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Abstract

Machine learning technology has broken through the bottleneck, and has made

rapid progress. It is closely related to human life, especially with the wide ap-

plication of artificial intelligenceƭAIƮtechnology, human life is more and more

convenient. With the maturity of medical technology and the continuous up-

dating of various medical equipment, minimally invasive endoscopic surgery has

been widely carried out. At the same time, the maturity of computer technology

provides strong support for the medical field.

Lumbar disc herniation (LDH) is a common degenerative disease in human.

In recent years, percutaneous transforaminal endoscopic discectomy (PTED) has

become a major surgical treatment for LDH. In this operation, nerve and dura

mater injury is one of the serious complications. One of the main reasons is that

the operator cannot correctly identify the nerve and dura mater in time.

Inguinal hernia (IH) also is a common disease in human, transabdominal

preperitoneal patch plasty (TAPP) and total extra-peritoneal preperitoneal patch

plasty (TEP) are the main minimal invasive surgery for inguinal hernias repair,

and vas deferens injury is a common complication in male patients during these

minimal invasive endoscopic surgeries.

In this study, we extract the image of target tissues from endoscopic surgery

videos, and use convolutional neural network (CNN) model to learn, train and test

the image features of target tissues. We propose a CNN based computer-aided

xiv



detection system (CADS) to complete these tasks and evaluate the performance

of the CADS by various indicators.

Firstly, PTED videos of 65 patients with LDH were collected for this study.

These videos were converted into images, and then the spinal endoscopy expert

group labeled the areas containing nerve and dura mater in all images. The

training dataset was composed of 10,454 images including nerve and dura mater

of 50 patients, and 12,000 images of 15 patients constituted the test dataset. The

test results showed that sensitivity (Sen), specificity (Spe), and accuracy (Acc) are

90.90%, 93.68%, and 92.29%, respectively. Compared with surgeons of different

levels, the performance of CADS was higher than that of general surgeons. CADS

is an effective method for nerve and dura mater recognition in PTED. With the

assistance of CADS, the performance of general surgeons is close to that of spinal

endoscopy experts.

Secondly, PTED videos of 102 patients with LDH were collected for this study.

Eight common CNN models were used to test the recognition ability of these CNN

models for nerve and dura mater images in PTED. According to the characteristics

of each CNN model, the same dataset was used to train and test each modelƇand

then the performance of these models was compared and evaluated by Sen, Spe,

Acc, positive predictive value (PPV), negative predictive value (NPV), AUC and

FPS. Yolov4 had the best performance in Spe 96.14% and Acc 94.42% (confidence

level 0.1). The overall performance of SSD was the best, with AUC of 0.972, Sen

of 92.43%, Spe of 94.21%, PPV of 94.11%, NPV of 92.56% and Acc of 93.32%

(confidence level 0.3). In terms of detection speed, Yolov4-tiny was the fastest

model with the detection speed 196.15 fps. CNN models can be considered as

a promising method for nerve and dura mater detection under the PTED, and

xv



Yolov4 has the best performance on this task.

Thirdly, TAPP or TEP videos of 35 patients were collected for this study, and

Yolov4 was used to train and test this data. All images containing vas deferens

were labeled one by one by surgery experts. The data of 26 patients were used as

training data, 6 patients as image test dataset and 3 patients as video test dataset.

Under the confidence level 0.4, the performance of the model in the image dataset

was the best, which were TPR 90.61%, TNR 98.67%, PPV 98.57%, ACC 94.61%

and F1 94.42%, respectively; In the video test dataset, the average values of TPR

and TNR were 90.11% and 95.67% respectively. In this study, the vas deferens

under TAPP and TEP were detected by video and image. The appropriate IoU

threshold is 0.3. Yolov4 is an effective detector for vas deferens identification in

TAPP and TEP.

Fourthly, in order to lighten the CNN model and apply it to our task, depthwise

separable convolution (DSC) and self-attention (S-A) mechanism were used to

reconstruct the Yolov4. In this study, DSC was used to replace the conventional

convolution and added the S-A mechanism to the Yolov4 backbone, the parameters

of the model were reduced from 63.94 ×106 to 18.68 ×106, the detection speed

was improved from 28.12 fps to 48.84 fps. At the same time, the sensitivity was

96.21%, AUC was 0.96, which higher than Yolov4.

CNNs can accurately and effectively identify the images of nerve, dura mater

and vas deferens in endoscopic surgery. DSC and S-A mechanism also can be used

to reconstruct the CNN model to make the model more efficient, so that CADS

can bring more convenience to clinicians, especially young doctors, and reduce

unnecessary pain of patients.
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ՆҌӁࡁˍʶ˕˴ʿƟʃˣˏ˲˔ˊʶʦரఌɫƅփਙɿछഽɫʒɫɳƆɱ

ʠʃञԝʂ१ӑɼවঋɿԟؙɫɺɞʞƅɿञۆગƭAIƮՠࡦʂۊɘЫ

ๆɿʜʞƅञԝʂ१ӑʃʒɭʒɭളɿɾɷɺɘʒɭƆδຘՠࡦʂढ़ࡤɼโ

ƜɾδຘՆԶʂزਞଯɾۖईɿʜʞƅଊऀࡆࡦࠡ׃߄ɠۊɣ۱ʣʠɺɡʒ

ɫɳƆஔߗɿƅʺ˺˛ˬƟˆՠࡦʂҔʃδຘഇฅʦֲຢɿʼˤƟˏɫʒɭƆ

૮ԝౣ˟˲˒ʩܕ (LDH) ʃ˙ˏɿʜɣ٪ʝʠʟੋ۱ड़߷ӼɻɭƆפ௰ƅر

ಈر૮ԝۃ׃߄ଯ૮ԝౣউࡦƭPTEDƮɠ LDH ʂࠞ์ɾҙѕଯߚຘɼɾ

ɷɺɘʒɭƆɧʂࠡࡦɻʃƅऑرɼۢඥʂਦɠऍ܌ɾ܄ഖࢼʂ 1 ɸɻɭƆ

ढ़آˈˊ˘ଯඥঽرʩƭIHƮʖञԝɿʜɣ٪ʝʠʟ߷Ӽɻɖʞƅ˒˲˟أ

ʂ࠹ʩ˒˲˟أƭTEPƮʃƅࡦढ़آˈˊ˘ƭTAPPƮɼুඥҙඥঽࡦ

ɳʕʂࠞɿଊऀࡦࠡࡆɻɖʞƅท३Ԑਦʃઔड़Ӽࠋɠɧʠʝʂಘ׃߄

чɻ׃߄ʂࠞɾศʃƅࢼഖ܄ɻɖʟƆɧʠʝʂࢼഖ܄ɻʜɣ٪ʝʠʟࡦࠡ

ʱˡ˳ƟˆƟɠɧʠʝʂࣶʦˆʫ˧˱Ɵɟɸ।ҷɿߨധɻɡɾɘɧɼɻɭƆ

ɧʂ٥ɻʃƅࡦࠡ׃߄ʂ˚ˎʱɟʝವଯࣶʂѳਉʦળࡥɫƅࣩʓܛ

ʓ˒ˬƟ˰˲˔ˊˏ˶ƟʶƭCNNƮ˩ˎ˲ʦޡๆɫɺವଯࣶʂѳਉʂ

ʦӁࡁɫʒɭƆɧʠʝʂˆˀʶʦӷຎɭʟɳʕɿ CNN ˠƟˀʂʺ˺˛ˬƟˆ

ƟДࡥ٠ʾˀˍ˧ƭCADSƮʦଚΕɫƅɩʒɪʒɾޱವɿʜɷɺ CADS ʂ

˘˜ʰƟ˥˺ˀʦьɫʒɫɳƆ

ɿƅLDHࡾ݂ ʂ 65 ञʂӼࠋʂ PTED ˚ˎʱɠɧʂ٥ʂɳʕɿࡍʕʝʠ
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ʒɫɳƆɧʠʝʂ˚ˎʱʃѳਉɿബԀɩʠƅঃ૮׃߄ছѓʷ˲Ɵ˞ɠɭ

ʍɺʂѳਉʂऑرɼۢඥʦԥʔມηɿ˰ˠ˲ʦɥʒɫɳƆˏ˳Ɵ˒˺ʷˎ

Ɵˆ˂ˊˏʃƅ50 ञʂӼࠋʂऑرɼۢඥʦԥʔ 10,454 චʂѳਉɻۚढ़ɩʠƅ

15 ञʂӼࠋʂ 12,000 චʂѳਉɠˍˀˏˎƟˆ˂ˊˏʦۚढ़ɫʒɫɳƆˍˀˏ

ٌїʃƅӽƭSenƮƅΪƭSpeƮƅɞʜʇ३ƭAccƮɠɱʠɲʠ 90.90ǖƅ

93.68ǖƅɞʜʇ 92.29ǖɻɖʟɧɼʦߟɫʒɫɳƆΪɾʟ˳ˠ˲ʂҙѕδɼಅ

ҼɫɺƅCADS ʂ˘˜ʰƟ˥˺ˀʃλ౫ҙѕδʂ˘˜ʰƟ˥˺ˀʜʞʖۿɟ

ɷɳƆCADS ʃƅPTED ɿɞɥʟऑرɞʜʇۢඥʂ௨ߨɿڹїଯɾ൘൚ɻɭƆ

CADS ʂДɿʜʞƅλ౫ҙѕδʂ˘˜ʰƟ˥˺ˀʃঃ૮٠ܵ׃߄ʂছ

ѓʂ˘˜ʰƟ˥˺ˀɿפɣɾʞʒɭƆ

ɿƅLDH ʂ 102 ञʂӼࠋʂ PTED ˚ˎʱɠɧʂ٥ʂɳʕɿࡍʕʝ

ʠʒɫɳƆ8 ɸʂλ౫ଯɾ CNN ˩ˎ˲ʦޡๆɫɺƅPTED ʂऑرɞʜʇۢඥ

ѳਉɿɭʟɧʠʝʂ CNN ˩ˎ˲ʂ௨ߨຢʦˍˀˏɫʒɫɳƆү CNN ˩

ˎ˲ʂड़ɿЫɬɺƅஔɬˎƟˆ˂ˊˏʦޡๆɫɺү˩ˎ˲ʂˏ˳Ɵ˒˺ʷɼ

ˍˀˏʦ۱ɘƅSenƅSpeƅAccƅ๐ड़าਗખƭPPVƮƅϏड़าਗખƭNPVƮƅAUC

ɞʜʇ FPSƆYolov4 ʃƅAcc 94.42ǖƭࣿशࡵ 0.1Ʈɻ݂ۿʂ˘˜ʰƟ˥˺ˀ

ʦߟɫʒɫɳƆSSD ʂুਹଯɾ˘˜ʰƟ˥˺ˀʃ݂ۿɻƅAUC ʃ 0.972ƅSen

ʃ 92.43ǖƅSpe ʃ 94.21ǖƅPPV ʃ 94.11ǖƅNPV ʃ 92.56ǖƅAcc ʃ 93.32ǖɻ

ɫɳƭࣿशࡵ 0.3ƮƆࡥ٠ਙɿԟɫɺʃƅYolov4-tiny ʃࡥ٠ਙ 196.15fps

ʂ݂ਙ˩ˎ˲ɻɫɳƆCNN ˩ˎ˲ʃƅPTED ʂчɻʂऑرɞʜʇۢඥʂࡥ٠

ʂɳʕʂย൷ɾ൘൚ɼ٪ɾɭɧɼɠɻɡƅYolov4 ʃɧʂˆˀʶɻ݂ۿʂ˘˜

ʰƟ˥˺ˀʦԿɫʒɭƆ

މɿƅ35 ञʂӼࠋʂ TAPP ʒɳʃ TEP ˚ˎʱɠɧʂ٥ʂɳʕɿࡍ࠴

ɩʠƅYolov4 ɠɧʂˎƟˆʂˏ˳Ɵ˒˺ʷɼˍˀˏɿޡๆɩʠʒɫɳƆҙѕ
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ছѓɿʜɷɺท३Ԑʦԥʔɭʍɺʂѳਉʃ 1 ɸɮɸ˥ƟʶɩʠʒɭƆ26 ञ

ʂӼࠋʂˎƟˆʦˏ˳Ɵ˒˺ʷˎƟˆɼɫɺޡๆɫƅ6 ञʂӼࠋʦѳਉˍˀˏ

ˎƟˆ˂ˊˏɼɫɺޡๆɫƅ3 ञʂӼࠋʦ˚ˎʱˍˀˏˎƟˆ˂ˊˏɼɫɺޡ

ๆɫʒɫɳƆࣿशࡵ 0.4 ɻʃƅѳਉˎƟˆ˂ˊˏʂ˩ˎ˲ʂ˘˜ʰƟ˥˺

ˀɠ݂ۿɻƅɱʠɲʠ TPR 90.61ǖƅTNR 98.67ǖƅPPV 98.57ǖƅACC 94.61ǖƅ

F1 94.42ǖɻɫɳƆ˚ˎʱˍˀˏˎƟˆ˂ˊˏɻʃƅTPR ɼ TNR ʂചהખʃ

ɱʠɲʠ 90.11ǖɼ 95.67ǖɻɫɳƆɧʂ٥ɻʃƅTAPP ɞʜʇ TEP чʂ

३Ԑɠ˚ˎʱɼѳਉɿʜɷɺࡥ٠ɩʠʒɫɳƆউɾ IoU ᪭ખʃ 0.3 ɻɭƆ

Yolov4 ʃƅTAPP ɞʜʇ TEP ɻʂท३Ԑߨധʂɳʕʂڹїଯɾࡥ٠ԶɻɭƆ

ަɿƅCNN ˩ˎ˲ʦػຟшɫƅɱʠʦˆˀʶɿๆɭʟɳʕɿƅऍɩഇ

яࣩʓܛʓƭDSCƮɼډߢશΤՆۚƭS-AƮʦޡๆɫɺ Yolov4 ʦ݁ٛɫʒ

ɫɳƆɧʂ٥ɻʃƅDSC ʦޡๆɫɺࡓʂࣩʓܛʓʦટɡԀɜƅډߢશΤ

Նۚʦ Yolov4 ˗ˊʶˣƟ˺ɿ૰юɫƅ˩ˎ˲ʂ˘˰˨ƟˆƟʦ 63.94×106 ɟ

ʝ 18.68×106 ɿٹʝɫƅࡥ٠ਙʦ 28.12 fps ɟʝ 48.84 fps ɿ҉াɫʒɫɳƆ

ஔߗɿƅӽʃ 96.21ǖƅAUC ʃ 0.96 ɻƅYolov4 ʜʞʖۿɟɷɳƆ

CNN ʃƅࡦࠡ׃߄ɻऑرƅۢඥƅท३Ԑʂѳਉʦ।ҷɟɸڹїଯɿߨധ

ɻɡʒɭƆʒɳƅDSC ɞʜʇ S-A ˨ʲ˒ˁ˧ʦޡๆɫɺ CNN ˩ˎ˲ʦ݁ٛ

ɫƅ˩ˎ˲ʦʜʞڹଯɿɭʟɧɼɠɻɡʒɭƆɧʠɿʜʞƅCADS ʃສࢥ

δƅɿࠚɘδޮʂളड़ʦۿʕƅӼࠋʂ์ɾʓʦٹػɻɡʒɭƆ

xix



Chapter 1

Introduction

With the rapid development of computer technology, it has been wildly used

in various field, people’s daily life also more and more closely linked with the

computer.

