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Abstract

A logic error is a bug in computer programs that do not terminate the computer programs

abnormally and induces incorrect behavior. The conditions under which logic errors occur vary

depending on the implementation details and the difference in programming languages. In ad-

dition, detecting and correcting logic errors in source code is one of the most difficult tasks be-

cause conventional compilers that can detect syntax errors have difficulty detecting logic errors.

This problem is not only for novice programmers but also for advanced programmers because

it requires programming knowledge, experience, and logical thinking ability to understand the

specification of the software.

Software testing is capable of detecting the presence and location of logic errors. Software

testing tests whether a program meets the specification based on test cases. A test case is a

specification that includes inputs, experimental conditions, test procedures, and outputs obtained

from the inputs to evaluate whether the program specification is correct. Logic errors and their

locations are detected from the execution paths in each test case. However, these methods cannot

provide information for debugging logic errors. Therefore, it is necessary to realize debugging

support that detects logic errors and then proposes a fix for them.

Logic error detection methods detect logic errors using software repositories where a large

amount of source code is stored to realize debugging of logic errors. The first method is com-

parison the structure of an incorrect code with a correct code from the repository that meets the

specifications of the programming task based on static analysis. The second method is a ma-

chine learning model that learns internal parameters using source codes accumulated in a code

repository. These methods have shown excellent results in detecting logic errors. However,

these methods have some problems in terms of detection performance and the inability to detect

multiple logic errors.

This dissertation clarifies problems in existing logic error detection methods and develops

a debugging support model which can correct multiple logic errors based on machine learning.



The contributions of this dissertation are as follows:

• Analyzed static analysis and machine learning-based bug detection using the AOJ dataset

to develop a hybrid intelligence that accurately detects and corrects logic errors

• Proposed a method that optimizes a threshold that regulates correction candidates detected

by machine learning-based bug detection

• Developed a model that detects and corrects multiple logic errors by introducing iterative

trials and an editing operation predictor

xiv



Chapter 1

Introduction

1.1 Background

Developing bug-free software is one of the most important aspects of software engineering

for any application domain because bugs may cause fatal damage to the information society

[1]. Programmers need to iterate software development processes such as coding, testing, and

debugging to develop bug-free software. In coding, programmers create the source code with

editors or integrated development environments (IDEs) using programming languages according

to the application. In testing, programmers test whether the source code meets the specification

of the software using testing methods. Testing establishes the existence of bugs in the software.

Finally, in debugging, programmers identify and fix bugs in the source code based on results

in testing until the source code meets the specification of the software [2].To develop bug-

free software, programming knowledge, experience, and logical thinking ability are required to

understand software specifications [3].

Programming education has become indispensable for fostering engineers who will be active

in today’s advanced information society. One of the ways to develop programming skills is

through coding exercises with repetitive problem-solving. Therefore, many e-learning systems

to support programming education have been developed [4–6]. However, because programming

is a difficult task that requires programming knowledge, experience, and logical thinking skills,

it is easy for learners to stumble, especially when debugging tasks. Among them, logic errors in

compilable code are particularly troublesome. The logic error is a token in the source code that

causes unexpected behaviors. So, because programming learners may have little programming

knowledge and experience, it is not easy for them to correct logic errors in source code. This

1



is a problem faced not only by novice programmers but also by advanced programmers and

instructors. If they cannot identify the logic errors in the source code, they will spend more

time debugging and may lose their motivation in programming. Therefore, we believe that

identifying logic errors in the source code can support programmers.

Debugging is a particularly time-consuming task in software development processes. Pro-

grammers may create source codes with bugs such as run-time errors and logic errors. A run-

time error is a bug that terminates an executable program abnormally while the program is

running. A logic error is a bug that do not terminate an executable program abnormally but

induces incorrect behavior. In contrast, a syntax error is an error that depends on the syntax

of programming languages. Conventional compilers can detect syntax errors in source code

written in programming languages that require compiling the source code. Because conven-

tional compilers cannot detect run-time errors and logic errors, programmers need to identify

and localize run-time errors and logic errors by executing programs.

To solve this problem, debugging is based on the results of software testing [7]. Software

testing methods can establish the existence of a bug and can locate it. Software testing methods

include black-box testing, white-box testing, and others. It tests whether the program is correct

based on the test cases created. Many programming education systems use this black-box testing

to evaluate program correctness [8, 9]. On the other hand, white-box testing tests a program

focused on the internal structure and operation of the program. These methods help to identify

bugs. However, they are unable to propose a fix for the location of the bug and how to fix it.

Therefore, it is necessary to provide the location of the bug and its proposed fix.

To debug the software, programmers can also use debugging support tools such as debugger

[10] and the visualization tool [11]. These tools can visualize the execution path of the program.

However, they cannot present the location of bugs in the program and suggested fixes. Moreover,

it is not easy for novice programmers to learn debugging support tools [12].

Logic error detection methods have been researched to support debugging logic errors in

source code that are difficult to debug using conventional debugging methods. Yoshizawa et

al. proposed the structure pattern and error degree (SPED), which can detect logic errors in the

source code based on the comparison results if there are correct codes in the software repository

that match the structure of the source code to be corrected [13]. On the other hand, Teshima et

al. proposed a machine learning-based (MLB) bug detection, which trains the structure of the

correct code in the software repository using long short-term memory language model (LSTM-
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1.2. OBJECTIVES

LM), and presents correction candidates (tokens to be corrected, their locations, and suggested

corrections) [14]. This experimental result show that LSTM-LM can detects logic errors. How-

ever, since MLB bug detection detects correction candidates probabilistically, the correction

candidates may contain not only logic errors but also other tokens. The difference in detec-

tion performance between them has not investigated because SPED and LSTM-LM have evalu-

ated them using different datasets and experimental conditions. However, since these methods

showed positive results in each experiment, it is necessary to realize logic error detection with

hybrid intelligence that makes the most of these methods.

In addition, although MLB logic error detection methods showed their effectiveness in de-

tecting logic errors, they have not been verified to apply to the actual correction of logic errors.

In addition, debugging support models have not been developed for correcting logic errors us-

ing the correction candidates obtained by the logic error detection method based on LSTM-LM.

Therefore, it is necessary to realize a debugging support model based on MLB logic error de-

tection and to clarify the correction performance of these models for correcting logic errors.

1.2 Objectives

The objectives of this dissertation are to clarify the challenges of the hybrid method com-

bining SPED and LSTM-LM and to develop a debugging support model that can detect and

correct logic errors using MLB logic error detection. When users use the debugging support

model, they themselves need to judge whether the information provided by the debug support

model is correct or not. Therefore, we believe that we can reduce the possibility of losing the

opportunity for users to develop their logical thinking by enabling users to identify logic er-

rors in the source code they have created from among the correction candidate obtained from

the debugging support model. Moreover, it can efficiently support the debugging work of peo-

ple involved in software development and programming education and prevent the prolonged

debugging process and the loss of motivation for programming.

The main objectives of this dissertation are summarized as follows:

• To clarify problems for logic error detection by analyzing the detection performance of

existing logic error detection methods focused on the evaluation values based on only

detection, no detection, and misdetection.

• To improve the detection performance of MLB logic error detection based on LSTM-LM.
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Figure 1.1: An summary of contributions of this dissertation.

• To develop debugging support model for correcting logic errors using the correction can-

didates detected by MLB logic error detection based on LSTM-LM.

1.3 Summary of Contributions

The contributions of this dissertation for debugging support in software engineering and

programming education (Fig. 1.1), are summarized as follows.

• Analyzed a trade-off between the detection performance and the reliability by compar-

ing the static analysis and machine learning-based model, and that a combination of the

methods can be the basis for hybrid intelligence to improve the trade-off.

• Proposed a method that optimizes a threshold value to regulates the number of correction

candidates detected by LSTM-LM. The evaluation values used to determine the thresholds

are important in order to maximize the detection performance of the LSTM-LM.

• Developed a debugging support model that introduced an editing operation predictor that

predicts an editing operation for a correction position. Moreover, this model can provide

indirect and non-immediate debugging support that consider the programming skills of

both novice and advanced programmers.
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1.4. DISSERTATION ORGANIZATION

1.4 Dissertation Organization

The dissertation is organized as follows.

Chapter 2 introduces our views on related works and approaches of other researchers. This

dissertation is concerned with the development of methods for detecting logic errors and debug-

ging support models based on deep learning models in the programming field. First, in Section

2.1, debugging support techniques and the latest research on AI-based bug detection has been

introduced. In Section 2.2, we introduce the latest trend in deep learning models in the field of

natural languages: language models. In Section 2.3, we introduce the architecture and applica-

tions of the latest language models in the programming field. Finally, Section 2.4 introduces AI

for debugging based on machine and deep learning-based model.

Chapter 3 introduces an overview of the Aizu Online Judge and the datasets. Section 3.1

describes an overview of AOJ and the importance of AOJ datasets. Section 3.2 describes how

to use the source code and metadata stored in the AOJ and how to extract the datasets used for

the construction and verification of the proposed method. Section 3.3 outlines the specifications

of the programming tasks covered in this paper. Section 3.4 describes the classification of logic

errors in each programming task. Finally, Section 3.5 summarizes this Chapter 3.

Chapter 4 describes the detection performance of SPED [13] and LSTM-LM [14] for de-

veloping the hybrid intelligence combining the methods. Section 4.1 introduces an overview

of the detection by SPED and LSTM-LM. Section 4.2 describes an experiment to analyze the

detection performance of each method using the AOJ data set. Section 4.3 shows experimen-

tal results that show the strengths and weaknesses of SPED and LSTM-LM. Moreover, in the

section, the appropriate basis for developing the hybrid intelligence is also discussed. Finally,

Section 4.4 summarizes Chapter 4.

Chapter 5 presents a method that improve the detection performance of LSTM-LM. Section

5.1 presents a method that optimizes thresholds that control correction candidates detected by

LSTM-LM. Section 5.2 describes an experiment to evaluate the detection performance by each

threshold value. Section 5.3 describes the experimental results that indicate the thresholds can

control correction candidates detected by LSTM-LM. Finally, Section 5.4 summarizes Chapter

5.

Chapter 6 proposes a model that detect and correct logic errors iteratively. Section 6.1

introduces an overview of the proposed model. Section 6.2 describes an experiment to evaluate
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the detection and correction performance of the proposed model. Section 6.3 describes the

experimental results that indicate the proposed model can correct multiple logic errors. Finally,

Section 6.4 summarizes Chapter 6.

Chapter 7 discusses the integrated debugging support model by combining the proposed

approaches. Section 7.1 introduces an integrated debugging support model that combines the

proposed approaches. Section 7.2 describes the applications of the integrated debugging support

model in education and software engineering. Section 7.3 describes the limitation of the model.

Finally, Section 7.4 summarizes Chapter 7.

Chapter 8 concludes the dissertation. It summarizes the contributions and shows the direc-

tion of future works.
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Chapter 2

Related Work

In this chapter, we present our views on related works and approaches of other researchers.

This dissertation is concerned with developing methods for detecting logic errors and debug-

ging support models based on deep learning models in the programming field. First, in Section

2.1, debugging techniques and the latest research on AI-based bug detection have been intro-

duced. Section 2.2 describes the latest trends in deep learning models in the field of natural

languages. Section 2 describes the architecture and applications of the latest language models

in the programming field. Section 2.4 introduces AI for debugging based on machine and deep

learning-based models. Finally, Section 2.5 summarizes Chapter 2.

2.1 Debugging Support

Once again, debugging is to correct bugs from a program revealed when the program is

tested [2]. Testing and debugging a program are different processes. Testing establishes the

existence of bugs while debugging is concerned with locating and fixing these bugs. When

debugging, it is necessary to form hypotheses about the observable behavior of the program

and then test these hypotheses to find the defects that caused more than the output. Interactive

debugging tools that trace intermediate values of program variables and execution paths are used

to support in debugging process.

Gnu GDB [10] and Java Debugger (JDB) [15] have been developed as debuggers that trace

the execution path and variables. These debuggers allow the user to check the internal opera-

tion of a program sequentially. These debuggers have functions such as breakpoints that pause

execution at specified lines, allowing debugging based on such information. However, these
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debuggers are not provided as a graphical user interface (GUI), making them relatively difficult

to use.

We need to see the output results of executing compilable correct source code to detect logic

errors. There are tools such as Jeliot [16] and tango [11] that can visualize these behaviors.

While these tools are useful for checking the execution status, they require knowledge and

experience to use them. Therefore, programmers gain knowledge to use these tools separately,

and debugging may take a lot of time.

There are two methods for debugging logic errors: static analysis and dynamic analysis.

Static analysis is a method that automatically analyzes the behavior of the source code without

executing the source code [17]. Dynamic analysis, on the other hand, is a method of locating

bugs by tracing the behavior of the program when the program is running. One such method is

Fault localization [18]. These methods specialize in locating bugs, so they cannot show how to

fix the identified bugs.

In order to help learners who cannot debug the source code using compilers and IDEs

completely, many studies have been conducted to enhance the error messages output by them

[19, 20]. These studies reported that by analyzing the source code created by the learner and

the error messages produced by the compiler, they were able to reduce the number of syntax

errors encountered by the learner. However, since logic errors depend on the specifications of

the programming task, they do not have the same rules as the syntax of a programming lan-

guage. Therefore, debugging logic errors considering the specifications of programming tasks

is a major issue.

As one of the debugging techniques, program slicing [21–23] is used to analyze the pattern

of a specific bug by checking the dependencies in a program. Program slicing is a method of

identifying the location of bugs in source code by subdividing the source code into the smallest

units. Program-slicing-based methods are useful for locating bugs, but they cannot provide

information on how to fix them.

There is an approach called spectrum-based fault localization (SBFL) that identifies faults

in the software based on the execution path of each test case [18, 24]. From the execution path

information for each test case, a suspicion level is calculated that indicates the likelihood of

being the source of the fault [25]. The higher the suspicion level, the more likely it is that the

line of software corresponding to the suspicion level is the fault location. However, while these

methods can predict the location of the error, they do not provide any instructions on how to fix
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2.2. DEEP LEARNING MODELS FOR NATURAL LANGUAGE PROCESSING

the error.

Our Observations

Debugging tools are very good tools for identifying bugs in software. Using debugging tools

requires knowledge of how to use debugging tools in addition to the knowledge required to de-

velop the program to be developed. For experienced programmers, debugging tools are routine.

On the other hand, it is assumed that it is difficult for novice programmers to acquire the knowl-

edge necessary for software development and the knowledge of debugging tools at the same

time. It has been reported that it is difficult for programming novices to handle debugging tech-

niques [12]. This means that learners who aim to learn programming have a hard time acquiring

knowledge about debugging tools. Debugging knowledge is acquired through problem-solving

iterations and software development experience in programming education. However, knowl-

edge of debugging tools is important for the development of large-scale, high-quality software.

2.2 Deep Learning Models for Natural Language Processing

Until the advent of DL model, statistical-based language model (LM) research had been

conducted in the field of natural language processing (NLP). LMs are models for computing

probability distributions over a sequence of language tokens. These models take into account

the distributed representation of words, and include neural network language model (NNLM)

such as the n-gram model [26].

Bengio et al. proposed a probabilistic feed-forward neural network language model (FFNNLM),

which can solve the Curse of dimensionality in traditional statistical language model and greatly

improve the n-gram model. Mikolov et al. proposed Word2vec, which can generate distributed

representations of words using the skip-gram model and the continuous back-of-words (CBOW)

model [27].

The RNN has been developed as a deep learning model that can handle time-series data

[28]. This model can learn the dependency of time series data by feeding back the past hidden

layer state. However, RNN has a problem that the gradient disappears due to long-term time

dependence. To solve this problem, long short-term memory (LSTM) blocks were introduced

in place of neurons in the hidden layer of RNNs [29].

Sutskever et al. developed sequence to sequence (Seq2Seq), which can transform one input
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data into another [30]. This model consists of an Encoder and a Decoder, where the Encoder

learns the structure of the series data corresponding to the input data, and the Decoder learns

another series data corresponding to that series data. For example, Seq2seq can convert an input

English sentence into a French sentence.

Vaswani et al. [31] proposed Transformer that can significantly improve learning speed over

traditional recurrent layer and convolutional layer based architectures in translation tasks by

improving the encoder and decoder in seq2seq. Transformer introduces attention mechanism

[32] and positional encoding instead of a recurrent layer. The transformer is able to learn not

only the time series dependency of the input data but also the local dependency of the time series

data.

The deep learning models introduced so far are trained using data related to a specific task in

natural language processing, and thus have the problem that they can only be applied to a specific

task. Therefore, pre-trained models (PTMs) are attracting attention as generalized language

models that can be applied not only to specific tasks but also to other tasks [33]. Pre-trained

models pre-train their own parameters by using unsupervised tasks such as masked language

model (MLM) and next sentence prediction (NSP) on large data sets. The trained model is then

fine-tuned using a dataset relevant to a particular task to re-modify the model to be able to solve

the particular task. These models are used to evaluate the generalization performance of natural

language processing comprehension tasks using the general language understanding evaluation

benchmark (GLUE) [34], which shows the high performance of the pre-trained models.

Google proposed bidirectional encoder representations from transformers (BERT), which

uses the same architecture as the Encoder used in the Transformer [35]. BERT is pre-trained

unsupervised using a large amount of text. After the pre-training is done, supervised learning

for the target task is done to build a generalized model that can be applied to any task in the field

of natural language processing.

