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Abstract

Image classification which is a sub-field of computer vision is now reliably performed by
Deep Neural Networks (DNNs) in a near-human level accuracy or sometimes out-performing
them. Succeeding in building an accurate image classification model will eventually produce
success in downstream tasks such as, visual object localization; image segmentation; scene
understanding and captioning; person-re identification; synthetic image generation and so on.
Most of the networks leveraged for these tasks are currently monolithic. That is, a single neural
network to perform classification on all possible classes. But, often datasets consist of several
visually similar samples or classes where even these complex monolithic networks can fail or
get confused. Such as, categorizing different breed of cats and dogs; different types of flowers;
different types of mushrooms; different types of automobiles; and so on. Ensembles perform
excellent in such situation, but they are expensive during both training and testing time. One of
the promising solutions for such limitation is to make neural network modular, where several
modules only concentrate and specialize on certain part of the dataset and perform collectively
very good relatively to single complex model. In this dissertation, we conduct research on Mod-
ular Neural Networks (MNNs) and propose novel learning algorithms and architecture designs
for the MNNs. We adopt image classification task for this study.

First in Chapter 2, for the multi-class image classification task we propose a modular ar-
chitecture of Deep Neural Network known as the Modular Selective Network or MS-Net. The
network primarily consists of a router network and a set of expert networks. The backbone for
these router and experts is built with identical and simple Deep Convolutional Neural Networks
(DCNNs). For a C class classification task, we show that the architecture has exactly C inde-
pendent and decoupled expert neural networks. Moreover, for each class, MS-Net has ⇢ expert
networks specializing in that particular class, where ⇢ is called the redundancy rate in this re-
search. The concept of controlled redundancy rate in this architecture is novel. The research
demonstrates that ⇢ plays a key role in the performance of MS-Net. Although these experts are
light weight and weak learners alone, together they can match the performance of more com-
plex DNNs for the whole task. We perform extensive empirical study and theoretical analysis
for MS-Net on CIFAR-10, CIFAR-100 and F-MNIST datasets to demonstrate its performance
and effectiveness.

Next, in Chapter 3, we propose optimization for MS-Net to improve the accuracy and in-
ference cost trade-off per sample. We name this optimized model as the Optimized MS-Net
or O-MS-Net. Original MS-Net is model agnostic in a sense that it does not require prior
knowledge on the backbone network to construct the router and a set of expert networks. How-
ever, O-MS-Net takes into consideration about the router networks strength (or weakness) on
the dataset. This information is obtained by performing Inter-Class-Correlation (ICC) analysis
through calculating the joint-probability of co-occurrence of top-2 classes in routers prediction.
From this calculated information K binary subset of datasets are prepared which are enriched
in confusable set of classes. Value of K does not have any theoretical upper or lower bound.
The value K is set based on computational resources and time available during training phase.
Generally, the bigger the K the more experts we have, thus better performance. Unlike MS-Net,
redundancy is not encouraged in these constructed subsets. Thus, during the inference phase,
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besides router, only one expert neural network is leveraged per sample. Comparative study
and performance evaluation of O-MS-Net is performed on the same datasets, i.e. CIFAR-10,
CIFAR-100 and FMNIST.

Lastly in Chapter 4, we introduce more generalized version of MS-Net. MS-Net and O-
MS-Net consist of router and expert networks which are decoupled and independent with no
parameter sharing or re-use. In Chapter 4 we propose multi-branch neural network architecture
where several modules (equivalent to experts of MS-Net) are closely coupled through parame-
ter sharing and the network is end-to-end trainable. Hence instead of using the final output of
the router, all the modules share the same feature map. There is no selective router or gating
mechanism like MS-Net. Thus, we term our proposed network Coupled Modular Neural Net-
work (CMNN). CMNN in our study consists of � closely coupled sub-networks, where � is
the branching factor. We call the whole network super-graph and each sub-network within this
super-graph as sub-graph. This kind of coupled modular design choice is indeed preferable as
it makes efficient use of parameters and data. In order to effectively leverages the knowledge
learned by this complex and powerful super-graph we propose a simple but easy-to-implement
online Knowledge distillation based Round-Robin learning algorithm. The learning algorithm
facilitates the sub-graph to effectively learn from the complex super-graph while encouraging
diversity among them. We have shown that, such shared modular architecture and learning
algorithm produces strong sub-graph network that can perform substantially better that its orig-
inal baseline model. The framework can also produce strong ensemble performance when all
sub-graphs are leveraged together. We validate our result through aforementioned datasets.



Chapter 1

Introduction

1.1 Deep Neural Networks

In order to introduce Deep Neural Network (DNN) [5] let us first consider the simplest
form of a DNN, i.e a shallow neural network with a single hidden layer. Once we have a basic
understanding of a single hidden layer neural network we will later generalize for the multi-
layer networks or commonly known as the DNNs. Let us assume that we have an input sample
x. Next, we have an input layer that takes the input sample x. In general, the dimension of both
the input sample and the input layer are similar. If our input x is of Q elements the input layer
of our neural network will have Q neurons. The input x next undergoes a linear transformation
by W1 (also known as the weight matrix) and b (known as the bias) to form intermediate form
xW1 + b. This transformation produces a row vector with D1 elements (as we have D1 neurons
in the hidden layer). Next, an element-wise non-linearity denoted as �(.) is applied to the
intermediate form, which completes the hidden layer step. There are several choices of non-
linearity such as, Rectified Linear Unit (ReLU), Sigmoid, Tangent Hyperbolic (TanH), and so
on. Finally, the output of the hidden layer is further linearly transformed by the second set of
weight matrix W2 to give the final output through the output layer. This output layer is also a
row vector with D2 computational units or neurons. Thus, from a single hidden layer neural
network, we have two sets of weights, where W1 is QxD1 matrix, and W2 is D1xD2 matrix.
The bias b is a D1 dimension vector. The final output of the network is depicted as,

ŷ = �(xW1 + b)W2 (1.1)

This simple neural network when equipped with more hidden layers, such as multiple linear
transformations followed by element-wise non-linearity consecutively we have a deeper version
of the neural network, which is known as the Deep Neural Networks (DNNs).

In order to leverage this neural network for performing prediction we need to define our
dataset and an objective function. Let us assume that we have training dataset D = {di|i =
1, .., N}, where N is the number of samples in that dataset. T = {ti|i = 1, .., N} is the
corresponding ground-truth labels, where ti is associated with di for i = 1, 2, ..., N . Let us
consider that our network performs classification task, and the output of the network for the
input dataset D is

ŷ = {ŷ1, ŷ2, ..., ŷN}

Thus, for the classification task, we pass the output ŷ through a SoftMax function defined in
Eqn. (3.1), where we obtain the class probabilities as:

qi =
exp(ŷi)P
j exp(ŷj)

. (1.2)
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Once we have these output we formulate the loss function as follows:

L(D, T ) =
NX

i=1

log(qi, ti) (1.3)

where, ti 2 {1, ..., C} is ground truth class for corresponding input di.
The goal to train this neural network by minimizing the objective function defined in Eqn.1.3

w.r.t to the weights W1,W2 and b. This summarizes the basic principle of Deep Neural Net-
works or DNNs.

1.1.1 Deep Convolutional Neural Network

Deep Convolutional Neural Networks (DCNNs) are very similar to DNNs, such as they are
made upon neurons with trainable weights and biases. However, DCNNs are much more versa-
tile as they scale well for larger images with no significant increase in parameters. This has been
possible because of the efficient use of convolution filters, pooling layers, and activation func-
tions. DCNN has gained high preference and success mainly due to its ability to automatically
learn discriminative features and complex input to output mapping through these convolution
filters, pooling layers and activation functions using back-propagation algorithm [6]. Three
properties of DCNN that make it very preferable are local connectivity, parameter sharing and
spatial arrangement.

Each of the filter maps of CNN is panned on the entire image according to the kernel size
and stride. This allows the filter to find matching patterns no matter where the pattern is located
in the input image. Unlike the MLP, DCNN layers are sparsely and partially connected, which
substantially reduces the number of parameters. Such properties of DCNNs [7, 8] have enable
rapid and outstanding development and progress in computer vision task such as, object recog-
nition [9–11]; object detection and localization [12, 13]; semantic image segmentation [14–17];
image generation [18–20]; neural style transfer [21, 22] and so on.

