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Abstract

Most digital integrated circuits are synchronous circuits wherein circuit components
are controlled by global clock signals. Recently, the continuous advancements in semi-
conductor miniaturization technology have allowed more circuit components to be in-
tegrated into one chip. However, the increase in the power consumption for clock net-
works attributed to the distribution of high-frequency clock signals to a wide area will
become a significant problem.

In contrast, in asynchronous circuits, circuit components are controlled by local
handshake signals or self-timed signals instead of global clock signals. Therefore,
asynchronous circuits have potentially low power and low latency compared with syn-
chronous circuits. However, the design of asynchronous circuits is more difficult com-
pared to the design of synchronous circuits. However, there are only a limited number
of available electronic design automation (EDA) tools that can support the design of
asynchronous circuits.

Design methods based on the design flow used in synchronous circuits with com-
mercial EDA tools have been proposed to make asynchronous circuit designs easy.
These methods convert synchronous gate level (GL) netlists into asynchronous GL
netlists; such conversion methods are called GL conversion. Although GL conversion
simplifies asynchronous circuit design, it can lose an advantage of asynchronous cir-
cuits. In asynchronous circuits, each operation can be executed by the required delay.
However, the delays of operations in asynchronous GL netlists obtained by GL conver-
sion tend to be equalized because logic synthesis is performed for synchronous register
transfer level (RTL) models with clock constraints. In addition, GL conversion methods
are not suitable for field programmable gate array (FPGA) designs because the standard
design entry for commercial synthesis tools for FPGAs is an RTL model.

For solving these problems, we propose a method for automatic conversion from
synchronous RTL models to asynchronous RTL models in this dissertation. We could
obtain more optimum asynchronous circuits because we can perform logic synthesis
for asynchronous RTL models with appropriate constraints. In addition, the proposed
method is suitable for FPGA designs because it generates asynchronous RTL models.

The contributions of this dissertation are as follows: First, the proposed method
automatically converts synchronous RTL models to asynchronous RTL ones, which
enables the different representation styles of the synchronous RTL models. Second, the
implemented conversion tool facilitates asynchronous circuit designs from synchronous
RTL models with the generation of non-optimization constraints for logic synthesis
and RTL simulation models for FPGA implementation. Third, the proposed method
supports both the application specific integrated circuit (ASIC) and FPGA designs.
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Chapter 1 (Introduction)
This chapter presents the research background, purpose of this dissertation, and

organization of this dissertation.

Chapter 2 (Related Research)
This chapter presents the following related research.

1. Conversion methods from synchronous circuits to asynchronous circuits

2. Behavioral synthesis for asynchronous circuits

3. Synthesis methods for asynchronous circuits from asynchronous RTL models
In this chapter, we describe differences between these methods and our work.

Chapter 3 (Asynchronous Circuits with Bundled-data Im-
plementation)

This chapter presents asynchronous circuits with bundled-data implementation used
in this dissertation. In this chapter, we describe the circuit model, behavior, and timing
constraints of asynchronous circuits with bundled-data implementation.

Chapter 4 (Conversion Method)
This chapter presents the proposed automatic conversion method from synchronous

RTL models to asynchronous RTL models. The proposed method comprises two parts;
the first generates an intermediate representation from a given synchronous RTL model;
the second generates an asynchronous RTL model from the intermediate representa-
tion. The proposed method can address different representation styles of synchronous
RTL models because of the use of the intermediate representation. From the generated
intermediate representation, the proposed method generates asynchronous RTL mod-
els through the generation of data-path circuits and asynchronous control modules. In
addition to generating asynchronous RTL models, the proposed method generates an
asynchronous RTL simulation model for FPGAs. Further, the proposed method gener-
ates non-optimization constraints to prevent optimizations for primitive cells used in a
control circuit.

Chapter 5 (Optimization Methods)
This chapter presents four optimization methods during the conversion from syn-

chronous RTL models to asynchronous RTL models. The first one is the modularization
for data-path resources to reduce the area of data-path circuits; the second one is the use
of appropriate D flip-flops (DFFs) to reduce the area of registers; the third is inserting
latches before data-path resources to reduce the dynamic power consumption of data-
path circuits; and the fourth is the conversion from DFFs into D latches to reduce the
dynamic power consumption of registers.

xii



Chapter 6 (Experimental Results)
In this chapter, we describe the conversion of eight synchronous RTL models into

asynchronous RTL models. We demonstrate that conversion time depends on the size
and number of states or pipeline stages in the synchronous RTL model. In addition,
we verified the functional correctness of converted asynchronous RTL models through
logic simulation. Moreover, we performed logic synthesis for converted asynchronous
RTL models to evaluate circuit area, execution time, dynamic power consumption, and
energy consumption. Asynchronous circuits obtained from the proposed RTL conver-
sion can reduce energy consumption compared with synchronous circuits. Moreover,
the combination of optimization methods can reduce more energy consumption in many
cases. The proposed RTL conversion can reduce energy consumption compared with
GL conversion in many cases. Compared with GL conversion, RTL conversion al-
lows designers to insert operand isolation easily, explore optimum circuits by changing
constraints used for logic synthesis from strict to loose, and implement asynchronous
circuits on FPGAs easily.

Chapter 7 (Conclusion and Future Work)
This chapter presents our conclusion and future work.



Chapter 1

Introduction

This chapter describes the research background, purpose of this dissertation, and
organization of this dissertation in Sections 1.1, 1.2, and 1.3, respectively.

1.1 Research Background
Most digital integrated circuits used in computer systems are synchronous circuits.

In synchronous circuits, circuit components are controlled using global clock signals as
shown in Fig. 1.1a. For application specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs), synchronous circuits are designed using a design flow
with commercial electronic design automation (EDA) tools. However, synchronous
circuits encounter problems owing to the continuous advancements in the semicon-
ductor miniaturization technology. The problem is an increase in power consumption
attributed to the distribution of high-frequency clock signals to a wide area.

In asynchronous circuits, circuit components are controlled using local handshake
signals or self-timed signals instead of global clock signals. Therefore, asynchronous
circuits have potentially low-power consumption and low electromagnetic interference
compared with synchronous circuits. Further, the performance of asynchronous circuits
depends on the average delay because the operation timing of each circuit component in
asynchronous circuits is guaranteed by local handshake signals or self-timings. Thus,
asynchronous circuits have potentially low latency compared with synchronous circuits
wherein the performance depends on the clock cycle time.

However, the design of asynchronous circuits is more difficult than that of syn-
chronous circuits. Based on the applications, designers must select an appropriate data
encoding scheme, delay model, and handshake protocol. Design methods and con-
straints differ based on the selection. In addition, operation timings must be guaranteed
by local handshake signals or self-timed signals. Furthermore, circuits without unex-
pected signal transitions (hazards) that cause a malfunction of circuits are required.
Moreover, EDA tools to support the design of asynchronous circuits are insufficient.

Conversion methods from synchronous circuits into asynchronous circuits were pro-
posed in [1–4,6,7,9–12,14–16] to facilitate the design of asynchronous circuits. These
methods convert synchronous GL netlists after logic synthesis into asynchronous GL
netlists (desynchronized GL netlists). These methods are based on the design flow used
in synchronous circuits with commercial EDA tools. For example, [1–4] converted
flip-flops (FFs) in the synchronous GL netlist into master-slave latches. The converted

1



CHAPTER 1. INTRODUCTION

(a) Synchronous circuits.

(b) Desynchronized circuits.

Figure 1.1: Desynchronization

latches were controlled by inserted latch controllers based on local handshake signals
(Fig. 1.1b).

The GL conversion methods suffer from several problems. The GL conversion
methods cannot utilize logic optimization considering the characteristics of asynchronous
circuits. In asynchronous circuits, operations at each cycle can be executed at their delay
using local handshake signals or self-timings. However, operation delays at each cycle
in asynchronous GL netlists generated by GL conversion methods are equalized be-
cause logic synthesis is performed for synchronous register transfer level (RTL) models
with a clock constraint. Further, the optimization of asynchronous circuits is restricted
to GL optimizations only because logic synthesis is not performed for asynchronous
circuits. Moreover, GL conversion methods are not suitable for FPGA designs because
the standard design entry for commercial FPGA design tools is an RTL model.

1.2 Purpose of this Dissertation
In this dissertation, we propose a method for automatic conversion from synchronous

RTL models to asynchronous RTL models with bundled-data implementation. Conver-
sion targets are synchronous RTL models designed manually or generated using com-
mercial high-level synthesis (HLS) tools such as Cadence Stratus HLS [38].

The proposed method comprises two parts: the generation of an intermediate repre-
sentation from a synchronous RTL model and the generation of an asynchronous RTL
model with bundled-data implementation from the intermediate representation.

In the first part, the proposed method generates an intermediate representation from
a synchronous RTL model. The proposed method can address different representation
styles of synchronous RTL models because of the use of the intermediate representation.
In this dissertation, we use the eXtensible Markup Language (XML) as the intermedi-
ate representation. The proposed method generates a control data flow graph (CDFG)
from a synchronous RTL model. Then, the proposed method generates an intermediate

2



1.3. ORGANIZATION OF THIS DISSERTATION

representation by analyzing the CDFG.
In the second part, the proposed method generates an asynchronous RTL model

with bundled-data implementation from the intermediate representation. The proposed
method assigns data-path resources and asynchronous control modules by referring to
the intermediate representation. Thus, the proposed method generates an asynchronous
RTL model by connecting control modules to data-path resources. In addition to gener-
ating asynchronous RTL models, the proposed method generates an asynchronous RTL
simulation model for an FPGA design environment. Further, the proposed method gen-
erates a set of non-optimization constraints to prevent the optimization of asynchronous
control modules.

The quality of asynchronous circuits from the RTL conversion depends on the rep-
resentation style of synchronous RTL models. Further, we propose four optimization
methods during the proposed RTL conversion from synchronous RTL models to asyn-
chronous RTL models to obtain high-quality asynchronous circuits.

The main contributions of this dissertation are as follows.

1. The proposed method automatically converts synchronous RTL models to asyn-
chronous RTL ones, which enables different representation styles of synchronous
RTL models.

2. The implemented conversion tool facilitates asynchronous circuit designs from
synchronous RTL models with the generation of non-optimization constraints for
logic synthesis and RTL simulation models for FPGA implementation.

3. the proposed method supports both the ASIC and FPGA designs.

1.3 Organization of this Dissertation
The remainder of this dissertation is organized as follows. Chapter 2 describes the

design methods of asynchronous circuits based on the design flow used in synchronous
circuits with commercial EDA tools and differences between these methods and this
dissertation. Chapter 3 presents the circuit model, behavior, and timing constraints
of asynchronous circuits with bundled-data implementation used in this dissertation.
Chapter 4 describes the overview of the conversion method, inputs for the conversion,
method that generates an intermediate representation from a synchronous RTL model,
and method that generates an asynchronous RTL model with bundled-data implementa-
tion from the intermediate representation. Chapter 5 describes the proposed optimiza-
tion methods during the conversion from synchronous RTL models into asynchronous
RTL models. Chapter 6 describes conversion results demonstrating that the proposed
method can generate asynchronous RTL models from various synchronous RTL mod-
els. In addition, Chapter 6 describes the evaluation results of converted asynchronous
circuits in terms of circuit area, execution time, dynamic power consumption, and en-
ergy consumption. Finally, Chapter 7 describes the conclusion and future work.

3



Chapter 2

Related Research

Several design methods have been proposed to design asynchronous circuits easily.
Even among them, design methods using the design flow for synchronous circuits with
commercial EDA tools are related to our study. In this section, we describe differences
between these methods and our method.

Cortadella et al. proposed an approach for converting synchronous circuits into
asynchronous ones called Desynchronization [1,2]. This approach replaces FFs in syn-
chronous GL netlists synthesized using a commercial logic synthesis tool to pairs of
master-slave latches. Subsequently, this approach inserts latch controllers based on
handshake signals.

Andrikos et al. proposed a tool that automatically performs Desynchronization
called drdesync [3]. For synchronous GL netlists synthesized by a commercial logic
synthesis tool, drdesync automatically converts FFs into pairs of master-slave latches.
Further, drdesync automatically inserts latch controllers and delay elements.

Srinivasan et al. proposed Desynchronization for verification [4]. This approach
inserts Muller C-elements [5] before asynchronous controllers used in Desynchroniza-
tion. The Muller C-elements are used to guarantee the operation of asynchronous con-
trollers correctly; this approach confirms the equivalence before/after conversion using
refinement-based verification.

For large digital systems, Branover et al. proposed an approach to convert syn-
chronous circuits into asynchronous ones [6]. The conversion target is the pipelined
synchronous GL netlists generated by a commercial logic synthesis tool; this approach
replaces FFs in the synchronous GL netlists to pairs of master-slave latches with corre-
sponding asynchronous controllers. Subsequently, this approach constructs request and
acknowledgment networks.

Zhang et al. proposed an approach for generating asynchronous circuits with bundled-
data implementation from synchronous RTL models [7]. This approach replaces FFs
in synchronous GL netlists generated by a commercial logic synthesis tool into pairs of
master-slave latches. Subsequently, this approach inserts asynchronous control modules
based on Click elements [8].

Kondratyev et al. proposed a design flow for asynchronous circuits based on null
convention logic (NCL) [9, 10]. The NCL is a quasi-delay-insensitive (QDI) asyn-
chronous circuit using dual-rail implementation; they obtained NCL circuits by replac-
ing gates of synchronous GL netlists generated using a commercial logic synthesis tool
to NCL gates. In NCL circuits, completion detectors guarantee the write timing of
registers.

4



Reese et al. proposed a design method for asynchronous circuits called Unified
NULL Convention Logic Enviroment (Uncle) [11]. Uncle accepts synchronous RTL
models; subsequently, Uncle synthesizes synchronous GL netlists from synchronous
RTL models using a commercial logic synthesis tool. For synchronous GL netlists,
Uncle generates dual-rail asynchronous circuits via dual-rail expanding, generating ac-
knowledgment signals, latch balancing to optimize the performance, and cell merging
to optimize the circuit area.

Sartori et al. proposed a synthesis flow for asynchronous circuits based on QDI
circuits [12]. This synthesis flow is called Pulse-F, which generates NCL circuits by
replacing gates in the synchronous GL netlists synthesized by a commercial logic syn-
thesis tool to NCL gates. After generating NCL circuits, Pulse-F generates optimized
NCL circuits by applying Pulser optimization flow [13] based on clock constraints.

Zhou et al. proposed a compiler for asynchronous circuits based on QDI circuits
[14]. This compiler accepts Verilog hardware description language (HDL) of the syn-
chronous GL netlists obtained from the Synopsys Design Compiler. Subsequently, this
compiler converts combinational circuits of synchronous GL netlists into dual-rail asyn-
chronous circuits. Moreover, this compiler replaces clock signals to local handshake
signals for controlling registers.

Oberg et al. proposed an approach for converting synchronous circuits into asyn-
chronous circuits using commercial logic synthesis tools [15]. This approach requires
initially preparing a library for asynchronous circuits initially. For synchronous GL
netlists obtained by logic synthesis, this approach replaces logics with gates in the pre-
pared library. Registers are controlled using handshake signals generated by Muller
C-elements [5].