Pre-trained models have been widely used to solve NLP tasks [33]. OpenAI proposed gen-

erative pre-trained transformer 3 (GPT3) as state-of-the-art MLB in 2020 [36]. The model is

capable of generating sentences that are comparable to those written by humans. GPT-3 was

realized by using a huge number of parameters of the model and a large amount of training data.

It has been suggested that GPT-3 may generate offensive text such as hate speech. However, we

are working to improve these problems by developing InstructGPT, which incorporates human

feedback into existing machine learning methods [37].
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2.3. DEEP LEARNING MODELS FOR PROGRAMMING

Our Observation

LM based on deep learning in the field of NLP have evolved in an innovative way. These

models are very good and can make predictions probabilistically based on training data. How-

ever, the correctness of the information predicted by these models is determined by the users of

these models. Therefore, we believe that it is important to know how to evaluate whether the

information predicted by these models is correct or not.

2.3 Deep Learning Models for Programming

This section describes applications of deep learning models in the field of programming. In

recent years, machine learning techniques have been utilized to solve complex programming-

related problems [38]. This section presents examples of problem solving in programming.

First, we should emphasize the recent evolution of IDE extensions. Functions such as error

highlighting, completion, and refactoring are essential for software development. Such support

can be realized by machine learning approaches with data analysis. For example, the latest

technology in Visual Studio IntelliCode has had a major impact on software engineering [39].

In this approach, artificial intelligence uses huge GitHub repositories for learning and provides

intelligent completion capabilities that take into account not only listing variables and functions

but also other situations.

Microsoft proposed CodeBert based on bidirectional encoder representations from trans-

formers (BERT) [40]. CodeBert can perform tasks such as natural language code search, which

converts natural language to code, and code document generation.

CodeT5 is a pre-trained model for code understanding and code generation based on T5

[41]. This model outperformed previous researches on understanding tasks such as code defect

detection and clone detection.

2.3.1 Application

Particular approaches for identifying and predicting bugs in source codes have already been

proposed by various organizations. Among several machine learning approaches, bug detection

based on a large corpus of programs [42] and a support vector machine for code clone detec-

tion [43] are noteworthy. A comprehensive survey of machine learning for big code has also

been conducted [44]. However, [42] demonstrated that bug finding based on machine learning
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is inferior to static program analysis. On the other hand, other evidence suggests that some

machine learning approaches with an n-gram MLB and neural-network-based regression are

superior to static program analysis [45, 46]. Therefore, the strengths and weaknesses of these

approaches for providing appropriate coding support appear to be context-specific, depending

on experimental processes and data volume. How future vectors are created from source codes

as well as learning models with appropriate parameters should also be considered.

Chen et. al. proposed GitHub Copilot [47] that generate the source code from the text

written in the natural language based on the pre-trained model Codex based on GPT-3 [48]. A

large amount of source code from many public GitHub repositories is used to build CodeX.

DeepMind proposed a new attempt, AlphaCode, a code generation model capable of solv-

ing competition programming problems [49]. AlphaCode uses a pre-training model based on

Transformer, first using source code from a public GitHub repository as pre-training data, and

then using CodeForces and AOJ, a website that runs competitive programming contests, as fine-

tuning data. AlphaCode achieved an average top ranking of 54.3 percent in a competition with

over 5,000 entrants.

2.3.2 Dataset

A number of datasets have been proposed to advance the study of deep learning models for

codes. POJ-104 [50] is one of the most pioneering coding datasets collected by the OJ, contain-

ing 52,000 codes for 104 programming problems. The POJ-104 dataset also has its limitations,

such as lack of useful metadata, overlapping problems, and limited use of programming lan-

guages (C and C++) [50]. Another public dataset is related to Google Code Jam (GCJ) which

cover a variety of programming languages [51]. However, these datasets are also not sufficient

due to data size, number of languages, lack of annotations, metadata, and code pairs. IBM has

also released a dataset called CodeNet, which advocates ”AI for code” and contains source code

and metadata accumulated in Aizu Online Judge and AtCoder, systems designed for program-

ming learning [52]. CodeNet also provides its special tokenizer to facilitate the use of these data

in deep learning (DL) models. Microsoft has also released CodeXGlue, a benchmark dataset

for code intelligence [50]. Moreover, CodeXGlue publishes the deep learning models that have

been tested and their accuracy, so you can see which model is suitable for each task. CodeXGlue

has publicly available the deep learning models that have been tested so far and their accuracy,

so you can check which model is suitable for each task.
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2.4. AI FOR DEBUGGING SUPPORT

Our Observation

In this section, we introduce deep learning models and their applications in the program-

ming field. These models have enabled the evolution of language models in the field of natural

language processing to solve problems in the field of programming education. In addition, with

the development of hardware, the number of systems with large software repositories, such as

GitHub, is increasing. Using data stored in these software repositories, AI technology in the

programming field is evolving. These models are built using large amounts of training data and

a huge number of parameters, making it possible to generate more natural programs. However,

they are problematic in that they are very expensive in terms of training costs and time. Finally,

the emergence of these models will shorten the time-consuming software engineering process

by allowing programs to be generated from natural language.

2.4 AI for Debugging Support

In this section, we introduce a method for debugging support using AI. The AI-based de-

bugging support method is able to propose fixes and correct source code, which is difficult to

achieve with conventional debugging support methods.

Many automatic bug fixing methods have been proposed for quickly fixing software bugs

[53–55]. Pu et al. proposed sk p, a program modification method for MOOCs [54]. sk p is a

model based on seq2seq and shows that it can correct 29% of programming tasks using Python.

Drain et al. realizes to detect and fix bugs using the standard Transformer [31] as a MLB based

on source code extracted from GitHub repositories [56]. Ueda et al. have proposed the fix

method by mining the editing histories in GitHub [57]. These methods make it possible to

provide debugging support by using source codes, bug reports, edit histories, and so on.

Many methods have been proposed to fix source code using the correction candidates pre-

dicted by machine learning models. To correct multiple syntax errors in a source code, Gupta

et al. proposed Deepfix [58], which iteratively corrects the errors in the source code. In this

method, the source code can be modified line by line using one correction candidate predicted

by the Sequence to Sequence (Seq2Seq) attention network. Hajipour et al. [59] proposed Sam-

plefix that iteratively corrects errors using a Seq2Seq model. Each time the source code is

modified, these methods use a compiler to verify whether an error still exists. It was shown that

the accuracy of correcting syntax errors in the source code can be improved by making repeated
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corrections. However, although source code verification using a compiler can correct syntax

errors, it is difficult to find and correct logic errors. Huang et al. apply Seq2Seq as a model for

code correction [60].

Gupta et al. proposed a method for predicting the places of logic errors using the tree

convolutional neural network and Abstract Syntax Tree (AST) [61]. The experimental results

demonstrated that the accuracy is less than 30 percent if the number of candidate lines is one,

and 80 percent for 10 candidate lines. However, the increase of the number of candidate lines

makes it difficult to find true logic errors. We should consider the trade-off between misdetection

and overdetection.

Vasic et al. proposed a program correction method leveraging a joint model using an LSTM

network and an attention mechanism to solve the variable misuse problem [62]. Publicly avail-

able data were used to verify the accuracy of identifying and correcting variable misuse points.

However, although variable misuse can be considered as one type of logic error, it cannot be

used to identify other types of logic errors.

Berabi et al. proposed a transformer-based Tfix [63], which is pre-trained using natural

language and fine-tuned using large, high-quality data extracted from GitHub commits to gen-

erate code fixes. The model simultaneously fine-tunes for several error types reported by the

static analyzer. They evaluated it on a large dataset written in Javascript and found that it was

able to produce code that fixed the errors in about 67 percent of the cases, demonstrating the

effectiveness of Tfix.

To support the debugging of logic errors by novice programmers in educational scenes,

many studies have been conducted using source code groups created to meet the specifications

of a certain task. Yoshizawa et al. proposed a static analysis method that considers the structure

of the source code [13, 64]. For this, the correct code group is converted into Abstract Syntax

Trees (ASTs). The source code to be debugged is also converted to AST. By comparing the

structure of the converted AST and the prepared ASTs, the position of the logic error and the

type of the logic error can be obtained with high accuracy. In MLB approaches, Teshima et

al. proposed a MLB based on LSTM-LM and correct codes [14]. LSTM-LM can indicate the

position of logic errors in a given incorrect code and suggest possible words by learning the

structure of the correct code. Rahman et al. improved this model by applying the Attention

Mechanism with LSTM (LSTM-AttM) [65, 66]. They also employed Bidirectional LSTM to

detect logic errors and to present suggestions for corrections [67]. The models can also be
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2.5. CHAPTER SUMMARY

applied to code completion [68]. Although the machine learning model used for error detection

is different, LED and correction are realized by learning the structure of the correct code.

Our Observation

AI-based bug detection methods can not only locate logic errors in the source code but also

suggest fixes. This has been shown by experimental results in the studies presented so far. How-

ever, when programmers use these methods, they need to determine whether the information

obtained from these methods is correct. Even if the source code can be modified using the pre-

dicted results, the modified source code may contain logic errors. Therefore, these techniques

do not guarantee that the programmer will be able to correct all logic errors in the source code.

Detecting and fixing bugs in the source code is a very difficult task, and Deepfix and Sam-

plefix can remove more bugs by iteratively detecting bugs in the source code and parsing them

by the compiler. However, since these models fix bugs in source codes, they may lose the oppor-

tunity to develop learners’ logical thinking. Learners and instructors in programming education

need to have the opportunity to consider step-by-step what debugging should be done depending

on their proficiency in programming skills.

2.5 Chapter Summary

This chapter has introduced deep learning models for natural and programming languages

and debugging support methods based on existing bug detection methods. In the software en-

gineering field, there is a need for immediate and direct debugging support, and the emphasis

is on how to reduce the time required for debugging. However, in programming education, it is

necessary to provide immediate and non-direct support to learners. Direct support may deprive

learners of the opportunity to develop logical thinking to solve problems based on the support

provided, so debugging support for learners should be provided with caution. If there is too

little information used for debugging support, learners may not know how to modify the source

code. On the other hand, if there is too much information, the learner may modify the source

code without thinking deeply. Therefore, considering the educational effect in programming,

the information used for debugging support must be presented carefully.
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Chapter 3

Data Preparation

This chapter introduces an overview of the Aizu Online Judge and the datasets. Section

3.1 describes an overview of AOJ and the importance of AOJ datasets. Section 2 describes

how to use the source code and metadata stored in the AOJ and how to extract the datasets

used to construct and verify the proposed method. Section 3.3 outlines the specifications of the

programming tasks covered in this paper. Section 3.4 describes the classification of logic errors

in each programming task. Finally, Section 3.5 summarizes this Chapter 3.

3.1 Aizu Online Judge

AOJ is one of the OJ systems that can automatically judge the source code submitted by

learners [8, 69]. AOJ is a system that can be used by a wide range of users, from beginners

to experts, and currently has more than 100,000 registered users. This system supports 15

programming languages such as C/C++, Java, and Python. Users can freely choose from about

2,500 problems to challenge themselves. When users submit their solution codes to AOJ, AOJ

automatically judges their solution codes. Therefore, users can know whether their source code

meets the specifications of the programming task or not.

AOJ rigorously evaluates the submitted source code in the AOJ’s Judge Server, which is

equipped with an execution environment [70]. The AOJ has test cases for each input and output

to verify whether the source code meets the specifications of a programming task. If the source

code passes all these test cases, it is evaluated as correct code. On the other hand, if the source

code cannot pass even one of these test cases, it is evaluated as incorrect code. In addition,

If programming tasks require the use of algorithms such as sorting and graphs, test cases also
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3.1. AIZU ONLINE JUDGE

Figure 3.1: An example of judge results

have constraints such as computation time and memory usage. These strict grading procedures

of AOJ make it possible to provide rigorous grading results to users. After the AOJ graded the

source code, it accumulated the source code and the metadata, such as the corresponding user

information and the judgment result, into a database.

Judge status is strictly evaluated based on the test environment in AOJ as Compile Error

(CE), Run-time Error (RE), Wrong Answer (WA), Time Limited Exceeded (TLE), Memory

Limited Exceeded (MLE), Presentation Error (PE), and Accepted (AC). CE is determined when

the syntax of the source code is incorrect. RE is determined when the source code terminates

abnormally. WA is determined when the output to the test case provided by AOJ is different.

TLE is determined when the source code does not finish executing within the time limit set in

the test environment. MLE is determined when the memory usage exceeds the set amount. PE

is determined when the source code meets the specification of the programming task itself, but

the output format is incorrect. Finally, AC is determined when the source code meets all the

specifications of the test cases for each problem.

AOJ dataset is a necessity for programming education and software engineering problem-

solving. The AOJ is widely used by users, from beginners to experts, with different program-

ming knowledge and experience. Since AOJ stores all the source codes created by users, it is

possible to observe the process of correcting an incorrect code to a correct code. For these rea-

sons, we believe that the AOJ dataset will be useful for discovering new knowledge in software

engineering and programming education by analyzing the relationship between users’ abilities

and the corresponding source codes.

The AOJ can judge the submitted source code, but cannot provide the learning support such

as the debugging. Therefore, AOJ is aiming to develop a new ecosystem by using the data

stored in AOJ [71]. This is a new attempt for learners, instructors, and researchers by reusing

the accumulated data. Currently, we have been researching fill-in-the-blank problem generation

[72], code completion [66,68], bug detection [13,14,67,73], bug clustering [74,75], source code
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classification [76], problem recommendation [77], and academic performance analysis [78–80]

using these accumulated data.

3.2 Extraction of Dataset

AOJ provides the application programming interface (API) to obtain source codes and meta-

data stored in AOJ [81]. Metadata, which is associated with source code, can be used to extract

the source code according to the application. In this dissertation, we use the incorrect and correct

codes corresponding to each programming task to construct and evaluate the proposed methods.

We introduce how to extract incorrect and correct codes for each programming task. Figure

3.2 To extract these source codes, the problemID, userID, judge status, and judgeID included

in the metadata are used. Firstly, to classify the metadata by each programming task, metadata

whose problemID matches the target problemID is extracted. Next, the metadata classified

by each programming is categorized by users. If a user has attempted each programming task

multiple times, there may be multiple judge data and source codes. Among them, the last source

code whose status is AC is extracted as the correct code. On the other hand, the second-to-last

source code whose status is neither AC nor CE is extracted as incorrect code. If there are both

incorrect and correct codes created by the user, these source codes are extracted as a pair. Finally,

by using the judgeIDs corresponding to these source codes, these data sets can be extracted.

Figure 3.2: An overview of extraction of dataset in AOJ
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3.3. SELECTED PROGRAMMING TASK

3.3 Selected Programming Task

Table 3.1 shows the specification details of the 32 selected programming tasks. These tasks

are problems in Introduction to Programming 1 (ITP1), a set of problems for beginners in pro-

gramming. The problems in ITP1 are recommended by the AOJ to be the first ones to be

attempted in learning how to use the AOJ and programming.

Table 3.1: Details of 32 selected tasks.

Task ID Task specification
ITP1 1 A Outputs ”Hello World” to standard output.
ITP1 1 B Outputs the cube of a given integer x.
ITP1 1 C Outputs the area and perimeter of a given rectangle.
ITP1 1 D Receives an S seconds and converts it to h : m : s.
ITP1 2 A Outputs small/large/equal relation of two given integers a and b.
ITP1 2 B Receives three integers a, b, and c and outputs ”Yes” if a < b < c, otherwise ”No”
ITP1 2 C Receives integers and outputs them in ascending order.
ITP1 2 D Receives a rectangle and a circle, and determines whether the circle is arranged inside

the rectangle.
ITP1 3 A Outputs ”Hello World” 1000 times.
ITP1 3 B Receives an integer x and outputs it as is for multiple test cases.
ITP1 3 C Receives two integers x and y, and outputs them in ascending order for multiple test

cases.
ITP1 3 D Receives three integers a, b, and c, and outputs the number of divisors of c in [a, b]
ITP1 4 A Receives two integers a and b, and outputs a/b in different types.
ITP1 4 B Receives a radius r, outputs the area and circumference of a circle.
ITP1 4 C Receives two integers, a and b, and an operator op, and then outputs the value of aopb
ITP1 4 D Receives a sequence of n integers ai (i = 1, 2, . . . n), and outputs the minimum value,

maximum value, and sum of the sequence.
ITP1 5 A Draws a rectangle which has a height of H cm and a width of W cm. Draws the

rectangle by ’#’
ITP1 5 B Draws a frame which has a height of H cm and a width of W cm.
ITP1 5 C Draws a chessboard which has a height of H cm and a width of W cm.
ITP1 5 D Structured programming without goto statement.
ITP1 6 A Receives a sequence and output
ITP1 6 B Given a deck of cards, finds any missing cards.
ITP1 6 C Counts the number of elements in a three-dimensional array.
ITP1 6 D Receives an n×m matrix A and an m× 1 vector b, and prints their product Ab
ITP1 7 A Receives a list of student test scores and evaluates the performance of each student.
ITP1 7 B Identifies the number of combinations of three integers which satisfy 1) you should

select three distinct integers from 1 to n, and 2) the total sum of the three integers is
x.