In the very beginning DCNNs networks (such as, [23] were simple and consisted of lim-
ited hyper-parameters and factors such as number of layers, number of channels per layer, and
Sigmoid or TanH non-linearity. However, gradually these networks have evolved and started
to get more complex, deeper, and more accurate with the introduction of templates such as
fixed filter size with a large number of channels or feature maps [24], skip connection between
non-consecutive layers [25], multi-path or branch design [26] and so on. Well known and most
practiced networks such as ResNet [25], DenseNet [27], GoogleNet [28] and so on leverage the
aforementioned templates. In Figure 1.6 we depict a simplified image of DCNN.

1.1.2 State-of-the-art Practices in Deep Neural Networks

State-of-the-arts (SOTA) DNNs are performing with excellent generalization capability and
accuracy in the field of computer vision such as, visual object recognition [9–11]; scene segmen-
tation [14–17]; person-re-identification [29]; realistic image generation [20]; natural language
processing such as, language modeling [30]; playing games at human-level intelligence [31]
and so on. In order to understand the reason for such outstanding performance we need to take
a quick look at the last five years’ progress in DNNs. Our survey reveals the following reasons
for such as substantial progress in DNNS.

Scaling up DNNs has been known as an effective methodology to improve model capacity.
Due to recent substantial improvement and progress in hardware infrastructure (Google TPUs,
NVIDIA GPUs) for DNNs, DNNs are now scaled-up to an unprecedented level in terms of width
and depth. To keep up with these scaled-up DNNs several parallelism libraries were proposed
which allowed training DNNs with billions of parameters on multiple accelerators with no strict
limitation for memory. Such as, Google GPipe [1], which is a scalable model-parallelism library
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Figure 1.1: Deep Convolutional Neural Network (DCNN)
.

Figure 1.2: Models trained by GPIPE framework. [1]
.
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for training Giant Neural Networks managed to scale up AmoebaNet [32] to 557 Millions (M)
parameters and achieve 84.4% top-1 accuracy in ImageNet-2012. GPipe also allowed training
a 6 billion parameters multilingual Transformer model on 103 languages achieving state-of-the-
art results. Besides parallelism libraries, scaling strategy is also very important, as scaling DNNs
without a proper strategy can result in over-parametric function thus, over-fitting. DNNs such as
a series of networks from ResNet introduced a simple and brilliant concept of residual learning
which allowed us to scale neural networks in-depth and achieve proportional performance gain.
Similarly DenseNet [27] layer configuration alleviate the vanishing-gradient problem which
allowed to scale up the depth without over-fitting.

Neural Architecture Search (NAS) a sub-field of Automated Machine Learning [33] (Or
popularly known as AutoML) is recently dominating in achieving the best neural network ar-
chitecture, in-fact architecture obtained through the NAS are currently outperforming human-
engineered architecture (e.g [34]). The credit for AutoML goes to powerful hardware devel-
opment and clever search algorithms and strategies [35]. Three key points that defined NAS
are i) search space, ii) search strategy iii) performance evaluation. Since search space for the
NAS task can be huge and which is basically an NP-Hard problem, prior knowledge and heuris-
tic about typical properties of architecture are incorporated during the search to reduce search
space [35]. Recent Neural Network architectures such as the AmoebaNet-A (N=6, F=448) [32],
EfficientNet-B7 [36], NASNet-A [37] obtained through NAS have shown promising results in
terms on accuracy and efficiency. However, these benefits come with a huge computational cost.
Such as network obtained by reinforcement learning-based approach [38] required around 450
GPUS for four days to perform a single experiment. Similar case is also true for the evolu-
tionary based approach [34]. At present, EfficientNet which is obtained through evolutionary
process and compound scaling (scaling in width, depth and resolution) method holds rank-1 in
both visual object recognition and object detection [39]. EfficientNet employs a multi-objective
NAS that optimizes network architecture both in terms of accuracy and FLOPS count.

Large Scale Transfer Learning enabled DNNs to achieve superior generalization capabil-
ity even when exposed to a very small number of new training data. Transfer learning is referred
to the situation where some tasks have been learned in one domain and are later exploited to im-
prove generalization capability in another domain [5]. This has been an effective approach in
reducing training time, hyper-parameter search. However, when this approach is leveraged with
a scaled-up neural networks and coupled with a very large dataset the results obtained are out-
standing. Such as, research [40] by Google Known as the Big-Transfer (BIT) demonstrated
that training scaled up ResNet series networks (ResNet-50X1, ResNet-50X3, ResNet-101X3
and ResNet-152X4) on large scale dataset JFT-300M (300 million noisy labeled image dataset),
ImageNet-21K and ILSVRC-2012, and later fine-tuning on dataset CIFAR-10 produced 99.4%
test accuracy, which was the state-of-the-art score at that time. What is more interesting is
that the same trained model when fine-tuned on CIFAR-10 with only 10 examples per class
the network obtained 97.0% accuracy, which is almost comparable to a state-of-the-art score.
Reaching this level of accuracy even with a large network by training from scratch on whole
CIFAR-10 is really difficult and sometimes impossible. Attention-based networks known as the
Transformer [30] and its variants [41,42] which have been dominating in the field of natural lan-
guage processing has also started to take over in visual object recognition task. Again, research
work by Google [43] demonstrated how pre-trained Transformer (with minimal modification in
the original architecture) on large datasets such as ImageNet-21K and Google inhouse dataset
JFT-300M achieves superior performance on ImageNet, CIFAR-100 dataset. All this evidence
implies how powerful large-scale transfer learning is.
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Figure 1.3: Performance of State-of-the-art DNNs in Cifar-100 dataset

Figure 1.4: Neural Architecture Search experiment time
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1.2 Modular Neural Networks

Modern (aforementioned) DNNs and practices are more or less monolithic approaches. That
is, a single large neural network is constructed to solve a complex problem. As the input space
gets bigger and more complex, we scale up the network accordingly to fit our network. In
contrast to such an approach, a Modular Neural Network (MNN) is a special kind of network
that consists of several modules where each module is responsible for learning one sub-task, and
all modules function as one to solve one global task [2]. The global task can be any task that a
neural network usually solves, such as, visual image classification [44, 45], speech recognition
[46, 47], and so on. What makes MNN so interesting is the feature of the gating mechanism
that dynamically selects only relevant specialist modules for the corresponding input. This
allows each specialist module to be very simple while allowing them to learn complex non-
linear relations from dataset collectively [48]. Before we provide a formal definition of Modular
Neural Network let us first consider the key properties of Modular System for a high-level
understanding.

The origin of the neural network was motivated by the Biological Neural Network [2]. The
primary goal was to mimic the functionality of the actual human brain with a view to solving and
modeling real-world complex problems. However, modern DNNs with backpropagation-based
error calculation are not considered biological plausible [49], as we do not learn by backpropa-
gation [50]. Survey [2] has clearly elaborated on some key properties of MNN that have certain
biological plausibility and computational benefits.

First, Specialization property gives MNN the biological plausibility. Indeed, our brain is
modular in different spatial scales [51]. Considering locality, our brain is composed of synapses
which are clustered on dendrites [2, 51]. Considering a global scale, our brain is composed
of several compartments or regions, where each region is responsible for performing different
special tasks [2]. Such as, the visual cortex is responsible for processing color, the shape of
objects, discriminative features of the visual scenes perceived through our eyes [52]. There are
a certain group of neurons in the cortex region responding to important faces, memories, and
taste [53]. Similarly, MNN has certain modules which are encouraged to specialize in certain
concepts or tasks [54].

Second, Fault tolerance. The human brain Cortex when undergoes bilateral damage in a
certain region, only parts of the ability such as sensation ability for color, pattern, or motion are
disrupted. The rest of the abilities still remain functional. This inspires neural network design to
be modular for situations where fault tolerance is very important. In MNN, each of the modules
are specializing in a certain task, and the chances of mistakes by the modules are relatively
smaller than a generalist module. Such as, in classification systems for medical purposes [55]
or in self-driving road cars [56] we need a very accurate and precise neural network that we can
trust.

Third, Competition and Co-operation among modules. This property gives MNN more
stability, reliability, and equilibrium state. Considering our brain, the visual cortex employs
certain connectivity and co-operation among cortex modules to perform the overall task of vision
[52]. In general, competition and cooperation strategy can also be observed in nature, such as
Ants foraging behaviour [57]. In MNN, competition and cooperation is important for reliable
final decisions. Disagreement among modules can result in catastrophic module collapse and
wrong prediction. Various systematic objective functions can be designed which can encourage
cooperation through knowledge sharing [45, 58, 59] among the modules of MNN.

