. 

Formula (1) is bivariate 1st- order polynomials and the relationship fitting 

surface is a flat. Water temperature and bathing duration are proportional to the 

equivalent EST grouped stage. Formulas (2) and (3) are bivariate 2nd- and 3rd- 

order polynomials and the relationship fitting surfaces (b) and (c) are more 

radian than (a). Formula (4) is bivariate 4th- order polynomials and the trend of  
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relationship fitting surface (d) is the closest to Figure 30 in Figure 31 (a)- (d). The 

goodness of fit is illustrated in Table 10. The sum of squares due to error (SSE) of 

the fitting values and the original value is calculated to show the dispersion of the 

fitting values and the original value. The formula is as follow: 

 

𝑆𝑆𝐸 =  ∑ (𝑆𝑇𝑚 − 𝑆𝑇̂𝑚)
2

𝑀

𝑚=1

  

 

where 𝑆𝑇𝑚 and 𝑆𝑇̂𝑚 represent the original and fitted values of the equivalent 

EST grouped stage at the same water temperature and bathing duration, 

respectively, and M is the number of sets of samples. The closer 𝑆𝑆𝐸 is to 0, the 

better the fitting effect. The coefficient of determination (𝑅2 ) is calculated to 

evaluate the fitting effect of the fitting function. When the 𝑅2 result is between 

0 and 1 and the closer the result is to 1, the better the fitting effect is. The formula 

is as follow: 

 

𝑅2 = 1 − 
∑ (𝑆𝑇𝑚 − 𝑆𝑇̂𝑚)

2𝑀
𝑚

∑ (𝑆𝑇𝑚  −  𝑆𝑇̅̅̅̅
𝑚)2𝑀

𝑚

  

 

As illustrated in Table 10, comparing the SSE and R2 results of 1st- to 4th-order 

polynomials, SSE of 4th-order polynomials is the closest to 0, and R2 is the closest to 1. 
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Table 10. SSE and R² of 1st- to 4th-order polynomials. 

 

 

 

 

 

 

4.7 Summary 

 

In this study, we collected 10 subjects’ ECG signals during the BT and EST, 

and explored if daily bathing can serve as a potential alternative means of EST 

based on HRV behaviors evaluated in three analysis domains. Stressful loads by 

different water temperatures and bathing durations of the BT correspond to 

different exercise stages in terms of HRV behaviors. As shown in Figure 31, in 

general, the higher water temperatures during bathing and longer bathing 

durations, the higher the equivalent stages. More specifically, in the high stage 

(Stages 5–7), 32.04% equivalent stages in terms of HRV behaviors correspond 

to bathing at 41C water temperatures and 25.73% correspond to bathing at 40℃. 

In all equivalent EST stages of BTs, the medium stage accounts for 52.86%. 

Therefore, bathing can be an alternative to light EST in daily life. 

 

Order SSE R² 

1 1.646 0.8078 

2 1.371 0.8274 

3 1.359 0.8414 

4 1.171 0.8633 
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In our previous study, we defined an SI to quantify the stress level [62]. The 

SI mainly explains psychological stress and is not applicable to this study. In this 

study, a new procedure is explored for an alternative to EST. HRV features were 

extracted to reflect the heart behavior during the EST and BT. Different levels of 

load are generated by bathing with different water temperatures and bathing 

durations. Different bathing loads correspond to different exercise stages in terms 

of HRV behaviors as shown in Figure 31. In all equivalent EST stages of BTs, the 

medium stage accounts for 52.86%. The equivalent EST stages in terms of HRV 

behaviors of BTs are mostly distributed in the low and medium stages. It is hard 

to correspond Stage 7 to the BT with normal and nonextreme conditions. If a 

certain equivalent EST stage is needed to implement during daily health 

monitoring, it is needed to take bathing at the corresponding water temperature 

for the corresponding bathing duration. 

The EST is a routine procedure in the clinic to evaluate cardiovascular 

functions but is commonly too demanding and sometimes risky for some subjects 

[87,88]. As illustrated in Table 7, even with the modified Bruce protocol during 

ESTs, we confirmed that most sub-jects did not complete Stage 7 in the end-stage. 

In addition, there are some contraindications to the EST, acute myocardial 

infarction within 2 days, ongoing unstable angina, active endocarditis, 

decompensated heart failure, acute myocarditis or pericarditis, etc. [81]. In Japan, 

bathing is popular with many people and has become a daily activity [60]. Bathing 

may not only be safe for patients with heart failure but may even briefly improve 

hemodynamics with a short bathing duration [108]. It was confirmed that warm  



84 

 

bathing, sauna bathing, and spring bathing improve cardiac function and have 

beneficial effects with heart failure patients [109,110,111,112]. Lee et al. proved 

that forest bathing has positive effects on physical and mental health [113]. 