ITP1 7 C Receives the number of rows r, columns c, and a table of r × c elements, and prints a
new table, which includes the total sum for each row and column.

ITP1 7 D Receives an n×m matrix a and an m× l matrix B, and prints their product, an n× l
matrix C.

ITP1 8 A Converts uppercase/lowercase letters to lowercase/uppercase letters for a given string.
ITP1 8 B Receives an integer and prints the sum of its digits.
ITP1 8 C Counts and reports the number of each letter. Ignores characters.
ITP1 8 D Finds a pattern p in a ring-shaped text s.

Table 3.2 shows the statistics for each programming task. Users are the number of users

who attempted each programming task. Submissions are the number of source codes submitted
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to solve each programming task. The acceptance rate is the percentage of correct source codes

among the Submissions. The acceptance rate is the percentage of correct source code among

the submissions. These statistics can be checked for other programming tasks as well.

Table 3.2: Acceptance rate for each programming task.

Task ID Users Submissions Acceptance rate (%) Task ID Users Submissions Acceptance rate (%)
ITP1 1 A 48673 124971 58.75 ITP1 5 A 17372 68141 31.69
ITP1 1 B 39774 102804 51.13 ITP1 5 B 16430 40159 49.57
ITP1 1 C 34372 105789 41.14 ITP1 5 C 15950 35404 54.47
ITP1 1 D 29368 77964 48.09 ITP1 5 D 11586 61899 22.53
ITP1 2 A 28292 94944 37.56 ITP1 6 A 15762 56824 33.81
ITP1 2 B 56609 26439 56.03 ITP1 6 B 13327 45454 37.93
ITP1 2 C 25061 81707 38.59 ITP1 6 C 12327 49640 29.77
ITP1 2 D 22154 63252 42.55 ITP1 6 D 11036 23756 55.96
ITP1 3 A 24217 49483 61.02 ITP1 7 A 12343 35493 39.89
ITP1 3 B 22012 84443 32.97 ITP1 7 B 13916 41926 42.24
ITP1 3 C 21052 63440 39.99 ITP1 7 C 10614 35466 36.61
ITP1 3 D 19729 44150 53.97 ITP1 7 D 9265 37140 30.72
ITP1 4 A 19061 74999 31.83 ITP1 8 A 10079 25685 48.02
ITP1 4 B 18633 69647 31.79 ITP1 8 B 9938 25726 47.05
ITP1 4 C 17573 50609 41.49 ITP1 8 C 8819 38775 30.03
ITP1 4 D 17312 78313 28.72 ITP1 8 D 8311 18526 53.37

3.4 Logic Errors in Each Programming Task

In cases where there were incorrect and correct codes, it was thought that the correct code

could be created by correcting the incorrect code. Therefore, we thought that we could identify

the logic error type and its location by analyzing the editing information between the incorrect

and correct codes. The editing information includes tokens, their positions, and their editing

operations (insertion, deletion, and replacement). We used the difflib module in Python, which

is one of the frameworks for extracting the edit information, to perform regular expression and

string searches on the extracted edit information and source code. We used regular expressions

and string searches on the source code and the editing information extracted by difflib to identify

the parts that were edited between the incorrect and correct codes. Table 3.3 shows the regular

expressions that were used to classify the logic errors. Since the source code may contain

multiple logic errors, multiple logic error types should be assigned to a single source code.

Tables 3.4, 3.5, 3.6, and 3.7 show the distribution of logic errors present in the source code

of each programming task. Exclusion is the number of source codes created to solve different

programming tasks. Outlier excludes cases where the edit distance between incorrect and correct

codes is extremely long within the target programming task. No categorized is the number of

source codes that did not match any of the regular expressions introduced in Table 3.3.
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3.4. LOGIC ERRORS IN EACH PROGRAMMING TASK

Table 3.3: Regular expressions used to classify logic errors.

Logic error type regular expression
include statement \#+?\s*?include\s*?[\”<].+?[\”>]\s*;?|\#+?\s*?import\s*?[\”<].+?[\”>]\s*;?
switch quote (?<!\\)\”|(?<!\\)\’
string format (?!\\)\”.+?(?<!\\)\”|(?!\\)\’.+?(?<!\\)\’
output format printf\s*?\(.+?\)\s*?;+(?!”)|(?:std\s*?::\s*?)?cout.*?;+(?!”)|puts\(.+\)\s*?;+(?!”)
input statement (?:std\s*?::\s*?)?cin.+?;+|scanf\(.+?\);+
void main function (?:int\s+)?main\s*?\(.*?\)\s*|(?:void\s+)?main\s*?\(.*?\)\s*
static \wstatic\s+?
return value return\s*?.*?;
for statement (?<=\W)for\s*?\(
if statement (?<=\W)(?:else)?\s+?if\s*?\(
else statement (?<=\W)else
formula (?<=\W)[a-zA-Z ][\[\w\]-]*?\s*?[\+\-\*\/\%\&\|]?=\s*?.+?;
do while statement do\s*?.+?\s*?while\s*?\(
while statement (?<=\W)while\s*?\(
function \W[a-zA-Z ]\w*(?<!main|for|while|if|return)\s*?\(
address operator &\s*?\w\w*
cast \(\s*?(?:double|int|(?:long\s+?)long|short|char|float)\s*?\)
type \W(?:int64 t\W|double\int|long|short|char|float|unsigned)\W
use and or operator \&\&|\|\|
array size (?<!>\s*?)\[
initial value (?<!\w)\s*?[+-]?\d+\.?\d+?\s*?;
variable declaration (?:const)?\s*?(?:int 64 t|double|int|(?:long\s+?)long|short|char|float|unsigned|bool)

\s+?[\w,=\s\[\]\*]*?;+?
unary operation [a-zA-Z ]\w*?\s*?\+\+;|\+\+\s*?[a-zA-Z ]\w*?;|[a-zA-Z ]\w*?\s*?–;|–

\s*?[a-zA-Z ]\w*?;+?;
scope \{|\}
substituted variable (\w\w*?)\s*?=(?==)
switch break continue break\s*?;|continue\s*?;
case number case\s+?.+?:
semicolon position [a-zA-Z ]\w*?\s*?;\s*?\(|else\s*?;|if\s*?\(.+?\)\s*?;|else\s+?if\s*?\(.+?\)\s*?;|

for\s*?\(.+?);—while\s*?\(.+?\);
switch equal assign ==
array elements =\s*?\{[\-\d\.\s,]*?\}
assignment operation [\+\-\*\/\%\|\&]=(?!=)
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However, the results with these regular expressions that we show now are not yet complete.

The logic errors shown in Table 3.4 should be further subdivided, and the authors are aware of

this. This paper does not deal with the classification and analysis of these logic errors in detail,

but we believe that this information will be an important part of programming education and

debugging support in the field of software engineering. We plan to work on these classification

and analysis as future work.
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3.4. LOGIC ERRORS IN EACH PROGRAMMING TASK
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3.5. CHAPTER SUMMARY

3.5 Chapter Summary

In this chapter, we introduced the AOJ dataset, which has been used by a wide range of users

from beginners to advanced users to learn programming skills. The AOJ dataset can be used by

using the API provided by AOJ. The programming task dealt with in this dissertation is ITP1,

which is a problem set aimed at novice programmers. Although the programming task within

ITP1 is simple, it is difficult to correct an incorrect code because it may contain multiple logic

errors. We believe that detecting and correcting these logic errors will facilitate the identification

of some implementation errors in modules in small and large software developments. Chapter 4

and the following chapters describe the analysis and development using the AOJ dataset.

27



Chapter 4

Hybrid Intelligence for Logic Error

Detection

In Chapter 4, we analyze the detection performance of SPED [13] and LSTM-LM [14] for

developing the hybrid intelligence combining the methods. Section 4.1 introduces an overview

of the detection by SPED and LSTM-LM. Section 4.2 describes an experiment to analyze the

detection performance of each method using the AOJ data set. Section 4.3 shows experimen-

tal results that show the strengths and weaknesses of SPED and LSTM-LM. Moreover, in the

section, the appropriate basis for developing the hybrid intelligence is also discussed. Finally,

Section 4.4 summarizes Chapter 4.

4.1 Overview of Algorithms for Logic Error Detection

In this section, we introduce overviews of SPED and LSTM-LM for logic error detection.

Figure 4.1 shows overviews of logic error detection using the SPED and the LSTM-LM. Al-

though the details of these algorithms and experimental results are available from [13] and [14],

respectively, in this section, we introduce general concepts and algorithms for understanding the

experiment and discussion presented in the following section.

4.1.1 Structure Patterns and Error Degree (SPED)

The first approach is based on a static analysis of source codes which use SPED. We have

proposed a logic error detection algorithm based on structure patterns, which are an index of

similarity based on AST, and error degree, which is a measure of appropriateness for feedback.

28



4.1. OVERVIEW OF ALGORITHMS FOR LOGIC ERROR DETECTION

(a) Overview of the SPED.

(b) Overview of the LSTM-LM.

Figure 4.1: Overview of logic error detection using the SPED and the LSTM-LM.

As preprocessing, available source codes are converted into ASTs to represent their structure

patterns through the converter. When a source code is given (submitted), the code is converted

into an AST. The algorithm then finds source codes which have the same structure patterns as a

given target source code. The detector then indicates the locations of errors according to error

degree, which is defined by the impact factors of each element. Finally, the algorithm selects

the optimal source code which has the highest error degree among the selected source codes

with the same structure pattern. In addition, we developed a logic error detection application

programming interface (API) based on the algorithm. In the previous study, the experimental

results demonstrate that the API could properly detect logic errors in given target codes for a

number of problems in an introduction to programming course [13].
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4.1.2 Long Short-Term Memory Language Model (LSTM-LM)

The second approach is based on deep learning. We designed a model which calculates

probabilities for the appearance of program elements based on an LSTM-LM. An LSTM-LM

is a special kind of RNN which is superior for sequential prediction as compared to other kinds

of neural networks. As preprocessing, available source codes are converted into sequences of

IDs and these are used for the learning process to create the model of the LSTM-LM. When

a source code is given (submitted), the model outputs a probability to show a detected logic

error. In the proposed approach, to create the model, before training and evaluation, a source

code is divided into a sequence of words. Then, we encode each word into an ID based on the

mapping rules defined. In the conversion, as preprocessing, a source code is cleaned (deletion

of comments, feed lines, tabs, spaces, etc.) and then divided into a sequence of method names,

variable names, keywords, and characters. Since LSTM-LM have some hyperparameters, we

should investigate the best model for logic error detection. We should also explore the number

of units in a hidden layer which provide the best results in terms of perplexity and training time.

In the previous study, the experimental results showed that the model trained by solution codes

for a task related to the basic sorting algorithm could detect logic errors in given target codes to

a high degree of accuracy [14].

The language model is constructed by RNN which can learn features of sequential data [82].

The language model consists of the following layers:

• Embedding layer

• RNN (LSTM) layer

• Softmax layer

A series of tokens in a program is transformed into a series of IDs x= [x1, x2, . . . , xt, . . . , xn]

which can be treated as sequential data. n is the number of tokens in the series of IDs x. The

model learns a series of token patterns which include IDs related to variables, functions, reserved

keywords, etc.

In the embedding layer, the obtained sequences of IDs x is transformed into the correspond-

ing dense vector e=[e1, e2, . . . , et, . . . , en]. The size of the vector e is equal to the size of the

vocabulary table. The learning process is performed by importing the vector e to the RNN
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4.2. EXPERIMENT

layer. Finally, the obtained output ht (Eq. 4.1) from the learned RNN is transformed into the

probability distribution p (Eq. 4.2) for each word in the Softmax layer.

ht = RNN (et,ht−1) (4.1)

pt = softmax (ht) (4.2)

The model infers a token xt+1 from a sequence [x1, x2, .., xt] with the probability. If the

probability is high, we consider that the token xt+1 is a pattern that tends to appear in the

learning data. On the other hand, if the probability is low, we evaluate that the token xt+1 is

a pattern that rarely appears in the data. So, after a threshold τ is defined, a token that has a

probability of less than τ can be extracted as possible logic errors.

4.2 Experiment

In order to investigate the detection performance of these methods, experiments were con-

ducted to verify the presence of logic errors in the correction candidates detected by SPED and

LSTM-LM. As validation data, 20 incorrect codes submitted for one problem in the AOJ dataset

are used. SPED and LSTM-LM output detection results for the logic errors in each source code

input. The detection results were evaluated based on the detected, undetected, false positive, and

detection time of the logic errors contained in each source code. These performances indicate

the reliability of the detection results obtained from each method.

4.2.1 Materials

In this study, we conducted an experiment using the data in the AOJ [8,69], which is one of

the major OJ systems and has around 90,000 registered users and more than 6 million judged

source codes. In order to compare and investigate the weakness and strength of the algorithms,

a common problem (task) was selected, and source codes submitted for solving this task were

used for the experiment. The task was selected from the Introduction to Programming course,

and the specification (goal) of the task is “For given N integers ai (i = 1, 2, ..., N), print the

minimum value, maximum value and the sum of them”. Note that the constraints for the task

include 0 < N <= 10,000 and −1,000,000 <= ai <= 1,000,000. For example, if the given
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Table 4.1: Keywords and characters encoded into IDs.

ID word ID word ID word ID word ID word
140 abstract 169 native 198 & 227 D 256 b
141 assert 170 new 199 ’ 228 E 257 c
142 boolean 171 package 200 ( 229 F 258 d
143 break 172 private 201 ) 230 G 259 e
144 byte 173 protected 202 * 231 H 260 f
145 case 174 public 203 + 232 I 261 g
146 catch 175 return 204 , 233 J 262 h
147 char 176 short 205 - 234 K 263 i
148 class 177 static 206 . 235 L 264 j
149 const 178 strictfp 207 / 236 M 265 k
150 continue 179 super 208 0 237 N 266 l
151 default 180 switch 209 1 238 O 267 m
152 do 181 synchronized 210 2 239 P 268 n
153 double 182 this 211 3 240 Q 269 o
154 else 183 throw 212 4 241 R 270 p
155 enum 184 throws 213 5 242 S 271 q
156 extends 185 transient 214 6 243 T 272 r
157 final 186 try 215 7 244 U 273 s
158 finally 187 void 216 8 245 V 274 t
159 float 188 volatile 217 9 246 W 275 u
160 for 189 while 218 : 247 X 276 v
161 goto 190 219 ; 248 Y 277 w
162 if 191 ! 220 < 249 Z 278 x
163 implements 192 ? 221 = 250 [ 279 y
164 import 193 222 > 251 Y= 280 z
165 instanceof 194 ” 223 @ 252 ] 281 {
166 int 195 # 224 A 253 ˆ 282 |
167 interface 196 $ 225 B 254 ‘ 283 }
168 long 197 % 226 C 255 a 284 ˜

integers are {5, 2, 12, 8, 7}, then the program should output {2, 12, 34}. We selected this

problem because it is one of the most error-prone problems in the course and can be solved

by a variety of approaches. More than 40,000 source codes in various programming languages

have been submitted for the task, but we have extracted source codes in Java for use in the

experiment. In the experiment, 687 correct codes (codes without logic errors) were used for the

learning model of the LSTM-LM and for candidate codes for the SPED. For target query codes,

20 incorrect codes (codes with logic errors) were randomly selected from the submission history

for this task.
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4.2. EXPERIMENT

Figure 4.2: An example of logic error detection by two approaches for a given target query code

4.2.2 Experimental Setup

The logic error detection API and the corresponding experimental system are used to test

the logic error detection based on the SPED. This algorithm manages accumulated source codes

submitted to the AOJ with their verdict records. Through the experimental system, we can

submit a query code, and the system finds source codes which have the same structure pattern

as the query code. The system then tries to indicate the locations of logic errors depending on

the error degree calculated for each element. Thus, in this experiment, we use the logic error

detection API with accumulated source codes of the target problem to obtain results from the

SPED.

On the other hand, for the LSTM-LM, since the previous study is oriented to the C program-

ming language, we adjusted the model by expanding the encoding method for the LSTM-LM

to learn and test source codes in Java. Table 4.1 shows mapping rules between keywords and
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Table 4.2: Features of target query codes used in the experiment.

Query code # NoSP NoE NoV NoM NoO NoLE
1 7 11 5 3 6 1
2 17 19 6 2 3 2
3 4 18 7 2 5 1
4 6 13 6 4 6 1
5 9 23 8 2 4 1
6 4 15 7 2 4 2
7 6 13 7 4 5 1
8 7 11 5 3 5 1
9 2 23 8 2 4 1
10 10 20 7 2 4 1
11 0 25 7 3 4 1
12 2 14 7 4 5 2
13 7 11 5 3 5 4
14 3 20 7 4 6 1
15 1 7 5 15 9 2
16 3 21 7 2 4 1
17 1 21 7 2 4 1
18 0 15 4 4 5 1
19 1 26 7 3 4 1
20 8 12 5 4 6 1

the corresponding encoded IDs. Method names are encoded into IDs 0 to 69. Variable names

are encoded into IDs 70 to 89 in order of appearance. Other names, such as class names and

fields, are encoded into IDs 90 to 139. Keywords and characters are encoded into IDs defined

in Table 4.1. Layers of the LSTM-LM are constructed based on [14]. We regularize the LSTM-

LM by dropout. We determined that the dropout ratio is 0.5 [83]. An Adam optimizer with

four hyperparameters, α = 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1e − 8, was used based on

the recommendation of [84]. As shown in the mapping rules, each source code is divided into

elements from 294 words. Thus, the number of units in the input and output layers is 294. We

use a 400-unit model in the hidden layer.