1.2.1 Formulation of Modular Neural Networks

MNN implementation and design can be of various kinds. Such as, modular network with
gating mechanism or Mixture of Experts (MOE) [45, 60–62], different variants of popular en-
semble learning [63–66] and so on. Here we will try to give a formal definition of MNN which
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Figure 1.5: The three main stages for designing MNN by [2]

consists of the basic properties of MNN while ignoring other tiny details and variants.
First Stage in Figure 1.5: Let us consider we have set of dataset D = {di|i = 1, .., N},

where N is the number of samples in that dataset. T = {ti|i = 1, .., N} is the corresponding
ground-truth labels, where ti is associated with di for i = {1, 2, ..., N}. The goal is to partition
the dataset D in to say K subsets based on some policy P . We denote these subsets of dataset
as S = {Dsub1 , ..,DsubK}. Here, partitioning policy P can be any pre-defined heuristics (by
human) or based on some methods such as, clustering or projection of dataset into a latent
space [67], predicting the confusing samples first [45] and so on. Moreover, partitioning can be
done based on class, or simply grouping some set of samples with mixture of all classes in it.

Second Stage in Figure 1.5: Once we construct these K subsets of dataset we need to
construct K expert neural networks say E = {esub1(), .., esubK ()}. E can be set of any neural
networks of any size and types, such as multi-layer perceptron, DCNN and so on. The topol-
ogy of each experts within the set can be different from one another depending on the tasks.
Now, each of the expert esubi will be trained on corresponding subset of data Dsubi , where
i = {1, 2, ...,K}. As mentioned earlier, each of subset Dsubi can either be subset of samples
with all classes or subset of samples with selective classes.

Third Stage: Once we have these trained experts, inference will be performed by the ag-
gregated decision of several experts, which will be selected by a router or gating network R().
Let us assume that a set of experts Er were selected by the router for input d, based on some
selection policy, where Er 2 E . Simplified version of experts output aggregation will be as
follows:

of =
1

|Er|

X

er2Er

er(d) ⇤R(d) (1.4)

The aggregated output is weighted by the router’s confidence. This kind of modular frame-
work is decoupled modular network and is easier to parallelize as opposed to Mixture of Ex-
perts (MoE) [45]. There are also coupled MNNs that gained popularity for efficient parameter
re-usage. The key design principle is to have a few shared intermediate layers among the expert
modules and the router network [67]. This summarizes the preliminary understanding of MNN.

1.2.2 Task or Concept Partitioning for Modular Neural Network

In our earlier section, we stated that the dataset in the MNN framework is partitioned based
on some policy P . The performance and complexity of MNN largely depend on how this data
partitioning policy is carried out. When the number of classes or distinct concepts to learn in a
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dataset is huge, finding the right partitioning of concepts can sometimes be an exhaustive pro-
cess. However, luckily with a few tricks and heuristics, it is possible to systematically partition
the dataset and achieve good performance. Let us briefly illustrate some of the most common
and classical data partitioning methods. Afterwards, we will introduce some modern practices
for data partitioning for MNN.

Class Binarization (CB) is one of the most well-known data partitioning techniques in the
modular learning framework. It can be considered as a special case of ensemble learning, where
each binary module is assigned to learn or distinguish a single concept or class from the rest.
Among different CB techniques, ONE VS ALL (un-ordered binarization) is the most commonly
practiced technique in neural network [62], support vector machine [68], due to its computa-
tional efficiency and performance boost. The technique first appeared in the literature [69]. The
method constructs C binary classifiers in total, where C is the total number of classes. Despite
its simplicity, the method suffers from class imbalance, since the number of positive instances
is smaller compared to the negative instances for each binary classifier. In addition, an ordered
variant of the mentioned CB technique requires only C � 1 classifiers. However, the class im-
balance short-coming was later resolved by the method ONE VS ONE which appeared in the
literature Separate-and-Conquer Rule Learning [70]. A more systematic method for generat-
ing binary classifiers which is known as the Round Robin learning was introduced by the same
author in the literature [61, 71, 72]. Due to its systematic method of creating a binary classi-
fier, it carries more interpretability. The method has demonstrated that a total of C (C � 1)/2
classifiers are constructed using the Round-Robin method. Each of these classifiers is a pair-
wise-classifier, expert on two specific classes or concepts. Thus, the issue of class imbalance no
longer prevails. In addition to that, authors have shown that this approach requires a relatively
fewer amount of data during training as opposed to ONE VS ALL method. However, during the
inference phase, all C (C � 1)/2 classifiers require evaluation. With a view to resolving this
computational issue. A relatively recent literature [60] proposed an efficient prediction algo-
rithm for these ensembles, where pair-wise classifiers can be dynamically chosen without any
drop in accuracy.

Data partitioning techniques discussed in the last paragraph are systematic, carry inter-
pretability. However, these techniques are router agnostic. That is, partition policy does not
take into consideration about the properties and difficulties of the samples according to the
router. For instance, research [45] first evaluates the router network (also known as the general-
ist model in original literature) and performed clustering on the router’s prediction co-variance
matrix to pre-determine the confusing samples class. Next, expert networks are trained on those
confusing set of classes. Each individual expert is a classifier of type CONFUSABLE SUBSET
VS REST, where one part is the CONFUSABLE set of task and the rest ends up with single
DUSTBIN class.

1.3 Structure of Thesis

The thesis is mainly divided into 6 chapters. The first chapter is the Introduction where
preliminaries on DNNs and its recent trends; Modular Neural Networks and their formal def-
initions; and main motivation and contributions are briefly introduced. Chapters 2, 3, and 4
are novel contributions to this thesis. Each of these chapters is self-contained with background
studies, literature review, and detailed experiments. Chapter 5 discusses ongoing open research
studies, future research direction, and several supplementary experiments. Finally, I conclude
this dissertation in Chapter 6.
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Figure 1.6: Structure of Thesis
.

1.4 Motivations

Two main motivations inspired us and will be reflected in this dissertation.
Motivation # 1: It is important to design neural network frameworks that is accurate

and affordable in laboratory-level computers.
If we take a brief look at section 1.1.2 i.e. State-of-the-art practices in Deep Neural Net-

works for the visual object recognition task we can realize that i) Scaling up SOTA DNNs archi-
tecture will give superior classification performance, given that we have a proportional amount
of training data and also powerful hardware at our disposal to train on them. ii) multi-objective
NAS through different search strategies can produce compact, leaner and highly accurate neural
networks. This strategy can bypass the need for scaling up DNNs and making them complex.
However, There is no free lunch. NAS is an extremely expensive procedure and can take days or
more even in a moderate amount of GPUS. iii) Large Scale transfer learning is also expensive.

Thus, our goal is to design a Modular Neural Network framework that can achieve perfor-
mance comparable to the aforementioned SOTA DNNs practices while keeping computational
cost tractable in both the training and testing phase.

Motivation # 2: MNN although introduced two decades ago, its popularity, contribu-
tion, and practice in visual object recognition with current SOTA DNNs are still sparse
and have plenty of opportunities for improvement. As a result, we aim to contribute with
a complete framework for MNN in the context of modern DNNs practice, and also shed
light on several practical and potential research issues and opportunities for MNN.

The first complete framework of MNN with gating and expert modules appeared in the liter-
ature titled Adaptive Mixtures of local Experts [47] for the multi-speaker vowel recognition task.
Later, during the early 90s several modular networks were proposed for the speech and phoneme
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classification task [46, 62, 73]. MNNs for the vision task (such as visual image classification)
was once again popularized by Hinton in the paper [45]. Later, a few researches [67, 74, 75]
explored the image classification and labeling task by leveraging several variants of MNNs.

The dissertation approached with a view to overcoming the sparsity of MNNs practice in
visual image classification task by implementing complete framework based on state-of-the-art
practices.

1.5 Main Contributions

The dissertation is a report on my three years of research on Modular Neural Networks
architecture and framework design for the image classification task. Chapter 2, 3, and 4
present our novel research works and experimental results. Chapter 2 first introduced our novel
MNN architecture known as the Modular Selective Network (MS-Net). Chapter 3 proposed an
Optimized-MS-Net with substantial improvement in parameter usage and classification accu-
racy. Chapter 4 proposed a more generalized version of MS-Net both in terms of design choice
and learning framework. Finally, in Chapter 5 we discussed several open issues such as improv-
ing MS-Net training, unification of variants of MS-Net from Chapters 2, 3, and 4. Chapter 5
also includes several supplementary experiments that can guide us to both a promising direction
and also directions to avoid. Our contributions to each chapter are summarized below:

1.5.1 Chapter 2

The chapter first introduced the novel Modular Neural Network framework known as the
Modular Selective Network or in short MS-Net for the visual multi-class classification task. MS-
Net introduced a novel systematic dataset partitioning technique for each expert neural network
and an effective objective function to train expert neural networks. Summary of contributions
of this chapter are as follows:

• The chapter proposed a novel data partitioning technique for the modular neural network
based on the Round Robin (RR) method. The technique enables decomposition of the
dataset into C subsets of class indices, where C is the total number of classes available in
the dataset.