In the field of medicine, with the development of computer technology and

endoscopic technology, various minimally invasive examination and minimally in-

vasive surgery technologies have been widely used, and computer technology is

more and more widely used in medical image recognition and object detection.

At present, computer technology has been widely used in clinical examination,

diagnosis and treatment. It not only brings great convenience to clinicians, but

also brings great benefits to patients.

1.1 Spinal Disc Herniation

1.1.1 Epidemiology

Nearly 80% of the population sustains an episode of low back pain once during

their lifetime [1]. About 9%-12% of the world’s population is suffering from low

back pain. Low back pain is common between 40 and 80 years old. There is

no significant difference in the proportion of male and female patientsƇand the

proportion of patients will gradually increase with age [2].

1



Since the middle of the 20th century, the theory of low back pain caused by

intervertebral disc disease has gradually become the mainstream; In the 1980s,

due to the application of new technologies such as computed tomography (CT)

and magnetic resonance imaging (MRI), the theory of low back pain caused by

intervertebral disc disease has gained more support [3]. The illustration of spinal

degeneration and disc herniation is shown in figure 1.1.

Figure 1.1: Illustration of spinal degeneration and disc herniation.

Spinal disc herniation is an injury to the cushioning and connective tissue

between vertebrae, usually caused by excessive strain or trauma to the spine. It

can occur in any disc in the spine, but the two most common forms are lumbar

disc herniation and cervical disc herniation. The majority of spinal disc herniation

occur in the lumbar spine (95% at L4⽝L5 or L5⽝S1), it occurs 15 times more often

than cervical disc herniation, It may result in back pain, pain, or sensation in

different parts of the body, and physical disability [4, 5].

1.1.2 Main Treatment Methods

There are many clinical treatments to alleviate the various discomfort symp-

toms caused by the herniation of the spinal disc. Usually, non-surgical treatment

is firstly tried to treat disc herniation, but the effect of drug treatment is often
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1.1. SPINAL DISC HERNIATION

not obvious, and it cannot completely solve the fundamental problem of interver-

tebral disc herniation, the final solution to disc herniation is surgery. In the early

20th century, American neurosurgeon Harvey Williams Cushing advocated that

surgical treatment of low back pain was more accepted by the world [6].

Traditional surgical treatment has large damage to local soft tissue and bone,

slow recovery, and high hospitalization cost. The choice of treatment for spinal

disc herniation has always been a difficult problem for clinicians and patients.

Fortunately, with the gradual development of minimally invasive surgery tech-

nology, minimally invasive approaches to spine surgery have been pioneered and

increasingly utilized over the last 15 years. These approaches are associated with

small incision, less pain, less bleeding, less soft tissue and bone trauma, low nursing

cost, fast recovery, decreased hospital length of stay, more and more operations

including discectomy have also begun to use minimally invasive and endoscopic

surgery [7–11].

The 12th (2012-2013) and 13th (2014-2015) National Surveys by the Japan So-

ciety for Endoscopic Surgery showed that endoscopic technology has been widely

used in various surgery. In 2014 and 2015, 4262 patients in Japan received spinal

endoscopic surgery, 3762 patients were lumbar disc herniation, accounting for

88.3% [12, 13].

Percutaneous transforaminal endoscopic discectomy (PTED) is a safe and ef-

fective method to treat lumbar disc herniation with few complications and high

patient satisfaction [14, 15]. It is a minimally invasive technique to treat lumbar

disk herniation from a lateral approach. Performed under local anesthesia, the

incision size for PTED is around 8mm with no paraspinal muscle cutting or de-

tachment from their insertion. In Figure 1.2, we show the real scene of PTED.

We can see that experts only need to watch the computer screen to operate the

equipment.
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Figure 1.2: Legend of PTED.

1.2 Inguinal Hernia

1.2.1 Epidemiology

A hernia is an abnormal exit of a tissue or organ, such as the intestine, through

the wall of the cavity in which it is usually located. Various types of hernias can

occur, the most common being the abdomen, especially the inguina. Inguinal

hernia is the most common inguinal type, but it may also be femoral type. Other

types of hernia include hiatal hernia, incisional hernia and umbilical hernia. About

66% of patients with inguinal hernia have symptoms. This may include lower

abdominal pain or discomfort, especially in or when cough, exercise, urination or

defecation [16].

Inguinal hernia is a protrusion of abdominal-cavity contents through the in-

guinal canal. For men, there is a lifelong risk of contracting an inguinal or femoral

hernia of 27%⽝43%. For women, there is a risk of 3%⽝6% [16,17]. In young infants,

the incidence of indirect inguinal hernia is approximately 1% to 5%, with male to
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1.2. INGUINAL HERNIA

female ratio of 10:1 [18].

In 2015, inguinal, femoral and abdominal hernias affected about 18.5 million

people [19]. In the western countries, including the United States, more than 1.5

million procedures are performed every year [20]. Globally, inguinal, femoral and

abdominal hernias resulted in 60,000 deaths in 2015 and 55,000 in 1990 [21, 22].

Inguinal hernia repair is one of the most frequent operation in general and visceral

surgery worldwide.

Figure 1.3: The common hernias in human.

(Picture source: https://www.drugwatch.com/wp-content/uploads/Common-

Hernias–640x0-c-default.webp)

1.2.2 Main Treatment Methods

Bassini performed the first inguinal hernia repair with reconstruction of the

floor of the inguinal canal to preserve functional anatomy in 1884, firstly described

in 1887 [23].

In 1982, under the guidance of laparoscopic technology, Ger et al. [24] used

laparoscopic technology to create a new type of hernia repair. Two types of laparo-

scopic surgery are successfully applied: the transabdominal preperitoneal patch

plasty (TAPP), and the totally extra-peritoneal preperitoneal patch plasty (TEP).
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TAPP and TEP are technically difficult and require special skills to overcome the

inherent limitations of such surgery. It has a significant learning curve and is

related to prolonging the operation time [25, 26]. But in the hands of trained

surgeons, it is safe and effective.

Compared with the traditional open surgery, TAPP and TEP may provide

better posterior inguinal wall exposure, enabling easier bilateral reinforcement, it

also can reduce the length of hospital stay and earlier return to work [27, 28].

Figure 1.4: Legend of laparoscopic surgery.

1.3 Development of Convolutional Neural Net-

works

As an important part of computer technology, artificial intelligence (AI), ma-

chine learning (ML) and deep learning (DL) have penetrated into every corner of

human life in recent years.

In Figure 1.5, we briefly describe the relationship among the three technologies.

1.3.1 AI, ML, DL, and CNNs

1.3.1.1 Artificial Intelligence

At the Dartmouth conference in 1956, the concept of “AI” was first put forward.

In the following ten years, artificial intelligence ushered in the first small peak
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1.3. DEVELOPMENT OF CONVOLUTIONAL NEURAL NETWORKS

Figure 1.5: The origin and development of artificial intelligence

in the history of development. Researchers swarmed in and made a number of

remarkable achievements.

AI means that computers have the same intelligence ability as human beings. It

is a frontier comprehensive subject integrating computer science, statistics, brain

neuroscience and social science. It can replace human beings to realize recognition,

cognition, analysis, decision-making and other functions. [29]

1.3.1.2 Machine Learning

ML is seen as a subset of artificial intelligence. It is a multi-disciplinary in-

terdisciplinary, involving probability theory, statistics, approximation theory and

complex algorithms. It uses computer as a tool and is committed to simulating or

realizing human learning behavior, and divides the existing content into knowledge

structure to effectively improve learning efficiency. [30]

At present, ML technology plays an important role in medical image process-

ing, image retrieval and analysis, computer-aided diagnosis, image interpretation,

image fusion, image registration, image segmentation, image-guided therapy and

other image recognition fields.
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ML algorithms are often categorized as supervised learning, unsupervised learn-

ing, and reinforcement learning. ML techniques are applicable to addressing var-

ious problems, such as classification, regression, clustering, and dimension reduc-

tion. We summarized the details in Figure. 1.6.

Figure 1.6: Machine learning technology

1.3.1.3 Deep Learning

DL is a branch of ML. It is a complex machine learning algorithm, which is

used to learn the inherent laws and representation level of sample data. Although

DL is a kind of ML, DL is to use deep neural network to make the model more

complex, so as to make the model understand the data more deeply.

The information obtained in the learning process is of great help to the inter-

pretation of text, image, sound and other data. Its ultimate goal is to enable the

machine to have the same analysis and learning ability as human beings, and to

recognize data such as words, images and sounds [31].

DL methods can also be divided into supervised learning, semi-supervised
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1.3. DEVELOPMENT OF CONVOLUTIONAL NEURAL NETWORKS

learning, and unsupervised learning. There are great differences in learning models

established under different learning frameworks. For example, CNN is a machine

learning model under deep supervised learning, while deep belief network (DBN)

is a machine learning model under unsupervised learning.

DL can process a large number of data, extract features automatically, and

solve complex problems. It shows good adaptability and strong learning ability

in various applications. Deep learning architecture, such as deep neural network

(DNN), deep belief network (DBN) and recurrent neural network (RNN), has been

applied to computer vision, speech recognition, natural language processing, ma-

terial detection and other fields. Their results are comparable to human experts,

and even better than human experts in some cases.

Of course, DL is not perfect. It depends on data, and its interpretability is

not high. DL needs a lot of data and a lot of computing power, which leads to its

high requirements for hardware, so the cost is very high. At the same time, the

design of deep learning model is very complex, which requires a lot of manpower,

material resources and time to develop new algorithms and models.

1.3.1.4 Convolutional Neural Network

The development of CNNs can be traced back to 1962, originated from Hubel

and Wiesel’s research on the visual system in cat brain. In 1980, Japanese scientist

Fukushima Bangyan proposed Neocognitron, a neural network structure including

convolution layer and pooling layer [32]. In 1998, on this basis, Yann LeCun [33]

proposed LeNet, and applied BP algorithm to the training of this neural network

structure, which formed the initial prototype of convolution neural network. With

the proposal of ReLU and Dropout, as well as the historical opportunities brought

by GPU and big data. In 2012, CNN, represented by AlexNet [34], ushered in

a historical breakthrough and entered a stage of explosive development. The

development of CNNs is briefly shown in Figure 1.7.

CNNs is a kind of feed-forward neural network. Its artificial neurons can
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Figure 1.7: History and development of CNN

respond to some surrounding cells in the coverage area, and it has excellent per-

formance for large-scale image processing. It is mainly composed of these layers:

input layer, convolution layer, ReLU layer, pool layer and full connection layer.

By superposing these layers, a complete convolutional neural network can be con-

structed. In Figure 1.8, we show the basic architecture of CNNs.

Figure 1.8: The basic architecture of CNNs

1.3.2 Common CNN Models in Object Detection

According to the difference of model structure, these object detection models

are generally divided into two categories, two-stage and one-stage detector.

1.3.2.1 Two-stage Detectors

The structure of the two-stage detector is complex, which mainly focuses on

the accuracy of object detection. [35–37] Two-stage detectors decouple the task

of object localization and classification for each bounding box. It firstly filters
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1.3. DEVELOPMENT OF CONVOLUTIONAL NEURAL NETWORKS

out the regions that have high probability to contain an object from the entire

image with region proposal network (RPN). [35] Then the proposals are fed into

the region convolutional neural network (R-CNN) [38] and get their classification

score and the spatial offsets. A simple two-stage algorithm is shown in Figure 1.9.

Figure 1.9: Two-stage algorithm architecture.

For now, two-stage detectors take the lead in detection accuracy. In these

detectors, sparse region proposals are generated in the first stage and then are

further regressed and classified in the second stage. RCNN [39] utilized low-level

computer vision algorithms such as Selective Search [40] and Edge Boxes [41] to

generate proposals, then adopt CNN to extract features for training SVM classifier

and bounding box regressor. SPP-Net [42] and Fast R-CNN [38] proposed to

extract features for each proposal on a shared feature map by spatial pyramid

pooling. Faster R-CNN [35] integrated the region proposal process into the deep

convnet and makes the entire detector an end-to-end trainable model.

1.3.2.2 One-stage Detectors

One-stage detector pays more attention to detection speed. One-stage detec-

tors make the predictions for object localization and classification at the same

time. These kind of detectors [43–47] usually adopt a straightforward fully convo-

lutional architecture, and the outputs of the network are classification probabilities

and box offsets at each spatial position. A simple one-stage algorithm is shown in

11



Figure 1.10.

Figure 1.10: One-stage algorithm architecture.

One-stage detectors perform classification and regression on dense anchor boxes

without generating a sparse RoI set. Yolo [48] is an early exploration that directly

detects objects on dense feature map. SSD [49] proposed to use multi-scale features

for detecting variant scale objects. RetinaNet [44] proposed focal loss to address

the extreme class imbalance problem in dense object detection. RefineDet [46]

anchor refinement module and the object detection module to imitate the cascade

regression on dense anchor boxes. Guided Anchor [50] first used anchor-guided

deformable convolutions to align features for RPN.

We have arranged these common algorithms according to the time sequence of

their emergence, as shown in Figure 1.11.

Figure 1.11: Common Two-stage and One-stage CNN models
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1.4. COMPUTER AIDED DETECTION/DIAGNOSIS SYSTEM IN MEDICAL FIELD

1.4 Computer Aided Detection/Diagnosis Sys-

tem in Medical Field

Medical image analysis aims to provide clinicians and radiologists with a more

effective diagnosis and treatment process. However, with the development of sci-

ence and technology, in the traditional computer-aided detection/diagnosis (CAD)

system, manual interpretation of data has gradually become a challenging task.

Deep learning methods, especially CNN, have been successfully used as a tool to

solve this problem.

Doctors may misunderstand the disease due to lack of experience or fatigue,

resulting in missed diagnosis. Non lesions can be interpreted as lesions, or benign

lesions are misunderstood as malignant ones. According to statistics, in medical

image analysis, the misdiagnosis rate caused by human factors can reach 10-30%

[51]. In this context, for doctors, CAD system is a very useful tool in medical

image analysis.

The application of CNN-based method in medical images is very different from

that in natural images [42]. In the training and testing of CNN, a large-scale

labeling dataset is needed, which requires experienced experts to complete a lot

of labeling works, so large-scale medical image datasets are not always available.

CNN-based methods are actively used for tasks such as classification, localiza-

tion, segmentation and registration in medical image analysis. To the clinicians

and radiologists, it is not the separation or combination of these tasks but the

incorporation of them with a unified system that plays a significant role in clinical

applications, known as the CAD systems.