Figure 4.2 shows an example of logic error detection used to explain the experiment. The

top-left code denotes a given target query code (original code) with some real logic errors indi-

cated by underlines. The top-right code is the correct code. The bottom-left code is provided

by the SPED with predicted logic errors. This example shows that the SPED could detect all

real logic errors properly. The bottom-right code is provided by the LSTM-LM with predicted

logic errors. The prediction shows that the LSTM-LM indicated one real logic error but missed

another. In addition, the LSTM-LM indicated several excessive places which should not be

pointed out as logic errors.
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4.3. RESULTS AND DISCUSSION

4.3 Results and Discussion

4.3.1 Results

Table 4.2 shows the features of target query codes used for the experiment. We consider the

structural characteristics of the target code, taking into account the number of available structure

patterns as well as the numbers of variables and functions. The number of available candidate

codes which have the same structure pattern as the target query code is denoted NoSP. The larger

this number is, the more common structure the target code contains. The number of elements

(nodes) in a program code (the corresponding abstract syntax tree) is denoted as NoE. A larger

number indicates a more complex program code. The numbers of variables and methods in each

query code are denoted as NoV and NoM, respectively. The number of other elements, such as

class names, class variables, and fields, is denoted as NoO. Larger numbers indicate greater

complexity of the program code. The number of real logic errors in each query code is denoted

as NoLE.

Table 4.3 shows the results of the experiment for the selected target query codes. The time to

detect logic errors for each query code (without preprocessing and learning process) is denoted

as DT. The number of places that the algorithm could correctly point out is denoted as OD,

and the number of missing places is denoted as ND. The number of places that the algorithm

excessively pointed out logic errors is denoted as MD.

4.3.2 Discussion

On the whole, the SPED is superior to the LSTM-LM if there are a number of available

codes with the same structure pattern. Generally, SPED could detect logic errors with fewer

excess items. The LSTM-LM could also detect logic errors, but tends to point out such in

excess. Another advantage of SPED is that this approach may obtain compilable codes when it

provides feedback in addition to the detection. As such, we can select SPED or use the SPED-

based algorithm if there are sufficient available codes for the corresponding task.

On the other hand, the result shows that SPED is not universal. First of all, if there are no

available codes with the same structure pattern for a given query code, SPED cannot point out

errors at all. Fortunately, the LSTM-LM can cover the weaknesses of the SPED. For example,

for a query code indicated as 18, SPED could not point out logic errors, because there are no

available codes, whereas LSTM-LM could point out all errors. The SPED also does not work
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Table 4.3: Results of the experiment for several selected target query codes.

SPED LSTM-LM
Query code # DT [s] OD ND MD DT [s] OD ND MD

1 0.3948 1 0 0 0.0450 1 0 3
2 0.7819 3 0 0 0.0450 1 2 3
3 0.6379 1 0 0 0.0440 0 1 3
4 0.4637 1 0 1 0.0450 0 1 4
5 0.7434 1 0 24 0.0440 1 0 5
6 0.5024 2 0 0 0.0450 2 0 6
7 0.4757 2 0 0 0.0450 1 1 2
8 0.3840 1 0 0 0.0450 0 1 4
9 0.7381 1 0 0 0.0450 0 1 8

10 0.6511 1 0 7 0.0440 1 0 4
11 0.6317 0 1 0 0.0450 1 0 9
12 0.5320 2 0 1 0.0420 1 1 5
13 0.3530 4 0 2 0.0390 3 1 10
14 0.6281 0 1 0 0.0460 1 0 8
15 0.1560 0 2 0 0.0470 2 0 5
16 0.7018 1 0 0 0.0450 1 0 2
17 0.6677 1 0 2 0.0440 0 1 7
18 0.5164 0 1 0 0.0460 1 0 5
19 0.7106 1 0 2 0.0480 1 0 7
20 0.5851 1 0 7 0.0460 1 0 1

well if the given query code has a rather complex structure or contains a number of different

elements (variables and methods). For example, for a query code indicated as 5, SPED generates

a number of excess detections (= 24), whereas LSTM-LM generates fewer excess detections (=

5). The result of the query code indicated as 15, which includes many method elements (= 15),

shows that the SPED could not point out the logic error, whereas LSTM-LM could point out all

errors. Therefore, according to the complexity and the number of different elements, we should

consider choosing the LSTM-LM.

In terms of performance (waiting time for receiving feedback from the submission), the

LSTM-LM is superior to the SPED. Although, constructing the learning model of the RNN for

each task takes several hours, the query phase can be performed rather quickly. One advantage

is that the performance does not depend on the number of available source codes, which are

used for the learning process. On the other hand, the waiting time of SPED depends on the

complexity of the given source code because it is converted into the corresponding abstract

syntax tree. Thus, although the waiting time is acceptable (less than one second), we should

consider the trade-off between the performance and the accuracy of detection. Table 4.4 shows

a summary of the experimental results.
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4.3. RESULTS AND DISCUSSION

Table 4.4: Summary of the experimental results.

Strength Weakness

SPED

• High accuracy according to
the number of available structure
patterns
• Can obtain compilable code

• Depends on structure patterns
• Result will be empty if there is
no available structure pattern
• Tends to generate excess de-
tection for codes with complex
structure
• Waiting time depends on struc-
tural features of code

LSTM

• Does not depend on the number
of available source codes with
the same structure pattern
• Quick response and the waiting
time does not depend on features
of the code or on the number of
available codes

• Tend to generate excess detec-
tion
• Need learning time (which is
not for the querying process)
• Obtained code may not be
compilable

Next, we discuss how to improve the two approaches. In order to increase the accuracy

of the SPED, we filter available codes using structure patterns. As such, the detection accu-

racy depends on the diversity of source code stored in the online judge system. Therefore, a

promising approach is the automatic generation of source codes with different structure patterns

from existing source codes. In order to perform such operations, we can introduce other AI

techniques to create program codes which have the same functionalities but different structures.

In the LSTM-LM, the detection did not work well for some cases with missing and excessive

items. The reasons for its failure to work include the fact that the prediction of the model does

not use the parts of the sequence which appear later in the code. In the future, we plan to use

bidirectional long short-term memory (BLSTM) networks, which are special kinds of RNNs,

for bug detection. Since source codes are tree structures, BLSTM networks can be expected to

have higher accuracy than LSTM-LM. In the present study, although we only considered codes

written in Java, the algorithm can be applied to other programming languages, such as C/C++,

Python, and JavaScript, which can be represented in abstract syntax trees and sequences of to-

kens. There are more source codes written in C/C++, and thus logic errors can be detected with

higher accuracy depending on the language.

Finally, we discuss how we should implement the hybrid algorithm considering the above

observations. The algorithm depends on the situation and expectation of the service. If the user

(service) does not mind a longer response time for the feedback, the algorithm can be based on

the competition of SPED and LSTM-LM for which their better result or unification is returned
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(integrated feedback). On the other hand, if the user prefers a quicker response, the algorithm

should be much more sophisticated. In this case, the complexity C of the given query code and

the availability L of LSTM-LM can be calculated in advance without taking much time. The

value C is calculated based on the structural features of the query code. The value L can be

obtained based on the probability (reliability) of each detection. If C is less than the predefined

threshold C’ (the code is rather simple), then we can return the integrated feedback. If this

is not the case (the code is complex), and if L is greater than the predefined threshold L’ (we

have sufficiently reliable detection from LSTM), we do not need to activate SPED. On the other

hand, if there are no reliable results from LSTM-LM, we should consider using the integrated

feedback by activating SPED.

4.4 Chapter Summary

In this chapter, in order to clarify the weaknesses and strengths of existing logic error de-

tection methods, we investigated the performance of existing methods in detecting logic errors

using source codes with different structures and inherent logic errors under the same experi-

ment. The experiments were conducted using an OJ system that stored both correct and incor-

rect codes. The experimental results show that, in most cases, the static code analysis approach

outperforms the deep learning approach, although serious mismatches occur depending on the

structural features of the given query code and the available training data. We also found that

the deep learning approach was able to adequately cover such mismatches and detect logic er-

rors. We conclude that the combination of the two different approaches provides a basis for the

development of hybrid intelligent algorithms that can accurately detect logic errors and provide

appropriate feedback with higher accuracy. In addition, the detection of logic errors based on

deep learning does not have a reliability measure to indicate whether the resulting correction

candidate is a logic error or not. This work was presented at the international conference [85].

For the SPED, the more correct codes in the database that match the structure of the incorrect

code, the better the performance of detecting logic errors. On the other hand, the LSTM-LM

depends on the number and quality of correct codes in the database as well as SPED, but it

is not certain whether the correction candidate detected by the LSTM-LM are logic errors or

not. In Chapter 5, we introduce the proposed method to improve the detection performance by

LSTM-LM.
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Chapter 5

Improvement of Detection

Performance of LSTM-LM

In this chapter, we proposed a method that improve the detection performance of LSTM-

LM. Section 5.1 presents a method that optimizes thresholds that control correction candidates

detected by LSTM-LM. Section 5.2 describes an experiment to evaluate the detection perfor-

mance by each threshold value. Section 5.3 describes the experimental results that indicate

the thresholds can control correction candidates detected by LSTM-LM. Finally, Section 5.4

summarizes Chapter 5.

5.1 Proposed method

In the conventional method, by using thresholds, the correction candidates detected by

LSTM-LM are extracted as those containing logic errors. Due to the characteristics of LSTM-

LM, the probability of occurrence of tokens that are sequences of correct codes, which are train-

ing data, is high. However, the probability of tokens that are suspected to contain logical errors

is low. Therefore, there is a possibility that the correction candidates detected by LSTM-LM

include correction candidates that do not contain logic errors. In existing methods, the threshold

is empirically set to 0.1 because the probability obtained by the machine learning model is lower

for logic errors. However, since this threshold may depend on the LSTM-LM and programming

task, it is necessary to determine the appropriate threshold for each programming task. In this

chapter, we propose a method to optimize this threshold for each programming task.
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Figure 5.1: An overview of proposed method.

5.1.1 Overview

Fig. 5.1 outlines the method for optimizing the threshold value that regulates the correction

candidates to logic errors only. This method uses a trained LSTM-LM and a set of incorrect

codes; the LSTM-LM is capable of presenting a correction candidate for each incorrect code;

the evaluation value is calculated according to the presence or absence of logic errors in the

correction candidates detected by the LSTM-LM. Finally, the threshold value is optimized based

on the calculated evaluation value.

Algorithm 1 shows the logic error detection based on the LSTM-LM. The model infers a

token xt+1 from a sequence [x1, x2, .., xt] with the probability. If the probability is high, we

consider that the token xt+1 is a pattern that tends to appear in the learning data. On the other

hand, if the probability is low, we evaluate that the token xt+1 is a pattern that rarely appears

in the data. So, after a threshold τ is defined, a token that has a probability of less than τ

can be extracted as possible logic errors. In our previous approach, constant thresholds have

been optimized manually based on a heuristic. Thus, in this paper, we propose the approach to

optimize the thresholds that control the detection accuracy as well as its perspectives.

5.1.2 Optimization of threshold

Algorithm 2 shows an algorithm to optimize thresholds that enhance the detection perfor-

mance of the LSTM-LM. The algorithm inputs X , a list of incorrect codes, and Logic Error

Positions (LEP ), a list of sets, each of which includes places of known logic errors in the

correct code i. The algorithm outputs two thresholds τODmax and τNDmin which control the

detection performance of the LSTM-LM. The algorithm computes the detection performance of

the LSTM-LM for each threshold τ in (0, 1.0].

Let LEPi be a set of known logic errors in the source code i from the set of incorrect codes

40



5.1. PROPOSED METHOD

Algorithm 1 Positions DP = Logic error detection(x, lines, τ )
p← LSTM-LM(x)
DP← ∅
for t=0 to x.length do

idx← arg max(p[t+1])
if x[t+1] ̸= idx and p[t+1] ≤ τ then

if lines[t+1] ̸= lines[t+2] then
DP.append(lines[t+1]+1)

else
DP.append(lines[t+1])

end if
end if

end for
return DP

Algorithm 2 Threshold τODmax , τNDmin = threshold optimization(X, LINES, LEP)

d← 1000
size← X.size
OD, ND, MD, OVD← [d+1]
for τ = 1 to d+1 do

OD[τ ]← 0, ND[τ ]← 0
MD[τ ]← 0, OVD[τ ]← 0
for i=0 to size do
DPi← algorithm1(Xi, LINESi, τ )
if DP = ∅ then

ND[τ ] += 1
else if LEPi ⊆ DPi then

OD[τ ] += 1
else if LEPi ∩ DPi = ∅ then

MD[τ ] += 1
else

OVD[τ ] += 1
end if

end for
OD[τ ]← OD[τ ] ÷size ∗ 100
ND[τ ]← ND[τ ] ÷size ∗ 100
MD[τ ]←MD[τ ] ÷size ∗ 100
OVD[τ ]← OVD[τ ] ÷size ∗ 100

end for
τODmax ←

arg max(OD)
d

τNDmin ←
arg min(ND)

d
return τODmax , τNDmin
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X , and Detected Positions (DPi) be a set of lines detected by Algorithm 1. The performance of

the LSTM-LM with the threshold τ is estimated by the following evaluation values:

OD =
∥{i ∈ X | DPi ⊆ LEPi}∥

∥X∥
∗ 100 (5.1)

ND =
∥{i ∈ X | DPi ∩ LEPi = ∅}∥

∥X∥
∗ 100 (5.2)

MD =
∥{i ∈ X | DPi \ LEPi ̸= DPi}∥

∥X∥
∗ 100 (5.3)

OVD =
∥{i ∈ X | LEPi ⊂ DPi}∥

∥X∥
∗ 100 (5.4)

We proposed evaluation values based on ratios of Only Detection (OD), Non-Detection

(ND), MisDetection (MD), and OVerDetection (OVD) of the LSTM-LM to optimize the thresh-

olds. These evaluation values are calculated by the presence or absence of logic errors in the

correction candidates detected by LSTM-LM. The evaluation value OD is the ratio of source

codes that LSTM-LM could detect only logic errors. The evaluation value ND is the ratio of

source codes that LSTM-LM could not detect logic errors. The evaluation value MD is the ra-

tio of source codes to which the LSTM-LM provides inappropriate places as misdetection. The

evaluation value OVD is the ratio of source codes that the LSTM-LM provides for both proper

detection and misdetection. These values indicate the reliability of the correction candidates

detected by LSTM-LM.

τODmax is the threshold where OD is maximized and the number of correction candidates

obtained by the LSTM-LM is minimum. On the other hand, τNDmin is the threshold where ND

is minimized and the number of correction candidates obtained by the LSTM-LM is maximum.

5.2 Experiment

In order to verify the validity of the thresholds optimized by the proposed method, experi-

ments were conducted to compare the detection performance when using the optimized thresh-

olds and a conventional threshold. In the experiment, the internal parameters of LSTM-LM

were learned by using the correct codes stored in 32 programming tasks. The set of incorrect
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5.2. EXPERIMENT

Table 5.1: Overview of datasets.

Problem ID #training data #test data Problem ID #training data #test data
ITP1 1 A 5820 1413 ITP1 5 A 1234 282
ITP1 1 B 4796 816 ITP1 5 B 1694 201
ITP1 1 C 4050 807 ITP1 5 C 1787 135
ITP1 1 D 3123 535 ITP1 5 D 366 71
ITP1 2 A 2555 630 ITP1 6 A 1211 213
ITP1 2 B 2997 683 ITP1 6 B 822 95
ITP1 2 C 2099 360 ITP1 6 C 871 192
ITP1 2 D 1963 383 ITP1 6 D 1136 99
ITP1 3 A 2999 514 ITP1 7 A 999 127
ITP1 3 B 1824 352 ITP1 7 B 986 217
ITP1 3 C 1881 269 ITP1 7 C 847 125
ITP1 3 D 2042 357 ITP1 7 D 497 79
ITP1 4 A 1981 335 ITP1 8 A 600 92
ITP1 4 B 1312 339 ITP1 8 B 492 41
ITP1 4 C 1381 99 ITP1 8 C 497 57
ITP1 4 D 653 115 ITP1 8 D 383 45

codes corresponding to each programming task was then used to optimize the thresholds. We

analyzed the respective evaluation values when the thresholds are optimized.

5.2.1 Experimental Data

In the experiment, we employed source codes accumulated in AOJ [8, 69], which is one of

major OJ system. AOJ provides a number of tasks and judges submitted source codes oriented

to specific tasks. The submitted source code is compiled and executed with a number of strict

test cases. Therefore, the judge provides verdict whether the code is correct as well as evaluates

resource usage such as CPU time and memory.

Among a number of available tasks in AOJ, we select a set of tasks from Introduction to

Programming 1 (ITP1), which is a special course for introduction to programming. Table 5.1

shows details of the selected tasks.

The number of training data denotes the number of correct codes to learn the LSTM-LM.