• The chapter introduced a concept called redundancy variable denoted as ⇢. This variable
allowed for controlled redundancy of any particular class or concept among the set of
aforementioned C subsets. The chapter also provided a detailed theoretical and empirical
study on the effect of redundancy variable ⇢ on MS-Net performance.

• Theoretically demonstrated that the MS-Net required no more than C expert networks to
effectively specialize on the corresponding C subsets of classes.

• The chapter introduced a novel stochastic objective function to optimize the expert neu-
ral networks. The objective function enabled each expert network to specialize in their
designated subset classes, while moderately generalizing on the rest of the classes.

1.5.2 Chapter 3

MS-Net of Chapter 2 achieved accuracy improvement by leveraging the concept of redun-
dancy during inference. The network also achieved comparable performance relative to more
complex monolithic DNNs. Redundancy in MS-Net enabled deployment of several expert net-
works for routers top-n predictions in a systematic and controlled way. One simple question
that we try to address in Chapter 3, i) is it always necessary to evaluate multiple experts for a
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single sample? or in other words, can we reduce the number of expert evaluations per sample
yet preserve modularity and performance comparable to original MS-Net?

The chapter thus performs research on these questions through the following contributions.

• Chapter 3 proposed another novel data partitioning policy for MS-Net based on Inter-
Class Correlation (ICC) information. The ICC was calculated based on the top-n SoftMax
prediction of the router network. Optimized MS-Net (O-MS-Net) of Chapter 3 does not
explicitly advocate redundancy. As a result, fewer experts are required to train within
this framework. These expert networks only specialize in the set of classes or tasks that
are often mistaken or confused by the router network. Through the empirical study, the
chapter substantiates the stability and effectiveness of data partitioning technique.

• Based on the proposed ICC-based subset construction method, the chapter also introduced
an improved inference algorithm that leverages at best only one expert per sample. In the
best-case scenario, no experts are leveraged as the prediction made by the router will
suffice.

1.5.3 Chapter 4

MS-Net of Chapter 2 and Chapter 3 are MNNs with decoupled expert networks, where each
experts are specialized on some certain subtasks. Later, router network is leveraged to direct to
the relevant experts to perform inference for any input datum based on our proposed policies.
Chapter 4 proposed more efficient, generalized and practical version of MS-Net where several
modules are coupled through parameter sharing, hence the name Coupled Modular Neural Net-
work (CMNN). As the name indicates there is no gating or Selective mechanism in CMNN.
Like the MS-Net in Chapter 2 and Chapter 3, proposed generalized version of Chapter 4 has

• several modules or neural networks which are similar to architecture of MS-Net experts.

• input aggregator for several modules or neural networks to perform the final inference.

• Round-Robin training of modules.

However, unlike MS-Net of Chapter 2 and Chapter 3, proposed version of MS-Net of chapter
4 has the following improvements and generalization of features:

• CMNN does not have a selective router network, i.e. there is no gating mechanism to
select relevant expert neural networks for input. Instead of a router, the network has a
shared backbone that provides all the other modules’ intermediate feature maps.

• Modules or networks are not decoupled, rather they are coupled through shared backbone
encouraging primary level parameter re-use. Thus, more efficiency.

• Inference can be performed simply with a single module as opposed to MS-Net where
multiple experts are used for inference. In other words, each module of CMNN is a
stand-alone classifier with boosted performance. This performance boost is due to the
knowledge shared by the collective efforts of several modules.

• However, when leveraging several modules for inference (like MS-Net), instead of aggre-
gating final soft-max prediction produced by the individual modules, feature maps from
individual modules are aggregated to make the final prediction.

• During training online distillation is leveraged as opposed to off-line distillation in MS-
Net and O-MS-Net.
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• Each module of MS-Net and its successor O-MS-Net is an expert neural network. How-
ever, modules (also known as the sub-graph) of the proposed generalized version are not
an expert, rather a strong and boosted generalist network.

Thus the contribution of chapter 4 can be summarized as follows.

• In order to obtain boosted neural networks, a modular-based structural learning frame-
work was proposed for the DCNNs. The framework was constructed based on the concept
of sub-graph/super-graph design. All the sub-graphs are stand-alone neural networks that
are trained by Knowledge Distillation (KD) from the complex super-graph.

• Three variants of super-graph architectures are proposed i.e. different ways of aggregating
the output of all the sub-graphs while training the super-graph. The aggregation methods
are i) concatenation of Global Averaged Pooled (GAP) features from all the sub-graphs,
known as Feature Concatenation (FC) method. ii) averaging the GAP feature maps from
all the sub-graphs known as Feature Averaging (FA) method and lastly iii) Log-SoftMax-
Average (LSA) of output from individual sub-graphs.

• In order to effectively leverage the complex structure of the super-graph and obtain a
strong sub-graph network, the chapter introduced a simple and effective knowledge-
distillation-based Round-Robin training procedure. The effectiveness of this distillation-
based training procedure was substantiated through empirical study, Class Activation
Mapping (CAM) analysis of the sub-graph and super-graph networks.

In summary, MS-Net and its variants proposed in each Chapter is the successor of the pre-
vious Chapter with several incremental improvements, such as boosted accuracy and computa-
tional efficiency.

1.6 Publications

Research works and experiment results of Chapters 2, 3, and 4 have been published in the
following journals and conferences.

Major Journals

1. Chowdhury Md Intisar, Kai Su, and Qiangfu Zhao. ”MS-NET: modular selective net-
work.” International Journal of Machine Learning and Cybernetics (IJMLC) 12.3 (2021):
763-781.

2. Chowdhury Md Intisar, Qiangfu Zhao, Kai Su, and Yong Liu. ”CMNN: Coupled Mod-
ular Neural Network.” IEEE Access 9 (2021): 93871-93891.

Major Conferences

1. Chowdhury Md Intisar, and Qiangfu Zhao. ”A selective modular neural network frame-
work.” 2019 IEEE 10th International Conference on Awareness Science and Technology
(iCAST). IEEE, 2019.

2. Chowdhury Md Intisar, Kai Su, Huitao Wang, and Qiangfu Zhao. ”Mapping DCNN to
a Three Layer Modular Architecture: A Systematic Way for Obtaining Wider and More
Effective Network.” In 2020 IEEE 5th International Conference on Signal and Image
Processing (ICSIP), pp. 856-860. IEEE, 2020.
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3. Chowdhury Md Intisar, Kai Su, Huitao Wang, and Qiangfu Zhao. ”Stabilization of the
Modular Selective Neural Network Model Based on Inter-Class Correlation.” In 2021 5th
IEEE International Conference on Cybernetics (CYBCONF), pp. 050-055. IEEE, 2021.

4. Su, Kai, Chowdhury Md Intisar, Qiangfu Zhao. ”Knowledge Distillation for Real-time
On-Road Risk Detection.” 2020 IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and
Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/Pi-
Com/CBDCom/CyberSciTech). IEEE, 2020.

Non-Major Conferences

1. Su, Kai, Huitao Wang, Chowdhury Md Intisar, Qiangfu Zhao, and Yoichi Tomioka.
”You Only Look at Interested Cells: Real-Time Object Detection Based on Cell-Wise
Segmentation.” In 2020 11th International Conference on Awareness Science and Tech-
nology (iCAST), pp. 1-6. IEEE, 2020.

2. Wang, Huitao, Kai Su, Chowdhury Md Intisar, Qiangfu Zhao, and Yoichi Tomioka.
”Comparison Between Block-Wise Detection and A Modular Selective Approach.” In
2020 11th International Conference on Awareness Science and Technology (iCAST), pp.
1-5. IEEE, 2020.
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Chapter 2

MS-Net: Modular Selective Network

The chapter proposes a modular architecture of Deep Neural Network (DNN) for multi-class
classification task. The architecture consists of two parts, a router network and a set of expert
networks. In this architecture, for a C-class classification problem, we have exactly C experts.
The backbone network for these experts and the router are built with simple and identical DNN
architecture. For each class, the modular network has a certain number ⇢ of expert networks
specializing in that particular class, where ⇢ is called the redundancy rate in this study. We
demonstrate that ⇢ plays a vital role in the performance of the network. Although these experts
are light weight and weak learners alone, together they match the performance of more complex
DNNs. We train the network in two phase wherein, first the router is trained on the whole set of
training data followed by training each expert network enforced by a new stochastic objective
function that facilitates alternative training on a small subset of expert data and the whole set
of data. This alternative training provides an additional form of regularization and avoids over-
fitting the expert network on subset data. During the testing phase, the router dynamically
selects a fixed number of experts for further evaluation of the input datum. The modular nature
and low parameter requirement of the network makes it very suitable in distributed and low
computational environments. Extensive empirical study and theoretical analysis on CIFAR-10,
CIFAR-100 and F-MNIST substantiate the effectiveness and efficiency of our proposed modular
network.