CAD is a concept established by taking into account equally the roles of physi-

cians and computers, whereas automated computer diagnosis is a concept based

on computer algorithms only. With CAD, the performance by computers does

not have to be comparable to or better than that by physicians, but needs to be

complementary to that by physicians [52]. In fact, since 1960s, a large number
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of CAD systems have been used to assist doctors in the early detection of breast

cancers on mammograms. [53]. In 1998, the first equipment approved by the U.S.

Food and Drug Administration (FDA) was a breast X-ray CAD equipment man-

ufactured by R2 technology. The survey shows that in 2008, 74% of screening

mammograms used CAD [54], and in 2016, 92% of screening mammograms used

CAD [55].

Figure 1.12 shows three common types of CAD systems [56]. a. First-reader

type: After pre-selection by CAD system, the results are presented to doctors for

further processing. b. Second-reader type: Doctors first read the pictures to be

examined, and CAD will also give results to the pictures to be examined. In the

following steps, the doctor refers to the results of CAD and determines whether

each CAD result has neglected lesions or false-positive results. c. Concurrent-

reader type: The doctor reads the pictures to be examined and displays the CAD

results at the same time. The doctor can accept or reject the CAD results and

combine them with his / her own results without reading them again.

Figure 1.12: Three typical CAD system workflows:(a) First-reader type. (b)
Second-reader type. (c) concurrent-reader type.

Currently, CAD systems are widely used for the detection and diagnosis of
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1.5. THESIS STRUCTURE

diseases in medical image analysis, such as breast cancer, lung cancer, gastroin-

testinal diseases, prostate cancer, osteoporosis analysis, skin lesions, Alzheimer’s

disease, COVID-19, and so on. The application of CAD systems can improve

the accuracy of diagnosis, reduce time consumption, and optimize the doctorsƪ

workloads and learning curve.

1.5 Thesis Structure

This dissertation is a report about three years of my research on the topics of

tissues recognition under various kinds of minimally invasive endoscopic surgery

using CNN.

Figure 1.13: Organization of thesis structure

This dissertation mainly consists of six parts as shown in Fig. 1.13. At first,

some background knowledge is introduced in Chapter 1, including the relate knowl-

edge of spinal vertebral disc herniation and inguinal herniation, introduced devel-

opment of artificial intelligent, and computer-aided detection/diagnosis system in

medical image analysis field. Additionally, the thesis structure and the main con-

tributions are also summarized in this chapter. In Chapter 2, for the nerve and

dura mater recognition, we used CNN models to train and validate 65 patientsƪ

data extracted from PTED, and estimated the performance of CNN model and
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different level surgeons. Further, in Chapter 3, for comparing the performance

of different CNN models, we used the same training data, test data and similar

parameters to train and test 8 popular CNN models. In Chapter 4, we extend the

research object, we collected vas deferens images from laparoscopic hernial repair

surgery, and used CNN model to recognize the image of vas deferens. In Chapter

5, We reconstruct the CNN model based on Yolov4. DSC is used to replace the

conventional convolution in the Yolov4 backbone, and S-A mechanism is added

in the preliminary feature extraction process to reconstruct the CNN model, and

satisfactory results are obtained. Finally, in Chapter 6, the thesis is concluded

and future works are presented.

1.6 Main Contributions

In this thesis, I focused on the identification of various tissues under different

endoscopic operations. I used CNNs to identify the nerve and dura mater un-

der PTED and the vas deferens under laparoscopic surgery (TAPP, TEP). I also

tried to reconstruct CNN model based on Yolov4 by using depthwise separable

convolution (DSC) and self-attention (S-A) mechanism. Chapters 2, 3, 4 and 5

described the methodology and results. The main contributions of each chapter

are summarized as follows.

1. In Chapter 2. Nerve and dura mater recognition under PTED using CNN

• The CNN model Yolov3 was used to train and test the nerve and dura

mater datasets, and the performance of the model was evaluated. The per-

formances of CNN model and surgeons at different levels were compared

and used as another evaluation index to evaluate the performance of CNN

model. The results of CNN model were combined with each surgeon, and

then the effect of CNN model was evaluated by statistical method.

• This is the first time that CNN model has been used to identify the nerve

and dura mater under PTED. The experimental results shown that CNN can
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1.6. MAIN CONTRIBUTIONS

recognize tissue images in the process of pted, which is an effective nerve

and dura mater recognition method, and can assist general surgeons in the

process of PTED.

2. In Chapter 3. Comparison of 8 CNN models in detecting nerve and dura

mater under PTED

• In order to further verify whether CNN model can effectively identify

nerve and dura mater in PTED, eight different CNN models (including one-

stage and two-stage) was used to detect and identify nerve and dura mater

in PTED.

• Using the same index, the nerve and dura mater recognition performance

of eight CNN models in PTED was evaluated and compared. The results

shown that these CNN models can effectively identify nerve and dura mater.

The best AUC was 0.972, produced by SSD, the best precision was 94.42%,

produced by Yolov4, the fastest model was Yolov4-Tiny, the detection speed

can reach 196.15 fps.

• The function of CNNs has been proved to be an effective tool for detect-

ing nerve and dura mater. It can assistant surgeons accurately and timely

identify nerve and dura mater in PTED.

3. In Chapter 4. Vas deferens recognition under Laparoscopic using CNN

• Yolov4 was used as a basic model to identify vas deferens images under

laparoscopic hernia repair.

• Different labeling methods were used to label the training data, which

provides more effective training features for the training model, so as to

improve the training effect and test accuracy of the model.

• The real-time detection ability of the model was tested by using video

clips (25 fps). The test results shown that the CNN model can recognize the

vas deferens in images and videos.
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4. In Chapter 5. Yolo algorithm based on self-attention mechanism and depth-

wise separable convolution

• In order to lighten the model, depthwise separable convolution (DSC)

was used to replace the conventional convolution in the backbone of Yolov4.

At the same time, in order to increase the receptive field in the process of

feature extraction, self-attention (S-A) mechanism was added to the step of

preliminary feature extraction.

• The new models were tested, and the performance of the new model was

compared from the aspects of model size, detection speed, area under curve

(AUC), accuracy and so on.

• The results shown that after using DSC combined with S-A mechanism in

the preliminary feature extraction process, the number of parameters of the

model was reduced to one third of Yolov4, the detection speed reached 48.84

fps, and the overall detection performance remained at the level of original

Yolov4.

1.7 Publications

The following papers have been published by major journals and conferences.

1. Major journal papers

• Peng Cui, Tao Shu, Jun Lei, Wenxi Chen. Nerve recognition in per-

cutaneous transforaminal endoscopic discectomy using convolutional

neural network [J]. Medical Physics, 2021, 48(5): 2279-2288.

• Peng Cui, Song Zhao, Wenxi Chen. Identification of vas deferens in

laparoscopic inguinal hernia repair surgery using convolutional neural

network [J]. Journal of Healthcare Engineering, vol. 2021, Article, 10

pages, 2021.

2. Major conference paper
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1.7. PUBLICATIONS

• Peng Cui, Zhe Guo, Jianbo Xu, Tianhui Li, Yuchen Shi, Wenxi Chen,

Tao Shu, Jun Lei. Tissue Recognition in Spinal Endoscopic Surgery

Using Deep Learning. 2019 IEEE 10th International Conference on

Awareness Science and Technology (iCAST), IEEE, 2019:1-5.

• Jianbo Xu, Peng Cui, Wenxi Chen. ECG-based Identity Validation

during Bathing in Different Water Temperature. 2020 42nd Annual

International Conference of the IEEE Engineering in Medicine Biology

Society (EMBC), IEEE, 2020: 5276-5279

• Tianhui Li, Jianbo Xu, Peng Cui, Wenxi Chen. The Effect of Stress

on Optimal Bathing Time. 2019 IEEE 10th International Conference

on Awareness Science and Technology (iCAST), IEEE, 2019:1-5.

• Jianbo Xu, Tianhui Li, Peng Cui, Wenxi Chen. Improvement of ECG

based Personal Identification Performance in Different Bathtub Water

Temperature by CNN. 2019 IEEE 10th International Conference on

Awareness Science and Technology (iCAST), IEEE, 2019:1-5.
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Chapter 2

Nerve and Dura Mater

Recognition under PTED Using

CNN

2.1 Introduction

Lumbar disc herniation is a common cause of low back pain and lower limb

radiation pain. Conservative treatment can improve the symptoms in most cases.

However, in some cases, after conservative treatment, the pain is still continuous

or recurrent after alleviating for a period of time. In this case, surgical treatment

will be considered [57, 58].

Among the surgical methods for LDH, open lumbar microdiscectomy ƭOLDƮ

is considered the gold standard [59]. Recently, PTED is also commonly performed

for lumbar disc herniation for its various strong points.

Although spinal endoscopic surgery has more advantages [60], it also has its

special limitations. Due to the decrease of tissue exposure, narrow working channel

and limited visual field during the operation, the operators need to have rich

experience in the operation, so the operation is relatively difficult, and there will

be some special complications [61, 62].
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2.1. INTRODUCTION

There are several important complications associated with discectomy for LDH.

The rate of dura mater tears following LDH ranges from 1% to 17% and is increased

particularly with ageing, obesity, and revision procedures [63]. Other complica-

tions include post-operative infection (1⽝5%), worsening of functional status (4%),

and nerve root injury (0.2%) [64, 65]. The 2011 nationwide spinal surgery com-

plications survey in Japan showed that nerve root damage, spinal cord damage,

cauda equina damage and dura mater tear, cerebrospinal fluid leakage are the

most common complications of the intraoperative and postoperative [66].

Surveys have shown that about 11.39% of patients have had various compli-

cations during endoscopic spinal surgery, and dura tear was the most common

complication of endoscopic spinal surgery, accounting for about 2.7% [67]. M. J.

Perez-Cruet et al. [68] analyzed the causes of the complications of spinal endo-

scopic surgery and the operation effects of different qualifications of spinal endo-

scopic doctors. The investigation shows that the operation of endoscopic surgery

requires the rich experience and skills of surgeons. One of the difficulties in spinal

endoscopic surgery is that surgeons need to be very familiar with the anatomy of

the spine and recognize various tissues under the endoscope. Before the surgeons

overcome these barriers, the incidence of complications is higher [69–72].

The innovations of this study are as follows: (1) A computer-aided detection

system (CADS) is proposed to recognize the nerve and dura mater images in

PTED; (2) The detection results of CADS were compared with those of doctors

at different levels, and the performance of CADS was evaluated by sensitivity,

specificity, accuracy and statistical methods; (3) The misrecognized and unrec-

ognized images of CADS and clinicians are analyzed, and reasonable suggestions

were provided for clinicians.
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2.2 Materials and Methods

This research was approved by the Ethics Committee at Zhongnan Hospital

(NO.2020066K), Wuhan University, Hubei Province, China. All patients were

requested to satisfy some conditions and sign written informed consent before

participation. To protect patient privacy, we only collected information on age,

gender, illness, surgical location of the patient, and the video of the PTED as

research data. All of the endoscopic surgeries were performed by senior spinal

endoscopic experts at Zhongnan Hospital.

The inclusion criteria were as follows: (1) patients were undergoing spinal

surgery for the first time (including open spinal surgery and minimally invasive

surgery); (2) patients agreed to choose PTED as the surgical method; and (3)

patients agreed for the surgical video to be used for scientific research. The fol-

lowing patients were excluded: (1) patients with a history of surgery at this site;

(2) patients who had undergone spinal endoscopic surgery due to intervertebral

infection, spinal cord tumor, radiculopathy, and other diseases; and (3) patients

who did not agree for the surgical video to be used for scientific research.

2.2.1 Datasets

In total, we collected videos from 65 patients (46 males/19 females; age range,

17⽝87 years, mean 48.06 ± 16.91) with LDH who underwent PTED at Zhongnan

Hospital from January to December 2019. All patients had different levels of

lumbocrural pain and limb numbness. Detailed information is given in Table 2.1

and the patient age distribution is shown in Figure 2.1.

2.2.1.1 Training Dataset and Validation Dataset

Firstly, we randomly selected videos from 50 patients as the training sample;

we selected video clips with nerve and dura mater from these videos, and then used

MATLAB (9.6.0.1174912 (R2019a) Update 5, academic use) to convert video into
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2.2. MATERIALS AND METHODS

Table 2.1: Patient information

Dataset Age (years) Gender Site of lesion
Mean ± SD Male Female L3/4 L4/5 L5/S1

Training 48.34 ± 17.56 36 14 09 23 18
Test 47.13 ± 15.06 10 05 02 08 05

Figure 2.1: Patient age distribution.
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images. Three spinal endoscopic experts using LabelImage manually checked and

labeled all the nerve and dura mater images one by one. In total, 10,000 images

(200 per patient) were selected and labeled.

To provide more features for CNN learning, we also extracted 454 images that

were not correctly identified by the CNN model in theƫtest dataƬin our previous

experiments. [73] The same three experts manually labeled the position of nerve

and dura mater in these images. They then examined all the images and labels in

the dataset, discussed some of the details, and reached a consensus on the labeling

of each image.

We added these 10,454 images as input data into the new training dataset and

randomly divide these images into training data and validation data in a ratio of

8:2. We adjusted the model parameters, and then used these data as input data

to start training and to verify the model. In this process, we used the weight of

pretraining to improve the quality and speed of training. When the verification

accuracy reached the optimal, the model parameters were automatically saved.

Sample images of the original data and the the labeled data are shown in Figure

2.2.

2.2.1.2 Test Dataset

For the test dataset, we selected 12,000 images from the 15 patients (400

images containing nerve and dura mater and 400 images without nerve and dura

mater taken from each patient). Neither the patients nor the images in this dataset

overlapped with the training and validation datasets. All images in the test dataset

were verified by three spinal endoscopic experts one by one.

2.2.1.3 Computer Configuration

All the original data come from surgical videos of patients undergoing PTED.

The endoscope used was from Richard Wolf GmbH, 75438 Knittlingen, Germany.

The computer comprised an Intel i5 3570k 3.4-GHz CPU, with 4TB hard disk
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2.2. MATERIALS AND METHODS

Figure 2.2: The first row shows the original image containing nerve and dura mater
under the PTED view, with clear, unclear, pale, and ruddy images; the second row
shows the original image without nerve and dura mater, including clear, unclear,
and easily confused with nerve and dura mater; the third row shows images of
nerve and dura mater, labeled with green rectangles by the spinal endoscopic
experts.
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Figure 2.3: CNN Model Structure.

space, 32 GB RAM, and a CUDA-enabled Nvidia Titan 312GB graphics processing

unit (Nvidia), based on the hardware of the Nvidia GeForce 2080Ti Pascal GPU.

2.2.2 CNN Model and CADS Work Flow

The CNN model we used is a one-stage algorithm, which applies a single neural

network to the whole image, and uses CNN to directly predict the location of

different targets and classify them. The algorithm treated the problem of target

detection as a regression problem. Using the structure of CNN, the bounding box

and class probability can be predicted directly from the input image. Through the

combination of reinforcement learning and supervisory learning, the stability and

sustainability of CADS are guaranteed. A simplified model structure and model

diagram of CADS are shown in Figure 2.3 and Figure 2.4.
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2.3. RESULTS

Figure 2.4: Flowchart for CADS.