The number of test data denotes the number of incorrect codes to optimize the thresholds as well

as to evaluate the LSTM-LM. In this experiment, source codes, each of which has only one line

with any logic error, were extracted as the test data.
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Table 5.2: A vocabulary for tokens.

ID word ID word ID word ID word ID word ID word
0 (masking value) 60 case 82 ( 104 > 126 U 150 n

1-20 (variables) 61 char 83 ) 105 @ 127 V 151 o
21-40 (functions) 62 else 84 * 106 A 128 W 152 p

41 continue 63 enum 85 + 107 B 129 X 153 q
42 unsigned 64 goto 86 , 108 C 130 Y 154 r
43 default 65 long 87 - 109 D 131 Z 155 s
44 typedef 66 main 88 . 110 E 132 [ 156 t
45 double 67 void 89 / 111 F 133 \ 157 u
46 extern 68 for 90 0 112 G 134 ] 158 v
47 signed 69 int 91 1 113 H 135 ˆ 159 w
48 sizeof 70 do 92 2 114 I 136 ‘ 160 x
49 static 71 if 93 3 115 J 137 a 161 y
50 struct 72 (space) 94 4 116 K 138 b 162 z
51 switch 73 ! 95 5 117 L 139 c 163 {
52 return 74 ? 96 6 118 M 140 d 164 —
53 break 75 97 7 119 N 141 g 165 }
54 const 76 ” 98 8 120 O 144 h 166 ∼
55 float 77 # 99 9 121 P 145 i
56 short 78 $ 100 : 122 Q 146 j
57 union 79 % 101 ; 123 R 147 k
58 while 80 & 102 < 124 S 148 l
59 auto 81 ’ 103 = 125 T 149 m

5.2.2 Preprocessing

We extracted source codes that are compilable without errors for both learning of the LSTM-

LM and optimizing the thresholds. In addition, we excluded source codes that include functional

macro and functions defined by the programmer. Finally, tokens related to tabs, space characters,

and comments in extracted codes were removed.

Generally, an LSTM-LM can cause memory loss if a sequence x is too large, and makes

it difficult to learn parameters for each layer. So, to statistically optimize the abnormal value,

we apply the Hotelling’s T 2 theory [86] for the length of the ID sequence. In this chapter, the

source code was considered as the abnormal values when the chi-square value of the length of

the source code exceeded 99 percent on a chi-square distribution with 1 degree of freedom. The

source code that was judged as an outlier by the p-value which is X2
0.99(1) = 0.00016, the

source code is rejected from the extracted source codes.

x is a sequence of IDs transformed from tokens in the source code according to the vo-

cabulary in table 5.2. In the transformation process, variable names, function names, keywords

are encoded to integers in 1-20, 21-40 and 41-166 respectively. A sequence of IDs x which is

variable-length is transformed to the sequence which is fixed length using the zero padding.
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5.3. RESULT AND DISCUSSION

5.2.3 Hyperparameters

In this experiment, the data presented in Table 5.1 was used as the learning data of LSTM-

LM. The number of hidden neurons is 500, the number of epochs is 50, and the number of

neurons for the input and output layer is 167, which is the maximum number of vocabularies.

The batch size is 16. To avoid overtraining, we set learning rate α = 0.001, β1 = 0.9, β2 = 0.999,

ϵ = 1e-8 based on the Adam optimizer [84]. Moreover, we set a dropout ratio as 0.5 [83].

5.3 Result and Discussion

5.3.1 Optimized Thresholds for LSTM-LM

Table 5.3 shows the fixed threshold τ1 and the threshold values τODmax and τNDmin obtained

by the proposed method for each programming task. It can be seen that the optimized thresholds

are adapted to each programming task. This indicates that the thresholds τODmax and τNDmin

obtained by the proposed method instead of the threshold τ1 can be set as thresholds that are

more suitable for each programming task than the conventional thresholds.

Table 5.4 demonstrates the detection performance of the LSTM-LM for different thresholds

presented in table 5.3. It can be seen that the threshold τODmax optimized by the proposed

method is smaller than τNDmin . This indicates that the detection accuracy is higher when the

threshold τODmax is smaller than τ1, which is the threshold used in the conventional method.

This indicates that the threshold value τODmax optimized by the proposed method is more suit-

able than tau1 of the conventional method. On the other hand, the threshold value τNDmin is in

many cases smaller than τ1 of the conventional method.

In the programming tasks ITP1 4 B, ITP1 5 C, ITP1 7 B, and ITP1 7 C, MD is greater

than OD when set to the threshold τODmax . This indicates that the detection accuracy by

LSTM-LM is low. This indicates that there are many false positives in each programming task.

However, this phenomenon does not occur for other tasks, suggesting that the problem is task-

and LSTM-LM-dependent.

In this way, the different thresholds provide different perspectives to obtain the feedback

of detection results. τODmax is oriented to the situation in which the user wants to know only

the place with true errors and less misdetection. On the other hand, τNDmin is oriented to the

situation in which the user does not want to miss the true logic error even if there are relatively

many excess correction candidates.
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Table 5.3: Optimized thresholds by proposed method.

Proposed method Previous method
Problem ID τODmax τNDmin τ1
ITP1 1 A 0.063 0.424 0.1
ITP1 1 B 0.006 0.011 0.1
ITP1 1 C 0.006 0.015 0.1
ITP1 1 D 0.001 0.029 0.1
ITP1 2 A 0.001 0.172 0.1
ITP1 2 B 0.003 0.395 0.1
ITP1 2 C 0.003 0.154 0.1
ITP1 2 D 0.003 0.146 0.1
ITP1 3 A 0.027 0.349 0.1
ITP1 3 B 0.007 0.206 0.1
ITP1 3 C 0.007 0.14 0.1
ITP1 3 D 0.006 0.035 0.1
ITP1 4 A 0.005 0.016 0.1
ITP1 4 B 0.001 0.008 0.1
ITP1 4 C 0.005 0.086 0.1
ITP1 4 D 0.007 0.049 0.1
ITP1 5 A 0.002 0.076 0.1
ITP1 5 B 0.002 0.064 0.1
ITP1 5 C 0.007 0.073 0.1
ITP1 5 D 0.003 0.056 0.1
ITP1 6 A 0.002 0.057 0.1
ITP1 6 B 0.007 0.148 0.1
ITP1 6 C 0.007 0.042 0.1
ITP1 6 D 0.003 0.156 0.1
ITP1 7 A 0.002 0.214 0.1
ITP1 7 B 0.009 0.227 0.1
ITP1 7 C 0.006 0.089 0.1
ITP1 7 D 0.021 0.058 0.1
ITP1 8 A 0.015 0.121 0.1
ITP1 8 B 0.004 0.122 0.1
ITP1 8 C 0.003 0.191 0.1
ITP1 8 D 0.02 0.287 0.1
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5.3. RESULT AND DISCUSSION

Table 5.4: Experimental results.

Proposed method Previous study
Target τ = τODmax

τ = τNDmin
τ = τ1

Problem ID OD OVD MD ND OD OVD MD ND OD OVD MD ND
ITP1 1 A 82.95 7.63 8.63 0.79 47.99 42.66 8.92 0.43 82.95 7.63 8.63 0.79
ITP1 1 B 36.71 48.36 12.88 2.05 22.60 71.92 5.48 0.00 17.95 77.67 4.38 0.00
ITP1 1 C 76.05 14.99 8.54 0.42 72.27 19.61 8.12 0.00 43.56 49.72 6.72 0.00
ITP1 1 D 60.18 33.48 3.94 2.41 43.54 52.95 3.50 0.00 9.41 87.09 3.50 0.00
ITP1 2 A 71.67 15.88 4.72 7.73 26.61 66.52 6.87 0.00 41.63 50.21 7.30 0.86
ITP1 2 B 85.83 4.72 4.72 4.72 63.04 32.85 4.11 0.00 38.81 57.49 3.70 0.00
ITP1 2 C 56.43 20.75 7.05 15.77 6.22 85.89 7.88 0.00 11.62 78.42 9.13 0.83
ITP1 2 D 68.48 17.75 5.43 8.33 42.39 53.62 3.99 0.00 44.93 50.72 3.62 0.72
ITP1 3 A 80.66 10.29 6.17 2.88 64.81 31.89 3.29 0.00 71.81 22.63 4.12 1.44
ITP1 3 B 65.37 11.97 11.33 11.33 27.18 61.17 11.65 0.00 34.95 52.10 11.97 0.97
ITP1 3 C 52.22 21.67 12.78 13.33 15.00 71.11 13.89 0.00 22.22 63.89 12.78 1.11
ITP1 3 D 62.80 22.56 7.32 7.32 45.73 44.51 9.76 0.00 29.57 60.98 9.45 0.00
ITP1 4 A 50.65 45.45 3.03 0.87 50.65 47.19 2.16 0.00 28.57 69.70 1.73 0.00
ITP1 4 B 29.94 36.53 30.54 2.99 28.14 39.52 32.34 0.00 20.36 51.50 28.14 0.00
ITP1 4 C 66.25 13.75 5.00 15.00 30.00 65.00 5.00 0.00 30.00 65.00 5.00 0.00
ITP1 4 D 66.67 18.67 9.33 5.33 53.33 38.67 8.00 0.00 25.33 69.33 5.33 0.00
ITP1 5 A 63.42 10.12 11.67 14.79 19.46 65.37 15.18 0.00 7.39 77.43 15.18 0.00
ITP1 5 B 40.72 20.96 11.98 26.35 10.18 62.28 27.54 0.00 7.78 65.87 26.35 0.00
ITP1 5 C 27.43 31.86 23.01 17.70 7.96 68.14 23.89 0.00 4.42 71.68 23.89 0.00
ITP1 5 D 41.18 21.57 27.45 9.80 31.37 43.14 25.49 0.00 9.80 66.67 23.53 0.00
ITP1 6 A 50.39 13.18 25.58 10.85 23.26 50.39 26.36 0.00 17.83 58.91 23.26 0.00
ITP1 6 B 31.65 21.52 7.59 39.24 13.92 64.56 21.52 0.00 12.66 65.82 21.52 0.00
ITP1 6 C 36.77 25.81 27.74 9.68 9.03 77.42 13.55 0.00 7.74 81.94 10.32 0.00
ITP1 6 D 34.38 21.88 12.50 31.25 6.25 75.00 18.75 0.00 6.25 73.44 18.75 1.56
ITP1 7 A 65.66 19.19 9.09 6.06 18.18 69.70 12.12 0.00 13.13 75.76 11.11 0.00
ITP1 7 B 17.24 8.05 17.82 56.90 0.57 45.98 53.45 0.00 5.17 34.48 51.15 9.20
ITP1 7 C 14.94 24.14 28.74 32.18 6.90 75.86 17.24 0.00 6.90 75.86 17.24 0.00
ITP1 7 D 43.75 12.50 18.75 25.00 25.00 37.50 37.50 0.00 6.25 75.00 18.75 0.00
ITP1 8 A 22.50 25.00 10.00 42.50 5.00 73.75 21.25 0.00 13.75 58.75 25.00 2.50
ITP1 8 B 29.41 20.59 23.53 26.47 14.71 47.06 38.24 0.00 11.76 52.94 35.29 0.00
ITP1 8 C 53.19 25.53 10.64 10.64 19.15 72.34 8.51 0.00 19.15 72.34 6.38 2.13
ITP1 8 D 22.22 44.44 3.70 29.63 0.00 92.59 7.41 0.00 7.41 62.96 22.22 7.41
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5.3.2 Evaluation Values for Each Programming Task

Figure 5.2 shows the evaluation values for different thresholds for each programming task.

To show variation of the evaluation values for different tasks, we selected four tasks for the

experiment. Experimental results for other programming tasks are given in Section A.1 in the

Chapter Appendix.
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Figure 5.2: Evaluation values by changes of threshold τ .

The four evaluation values show different variations for each programming task because the

tasks have different specifications and the number of available solution codes. This indicates that

the performance of the LSTM-LM depends on each programming task. The results show that

the four values do not change when the threshold τ is greater than 0.5. Thus, if the probability

obtained by the LSTM-LM is greater than 0.5, the possibility that the detected place includes

logic errors is low. Therefore, we focus on the correction candidates whose probability is less

than 0.5 to evaluate the detection performance of the LSTM-LM. In other words, we observe

the four evaluation values where τ is less than or equal to 0.5.
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5.4. CHAPTER SUMMARY

5.3.3 Limitations

The proposed method depend on the detection performance of LSTM-LM. Therefore, if

LSTM-LM itself cannot detect logic errors, it cannot be restricted to only the logic errors in the

correction candidates. Therefore, if LSTM-LM is unable to detect logic errors, it is possible to

detect more logic errors by using language models based on the attention mechanism or by using

the latest language models such as BERT [35]. However, these models require more training

data.

5.4 Chapter Summary

We proposed a method that optimize thresholds that regulate correction candidates detected

by LSTM-LM. The method enables to control correction candidates provided as logic errors by

optimizing the thresholds of probabilities obtained from the language model. The experimental

results show that the algorithm improves the detection performance of the LSTM-LM by using

not only correct codes but also incorrect codes. The experiment has been conducted by using

a problem set and the corresponding accumulated source codes of an OJ system. An important

feature of the proposed approach is that the thresholds can be optimized for each programming

task and optimize the detection performance of the LSTM-LM. On the other hand, there is

room to improve the accuracy of the LSTM-LM. So, additional techniques such as attention

mechanism will be considered to improve the learning model. This study was presented at an

international conference [87].
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Chapter 6

A Model with Iterative Trials for

Correcting Logic Errors in Source

Code

MLB logic error detection based on LSTM-LM shows a use case where logic errors in the

source code can be presented as correction candidates [14]. However, the extent to which these

methods can be used to correct logic errors in source code has not been verified in practice. In

this chapter, we develop a debugging support model using the correction candidates obtained

from LSTM-LM and evaluate the performance in correcting logic errors. In addition, we intro-

duce a use case of the debugging support model.

In Chapter 6, we proposed a model that detects and corrects logic errors iteratively. Section

6.1 introduces an overview of the proposed model. Section 6.2 describes an experiment to eval-

uate the detection and correction performance of the proposed model. Section 6.3 describes the

experimental results that indicate the proposed model can correct multiple logic errors. Finally,

Section 6.4 summarizes Chapter 6.

6.1 Proposed Model

This section introduces a proposed model using LSTM-LM and support vector machine

(SVM). First, we explain that LSTM-LM is used to identify logic errors in the source code.

Next, the proposed EOP is described.
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6.1. PROPOSED MODEL

6.1.1 Overview of Proposed Model

Figure 6.1 outlines the proposed model for correcting multiple logic errors in a given source

code. The model debugs an incorrect code by iteratively identifying and correcting logic errors

and testing the modified code. This model consists of LSTM-LM and EOP. The EOP predicts

an editing operation from a correction candidate obtained by LSTM-LM. Based on the editing

operation, EOP seeks to correct the logic error in the source code. Then the model tests whether

the corrected source code is correct or not. If the source code is incorrect, it again becomes

input data for LSTM-LM. In this way, the model can debug source code containing multiple

logic errors.

Figure 6.1: Overview of the proposed model.

A set of source codes oriented to the specification of a programming task is required to build

the proposed model. LSTM-LM has learned the structure of a set of correct codes to predict the

position of logic errors. EOP can predict the editing operation for the correction candidate
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by learning the editing operation performed between the incorrect code and the corresponding

correct code.

6.1.2 Editing Operation Predictor (EOP)

If the token x̂t+1 predicted by Algorithm 1 and the original token xt+1 do not match, the

source code needs to be edited using the predicted token x̂t+1 for the position of the token xt

and the token xt+1. The editing operations are considered as follows using the three tokens.

insert insert the predicted token x̂t+1 between token xt and the next token xt+1.

delete delete the next token xt+1 between token xt and x̂t+1.

replace replace the next token xt+1 with the predicted token x̂t+1.

Editing operations can be predicted by using the tokens xt, xt+1 and x̂t+1. This assumes

that the programmer can edit the source code if he/she knows the token and position to modify.

EOP predicts the editing operation from the structure of the source code x and the three tokens

xt, xt+1 and x̂t+1.

Figure 6.2 shows how the model edits the source code based on the correction candidates

obtained from Algorithm 1. The correction candidate with the highest possibility of a logic error

is selected from the correction candidates list obtained from Algorithm 1. The selected correc-

tion candidate is converted into feature vectors using the vocabulary table used for tokenizing.

Four feature vectors of the same size as the vocabulary table are created. They are a vector for

the position of token xt, a vector for the position of token xt+1, a vector for the position of token

x̂t+1, and a total number of each vocabulary in the source code. The concatenation of these four

vectors is used as the EOP input.

Editing operations of source code can be classified into three categories: insertion, deletion,

or replacement of tokens. Therefore, we consider the prediction of edit operations for source

code as a multi-classification problem. To construct the EOP, we use SVM [88], which can

solve multi-classification problems.