2.1 Introduction

Deep Neural Networks (DNNs) in the last two decades have shown it’s superiority in the
field of visual object recognition [9–11]; image segmentation [14–17]; speech recognition and
translation [76, 77]; natural language processing [78, 79]; reinforcement learning [31, 80, 81];
bio informatics [15]; educations [82, 83]; and so on. Despite their simple layered structures of
neurons and connections, they have outperformed other machine learning models [84]. This
superiority has been achieved due to its ability of complex non-linear mapping from input to
output, automated rich and discriminate features learning as opposed to hand-engineered low-
level features such as GABOR features [85], local binary patterns [86], SIFT [87] and so on.
With the passage of time, we can notice that not only the performance is levitating dramatically,
also networks are getting deeper [25, 88, 89] and wider [26]. As a result, these finer networks
are lacking few important and desirable properties such as interpret-ability or comprehensibil-
ity, practical applicability in low computational devices and so on. In addition, problems such
as catastrophic forgetting with the arrival of new data [90], lack of memory efficiency, have
also started to arise. Fortunately, various novel approaches have been proposed to mitigate
a few of these shortcomings. Recent notable approaches include knowledge distillation from
the cumbersome models to smaller models [45]; compression of knowledge from ensemble to
a single model [91]; pruning of neural networks [92–96]; efficient Neural Architecture Search
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(NAS) [38,93,97]; modular neural network design [46,47,62,73,84]; and so on. There have been
also significant advances in efficient hardware design architectures for DNNs. Intel Corporation
has developed a neural computation stick powered by the Vision Processing Unit (VPU) which
can accelerate the inference phase of complex DNN on a low computational device. Google
has also recently developed small edge Tensor Processing Unit (TPU) for high-performance
machine learning inference. These small ASIC devices for DNN can easily execute deep Con-
volutional Neural Networks (CNN), which make it one of the best alternatives for cloud-based
service. Unfortunately, when it comes to state-of-the-art networks, these ASIC devices still face
performance bottle-neck when executed in real-time scenarios. Thus, it is necessary to devote
time and research on mitigating the above shortcomings of DNN.

In this chapter, we propose a novel modular neural network framework for multi-class clas-
sification, which is inherently simple and easy to implement. The key idea is to leverage a fixed
number of experts, each with parameters as few as possible during the inference phase, while
maintaining accuracy comparable to relatively complex and monolithic state-of-the-art DNNs.
The proposed framework has a close resemblance to the model of the human brain depicted by
Minsky in [98], where he described the human brain as a collection of specialist agents inter-
connected by nerve-bundles. Quoting from [98] We’re born with proto-specialists involved with
hunger, laughter, fear and anger, sleep and sexual activity- and surely many other functions no
one has discovered yet- each based upon a somewhat different architecture and mode of opera-
tion. Analogous to this brain model, our framework consists of a countable set of expert agents
and a router agent. In this literature, we term the expert agents as the expert networks and router
agent as the router network. Each of these expert networks is expert on a specific subtask and
their computation take place independently. Although they are not superior individually for a
whole set of tasks, they outperform each individual network when they execute collectively. The
router network moderates the execution of these expert networks. The concept of the modular
neural network itself is not new. The key concept of modular connectionist goes back to the
mid-1980s in [47]. A number of contributions such as [47, 73, 99, 100] have approached the
task of speech recognition using the modular connectionist theory. A majority of the proposed
modular architectures are equipped with a gating network (analogous to our router network)
and a set of expert networks. Despite the popularity of modular connectionist models during
the 80s, the modular approach in recent DNNs (such as CNN, Recurrent Neural Network(RNN)
and so on) era is relatively sparse, until recently Hinton and Vinyals have introduced the novel
concept of knowledge distillation in neural network [45]. Our proposed modular neural network
framework which we termed as the MS-Net has a close resemblance to [45, 60–62] literature in
the following key points: i) We divide the dataset into a number of subsets/subtasks/concepts.
Afterward, we train a fixed number of expert neural networks on each of these subsets ii) The
router module navigates us to those expert networks for further re-evaluation.

However, in addition to the above points and our previous work [101], the novelty of our
contributions to this research can be summarized as follows:

1. We propose a simple data partitioning technique for the modular neural network based
on the Round Robin method. This technique enables decomposition of the dataset into C

subsets of class indices, where C is the total number of classes available in the dataset.

2. We provide a detailed theoretical and empirical study on effect of redundancy variable ⇢

on the complexity and performance of MS-Net.

3. We theoretically demonstrate that the proposed MS-Net requires no more than C expert
networks to effectively specialize on the corresponding C subsets of classes.

4. We propose a new stochastic objective function to train the expert networks. The proposed
objective function is composed of two terms, wherein the first one facilitates optimizing
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the expert networks on data from its corresponding subset classes, and the second term
optimizes networks on data from the whole set of classes.

2.2 Outline

We arrange the paper in the following order.

1. Section 4.2: Related works on modular neural networks and machine learning models,
ensemble learning and so on.

2. Section 2.4: An overview of the MS-Net architecture.

3. Section 2.5: Detailed discussion on Round-Robin based dataset partition.

4. Section 2.6: Training procedure of expert networks, including algorithm.

5. Section 2.7: Inference phase on MS-Net, including algorithm.

6. Section 4.5: Detailed discussion about the datasets and experiment settings.

7. Section 2.9: Empirical analysis.

8. Section 2.10: Guidance for optimal hyper-parameters selection for the network.

9. Section2.10.2 Effects of knowledge-distillation on MS-Net.

10. Section2.11 Discussion on results and comparison to state-of-the-art DNNs.

11. Section 4.7: Conclusion and possible future works.

2.3 Prior Works

Modular architectures have been famous in neural networks or connectionist models for a
long time. In addition to that, modularity has also been widely implemented in other traditional
machine learning models. This approach has not only boosted the performance of these learn-
ing models, but also introduced virtues such as interpret-ability, training efficiency, distributed
computation, reduction of parameters and so on [62]. In this section, we provide an overview
on the neural networks and other machine learning models which exhibit modular behaviour.

Class Binarization (CB) is one of the most well-known method in the modular frame-
work. It can be considered as a special case of ensemble learning, where each binary module
is assigned to learn or distinguish a single concept or class from the rest. Among different CB
techniques, ONE VS ALL (un-ordered binarization) is the most commonly practiced technique
in neural network [62], support vector machine [68], due to its computational efficiency and
performance boost. The technique first appeared in the literature [69]. The method constructs
C binary classifiers in total, where C is the total number of classes. Despite its simplicity, the
method suffers from class imbalance, since the number of positive instances is smaller com-
pared to the negative instances for each binary classifier. In addition, an ordered variant of
the mentioned CB technique requires only C � 1 classifiers. However, the class imbalance
short-coming was later resolved by the method ONE VS ONE which appeared in the literature
Separate-and-Conquer Rule Learning [70]. A more systematic method for generating binary
classifiers which is known as the Round Robin learning was introduced by the same author in
the literature [61, 71, 72]. Due to its systematic method of creating binary classifier, it carries
more interpret-ability. The method has demonstrated that a total of C (C � 1)/2 classifiers are
constructed using the Round-Robin method. Each of these classifiers is a pair-wise-classifier,
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expert on two specific classes or concepts. Thus, the issue of class imbalance no longer prevails.
In addition to that, authors have shown that this approach requires relatively fewer amount of
data during training as oppose to ONE VS ALL method. However, during the inference phase all
C (C � 1)/2 classifiers require evaluation. With a view to resolving this computational issue, a
relatively recent literature [60] proposed an efficient prediction algorithm for these ensembles,
where pair-wise classifiers can be dynamically chosen without any drop in accuracy.