Bathing not only can correspond to a light stress stage but also benefits 

cardiovascular function and physical and mental health. The BT is safer, more 

comfortable, and more convenient. 

In this study, the relationship between water temperature, bathing duration, 

and EST grouped stages was investigated. A detailed analysis of the relationship 

with Stages 1–7 of the modified Bruce protocol was not implemented. Due to 

the amount of data, complex classification methods are not used. All subjects 

were male students. There is great individual variability among subjects. Data 

collection is in progress. Future work will involve more data from different age 

and gender groups. Grouping subjects for more precise results. More methods 

will be explored to reveal more outcomes. 

This study revealed the relationship between BT and EST by investigating 

the HRV behaviors in two tests. As the water temperature and bathing duration 

increase during bathing, the equivalent EST stages also increase. The equivalent 

EST grouped stages are mainly concentrated in the medium stage (52.86%). An 

alternative procedure to light EST for daily life is provided. In the BT, the water 

temperature and bathing duration can be chosen to implement the corresponding 

exercise stage. This can serve as a tool for daily monitoring of the health 

condition or as a reference for clinical application. 
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Chapter 5  

Conclusion and Future Research 
 

In addition to the role of daily cleaning, bathing can also be used as a means 

of daily healthcare monitoring. In this dissertation, the bathtub ECG monitoring 

system is optimized. The most suitable electrode for bathtub ECG collection 

during bathing is selected based on the evaluation of the ECG signal quality. Using 

heart rate variability analysis to estimate the optimal bathing time, combined with 

the stress index, the effect of stress on the optimal bathing time is obtained. Stress 

has an obvious effect on optimal bathing time. Stress delays the optimal bathing 

time. On the other hand, in high-stress situations, it takes longer to achieve the 

comfort of bathing. Bathtub ECG as a potential alternative to light stress test in 

daily life is proposed. The correlation between bathing and exercise stress test is 

explored. The relationship between bathing duration, water temperature, and the 

exercise stress test stage is analyzed. Twenty-three HRV features are used to group 

different bathing conditions corresponding to the EST stages using the Voronoi 

diagram method in terms of HRV behaviors. In all equivalent EST stages of 

bathing tests at the five water temperatures, the low stage, medium stage, and high 

stage account for 17.86%, 52.86%, and 29.29%, respectively. The higher water 

temperatures and longer bathing durations in bathing test correspond to higher 
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stages in the EST. The BT at the most severe condition of 41 C and 15 

min corresponds to a high EST stage in terms of HRV behavior. Daily 

bathing can serve not only for cleaning and healthcare monitoring but 

also as a reference for an at-home alternative to the EST. 

The study on the effect of stress on bathing includes only one subject, and 

although the experiment is followed for a long time, the sample is single, and 

differences between different subjects could not be found. If there is an 

opportunity to continue this study in the future, it is hoped that the number of 

subjects can be increased. Comparing whether the optimal bathing time is the 

same for different subjects under stress. 

There is still room for improvement in this bathtub ECG monitoring system. 

During ECG signal collection with the bathtub ECG monitoring system, only 

three channels are used. However, the OpenBCI Cyton + Daisy board supports 

a maximum of 16 channels to collect data simultaneously. The future research 

direction is the development of a multi-lead bathtub ECG monitoring system. 

The number of leads can be expanded to 12 leads. Back lead ECGs can also be 

acquired. Collecting ECG signals from more angles can monitor the health of 

the heart more comprehensively. 

In the study on bathtub ECG as a potential alternative to light stress test in 

daily life, there are ten subjects who participated. There are differences between 

each subject. But some common features can still be found. The relationship 

surfaces of subjects who exercise regularly are similar. In the future study,  
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increasing the number of subjects is inevitable. At the same time, subjects of 

different genders, different ages, and different regions should be added. With 

enough data, other methods can be tried to refine the study. More interesting 

outcomes can be found. 

There are many interesting findings in the study of the bathtub ECG. These 

interesting ideas can be carried out in future research. For example, in the ECG 

signal during bathing, the component of baseline drift is similar to the respiratory 

signal. Trying to extract the respiratory signal in the bathing ECG. In addition to 

the duration of bathing and water temperature, there are other bathing environment 

variables, such as bathing agents and sounds. Trying to explore the setting of the 

optimal bathing environment. There are also some studies on bathing safety that 

can be carried out, such as fall monitoring and drowning monitoring. Trying 

different signals such as wifi signals to monitor in the bathroom. 
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