Cortadella et al. proposed an approach for synthesizing elastic circuits based on
local handshake signals from synchronous circuits [16]. This approach is based on
Desynchronization and replaces FFs in the synchronous GL netlist to elastic buffers,
which comprise data-path circuits based on pairs of master-slave latches and control
circuits based on handshake signals. After replacing the elastic buffers, the elastic cir-
cuits are generated by inserting a control circuit that inputs a clock signal.

Compared with [1–4, 6, 7, 9–12, 14–16], in which the GL conversion was the ob-
jective, we focus on RTL conversion. RTL conversion has advantages over GL conver-
sion. For example, we can generate optimized asynchronous circuits (e.g., performance,
area, or power consumption) by performing logic synthesis that assigns appropriate
constraints for asynchronous RTL models or optimized asynchronous RTL models. In
addition, we can evaluate asynchronous circuits at the RTL. Moreover, we can select
not only ASIC but also FPGA as the target because of the RTL conversion.

Wu et al. proposed an approach for converting pipelined synchronous RTL models
into pipelined asynchronous RTL models [17]. This approach requires initially speci-
fying pipeline stages in the Verilog HDL of synchronous RTL models. Subsequently,
a control module is assigned for each specified pipeline stage. After assigning con-
trol modules, this approach replaces a clock signal for registers to a signal of control
modules.

However, [17] is not an automatic conversion. Pipeline stages must be manually
specified to the Verilog HDL of synchronous RTL models. The method of generating
control signals of multiplexers was not described in [17]. In this dissertation, we pro-
pose a method for the automatic conversion from synchronous RTL models into asyn-
chronous ones. Moreover, we describe the generation method for the control signals of
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multiplexers.
Beerel et al. proposed a design environment for asynchronous circuits called Pro-

teus [18]. Proteus generates synchronous RTL models from a high-level language based
on communicating sequential processes (CSPs). Thereafter, Proteus generates the GL
netlists of synchronous circuits using commercial logic synthesis tools. For the GL
netlists of synchronous circuits, Proteus generates the GL netlists of asynchronous cir-
cuits based on the approach called ClockFree. Further, ClockFree performs the opti-
mization (e.g., clustering, fixed fanouts, and slack matching [19]) and the insertion of
asynchronous controllers.

Handshake Solutions proposed a design environment called Tide [20]. In Tide, the
behavioral models of applications must be specified using a high-level language called
Haste. For the Haste models, Tide synthesizes handshake circuits, and subsequently,
Tide generates asynchronous GL netlists by mapping cells for the synthesized hand-
shake circuits. For the generated GL netlists, the layout design is synthesized using a
commercial layout synthesis tool.

Garcia et al. proposed a synthesis method for asynchronous circuits on FPGAs [21].
For behavioral models specified by VHDL, this method generates asynchronous RTL
models by generating a data-path circuit, a two-phase asynchronous controller, and an
interface circuit. The asynchronous controller is based on extended burst-mode (XBM)
[22] machines.

Curtinhas et al. developed VHDLASYN [23], which automatically generates asyn-
chronous RTL models based on the method described in [21], For behavioral mod-
els specified by VHDL, VHDLASYN generates asynchronous RTL models while min-
imizing the latency or number of resources by scheduling operations and allocating
resources.

Sacker et al. proposed a synthesis system for synthesizing asynchronous circuits
[24]. This synthesis system is called MOODs. For behavioral models specified by
VHDL, MOODs generates asynchronous RTL models through operation scheduling,
resource allocation, and control synthesis. A data-path circuit comprises chained, par-
allel, and sharing units. In the control synthesis, MOODs synthesizes two-phase asyn-
chronous controllers.

Josipovic et al. proposed a high-level synthesis of elastic circuits [16] from the C
language [25]; this method generates a data-flow graph (DFG) and control-flow graph
(CFG) from the C language. Thereafter, it assigns and connects elastic components by
referring to DFG and CFG.

In [18, 20, 21, 23–25], the objective was not conversion from synchronous circuits
to asynchronous circuits. These methods directly generate asynchronous circuits from
behavioral models through the operation scheduling of asynchronous circuits and syn-
thesis of asynchronous controllers. In this dissertation, we focus on the conversion from
synchronous circuits to asynchronous circuits.

Yoshimi et al. proposed a design method for asynchronous circuits with bundled-
data implementation [26]. This method is based on a tool [27] that supports the design
of asynchronous circuits with bundled-data implementation. Logic synthesis, layout
synthesis, and static timing analysis are performed using commercial EDA tools for
asynchronous RTL models based on Q modules [28]. Further, the design method sup-
ports a timing constraint generation, timing verification, and delay adjustment, which
are not supported by commercial EDA tools with their own tools.

Gibiluka et al. proposed a synthesis flow for asynchronous circuits with bundled-
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data implementation [29]. Relative timing constraints (RTCs) [30] for asynchronous
RTL models are generated in the synthesis flow. For asynchronous RTL models with
the RTC, logic synthesis and layout synthesis are performed using commercial EDA
tools.

The researchers in [26, 27, 29] focused on the design method from asynchronous
RTL models to layout designs. The generation method for asynchronous RTL models
was not described in [26, 27, 29]. In this dissertation, we focus on the generation of
asynchronous RTL models.

On one hand, Chapter 4 of this dissertation is based on [31], wherein we proposed a
method for the automatic conversion from synchronous RTL models into asynchronous
RTL models. However, the target is only non-pipelined circuits. Asynchronous control
modules are assigned directly by referring to the states of the finite state machine (FSM)
in non-pipelined synchronous RTL models. Further, we propose a conversion method
from pipelined synchronous RTL models into asynchronous RTL models. The proposed
method generates a CDFG from pipelined synchronous RTL models before conversion,
which was not generated in [31], to assign pipelined asynchronous control modules

On the other hand, Chapter 5 is based on [32], in which we proposed optimization
methods during RTL conversion [31] to obtain the high-quality of asynchronous cir-
cuits. Further, we propose a conversion from DFFs to D latches to optimize the area of
registers, which was not described in [32].
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Chapter 3

Asynchronous Circuits with
Bundled-data Implementation

In this chapter, we describe the asynchronous circuits with bundled-data implemen-
tation used in this study. Section 3.1 describes the circuit model and behavior of asyn-
chronous circuits with bundled-data implementation. Section 3.2 describes the timing
constraints for the circuit model.

Bundled-data implementation is a data encoding scheme in asynchronous circuits.
In the bundled-data implementation, a one-bit signal is represented by one signal. There-
fore, the same data-path circuit used in synchronous circuits can be used. The time
required to write the data to registers is guaranteed by delay elements on the request
signals in a control circuit. Hence, the performance of the bundled-data implementa-
tion depends on the delay of the control circuit which includes the delay elements.

Figure 3.1 shows asynchronous circuits with bundled-data implementation. Fig-
ure 3.1a shows the bundled-data implementation based on handshake signals. In this
bundled-data implementation, a request signal and an acknowledgment signal are used
to guarantee the operation. Thus, the performance of the bundled-data implementa-
tion depends on the delays of the request and acknowledgment signals. Figure 3.1b
shows the bundled-data implementation based on self-timing. In this bundled-data im-
plementation, only the request signal is used to guarantee the operation. Therefore,
the performance of the bundled-data implementation depends on the delay of the re-
quest signal. In this dissertation, we use the bundled-data implementation based on
self-timing because the performance can be improved compared with the bundled-data
implementation based on handshake signals.

3.1 Circuit Model
Figure 3.2 shows the circuit models of asynchronous circuits with bundled-data

implementation used in this study. The circuit model comprises a data-path circuit
and control circuit. We assume that target circuit models are both non-pipelined and
pipelined circuits. Figure 3.2a shows non-pipelined asynchronous circuits and Figure
3.2b shows pipelined asynchronous circuits.

The data-path circuit is almost the same as the one used in synchronous circuits.
It comprises registers regk, multiplexers muxl, and functional units fuh. h, l, and k
represent the identifier of registers, multiplexers, and functional units, respectively. If
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(a) Bundled-data implementation based on handshake signals.

(b) Bundled-data implementation based on self-timing.

Figure 3.1: Asynchronous circuits with bundled-data implementation.

hold violations occur on regk, a delay element hdregk is inserted on the input signal of
regk.

The control circuit is based on an FSM or pipeline stages in the synchronous cir-
cuits. For non-pipelined circuits, the control circuit comprises control modules ctrli
(0≤i≤n − 1) assigned for each state statei. For pipelined circuits, the control circuit
comprises control modules ctrli (0≤i≤n − 1) assigned for each pipeline stage stagei.
i represents a state or a pipeline stage. The glue logics glueregk and gluemuxl

represent
logics used to generate write signals for regk and control signals for muxl, respectively.
If hold violations occur on regk through a transition of the control signal for muxl, a
delay element hdmuxi,l

is inserted on the control signal for muxl.
The control module ctrli is obtained by modifying Click elements [8]; they com-

prise a D flip-flop DFFi, an XOR gate, and a delay element sdi. A D flip-flop bDFFi

and an AND gate are inserted before sdi when there are control branches. An XOR gate
is inserted before sdi when ctrli requires several request signals. Figure 3.3a shows the
structure of ctrli based on Click elements [8]. The acknowledgment signal acki and
request signal reqi are used in ctrli based on Click elements. Figure 3.3b shows the
structure of ctrli used in this study. In ctrli used in this dissertation, acki used in
traditional asynchronous circuits is not used. Only the request signal reqi is used for
succeeding control modules. Hence, each ctrli is operated by self-timing using sdi,
which guarantees the setup constraints for regk. Further, ctrli is operated by the rising
and falling transitions of reqi. The data are written to regk by the rising transition of
lclki.

The control circuit begins its operation when the rising transition of the input signal
start arrives at the control circuit. ctrli begins its operation when the rising transition

9
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(a) Non-pipelined circuit model.

(b) Pipelined circuit model.

Figure 3.2: Circuit models of asynchronous circuits with bundled-data implementation
used in this dissertation.

of outi−1 or lclki−1 from ctrli−1 arrives at ctrli. Figure 3.4 shows the timing diagram
of ctrli; the signal transition of outi−1 or lclki−1 generates the rising transition of reqi.
Subsequently, reqi generates the rising transition of sti, which controls muxl through
gluemuxl

. In addition, reqi generates the rising transition of lclki through sdi and the
XOR gate. Further, lclki controls regk through glueregk , and lclki controls DFFi,
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(a) ctrli based on Click elements [8] (b) ctrli used in this dissertation.

Figure 3.3: Control module ctrli.

Figure 3.4: Timing diagram of ctrli used in this dissertation.

which generates the rising transition of outi to pass the control to ctrli+1. Finally, ctrli
generates the falling transition of lclki using outi. The behavior of ctrli for the falling
transition of reqi is the same as that of the rising transition of reqi.

3.2 Timing Constraints
In the asynchronous circuits with bundled-data implementation used in this disser-

tation, it is necessary to satisfy the setup, hold, branch, and pulse-width constraints to
operate the circuit correctly. In this section, we describe the timing constraints.

3.2.1 Setup Constraints

The input data for regk must be stable before the setup time to write the input data
to regk; this is called the setup constraint for regk. Figure 3.5 shows the data-path
sdpi,p and control-path scpi,p related to the setup constraint; p represents the identifier of
paths. There are two data-paths sdpi,p (red line): a path from the output of lclki−1 to the
destination register reg1 through the source register reg0 (Fig. 3.5a), and a path from
the output of lclki−1 to the destination register reg1 through the glue logic gluemux0

(Fig. 3.5b). Further, scpi,p (blue line) represents a path from the output of lclki−1 to the
destination register reg1 through the delay element sdi. We define the maximum delay
of sdpi,p as tmaxsdpi,p , minimum delay of scpi,p as tminscpi,p , margin for tmaxsdpi,p as
tsdpmi,p , and setup time of the destination register as tsetupi,p . Thus, the setup constraint
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(a) Data-path sdpi,p through a source register and control-path scpi,p.

(b) Data-path sdpi,p through gluemux1 and control-path scpi,p.

Figure 3.5: Paths related to setup constraints.

can be represented by

tminscpi,p > tmaxsdpi,p + tsdpmi,p + tsetupi,p (3.1)

If the setup constraint is violated, we must adjust the number of cells for sdi.

12



3.2. TIMING CONSTRAINTS

Figure 3.6: Paths related to local cycle time.

3.2.2 Hold Constraints

The data should be stable for the hold time after input data are written to regk; this is
called the hold constraint for regk. The hold constraints used in this dissertation differ
between non-pipelined and pipelined circuits.

We define a local cycle time (lcti) and a global cycle time (gct) before the explana-
tion for the hold constraints. Figure 3.6 shows the paths related to lcti, which represents
a maximum delay for the operating stagei. Further, gct represents the cycle time in
asynchronous circuits.

lcti and gct can be represented by

lcti = max(tmaxcpi,p − tmaxlclktoregi,p , · · · , tmaxcpi,q − tmaxlclktoregi,q) (3.2)

gct = max(lst0, · · · , lstn−1) (3.3)

Further, tmaxcpi,p represents the maximum delay of a control-path cpi,p from lclki−1 to
the destination register through sdi. tmaxlclktoregi,p represents the maximum delay of a
path from lclki−1 to the source register, and lcti represents the largest value of tmaxcpi,p

minus tmaxlclktoregi,p in stagei. Finally, gct represents the maximum value of lcti.
Figure 3.7 shows the data-path hdpi,p and control-path hcpi,p related to the hold

constraint for non-pipelined circuits. There are two data-paths hdpi,p (red line): a path
from the output of lclki to the destination register reg1 through the source register reg1
(Fig. 3.7a), and a path from the output of lclki to the destination register reg1 through
the glue logic gluemux0 (Fig. 3.7b). Further, hcpi,p (blue line) represents a path from the
output of lclki to the destination register reg1. We define the minimum delay of hdpi,p
as tminhdpi,p , maximum delay of hcpi,p as tmaxhcpi,p , margin for tmaxhcpi,p as thcpmi,p ,
and hold time of the destination register as tholdi,p . Thus, the hold constraint can be
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(a) Data-path hdpi,p through a source register and control-path hcpi,p.

(b) Data-path hdpi,p through gluemux1 and control-path hcpi,p.

Figure 3.7: Paths related to hold constraints for non-pipelined circuits.

represented by
tminhdpi,p > tmaxhcpi,p + thcpmi,p + tholdi,p (3.4)

If the hold constraint is violated, we must adjust the number of cells for hdregk or
hdmuxi l.

Figure 3.8 shows the data-path hdpi,p and control-path hcpi,p related to the hold
constraint for pipelined circuits. There are two data-paths hdpi,p (red line): a path
from the input signal start to the destination register reg1 through the source register
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(a) Data-path hdpi,p through a source register and control-path hcpi,p.

(b) Data-path hdpi,p through gluemux1 and control-path hcpi,p.