2.3 Results

All images in the test dataset were identified and labeled by the trained model,

and then verified by three senior spinal endoscopic experts one by one.

2.3.1 Test Dataset

This model correctly identified 11,075/12,000 (92.29%) images of 15 patients,

including 5,454/6,000 (90.90%) images with nerve and dura mater, and 5,621/6,000

(93.68%) images without nerve and dura mater. To analyze the results more ob-

jectively, we also analyzed the sensitivity, specificity, and accuracy of the model

in test dataset for nerve and dura mater recognition of each patient. The images

are shown in Figure 2.5, and the results are shown in Table 2.2.

2.3.2 Training and Testing Process

We adjusted the parameters in the training process and set the image input

size to 416*416, the initial learning rate = 0.001, the number of iterations = 20000.

We add the verification accuracy and loss curves in the training process, and the

receiver operating characteristic (ROC) curve in the test process to observe the

performance of the model. When the confidence threshold is 0.3, the average

intersection over union (IoU) of the validation dataset is 81.41%, and that of the
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Figure 2.5: The top row shows original images in the test dataset. The second
row shows the true positives (TP), which labeled the nerve or dura mater (purple
rectangles) correctly. The third row shows the false negatives (FN), with nerve
or dura mater in the image, which the model misidentified and did not label. We
labeled nerve or dura mater with yellow rectangles. The bottom row shows the
false positives (FP), with no nerve or dura mater in the image, which the model
misrecognized and mislabeled (purple rectangles).
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2.3. RESULTS

Table 2.2: Individual performance of test dataset
Patient TP TN FP FN Sen (%) Spe (%) Acc (%)

1 368 374 26 32 92.00 93.50 92.75
2 361 378 22 39 90.25 94.50 92.38
3 372 377 23 28 93.00 94.25 93.63
4 359 375 25 41 89.75 93.75 91.75
5 366 372 28 34 91.50 93.00 92.25
6 351 388 12 49 87.75 97.00 92.38
7 365 369 31 35 91.25 92.25 91.75
8 371 370 30 29 92.75 92.50 92.63
9 367 376 24 33 91.75 94.00 92.88
10 366 369 31 34 91.50 92.25 91.88
11 362 366 34 38 90.50 91.50 91.00
12 364 373 27 36 91.00 93.25 92.13
13 355 370 30 45 88.75 92.50 90.63
14 360 383 17 40 90.00 95.75 92.88
15 367 381 19 33 91.75 95.25 93.50

Total 5454 5621 379 546 90.90 93.68 92.29

Note: TP: true positive; TN: true negative; FP: false positive; FN: false negative;
Sen: sensitivity; Spe: specificity; Acc: accuracy.

test dataset is 51.42%. The details are shown in Figure 2.6.

2.3.3 Performance Evaluation

We evaluated the model performance by means of sensitivity, specificity, and

accuracy. We checked the results of the three spinal endoscopic experts, and

divided them into true positive (TP), true negative (TN), false positive (FP), and

false negative (FN). TP refers to the images with nerve or dura mater that were

correctly recognized and labeled by the trained model; TN refers to the images

without nerve or dura mater that were not labeled by the trained model; FP refers

to the images without nerve or dura mater that were misrecognized and mislabeled

by the trained model; and FN refers to the images with nerve or dura mater that

were misidentified and not labeled by the trained model.

In order to evaluate the stability of the model more objectively, we trained the

model for 5 times. Then select the best weight to test the same test dataset, and

calculate these evaluation indexes. Finally, we use confidence level and confidence

29



(a) Verification accuracy and loss
curves

(b) ROC curve

Figure 2.6: The performance of the model in the process of training and testing.

interval (CI) to describe the performance of the model. The following formulas

were used:

Sensitivity = TP / (TP+FN);

Specificity = TN / (TN+FP);

Accuracy = (TP+TN) / (TN+TP+FN+FP).

2.3.4 Test Results for CADS

After training the model once, we record the test results in Table 2.2. Then, we

mix the original training and test data and shuffle the training and test datasets.

We randomly divided 6000 images into the test dataset, and the remaining

images were used to retrain the model. Repeat 4 times, and the results are shown

in Table 2.3. At the 95% confidence level, the CI of sensitivity was 90.62% -

91.17%, the CI of specificity was 93.38% - 93.97%, and the CI of accuracy was

92.23% - 92.35%. The results also show that the performance of the model is

stable and reliable.
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2.3. RESULTS

Table 2.3: Results of five tests on CADS.
Times TP TN Sen(%) Spe(%) Acc(%)

1 5454 5621 90.90 93.68 92.29
2 5435 5633 90.58 93.88 92.23
3 5469 5604 91.15 93.40 92.28
4 5448 5636 90.80 93.93 92.37
5 5463 5609 91.05 93.48 92.27

95%CI [5437,5470] [5603,5638] [90.62,91.17] [93.38,93.97] [92.23,92.35]

Note: CI: confidence interval.

2.3.5 Test Results for Four Surgeons

To analyze the results between CADS and the level of experience of doctors,

four surgeons with different levels of experience examined the same images in test

dataset.

Doctor #1 (D1) is a professor with more than 20 years of experience in spinal

endoscopic operations and has performed over 150 PTEDs. Doctor #2 (D2) is

an associate chief physician with more than 16 years of experience in spinal en-

doscopic operations who performs PTEDs independently. Doctor #3 (D3) is an

associate chief physician of a primary hospital. He has worked in general surgery

for 10 years, but seldom participates in spinal endoscopic surgeries and does not

perform PTEDs independently. Doctor #4 (D4) is an attending doctor of spine

surgery. He has participated in over 30 PTEDs as an assistant but has not oper-

ated independently.

We analyzed the sensitivity, specificity, and accuracy of the four doctors, and

contrast their results with CADS. The results are shown in Table 2.4 and Figure

2.7.

2.3.6 Statistical Analysis

We used the chi-squared test to analyze the indicators in Table 2.2. The p

values for each patient in test dataset were: sensitivity, p = 0.462 and specificity,

p = 0.1. All of the p values were >0.05, meaning that there was no significant
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Table 2.4: Comparison of four doctors and CADS
TP TN Sen (%) Spe (%) Acc (%)

CADS 5454 5621 90.90 93.68 92.29
D1 5904 5936 98.40 98.93 98.67
D2 5796 5883 96.60 98.05 97.33
D3 5011 5107 83.52 85.17 84.32
D4 5309 5571 86.32 92.85 89.58

D1 combined with CADS 5919 5941 98.65 99.02 98.83
D2 combined with CADS 5833 5901 97.22 98.35 97.78
D3 combined with CADS 5539 5733 92.32 95.55 93.93
D4 combined with CADS 5651 5808 94.18 96.80 95.49

Figure 2.7: The result for combination of Doctors with CADs.
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2.3. RESULTS

Figure 2.8: The confusion matrix for Doctor 1 and CADS.

difference in the sensitivity and specificity for recognizing nerve and dura mater

in each patient.

We used paired t-test to analyze the indicators in Table 2.4. The p values of

D1 and D1 combined with CADS were: sensitivity, p = 0.055 and specificity, p =

0.136, p values were greater than 0.05, which means that there was no significant

difference in the sensitivity and specificity of D1 and D1 combined with CADS.

The p values of D2 and D2 combined with CADS were: sensitivity, p = 0.001 and

specificity, p = 0.018. For D3, D4, we also made the same statistical analysis,

p values were lower than 0.001, which shows that D2, D3, D4 in combination

with CADS, the indicators have been significantly improved, and the difference is

significant.

We also use kappa coefficient to evaluate the consistency between the detection

results of CADS and D1, and the confusion matrix is shown in Figure 2.8.

According to the calculation formula, we calculated the kappa coefficient of

doctor 1 and CADS on the whole dataset, k = 0.86 (> 0.8), which indicates that

the performance of CADS are highly consistent with the D1.
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2.4 Discussion

Although CNN technology has been widely used in the recognition and seg-

mentation of medical images, [74, 75] the recognition of spinal endoscopic images

has not been investigated yet. By applying CNN-based methods, we identified the

nerve and dura mater images under the spinal endoscope satisfactorily.

2.4.1 Image Features of Nerve and Dura Mater

In the process of spinal endoscopic surgery, spinal endoscopy experts noticed

that in different states, the characteristics of nerve and dura mater are different.

For example, when the nerve and dura mater are compressed, the surface of nerve

and dura mater is pale. When there is inflammation, the capillaries on the surface

of nerve and dura mater will expand, and the color is ruddy.

In this study, to let the CNN learn the characteristics of nerve and dura mater

in different situations, we collected a number of PTED videos in varied environ-

ments. To reduce the occurrence of bias in the training and testing processes,

we also focused on the balance of the quantity and quality of training images.

Regarding the images of the 50 patients used for the current research, we took

about 200 clear and unclear images of nerve and dura mater from the images of

each patient’s operation for labeling and training.

We also noticed the effect of light on the feature recognition of tissues. In the

verification of the test results, we found that some images could not be correctly

recognized and marked by experts and computer-aided diagnosis system due to the

strong endoscope light. It is also one of our future research topics to compare the

effects of doctors and CADS on tissue recognition under different light conditions

by adjusting light intensity or spectrum.
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2.4. DISCUSSION

2.4.2 Performance the CADS

From the training process and test results, it can be seen that there is an

acceptable result of IoU in the training process, and the loss curve converges

rapidly and tends to be stable within 1,000 iterations. The best average precision

(AP) during the training process can reach 98% and keep at about 97%.

In the process of verifying the images labeled by CADS one by one, doctors

were satisfied with the work of CADS. Although the higher the value of IoU, the

better the performance of the model, but doctors believe that even if only part of

the nerve or dura mater in the image is correctly labeled by CADS, it is enough

to attract their attention. Surgeons will quickly find the areas where nerve and

dura mater are located according to the bounding box to avoid injury. However,

if CADS is to be used in the teaching of medical students or junior doctors to help

them understand the features of nerve and dura mater, higher IoU will provide

more accurate assistance.

To estimate the performance of CADS, we calculated the sensitivity, specificity,

and accuracy, and evaluated these indicators for each patient in test dataset. If

CADS has a large detection deviation in the recognition of nerve and dura mater

images in the test dataset, the recognition accuracy of the model may be very high

for some patients’ nerve and dura mater images, while that for others’ images may

be very low. In that way, if CADS is used for recognition in surgery, for those

patients with low recognition accuracy, because of the high rate of false recognition

of images, it may lead to serious complications.

The results showed that there was no statistical difference in sensitivity, speci-

ficity, and accuracy of the model for each patient, meaning that the performance

of the CADS was stable and good. On the other hand, although the age distribu-

tion of patients in our dataset is extensive, we compared the nerve and dura mater

recognition indexes of different age groups by statistical methods. We found that

there was no significant difference in the recognition rate of nerve and dura mater

in patients of different age groups by CADS.
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The CADS can achieve good recognition accuracy in a short training time and

can maintain a high level of accuracy, which showed that the CADS has good

learning ability. However, in the test dataset, we found that the accuracy of the

CADS for object recognition is lower than that of the training process. We thought

that one of the reasons for this situation is that the absolute number of training

data is insufficient.

As the research goal, we also expect CADS to have higher precision and faster

speed in the recognition of nerve and dura mater images under PTED. In order to

make it useful in clinical practice, we need to improve the structure and parameters

of the CNN, strengthen the computer hardware configuration, so as to improve its

overall ability in real-time application.

2.4.3 Comparison of Performance among Surgeons with

Different Levels of Experience

Four surgeons with different levels of experience identified the images in test

dataset. The performance of D1 was significantly better than that of D2, CADS,

D3, and D4 (p<0.001). However, when combining CADS with D3 and D4, sen-

sitivity and specificity increased to (D3) 92.32% and 95.55% and (D4) 94.18%

and 96.80%, respectively, and accuracy was (D3) 93.93% and (D4) 95.49%, val-

ues that were significantly higher than that of D3 and D4 alone (p<0.001), and

approaching the performance of D2.

By analyzing the test results, it is not difficult to find that there is no significant

difference (p>0.05) between the results of D1 and D1 combined with CADS. These

results also indicate that CADS can significantly improve the recognition ability

of D2, D3 and D4 to nerve and dura mater under PTED (p <0.001), but it cannot

effectively improve the recognition ability of D1 (p >0.05); when D3 and D4 were

combined with CADS, the performance still could not reach D2 (p <0.001).

At this stage, the application of CADS in teaching medical students or junior

doctors may be an effective method, but its clinical application seems not mature
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2.4. DISCUSSION

enough yet.

2.4.4 Misrecognized and Unrecognized Images

Through analysis of unrecognized nerve and dura mater images, we found

that when the nerve and dura mater areas in the image were <5% and operation

vision was blurred, recognition accuracy is significantly reduced. Because these

blurred images occur during intraoperative bleeding and irrigation, this is also a

high incidence period of adverse complications in endoscopic surgery. In these

conditions, experts recommend that surgeons do not perform any operation that

may cause damage before the visual field is clear. This principle should also be

followed in endoscopic surgery. However, if the CADS can recognize the nerve and

dura mater images in a blurry environment more accurately, it will clearly make

a valuable contribution to spinal endoscopic surgery.

We also found that the CADS has a very significant advantage in detection

speed. For 12,000 images in the test dataset, CADS took 172 seconds to complete

the detection; for four doctors, it took four to five hours. When we considering

a long-time operation or continuous operation, CADS performance is not affected

by time factor, and can maintain a stable recognition accuracy over a long-time

period. However, doctors may gradually fatigue due to long-time concentration,

and need to pay more attention to the operation to avoid damage to important

tissues.

2.4.5 Limitations

Our study had some limitations. Firstly, all the patients and surgical videos

came from one center using the same type of machine. Moreover, the number of

images of nerve and dura mater examined here is likely insufficient. We should

further increase the number of patients and surgical videos from different hospitals.

Secondly, we only used one CNN model to train and test our dataset. An ensemble

algorithm is a novel approach to blend multiple algorithms to improve predictive
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performance compared with any one algorithm alone, and it may be more effective

when individual classifiers are not correlative; an ensemble algorithm works by

removing uncorrelated errors of individual classifiers by averaging. [76–78] Thirdly,

in the unrecognized images, we found that a few target images were clearly but

not correctly identified by CADS, and when the target image was blurred or small,

CADS did not show very high sensitivity. Finally, in the process of our research, we

also tried to use CADS to test short video in real-time mode, but its performance

is not as satisfactory as image recognition. We need to do more research in the

future to solve these problems.

2.5 Summary

Artificial intelligence has been widely used in various medical fields, and has

shown its potential in the past decade, providing doctors with convenient tools for

diagnoses, treatment, and prognostic diseases. [79–81]

In this research, we used CADS based on CNN to recognize nerve and dura

mater images in patients undergoing PTED. After we adjusted the model param-

eters and increased the target features, we achieved sensitivity, specificity, and

accuracy of 90.90%, 93.68%, and 92.29%, respectively, with no significant differ-

ence between patients. We also compared the performance of four surgeons with

different levels of experience with CADS. Although the performance of CADS was

lower than that of the most experienced spinal endoscopist, it was higher than that

of the general surgeons. Combined with CADS, the performance of the general

surgeons approached that of the spinal endoscopist. This indicates that CNN can

recognize the images of nerve and dura mater during PTED, and thus demon-

strates an efficient method for tissue recognition that can assist general surgeons

during PTED.