To learn the internal parameters of EOP, feature vectors and teacher labels are extracted

using a set of source codes obtained from the DB. The submission logs of all users are extracted

from the set of source codes, and a set of pairs, each of which consists of a correct and an

incorrect code are employed as learning data. The extracted pair corresponds to an editing
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6.1. PROPOSED MODEL

EOP

add/delete/replace

int main ( ){

int x;

scanf ("%d" ,& x );

printf ("%d" , x * x);

return 0;

}

A source code

with logic errors

Position 

𝒕
Candidate

𝒙𝒕

Next token

𝒙𝒕+𝟏

Predicted token

ෝ𝒙𝒕+𝟏

Probability of the next token

𝒑(𝒙𝒕+𝟏)

𝑡 𝑘1 𝑘2 𝑘3 0.00001

𝑡 0 0 0 0 0 𝑡 + 2 00 𝒕 + 𝟏 0 02 3 4 5

A correction candidate

Word ID

𝒌𝟏 1

𝒌𝟐 2

𝒌𝟑 3

𝒌𝟒 4

+++

Vocabulary

1 2 3 41 2 3 4 1 2 3 4 1 2 3 4

2 3 4 5 𝒕 0 0 0 0 𝒕 + 𝟏 0 0 0 0 𝒕 + 𝟐 0

Standardization

Figure 6.2: Role of the EOP.

process from an incorrect code to a correct code. By calculating the Shortest Editing Script

(SES) that provides the editing operations between two source codes, it is possible to obtain the

editing operations for the candidates to be corrected. The SES is calculated from the incorrect

and correct codes by dynamic programming. Incorrect code and correct code are converted into

an ID sequence in advance using the vocabulary table. By comparing the ID sequence of the

incorrect code with the position of the SES, it is possible to label what kind of editing operation

the token in the SES can perform on the editing position. EOP learns these feature vectors and

labels for editing operations using SVM.

6.1.3 Iterative Trials

The source code can be automatically corrected by combining LSTM-LM and EOP with

Algorithm 1. If the source code modified by the model does not meet the specifications of the

given programming task, it may need to be corrected again. This mechanism is based on the

iterative repair proposed by Deepfix [58]. In this model, the source code is tested using test cases

to check whether the modified source code contains logic errors. If the modified source code

passes the test, the debugging process is terminated assuming that all logic errors in the source
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code have been corrected. On the other hand, if the modified source code does not pass the test,

the source code will be corrected again. If the target source code is written in a programming

language that requires a compiler (e.g., C language), the model uses the compiler to convert it

to an executable code before testing.

6.2 Experiment

To verify the usefulness of the proposed model, we compared it with the conventional model

without iterative trials. In the conventional model, only one trial of correction is performed using

the correction candidates predicted by LSTM-LM. It is necessary to define metrics for evaluating

the usefulness of the proposed model. We evaluated the performance of the proposed model by

focusing on the correction accuracy of logic errors, the number of trials, and the execution time.

We defined the correction accuracy as the ratio of the source codes in which all logic errors

are corrected in the experimental data. We defined the number of corrections as the average

number of corrections until the correct code is obtained in the experimental data. We defined

the execution time as the time until the given source code becomes correct by the proposed

model. However, if the model could not correct the given source code, it was not included in

this result. We used a 64-bit Windows 10 computer with an Intel Core i9-9900K CPU (3.60

GHz), 32 GB RAM, and Nvidia GeForce RTX 2070 SUPER GPU.

To train the proposed model and conduct an experiment to verify its usefulness, we used

source codes in C language which were written by programming learners for 32 programming

tasks.

6.2.1 Dataset

Table 6.4 shows the experimental data used to evaluate the proposed model. Here, targets is

the number of incorrect codes that contain logic errors for each programming task. We selected

the target codes with an edit distance of five or less and iterated until the code was corrected.

Moreover, we categorized the source codes by the number of tokens that cause logic errors. The

proposed model tries to correct logic errors until the given code is corrected. If the source code

cannot be edited using the proposed model, modifications may be repeated infinitely as long

as there are correction candidates. To avoid this situation, we set a termination condition in

the proposed model. The model terminates its trials when the number of correction candidates
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indicated by Algorithm 1 becomes 0 or the number of iterations of the model exceeds 30.

To focus on solution codes which include logic errors, we excluded those that could not

be properly compiled because of syntax errors or warnings. Moreover, source codes including

functions and function macros defined by users were excluded. We deleted comments, tabs, and

spaces in the source codes to remove unnecessary tokens.

6.2.2 Training and Training Accuracy

The source code used for training was tokenized to the sequence x based on Table 6.1. In

LSTM-LM, if the sequence x becomes long, memory leak may occur due to the increase in

internal parameters. Therefore, we apply Hotelling’s theory [86] to the length of the sequence

x and statistically determine outliers. When the chi-square value of the length of each sequence

exceeds 99% of the χ2 distribution with one degree of freedom, the source code is regarded

as an abnormal value. Source codes judged to be outliers were rejected from the training data

using the significance probability (p-value) χ2
0.99(1) = 0.00016. This means that source codes

were rarely rejected.

Table 6.1: Vocabulary.

ID word ID word ID word ID word ID word ID word
0 (masking value) 70 auto 92 ’ 114 = 126 T 160 m

1-20 (variables) 71 case 93 ( 115 > 127 U 161 n
21-50 (functions) 72 char 94 ) 116 @ 128 V 162 o

51 continue 73 else 95 * 117 A 129 W 163 p
52 unsigned 74 enum 96 + 118 B 130 X 164 q
53 default 75 goto 97 , 119 C 131 Y 165 r
54 typedef 76 long 98 - 120 D 132 Z 166 s
55 define 77 main 99 . 121 E 133 [ 167 t
56 double 78 void 90 / 122 F 134 \ 168 u
57 extern 79 for 101 0 123 G 135 ] 169 v
58 signed 80 int 102 1 124 H 136 ˆ 170 w
59 sizeof 81 do 103 2 125 I 137 ‘ 171 x
60 static 82 if 104 3 126 J 138 a 172 y
61 struct 83 (space) 105 4 127 K 139 b 173 z
62 switch 84 ! 106 5 128 L 140 c 174 {
63 return 85 ? 107 6 129 M 141 d 175 —
64 break 86 108 7 130 N 144 g 176 }
65 const 87 ” 109 8 131 O 155 h 177 ∼
66 float 88 # 110 9 132 P 156 i
67 short 89 $ 111 : 133 Q 157 j
68 union 90 % 112 ; 134 R 158 k
69 while 91 & 103 < 135 S 159 l

LSTM-LM was constructed using Tensorflow (2.4.0) [89]. To train LSTM-LM, we set the

batch size to 4, the number of hidden neurons to 256, and the number of epochs to 100 as hy-
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perparameters. We selected categorical entropy as the loss function. To prevent overfitting of

LSTM-LM, we used the Adam optimizer with four parameters based on the recommendation of

Ref. [84]: learning rate α = 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1e− 8. As another counter-

measure against overfitting, we set the dropout rate to be 0.5 based on the recommendation of

Ref. [83].

Table 6.2 shows the accuracy of the LSTM-LM trained using the correct codes of 32 pro-

gramming tasks. Task ID is the Problem ID of 32 programming tasks in AOJ respectively.

#training data is the number of correct codes used for training, excluding duplicate correct

codes. #training data shows that solution codes accumulated in AOJ are available for each pro-

gramming task.

Table 6.2: Training accuracy of LSTM-LM.

Task ID #training data Perplexity Training accuracy [%]
ITP1 1 A 73 1.08 93.28
ITP1 1 B 528 1.08 93.72
ITP1 1 C 1035 1.07 94.41
ITP1 1 D 1905 1.07 94.88
ITP1 2 A 886 1.06 96.24
ITP1 2 B 627 1.06 96.01
ITP1 2 C 1380 1.05 95.79
ITP1 2 D 1513 1.05 96.11
ITP1 3 A 380 1.04 94.10
ITP1 3 B 1241 1.07 94.09
ITP1 3 C 1530 1.06 95.05
ITP1 3 D 1266 1.06 95.29
ITP1 4 A 223 1.07 94.98
ITP1 4 B 212 1.06 94.01
ITP1 4 C 1148 1.05 96.61
ITP1 4 D 332 1.09 94.15
ITP1 5 A 946 1.06 96.17
ITP1 5 B 1673 1.07 95.82
ITP1 5 C 1712 1.05 95.44
ITP1 5 D 338 1.08 94.31
ITP1 6 A 1141 1.07 95.21
ITP1 6 B 760 1.07 95.19
ITP1 6 C 765 1.05 96.17
ITP1 6 D 1119 1.06 96.40
ITP1 7 A 934 1.05 96.50
ITP1 7 B 904 1.08 94.11
ITP1 7 C 769 1.09 94.98
ITP1 7 D 213 1.08 95.72
ITP1 8 A 569 1.08 94.02
ITP1 8 B 432 1.10 91.58
ITP1 8 C 455 1.04 94.21
ITP1 8 D 173 1.16 87.89
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EOP was constructed using Scikit-learn (0.23.2) [90]. 10-fold cross validation was used to

evaluate the performance of EOP. #training data was divided into 10 parts, 9 of which were used

for training, and 1 was used as test data. From this process, 10 models were constructed and the

accuracy of each of them was calculated.

Table 6.3 shows the accuracy of the trained EOP. Here, Task ID is the Problem ID of the 32

programming tasks. #training data is the number of features based on the editing information

between the incorrect code and the corresponding correct code in the 32 programming tasks.

We excluded duplicate data from #training data. Training accuracy and test accuracy of EOP

are averages of 10 models obtained using k-fold cross validation.

Table 6.3: Training and Test accuracy of EOP.

Task ID #training data Training accuracy [%] Test accuracy [%]
ITP1 1 A 1085 92.82 84.89
ITP1 1 B 5600 91.68 87.13
ITP1 1 C 5585 89.63 86.05
ITP1 1 D 5946 87.80 81.90
ITP1 2 A 6267 94.74 91.86
ITP1 2 B 3784 93.67 89.46
ITP1 2 C 16635 88.64 85.39
ITP1 2 D 7249 88.59 84.15
ITP1 3 A 1503 93.62 86.10
ITP1 3 B 6190 89.95 86.49
ITP1 3 C 8137 90.80 87.18
ITP1 3 D 2972 89.42 81.86
ITP1 4 A 608 94.15 82.74
ITP1 4 B 891 96.53 87.88
ITP1 4 C 5286 90.36 85.60
ITP1 4 D 2331 85.59 79.58
ITP1 5 A 5829 94.87 91.13
ITP1 5 B 4936 90.83 85.96
ITP1 5 C 5400 90.65 85.89
ITP1 5 D 3560 93.53 98.99
ITP1 6 A 6393 94.73 91.69
ITP1 6 B 12291 86.17 81.26
ITP1 6 C 5586 90.59 85.97
ITP1 6 D 4654 86.16 80.28
ITP1 7 A 8937 89.75 85.48
ITP1 7 B 6718 88.97 83.22
ITP1 7 C 7805 87.85 82.93
ITP1 7 D 2125 90.01 84.28
ITP1 8 A 4316 89.58 82.95
ITP1 8 B 6700 82.52 75.30
ITP1 8 C 5080 86.56 79.92
ITP1 8 D 492 94.94 88.41
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Since the training accuracy and verification accuracy is 80% or more in many programming

tasks, the EOP is considered to have sufficient predictive performance for editing operations

using the editing position and its token. This means that the EOP can likely be effectively used

to correct incorrect code.

Table 6.4: Details of experimental data

Datasets The number of logic errors
Task ID Targets 1 2 3 4 5
ITP1 1 A 1524 281 1094 53 80 16
ITP1 1 B 630 42 536 13 31 8
ITP1 1 C 694 51 519 18 99 7
ITP1 1 D 500 16 365 20 88 11
ITP1 2 A 494 113 108 8 59 206
ITP1 2 B 727 17 466 15 160 69
ITP1 2 C 308 33 243 4 26 2
ITP1 2 D 350 28 72 11 236 3
ITP1 3 A 558 285 236 15 17 5
ITP1 3 B 336 105 175 18 27 11
ITP1 3 C 255 32 108 54 55 6
ITP1 3 D 379 123 202 15 35 4
ITP1 4 A 56 0 32 23 0 1
ITP1 4 B 42 8 7 7 7 13
ITP1 4 C 85 27 43 7 5 3
ITP1 4 D 63 10 30 6 17 0
ITP1 5 A 59 13 28 3 15 0
ITP1 5 B 132 10 93 2 26 1
ITP1 5 C 81 14 39 4 24 0
ITP1 5 D 50 8 24 3 14 1
ITP1 6 A 83 31 37 3 9 3
ITP1 6 B 70 41 20 5 1 3
ITP1 6 C 142 85 32 11 12 2
ITP1 6 D 89 24 44 4 17 0
ITP1 7 A 123 39 37 21 21 5
ITP1 7 B 183 8 41 5 127 2
ITP1 7 C 89 24 50 8 6 1
ITP1 7 D 23 2 6 1 14 0
ITP1 8 A 66 30 26 5 1 4
ITP1 8 B 46 15 10 6 14 1
ITP1 8 C 51 9 27 5 5 5
ITP1 8 D 5 2 1 0 2 0
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6.3 Experimental Results and Discussion

6.3.1 Results

Table 6.5 shows the correction performance of the proposed model. The proposed model im-

proves the correction accuracy of source code in all programming tasks. To ensure that the result

was not due to a statistical chance, statistical tests were performed on the correction accuracy

of the conventional and proposed models. The calculated p-value is 6.27e-16, which satisfies

the general significance level of p-value¡0.05, indicating that these results are not chance re-

sults. The average correction accuracy of the conventional model for each programming task

was 13.90%. On the other hand, the average correction accuracy of the proposed model was

72.55%. The average correction accuracy of the proposed model is 58.64% higher than the con-

ventional model without iterative trials. This shows that the accuracy of correcting logic errors

can be improved substantially by using the proposed model that introduces iterative trials. This

means that the proposed model was able to correct hidden logic errors that could not be detected

in the first trial.

Table 6.5: Correction performance.

Datasets Correction accuracy [%] Number of edits Execution time [s]
Task ID Targets Conventional model Proposed model Users Proposed model Average Min Max
ITP1 1 A 1524 18.11 99.54 2.00 2.12 0.38 0.23 2.62
ITP1 1 B 630 5.08 97.14 2.15 6.72 0.82 0.25 4.51
ITP1 1 C 694 4.18 93.08 2.44 4.87 0.60 0.22 4.27
ITP1 1 D 500 4.00 88.60 2.74 3.01 0.51 0.34 5.17
ITP1 2 A 494 24.09 89.07 3.68 9.85 1.47 0.25 4.28
ITP1 2 B 727 1.38 93.95 2.90 4.33 0.56 0.26 5.12
ITP1 2 C 308 6.49 72.73 2.88 4.82 0.52 0.27 3.82
ITP1 2 D 350 9.43 79.14 4.20 4.08 0.86 0.54 3.67
ITP1 3 A 558 30.47 97.49 1.65 4.98 0.62 0.20 8.10
ITP1 3 B 336 23.81 85.42 2.34 2.91 0.38 0.21 3.44
ITP1 3 C 255 6.27 69.41 3.73 5.08 0.58 0.21 8.11
ITP1 3 D 379 7.65 94.46 2.04 2.45 0.60 0.46 3.75
ITP1 4 D 63 7.94 77.78 3.18 3.39 0.74 0.48 5.16
ITP1 4 B 42 16.67 64.29 5.04 5.00 0.55 0.23 5.34
ITP1 4 C 85 14.12 80.00 2.49 3.66 0.70 0.27 6.38
ITP1 4 D 63 7.94 77.78 3.18 3.39 0.74 0.48 5.16
ITP1 5 A 59 27.12 83.05 2.82 3.06 0.42 0.26 1.58
ITP1 5 B 132 3.03 66.67 3.53 5.62 0.45 0.23 3.50
ITP1 5 C 81 3.70 60.49 4.08 6.16 0.47 0.26 3.44
ITP1 5 D 50 16.00 80.00 3.15 3.30 0.63 0.31 4.71
ITP1 6 A 83 16.87 81.93 2.43 5.04 0.56 0.26 1.90
ITP1 6 B 70 27.14 44.29 3.71 4.32 0.35 0.27 3.24
ITP1 6 C 142 16.90 58.45 2.89 8.11 0.73 0.27 6.09
ITP1 6 D 89 19.10 56.18 3.84 4.58 0.49 0.46 4.01
ITP1 7 A 123 22.76 69.92 3.31 3.45 0.56 0.26 10.07
ITP1 7 B 183 1.09 64.48 5.28 6.36 0.63 0.27 7.26
ITP1 7 C 89 6.74 26.97 7.38 3.79 0.17 0.28 2.10
ITP1 7 D 23 13.04 47.83 6.64 2.91 0.41 0.48 1.66
ITP1 8 A 66 18.18 40.91 4.48 2.56 0.16 0.26 1.90
ITP1 8 B 46 6.52 34.78 7.12 3.81 0.44 0.26 2.73
ITP1 8 C 51 47.06 72.55 3.32 3.00 0.38 0.26 2.04
ITP1 8 D 5 20.00 60.00 4.00 3.00 0.56 0.68 1.06

Average 13.90 72.55 3.57 4.42 0.56 0.30 4.16
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We compared the number of edit operations in the proposed model with the number of edit

operations by the user. The number of edit operations by the user is the edit distance between the

experimental data created by each user and the corresponding correct code. The average number

of edit operations of the proposed model is slightly larger than that of the user. This means that

the correction candidates indicated by the proposed model include correction candidates that do

not need to be edited.