Figure 3.8: Paths related to hold constraints for pipelined circuits.

reg1 (Fig. 3.8a), and a path from the input signal start to the destination register reg1
through the glue logic gluemux0 (Fig. 3.8b). Further, hcpi,p (blue line) represents a path
from the input signal start to the destination register reg1. We define the minimum
delay of hdpi,p as tminhdpi,p , maximum delay of hcpi,p as tmaxhcpi,p , margin for tmaxhcpi,p

as thcpmi,p , hold time of the destination register as tholdi,p , and input interval as II . Thus,
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Figure 3.9: Paths related to branch constraint.

the hold constraint can be represented by

tminhdpi,p + gct× II > tmaxhcpi,p + thcpmi,p + tholdi,p (3.5)

If the hold constraint is violated, we must adjust the number of cells for hdregk or
hdmuxi l.

3.2.3 Branch Constraints

The conditional signal for the branch must be arrived at a branch evaluation logic
in ctrli before the arrival of the control signal from the previous control module if a
control branch occurs; this is called the branch constraint for ctrli. Figure 3.9 shows
the data-path bdpi,p and control-path bcpi,p related to the branch constraint. bdpi,p (red
line) represents a path from the output of lclki−1 to the clock pin of bDFFi through the
destination register reg1. Further, bcpi,p (bule line) represents a path from the output
of lclki−1 to the clock pin of bDFFi through DFFi−1. We define the maximum delay
of bdpi,p as tmaxbdpi,p , minimum delay of bcpi,p as tminbcpi,p , and margin for tmaxbdpi,p as
tbdpmi,p . Thus, the branch constraint can be represented by

tminbcpi,p > tmaxbdpi,p + tbdpmi,p (3.6)

We must adjust the number of cells for bdi if the branch constraint is violated.
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Figure 3.10: Path related to pulse-width constraint.

3.2.4 Pulse-Width Constraits
The delay from the rising transition of lclki to the falling transition of lclki must be

larger than the pulse-width of the target register; this is called the pulse-width constraint
for the target register. Figure 3.9 shows the path related to the pulse-width constraint.
A pulse-width path pwpi (blue line) represents a path from the output of lclki to the
clock pin of DFFi through the input of lclki. We define the minmum delay of pwpi as
tminpwpi and pulse-width of DFFi as tpluse. Therefore, the pulse-width constraint can
be represented by

tminpwpi > tpluse (3.7)

We must adjust the number of cells for pdi if the pulse-width constraint is violated.
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Chapter 4

Conversion Method

In this chapter, we describe the proposed method for the automatic conversion from
synchronous RTL models to asynchronous RTL models with bundled-data implementa-
tion. Section 4.1 describes the overview of the proposed method. Section 4.2 describes
the inputs of the proposed method. Section 4.3 describes the method that generates an
intermediate representation represented by XML from synchronous RTL models. Fi-
nally, Section 4.4 describes the method that generates asynchronous RTL models from
the intermediate representation.

4.1 Overview
Figure 4.1 shows the flow of the proposed method. The proposed method comprises

two parts: the first part generates an XML as the intermediate representation from given
synchronous RTL models (Sync2XML), and the second part generates asynchronous
RTL models from the XML (XML2Async).

The proposed method represents synchronous RTL models in XML, which a markup
languages used to represent structures. In XML, we can freely define the data structure
of each element using tags. The proposed method can manage different representation
styles of synchronous RTL models because they are represented using XML. Further,
we call the XML that represents synchronous RTL models as the Model-XML.

The proposed method accepts synchronous RTL models as input; the proposed
method assumes that synchronous RTL models are described by Verilog HDL. The con-
version targets are synchronous RTL models designed manually as described in Section
4.2.1 or generated using commercial HLS tools such as Cadence Stratus HLS.

Moreover, we represent all information required for conversion in a different XML
file, which includes the circuit model, implementation target, etc. We call this XML as
Info-XML and describe the detail of Info-XML in Section 4.2.2.

The proposed method generates an abstract syntax tree (AST) and a control flow
from given synchronous RTL models using Pyverilog [33]. The AST represents the
structure of RTL models, whereas the control flow represents the state transitions of
RTL models.

The proposed method generates a Model-XML from the AST and control flow after
generating the AST and control flow. The proposed method generates a CDFG from the
AST and control flow. For the CDFG, the proposed method generates a Model-XML by
analyzing the states of an FSM or pipeline stages. The Model-XML comprises the data-
path resource information, path information including data-paths and control-paths, and

18



4.1. OVERVIEW

Figure 4.1: Flow of proposed RTL conversion method.

timing information including register write and multiplexer control signals.
The proposed method generates an asynchronous RTL model with bundled-data

implementation from the Model-XML after generating the Model-XML. The proposed
method assigns and connects data-path resources by referring to the resource and path
information. Further, the control modules are assigned and connected by referring to
the path information. The proposed method connects the data-path resources to control
modules by referring to the path information to generate a top-level module. Finally,
the proposed method connects the control modules to data-path resources by referring
to the timing information.

The proposed method generates asynchronous RTL simulation models of bundled-
data implementation and a set of non-optimization constraints to support FPGA de-
signs and logic synthesis. Primitive cells are used to prevent hazardous behaviors in
control modules and preserve the correct timing required for bundled-data implemen-
tation. In FPGA implementations, designers cannot perform RTL simulations using
asynchronous RTL models with primitive cells; therefore, the proposed method gener-
ates asynchronous RTL simulation models without primitive cells when the target is an
FPGA. In addition to generating asynchronous RTL models, the proposed method gen-
erates non-optimization constraints for control modules and delay elements to prevent
the optimization of primitive cells during the logic synthesis or layout synthesis.

Moreover, the proposed method performs four optimization methods to obtain the
high quality of asynchronous RTL models. The proposed method takes other input files
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(a) GL conversion flow.

(b) Proposed flow.

Figure 4.2: Conversion flow.

such as area and delay parameters to perform the optimization methods. We describe
the detail of each optimization method and parameter in Chapter 5.

Compared with the GL conversion methods [1–4, 6, 7, 9–12, 14–16], the proposed
method has the following advantages:

1. We can evaluate asynchronous circuits at RTL.

2. The proposed method is suitable for FPGA designs.

3. We can generate optimized asynchronous circuits by performing logic synthesis
for asynchronous RTL models with appropriate constraints.

4. We can obtain optimized asynchronous RTL models by applying optimization
methods during the RTL conversion.

The proposed method can evaluate asynchronous circuits at the RTL. For exam-
ple, GL conversion methods generate asynchronous GL netlists from synchronous GL
netlists (Fig. 4.2a). However, functional verification cannot be performed immediately
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(a) Data flow.

(b) Data-path circuit obtained using GL
conversion.

(c) Data-path circuit obtained using RTL
conversion.

Figure 4.3: Comparison of conversions.

because a delay adjustment for satisfying the timing constraints of the generated asyn-
chronous GL netlists is not performed. However, in the proposed method, functional
verification can be performed easily using the RTL simulation for asynchronous RTL
models (Fig. 4.2b).

The proposed method generates asynchronous RTL models, and therefore, it is suit-
able for FPGA designs. The standard design entry for commercial FPGA design tools is
an RTL model; however, the GL conversion methods are not suitable for FPGA designs
because they generate asynchronous GL netlists from synchronous ones.

In the RTL conversion, we can generate optimized asynchronous circuits by per-
forming logic synthesis for asynchronous RTL models with appropriate constraints. We
describe this advantage more clearly in Fig. 4.3. Figure 4.3a depicts data flow in a data-
path circuit, where nodes represent operations and edges represent data dependency. In
GL conversion, the delay of each cycle in the synthesized data-path circuit is equalized
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(1, 200 ps in state1 and state2) because logic synthesis is performed for synchronous
RTL models with a clock constraint (Fig. 4.3b). In contrast, in the RTL conversion, we
perform logic synthesis with different delay constraints for each cycle to fully utilize
asynchronous circuits (Fig. 4.3c). For example, we assign a loose delay constraint for
operations (e.g., 1, 600 ps for mul0 in state2) whose resources consume more power,
whereas we assign a strict delay constraint for operations (e.g., 800 ps for add0 and
add1 in state1) whose resources consume less power under a latency constraint. This
can result in a more optimum data-path circuit than the data-path circuit used in GL
conversion.

Further, in the RTL conversion, we can obtain optimized asynchronous RTL mod-
els by applying optimization methods during the RTL conversion. For example, in the
asynchronous GL netlists obtained from GL conversion, wire names were changed and
resources were replaced with gates, which leads to the difficulty performing optimiza-
tion such as the operand isolation. In contrast, in the RTL conversion, the optimization
can be applied to resources in asynchronous RTL models. Therefore, optimized asyn-
chronous RTL models can be obtained easily.

4.2 Inputs

4.2.1 Target Synchronous RTL Models
The proposed method assumes that the target synchronous RTL models are designed

manually or generated using commercial HLS tools. Target synchronous RTL models
are both non-pipelined and pipelined synchronous RTL models.

The proposed method assumes that the data-path circuit of target synchronous RTL
models is composed of functional units, registers, and multiplexers as described in
Chapter 3. Macros such as memories are considered functional units or registers; fur-
ther, the proposed method assumes that DFFs are used for registers.

The proposed method assumes that target synchronous RTL models have only one
control circuit. The proposed method assumes that the control circuit is represented by
an FSM or registers to control the pipeline stages. Control circuits must be modified
such that they are unified in one FSM if the control circuit has several FSMs.

The proposed method assumes that the target synchronous RTL models are spec-
ified by Verilog HDL. Syntaxes such as ”function,” ”task,” ”for,” ”while,” ”wait,” and
”[sub,5’h0+:32] (concatenation)” must not be included in Verilog HDL. We will address
syntax in our future research.

Further, the proposed method does not concern the following: whether clock gating
for registers is performed and the number of cycles for input intervals in the pipelined
circuits.

Figure 4.4 shows an example of the target non-pipelined synchronous RTL model.
Figure 4.4a-d show the top-level module using Verilog HDL, register using Verilog
HDL, control circuit using Verilog HDL, and RTL structure, respectively. The control
circuit comprises an FSM.

Figure 4.5 shows an example of the target pipelined synchronous RTL model. Fig-
ure 4.5a-c show the top-level module using Verilog HDL, control circuit using Verilog
HDL, and RTL structure. The structure of RTL models may change depending on
whether RTL models include pipeline stalls. Pipeline stages stall the operation during
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(a) Verilog HDL of the top-level module.

(b) Verilog HDL of the registers. (c) Verilog HDL of the control module.

(d) RTL structure.

Figure 4.4: Example of non-pipelined synchronous RTL model.
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(a) Verilog HDL of the top-level module. (b) Verilog HDL of the control module.

(c) RTL structure.

Figure 4.5: Example of pipelined synchronous RTL model.

the stall if pipeline stalls are included in pipelined synchronous RTL models. Note that
creg0 and creg1 represent registers in the control circuit.

4.2.2 Info-XML

In the Info-XML, we describe the information required for the conversion except
for the Model-XML. Figure 4.6 shows an example of the Info-XML. The Info-XML
begins with 〈parameter〉.

The Info-XML includes information required to analyze synchronous RTL mod-
els. 〈synctop〉 represents the top-level module name of a particular synchronous RTL
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Figure 4.6: Example of Info-XML.

model; 〈ctrlmodule〉 represents the control circuit name; 〈fsm〉 represents the state
variable name; 〈fsmnext〉 represents the next state variable name; 〈spipeline〉 repre-
sents the information of pipeline stages; 〈clk〉 represents the global clock signal name;
〈rst〉 represents the global reset signal name; 〈timeunit〉 represents the time unit for
delays; and 〈cycle〉 represents the target clock cycle time. In 〈spipeline〉, ”mode” rep-
resents whether the circuit is a pipelined circuit, ”stage” represents register names to
control pipeline stages, ”interval” represents the number of the input interval, ”control”
represents whether the control circuit has an FSM, and ”stall” represents whether the
number of stall signals is one.

In addition, the Info-XML includes information required to generate asynchronous
RTL models. 〈tool〉 represents the synthesis target name. In 〈tool〉, we can describe
”Quartus” for Intel FPGAs, ”Vivado” for Xilinx FPGAs, or ”ASIC”. 〈asynctop〉 rep-
resents the top-level module name of the asynchronous RTL model, 〈apipeline〉 rep-
resents the information of pipeline stages, , and 〈primitive〉 represents the primitive
cells used in the control modules. In 〈apipeline〉, ”mode” represents whether the cir-
cuit is a pipelined circuit and ”interval” represents the number of the input interval.
In 〈primitive〉, we describe the cell name cell, I/O pin name such as In or Out, and
initial value init for Xilinx FPGAs. Primitive cells are used to prevent hazardous be-
haviors in control modules and preserve the correct timing required for bundled-data
implementation.

4.3 Sync2XML
Sync2XML generates a Model-XML from a given synchronous RTL model and Info-

XML through an analysis of the synchronous RTL model and a generation of a CDFG.
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4.3.1 Parser
Pyverilog is a tool kit that uses Python to analyze Verilog HDL models. Pyverilog

consists of a syntax analyzer, data-flow analyzer, control flow analyzer, and code gen-
erator; the parser generates an AST from a given Verilog HDL. The data-flow analyzer
generates graphs to define each signal from the AST. The control flow analyzer gener-
ates an FSM from results in the data-flow analyzer. Pyverilog assumes that the control
circuit is represented by one FSM. The code generator generates Verilog HDL from the
AST. We use an AST and a control flow for a given synchronous RTL model to generate
the Model-XML.

The AST represents the structure of RTL models. Figure 4.7 shows one part of
the AST for the synchronous RTL model. In the AST, ”Portlist” represents I/O ports,
”Always” represents ”always” statements, ”Assign” represents ”assign” statements, and
”Instance” represents instantiated resources. The proposed method recognizes a signal
name, bit width, resource type, etc. from the AST.

The control flow represents state transitions in the FSM of a synchronous RTL
model. Figure 4.8 shows the control flow for the synchronous RTL model. Values
described using decimal numbers represent state variables. The arrows represent the
state transition and ”()” represents the condition of the state transition. The proposed
method recognizes the states and state transitions from the control flow.

4.3.2 Generation of a CDFG
In asynchronous circuits, data-path resources in each stagei (statei) are controlled

by each ctrli. Sync2XML generates a CDFG from the AST and control flow generated
by Pyverilog to determine the data-path resources controlled by each stagei.

The CDFG used in this dissertation represents the control flow and data flow in
synchronous RTL models. Sync2XML generates a CFG and DFG from the AST and
control flow. Subsequently, Sync2XML generates a CDFG by combining the CFG
and DFG.

Generation of a CFG

Sync2XML generates a CFG from the AST and control flow. The CFG com-
prises nodes and edges. The nodes represent states of the FSM or registers to control
the pipeline stages. The nodes have a control signal name with its value. The edges
represent a dependence between nodes.

Sync2XML generates nodes and edges from the AST and control flow. The method
for generating nodes and edges depends on whether there is a control flow.