In future research, we aim to label more tissues in PTED surgical videos based

on improving the accuracy of blurry image recognition. We also plan to use
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2.5. SUMMARY

assemble CNN models to recognize these tissues more accurately and quickly,

and realize real-time recognition of various tissues in the whole operation process.

The goal is to help reduce the workload of spinal endoscopists and improve the

performance of general surgeons, optimize the learning curve, and significantly

reduce complications and improve the safety of operations.
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Chapter 3

Comparison of eight CNN

Models in Detecting Nerve and

Dura Mater under PTED

3.1 Introduction

With the development of deep learning and the improvement of computing

power, the computer vision community has witnessed significant progress in object

detection. In the early 21st century, when the first CNN based object detection

model R-CNN was proposed, the object detection model has been booming in

various fields. Current state-of-the-art detectors [35–38, 44, 46, 82] show high per-

formance on several very challenging benchmarks such as COCO [83] and Open

Images [84].

In medical field, CNNs are not a solution to replace doctors, but will assist doc-

tors to optimize their routine tasks, thus having a potentially positive impact on

medical practice. [85] For the detection of target tissue under endoscopy, the cur-

rent research focuses on the detection of target tissue under upper gastrointestinal

endoscopy, colonoscopy, and laryngoscope, which has achieved good results and is

gradually carried out in clinical practice [86–88]. However, the tissue recognition
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3.1. INTRODUCTION

in endoscopic surgery has not been widely carried out.

In Chapter 2, we have used Yolov3 to recognize the nerve and dura mater under

PTED, and achieved good performance. In this Chapter, We will briefly intro-

duce some representative common object detection models, use them to learn the

features of nerve and dura under PTED, and test their performance in recognition

of nerve and dura mater under PTED.

These detectors can be divided into two categories, one-stage detectors and

two-stage ones. One-stage detectors are more efficient and elegant in design, but

currently the two-stage detectors have superiority in accuracy.

The following are some common CNN models for image recognition and target

detection.

1. R-CNN

R-CNN is a region based CNN detector. It consists of four modules. The first

module generates category independent region suggestions. The second module

extracts a fixed length feature vector from each region. The third module is a set of

class specific linear SVM, which are used to classify the objects in one image. The

last module is a boundary box regression for accurate boundary box prediction.

2. Faster R-CNN

Faster R-CNN is to input the whole image into CNN for feature extraction; use

RPN (region proposal network) to generate proposal windows, and 300 proposal

windows are generated for each image, and then the proposal windows are mapped

to the last convolution feature map of CNN; Then through the ROI pooling layer,

each ROI generates a fixed size feature map; Finally, Softmax loss and Smooth L1

loss are used to train classification probability and bounding box regression.

3. Yolo

Yolo as a series of algorithms, applies a single neural network to the whole

image, and then divides the image into regions and predicts bounding boxes and

probabilities for each region. These bounding boxes are weighted by the predicted

probabilities. yolo requires only one forward propagation pass through the neural
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network to make predictions.

4. SSD

SSD extracts feature information from different convolution layers for detec-

tion. Different convolution layers have a variety of receptive fields and semantic

information. Convolution layer is used to replace full connection layer and reshape

layer, and the number of convolution cores is used to control the number of chan-

nels of output feature map. At the same time, prior anchor box is used, and each

box is predicted.

5. RetinaNet

RetinaNet is a single, unified network composed of a backbone network and

two task-specific subnetworks. The backbone is responsible for computing a con-

volutional feature map over an entire input image and is an off-the-self convolu-

tional network. The first subnet performs convolutional object classification on

the backbone’s output; the second subnet performs convolutional bounding box

regression.

6. Yolov3

Yolov3 uses Darknet-53 as the backbone, and uses residual network to increase

the depth of the network and improve the accuracy. The internal residual block

uses jump connection, which alleviates the gradient disappearance problem caused

by the increase of depth in the deep neural network.

7. CenterNet

Centernet applies cascade corner pooling and center pooling in convolutional

backbone network to output two corner heatmaps and a center keypoint heatmap,

respectively. A pair of detected corners and the similar embeddings are used to

detect a potential bounding box, and the center point of the boundary box is used

to represent the target object. Then other attributes of the object are regressed

based on the point, and the final boundary box is determined by using the detected

center key points.

8. EfficientDet
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3.2. METHODS AND MATERIALS

EfficientDet uses residual neural network to increase the depth of neural net-

work, and uses deeper neural network to realize feature extraction; By changing

the number of feature layers extracted from each layer, more layers of feature

extraction can be achieved, more features can be obtained, and the width can be

improved. By increasing the resolution of the input image, the network can learn

and express more abundant things, which is conducive to improving the accuracy.

9. Yolov4

Yolov4 is the improve version of Yolov3. It changed the backbone to CSPDarknet-

53, uses SPP (Spatial Pyramid Pooling) and PANet (Path Aggregation Network)

to strengthen feature extract, and use some tricks to improve the detection effi-

ciency of the model.

10. Yolov4-Tiny

Yolov4-Tiny is a simplified version of Yolov4. In order to improve the detection

speed, Yolov4-Tiny reduces the structure and only uses two feature layers for

classification and regression prediction. The parameters are only six million, only

one tenth of Yolov4.

The innovations of this study are as follows: (1) Eight popular CNNs were used

to provide a comprehensive view of the role of artificial intelligence in recognize

the nerve and dura mater images in PTED; (2) The detection performance of

these CNN models were compared by sensitivity, specificity, accuracy, positive

predictive value, negative predictive value, area under curve value, and detection

speed; (3) We confirmed that CNN model is an effective tool for detecting nerve

and dura mater in PTED, which can help surgeons identify nerve and dura mater

accurately and timely.

3.2 Methods and Materials

This research has been approved by the Ethics Committee at Zhongnan Hos-

pital, Wuhan University, Hubei Province, China.
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All of these video data were collected from the department of orthopedics,

Zhongnan hospital, Wuhan University. All the videos were PTED surgery videos

carried out from Jan 1, 2019 to Dec 31, 2020 who underwent the PTED surgery

with lumber intervertebral disc herniation. The inclusion and exclusion criteria

were the same as our previous studies.

To protect the patient’s privacy, we only collected the age, gender, illness, and

surgical location of the patient and the video of the PTED as the research data.

All of these endoscopic surgical were performed by senior spinal endoscopic experts

of Zhongnan hospital.

3.2.1 Datasets

3.2.1.1 Information of Patients

In this study, total 102 patients’ data were selected. 63 males and 39 females,

ranging in age from 20 to 71 years old (56.15±7.42), all of these patients were

having different level lumbocrural pain and limb numbness, 6 patients had LDH

at two different sites. Detail information is shown in Table 3.1.

3.2.1.2 Training Dataset and Test Dataset

First of all, three spinal experts went through all the PTED videos in dataset,

and marked the time when the nerve and dura mater appear in the videos, then

we cut out these video clips and turned them into images. Three spinal experts

checked and labeled all the nerve and dura mater images by LabelImg software.

After three experts confirmed all the labels and reached a consensus, then, these

images and annotations information were conserved according to the patients’

name separately.

In order to keep balance in the training and test datasets, we built a database

with 40,800 images (for each patient, we randomly selected 200 images with nerve

and dura mater, 200 images without nerve and dura mater).

According to the ratio 8:2, we random select 81 patients’ data (16,200 images
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3.3. RESULTS

Table 3.1: Patient information
Dataset Age (years) Gender Site of Lesion Number of Images

Mean ± SD Male Female L3/4 L4/5 L5/S1 Positive Negative
Training 50.05 ± 13.81 48 33 13 36 18 16,200 -
Test 54.13 ± 10.27 14 7 5 14 5 4,200 4,200

with nerve and dura mater) for training dataset, and 21 patients’ data (4,200

images with nerve and dura mater and 4,200 images without nerve and dura

mater) for test dataset. In the training process, we random divided the training

data into training and interval validation data in a ratio 9:1.

3.2.2 CNN Models and Training Parameters

In this study, 8 well-known pre-trained CNN model were used to recogni-

tion Nerve and dura mater from PTED. 1-CenterNet, 2-EfficientDet, 3-Faster-

RCNN, 4-RetinaNet, 5-SSD (Single Shot MultiBox Detector), 6-Yolov3, 7-Yolov4,

8-Yolov4-Tiny.

3.2.3 Computer Configurations

The computer comprised an Intel i9 9900k CPU @3.60GHz × 16, RAM 32

GB, and a CUDA-enabled Nvidia Titan 312 GB graphics processing unit (Nvidia),

based on the hardware of the NVIDIA GeForce RTX 2070 SUPER GPU.

We used transfer learning technology for download the pre-trained weight to

optimize the CNN models’ performance.

Sample images of the original data and the images of the labeled data are

shows in Figure 3.1, the flowchart of this study is shown in the Figure 3.2. .

3.3 Results

In this study, the positive and negative cases were assigned to ND (nerve and

dura mater) and non-ND (without nerve and dura mater), respectively. TP and
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Figure 3.1: The positive samples(upper), labeled samples (middle), and negative
samples (lower).

Figure 3.2: The flowchart of this study.
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3.3. RESULTS

Table 3.2: The test results by different CNN models
CNN Models True Positive Ture Negative False Positive False Negative
CenterNet 4099 2667 1533 101
EfficientDet 4157 1155 3045 43
Faster-RCNN 4076 3189 1011 124
Retinanet 4100 2569 1631 100

SSD 4094 3666 534 106
Yolov3 3902 3943 257 298
Yolov4 3893 4038 162 307

Yolov4-Tiny 3882 3609 591 318

Note: All the results are based on confidence level 0.1.

TN represent the number of correctly labeled on ND and non-labeled on non-ND,

respectively. FP and FN represent the number of incorrectly labeled on non-ND

and non-labeled on ND, respectively. The purpose of our study is to understand

the ability of CNN models to recognize nerve and dura mater in PTED. Therefore,

we show the test results of all models at the confidence level 0.1 and the results

are shown in table 3.2.

We use the following indicators to evaluate the performance of these CNN

models: Sensitivity (Sen), Specificity (Spe), accuracy (ACC), positive predictive

value (PPV), Negative predictive value (NPV). We also plot the receiver oper-

ating characteristic (ROC) curve and AUC value as indicators to evaluate the

performance of these models. In order to find the best performance on each CNN

model, Youden index was used to find the optimal threshold for each model, and

the best performance of each model are shown in Table 3.3 and the Figure 3.3.

The calculate formulas are as follow and the results are shown in Table 3.3, the

ROC curve is shown in Figure 3.3.

Sen = TP / (TP + FN);

Spe = TN / (TN + FP);

PPV = TP / (TP + FP);

NPV = TN / (TN + FN);

Acc = TP + TN / (TP + TN + FP + FN).
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Table 3.3: Performance comparison of eight models using test dataset
CNN Models Sen(%) Spe(%) PPV(%) NPV (%) Acc (%) FPS AUC
CenterNet 91.02 84.24 85.24 90.37 87.63 75.78 0.926
EfficientDet 79.00 77.17 77.58 78.61 78.08 37.72 0.862
Faster-RCNN 82.43 82.67 82.63 82.47 82.55 15.62 0.920
Retinanet 90.43 86.17 86.73 90.00 88.30 33.59 0.926

SSD 92.43 94.21 94.11 92.56 93.32 44.31 0.972
Yolov3 92.90 93.88 93.82 92.97 93.39 36.31 0.945
Yolov4 92.69 96.14 96.00 92.93 94.42 28.12 0.952

Yolov4-Tiny 86.52 91.86 91.40 87.21 89.19 196.15 0.941

Note: TP: true positive; TN: true negative; FP: false positive; FN: false negative.

Figure 3.3: The ROC curves of eight networks.
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3.4. DISCUSSION

The results in Table 3.2 show that EfficientDet has the best detection perfor-

mance on true positive. For 4200 positive samples, 4157 images can be correctly

detected. Yolov4 has the best detection performance on true negative. For 4200

negative samples, only 162 images were mistaken for positive. It is observed that

all CNN models have high sensitivity to the recognition of nerve and dura mater,

but there are great differences in specificity. The Youden index can help to find

the best threshold to balance sensitivity and specificity. The best performance of

each model is shown in Table 3.3.

For real-time object detection, higher speed models have the advantage for

practical operation. In this study, based on our test dataset, Yolov4-Tiny model

is the fastest model, detection speed can reach 196.15 frames per second. The

video used in this study was 25 fps.

We chose the same images that recognized by all CNN models, and contrast

the difference on confidence level, the images are shown in Figure 3.4 and Figure

3.5.

3.4 Discussion

In this study, eight common CNN models were used to provide a comprehensive

test, using CNN technology to identify nerve and dura mater images under PTED.

The results show that CNN can accurately identify nerve and dura mater from

other tissues.

3.4.1 Detection Precision

According to the results show in Table 3.2, the highest sensitivity is produced

by EfficientDet, for all positive samples, sensitivity can reach 98.98%, but at the

same confidence level, the sensitivity is only 27.50%, it means a large number of

false positive results is produced.

AUC value was used to evaluate the overall performance of these models ob-
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Figure 3.4: The part of test results detected by the different CNN models with
the same images. The first row shows the original images in the test dataset, 5
different images as the samples to show the performance of each model. From
row 2 to row 5 are the results detected by Centernet, Efficientdet, Faster-RCNN,
Retinanet. The red rectangles are the detection box, the result of classification
and confidence level are above the rectangles.
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3.4. DISCUSSION

Figure 3.5: The first row shows the original images in the test dataset, 5 different
images as the samples to show the performance of each model. From row 2 to row
5 are the results detected by SSD, Yolov3, Yolov4, Yoliv4-Tiny. The red rectangles
are the detection box, the result of classification and confidence level are above
the rectangles.
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jectively. The best AUC value is produced by SSD 0.972. In Table 3.3, we can

observe the performance of all CNN models clearly. Although the AUC value

of the Yolov4 is lower than SSD, for the best performance, the Sen 92.69%, Spe

96.14%, PPV 96.00%, NPV 92.93%, Acc 94.42% are all higher than SSD. This

also means that SSD still has good performance even when the confidence is very

high.

We used Chi-square test to analyze the performance of SSD and Yolov4. For

sensitivity, p = 0.647 (> 0.05), which means that there is no significant difference

between SSD and Yolov4. For specificity, p < 0.001, for accuracy, p = 0.003

(< 0.05), which indicates that the specificity and accuracy of SSD and Yolov4

is statistically different. In the comprehensive comparison of various evaluation

indicators, the overall performance of yolov4 is better than SSD.

Figure 3.4 and 3.5 showed some detection results. For the same positive images,

Faster-RCNN, SSD, and Yolov4 have higher confidence level than other models.