The experimental results show the average, minimum, and maximum execution time of the

proposed model for each programming task. The average execution time for all programming

tasks is less than 1.5 [s]. At the shortest, a given code can be corrected within 0.2 [s]. At the

longest, a given code can be corrected in 10.07 [s]. These results show that the proposed model

can debug logic errors in the source code within a reasonable timeframe.

Table 6.6 shows the correction accuracy for each number of logic errors in the source code

for all programming tasks. The proposed model can correct all logic errors in the source code,

even if there are multiple logic errors. This means that any logic errors that could not be detected

in a first attempt were corrected in a later attempt. Therefore, this shows that the proposed

model, which leverages iterative trials, is suitable as a debugging model for correcting multiple

logic errors.

Table 6.6: Correction performance for each number of logic errors of all problems.

Datasets Correction performance
The number of logic errors Targets Conventional model ([%]) Proposed model ([%])

1 1526 898 (58.8) 1304 (85.5)
2 4751 130 (2.7) 4305 (90.6)
3 373 6 (1.6) 291 (78.0)
4 1250 7 (0.6) 962 (77.0)
5 393 1 (0.3) 321 (81.7)

6.3.2 Application

Figure 6.3 shows an example of logic error correction using the proposed model for a simple

programming task. The specification is to output the cube of a given integer. An example of

incorrect code shown in the upper left of the figure outputs the square of the given integer. The

logic error in this source code is “x*x” on the 5th line. Therefore, if “ * x ” is inserted in the

source code, the source code will become correct.

The table on the upper right in Fig. 6.3 lists the prediction results for one application of the
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Candidate Next word Predicted word Probability

1 ) void 0.4504

2 printf if 0.1961

3 ) * 0.7211e-04

4 0 ( 0.1797

Candidate Next word Predicted word Probability

1 ) void 0.4504

2 if printf 0.1961

3 ) x 0.6900e-8

4 ; ) 0.0187

Incorrect code

The source code after the 1st trial

The source code after the 2nd trial

1st trial

2nd trial

Insert * between x and )

Insert x between * and )

The incorrect code is correctable by correcting it 

twice using the proposed model

Figure 6.3: Example of logic error correction using proposed model.

proposed model to the incorrect code. The candidate with the lowest probability of occurrence

for the next word is the position of “)”, and the proposed revision is “*”. This demonstrates that

the model can correctly predict this logic error. In addition, the proposed model predicts “insert

* between x and )” from this information. The table at the bottom right of the figure shows the

correction candidates when the proposed model is applied a second time to the source code that

has already been corrected once. The candidate with the lowest probability is the position of

“)”, and the proposed amendment is “ x”. From the obtained information, the overall prediction

by the proposed model is thus “insert x between * and)”. Therefore, it is possible to correct all

logic errors in this source code by applying the proposed model.

In contrast, for the conventional model without iterative trials, the source code is corrected

using only the correction candidates obtained from the first trial. In the first trial, “insert *”

between “x” and “)” is performed, as in the case of the proposed model. However, since “x” is

not present in the correction candidates in this first trial, not all logic errors in the source code

can be corrected. Therefore, the conventional model can only correct some and not all of the

logic errors in the incorrect code.

The aim of debugging support in programming education is to provide learners with hints for
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correcting their source code. However, giving too many hints to the learner can be problematic.

Yi et al. [91] reported that novice programmers do not know how to modify programs efficiently

using hints for correcting errors in the source code. This means that the hints must be adjusted

according to the skills of the learner. Therefore, we suggest that it is possible to help individuals

learn how to debug by showing not only correction candidates but also their editing operations.

The proposed model automatically modifies the source code based on the results obtained

from each machine learning model. The modification of the proposed model can be replaced

as a process to be performed by the user. Gradual hints related to the correction candidates

and their editing operations by the proposed model can give the learners opportunities to think.

Therefore, the model can control the quality of hints by displaying information according to the

programming proficiency of the learner.

Novice programmers need debugging support in many situations. There are situations where

such individuals do not know what or how to debug when they get the verdict that the source

code is incorrect. The proposed model can show novice programmers whether the source code

can be corrected by iterative modification. When the source code can be corrected, the correction

candidates, the editing operations, and the number of edits obtained in each trial can be presented

as hints to these individuals. They can then use these hints to correct the source code. On the

other hand, debugging support for intermediate programmers can be achieved by giving partial

hints obtained from the proposed model. For example, it may be sufficient to disclose only the

position of the logic error as a hint. In this way, the intermediate learner needs to think about

the editing operation for the given position. Instructors and other expert programmers could,

for example, be provided with feedback from the proposed model with all details at the very

beginning, and then use this to help students at their discretion depending on their assessment of

individual needs. To apply the proposed model and obtained feedback to educational sites, we

should carefully consider learning efficiency. Generally, the feedback should not be direct and

immediate supports like those of conventional IDEs so that we can provide learners with chances

to think and try to resolve the problem by themselves. The degree of such support should be

controlled by learners or instructors according to their experience and learning modes.

The proposed model can also be used for software development. Generally, software con-

sists of modules, packages, and subroutines. Implementations of these subroutines carry out nu-

merical calculations and algorithm-level implementations to meet the specifications of a given

task. It is necessary to use testing to verify whether the implemented subroutine is correct for
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the corresponding specification. Our model can be employed to modify the source code if there

is a programming task with the same or similar specifications as the subroutine implemented in

a certain educational system,

Although the proposed model is evaluated using source code written in C, it can be imple-

mented in other programming languages by tokenization and learning the target source code. In

addition, the proposed model can be used to detect syntactic errors because it is trained using

correct and compilable source codes. For example, we believe that the proposed model can be

applied to datasets such as Code4Bench [92], Codenet [52], and CodexGlue [93], where a lot

of source codes are accumulated. To apply the proposed model to these datasets, it is neces-

sary to prepare word lists and IDs corresponding to the words after tokenizing the source codes.

The proposed model can be applied to these datasets by preparing the structures of LSTM-LM

corresponding to the number of vocabularies and the length of input sequences.

The proposed model can be applied not only to programming languages but also to natural

languages because it uses language models used for problem-solving in the field of NLP.

6.3.3 Limitations

These results show that the correction performance of the proposed model is high. However,

focusing on detection performance and the number of trials, there is still room for improvement.

We defined detection performance as the percentage of source codes in which a true logic error

exists among the correction candidates obtained in the first trial. In the proposed model, a

correction candidate most likely to be a logic error is selected and corrected. This means that if

the top k correction candidates include true logic errors, it will be easier to correct those errors.

Table 6.7 shows the detection performance of the proposed model. Task ID and Targets are the

ID of each programming task and the number of experimental data. This shows the detection

performance when the number of correction candidates is narrowed down to the top k. Where

top k =∞, this corresponds to all the correction candidates enumerated by the proposed model.

The detection performance of the proposed model is 95.54% when the top k = ∞. On

the other hand, when the correction candidates are narrowed down to the top one, the true

logic error can sometimes be missed. This means that true logic errors are less likely to appear

when the correction candidates are narrowed down to the top k. The probabilities obtained

from LSTM-LM are sufficient as a metric for detecting true logic errors in the source code.

However, the probabilities may not be sufficient as a metric for selecting a correction candidate.
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Table 6.7: Detection performance.

Datasets Top-k [%]
Task ID Targets k =∞ k = 1 k = 2 k = 3
ITP1 1 A 1524 99.34 50.72 46.85 38.32
ITP1 1 B 630 99.84 90.79 85.08 43.17
ITP1 1 C 694 98.27 55.04 41.35 26.22
ITP1 1 D 500 99.60 47.00 28.40 8.20
ITP1 2 A 494 100.00 34.62 23.08 9.92
ITP1 2 B 727 100.00 54.61 44.70 30.12
ITP1 2 C 308 98.38 35.39 25.00 12.99
ITP1 2 D 350 98.57 24.00 9.43 2.57
ITP1 3 A 558 99.82 74.91 65.41 40.32
ITP1 3 B 336 98.51 45.54 22.92 7.44
ITP1 3 C 255 96.08 40.39 21.96 8.24
ITP1 3 D 379 100.00 57.26 33.77 14.78
ITP1 4 A 56 100.00 57.14 41.07 21.43
ITP1 4 B 42 92.86 19.05 11.90 2.38
ITP1 4 C 85 97.65 40.00 20.00 5.88
ITP1 4 D 63 98.41 12.70 3.17 0.00
ITP1 5 A 59 96.61 37.29 23.73 8.47
ITP1 5 B 132 96.21 19.70 9.09 1.52
ITP1 5 C 81 93.83 25.93 16.05 4.94
ITP1 5 D 50 100.00 14.00 6.00 2.00
ITP1 6 A 83 100.00 22.89 9.64 4.82
ITP1 6 B 70 90.00 7.14 2.86 1.43
ITP1 6 C 142 100.00 28.17 10.56 3.52
ITP1 6 D 89 96.63 10.11 3.37 1.12
ITP1 7 A 123 98.37 17.89 8.13 3.25
ITP1 7 B 183 98.91 17.49 14.21 7.10
ITP1 7 C 89 95.51 26.97 21.35 11.24
ITP1 7 D 23 100.00 4.35 0.00 0.00
ITP1 8 A 66 87.88 22.73 12.12 3.03
ITP1 8 B 46 95.65 26.09 21.74 13.04
ITP1 8 C 51 100.00 5.88 0.00 0.00
ITP1 8 D 5 100.00 0.00 0.00 0.00

Average 95.54 33.85 22.70 11.12

The correction candidates indicated by LSTM-LM are likely to be logic errors, but they are not

always logic errors. To navigate this issue, one approach could be to narrow down the correction

candidates by analyzing what kind of logic errors are likely to occur in each programming task.

Table 6.8 shows the performance of correcting the source code that the debugging support

model could fix according to the classification of the places that contain logic errors introduced

in Chapter 3. Total is the number of source codes classified by each type, while Corrected is

the number and percentage of source codes fixed by the debug support model with iterative

attempts. Corrected is the number and percentage of source code that the proposed model

with iterative trials could correct. Not corrected is the number and percentage of source code

that the proposed model with iterative trials. It can be seen that these source codes contain

many logic errors related to string processing. Next, there are many errors caused by errors

64



6.3. EXPERIMENTAL RESULTS AND DISCUSSION

related to loops, conditional branches, and formulas. These analyses suggest that array size

and casts are difficult to correct. As for the correction performance, we can see that in most

cases the correction performance is greater than 50%. However, not all each type of logic errors

could be corrected, but the overall correction was found to be successful. This means that the

correction performance of the debugging support model does not depend on the type of logic

error. However, the classification of these logic errors is still incomplete, and a more detailed

analysis is needed.

Table 6.8: Correction accuracy for logic error type.

Logic error type Total Corrected (%) Not corrected (%)
include statement 100 91 (91.0) 9 (9.0)
switch quote 145 102 (70.3) 43 (29.7)
string format 5006 4618 (92.2) 388 (7.8)
output format 549 442 (80.5) 107 (19.5)
input statement 166 121 (72.9) 45 (27.1)
void main function 89 85 (95.5) 4 (4.5)
return value 26 22 (84.6) 4 (15.4)
for statement 654 553 (84.6) 101 (15.4)
if statement 1137 898 (79.0) 239 (21.0)
else statement 36 23 (63.9) 13 (36.1)
formula 541 354 (65.4) 187 (34.6)
do while statement 14 11 (78.6) 3 (21.4)
while statement 92 73 (79.3) 19 (20.7)
function 22 14 (63.6) 8 (36.4)
cast 1 0 (0.0) 1 (100.0)
type 96 66 (68.8) 30 (31.2)
array size 82 16 (19.5) 66 (80.5)
variable declaration 93 68 (73.1) 25 (26.9)
unary operation 30 27 (90.0) 3 (10.0)
scope 157 103 (65.6) 54 (34.4)
switch break continue 20 13 (65.0) 7 (35.0)
semicolon position 11 9 (81.8) 2 (18.2)
assignment operation 14 9 (64.3) 5 (35.7)
No classification 2 2 (100.0) 0 (0.0)

In addition, the proposed model is a specialized model that can identify the logic errors

that occur in each problem. Therefore, there is a problem of not being able to correct logic

errors other than those corresponding to the source code used for training. A solution to these

problems is the pre-trained language model such as BERT [35], which is adaptable to a variety

of tasks. In addition, a debugging support model has been developed that can be applied to a

variety of problems by embedding program IDs as input data. By building a model based on

these models, we believe it is possible to develop a generalized debugging support model rather
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than a specialized model.

6.4 Chapter Summary

This chapter proposed a debugging model for correcting logic errors in a given source code.

The model could correct multiple logic errors by repeatedly identifying and correcting errors,

and testing the source code. In the experiment, we applied the proposed model to 32 pro-

gramming tasks and the corresponding solution codes in an online judge system to verify the

advantage of the proposed model, . By comparing the proposed model with another model

without iterative trials, the results showed that the correction accuracy of the proposed model

improved by 58.64% on average. In addition, this model can suggest an editing operation for

correcting a source code depending on the features around the detection location in the process

of the iterative trials. The proposed model can also control the granularity of hints according to

the proficiency of programmers and learners. Therefore, the proposed model considers educa-

tional effectiveness and can be applied to e-learning systems that support education not only in

programming but also in related subjects. This research has been published in Applied Sciences

by Multidisciplinary Digital Publishing Institute (MDPI) [94].
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Chapter 7

Application

In Chapter 7, we discuss an integrated debugging support model by combining the pro-

posed approaches. Section 7.1 introduces an integrated debugging support model that combines

proposed approaches. Section 7.2 describes the use-cases of the integrated debugging support

model in education and software engineering. Section 7. 3 mentions the limitation of the model.

Finally, Section 7.4 summarizes Chapter 7.

7.1 Integrated Debugging Support Model

Figure 7.1 shows an overview of the integrated debugging support model that supports de-

bugging by combining the proposed methods in this dissertation. The model is a hybrid in-

telligence that combines SPED and LSTM-LM and provides detection and correction results

as debugging information to programmers. In order to use the integrated debugging support

model, it is necessary to prepare a software repository containing correct and incorrect code

created to solve a programming task. SPED uses structure patterns based on AST using correct

codes extracted from the software repository. On the other hand, LSTM-LM trains the internal

parameters using correct codes. The EOP trains the internal parameters using the edit informa-

tion between pairs of an incorrect code and the corresponding correct code created by each user

in the software repository. Finally, a threshold is determined to control the number of correction

candidates based on the results of using a set of incorrect codes.

When using the integrated debugging support model, the programmer provides a target

source code as input. SPED searches for the correct code that has the same structure as the

target code from the source codes stored in the data repository. If found, the correct code and
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Figure 7.1: An overview of a integrated debugging support model.

the target are compared based on the structure of the abstract syntax tree, and the location of

logic errors and their error types are presented. On the other hand, when the target is input to

LSTM-LM, it outputs a probability distribution for the tokens in each time series. If the input

and output data differ in each time series, it is considered highly likely to be a logic error, and

those tokens are added to the list as candidates for correction. The token with the highest prob-

ability of being a logic error among the added tokens is entered as a correction candidate. The

EOP then predicts the edit operation that should be performed on the candidate tokens. Based

on the prediction, the candidate tokens are corrected. After correction, the tokens are tested to

see if they meet the specifications of the programming task. If the test results indicate that the

correction is not complete, the corrected source code is input to LSTM-LM. Finally, the results

obtained by SPED and LSTM-LM are integrated by hybrid intelligence and provided to the pro-

grammer. This serves to show whether the source code submitted by the programmer can be

corrected by SPED and LSTM-LM.

We also believe that the threshold selection method introduced in Section 5 provides de-

bugging information to the programmer: if the source code detected and corrected by SPED

and LSTM-LM is presented as it is, the programmer will be able to modify the source code

to meet the specification of the programming task if the source code is corrected as it is. The

programmer can modify the source code to meet the specification of the programming task.
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7.2. USE-CASE

However, the programmer, whose goal is to learn programming, may lose the opportunity to

develop the problem-solving skills and logical thinking necessary to debug a program. Here,

we use the threshold values obtained with the proposed method, which allows us to control the

correction candidates; the correction candidates obtained by LSTM-LM are stored in a list. The

programmer needs to appropriately select from among the correction candidates the one that

satisfies the specification of the programming task. When using the debugging support model

introduced in Section 6, one is selected based on the probability distribution obtained by LSTM-

LM. However, if a programmer modifies the source code using this selection method, he/she can

modify the source code to satisfy the use of the programming task without deep consideration.

To prevent this, we control the correction candidates based on a threshold without displaying

the probability assigned to the correction candidate. This provides the programmer with the

task of appropriately selecting one of the correction candidates. Therefore, this realizes an in-

teractive interaction between the programmer and the debugging support model. The automatic

correction provides direct and immediate debugging support, but immediate and non-direct de-

bugging support is difficult. Therefore, we believe that the proposed method solves different

requirements in software engineering and programming education.