For a control flow, Sync2XML generates nodes and edges from the control flow.
Sync2XML extracts the label for nodes from values described using decimal num-
bers. Sync2XML extracts the control signal name with its value from ”()”; more-
over, Sync2XML generates edges from arrows. After generating the edges, Sync2XML
eliminates nodes without incoming edges and nodes with only the self-loop. Further,
Sync2XML eliminates incoming or outgoing edges that correspond to these nodes. Sub-
sequently, for the remaining nodes, Sync2XML reassigns node labels from the smallest
node label. Finally, Sync2XML adds the primary input signal start that triggers the
FSM from the outside. As the proposed method assumes only one FSM, we generate
only one CFG from the given synchronous RTL models.
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Figure 4.7: Example of AST generated using Pyverilog [33].
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Figure 4.8: Example of control flow generated by Pyverilog [33].

Figure 4.9 shows an example of the generation of the CFG from the control flow.
Sync2XML generates the eight nodes from the control flow. For example, node 1 is
generated from line 3 in the control flow. As an example on edge generation, the edge
from nodes 1 to 2 is generated from line 3 in the control flow. After generating the
edges, Sync2XML eliminates nodes 4, 5, 6, and 7 without incoming edges. Finally,
Sync2XML moves the input signal start to trigger the CFG.

In the absence of control flow, Sync2XML generates nodes and edges from the
AST. Sync2XML generates nodes from the ”Lvalue” or ”Instance” for the control cir-
cuit in the AST. Sync2XML extracts the label for the nodes from the variable name for
the ”Lvalue” or ”Instance” in the AST. Further, Sync2XML extracts the control signal
with its value for the nodes from the ”IfStatement” or ”CaseStatement” in the AST. In
addition, Sync2XML generates edges from the ”Rvalue” or ”PortArg” in the AST.

Figure 4.10 shows an example of the generation of the CFG from the AST. Red
represents an example of node generations and blue represents an example of edge
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Figure 4.9: Example of the generation of a CFG from a control flow.

generations. As an example on node generation, node creg1 is generated from the
”Instance” at line 3 in the AST. As an example on edge generation, the edge from
istart to creg0 is generated from the ”PortArg” at line 4 in the AST.
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Figure 4.10: Example of the generation of a CFG from an AST.

Generation of a DFG

Sync2XML generates a DFG from the AST. The DFG comprises nodes and edges.
The nodes represent resources such as registers and functional units in the data-path
circuit. The nodes have a control signal name and a value except for functional units
and basic logic operations. The edges represent a dependence between nodes.

Sync2XML generates nodes from the ”Lvalue” or ”Instance” in the AST. Sync2XML
extracts the label for the nodes from the variable name. Further, Sync2XML extracts the
control signal with its value for the nodes from the ”IfStatement” or ”CaseStatement”
in the AST.

After generating the nodes, Sync2XML generates edges from the ”Rvalue” or ”Por-
tArg” in the AST. Further, Sync2XML extracts the bit width for the edge from the
”Pointer” or ”Partselect” in the AST.

Figure 4.11 shows an example of the generation of the DFG from the AST. Red
represents an example of node generations and blue represents an example of edge
generations. For example, node reg1 is generated from the ”Instance” at line 37 in the
AST, and the edge from reg1 to add0 is generated from the ”PortArg” at line 44 in the
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Figure 4.11: Example of the generation of a DFG from an AST.

AST.

Combination of CFG and DFG

Sync2XML generates a CDFG by combining the CFG and DFG. The CDFG com-
prises nodes, edges, and statei (stagei). Between registers represent statei (stagei).
Further, statei (stagei) has a conditional signal cond and its value val to begin the
operation in statei (stagei).

Sync2XML combines the CFG and DFG by generating edges from the AST and
control flow. In addition, Sync2XML generates edges from the CFG to DFG by
referring to the ”IfStatement,” ”CaseStatement,” and ”PortArg” in the AST. Further,
Sync2XML generates edges from the DFG to CFG by referring to ”()” in the control
flow.

Sync2XML considers between registers as statei (stagei). The extraction method
for cond and val for statei (stagei) differs based on whether there is the control flow.
Without the control flow, Sync2XML extracts cond and val for statei (stagei) from the
”IfStatement” and ”CaseStatement” for the control circuit in the AST. With the control
flow, Sync2XML extracts cond and val for statei (stagei) from ”()” in the control flow.

Moreover, the extraction method for cond and val for statei (stagei) differs based
on whether there are stall signals. Sync2XML extracts cond and val from the AST and
control flow without a stall signal. With stall signals, the extraction method differs
based on whether there are multiple stall signals or one stall signal. Sync2XML does
not extract cond and val if there is one stall signal because the operations of ctrli and
ctrli−1 cannot be simultaneously resumed by one stall signal. In contrast, Sync2XML
extracts cond and val from the AST and control flow in the presence of multiple stall
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signals. If the II is different, Sync2XML generates a CDFG in the same manner.
Figure 4.12 shows an example of the generation of a CDFG. Red represents an

example of edges from the CFG to the DFG and blue represents an example of edges
from the DFG to the CFG. The edge from node 0 to node reg0 is generated from the
”CaseStatement” at line 10 in the AST as an example of edges from the CFG to the
DFG. The edge from node reg0 to node 2 is generated from ”()” at line 3 in the control
flow as an example of edges from the DFG to the CFG. We consider between reg3 and
reg4 as stage2 as an example on statei generations. The conditional signal reg0 out[0]
and its value 1 are given to stage2 from ”()” at line 3 in the control flow. Figure 4.13
shows the generated CDFG for the pipelined synchronous RTL model of Fig. 4.5.

4.3.3 Generation of Model-XML
Generation of resource information

Sync2XML generates the resource information 〈resource info〉 in the Model-XML
from the AST and Info-XML. Figure 4.14 represents the generated resource information
in the Model-XML from the AST.

In 〈resource info〉, Sync2XML represents all resources and input/output pins in
the data-path circuit in the synchronous RTL model using 〈resource〉. Sync2XML
generates each 〈resource〉 from ”Instance,” ”Assign,” and ”Port” in the AST. First,
Sync2XML obtains the resource or input/output name name from ”Instance,” ”As-
sign,” and ”Port.” Further, Sync2XML recognizes the resource type type from ”Mod-
uleDef,” ”Rvalue” in ”Assign,” and ”Decl” using the label of ”Instance,” ”Assign,”
and ”Port.” Then, Sync2XML obtains the control signal name ctrl name with its bit
width from ”PortArg” in ”Instance,” ”IfStatement” in ”ModuleDef,” and ”Decl.” More-
over, Sync2XML obtains the assignment type substitution from ”NoblockingSubsti-
tution,” ”BlockingSubstitution,” and ”Assign.” For ”BlockingSubstitution” (”Assign”),
Sync2XML assigns the number to ”BlockingSubstitution” (”Assign”) in the order in
which they appear. Finally, Sync2XML obtains the bit width bit from ”Width” in ”Decl.”

Figure 4.14 shows an example of the generation of resource information from the
AST. 〈resource id = ”5”〉 in the resource information represents the 32-bit register.
Sync2XML obtains the resource name from the ”Instance” at line 21 and assigns reg0
to name. Thereafter, Sync2XML obtains the bit width from the ”Width” in the ”Decl”
at line 14 and assigns 32 to bit. Further, Sync2XML obtains the resource type from
the ”ModuleDef” at line 33 and assigns reg to type. Moreover, Sync2XML obtains
the control singal name from the ”PortArg” at line 28 and ”IfStatement” at line 47 and
assigns en0;1 to ctrl name. Finally, Sync2XML obtains the assignment type from the
”NoblockingSubstitution” at line 51 and assigns nb to substitution.

Generation of path information

Sync2XML generates the path information 〈path info〉 from the CDFG. The path
information comprises data-path information 〈datapath〉, state information 〈ctrlpath〉,
and state transition information 〈loop〉 in the control circuit.

In 〈datapath〉, Sync2XML represents a data-path using 〈path〉. For the CDFG,
Sync2XML generates each 〈path〉 by checking the path from the destination register
or output pin to the source register or input pin. First, Sync2XML obtains the start
point start name, through point th name, and end point end name from the nodes in
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Figure 4.12: Example of the generation of a CDFG.
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Figure 4.13: Generated CDFG from Fig. 4.5.

the CDFG. Subsequently, Sync2XML obtains the bit width for the start point start bit
and bit width for the through point th bit from the edges in the CDFG. If edges do
not have the bit-width information, start bit or th bit is empty. Finally, Sync2XML
obtains the input operand of the the through point th in and input operand of the the end
point end in from the edges in the CDFG. If the path contains several through points,
Sync2XML represents all of them adding the identifier to th name (i.e., th0 name and
th1 name).

Figure 4.15 shows an example of the generation of data-path information from the
CDFG. 〈path id = ”3”〉 in the data-path information represents the path from reg1 to
reg3 through add0. Sync2XML obtains the start point name from the label in reg1 and
assigns reg1 to start name. Thereafter, Sync2XML obtains the through point name
from the label in add0 and assigns add0 to th0 name. In addition, Sync2XML obtains
the input operand of add0 from the edge from reg1 to add0 and assigns 0 to th0 in.
Further, Sync2XML obtains the end point name from the label in reg3 and assigns reg3
to end name. In addition, Sync2XML obtains the input operand of reg3 from the edge
from add0 to reg3 and assigns 0 to end in.

Sync2XML analyzes preceding and succeeding states (pipeline stages) for each statei
(stagei) before 〈ctrlpath〉 is generated. In the CDFG, statej (stagej) (j '= i) repre-
sents a succeeding state (pipeline stage) for statei (stagei) when the resources of statei
(stagei) are connected to the resources of statei (stagei). In contrast, statej (stagej)
represents a preceding pipeline stage for statei (stagei) when the resources of statei
(stagei) are connected to the resources of statei (stagei). Further, Sync2XML extracts
a conditional signal and its value for the transition between states (pipeline stages) from
the cond and val of statej (stagej).

Sync2XML generates the control-path information after analyzing statei (stagei).
Sync2XML generates the control-path information for each statei (stagei) using 〈ctrl〉.
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Figure 4.14: Example of resource information.
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Figure 4.15: Example of data-path information.
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Further, 〈ctrl〉 represents stagei (stagei) and Sync2XML reassigns labels by converting
statei to si. Subsequently, Sync2XML generates preceding state (pipeline stage) in-
formation 〈pred〉 and succeeding state (pipeline stage) information 〈succ〉 into 〈ctrl〉.
Here, 〈pred〉 and 〈succ〉 represent preceding and succeeding states (pipeline stages)
for each stagei (stagei), respectively. Moreover, Sync2XML assigns a conditional sig-
nal ctrlname and its value ctrlval to operate preceding or succeeding states (pipeline
stages) to 〈pred〉 or 〈succ〉. If the previous states are traversed by a feedback state
transition, Sync2XML represents feedback as 1.

Figure 4.16 shows an example of the generation of control-path information from
the CDFG. 〈path id = ”2”〉 in the control-path information represents the control-path
information that corresponds state2. Sync2XML obtains the state name from the label in
state2 and assigns s2 to name. Thereafter, Sync2XML obtains the preceding state name
from state1 and assigns s1 to name in 〈predecessor〉. Further, Sync2XML obtains the
control signal name and its value from cond and val in state1 and assigns reg0 out[0]
to ctrl name and 1 to ctrl val. In addition, Sync2XML obtains the succeeding state
name from state0 and assigns s0 to name in 〈successor〉.

After generating 〈ctrl〉, Sync2XML generates 〈loop〉 as follows: The state group
〈group〉 of the traversed states are defined until the outgoing state transition becomes
feedback. For each state in 〈group〉, Sync2XML generates the initial state start, inter-
mediate state th, and end state end in the state transition.

Generation of timing information

Sync2XML generates the timing information 〈timing〉 from the CDFG. 〈timing〉
comprises the register write signal information 〈reg〉 and the multiplexer control signal
information 〈mux〉.

Sync2XML analyzes the values of the register write signals and multiplexer control
signals before generating 〈timing〉. The value of the register write signal for regk is the
control value held by regk for statei if regk exists in statei on the CDFG. The value of
the multiplexer control signal for muxl is the control value held by muxl for statei if
muxl exists in statei on the CDFG.

Sync2XML generates the register write signal information and the multiplexer con-
trol signal information for each control signal of registers and multiplexers using 〈reg〉
and 〈mux〉 after analyzing statei (stagei). Finally, Sync2XML assigns the control val-
ues to 〈reg〉 and 〈mux〉 from the analyzed values of control signals.

The generation method differs based on whether there is a pipeline stall. Sync2XML
generates the register write signal information for the components to use DFFs for stall
signals.

Figure 4.17 shows an example of the generation of timing information from the
CDFG. 〈reg id = ”0”〉 in the timing information represents the register write signal
of reg0. Sync2XML obtains the register write signal from the control name in reg0 and
assigns en0 to name. Thereafter, it obtains the value of the register write signal from
the control value in reg0 and assigns 1 to s0.

4.4 XML2Async
XML2Async generates an asynchronous RTL model with bundled-data implementa-

tion from the Model-XML and Info-XML. Moreover, XML2Async generates an asyn-
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Figure 4.16: Example of control-path information.
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Figure 4.17: Example of timing information.

chronous RTL simulation model when the target implementation is an FPGA and a set
of non-optimization constraints for preventing the optimization of primitive cells in the
control circuit.

4.4.1 Generation of Asynchronous RTL Models
XML2Async generates an asynchronous RTL model by assigning data-path resources,

assigning control modules, and generating a top-level module.

Assigning Data-Path Resources

XML2Async assigns data-path resources by referring to 〈resource〉 in the resource
information 〈resource info〉 of the Model-XML. For each 〈resource〉, XML2Async
obtains the resource name from name, bit width from bit, resource type type, control
signal name with its bit width from ctrl name, the assignment type from substitution.
In addition, XML2Async obtains the input signal names, bit width, and input operand
numbers by referring to 〈datapath〉 in 〈path info〉.
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Figure 4.18: Generated Verilog HDL model of the register.

Figure 4.18 represents generated Verilog HDL models from 〈resource id = ”6”〉 in
the resource information of Fig. 4.18. First, XML2Async obtains the resource name as
reg1 from name. Thereafter, it recognizes the resource type as the register because type
is reg. In addition, it recognizes the output bit width as 32 from bit and the assignment
type as the non-blocking substitution from substitution. Further, XML2Async recog-
nizes the control signal name as en1 and the control signal bit width as 1 from en1;1 in
ctrl name. Next, it extracts 〈path id = ”1”〉, which includes the resource name reg1 in
the through points th name or the end point end name. From this 〈path〉, XML2Async
obtains the input signal name as in0 from start name . Further, XML2Async recog-
nizes the input signal bit width as 32, which is the same as the output bit width of reg1
because start usebit is empty. XML2Async obtains the input signal bit width as 16 if
a description such as [15 : 0] exists in start usebit or th usebit. Finally, XML2Async
obtains the input operand as 0 from end in. XML2Async generates the Verilog HDL for
registers with such information (Fig. 4.18).

XML2Async decides the module name and I/O pin names beforehand; this helps
prevent multiple resources of the same structure.

Assigning Control Modules

XML2Async assigns control modules by referring to 〈ctrlpath〉 in the path infor-
mation 〈path info〉 of the Model-XML and 〈primitive〉 in Info-XML. For one 〈ctrl〉,
XML2Async assigns one control module. If there are pipeline stalls or if II is different,
XML2Async assigns and connects ctrli in the same manner. Figures 4.19 depicts the
Verilog HDL model and circuit structure of the generated control module ctrli.