Knowledge Distillation (KD) is a recent and very popular method for compression of com-
plex and cumbersome DNNs. The method was first proposed by Hinton et al. [45]. This method
is now widely implemented in deep learning research and industrial applications. Studies such
as, [102, 103] have shown that, KD not only allows compression but also enables a relatively
smaller student model to outperform its teacher model. The key idea is to train a student net-
work to mimic the output features or the class probability distributions of the teacher network.
The literature’s [45] contribution was not only limited to KD, the authors have also proposed
a modular network framework that has a very close resemblance to our proposed framework.
The model consists of two main parts, a generalist network and a set of independent expert net-
works. Each of these expert networks is a simple CNN, which is trained on data that are often
confused and misclassified by the generalist network. Thus, each individual expert is classifier
of type CONFUSABLE SUBSET VS ALL, where one part is the CONFUSABLE set of task and
the rest ends up with single DUSTBIN class. This notion implies that the generalist model
needs to be evaluated first to obtain those CONFUSABLE set of classes. In-order to i) retain
knowledge about the non-expert classes ii) avoid over-fitting and iii) solve the class imbalance
problem the author initialized the expert networks with the weights of generalist network. The
literature has shown that, as the number of expert networks increases, the accuracy increases
proportionally. However, there have been no concrete indication and estimation on the number
of experts covering those CONFUSABLE set of classes. In addition, the literature states that
there can be situation where there are no expert networks covering a certain set of classes (since
the generalist network is already confident on its prediction for those certain set of classes).

Recent research [59] titled Deep Mutual Learning (DML) which consists of cohort of student
models resembles modular behavior. The DML enables a number of student models to mutually
learn from one another by minimizing the Kullback Leibler (KL) Divergence between their
predictions, which is a special case of KD [45]. The experiments have shown that the number
of student networks in cohort during training can be extended to more than two. Moreover,
empirical results show that, multiple student neural networks trained by the mutual learning
out-perform single model network trained independently. This learning process has also shown
to outperform the KD method.

Other notable recent research contribution on modular neural network includes the famous
Generative Adversarial Network (GAN) [18], where two networks, discriminator and the gen-
erator network co-operate and compete against each other. There are also different variants of
GAN which comprise of more than two networks [104]. Research [24] proposed modular like
architecture that is build upon the existing state-of-the-art neural networks. In the literature,
they re-configure the model parameters into several parallel branches where each branch is a
stand-alone neural network. They have demonstrated that, the average of the log-probabilities
of multiple parallel branches give better representation as opposed to the single independent
branch.

In this chapter, our modular neural network framework has a very close similarity to the
literature [45, 61, 62], such as presence of gating network and expert networks. But in contrast
to ONE VS ONE and ONE VS ALL, our expert networks are not limited to binary classifiers. We
introduce a simple Round-Robin based systematic data partition technique which enables us to
train each expert on subset of multiple classes. A contrast to note that, unlike ensemble learn-
ing method such as well known AdaBoost [105],Bagging [63], Random Forest [106], Gradient
boosting [107] and so on which requires the collective wisdom of all available classifiers, our
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Figure 2.1: Test Phase version of MS-Net. FE and FC depict Feature Extractor and Fully
Connected layer of neural network respectively. E is the set of all experts dynamically
selected by the router network R. The first block represents the router network which
dynamically selects the expert networks based on its softmax (SM) confidence. The second
part is the pool of expert networks further re-evaluating the router’s top-n most likely
predictions. Finally, the network aggregates the soft-max scores of router and selected
experts.

network does not require to run all the neural network models during inference. The novelty
in our proposed framework is that, the router of the MS-Net extensively reduces the number
of expert network evaluation during the inference phase. Since the partition of dataset is sys-
tematic, i) it gives us prior knowledge on which experts are specialist on which subsets, which
also facilitates us to dynamically chose specific number of expert networks during inference. ii)
it guarantees presence of multiple expert networks for a single concept or class, thus we have
a certain degree of fault tolerance in case other experts or the router network fail to correctly
classify the data.

2.4 Proposed network architecture

The network has two main modules, a router network, and a pool of expert networks. In
the expert network pool there are C expert networks, where C is the total number of classes
available in a given dataset. A simplified image of our modular framework is shown in Figure
2.1 . The expert networks and router network have the same network architecture. A very im-
portant issue is the size of the network. In our experiment, a cumbersome and computationally
expensive network is not desirable. On the contrary, we also do not want the network to face
performance bottle-neck due to simple architecture. There are many remarkable literature relat-
ing to the compact, efficient and accurate Neural Architecture Search (NAS) [35, 38] in recent
times, but this topic is out of scope for this paper. However, the choice of architectures of any
network are dependent on the complexity of the dataset. Considering the computational issue
and memory efficiency, we chose ResNet-20 [25] as the initial backbone network, which is of
one the most minimalist and light weight network to our knowledge. We leverage the Resnet-20
as the backbone of MS-Net to find the optimal hyper-parameters such as, the value for �, top-n
and so on . After we obtain the optimal hyper-parameters through extensive empirical study
with ResNet-20 we train other complex DNNs which are, GoogleNet [88] and MobileNet [108]
as the backbone network of MS-Net.
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Table 2.1: Backbone networks.

Network # of parameters (M) MACs (G)

ResNet-20 [109] 0.269 0.041

MobileNet [108] 2.36 0.33

GoogleNet [88] 6.20 16.04

Figure 2.2: Round Robin partition of the dataset. The left image depicts the sliding of the
window over the classes. In each sliding operation, we have a subset. The sliding operation
continues for C times. The right image illustrates the effect of size of the sliding window
on the redundancy variable ⇢. In the image we fix sliding window size to 4, hence we have
each class occurring in exactly four subsets.

2.5 Round Robin based Data-set Partition with sliding window

In this research, the redundancy rate plays a vital role in the performance of the framework.
We denote the redundancy rate as ⇢. The variable ⇢ has two main interpretations. First, ⇢ is the
size of each subset of class indices. Second, each class index appears exactly in ⇢ subsets of
class indices. In any sense, when ⇢ is larger more expert networks will get the chance to see the
training data from any particular class. This is the reason why we called ⇢ redundancy rate.

In order to prove the above two points let us introduce several notations. First, we use
D = {di|i = 1, .., N} to denote the whole training data set, where N is the total number
of training data; and T = {ti|i = 1, .., N} to denote the set of teacher signals, where ti is
associated with di for i = 1, 2, ..., N . To partition the subsets for training the expert networks,
we leverage a sliding window of length k and stride s. Refer to Figure 2.2 for a graphical
overview of dataset partition. In this figure, we arrange the indices of all classes in a ring-
shaped manner. The sliding window length k is a positive integer less than C, which is the total
number of classes. The redundancy rate ⇢ depends directly on k. Each time when we shift the
sliding window with a stride s over the ring in a Round-Robin fashion (clockwise), we obtain
a subset subi which contains k class indices. We use S = {sub1, sub2, ...} to denote the set of
all class index sets so far obtained. We can prove that, for any value of k and with stride s = 1,
the cardinality of S is always equal to the total number of classes C. Since we have C target
classes, and if we can prove |S| = C, we can conclude that our framework requires no more
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than C experts.
Lemma 1 With stride s = 1 and for any value of k, the cardinality of S is always equivalent

to the total number of class C available in the data-set.

Proof If k is the length of sliding window of any length, by the convolution arithmetic [110]
we can state that the number of class index sets in S as:

|S| =
(C � k)

s
+ k (2.1)

Since we are using the Round Robin rotation, the later term k is added instead of 1. As,
s = 1 , Eq. (2.1) can be re-written as:

|S| = C � k + k

= C
(2.2)

Thus, with stride 1, the total number of class index sets or the number of expert networks is
always equal to the number of classes.

Lemma 2 If the length of sliding window is k and stride s = 1, the index for each class
occurs exactly in k class index sets or in other words, we have exactly k experts related to each
class.

This implies that the redundancy rate ⇢ is determined by the sliding window size k. This
phenomenon also suggests that, k determines the fault tolerance of the proposed MS-Net. As
the value of k increases, we have more experts for each particular class (Note that, the total
number of experts remains constant i.e. C). On the contrary, as we decrease k, the redundancy
rate or the number of experts specializing on that particular class decreases.

Proof Let us assume that the sliding window length is k, where k < C. After the n � th

(n = 0, 1, ..., C � 1) sliding operation, we obtain the following class index sets.

subn+1 = {n mod C + 1, ..., (n+ k � 1) mod C + 1}.

According to the definitions of the sliding window and the class index sets, |subn+1| = k. Since
we are performing Round Robin rotation, we use the modulus operator for indices of each class.