7.2 Use-Case

7.2.1 Educational Scene

The debugging support model introduced in Chapter 6 enables automatic correction by re-

peatedly detecting and correcting logic errors in the source code. Therefore, the model provides

the source code in which logic errors are corrected to a learner when the learner inputs an

incorrect code into the model. However, providing the source code may deprive programming

learners of the opportunity to develop the logical thinking necessary to solve problems. To solve

this problem, we leave the process of correcting the source code in our model to the learner’s

judgment. This means that the learner needs to think about which candidate to correct from the

multiple candidates obtained from the LSTM-LM with thresholds set. In addition, each learner

has a bias in programming skills, and it is necessary to provide debugging support tailored to

that learner. The integrated debugging model can provide information for debugging, such as

correction candidates, their editing operations, the number of edits until the correct code, and

correctability. The proposed model can also control the granularity of hints according to the

69



proficiency of programmers and learners.

Proposed methods support debugging for instructors that support learners. In general, an

instructor must judge whether a source code created by the learner is correct or not. If the

source code is incorrect, instructors need to support the learner in debugging a source code. Our

integrated debugging support model can support this process. First, the model provides whether

the model can correct the source code. Then, based on the results, it can quickly identify which

locations in the incorrect source code are incorrect. The instructor provides the learner with

the information necessary to debug the source code. This can be accomplished with or without

the instructor’s programming skills to support the learner. Therefore, this means that our model

reduces the number of people involved in debugging support and the debugging time.

To validate the effectiveness of our methods, we used the AOJ dataset, which has accumu-

lated a large number of incorrect and correct codes created to solve many programming tasks.

If a software repository that contains source code created by learners to solve a programming

task exists, it is possible to provide debugging support based on logic error detection and cor-

rection using the proposed method. Therefore, these methods can be applied to open data such

as CodeNet and CodeXGlue, which are currently available to the public.

7.2.2 Software Engineering

To use the integrated debugging support model, it is necessary to use a software repository

that contains source code written in the same programming language in a specific discipline. In

software engineering, there are no specific tasks in programming education, but a combination

of tasks. Therefore, it is difficult to apply this model to these tasks because they are not as

simple as the tasks in programming education. However, they may consist of simple functions.

This means that large source codes are a set of simple specifications, and software is built by

using those functions. Therefore, we believe that at the level of simple functions, the debugging

support model can detect logical errors within those functions. Furthermore, since the proposed

method is a model that learns a specific task, it can be used to correct logic errors in areas related

to the training data by changing the training data to a different data set.

70



7.3. LIMITATION

7.3 Limitation

In this section, we describe the limitation of the integrated debugging support model. The

model depends on the quality and quantity of the stored source codes, and in the case of SPED,

it is necessary to search for correct codes that have the same structure as the incorrect codes

in the database of correct codes. Since the algorithm is applied based on a comparison with

the structure of the retrieved correct code, the detection result cannot be output if it cannot be

retrieved. In addition, LSTM-LM learns internal parameters by using a set of correct codes

stored in the database. Therefore, LSTM-LM detects and corrects logic errors based on the

structure of the correct codes. However, LSTM-LM is not perfect in detecting and correcting

logic errors. It is not possible to determine whether the detected correction candidates and

corrected source code are correctly corrected by only LSTM-LM. Therefore, it is necessary to

test separately whether the detected correction candidates and corrected source code meet the

specifications of the programming task.

7.4 Chapter Summary

This chapter describes the applications and limitations of the integrated debugging support

model by combining proposed methods in this dissertation. Since the model is built based on

the accumulated source code, it is dependent on the quality and quantity of the source code.

Therefore, the accuracy of detecting and correcting logic errors may not be significant if there

is not enough data to train the machine learning model and the source code set required for

retrieval in SPED. However, an online programming education system such as AOJ, which is

capable of collecting data, stores source code and its metadata in its internal database. This is

expected to improve the accuracy of detection and correction of programming tasks for which

the current source code set does not improve accuracy.
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Chapter 8

Conclusion and future works

8.1 Summary

Debugging logic errors in source code is one of the most difficult tasks in software develop-

ment and programming education. From the standpoint of debugging support, if logic errors are

falsely detected by the logic error detection method, the user may make incorrect modifications

using them. In addition, although a use case for a logic error detection method based on machine

learning has been presented, the performance of correcting logic errors using these methods has

not been verified in practice. In addition, a debugging support model has not yet been developed

for correcting logic errors based on this method.

In this dissertation, we elucidated the issues related to existing logic error detection methods

and developed a debugging support model that corrects multiple logic errors for debugging sup-

port in software engineering and programming education. The contributions of this dissertation

are as follows:

• We analyzed the detection performance of a SPED and an LSTM-LM using the AOJ

dataset to clarify the limitations of static analysis and machine learning-based logic error

detection methods. Experimental results show that LSTM-LM is less reliable than SPED

in detecting whether a correction candidate contains a logic error. On the other hand,

SPED cannot detect logic errors unless a correct code with the same structure as the target

source code exists. These limitations indicated that there is a trade-off between detection

accuracy and reliability. We also confirmed that each method could detect logic errors

that either method could not. Therefore, the combination of the SPED and the LSTM-LM

realize a basis for developing hybrid intelligence that accurately detects logic errors and
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8.1. SUMMARY

provides appropriate feedback with higher accuracy.

• We proposed a method that optimizes a threshold that regulates the number of correction

candidates detected by LSTM-LM to improve the reliability of the correction candidates.

This threshold is optimized based on the detection performance (only detection, no detec-

tion, misdetection, overdetection) obtained by LSTM-LM for less than each probability

in [0.0 1.0] using a set of incorrect codes. Experimental results show that the optimized

threshold is better than the threshold in previous research in narrowing down the correc-

tion candidates that include only logic errors for each programming task. In addition,

the detection performance visualizes the performance of the language models used to de-

tect possible logic errors in each programming. This is useful for showing learners the

reliability of the correction candidates detected by the LSTM-LM in advance.

• We developed a debugging support model that introduced an EOP that predicts an editing

operation, such as insertion, deletion, and replacement, using the correction candidates

detected by the LSTM-LM. The model iteratively corrects the incorrect code until it meets

the specification of the programming task. In an experiment, the proposed model with it-

erative trials improved the average correction accuracy by 58.64% compared to the model

without iterative trials. In addition, the number of corrections by the proposed model is

smaller than the number of actual edits by the user. The proposed model can provide

the correction candidates, their editing operations, and the number of edits. This is indi-

rect and immediate debugging support, but it allows the learner to lose the opportunity to

develop the logical thinking necessary to solve the programming task.

The proposed method and model in this dissertation can be applied to debugging support in

programming education and in the fields of software engineering and natural language process-

ing. In software engineering, it is necessary to use testing to verify whether the implemented

subroutine is correct for the corresponding specification. If there is a programming task with the

same or similar specifications as the subroutine implemented in a certain educational system,

our model can be employed to modify the source code. The proposed method can also be ap-

plied to sentence generation and error correction in time-series data and natural language since

it uses data accumulated in software repositories.

73



8.2 Future Work

Future directions of this research include:

• To develop the generalized deep learning-based model for logic error detection

• To develop the deep learning-based logic error model for multiple programming lan-

guages, such as C, C++, Java, Python, and so on.

• To realize Hybrid Intelligence for logic error detection.

• To evaluate the detection performance of integrated debugging support model applying to

other datasets such as CodeNet, other educational data etc..

• To evaluate educational effects of integrated debugging support model
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Appendix A

Appendix

A.1 Examples for Classification

Here is an example that matches the regular expression for classifying logic errors intro-
duced in Table 3.3. Logical errors are classified based on the edit information between incorrect
and correct codes. Examples of logical errors extracted by using each regular expression are
shown below.

int main(){
printf(“Hello world¥n”);

}

#include <stdio.h>
int main(){

printf(“Hello world¥n”);
}

Incorrect code Correct code

Figure A.1: An example of ”include statement”.

#include <stdio.h>
int main(){

printf(‘Hello world¥n’);
}

#include <stdio.h>
int main(){

printf(“Hello world¥n”);
}

Incorrect code Correct code

Figure A.2: An example of ”switch quote”.
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#include <stdio.h>
int main(){

printf(“Hello¥n”);
}

#include <stdio.h>
int main(){

printf(“Hello world¥n”);
}

Incorrect code Correct code

Figure A.3: An example of ”string format”.

#include <stdio.h>
int main(){

char [] s = “Hello¥n”
printf(“%s”, s);

}

#include <stdio.h>
int main(){

char [] s = “Hello world¥n”
printf(%s);

}

Incorrect code Correct code

Figure A.4: An example of ”output format”.

#include <stdio.h>
int main(){

int a, b;
scanf(“%d”, &a);

}

#include <stdio.h>
int main(){

int a, b;
scanf(“%d”, &b);

}

Incorrect code Correct code

Figure A.5: An example of ”input statement”.

85



REFERENCES

#include <stdio.h>
void main(){

printf(“Hello world¥n”);
}

#include <stdio.h>
int main(){

printf(“Hello world¥n”);
}

Incorrect code Correct code

Figure A.6: An example of ”void main function”.

#include <stdio.h>
int main(){

int a, b;
scanf(“%d”, &a);

}

#include <stdio.h>
int main(){

static int a, b;
scanf(“%d”, &b);

}

Incorrect code Correct code

Figure A.7: An example of ”static”.

#include <stdio.h>
int main(){

return 1;
}

#include <stdio.h>
int main(){

return 0;
}

Incorrect code Correct code

Figure A.8: An example of ”return value”.
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#include <stdio.h>
int main(){

int i, a[10];
for (i = 1; i <= 10; i++){

a[i] = 1;
}

}

#include <stdio.h>
int main(){

int i, a[10];
for (i = 0; i < 10; i++){

a[i] = 1;
}

}

Incorrect code Correct code

Figure A.9: An example of ”for statement”.

#include <stdio.h>
int main(){

int a, b;
scanf(“%d%d, &a, &b);
if (a > b)

Printf(“a is less than b.”);
}

}

#include <stdio.h>
int main(){

int a, b;
scanf(“%d%d, &a, &b);
if (a < b)

Printf(“a is less than b.”);
}

}

Incorrect code Correct code

Figure A.10: An example of ”if statement”.

#include <stdio.h>
int main(){

int a, b, result;
scanf(“%d%d”, &a, &b);
result = a / b;
printf(“%d”, result);

}

#include <stdio.h>
int main(){

int a, b, result;
scanf(“%d”, &a, &b);
result = a * b;
printf(“%d”, result);

}

Incorrect code Correct code

Figure A.11: An example of ”formula”.
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#include <stdio.h>
int main(){

do{} while(…);
}

#include <stdio.h>
int main(){

do{} while(…);
}

Incorrect code Correct code

Figure A.12: An example of ”do while”.

#include <stdio.h>
int main(){

int i=0, a[10];
while (i<=10){

a[i] = 1;
}

}

#include <stdio.h>
int main(){

int i=0, a[10];
while (i<10){

a[i] = 1;
}

}

Incorrect code Correct code

Figure A.13: An example of ”while statement”.

#include <stdio.h>
#include <math.h>
int main(){

double a, result;
scanf(“%lf”, &a);
result = cos(a);

}

#include <stdio.h>
#include <math.h>
int main(){

double a, result;
scanf(“%lf”, &a);
result = sin(a);

}

Incorrect code Correct code

Figure A.14: An example of ”function”.
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#include <stdio.h>
int main(){

int a;
scanf(“%d”, a);

}

#include <stdio.h>
int main(){

int a;
scanf(“%d”, &a);

}

Incorrect code Correct code

Figure A.15: An example of ”address operator”.

#include <stdio.h>
int main(){

int a, b;
scanf("%d%d", &a, &b);
double result = a / b;

}

#include <stdio.h>
int main(){
int a, b;

scanf("%d%d", &a, &b);
double result = (double ) a / b;

}

Incorrect code Correct code

Figure A.16: An example of ”cast”.

#include <stdio.h>
int main(){

int a, b;
}

#include <stdio.h>
int main(){

double a, b;
}

Incorrect code Correct code

Figure A.17: An example of ”type”.
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#include <stdio.h>
int main(){

int a;
scanf("%d", &a);
if(0 <= a || a < 100){
}

}

#include <stdio.h>
int main(){

int a;
scanf("%d", &a);
if(0 <= a && a < 100){
}

}

Incorrect code Correct code

Figure A.18: An example of ”and or”.

#include <stdio.h>
int main(){

int i, a[9];
for (i = 0; i < 10; i++){

a[i] = 1;
}

}

#include <stdio.h>
int main(){

int i, a[10];
for (i = 0; i < 10; i++){

a[i] = 1;
}

}

Incorrect code Correct code

Figure A.19: An example of ”array index”.

#include <stdio.h>
int main(){

int i, sum;
for (i = 0; i < 10; i++){

sum += 1;
}

}

#include <stdio.h>
int main(){

int i, sum = 0;
for (i = 0; i < 10; i++){

sum += 1;
}

}

Incorrect code Correct code

Figure A.20: An example of ”initial value”.
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#include <stdio.h>
int main(){

int i, sum = 0;
for (i = 0; i < 10; i++){

i += 1;
}

}

#include <stdio.h>
int main(){

double i, sum = 0.0;
for (i = 0; i < 10; i++){

sum += 1;
}

}

Incorrect code Correct code

Figure A.21: An example of ”variable declaration”.

#include <stdio.h>
int main(){

int i, a[10];
for (i = 0; i < 10; i--){

a[i] = 1;
}

}

#include <stdio.h>
int main(){

int i, a[10];
for (i = 0; i < 10; i++){

a[i] = 1;
}

}

Incorrect code Correct code

Figure A.22: An example of ”unary operation”.

#include <stdio.h>
int main(){

int i, sum = 0;
for (i = 0; i < 10; i++){

sum += 1;
printf("%d\n", sum);

}
}

#include <stdio.h>
int main(){

double i, sum = 0.0;
for (i = 0; i < 10; i++){

sum += 1;
}
printf("%d\n", sum);

}

Incorrect code Correct code

Figure A.23: An example of ”scope”.
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#include <stdio.h>
int main(){

int i, sum = 0;
for (i = 0; i < 10; i++){

i += 1;
}
printf("%d\n", sum);

}

#include <stdio.h>
int main(){

double i, sum = 0.0;
for (i = 0; i < 10; i++){

sum += 1;
}
printf("%d\n", sum);

}

Incorrect code Correct code

Figure A.24: An example of ”substituted variable”.

#include <stdio.h>
int main(){

int i=0, a[10];
while (i<=10){

if(i == 5) continue;
}

}

#include <stdio.h>
int main(){

int i=0, a[10];
while (i<10){

if(i == 5) break;
}

}

Incorrect code Correct code

Figure A.25: An example of ”switch continue break”.

#include <stdio.h>
int main(){

int i=0, a[10];
while (i<10);{

scanf("%d", a[i++]);
}

#include <stdio.h>
int main(){

int i=0, a[10];
while (i<10){

scanf("%d", a[i++]);
}

}

Incorrect code Correct code

Figure A.26: An example of ”semicolon position”.
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#include <stdio.h>
int main(){

int a, b;
scanf(“%d%d, &a, &b);
if (a = b)

Printf(“a and b are equal.”);
}

}

#include <stdio.h>
int main(){

int a, b;
scanf(“%d%d, &a, &b);
if (a == b)

Printf(“a is less than b.”);
}

}

Incorrect code Correct code

Figure A.27: An example of ”switch equal assign”.

#include <stdio.h>
int main(){

int a[5] = {0, 0, 0, 0, 0};
}

#include <stdio.h>
int main(){

int a[5] = {1, 1, 1, 1, 1};
}

Incorrect code Correct code

Figure A.28: An example of ”array elements”.

#include <stdio.h>
int main(){

int a, b;
scanf(“%d%d, &a, &b);
a += b;

}

#include <stdio.h>
int main(){

int a, b;
scanf(“%d%d, &a, &b);
a -= b;

}

Incorrect code Correct code

Figure A.29: An example of ”assignment operator”.

A.2 Experimental Results for Each Programming Task in Chapter
4

Here, the results of experiments other than the programming task shown in Figure 5.2 in
Chapter 4 are presented.
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Figure A.30: A result of ITP1 2 A.
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Figure A.31: A result of ITP1 2 B.
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Figure A.32: A result of ITP1 2 C.
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Figure A.33: A result of ITP1 2 D.
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Figure A.34: A result of ITP1 3 A.
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Figure A.35: A result of ITP1 3 B.
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Figure A.36: A result of ITP1 3 C.
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Figure A.37: A result of ITP1 3 D.
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Figure A.38: A result of ITP1 4 A.
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Figure A.39: A result of ITP1 4 B.
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Figure A.40: A result of ITP1 4 C.
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Figure A.41: A result of ITP1 4 D.
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Figure A.42: A result of ITP1 5 A.
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Figure A.43: A result of ITP1 5 B.
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Figure A.44: A result of ITP1 5 C.
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Figure A.45: A result of ITP1 5 D.
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Figure A.46: A result of ITP1 6 A.
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Figure A.47: A result of ITP1 6 B.
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Figure A.48: A result of ITP1 6 C.
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Figure A.49: A result of ITP1 6 D.
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Figure A.50: A result of ITP1 7 A.
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Figure A.51: A result of ITP1 7 B.
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Figure A.52: A result of ITP1 7 C.
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Figure A.53: A result of ITP1 7 D.
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Figure A.54: A result of ITP1 8 A.
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Figure A.55: A result of ITP1 8 B.
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Figure A.56: A result of ITP1 8 C.
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Figure A.57: A result of ITP1 8 D.
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