XML2Async generates a logic w0 from outi−1 or lclki−1 of the previous control
modules ctrli−1 and the conditional signals from the data-path circuit for the control
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(a) Verilog HDL model. (b) Circuit structure.

Figure 4.19: Generated control module ctrli.

branch. XML2Async searches ctrli−1 using the name of 〈predecessor〉 in 〈ctrl〉 and
obtains outi−1 or lclki−1. Moreover, XML2Async obtains conditional signal names and
their values from ctrl name and ctrl value in 〈predecessor〉.

The generation method for w0 of ctrli differs depending on the following condi-
tions.

• (Condition 1) Input signals of the control module are primary input signals and
feedback signals.

• (Condition 2) There are branches for the control module.

• (Condition 3) There are several previous control modules.

In condition 1, XML2Async decides whether the input signals of the control module
are primary input signals and feedback signals by referring to 〈predecessor〉. XML2Async
recognizes this name as a primary input signal when name in 〈predecessor〉 is the dif-
ferent from name of each 〈ctrl〉. XML2Async recognizes this name as a feedback
signal when feedback in 〈predecessor〉 is 1. Here, XML2Async generates w0 using a
C-element. Figure 4.20a depicts w0 using a C-element.

In condition 2, XML2Async decides whether there are branches for the control mod-
ule by referring to ctrl name in 〈predecessor〉. XML2Async recognizes that there is a
branch for the control module from the previous control module based on a conditional
signal. Here, XML2Async generates w0 on the input signal using an AND gate and a
DFF (bDFFi). The inputs of the AND gate are lclki−1 from ctrli−1 and a conditional
signal. Figure 4.20b depicts w0 using an AND gate.

In condition 3, XML2Async decides whether there are several previous control mod-
ules by referring to the number of 〈predecessor〉. XML2Async recognizes that there
are several previous modules when there are several 〈predecessor〉. Here, XML2Async
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(a) w0 using the C-element.

(b) w0 using the AND gate and DFF.

(c) w0 using the OR gate for the input signal and feedback signal.

Figure 4.20: Generation of glue logics w0.
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generates w0 on the input signal using an XOR gate. Figure 4.20c depicts w0 using an
XOR gate.

After generating w0, XML2Async generates a delay element sdi by referring to INV
in the 〈primitive〉 in the Info-XML. ctrli is operated by the rising and falling transitions
of reqi. Hence, sdi comprises two inverters in that the delay does not change between
the rising and falling transitions.

Finally, XML2Async generates lclki and dffi by referring to 〈primitive〉 in the
Info-XML. First, XML2Async generates lclki from 〈XOR2〉; XML2Async obtains the
cell name as ”XOR2” from cell and obtains the port names from IN . Thereafter, it
decides the instance name as lclki. Similarly, XML2Async generates dffi from 〈DFF 〉.

Generation of a Top-level Module

XML2Async generates a top-level module from Model-XML. XML2Async generates
the top-level module by obtaining the top-level module and I/O signal names, instan-
tiating data-path resources and control modules, connecting the data-path resources,
connecting the control modules, and connecting between data-path resources and con-
trol modules.

First, XML2Async obtains the top-level module from 〈asynctop〉 in the Info-XML.
In addition, XML2Async obtains I/O signals for the top-level module by referring to
the type in 〈resource〉. If the type is input or output, it is an input or output signal,
respectively.

Next, XML2Async instantiates all generated data-path resources and control mod-
ules. XML2Async obtains the instance name for the data-path resource from name in
〈resource〉 of the Model-XML. Further, XML2Async obtains the instance name for the
control module from name in the 〈ctrl〉 of the Model-XML. XML2Async replaces ”s”
into ”ctrl” in the instance name for the control module. Figure 4.21 shows the instanti-
ated resources by referring to the resource information in Fig. 4.14 and the control-path
information in Fig. 4.16.

After the instantiation of data-path resources and control modules, XML2Async
connects between the data-path resources and control modules. For the data-path re-
sources, XML2Async connects data-path resources by referring to 〈path〉 in 〈datapath〉.
XML2Async performs the connection by providing the same signal name. XML2Async
obtains the signal name from start name, th name, and end name, the input operand
number from th in and end in, and the bit width for the connection from start usebit
and th usebit. For the control modules, XML2Async connects the control modules by
referring to 〈predecessor〉 (〈successor〉) in 〈ctrl〉. Further, it obtains the previous con-
trol modules names from name in 〈predecessor〉 and obtains the next control modules
from name in 〈successor〉. Figure 4.22 shows the connection of data-path resources
and the connection of control modules by referring to the data-path information in Fig.
4.15 and control-path information in Fig. 4.16.

XML2Async connects the data-path resources to the control modules by referring
to 〈path〉 in 〈datapath〉 after the connection of the data-path resources and control
modules. XML2Async performs the connection by providing the same signal name.
XML2Async obtains the signal name from start name, th name, and end name. There-
after, XML2Async obtains the input operand number from th in and end in. Finally,
XML2Async obtains the bit width for the connection from start usebit and th usebit.
Figure 4.23 shows the connection from the data-path resources to the control modules
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Figure 4.21: Instantiation of resources.

Figure 4.22: Connection of resources.

by referring to the data-path information presented in Fig. 4.15.
Finally, XML2Async connects control modules to data-path resources by referring to

〈reg〉 and 〈mux〉 in 〈timing〉. Further, it connects the control modules to the data-path
resources through glueregk and gluemuxl

.
XML2Async generates register write signals (glueregk) by referring to 〈reg〉. XML2Async

obtains the signal name from name. The register write signal assignment comprises
the logical OR of lclki, where si in 〈reg〉 is equal to 1. The connection method through
the generation of control signals differs depending on whether there is a pipeline stall.
XML2Async connects ctrli to the DFFs to use DFFs for stall signals.

In addition, XML2Async generates multiplexer control signals (gluemuxl
) by refer-

ring to 〈mux〉; it obtains the signal name from name. The multiplexer control assign-
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Figure 4.23: Connection from data-path resources to control modules.

Figure 4.24: Generation of glue logics.

ment comprises the logical XOR of sti, where si in 〈mux〉 is different from the value
of the previous state si−1. If there are several XOR gates, XML2Async generates multi-
plexer control signals using the logical OR of these XOR gates. XML2Async initalizes
multiplexer control signals using the logical XOR of sti and outi when ctrli generates
feedback signls and si is 1.

Figure 4.24 shows the generation of register write signals and multiplexer control
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(a) Asynchronous RTL model for Fig. 4.4.

(b) Asynchronous RTL model for Fig. 4.5.

Figure 4.25: Generated top-level module.

signals. For generating the register write signals, the assignment of en4 comprises
a logical OR of lclk2 and lclk3 because the values of s2 and s3 in 〈reg〉 are 1. For
generating the multiplexer control signals, the assignment of sm0 comprises a logical
XOR of st3 and out3 because the value of s3 in 〈mux〉 is 1, and ctrl3 generates the
feedback signal. Figure 4.25a shows the converted asynchronous RTL model from the
synchronous RTL model in Fig. 4.4. Figure 4.25b shows the converted asynchronous
RTL model from the synchronous RTL model in Fig. 4.5.

4.4.2 Generation of Asynchronous RTL Simulation Models
XML2Async generates an asynchronous RTL simulation model when the target de-

vice is an FPGA. An asynchronous RTL simulation model is generated because de-
signers cannot perform RTL simulation in an FPGA design environment using RTL
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Figure 4.26: Asynchronous RTL simulation model for ctrli.

models with primitive cells. Therefore, XML2Async generates control modules that do
not include primitive cells.

XML2Async replaces the primitive cells in the control modules with ”always” or
”assign” statements to generate the asynchronous RTL simulation model. In this dis-
sertation, XML2Async implements DFFs using the ”always” statement and inserts one
time unit delay (i.e., #1). Further, XML2Async implements the logics except for the
delay elements sdi using the ”assign” statement with the zero time unit. XML2Async
obtains the time unit from 〈timeunit〉 in the Info-XML.

XML2Async implements delay elements sdi for the simulation model using the ”as-
sign” statement. Moreover, XML2Async generates the delay timesdi of sdi using

timesdi = (CT − 1) (4.1)

where CT represents the target cycle time. XML2Async obtains the value from 〈cycle〉
of the Info-XML.

Figure 6.4a shows the generated Verilog HDL of ctrli for asynchronous RTL simu-
lation models. XML2Async obtains the delay unit from the 〈timeunit〉 of the Info-XML
in Fig. 4.6. Further, XML2Async obtains 1, 000 ps as CT from 〈cycle〉 of the Info-XML
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Figure 4.27: Example of a set of non-optimization constraints for ASIC implementa-
tions.

in Fig. 4.6. Subsequently, XML2Async implements DFFi using the ”always” statement
with 1 ps because DFFi is a DFF. Finally, XML2Async implements sdi using the ”as-
sign” statement with 999 by subtracting the delay of DFFi (1 ps) from CT (1, 000).

4.4.3 Generation of a Set of Non-Optimization Constraints
XML2Async generates non-optimization constraints for the control modules to pre-

vent the optimization of logics in the control modules. In addition, XML2Async gener-
ates non-optimization constraints for delay elements to guarantee the correct timing to
write the data into registers. Therefore, XML2Async generates non-optimization con-
straints for DFFi (bDFFi), lclki, and delay elements.

XML2Async generates set dont touch commands for ASICs. Further, XML2Async
generates DONT TOUCH commands for Xilinx FPGAs. Figure 4.27 is an example
of the non-optimization constraints when the target implementation is an ASIC. For
Intel FPGAs, XML2Async does not generate non-optimization constraints, because the
control modules and delay elements are not optimized when we use Intel Quartus Prime
19.1.
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Optimization Methods

In this chapter, we describe optimization methods during RTL conversion. Section
5.1 describes the modularization for data-path resources for reducing the area of data-
path circuits. Section 5.2 describes the use of appropriate DFFs to reduce the area of
registers. Section 5.3 describes inserting latches before data-path resources to reduce
the dynamic power consumption of data-path circuits. Section 5.4 describes the conver-
sion from DFFs to D latches for reducing the dynamic power consumption of registers.

The quality of asynchronous circuits after RTL conversion depends on representa-
tion styles before the conversion because the proposed RTL conversion method does
not perform optimization during the conversion. We propose optimization methods that
can be applied during RTL conversion to obtain high-quality asynchronous circuits

In this dissertation, We propose four optimization methods during RTL conversion
from synchronous RTL models to asynchronous RTL models with bundled-data im-
plementation: (1) modularization for data-path resources to reduce the area of data-
path circuits; (2) use of appropriate DFFs to reduce the area of registers; (3) inserting
latches before data-path resources to reduce the dynamic power consumption of data-
path circuits; and (4) conversion from DFFs to D latches to reduce the dynamic power
consumption of registers.

Table 5.1 indicates the applicability of optimization methods. The modularization
for data-path resources is suitable for non-pipelined circuits because we use different
maximum delay constraints for each state based on latency constraints. In contrast, the
modularization for data-path resources is not suitable for pipelined circuits because we
use the same value for each local clock constraint based on clock constraints. The use of
appropriate DFFs is suitable for all circuits if circuits have DFFs with an enable signal.
The latch insertion is suitable for non-pipelined circuits and pipelined circuits whose II
is two cycles. However, the latch insertion is not suitable for pipelined circuits whose
II is one cycle because all pipeline stages in pipelined circuits whose II is one cycle
are operated simultaneously. The conversion of DFFs into D latches is suitable for all
circuits.

5.1 Modularization for Data-Path Resources
Data-path resources are modularized to optimize the area of data-path circuits. Mod-

ularization implies that the proposed method converts operational RTL descriptions into
structural RTL descriptions. The proposed method converts operations into functional
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Table 5.1: Applicability of optimization methods.

Optimization methods Non-pipelined Pipelined circuits Pipelined circuits
circuits where II=1 where II=2 or more

Modularization for data-path resources Suitable Not suitable Not suitable
Use of appropriate DFFs Suitable Suitable Suitable

Latch insertion as operand isolation Suitable Not suitable Suitable
Conversion from DFFs to D latches Suitable Suitable Suitable

Figure 5.1: Example of the maximum delay constraints.

units and variables changed by conditions except the register variables into multiplex-
ers.

In asynchronous circuits with bundled-data implementation, each state can have a
different delay attributed to the use of the local handshake signals or self-timing. We as-
sign maximum delay constraints for data-paths in asynchronous circuits with bundled-
data implementation to obtain the same performance as synchronous circuits. We can
reduce the area of data-path circuits by assigning a different delay for each state. For ex-
ample, we assign a loose delay constraint for operations whose resource is a large area,
whereas we assign a strict delay constraint for operations whose resource is a small area
under a latency constraint. This can result in an optimum data-path circuit.

Figure 5.1 shows an example of the maximum delay constraints. In the maximum
delay constraints, we can specify a start point, a through point, and an end point. The
start point is an input pin or source register in the data-path. The through point is an
input or output of functional units or multiplexers in the data-path. The end point is an
output pin or destination register in the data-path.

In operational RTL models, we cannot assign appropriate maximum delay con-
straints because we cannot specify through points in the maximum delay constraints.
There are data-paths whose source and destination are the same but the passed resources
are different. Thus, we cannot distinguish the assignment of the maximum delay con-
straints for such data-paths.

Figure 5.2a shows a part of the Verilog HDL of an asynchronous RTL model without
modularization, a DFG, a structure, and maximum delay constraints. The DFG shows
that the operations in state0 and state1 are different. An adder is used in state0, while
a multiplier is used in state1. Frequently, the delay of the adder is shorter than the
delay of the multiplier. Here, if the data-path delay in state0 is 600 ps, the latency is
unchanged even if we assign 1, 400 ps to state1. However, we cannot distinguish the
maximum delay constraints because the source and destination registers are the same
(i.e., reg0).

We can assign data-path resources as through points in the maximum delay con-
straints by modularizing data-path resources during RTL conversion. This results in the
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assignment of a different delay for data-paths that are activated in different states even
if the source and destination registers are the same.

The proposed method modularizes the data-path resources during XML2Async to
specify the through points in the maximum delay constraints. The proposed method
generates modules for data-path resources by referring to the resource information.
Subsequently, it instantiates data-path resources by using the corresponding module.

Figure 5.2b shows a part of the Verilog HDL of an asynchronous RTL model with
modularization, a DFG, a structure, and maximum delay constraints. Instead of oper-
ations, actual resources are instantiated by the modularization. The operational RTL
descriptions for add out, mul out, and mux1 out in Fig. 5.2a(a) are converted into
structural RTL descriptions using modules add0, mul0, and mux1 in Fig. 5.2b, which
results in the assignment of a different delay for the data-paths.

5.2 Use of Appropriate DFFs
Appropriate DFFs are used to optimize the area of registers. In asynchronous cir-

cuits with bundled-data implementation, data are written to registers using a lclki signal
from ctrli. If data are not written to registers in statei, there is no connection from
lclki to the registers, which enables the registers to use DFFs without an enable signal.
Therefore, we can reduce the area of registers because a DFF without an enable signal
is generally smaller than a DFF with an enable signal.