Without loss of generality, we show that the index (n+ k� 1) mod C + 1 exists in exactly
k class index sets. During the Round-Robin partition, we shift each element of subn+1 to the
left of the sliding window with stride s = 1 as depicted in Figure 2.3. Thus, in each sliding
operation we introduce a new class index to the right of the sliding window, which in the case
of subn+1 is (n+ k � 1) mod C + 1. In the same way, for the next sliding operation, we have,

subn+2 = {(n+ 1) mod C + 1, ...,

(n+ k) mod C + 1}.

As we can observe in subn+2, the class index n mod C + 1 ceases to exist and a new index
(n+k) mod C+1 arrives in the right most position. In addition, the index (n+k�1) mod C+1
shifts one position to the left. After the n+ k � 1-th sliding operation, we have,

subn+k = {(n+ k � 1) mod C + 1, ...,

(n+ 2k � 2) mod C + 1}.

The index (n+ k� 1) mod C +1 is now at the left most position. After the n+ k� th sliding
operation, (n+ k � 1) mod C + 1 will no longer exist in the subset subn+k+1 because

subn+k+1 = {(n+ k) mod C + 1, ...,

(n+ 2k � 1) mod C + 1}.
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Figure 2.3: Illustration of Lemma 2. The figure depicts that, with a sliding window length
of k, each (in this figure, the highlighted class index (n + k � 1) mod C + 1 is shown to
occur k times.) class index occurs in exactly k subsets. This also suggests that for each
class in the dataset MS-Net has k expert networks.

It is clear from above equation, (n+ k� 1) mod C + 1 /2 subn+k+1 since after the n+ k� th

sliding operation, the class index (n + k � 1) mod C + 1 slides out of the window. Thus,
(n+ k � 1) mod C + 1 occurs in {subn+1, subn+2, ..., subn+k} or exactly in (n+ k)� (n+
1) + 1 = k � 1 + 1 = k class index sets, which also concludes we have k experts for the class
(n+ k � 1) mod C + 1.

2.6 Training Phase

We perform the training procedure in two steps. First, we train the router network on whole
dataset. Second, we train C experts on the subsets which can be constructed based on the
class index sets obtained in Round-Robin fashion depicted in Section 2.5. We denote the router
network as y = R(.) : D �! T , where D and T are the dataset and the corresponding label
set, respectively. The output of the router network is the softmax defined in Eq. (3.1), where we
obtain the probabilities q1, ..., qC for all C classes. Here, z1, ..., zC are the logit scores for the
corresponding classes.

qi =
exp(zi)P
j exp(zj)

. (2.3)

For our modular network framework, the top-1 score does not require to be strictly accurate.
Since it is obvious that, the likeliness of the correct answer to be in top-n (as n increases) is
higher than top-1, we take into consideration the top-n most probable answers. The role of the
expert networks comes into play in this situation, where a set of experts further re-evaluate the
router’s top-n predictions. Thus, the accuracy of the experts have a significant effect on the MS-
Net performance. Let us assume, we have a set of expert neural networks E = {e(.)1, ..., e(.)C}.
In order to ensure these experts effectively specialize on the subsets, we formulate a stochastic
objective function which we depict in the Eq. (3.2). The objective function optimizes each of the
expert network on its corresponding subset data {Dsubi , Tsubi} using cross entropy loss function,
where Dsubi = {dj 2 D|tj 2 subi^1  j  N} and Tsubi = {tj 2 T |tj 2 subi^1  j  N}
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Figure 2.4: Illustration of the training phase. This figure is the pictorial version of the
Training phase section.

and on the whole set of data {D, T } using KD function, alternatively.

The knowledge is distilled from the router network. Thus the router is the teacher model.
The alteration between two the loss terms in Eqn. 3.2 is controlled by the Bernoulli random
variable X with the probability

Prob(X = 1) = �.

The stochastic nature of the objective function for a certain range of � provides i) balanced
training of networks and ii) better regularization. Again, the cardinality of each class index
set subi is determined by the redundancy variable ⇢. In our experiment we demonstrate the
effectiveness and performance of the framework for ⇢ = 2, 3 and 4. We stress that, during the
inference phase, as we increase ⇢ the number of expert network evaluation increases linearly.
Due to the stochastic training of expert networks on whole dataset using KD (the second part of
Eq. (3.2)), these networks are no longer limited to its corresponding subset data. Rather, each of
the network is an expert on their own subset classes, in the meantime has certain generalization
ability on the data of other classes.

In Eq. (3.2), the first term optimizes the expert network ei() on the classes defined by subi,
weighted by Bernoulli random variable X which takes a value of 1 based on the probability �.
The later term of Eq. (3.2) optimizes the network on the whole dataset weighted by 1�X based
on probability 1� �. Thus, � controls the trade-off between two loss terms in Eq. (3.2).

Loss
kd
ei = X lsubi + (1� X ) KDall (2.4)

where,

lsubi = �

NX

l,t2(Dsubi
,Tsubi )

X

m2subi

�(t,m) log(Pm
ei (l)) (2.5)

and
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KDall = �↵

NX

j=1

CX

k=1

Pei(dj) log
Pei(dj)

PR(dj)

�(1� ↵)
NX

j=1

CX

k=1

�(tj , k) log(P
k
ei(dj))

(2.6)

In the above equations, �(t, k) is the Kronecker delta function defined by

�(t, k) =

(
1, t = k,
0, t 6= k

The hyper-parameter ↵ controls the trade-off between the KD and cross-entropy loss, where
0 < ↵ < 1. The value of ↵ during training depends on the performance of the teacher network.
A high ↵ value puts more weight on the distilled knowledge of teacher network and vice-versa.
In our experiment, we aim to retain as much knowledge as possible from the router network
(here the router network is the teacher network for experts) to the expert networks. In this way,
we ensure that, the expert networks are at-least as good as the router network and if not, better.
Thus in this literature, we fix the ↵ value to 0.8. However, to learn more about the fine tuning of
KD parameters we suggest to refer to the literature [45]. The purpose of leveraging KD in the
loss function Loss

kd
ei is to simply retain all the knowledge of the router network in the experts.

To illustrate the contrast, we construct another objective function depicted in Eq. (2.7) which is
a variant of objective function in Eq. (3.2), but without knowledge distillation (wokd) term. We
retrain all the experts using the loss function Loss

wokd
ei and illustrate performance gain by KD

in the result discussion section.

Loss
wokd
ei = X lsubi + (1� X ) lall (2.7)

where,

lall = �

NX

j=1

CX

k=1

�(tj , k) log(P
k(dj)) (2.8)

Algorithm 4 illustrates the step by step training procedure of the MS-Net. In the Algorithm
4, line 1 through 4 performs the initialization of variable containers. In line 4 we obtain the
subset class indices using the method discussed in section 2.4. Line 6 and 7 load the subset of
training data corresponding to the class index sets. In the Line 9 we randomly sample training
data which consist of all classes. Thus we have two set of training data available, one with
classes exclusively from the class index sets and the other with all available classes. Line 10 and
11 perform the forward pass of the expert network ei(.) for the data from all classes and class
index set respectively. However, the objective function defined in line 12 optimizes either of the
term based on the state of the random variable X . Finally we perform the back-propagation of
the loss term followed by parameter update for expert network. We carry out this procedure for
rest of class index sets and expert networks.