3.4.2 Detection Speed

For detection speed, Yolov4-Tiny achieved the best performance, the FPS can

reach 196.15. As we know, the number of parameter in Yolov4 is ten times than

yolov4-Tiny. Actually, Yolov4-Tiny also have a high precision, the AUC is 0.941,

the optimal threshold is 0.2, with sensitivity 86.52%, specificity 91.86%, and ac-

curacy 89.19%.

All the video data in this study are 25 fps. As can be seen from Table 3.3,

except for the two-stage model Faster-RCNN, the detection speed of all other

models is higher than 25 fps, which indicates that all the one-stage CNN models

we used have the ability to complete real-time object detection.

In this study, we used the two-stage model Faster-RCNN for the same test.

However, the test shows that when the confidence is 0.1, the sensitivity of the

model can reach 97.04%, but the specificity is only 75.93%. According to the

Youden index, at the best detection point of the model, the sensitivity was 82.43%
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and the specificity was 82.67%. Its detection speed is the slowest among all test

models, and the detection speed is only 15 fps.

3.4.3 Limitations

Although most of the models we used can got satisfactory test results, the best

results we get still can not meet the performance of spine surgeons who conduct

similar tests in Chapter 2. This study also has the following limitations.

Firstly, the performance of the proposed eight CNN models was not objectively

compared with that of clinical spine surgeons. So, future studies should plan to

compare the CAD system with spinal surgeons at the same time.

Secondly, Compared with the performance tested in Chapter 2, the perfor-

mance of the same CNN model Yolov3 is improved in this dataset. It seems

that when we expand the training dataset, the performance of the model will still

be improved. In the next research, we will start from expanding the amount of

training data to further test the performance of the model.

Finally, this study did not test the performance of CNN models on the video

dataset. Although the test results showed that the detection speed of all one-stage

CNN models can exceed the frame rate of the video used in our test (25 fps), the

detection results using real video data sets will be more convincing. Although

this may cost more human and material resources, our research team will work

together to solve this problem in the future.

3.5 Summary

In this chapter, eight CNN models use the same training dataset, the same

annotation information and similar parameters to train each model. Then, we

use the same test dataset to test the trained model, and use the same evaluation

index to compare the performance of each model. The results show that all CNN

models have good nerve and dura mater detection performance.
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From the comprehensive model performance, SSD is the best one with a highest

AUC 0.972. For the detection precision, the best performance is produced by

Yolov4 with Sen 92.69%, Spe 96.14%, PPV 96.00%, NPV 92.93%, Acc 94.42%

(confidence 0.1). For the detection speed, Yolov4-Tiny is the fastest model with

196.15 FPS. This study showed that the CNN models can be considered as a

promising model to detect the nerve and dura mater under the PTED, and Yolov4

is the appropriate models to operate this task.

In fact, during the real surgery, surgeons can recognize the target tissues not

only by the character of target tissues, but also refer to adjacent tissues and

anatomical to avoid injury or protect the target tissues. However, since computer-

ized image analysis can recognize the pattern quantitatively with higher precision,

the CNNs could classify and detect with improved performance. The results of

the present study indicate that the detection ability of the proposed CNNs are

improved and all of them have high performance. Also, the deep learning tech-

nique can accurately aid surgeons to detect the nerve and dura mater during the

PTED.

Normally, for operating the PTED surgery, requests for rich experience experts

to operate the surgery, and the increased workload can affect the operation per-

formance of experts and surgery effect. The results show that CNN can effectively

assist surgeons to identify the images of nerve and dura mater, which is helpful

to the development of endoscopic surgery, and reduce the complications of nerve

and dura mater injury or tear.
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Chapter 4

Vas Deferens Recognition under

Laparoscopic Using CNN

4.1 Introduction

As we mentioned before, TAPP and TEP are the common invasive surgery for

inguinal herniation. Although the development of TAPP and TEP has brought

great convenience to patients, there are great challenges for doctors.

Laparoscopic minimally invasive surgery method can reduce the extent of skin

incisions, nerve damage, and hematoma; lower postoperative pain and risk of

infection of the surgical site; and lead to quicker recovery [89, 90], but it also has

several disadvantages: for example, the surgeon initially needs a longer surgery

time before plateauing on his/her learning curve; the surgery has a higher risk of

complications; it needs much more knowledge of pelvic anatomy; and it needs a

high level of surgical skill [91, 92], which can lead to more mistakes and harm to

patients during the learning process.

In clinical practice, young surgeons need a long learning curve to carry out

laparoscopic repair surgery well, especially TEP technology. With the increase of

surgical experience and familiarity with local anatomy, complications and recur-

rence rates will gradually decrease [93].
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Common complications of the operation include bleeding, bladder lesions, in-

testinal obstructions, intestinal perforations, injury to the iliac vein, femoral nerve,

vas deferens, and even death [91].

With the development of artificial intelligence (AI) technology, CNNs have

become an effective method for medical image analysis, disease prediction and

diagnosis, and lesion detection and have been widely used [81, 94, 95]. CNNs are

not a solution to replace doctors, but will help doctors optimize their routine tasks,

thus having a potentially positive impact on medical practice [85].

There are many neural network models for object detection [38,39,96,97], but

each neural network has its own advantages. Some can detect objects quickly,

but the precision is not optimal, while others can detect an object with higher

precision, but the speed of detection is quite slow.

In the previous chapter, we have applied CNN to nerve and dura mater recog-

nition under PTED and achieved satisfactory results. We also compared the per-

formance of eight different CNN in this task. Yolov4, as an effective model, shows

good performance in this task. Yolo is a one-stage convolutional neural network

for object detection [98,99], whose rate of detection can reach 65 fps with an aver-

age precision of up to 43.5% on the COCO dataset [99]. In this study, we propose

to use Yolov4 as a detector to detect vas deferens images under TAPP and TEP.

The innovations of this study are as follows: (1) combined with computer CNN

technology and clinical data, a new method for identifying vas deferens images in

laparoscopic inguinal hernia repair using the CNN model is proposed, and the

object detection ability of the CNN model (Yolov4) on the medical dataset is also

tested; (2) different annotation methods are used to train the CNN model and to

examine the performance of the model in the process of training and testing; (3)

discussed with clinical experts and selected the appropriate IoU value to evaluate

the performance of the model for reference by clinical surgeons.
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4.2. MATERIALS AND METHODS

4.2 Materials and Methods

This research was approved by the Ethics Committee at Hannan Hospital,

Hannan District, Wuhan City, Hubei Province, China.

In this study, 35 adult male patients with inguinal hernia disease admitted to

hospital for laparoscopic surgery from April 2018 to December 2019 were selected.

The laparoscopic image device used was KARL STORZ-Endoscopy (22202020-

110), America. All patients underwent laparoscopic hernia repair and signed a

informed consent form. We collected information such as gender, age, disease

name, and interoperation videos. All endoscopic surgeries were performed by

senior endoscopic experts at Hannan Hospital. Details of the dataset are shown

in Table 4.1.

Table 4.1: Dataset and patient information.
Dataset Number of patients Age(year) Number of images
Training 26 63.15 ± 7.64 2,600
Image test 6 64 ± 8.12 1,200
Video test 3 55 ± 6.56 5,433

Note: All patients are male.

Inclusion Criteria

We selected those subjects satisfying all of the following three criteria: (i) adult

male; (ii) the patient was diagnosed with inguinal hernia and underwent hernia

repair for the first time; and (iii) the patient agreed to allow the use of video

recordings for scientific research.

Exclusion Criteria

We excluded subjects matching any of the following three criteria: (i) female

patient; (ii) patients with irreducible inguinal hernia; and (iii) the laparoscopic

surgery was converted to open surgery for any reason.
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4.2.1 Datasets

The patients were randomly divided into three groups, 26 patients in the train-

ing dataset, 6 patients in the image test dataset, and 3 patients in the video test

dataset. In training dataset and image test dataset, we divided the surgical videos

into images according to different datasets and saved them. A laparoscopic expert

selected these images manually, then the other laparoscopic expert verified them,

and finally deleted the disputed images and reached an agreement. In the video

test dataset, we selected two short video clips from each patient’s full surgical

video, each of which is 30 seconds (30 frames per second). One of them is a clip

with vas deferens image, and the other is a clip without vas deferens image. Then

two laparoscopic experts verified these video clips and reached an agreement.

In order to balance the training data, we selected 100 images containing the

vas deferens for each patient in the training dataset. In the image test dataset, we

chose 200 images for each patient (100 images that included the vas deferens and

100 images without the vas deferens). Thus, a total of 3800 pictures of vas deferens

and 180 seconds video clips were chosen to form an experimental database. There

was no overlap in patients and images between training dataset, image test dataset

and video test dataset.

All the training data were labeled using the software labelImg, and then val-

idated by two laparoscopic experts; none of the researchers had any objection to

the labeling results. The research flowchart is shown in Figure 4.1. The original

images with vas deferens, labeled images, and the original images without vas

deferens are depicted in Figure 4.2.

4.2.2 CNN Model and Training Parameters

In order to achieve higher accuracy with a faster speed, we used a one-stage

neural network, Yolov4, to train and test the above dataset. The model structure

is shown in Figure 4.3.

For training the model, we randomly divided the training dataset (2,600 im-
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4.2. MATERIALS AND METHODS

Figure 4.1: Research flowchart.

Figure 4.2: Original images. The first row shows original images with vas deferens;
the second row shows labels included by the experts; the third row shows original
images without vas deferens.
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Figure 4.3: CNN Model Structure

ages) into training data and internal validation data according to the ratio of 9:1.

Neural network parameters: input size = 416*416, batch = 64, subdivisions = 32,

initial learning rate = 0.001, momentum = 0.95, max-batches = 10000.

Because our study is only a binary classification task, vas deferens tissue will

only appear in one area of an image in laparoscopic IHR. Therefore, in the tar-

get detection stage, we adjusted the parameters in the process of non-maximum

suppression (NMS) and set NMS-IoU to 0.1 to reduce the number of detection

boxes.

The computer was an Intel i9 9900k CPU @3.6 GHz × 16, RAM 32GB, with

a CUDA-enabled Nvidia Titan 312 GB graphics processing unit (Nvidia), based

on the hardware of the NVIDIA GeForce RTX 2070 SUPER GPU. The whole

training time was about 12 hours.

4.3 Results

We examined the test dataset using the best training weight in the training

process, and then two laparoscopic experts verified whether the images in the test
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dataset were correctly labeled by the model. The two laparoscopic experts verified

the labels in all the images and further discussed any labeled images that were

controversial. Finally, they reached an agreement on all the labeling results.

For 1,200 images in the image test dataset, the model only takes 20 seconds

to complete the target detection.

We defined those images with vas deferens that were correctly labeled as true

positive (TP); the images without vas deferens but wrongly identified and labeled

incorrectly as false positive (FP); the images containing vas deferens but not iden-

tified and not labeled, as false negative (FN); and the images without vas deferens

and without any label as true negative (TN).

In the image test dataset, we used different confidence levels from 0.1 to 0.9 to

evaluate the performance of the model. The model was used to label the images in

the image test dataset, and two laparoscopic experts examined these results. For

600 positive symbols (images include vas deferens), a total of 607 detection boxes

were labeled on these images. The detailed test results at different confidence

levels are shown in Table 4.2. Example images of TP, FP, and FN are shown in

Figure 4.4.

Table 4.2: Test result at different confidence levels.
Confidence Level TP FP TN FN

≥ 0.1 577 56 544 30
≥ 0.2 565 32 568 42
≥ 0.3 555 17 583 52
≥ 0.4 550 8 592 57
≥ 0.5 545 4 596 62
≥ 0.6 531 2 598 76
≥ 0.7 516 1 599 91
≥ 0.8 494 0 600 113
≥ 0.9 461 0 600 146

Note: These results are based on all the detetion boxes.

According to the test results in Table 4.2, we used these indicators to evaluate

the performance of the CNN model: sensitivity (Sen), specificity (Spe), accuracy

(Acc), positive predictive value (PPV), intersection over union (IoU), average
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Figure 4.4: CNN-labeled vas deferens area and corresponding confidence level. The
first row shows the true positive (TP); the vas deferens is labeled with a purple
rectangle and the confidence level is shown above the rectangle. The second line
shows false positive (FP). The third line shows false negative (FN). The model
does not give any labels on the image. The researchers circled the area of the vas
deferens in yellow.

62



4.3. RESULTS

precision (AP), and F1 score. We also draw the receiver operating characteristic

(ROC) curve and calculate AUC value as indicators to evaluate the performance

of the model. The formulas used to calculate these values are as follows and

the results are shown in Table 4.3. The ROC curve is shown in Figure 4.5, The

performance of the model for different IoUs are shown in Table 4.4.

Sen = TP / ( TP + FN )

Spe = TN / ( TN + FP )

PPV = TP / ( TP + FP )

Acc = TP + TN / ( TP + TN + FP + FN )

F1 = 2 * PPV * Sen / ( PPV + Sen )

Table 4.3: Evaluation indicators at different confidence levels.
Confidence Level Sen(%) Spe(%) PPV(%) Acc(%) F1(%)

≥ 0.1 95.06 90.67 91.15 92.87 93.06
≥ 0.2 93.08 94.67 94.48 93.87 93.85
≥ 0.3 91.43 97.17 97.03 94.28 94.16
≥ 0.4 90.61 98.67 98.57 94.61 94.42
≥ 0.5 89.79 99.27 99.27 94.53 94.29
≥ 0.6 87.48 99.62 99.62 93.54 93.16
≥ 0.7 85.01 99.81 99.81 92.38 91.82
≥ 0.8 81.38 100.00 100.00 90.64 89.73
≥ 0.9 75.95 100.00 100.00 87.90 86.33

According to the ROC curve, we calculate that the optimal confidence thresh-

old of the model is around confidence level 0.4 and the AUC value is 0.9716, so

in the process of testing the video test dataset, we use the confidence level of 0.4

to test the real-time detection function of the model. After saving the video de-

tection results, we decompose the video clips into images for verification. A total

of 5433 images were decomposed from the video clips (2719 with vas deferens and
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Figure 4.5: The ROC curve and AUC value.

Table 4.4: Evaluation indicators under different IoUs.
IoU Sen(%) PPV(%) AP(%) F1(%)
≥ 0.2 88.73 99.82 95.64 93.95
≥ 0.3 87.75 98.71 92.38 92.91
≥ 0.4 85.95 96.69 89.31 91.00
≥ 0.5 80.72 90.81 80.88 85.47
≥ 0.6 72.22 81.25 68.73 76.47
≥ 0.7 52.29 58.82 36.97 55.36

Note: These evaluation indicators are calculated based on 600 positive data items in the test
dataset.
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4.4. DISCUSSION

2714 without vas deferens). Two laparoscopic experts verified these images one by

one and confirmed the results. The evaluation indicators and specific results are

shown in Table 4.5.