However, in some scenarios, enable signals are generated by data-path resources.
Here, we cannot remove the enable signals, which is particularly remarkable in the
synchronous RTL models synthesized by an HLS tool with a clock gating option.

During XML2Async, the proposed method moves the assignment for the enable sig-
nal to the outside of the register descriptions to avoid the use of DFFs with an enable
signal. This results in the insertion of a glue logic (e.g., AND operation) for the regis-
ters that consists of lclki and the enable signal. However, this optimization is valid if
the area of DFFs without an enable signal and the glue logics is smaller than the area of
DFFs with an enable signal.

This optimization is similar to clock gating in synchronous circuits. The proposed
method uses this optimization approach to minimize reduce the circuit area of the asyn-
chronous circuits. A register with an enable signal is used during logic synthesis for
converted asynchronous RTL models when register descriptions in synchronous cir-
cuits include a condition for clock gating. This is because we do not assign a clock
gating option for the synthesis of the converted asynchronous RTL models. Therefore,
the proposed method moves the condition to the outside of the register descriptions and
generates a register write signal using the condition signal with lclki or the output of
the glue logic for the register; this results in the use of DFFs without an enable signal.

The proposed method moves assignments to the outside of the registers when the
following inequality is satisfied.

areaenableDFF − areaDFF > threshold (5.1)

where areaenableDFF , areaDFF , and threshold represent the circuit area for DFFs with
an enable signal, circuit area for DFFs without an enable signal, and a threshold value,
respectively. The glue logics for generating the enable signals are included in areaDFF .
Since we do not know the exact area of the glue logics after logic synthesis, we estimate
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(a) Non-modularized data-path resources.

(b) Modularized data-path resources.

Figure 5.2: Modularization of data-path resources.

areaenableDFF and areaDFF by referring to the used technology library, number of
literals, and logic operations in the assignments for the enable signals. We estimate the
area of the register that has the smallest bit width using DFFs with an enable signal and

52



5.3. LATCH INSERTION AS OPERAND ISOLATION

DFFs without an enable signal in the used technology library to decide the threshold
value. Next, we calculate the difference between the area using DFFs with an enable
signal and the area using DFFs without an enable signal. Finally, we set a threshold
value that is smaller than the obtained difference because in RTL, we do not know used
DFFs and inserted gate cells.

The proposed method estimates areaenableDFF and areaDFF by referring to area
parameters and resource information in the Model-XML. The proposed method calcu-
lates areaenableDFF by multiplying the area of DFFs with an enable signal in the area
parameters and the bit width for the register in the resource information. In addition,
the proposed method multiples the area of DFFs without an enable signal in the area
parameters and the bit width for the register in the resource information. Thereafter, the
proposed method calculates areaDFF by adding the multiplied value and the area of the
glue logic.

Figure 5.3 shows an example of the optimization. Figure 5.3a shows the given
area parameters and the resource information. We specify the required values in the
parameters to use appropriate DFFs. The proposed method calculates areaenableDFF

and areaDFF by referring to the parameters in Fig. 5.3a, bit width of the registers in the
resource information, and number of logics and literals in the assignments of the enable
signals. In this example, DFFs without an enable signal are used because the difference
between areaenableDFF and areaDFF is more than that of the threshold value (Fig. 5.3b
and Fig. 5.3c). The proposed method moves the condition signal (reg0 out[0]) for
the assignment of reg2 to outside of reg2 with the ”assign” statement. Thereafter, the
proposed method inserts a new logic that comprises the logical AND of reg0 out[0] and
gluereg2 out for generating a register write signal (en2) for reg2.

5.3 Latch Insertion as Operand Isolation
The aim of using latch insertion as an operand isolation is to reduce the dynamic

power consumption of data-path circuits. Figure 5.4 shows the examples of operand
isolation.

In general operand isolation, the logic synthesis tools insert AND gates before func-
tional units for isolating the inputs when the operations are not required at the functional
units (Fig. 5.4a). However, data-path circuits waste power because a change in the AND
gates to 0 is propagated to the functional units.

The proposed method prevents dynamic power consumption by using latches (Fig.
5.4b). Compared with AND gates, the latches do not propagate unnecessary signal
transitions to the functional units. An operand isolation method [34] using AND gates,
latches, etc., is available for synchronous circuits. For such synchronous circuits, their
latency may be degraded because of the increase in the cycle time caused by the latch
insertion that affects all cycles. In addition, the number of cycles may be increased
when the inserted latches are controlled by clock signals. In the proposed method, the
number of cycles is not changed by inserting latches because of the use of the signals in
ctrli. Even if the latches are inserted and the critical path delay is increased, the effect
for the performance is localized to the inserted cycle.

The registers are separated into master-slave latches (Fig. 5.4c). The slave latch is
used as an isolator as in the proposed method. However, the timing verification will be
complicated because registers with the role of an isolator are based on the master-slave
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(a) Area parameter and resource information.

(b) Registers with an enable signal.

(c) Registers without an enable signal.

Figure 5.3: Area estimation for reg2.

latches and other registers are based on DFFs. However, we can distinguish between
the registers and isolators easily because the proposed method simply inserts latches
when the isolations are required.

An additional register is inserted based on DFFs as an isolator (Fig. 5.4d). Latches
are considered better than DFFs in terms of circuit area and dynamic power consump-
tion to prevent unnecessary signal transitions. Therefore, the proposed method uses
latches as isolators.
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(a) Using AND gates. (b) Using latches.

(c) Using master-slave latches. (d) Using registers.

Figure 5.4: Example of operand isolations.

Figure 5.5: Example of unnecessary power consumption for functional units.

The power of the functional units may be wasted when the value of a register is
used by several functional units in different states. Figure 5.5 shows an example of the
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Figure 5.6: Delay parameter for each data-path resource.

unnecessary power consumption of functional units. We assume that fu1 operates in
statei and fu2 operates in statej . Here, both fu1 and fu2 operate because the value
of the register is propagated to fu1 and fu2 when the value of the register that is the
source of fu1 and fu2 is changed,. In each state, one operation is valid while the
other operation is invalid, which means that the latter scenario only wastes power. The
proposed method recognizes such a relationship by referring to the data-paths in a DFG.

The performance may be degraded by the delay of the inserted latches when the
proposed method inserts latches in critical paths. The proposed method insert latches
for data-paths that are not critical paths to preserve the critical path delays. Further, the
proposed method estimates the delay of data-paths to determine whether the paths are
critical paths. For a DFG, the proposed method can expect which data-path resources
are used in each data-path. Therefore, we estimate the delays of the data-paths by
summing the delays of the expected data-path resources.

Moreover, the reduction effect of dynamic power consumption will be small because
the inserted latches are few when the proposed method inserts latches in only non-
critical paths. The proposed method increases the number of data-paths that latches
can be inserted into by summing the critical path delay and a margin for reducing more
power.

5.3.1 Latch Insertion Algorithm
Algorithm 1 represents the proposed latch insertion algorithm for non-pipelined cir-

cuits. This algorithm accepts a DFG extracted from a CDFG.
First, we define terminologies used in the proposed latch insertion algorithm: dpi,p

represents the p-th data-path in a state statei or a pipeline stage stagei. A source srcdpi,p
in dpi,p represents an input signal or a register. Moreover, a sink in dpi,p represents an
output signal or a register. dpi,p also includes multiplexers muxdpi,p and functional
units fudpi,p between the source and the sink. tdpi,p represents the path delay of dpi,p,
tstatei represents the critical path delay in statei, tcp represents the critial path delay
in the pipelined circuit, marginstatei represents a margin of the critical path delay in
statei, and tdld represents the delay of the D latch of the delay parameters. In the delay
parameters shown in Fig. 5.6, max represents the maximum delay of the data-path
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Algorithm 1 Latch Insertion Algorithm for Non-Pipelined Circuits
Input: DFG and delay parameters
Output: DFG including dld

1: foreach statei do
2: foreach dpi,p do
3: estimate tdpi,p
4: end foreach
5: estimate tstatei
6: end foreach
7: foreach statei do
8: foreach dpi,p do
9: foreach statej do

10: foreach dpj,m do
11: if (srcdpi,p == srcdpj,m) then
12: if ((tdpj,m + tdld) is smaller than (tstatej + marginstatej )) then
13: insert dld between srcdpj,m and fudpj,m (muxdpj,m)
14: end if
15: end if
16: end foreach
17: end foreach
18: end foreach
19: end foreach

resources.
We prepare delay parameters as shown in Fig. 5.6 to estimate path delays. In Fig.

5.6, max represents the maximum delay of the data-path resources. In this method, de-
lay parameters are prepared as follows: (1) we perform logic synthesis for RTL models
including registers, functional units, and multiplexers using a clock constraint, and we
explore the fastest clock cycle time without timing violations. (2) We obtain the delays
of the registers, functional units, and multiplexers after logic synthesis. (3) Finally, we
define the delays as max for the data-path resources.

For each dpi,p, the proposed latch insertion algorithm estimates tdpi,p by adding the
max of each data-path resource in dpi,p. Then, the proposed latch insertion algorithm
estimates tstatei in statei; tstatei represents the maximum delay in tdpi,p . After the esti-
mation of all critical path delays, the algorithm explores all dpj,m in statej . For each
dpj,m in statej , the algorithm inserts a D latch dld between srcdpj,m and fudpj,m if
srcdpj,m is the same as srcdpi,p and the delay of tdpj,m and tdld is smaller than the total
delay of tstatej and marginstatej . If there is a multiplexer muxdpj,m before fudpj,m , dld
is inserted before muxdpj,m .

Figure 5.7 shows an example of latch insertion for non-pipelined circuits. The num-
ber represented by ”()” is the estimated delay of the corresponding data-path. In this
example, the margin is 0. The critical path delay tstate1 in state1 is 1, 350 and the crit-
ical path delay tstate2 in state2 is 650. Although srcdp2,0 is the same as srcdp1,0 (i.e.,
reg0), the algorithm does not insert dld between reg0 and sub0 in state2 because the
insertion of the latch results in an increase in the critical path delay in state2. Similarly,
the algorithm does not insert dld between reg2 and mul0, and dld between reg2 and
sub0; only dl0 is inserted between reg0 and add0 in this case.
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(a) DFG before applying the algorithm. (b) DFG after applying the algorithm.

Figure 5.7: Latch insertion for non-pipeined circuits.

Algorithm 2 Latch Insertion Algorithm for Pipelined Circuits
Input: DFG and delay parameters
Output: DFG including dld

1: foreach stagei do
2: foreach dpi,p do
3: estimate tdpi,p
4: end foreach
5: estimate tstagei
6: end foreach
7: estimate tcp
8: foreach stagei do
9: foreach dpi,p do

10: foreach stagej do
11: foreach dpj,m do
12: if (srcdpi,p == srcdpj,m) then
13: if ((tdpj,m + tdld) is smaller than (tcp + marginstagej )) then
14: insert dld between srcdpj,m and fudpj,m (muxdpj,m)
15: end if
16: end if
17: end foreach
18: end foreach
19: end foreach
20: end foreach
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(a) DFG before applying the algorithm. (b) DFG after applying the algorithm.

Figure 5.8: Latch insertion for pipeined circuits.

In contrast, algorithm 2 presents the proposed latch insertion algorithm for the
pipelined circuits. In pipelined circuits, the performance of asynchronous circuits de-
pends on the cycle time. Therefore, the proposed method defines the maximum delay
in the critical path delays of all stages as the critical path delays tcp.

For each dpi,p, the algorithm for pipelined circuits estimates tdpi,p by adding the
max of each data-path resource in dpi,p. Thereafter, it estimates tstagei in stagei. tstagei
represents the maximum delay in tdpi,p . After the estimation of all critical path delays,
the algorithm defines the critical path delays tcp; then, it explores all dpj,m in stagej .
For each dpj,m in stagej , we insert a D latch dld between srcdpj,m and fudpj,m if srcdpj,m
is the same as srcdpi,p and the delay of tdpj,m and tdld is smaller than the total delay of
tcp and marginstagej .

Figure 5.8 shows an example of the latch insertion for pipelined circuits. In this
example, the margin is 0, and the critical path delay tcp is 1, 350. Although srcdp1,2
is the same as srcdp2,1 (i.e., reg2), the algorithm does not insert dld between reg2 and
mul0 in state1 because the insertion of the latch results in an increase in the critical
path delay tcp. Therefore, dl0, dl1, and dl2 are inserted in this scenario.

5.3.2 Latch Control Signal
The inserted D latches of statei are controlled by a local state signal lsti in ctrli

(Fig. 5.9). lsti is implemented by an XOR operation using sti and outi; if the inserted
latches are controlled by several ctrli, they can be controlled by lsti through an OR
operation (gluedld).

Figure 5.10 shows the timing diagram of ctrli. A local state signal lsti opens the
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Figure 5.9: Latch controller.

Figure 5.10: Timing diagram for lsti.

inserted latches after the rising transition of sti arrives at the XOR gate. Subsequently,
lsti closes the inserted latches after the rising transition of outi arrives at the XOR gate.
The behavior of lsti for the falling transition of sti and outi is the same as that for the
rising transition of sti and outi.

5.3.3 Timing Constraints
In latch insertion, it is necessary to satisfy the setup and hold constraints to operate

the circuit correctly. If the timing constraints are violated, unnecessary signal transitions
are propagated to the functional units through the inserted D latches.

Setup Constraints

A setup constraint implies that the input data for the D latch must be arrived at the
D latch until the D latch is closed. Figure 5.11 shows a data-path sdpi,p and control-
path scpi,p related to the setup constraint. sdpi,p (red line) represents a path from the
output of lclki−1 to the destination D latch dl0 through the source register reg0. scpi,p
(blue line) represents a path from the output of lclki−1 to the destination D latch dl0
through lsti. We define the maximum delay of sdpi,p as tmaxsdpi,p , minimum delay of
scpi,p as tminscpi,p , and margin for tmaxsdpi,p as tsdpmi,p . Thus, the setup constraint can
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Figure 5.11: Paths related to setup constraint.

Figure 5.12: Paths related to hold constraint.

be represented by
tminscpi,p > tmaxsdpi,p + tsdpmi,p (5.2)

If the setup constraint is violated, we can adjust the number of cells for sddl,i or sddld,i.

Hold Constraints

A hold constraint implies that D latches must be closed until the next input data
arrives at the D latches after input data are written to the D latches. Figure 5.12 shows a
data-path hdpi,p and control-path hcpi,p related to the hold constraint. hdpi,p (red line)
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(a) Register.

(b) D latch.

Figure 5.13: Examples of the structures of registers and D latches.

represents a path from the output of lclki to the destination D latch dl0 through the
source register reg0. hcpi,p (blue line) represents a path from the output of lclki to the
destination D latch dl0 through lsti. We define the minimum delay of hdpi,p as tminhdpi,p ,
maximum delay of hcpi,p as tmaxhcpi,p , margin for tmaxhcpi,p as thcpmi,p , and hold time of
the destination Dlatch as tholdi,p Thus, the hold constraint can be represented by

tminhdpi,p > tmaxhcpi,p + thcpmi,p + tholdi,p (5.3)

If the hold constraint is violated, we can adjust the number of cells for hddld,i.

5.4 Conversion from DFFs into D latches
The aim of the conversion from DFFs into D latches is to optimize the dynamic

power consumption of registers. Figure 5.13 shows the examples of the structures of
registers and D latches. In general, D latches have low power and a small area com-
pared with DFFs. Therefore, the proposed method converts DFFs into D latches during
XML2Async.

5.4.1 Timing Constraints
It is necessary to satisfy the setup and hold constraints to operate the circuit cor-

rectly. We describe the timing constraints.

Setup Constraints

The input data for the D latch dlk must be arrived at dlk until dlk is closed; this is
called the setup constraint for dlk. Figure 5.14 shows a data-path sdpi,p and control-path
scpi,p related to the setup constraint. There are two types of data-paths sdpi,p (red line):
from the output of lclki−1 to the destination D latch dl1 through the source D latch dl0
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(a) Data-path sdpi,p through a source register and control-path scpi,p.

(b) Data-path sdpi,p through gluemux1 and control-path scpi,p.

Figure 5.14: Paths related to setup constraints for D latches.

(Fig. 5.14a) and from the output of lclki−1 to the destination D latch dl1 through the
glue logic gluemux0 (Fig. 5.14b). scpi,p (blue line) represents a path from the output of
lclki−1 to the D latch dl1 through the delay element sdi. We define the maximum delay
of sdpi,p as tmaxsdpi,p , minimum delay of scpi,p as tminscpi,p , and margin for tmaxsdpi,p as
tsdpmi,p . Thus, the setup constraint can be represented by

tminscpi,p > tmaxsdpi,p + tsdpmi,p (5.4)
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(a) Data-path hdpi,p through a source register and control-path hcpi,p.

(b) Data-path hdpi,p through gluemux1 and control-path hcpi,p.

Figure 5.15: Paths related to hold constraints for non-pipelined circuits.

If the setup constraint is violated, we should adjust the number of cells for sdi.

Hold Constraints

D latches dlk must be closed until the next input data arrives at dlk after the input
data are written to dlk; this is called the hold constraint for dlk. The hold constraint used
in this dissertation differs between the non-pipelined circuits and the pipelined circuits.

Figure 5.15 shows a data-path hdpi,p and control-path hcpi,p related to the hold
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constraint for the non-pipelined circuits. There are two types of data-paths hdpi,p (red
line): from the output of lclki to the destination D latch dl1 through the source D latch
dl1 (Fig. 5.15a) and from the output of lclki to the destination D latch dl1 through the
glue logic gluemux0 (Fig. 5.15b). Further, hcpi,p (blue line) represents a path from the
output of lclki to the destination D latch dl1 through DFFi. We define the minimum
delay of hdpi,p as tminhdpi,p , maximum delay of hcpi,p as tmaxhcpi,p , margin for tmaxhcpi,p

as thcpmi,p , and hold time of the destination Dlatch as tholdi,p . Thus, the hold constraint
can be represented by

tmincdpi,p > tmaxccpi,p + thcpmi,p + tholdi,p (5.5)

If the hold constraint is violated, we should adjust the number of cells for hddlk of
hdmuxi l.

Figure 5.16 shows a data-path hdpi,p and control-path hcpi,p related to the hold
constraint for the pipelined circuits. There are two types of data-paths hdpi,p (red line):
from the input signal start to the destination D latch dl1 through the source D latch
dl1 (Fig. 5.16a) and from the input signal start to the destination D latch dl1 through
the glue logic gluemux0 (Fig. 5.16b). Here, hcpi,p (blue line) is a path from the input
signal start to the destination D latch dl1 through DFFi. We define the minimum
delay of hdpi,p as tminhdpi,p , maximum delay of hcpi,p as tmaxhcpi,p , margin for tmaxhcpi,p

as thcpmi,p , hold time of the destination Dlatch as tholdi,p , global cycle time as gct, and
input interval as II . Thus, the hold constraint can be represented by

tminhdpi,p + gct× II > tmaxhcpi,p + thcpmi,p + tholdi,p (5.6)

If the hold constraint is violated, we should adjust the number of cells for hddlk or
hdmuxi l or increase gct.
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(a) Data-path hdpi,p through a source register and control-path hcpi,p.

(b) Data-path hdpi,p through gluemux1 and control-path hcpi,p.

Figure 5.16: Paths related to hold constraints for pipelined circuits.
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Chapter 6

Experimental Results

In this chapter, we describe the experimental results. Section 6.1 describes the
preparation for the experiments. Section 6.2 describes the conversion results which
indicate that the proposed method can generate asynchronous RTL models from var-
ious synchronous RTL models. Section 6.3 presents the evaluation of the converted
asynchronous circuits in terms of the circuit area, execution time, dynamic power con-
sumption, and energy consumption.

6.1 Preparation
For the experiments, we implemented a conversion tool for the proposed method

using Java. The conversion tool was executed on a Windows 10 machine (Intel Core
i7-8700 @3.2 GHz CPU and 16 GB memory).

We prepared synchronous RTL models to demonstrate that the proposed method
can generate asynchronous RTL models from synchronous RTL models. ”Manual”
represents synchronous RTL models designed manually. ”HLS” represent synchronous
RTL models obtained by synthesizing SystemC models using Cadence Stratus HLS
18.1. The synchronous RTL models for non-pipelined circuits were the DIFFerential
EQuation solver (DIFFEQ), Elliptic Wave Filter (EWF), and Inverse Discrete Cosine
Transform (IDCT). The synchronous RTL models for pipelined circuits were DIFFEQ,
EWF, MultiLayer Perceptron (MLP) [35], for which the number of neurons was 32,
Advanced Encryption Standard (AES) [36], and LENET [37], which includes only the
second convolutional and pooling layers. Figure 6.1 shows the architecture of LENET
synthesized using Stratus HLS. In this research, LENET can recive image data in par-
allel. Further, we prepared synchronous RTL models whose II was one cycle and two
cycles to demonstrate that the proposed method can use synchronous RTL models with
different IIs. Moreover, we prepared synchronous RTL models with a hard stall (Hard)
and a soft stall (Soft) by applying directives [38] in Stratus HLS. Hard indicates that the
operations of all pipeline stages stall, whereas Soft implies that the operations of the
specified pipeline stages stall. In addition, we applied the clock gating option to HLS
for synchronous RTL models. The library was the eShuttle 65 nm process technology.

As a reference, we synthesized the synchronous circuits (sync) from synchronous
RTL models using Cadence Genus 18.1 with the eShuttle 65 nm technology library. We
explored the fastest synchronous circuits without timing violations. In non-pipelined
circuits, the clock cycle times of DIFFEQ, EWF, and IDCT were 1,600, 1,600, and
1,700 ps. In the pipelined circuits, the clock cycle times of DIFFEQ, EWF, MLP, AES,
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Figure 6.1: Architecture of LENET used in this research.

and LENET were 1,400, 1,500, 600, 900, and 2,000 ps, respectively, when the II was
one cycle. The clock cycle times of DIFFEQ, EWF, MLP, and AES were 1,400, 1,500,
700, and 900 ps, respectively, when the II was two cycles. Further, we applied the clock
gating option to logic synthesis for synchronous circuits.

We generated GL netlists from the asynchronous RTL models based on the design
method in [26] to evaluate the quality of the converted asynchronous RTL models. Fig-
ure 6.3a shows the logic design flow after RTL conversion. We synthesized the asyn-
chronous RTL models with maximum delay constraints for each path and local clock
constraints for lclki to obtain the same performance as the synchronous circuits. We
referred to [26] to generate these constraints.

We obtained eight asynchronous RTL models from a synchronous RTL model to
evaluate each optimization method.

• RTLasync - asynchronous circuits without optimization

• RTLasyncm - with modularization of data-path resources

• RTLasyncr - with appropriate DFFs

• RTLasyncop and RTLasyncop10 - with latch insertion (0% margin and 10% mar-
gins)

• RTLasyncl - with D latches instead of DFFs

– RTLasyncl2(l4) - with strict clock constraints (200 ps (400 ps) smaller than
the clock cycle time of the synchronous circuits)

• RTLasynca - with combination of RTLasyncm, RTLasyncop10, and RTLasyncl

RTLasynca does not include asyncr because the used library does not includes a D
latch with an enable signal. Since pipelined circuits assume that all pipeline stages oper-
ate at the same delay, we did not design RTLasyncm. We did not design RTLasyncop
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(a) After RTL conversion. (b) After GL conversion.

Figure 6.2: Logic design flow.

because all pipeline stages in pipelined circuits whose II is one cycle are operated si-
multaneously.

In addition to RTL conversion, we manually performed GL conversion for the com-
parison between RTL and GL conversion. We inserted control modules ctrli for the
synchronous GL netlist synthesized with a clock constraint. Thereafter, we replaced the
clock signal of the registers to the output signal of the glue logics glueregk . We con-
verted DFFs to D latches. Figure 6.3b shows the logic design flow after GL conversion.
We assigned the maximum delay constraints and local clock constraints generated by
the same generation method used in the RTL conversion. The synthesized asynchronous
GL netlists GLasyncl satisfied timing constraints for bundled-data implementations.
We could not design GLasyncm and GLasyncop because it was difficult to apply op-
timization methods to the asynchronous GL netlists. In the asynchronous GL netlists,
the wire names were changed and resources were replaced with gates.

The used commercial EDA tools were Cadence Stratus HLS 18.1 for high-level
synthesis, Cadence Genus 18.1 for logic synthesis, Synopsys VCS Q-2020.03-SP1 for
logic simulation, and Synopsys PrimeTime Q-2019.12-SP3 for static timing analysis
(STA) and power analysis.
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6.2 Conversion Results
Table 6.1 summarizes the conversion results obtained using the proposed method.

Type, CT , State, Stage, and Sverilog represent the type of stalls or IIs, clock cycle
time, number of states, number of pipeline stages, and number of lines in Verilog HDL
of synchronous RTL models, respectively. AST , Model-XML, Averilog, and Time
represent the number of lines in the AST, number of lines in the Model-XML, number of
lines in Verilog HDL of asynchronous RTL models, and conversion time, respectively.

Table 6.1 indicates that the conversion time depends on the number of pipeline
stages and the number of lines in the AST. This is because the proposed method gen-
erates Model-XML from the AST and analyzes data-paths and control-paths in syn-
chronous RTL models for each state or pipeline stage. In addition, the conversion time
was increased when the pipeline stalls were included because the number of lines in the
AST with the pipeline stalls was more than the number of lines in the AST without the
pipeline stalls. When II is changed from one cycle to two cycles, the conversion time
was increased because the shared data-path resources were analyzed multiple times.
Moreover, the conversion time was increased when optimization is performed during
RTL conversion.

The conversion time increased when circuits have more Verilog HDL lines and
states/stages. For example, the conversion time is large in the case of control inten-
sive circuits such as AES. In contrast, the conversion time of data intensive circuits
such as LENET is short even if the circuit area is large.

For all benchmark circuits, we performed a logic simulation to verify the functional
correctness of the converted asynchronous RTL models. Figure 6.3 shows the flows
for the functional verification after RTL conversion and after logic synthesis. For the
simulation, we generated a standard delay format (SDF) file by synthesizing the asyn-
chronous RTL models. We prepared test patterns for the simulation by using arbitrary
values. After the simulation, we confirmed that all output values of the asynchronous
RTL models were the same as the output values of the synchronous RTL models. Figure
6.4 shows the waveform of EWF for the non-pipelined circuits. The waveforms indi-
cate that all output values of the asynchronous RTL models (asynchronous GL netlists)
were the same as the output values of the synchronous RTL models (synchronous GL
netlists).

6.3 Evaluation after Logic Synthesis

6.3.1 Comparison of sync and RTLasync

Figure 6.5 shows the circuit areas of sync and RTLasync. The circuit areas were
obtained from the report file generated by Genus. RTLasync reduced the circuit area
in the half of circuits. The proposed method is useful for larger circuits such as non-
pipelined IDCT and pipelined AES and LENET because it uses the loose maximum
delay constraints (non-pipeilned IDCT) or local clock constraints (pipelined AES and
LENET). Even for increased circuits, the area overhead was very small between 0.1%
and 2.3%.

Figure 6.6 shows the execution times of sync and RTLasync. The execution times
were obtained by simulating the designed circuits with an arbitrary test sequence using
VCS. The difference between the execution times of sync and RTLasync was very
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Table 6.1: RTL conversion results.

Name ɹ Type Opt CT State Sverilog AST Model-XML Averilog T ime
ɹɹ [ps] or Stage [lines] [lines] [lines] [lines] [s]

None 1,600 6 347 945 180 804 2.4
m 1,600 6 347 945 180 837 2.5

DIFFEQ r 1,600 6 347 945 180 810 2.4
(non-pipeline) None op 1,600 6 347 945 180 804 2.5

(HLS) op10 1,600 6 347 945 180 833 2.5
l 1,600 6 347 945 180 873 2.4
a 1,600 6 347 945 180 470 2.5

None 1,600 10 620 1,721 453 1,435 2.9
m 1,600 10 620 1,721 453 1,485 3.3

EWF r 1,600 10 620 1,721 453 1,451 3.0
(non-pipeline) None op 1,600 10 620 1,721 453 1,495 3.1

(HLS) op10 1,600 10 620 1,721 453 1,610 3.1
l 1,600 10 620 1,721 453 1,435 3.0
a 1,600 10 620 1,721 453 1,660 3.4

None 1,700 22 968 15,965 1,510 3,597 1,226.0
m 1,700 22 968 15,965 1,510 3,238 1,226.4

IDCT r 1,700 22 968 15,965 1,510 3,631 1,225.9
(non-pipeline) None op 1,700 22 968 15,965 1,510 3,626 1,226.4

(Manual) op10 1,700 22 968 15,965 1,510 3,626 1,226.3
l 1,700 22 968 15,965 1,510 3,597 1,225.8
a 1,700 22 968 15,965 1,510 3,267 1,226.7

II=1 None 1,200 4 254 765 110 348 2.0
l 1,200 4 254 765 110 348 2.0

None 1,200 4 232 662 99 474 2.0
DIFFEQ op 1,200 4 232 662 99 562 2.0
(pipeline) II=2 op10 1,200 4 232 662 99 576 2.1

(HLS) l 1,200 4 232 662 99 474 2.1
a 1,200 4 232 662 99 576 2.1

Hard None 1,200 4 341 859 188 384 2.1
Soft None 1,200 4 331 922 177 410 2.3
II=1 None 1,200 9 1,060 3,202 429 1,337 2.7

l 1,200 9 1,060 3,202 429 1,337 2.7
None 1,200 9 1,075 2,738 372 1,691 2.8

EWF op 1,200 9 1,075 2,738 372 1,898 3.1
(pipeline) II=2 op10 1,200 9 1,075 2,738 372 2,013 3.1

(HLS) l 1,200 9 1,075 2,738 372 1,691 2.9
a 1,200 9 1,075 2,738 372 2,013 3.1

Hard None 1,200 9 1,439 3,588 746 1,428 2.8
Soft None 1,200 9 1,333 3,703 715 1,557 2.8
II=1 None 400 20 24,977 94,130 22,276 36,609 330.4

l 400 20 24,977 94,130 22,276 36,609 332.9
None 400 20 25,325 93,363 22,856 57,992 627.8

MLP op 400 20 25,325 93,363 22,856 60,533 1,143.3
(pipeline) II=2 op10 400 20 25,325 93,363 22,856 63,066 1,166.4

(HLS) l 400 20 25,325 93,363 22,856 57,992 623.6
a 400 20 25,325 93,363 22,856 63,066 1,161.9

Hard None 400 20 32,676 101,164 28,039 36,464 366.0
Soft None 400 20 28,894 99,661 27,974 36,618 379.5
II=1 None 600 41 321,434 946,154 192,782 138,913 3,379.9

l 600 41 321,434 946,154 192,782 138,913 3,546.8
None 600 41 320,402 936,948 191,462 142,123 22,479.0

AES op 600 41 320,402 936,948 191,462 142,630 30,513.8
(pipeline) II=2 op10 600 41 320,402 936,948 191,462 143,242 29,943.6

(HLS) l 600 41 320,402 936,948 191,462 142,123 22,460.0
a 600 41 320,402 936,948 191,462 143,242 29,848.4

Hard None 600 41 328,075 955,070 198,594 139,638 3,687.6
Soft None 600 41 325,299 954,490 198,474 139,960 3,823.8

LENET None 2,000 6 28,956 132,009 42,584 52,152 821.1
(pipeline) II=1 l 2,000 6 28,956 132,009 42,584 52,152 823.7

(HLS)

small between −0.3% and +1.4% because asynchronous circuits were designed with
latency or cycle time constraints obtained by clock constraints for synchronous circuits.