Table 4.5: Test results in video test dataset.
Patients Sen(%) Spe(%) PPV(%) Acc(%)

1 90.23 (822/911) 96.14 (872/907) 95.92 93.18
2 89.50 (810/905) 95.23 (859/902) 94.96 92.36
3 90.58 (818/903) 95.91 (868/905) 95.67 93.25

Average 90.11 (2450/2719) 95.76 (2599/2714) 95.52 92.93
Note: These evaluation indicators are calculated based on confidence level 0.4.

In the video test dataset, these results were analyzed using IBM SPSS Statistics

version 23.0. We used chi-square test to analyze the statistical differences between

patients, with p >0.05 meaning no significant difference between the tested objects.

The p value of sensitivity was 0.768, the p value of specificity was 0.608, all p values

were greater than 0.05; the average Sen, Spe, PPV, Acc were 90.11%, 95.76%,

95.52%, 92.93% respectively. The results show that the model can effectively

identify the vas deferens images in laparoscopic inguinal hernia repair, and the

sensitivity and specificity of the model to different patients in the video test dataset

are not statistically different.

4.4 Discussion

Using CNNs for medical image detection is not new, but using this technology

to detect vas deferens under laparoscopic IHR surgery is novel; we use the CNN

model to train and test the vas deferens images and obtained good results.

4.4.1 Performance of the CNN-based identification

In order to select the appropriate parameters and indicators to evaluate the

performance of the model, we set different confidence levels to calculate the eval-

uation indicator. Laparoscopic experts verified the labeled images one by one and
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concurred on the final results. According to Table 4.3, it is clear that with in-

creasing confidence levels, Sen gradually decreased from 95.06% to 75.95%, while

Spe and PPV gradually increased from 90.67% and 91.15%, respectively, to 100%.

In order to observe the performance of the model more comprehensively, we also

calculated the Acc and F1 score, both of which first increased and then decreased

with increasing confidence levels.

The F1 score is often used as a comprehensive index to judge the performance

of a CNN model; it is a combination of Sen and PPV. When the confidence level is

0.2, 0.3, and 0.4, the F1 score of the CNN model is higher than 94%. ROC curve

can show the influence of different thresholds on the generalization performance

of the model, which is helpful to select the best threshold. [100,101] We analyzed

the ROC curve, compared the F1 score, and discussed with laparoscopy experts.

Finally, we thought that when the confidence level was 0.4, the comprehensive

performance of the model was more suitable for the dataset.

4.4.2 Medical Image Labeling Method

Using the correct labeling method is also an important aspect of the CNN

model’s target detection to achieve good results. Due to the complex environ-

ment of endoscopic surgery, target detection in endoscopic surgery is also a new

challenge. There is currently no clear method for labeling the target tissue in

endoscopic surgery.

At the beginning of this study, when we labeled the vas deferens on the surgical

images, because the features of the target do not take on a regular shape, in order

to lessen the proportion of non-vas deferens tissue in the label box and reduce the

influence of non-vas deferens tissue on the target tissue, we only labeled the area

with obvious vas deferens features on the image. However, the results show that

the model is unable to obtain all information pertaining to the vas deferens in

these images, which leads to unsatisfactory training and testing results.

We adjusted the labeling method and expanded the scope of the label box so
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4.4. DISCUSSION

Figure 4.6: The training process of the partial labeling method.

that the vas deferens tissue in the image could be included in the label box as

much as possible. Although the proportion of non-vas deferens in the label box

increases, when we use the same training image, validation image and the same

training parameters to train and test the model again, the training process and

results show that the training effect of the new labeling method is better than

our previous labeling method. The example after adjusting the labeling method

is shown in line 2 of Figure 4.2, and the data details of the training process

are shown in Figure 4.6 and Figure 4.7. In the figures, red line shows internal

validation precision, blue line shows the loss curve.

Through the observation of the model training process, it is not difficult to find

that different annotation methods will significantly affect the training effect of the
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Figure 4.7: The training process of the new labeling method.
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4.4. DISCUSSION

model. During surgery, although the target tissue may be partially occluded by

other nontarget tissues, our suggestion is to label the target tissue as completely

as possible.

4.4.3 Indicators IoU and AP

IoU is the ratio of the overlap area and the union area of the label box and the

test box. In the field of medical image recognition, the higher the IoU, the higher

the positioning accuracy, and the more it meets the needs of clinicians.

We tested the performance of the model under different IoU thresholds (0.7

to 0.2). The results showed that AP increased from 36.97% to 95.64%, and PPV

increased from 58.82% to 99.82%.

We discussed with laparoscopic experts whether these labeled areas are enough

to remind surgeons to identify the vas deferens. Experts believe that in laparo-

scopic surgery, the role of computer-aided surgery is to remind surgeons to readily

discover target tissue and to pay more attention to this target area. When sur-

geons know the general location of the vas deferens, they will be more alert and

cautious, so as not to damage the vas deferens and other target tissues during

surgery.

By comparing the images in the test results, laparoscopic experts believed that

when the IoU was greater than 0.3, the labeling result was acceptable. However,

when the IoU dropped to 0.2, some labels were inaccurate, the proportion of target

tissue in the label box was too low to correctly represent the vas deferens, and the

center of the label box was not located over the vas deferens. These results also

tell us that IoU is also an important indicator to evaluate the performance of the

model, and higher IoU will better assist doctors to observe and discover target

organs.

We found that when the IoU threshold was greater than 0.2, the sensitivity

was lower than 90%, which indicated that the label box given by the model was

not accurate enough and the learning of vas deferens was not enough. Although
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Figure 4.8: The AP of the model under different IoU values and the corresponding
image examples. In the first row and the third row, from left to right, AP curves
at IoU 0.2 to 0.4, and 0.5 to 0.7 are shown. In the second row and the fourth row,
the corresponding images at different IoU values are shown. The blue rectangle
boxes were labeled by laparoscopic experts in advance, and the green rectangle
boxes were labeled by the model.

the model could recognize obvious features of the vas deferens, if the vas deferensƪ

surface was partially obscured, the model could not accurately recognize and label

the vas deferens. The details are shown in Figure 4.8.

Our research has some limitations, Firstly, we should further expand the num-

ber of patients and the number of vas deferens images as the training dataset,

so that CNN model can fully learn the characteristics of vas deferens; Secondly,

more indicators and test data should be used to evaluate the performance of the

model, and we need to compare the performance with surgeons in different level,

70



4.5. SUMMARY

so as to make the evaluation of the model more objective. Thirdly, we only use

the data of one hospital to train and verify the model, and the multi center data

will more effectively prove the detection and generalization ability of the model.

Finally, although Yolov4 is a good CNN model for target detection, we need to

test more CNN models and compare their performance in order to select the best

model to improve the detection performance.

In future studies, we plan to collect more data from more hospitals, compare

the neural network with the indicators of identifying important tissues in laparo-

scopic inguinal hernia repair by surgeons with different levels of experience, and

further test whether this technology can help young general surgeons optimize the

learning curve and reduce the incidence of vas deferens injury complications.

4.5 Summary

As an effective object detection method, computer deep learning technology

has been widely used in medical image recognition. [80, 102–104]

In this study, we used Yolov4 as the basic model to identify vas deferens im-

ages under TAPP and TEP. We used different confidence levels from 0.1 to 0.9

to calculate various evaluation indicators in image test dataset, picked the best

confidence level for video test dataset, adjusted the IoU thresholds from 0.2 to 0.7

to understand the positioning accuracy and AP of the model and discussed with

laparoscopic experts to select appropriate parameters to evaluate the performance

of the model.

In image test dataset, the values of sensitivity, specificity, PPV, accuracy

and F1 were 90.61%, 98.67%, 98.57%, 94.61% and 94.42% (confidence level 0.4),

respectively. In video test dataset, the values of sensitivity, specificity, PPV, ac-

curacy were 90.11%, 95.76%, 95.52%, 92.93% respectively. In IoU 0.3, the average

precision (AP) was 92.38%.

We confirmed that we can use CNN model as an effective method to recognize
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vas deferens under TAPP and TEP. This will help laparoscopic surgeons, espe-

cially young ones, to better carry out clinical work, optimize the learning curve

of laparoscopic surgery, improve surgical efficiency, and reduce surgical complica-

tions.
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Chapter 5

Yolov4 based on Self-Attention

Mechanism and Depthwise

Separable Convolution

5.1 Introduction

The science of solving clinical problems by analyzing the images generated in

clinical work is called medical image analysis. The aim is to extract important

information effectively and improve the level of clinical diagnosis.

With the rapid development of Biomedical Engineering, medical image analysis

has become one of the most popular research and development fields. Image

classification using deep learning is the earliest and prosperous topic. Among

them, CNN is the most widely used structure.

As we have studied in Chapter 3, eight popular CNN models have been used

to train and test nerve and dura mater images under PTED, and good results

have been obtained. However, the existing deep neural network model has high

computational cost and high requirements for computer memory, which is difficult

to be effectively implemented in devices with low memory resources or applications

with real-time detection requirements.
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In the field of object detection, detection speed and precision are very impor-

tant indicators. Although Yolov4 has a good detection precision on our nerve and

dura mater dataset, it still needs be improved on these two aspects.

Although all CNN models we used in Chapter 3 have good performance on our

dataset, all these CNN models have a large number of parameters, and training

these models is a time-consuming and laborious process. How to reduce com-

putational complexity of the model and maintain the detection performance of

the model is another challenge we need to try. Therefore, our proposal is to

perform model compression and acceleration in existing deep networks without

significantly reducing model performance.

Fortunately, in recent years, various CNN optimum operators have been de-

veloped. For reducing the parameter of CNN models, there are many efforts

have been devoted to optimize/accelerate the inference speed of CNNs. These

technologies attempt to improve the speed of the model in the training and pre-

diction stages from the aspects of calculation optimization, system optimization

and hardware optimization.

Calculation optimization technology is mainly to find a balance between model

effect and efficiency, and reduce the amount of calculation of the model as much

as possible while ensuring the model effect.

At present, the mainstream research mainly involves the following four tech-

nical schemes. The first one is model structure optimization. While the neural

network model is developing in a wider and deeper direction, the model structure

needs to be optimized to adapt to the current data and computational conditions.

Most of the methods of model structure optimization are still based on human

experience to design some ”light” computing components with similar effects to

replace the ”heavy” computing components in the original model. The represen-

tative networks: VGG [96], NASNet [105], SqueezeNet [106], MobileNets [107],

ShuffleNets [108] etc. The second one is model pruning. It can be divided into

two categories: one is to cut the parameter matrix regularly (structured pruning),
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5.1. INTRODUCTION

and the other is to cut the original dense parameter matrix into sparse parame-

ter matrix (unstructured pruning). In 2014, Gong et al. [109] shown that model

pruning and quantization are effective in reducing network complexity and solving

over fitting problems. The third one is model quantification. It compresses the

original network by reducing the number of bits required to represent each weight

parameter, so as to accelerate the calculation. The fourth one is knowledge dis-

tillation. It is essentially similar to transfer learning, except for the purpose of

model compression. It takes the knowledge learned from the large model as the

prior knowledge, then transfers the prior knowledge to the small-scale neural net-

work, and deploys the small-scale neural network in practical application. Ba et

al. [110] adopted the idea of knowledge distillation (KD) to compress the deep and

wide network into a shallow network, in which the compressed model imitates the

learning function of a complex model.

In neural networks, we know that the convolution layer obtains the output

features through the linear combination of convolution kernel and original features.

Since the convolution kernel is usually local, we usually stack convolution layers

in order to increase the receptive field. In fact, this method is not efficient. At

the same time, many tasks of computer vision affect the final performance due to

the lack of semantic information.

Self-attention (S-A) mechanism can capture global information to obtain larger

receptive field and contextual information [111]. Recent studies have shown that

S-A mechanism may be a feasible alternative method to build image recognition

model [112,113]. S-A mechanism has been adopted in natural language processing.

As the basis of powerful architecture, it replaces recurrent and convolution mod-

els in various tasks [114–117]. The development of effective S-A architecture in

computer vision provides a promising prospect for building models with different

and possibly complementary characteristics from convolutional networks [118].

In this study, we proposed two approaches to reconstruct the CNN model based

on Yolov4. One approach is to use depthwise separable convolution (DSC) [119]
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Figure 5.1: Process of conventional convolution.

to replace conventional convolution in order to reduce the parameter and the

amount of calculation. Another approach is to use the S-A mechanism in the

feature extraction process to model the global dependence of the input data.

The research shows that DSC is an effective method to reduce the amount

of calculation. Compared with the conventional convolution, DSC can effectively

reduce the calculation parameters, but the effect of target feature extraction is

very close at the same time [119, 120]. The process of conventional convolution

complete convolution calculation in one step (Figure 5.1), but the process of DSC

divide the process of calculation into two steps (Figure 5.2). Step 1 is depthwise

convolution (DW), to use convolution kernel to extract features. One convolution

kernel is responsible for one channel, and one channel is convoluted by only one

convolution kernel. Step 2 is pointwise convolution (PW), to use 1*1*M kernel (M

is the number of channels of the original input layer) for conventional convolution

operation. The convolution operation in this step will weight the map in the

previous step in the depth direction to generate a new feature map. Therefore,

although the output feature maps are similar, the number of parameters can be

significantly reduced.

Multi-Head Attention performs multiple attention functions called Scaled Dot-

Product Attention with keys, values and queries pairs in parallel. In the linear
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Figure 5.2: Process of depthwise separable convolution.

projection of these pairs, the process is performed with h times namely the number

of heads, the h pairs are then transferred to Scaled Dot-Product Attention, which

is described in Figure 5.3 [114]. The outputs of all heads are concatenated together

as the final values. The Multi-Head mechanism allows the model to jointly attend

to information from different representation sub-spaces at different positions.

As shown in Figure 5.4, in our case, the S-A process can be divided into three

steps. Firstly, the input is transferred to three different convolutional operations

for calculating Keys, Queries, and Values. Secondly, we compute the dot products

of the queries and the keys, divide each by
√
dk, and apply a softmax function

to obtain the attention weights. Thirdly, the attention vectors can be calculated

through the multiplication of the attention weights and values [114, 121]. The

whole process can be formulated as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

As we studied before, CNN can as an effective approach to assistant surgeons

recognize the important tissues under endoscopic surgery, including nerve and dura

mater images under PTED, vas deferens images under laparoscopy. We compared

8 popular CNN models, and the Yolov4 has the best performance on nerve and
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Figure 5.3: Illustration of MHSA.

Figure 5.4: Illustration of self-attention mechanism.
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dura mater images recognition under PTED. The sensitivity is 92.69%, and the

specificity is 96.14%. It is a good performance that closely to the spinal endoscopy

experts whose sensitivities are higher than 96%, and the specificities are higher

than 98%.

Yolov4 as a classic one-stage CNN model, it has a good performance on COCO

dataset, VOC dataset and other public datasets, but for our special medical image

dataset, the object features and types maybe have some different with daily life

images. So, we want to reconstruct the CNN model based on Yolov4 to reduce the

model parameters and at the same time, we can maintain or improve the model’s

performance.