Figure 6.7 shows the dynamic power consumptions of sync and RTLasync. The

71



CHAPTER 6. EXPERIMENTAL RESULTS

(a) After RTL conversion.

(b) After logic synthesis.

Figure 6.3: Functional verification flow.

dynamic power consumption was obtained by PrimeTime with the VCD file generated
by VCS. RTLasync reduced the dynamic power consumption in all circuits, except for
DIFFEQ where II was one cycle because of the use of the loose maximum delay con-
straints for non-pipelined circuits and local clock constraints for the pipelined circuits.
In particular, RTLasync demonstrated a large reduction where combinational circuits
are large, such as pipelined MLP, AES, and LENET.

Figure 6.8 shows the energy consumptions of sync and RTLasync. The energy
consumption was obtained by multiplying the execution time and dynamic power con-
sumption. RTLasync reduced the energy consumption in all circuits except for DIF-
FEQ where II was one cycle; this result emanated from the direct effect of the reduction
in the dynamic power consumption because the difference in the execution time was
very small.

6.3.2 Evaluation of Proposed Optimization Methods

Figure 6.9 shows the evaluation results of the modularization for the data-path re-
sources. Figures 6.9a-d show the circuit area, execution time, dynamic power con-
sumption, and energy consumption, respectively. Compared with RTLasync, the cir-
cuit area and dynamic power consumption of RTLasyncm were reduced because of
the use of the loose maximum delay constraints with a through point for operations
that use high-power resources (e.g., multipliers). The difference between the execution
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(a) Waveforms of synchronous RTL model and asynchronous RTL model.

(b) Waveforms of synchronous GL netlist and asynchronous GL netlist.

Figure 6.4: Waveforms of EWFs for non-pipelined circuits.

times of RTLasync and RTLasyncm was very small between −0.6% and +0.3% be-
cause we assigned the same values for the maximum delay constraints. Compared with
RTLasync, the energy consumption of RTLasyncm was reduced because of the direct
effect of the reduction of dynamic power consumption.

Figure 6.10 shows the evaluation results regarding the use of appropriate DFFs.
Figures 6.10a-d show the circuit area, execution time, dynamic power consumption,
and energy consumption, respectively. Compared with RTLasync, the circuit area
and dynamic power consumption of RTLasyncr were reduced because of the use of
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Figure 6.5: Circuit areas of sync and RTLasync.

Figure 6.6: Execution times of sync and RTLasync.

DFFs without an enable signal instead of DFFs with an enable signal. RTLasyncr
is useful for circuits including many DFFs with an enable signal such as IDCT. The
difference between the execution times of RTLasync and RTLasyncr was very small
between −0.2% and +0.1% because we assigned the same values for the maximum
delay constraints. The energy consumption of RTLasyncr was reduced compared with
that of RTLasync. This result is attributed to the direct effect of the reduction in
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Figure 6.7: Dynamic power consumptions of sync and RTLasync.

Figure 6.8: Energy consumptions of sync and RTLasync.

dynamic power consumption.
Figures 6.11 and 6.12 show the circuit area and execution time of operand isolation

by latches. Table 6.2 lists the number of inserted D latches. Compared with RTLasync,
the circuit areas of RTLasyncop and RTLasyncop10 were increased because of the in-
sertion of D latches. Since the number of the inserted D latches increased by adding the
margin, the circuit area of RTLasyncop10 was increased compared to that RTLasyncop.
Moreover, the difference between the execution times of RTLasync and RTLasyncop

75



CHAPTER 6. EXPERIMENTAL RESULTS

(a) Circuit area. (b) Execution time.

(c) Dynamic power consumption. (d) Energy consumption.

Figure 6.9: Evaluation of the modularization for data-path resources.

was very small between −0.1% and +1.2% because the proposed method did not insert
D latches in the critical paths. In contrast, the execution time of RTLasyncop10 was
increased by adding the margin.

Figures 6.13 and 6.14 show the dynamic power consumption and energy consump-
tion of operand isolation by latches. Compared with RTLasync, except for MLP, the
dynamic power consumption of RTLasyncop and RTLasyncop10 was reduced because
of the insertion of D latches to prevent unnecessary operations. Therefore, operand
isolation by latches is useful for data-path resources that have a sufficient bit width.
In our future research, we plan to modify the latch insertion algorithm by considering
the bit width and power consumption of resources. Compared with RTLasync, except
for MLP, the energy consumption of RTLasyncop and RTLasyncop10 was reduced
because of the decrease in the dynamic power consumption.

Figures 6.15, 6.16, 6.17, and 6.18 show the circuit area, execution time, dynamic
power consumption, and energy consumption of the conversion from DFFs into D
latches. Compared with RTLasync, the dynamic power consumption of RTLasyncl
was reduced in all circuits because of the use of D latches instead of DFFs. Simi-
larly, the circuit area of RTLasyncl, except for AES, was reduced. The difference
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(a) Circuit area. (b) Execution time.

(c) Dynamic power consumption. (d) Energy consumption.

Figure 6.10: Evaluation of the use of appropriate DFFs.

Table 6.2: Number of inserted D latches.

Name Type Number of inserted D latches
DIFFEQ RTLasyncop 0

(non-pipelined circuits) RTLasyncop10 1
EWF RTLasyncop 3

(non-pipelined circuits) RTLasyncop10 7
IDCT RTLasyncop 1

(non-pipelined circuits) RTLasyncop10 1
DIFFEQ RTLasyncop 5

(pipelined circuits) RTLasyncop10 6
(II=2)
EWF RTLasyncop 12

(non-pipelined circuits) RTLasyncop10 20
(II=2)
MLP RTLasyncop 177

(non-pipelined circuits) RTLasyncop10 356
(II=2)
AES RTLasyncop 33

(non-pipelined circuits) RTLasyncop10 75
(II=2)

between the execution times of RTLasync and RTLasyncl was small between −2.4%
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Figure 6.11: Circuit area of operand isolation by latches.

Figure 6.12: Execution time of operand isolation by latches.

and +0.2% because we assigned the same values for the maximum delay constraints
and local clock constraints. Compared with RTLasync, the energy consumption of
RTLasyncl was reduced. This result was attributed to the direct effect of the reduction
in dynamic power consumption. Therefore, the conversion from DFFs into D latches is
useful for circuits with many registers such as non-pipelined IDCT and pipelined MLP,
AES, and LENET.
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Figure 6.13: Dynamic power consumption of operand isolation by latches.

Figure 6.14: Energy consumption of operand isolation by latches.

Figures 6.19, 6.20, 6.21, and 6.22 show the circuit area, execution time, dynamic
power consumption, and energy consumption of the combination of the optimization
methods. Compared to each optimization method, RTLasynca was found to achieve
the best energy reduction for non-pipelined DIFFEQ and IDCT and pipelined DIFFEQ,
EWF, and AES. In contrast, the energy consumption of pipelined MLP was increased
because the bit-level operand isolation could not reduce the dynamic power consump-
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Figure 6.15: Circuit area of the conversion from DFFs into D latches.

Figure 6.16: Execution time of the conversion from DFFs into D latches.

tion.

6.3.3 Comparison of the RTL Conversion Method and the GL Con-
version Method

Figure 6.23 shows the comparison between GLasync and RTLasync in terms of
the execution times. RTLasync reduced the execution time in non-pipelined circuits
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Figure 6.17: Dynamic power consumption of the conversion from DFFs into D latches.

Figure 6.18: Energy consumption of the conversion from DFFs into D latches.

and pipelined circuits where II was one cycle. Further, in non-pipelined circuits, the crit-
ical path delays from control modules to registers through multiplexers were reduced.
In pipelined circuits where II was one cycle, the critical path delays were reduced by
assigning strict local clock constraints. In pipelined circuits where II was two cycles,
the execution time of RTLasync was increased because the critical path delays were
increased via operand isolation.

Figure 6.24 shows the comparison between GLasync and RTLasync terms of the
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Figure 6.19: Circuit area of the combination of the optimization methods.

Figure 6.20: Execution time of the combination of the optimization methods.

circuit areas. RTLasync reduced the circuit area in non-pipelined circuits because
the area of the combinational circuits was reduced by assigning loose maximum delay
constraints for operations that use high-power resources (e.g., multipliers). In pipelined
circuits besides MLP and LENET where II was one cycle, the circuit area of RTLasync
was increased. In pipelined circuits where II was one cycle, the area of the combina-
tional circuits was increased by assigning strict local clock constraints. In pipelined
circuits where II was two cycles, the circuit area was increased via operand isolation.
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Figure 6.21: Dynamic power consumption of the combination of the optimization meth-
ods.

Figure 6.22: Energy consumption of the combination of the optimization methods.

Figure 6.25 shows the comparison between GLasync and RTLasync in terms of
the dynamic power consumption. RTLasync reduced the dynamic power consumption
in non-pipelined circuits and pipelined circuits where II was two cycles, except in MLP.
In non-pipelined circuits, the dynamic power consumption of the combinational circuits
was reduced by assigning loose maximum delay constraints for operations that use high
power resources. In pipelined circuits where II was two cycles, except in MLP, the
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Figure 6.23: Execution times of GLasync and RTLasync.

Figure 6.24: Circuit areas of GLasync and RTLasync.

dynamic power consumption of the combinational circuits was reduced by operand
isolation. In pipelined circuits where II was one cycle, the dynamic power consumption
of RTLasync was increased because the execution time was reduced.

Figure 6.26 shows the comparison between GLasync and RTLasync in terms of
the energy consumption. RTLasync reduced the dynamic power consumption in non-
pipelined circuits and pipelined circuits where II was two cycles, except for MLP. This
result is ascribed to the direct influence of the reduction in dynamic power consumption.
Moreover, in pipelined LENET, RTLasync reduced the dynamic power consumption.
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Figure 6.25: Dynamic power consumptions of GLasync and RTLasync.

Figure 6.26: Energy consumptions of GLasync and RTLasync.

This result is ascribed to the direct influence of the reduction in execution time.

6.3.4 Discussion
Energy consumption is reduced from synchronous RTL models to achieve RTL con-

version without optimization methods. This result is attributed to the direct effect of the
reduction in the dynamic power consumption caused by the use of loose maximum de-
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Figure 6.27: Example of GL netlists.

Figure 6.28: Logic synthesis for the RTL conversion.

lay constraints for non-pipelined circuits and the local clock constraints for pipelined
circuits.

Optimized asynchronous RTL models are obtained from RTL conversion with op-
timization methods. The modularization and use of appropriate DFFs optimize circuit
area and dynamic power consumption. The operand isolation is useful for reducing dy-
namic power consumption if the operations have a sufficient bit width. The use of D
latches is the best effect for optimization. The combination of all optimization methods
results in the best optimization effect in many cases.

The comparison between the GL conversion and RTL conversion that the RTL con-
version reduces energy consumption in many cases. In addition, compared with the GL
conversion, the RTL conversion allows designers to insert operand isolation easily. For
example, it is difficult to insert isolators in the GL conversion because the wire names
are changed and resources are replaced with gates (Fig. 6.27). Further, the RTL con-
version allows designers to explore optimum circuits by changing constraints used for
logic synthesis from strict to loose (Fig. 6.28). Moreover, the RTL conversion allows
designers to implement asynchronous circuits on FPGAs easily.
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Conclusion and Future Work

7.1 Conclusion
In this dissertation, we proposed a method for automatic conversion method from

synchronous RTL models into asynchronous RTL models with bundled-data implemen-
tation. The proposed method generates an intermediate representation from a given syn-
chronous RTL model. Subsequently, the proposed method generates an asynchronous
RTL model with bundled-data implementation from the intermediate representation. In
addition to generating asynchronous RTL models, the proposed method generates an
asynchronous RTL simulation model for FPGA implementations and non-optimization
constraints to prevent optimizations for primitive cells used in the control circuit.

We proposed four optimization methods during the RTL conversion to obtain high-
quality asynchronous circuits: (1) the modularization for data-path resources to reduce
the area of data-path circuits; (2) the use of appropriate DFFs to reduce the area of
registers; (3) inserting latches before data-path resources to reduce the dynamic power
consumption of data-path circuits; and (4) conversion from DFFs into D latches to
reduce the dynamic power consumption of registers.

In the experiment, we converted synchronous RTL models into asynchronous RTL
models with bundled-data implementation. We demonstrated that the conversion time
depends on the size and the number of states (pipeline stages) in the synchronous RTL
model. Thereafter, we performed logic synthesis for the converted asynchronous RTL
models to compare them with the synchronous circuits and asynchronous circuits ob-
tained from GL conversion. The asynchronous circuits obtained from the proposed
RTL conversion reduced the energy consumption compared with that when using syn-
chronous circuits. Moreover, the combination of the optimization methods could reduce
more energy consumption in many cases. The proposed RTL conversion reduced the
energy consumption compared with the GL conversion in many cases. Compared with
the GL conversion, the RTL conversion allows designers to insert operand isolation
easily, explore optimum circuits by changing constraints used for logic synthesis from
strict to loose, and implement asynchronous circuits on FPGAs easily.

7.2 Future Work
As future research, we plan to extend the proposed method to incorporate various

HLS tools. We will convert asynchronous circuits with low energy consumption from
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various synchronous RTL models by increasing the Verilog HDL syntax that can be
solved. In addition, we will modify the latch insertion algorithm by considering the bit
width and the power consumption of resources. Moreover, we will propose optimization
methods to reduce the number of switching for the combinational circuits.
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