We roughly divided the structure of Yolov4 into three mainly parts: part 1

is the backbone of the model, the function of this part is to use conventional

convolution and down sampling to impress and extract the preliminary features

of the input data, then, it will extract 3 preliminary effective feature layers as the

input features for next part; part 2 enhances feature extraction. It will merge the

3 preliminary effective layers and extract more effective features. In this study, we

did not change the structure in this part; part 3 is a prediction network, it will

output the classification and prediction results according to the part 2.

The innovations of this study are as follows: (1) DSC is used to replace the

conventional convolution in Yolov4 backbone to reduce parameters, improve de-

tection speed and test the performance of the model; (2) Add S-A mechanism to

the three preliminary feature extraction layers in the Yolov4 backbone to improve

the receptive field in the feature extraction process, so as to enhance the overall

feature extraction of the data. (3) DSC combined with S-A mechanism was used

to extract the preliminary features of the training data. The performance of the

model in nerve and dura mater image recognition in PTED was evaluated from the

aspects of sensitivity, specificity, model parameters, detection speed and AUC.
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Figure 5.5: Structure of model 1.

5.2 Materials and Methods

5.2.1 CNN Models

All models are based on Yolov4, and we mainly adjust its backbone structure

(CSPDarknet53). Firstly, three preliminary features are extracted and output

through the backbone, and then the feature extraction is enhanced by conventional

convolution, down sampling, up sampling and so on. Finally, according to different

scales, the prediction results are outputted through three feature layers.

Model 1: Use DSC to replace the conventional convolutions in the backbone

of Yolov4. The model structure is shown in Figure 5.5.

Model 2: DSC is used to replace the conventional convolution in the backbone

and an S-A mechanism was added for preliminary feature extraction. The model

structure is shown in Figure 5.6.

Model 3: S-A mechanism is added to the output of the three preliminary

feature extraction layers of Yolov4. The model structure is shown in Figure 5.7.
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Figure 5.6: Structure of model 2.

Figure 5.7: Structure of model 3.
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5.2.2 Datasets

We used the dataset same as in Chapter 3, the details of information is shown

in Table 3.1. There are 81 patientsƪ16,200 images including nerve and dura

mater image in the training dataset, and then use these images as input data and

be divided into training data and internal validation data randomly with a ratio

9:1. After training the model 200 epochs and observed the loss curves were no

longer to reduce, then stop training. Finally, 21 patientsƪ8,400 images (4,200

with nerve and dura mater, 4,200 without nerve and dura mater) were used to

test these models.

5.2.3 Computer Configuration and Training Parameters

The configuration was described in Chapter 3.2.3. For all CNN models, we

use the same dataset to train and test these models, the training parameters are

as follow: Input size, 608*608; Total epoch, 200; Freeze epoch, 50; Initial learning

rate, 0.001; Unfreeze epoch 150; Learning rate, 0.0001.

5.2.4 Evaluation Indicators

In order to evaluate and compare the performance of these models, we still use

common indicators, such as Sen, Spe, Acc, ROC curve, AUC value, FPS and the

number of model parameters. The formulas are shown in Chapter 3.

5.2.5 Validation

Three spinal endoscopy experts reviewed all the detection results detected

by the four models, checked the images and labels one by one, discussed the

questionable results, and reached a consensus on the final results.
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Table 5.1: Performance of the four models on the test dataset.
CNN Model Sen(%) Spe(%) Acc(%) PRM (106) FPS AUC

1 83.64 95.52 89.58 12.27 189.33 0.898
2 96.21 90.79 93.50 18.68 48.84 0.960
3 95.52 92.26 93.89 195.75 16.40 0.951
4 92.69 96.14 94.42 63.94 28.12 0.952

Note: PRM: number of parameters.

Figure 5.8: ROC curves and AUC values of four models on the test dataset.

5.3 Results

After the three spinal endoscopy experts checked and made a consent with the

detection results output by CNN models, we confirmed the final results, and cal-

culate the related evaluation indicators according the formulas shown in Chapter

3. The final results are shown in Table 5.1. The ROC curve and AUC value shown

in figure 5.7, the radar plot of evaluation indicators of the models in test dataset

respectively. We plot a more intuitive linear graph in Figure 5.8 to compare the

performance of each model in different evaluation indicators.

These models can show good detection ability in the dataset, and the AUC

value is between 0.8983-0.9597. The best AUC value 0.9597 was generated by
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Figure 5.9: Overall performance of four models on the test dataset.

(a) Sensitivity. (b) Specificity.

(c) Accuracy. (d) FPS, parameters, and AUC values.

Figure 5.10: Comparison of the indicators of the four models.
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model 2. The best sensitivity 96.21% was also generated by model 2, and the best

specificity was 96.14%, which was generated by model 4.

We used Chi-square test to analyze the performance of model 2 and model 4.

The p values of model 2 and model 4 were: sensitivity, p < 0.001; specificity, p

< 0.001; accuracy p = 0.003 (p <0.05), which indicates that there are statistical

differences in sensitivity, specificity and accuracy between model 2 and model 4.

For sensitivity, model 2 is better than model 4, but for specificity and accuracy,

model 4 is better than model 2.

In the comparison of model parameters, model 1 is the lightest model with

parameter number of 12.27 ×106. At the same time, the detection speed of this

model is also the fastest. The original PTED video is 25 fps. In addition to model

3, model 1, model 2 and model 4 can meet the requirements of real-time detection.

5.4 Discussion

In this research, the DSC and S-A mechanism were used to reconstruct the

CNN model Yolov4.

1. In order to reduce the size of the model and the calculation complexity,

we used DSC to replace the conventional convolution in the backbone of Yolov4.

Results shown that the number of parameters of the model were reduced from

63.94 ×106 to 12.27 ×106, the detection speed increased from 28.12 fps to 189.3

fps. But the detection accuracy was decreased from 94.42% to 89.58%, and the

AUC value decreased from 0.95 to 0.90. These results show that when DSC is

used to replace some conventional convolution, the number of parameters of the

model is reduced to only one quarter of Yolov4, and the performance of the model

on our data set is also acceptable.

2. While using DSC to replace some conventional convolution, we add S-

A mechanism to the three outputs of the backbone. The results show that the

number of parameters of the model is much fewer than that of the original Yolov4
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model, only one third of that of Yolov 4 model, and the detection speed can reach

48.84 fps, which can meet the needs of most medical endoscopes or surgical videos.

For detection accuracy, the model 2 is lower than original Yolov4. According to

the results showed in Table 1 and Figure 8a, for sensitivity, although the best

sensitivity of model 2, 3, and 4 are close, but when we observed the sensitivity

curve, even the confidence level was higher than 0.9, the sensitivity of the model

2 is still higher than 50%. Although the specificity of model 2 is lower than the

model 4, but we find that the AUC value 0.96 is also higher than model 4. It is

also indicated that, for the comprehensive performance, the capability of model 2

is higher than model 4 ƭoriginal Yolov4Ʈ.

3. In the process of building model 3, we added S-A mechanism to the back-

bone of Yolov4 directly. Because each point must capture the global context

information, the self-attention mechanism module will have great computational

complexity and memory capacity [114]. We compared the detection performance

of model 3 and model 4, although the best performance was similar in these two

models, the AUC value was also similar to each other. The number of parameters

rose from 64 ×106 to 3 times 196 ×106, with the detection speed reduced from

28.12 to 16.40 fps.

The limitations of this study are given below. First, performance of the pro-

posed CNN models was not compared with spinal endoscopy doctors. We will

further to compare the performance of these CNN models to spinal endoscopy

doctors. Second, the resource of the dataset is relatively single, and the sample

size is not large enough. So, future studied should plan to further expand the

data source and sample size. Third, the detection accuracy of the reconstructed

model didn’t surpass the original Yolov4. We should do more study on the model

reconstruct, and acquire the better performance.
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5.5. SUMMARY

5.5 Summary

In summary, CNN is an effective method to recognize nerve and dura mater

images under PTED. For model building and reconstruction, there are many meth-

ods and approachs to do.

In this study, the use of DSC combined with S-A mechanism can significantly

reduce the model parameters and improve the detection speed of the model. At

the same time, the overall performance of the reconstructed model in identifying

nerve and dura mater in PTED is similar to that of Yolov4. This shows that this

lightweight CNN model also has a good effect on medical image recognition.

As we reviewed before, there are many ways to achieve network lightweight.

For future work, we can try to use other methods to simplify the scale of CNN

model, and we can also use these technologies to build personalized networks for

different medical datasets. This is also a popular method called precision medicine

at this stage. It will not only bring efficient assistance to the medical workers, but

also make patients more assured and safer in the process of medical treatment.
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Chapter 6

Conclusion and Future Works

By reviewing the application of deep learning technology, especially CNN tech-

nology in various medical activities in recent years, we find that the technology has

achieved good performance in various fields. Its application covers a wide range of

issues from disease screening, disease monitoring, lesion detection to personalized

treatment recommendations. It opens up an unprecedented new field for medical

data processing and analysis.

In the background of the popularity of medical big data, a variety of data

sources, such as radiography (X-ray, CT and MRI scanning), endoscopy / surgery

video, ECG / EEG signal, pathological imaging and genome sequence, bring a lot

of data to doctors.

However, in medical image analysis, useful information is not only contained

in the image itself. Doctors usually make better decisions by using a large amount

of data about the patient’s medical history, age, occupation and so on. We also

need to use more tools to analyze these data in depth, so as to extract more

useful information and promote the development of related disease research and

medicine.

This dissertation concludes with a summary of the main contributions and

a discussion of future research. We create an overview of the results of each

contribution. The future work will continue to take computer technology as the
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6.1. CONTRIBUTIONS AND CONCLUSION

core to further understand and meet the needs of clinicians, and design more

conducive to clinical practical applications.

6.1 Contributions and Conclusion

In Chapter 2, we use a CNN model based on Yolov3 to train and test the

recognition ability of nerve and dura mater images under PTED. We compare

the performance with different level surgeons, and as another evaluate indicator

to estimate the performance of the CNN model. We combined the CNN to each

surgeon, use statistical method to evaluate the assistance effect of the CNN model.

This is the first time we used CNN model to identify the nerve and dura mater

under the PTED, the test results indicated that CNN could recognize the tissues

image during the PTED, and this is an efficient method for nerve and dura mater

recognition and can assist general surgeons during the PTED.

In Chapter 3, in order to further validate if the CNN model can identify the

nerve and dura mater effectively under the PTED, we tested eight different popular

CNN models (include one-stage and two-stage) to complete the nerve and dura

mater detection. We amplified the research dataset and trained the eight different

CNN models using the similar parameters, respectively.

We compared the results with different CNN models, and evaluated the per-

formance of the CNN models with the same indicators. According to the detection

results, we find that all of these CNN models can recognize nerve and dura mater

effectively, the best AUC is 0.972, produced by SSD, the best precision is 94.42%,

produced by Yolov4, the fastest model is Yolov4-Tiny, the FPS can reach 196.15.

These results indicated that the CNN model is an effective tool for nerve and dura

mater detection, it can assist surgeons to recognize the nerve and dura mater ac-

curately and immediately.

In Chapters 2 and 3, we aimed to use CNN models to recognize the nerve

and dura mater images under the PTED. The goal is to help reduce the workload
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of spinal endoscope experts and improve the performance of general surgeons.

Results shown that CNN model has higher sensitivity and specificity than general

surgeons. When general surgeons are combined with CADs, the performance of

general surgeons is significantly improved. It also shown that CNN model can

effectively identify nerves and dura under PTED.

In Chapter 4, we used CNN model based on Yolov4 to identify the vas defer-

ens images under laparoscopic hernial repair surgery. We used different labeling

methods to label the training data to provide more effective training features for

the training model, so as to improve the training effect and test accuracy of the

model. We also tested the real-time detection ability of the model using video

clips (30 fps). The test results were TPR 90.61%, TNR 98.67%, Acc 94.61%. The

results also shown that this CNN model can recognize the vas deferens in images

and videos.

We confirmed that CNNs can recognize and label vas deferens images efficiently

in TAPP and TEP. This will assist laparoscopic surgeons, especially young ones, to

better carry out clinical work, optimize the learning curve of laparoscopic surgery,

improve surgical efficiency, and reduce surgical complications.

In Chapter 5, Yolov4 was reconstructed by DSC and S-A mechanism. When

we use DSC to replace the conventional convolution in the backbone of Yolov4

and add S-A mechanism in the three preliminary feature layers respectively, the

model parameters are reduced to 18.68 ×106, the detection speed is increased to

48.84 FPS, the AUC value of the model is 0.96, and the sensitivity is 96.21%. The

performance of other indicators is similar to Yolov4.

It also shows that for a specific medical image field, using the existing tech-

nology to design a personalized lightweight network for specific medical image

detection can also receive good performance.

90



6.2. FUTURE TRENDS AND WORKS

6.2 Future Trends and Works

With the rapid development of deep learning technology, especially the method

based on CNN, the CAD system based on CNN has a wider application prospect

in clinical practice. In the foreseeable future, these technologies are not expected

to replace doctors, but may promote daily workflow, optimize doctors’ learning

curve for new technologies, improve the accuracy of detection and diagnosis, make

the application of minimally invasive and endoscopic technology more and more

popular, reduce invasive operation, reduce medical operation risk and improve

patient satisfaction.

Deep learning techniques extract information from big data and produce an

output that can be used for personalized treatment, which promotes the develop-

ment of precision medicine. Unlike the conventional medical treatment, in pre-

cision medicine, the examination will go deep into the smallest molecular and

genomics information, and medical staff will make the diagnostic decision accord-

ing to the subtle differences among patients.

With the continuous upgrading of powerful computing equipment, object de-

tection technology based on deep learning has developed rapidly. In order to

deploy in more accurate applications, the demand for high-precision real-time sys-

tems becomes more and more urgent.

Although the application of CNN in the medical field has achieved great results

in recent years, there are still many unknown areas that are worthy of further

exploration and development.

For the future research, I also have some plans to do.

The first one is to combining one-stage and two-stage detectors. The two-

stage detectors have s densely training process to obtain as many as reference

boxes, it is time consuming and inefficient. To resolve this issue, we need to

eliminate the redundant detection boxes and maintain the high accuracy. The

one-stage detectors achieve fast processing speed and have been applied in real-

time object detection. Although the detection speed is fast, the lower accuracy is
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still a bottleneck for high precision requirement. How to combine the advantages

of both two-stage and one-stage detectors remain a big challenge.

The second one is to deal with focus on low-quality images. In the process of

target detection, we find that the accuracy of the model is low in the detection

of blurred and defocused videos, small targets and so on. In such condition, it

is difficult to achieve good performance in practical clinical application. How to

improve the detection accuracy in these cases is also my research direction.

The third one is to build a lightweight object detection model. Starting from

the definition of lightweight network structure, we can divide lightweight networks

into two categories: lightweight network structure design and model compression.

At this stage, in addition to some model compression methods, researchers pay

more attention on the manual design of lightweight and efficient CNN structure,

which can effectively maintain the accuracy of the model and greatly reduce the

parameters. How to build an optimal network structure for medical target detec-

tion is also my goal.

In short, based on the existing computer technology and using the professional

knowledge we have learned, the application of artificial intelligence in the medical

field is becoming wider and safer.
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