2.7 Inference phase

During the inference phase of MS-Net, the cost or the model complexity is dependent on
two key parameters, namely, n for top-n evaluation; and the redundancy rate ⇢. In the testing
phase, the input is first fed to the router. From the router, we obtain the probability scores for
each class. Since the router is relatively small it is less likely that most of time the top-1 will be
correct. But needless to say, the probability of obtaining a correct answer increases as the value
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Algorithm 1: Training phase of MS-Net depicted in Figure 2.4
Input: Class index sets
Output: C trained expert networks

1 Dataset with all classes: D = {di|i = 1, .., N}

2 Teacher signal: T = {ti|i = 1, .., N}

3 Expert networks: E = {e()i|i = 1, .., C}

4 Class index sets: S = {subi|i = 1, .., C}

5 for i, sub in enumerate(S) do
6 Dsub = {di 2 D|ti 2 subi ^ 1  i  N}

7 Tsub = {ti 2 T |ti 2 subi ^ 1  i  N}

8 for dsub, tsub in enumerate(Dsub, Tsub) do
9 dall, tall = RandomSampler(D, T )

10 o = ei(dall)
11 o

0 = ei(dsub)
12 Lei = X lsubi(o

0
, tsub) + (1� X ) lall(o, tall) .Pr(X = 1) = � and

Pr(X = 0) = 1� �

13 BackPropagation(Lei)
14 UpdateParameter(ei)

15 end
16 end

of n increases. Thus, we select the top-n most likely classes or predictions P = {p1, .., pn}

from the sorted softmax scores q1, .., qn of the router. Next, for each predicted class pi the
router chooses ⇢ experts from the expert pool, where i = {1, .., n}. Thus, as ⇢ increases the
number of expert evaluation for a particular class increases proportionally. For each element or
prediction in P , we select a set of experts using the following equation:

Ē =
[

p2P
{e(.)p 2 E|9sub 2 S ^ p 2 sub} (2.9)

where, E is the set of all experts whose cardinality |E| = C (refer to Lemma 1), and Ē is
a subset of experts available for a certain set of predictions P for a single input datum. In the
proposed MS-Net we will always have C expert neural networks. This is shown by Lemma
1 and Lemma 2. However, during inference we do not leverage all C expert neural networks.
Rather, the expert neural networks are selected based on ⇢ and n. For each input datum, the
router selects n most likely classes for re-checking. For each class, we use ⇢ expert neural
networks to provide information for making the final decision. Thus, MS-Net leverages at-most
(⇢ ⇤ n) and at-least (⇢ + (n � 1)) expert networks during the inference phase. The value of
(⇢ ⇤ n) and (⇢ + (n � 1)) are always smaller than C. In this chapter the maximum value for
⇢ and n are only 4 and 3 respectively. The prediction we obtain from the aggregated softmax
of the set of selected experts Ē for input x is presented in Eq. (2.10). For single input x, the
softmax returns {q1, .., qC}, where each of the element qi is the probability of x belonging to
the class i.

O = smr +
X

e2Ē

sme(x) (2.10)

where, smr and sme are the softmax scores by the router and experts, respectively. Finally,
we take the most likely output label or the predicted class using Eq. (2.11)
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prediction = arg-max
j

(O|qj 2 O, 1  j  C) (2.11)

Algorithm 2: Testing phase of MS-Net
Input: Dataset D
Output: accuracy: Accuracy of MS-Net

1 Empty list for top-n: preds = {}

2 Router network: R(.)
3 Expert networks: E = {ei(.)|i = 1, .., C}

4 Flag dictionary: visited[sub1 : subC ] = False

5 Class index sets: S = {subi|i = 1, .., C}

6 Counter: c = 0
7 for d, t in enumerate(D, T ) do
8 preds = R(d)
9 for p in preds do

10 for i, sub in enumerate(S) do
11 if p 2 in sub & visited[sub] == False then
12 loadExpertModel(ei(.))
13 asm = asm+ softmax(ei(d))
14 . asm is the Average Soft-Max count = count+ 1
15 visited[sub] = True

16 else
17 continue
18 end
19 end
20 prediction = arg-maxi(asm[0 : C])
21 if prediction == t then
22 correct = correct + 1
23 end
24 end
25 accuracy = 100 ⇤ correct

|D|
26 end

Algorithm 3 represents the testing phase of the MS-Net. Line 1 through 6 initialize the
variables and all the networks (router and expert networks). Initially, we pass the input to
the router network in line 8. We select the top-n most probable predictions from the router
whose further re-evaluation start from line 9. Based on the prediction of router we select a
fixed number of expert networks. As discussed in the earlier section, the number of expert
networks for inference is governed by the variable ⇢ and top-n. In the worst case scenario
we will have to evaluate at-most (⇢ ⇤ n) expert networks and in best case (⇢ + (n � 1) expert
networks. We aggregate the softmax of all the expert networks in line 13 and increment the
count (so far evaluated expert networks). After all the expert networks are evaluated we take
the corrected or re-evaluated output based on the highest softmax value in line 20. The final
output is the accuracy of MS-Net. In Line 4 and 15 of the Algorithm 3 the Boolean dictionary
list visited[sub1 : subC ] ensures that we are not evaluating an expert for particular subset more
than once. This optimization comes into play during situation where the index of two or more
predictions of router are consecutive numbers.
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2.8 Experiments

2.8.1 Datasets

To evaluate and validate the effectiveness of the network we leverage three public datasets,
which are CIFAR-10 or C-10 (Canadian Institute For Advanced Research) [111], CIFAR-100 or
C-100 [111], and F-MNIST (Fashion-Modified National Institute of Standards and Technology
database). The CIFAR-10 dataset consists of 60,000 32X32 color images with 10 classes. Each
class has 6,000 images. The dataset is divided into two parts with 50,000 images for training
purposes and 10,000 images for testing [111]. The CIFAR-100 is just like CIFAR-10 but with
100 classes containing 600 images for each class. Among these 600 images for each class, 500
are for training and the rest 100 for testing. Moreover, the 100 classes are grouped into 20
super-classes. The F-MNIST database is a large database of fashion accessories. The database
contains 60,000 training images and 10,000 testing images with 10 classes, where each image
is 28X28 gray-scale image.

For saving the checkpoints for router and the expert networks we leverage the validation
set that we construct from the original training set. The validation set consists of 10% of the
samples from the original training set. The rest 90% from the original training set is leveraged
to train the models.

2.8.2 Experiment settings

We implement MS-Net in the PyTorch framework [112], and perform all the experiments
on single NVIDIA GeForce RTX 2080 GPU. The setting of hyper-parameters during training
slightly vary across different datasets. However, for all datasets, we use Stochastic Gradient
Descent(SGD) with momentum. We set the initial learning rate for all routers and experts to
lr = 0.1 and momentum to 0.9. Hyper-parameters such as batch size, iterations and learning
rate decay scheduler (�) differ across routers, experts and datasets which are shown in the Table
2.2.

Table 2.2: Training hyper-parameters for router and experts

Network Dataset Batch size Epochs Steps

C-10 32 300 50

Router C-100 128 300 50

F-MNIST 64 200 60

C-10 32 30 8

Experts C-100 16 25 8

F-MNIST 64 30 10

2.9 Result Discussion

For the CIFAR-10 and CIFAR-100 dataset, we perform a detailed empirical study on the
effect of variable � (of objective function Eq. (3.2)) on expert networks during the training
phase. We also perform analysis on effect of ⇢ and n during the test phase. In addition, beside
ResNet-20 we also provide performance of MS-Net with two well-known DNNs as backbone.
However, in this chapter we perform all the empirical analysis and hyper-parameters search
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with the backbone ResNet-20. Table 2.3 and 2.4 represent the performance of MS-Net (with
ResNet-20 backbone) for CIFAR-10 and CIFAR-100, respectively.

In Table 2.7 we demonstrate the performance of individual expert network on subset class
indices for dataset CIFAR-10 and F-MNIST. CIFAR-100 has 100 classes which make it dif-
ficult to interpret the performance of all 100 expert networks in a table. The table illustrates
several key points about the MS-Net. Firstly, we observe that each of the expert network per-
forms with remarkable score on its corresponding subset. That is, the performance of ei on its
corresponding subset subi, where i = {1, ..., C}, is very good (highlighted on Table 2.7). The
performance of any expert networks on the whole set or on subsets assigned to other expert net-
works is relatively lower. Secondly, the performance of the Router R on each individual subset
is significantly lower than that of the expert networks. However, when we execute the router
and the expert networks together, they perform very well.

The empirical results for CIFAR-10 and CIFAR-100 suggest that, during training phase,
fixing � to value 0.9 in the objective function tends to give relatively higher scores. To avoid
redundant experiments, we perform rest of the training with � fixed to 0.9. Table 2.5 presents
the performance of MS-Net for F-MNIST.

It is clear that with � = 1 in Eq. (3.2) we simply optimize the expert networks on training
data sampled from subset class indices. On the contrary, with � = 0 we optimize the expert
networks on the dataset comprising of all the available classes, which is analogous to the naive
Ensemble Learning (EL) of DNNs. The optimal value for � has no theoretical bindings , rather
it is dependent on the dataset. Expert networks trained with � in the range 0.3 ⇠ 0.9 give
near optimal classification scores. However, fixing � to either 0 or 1 during training degrades
the performance scores, which implies that we should maintain a certain range for � while
optimizing the proposed loss function. The variable n tells the experts up to how many top-n
most probable prediction of router to further re-evaluate. For all the experiments, we re-evaluate
up-to top-3 of router’s prediction. The � depicts the total number of samples correctly re-
classified by the experts. A positive � value depicts the number of samples expert networks have
correctly re-classified and a negative value for � indicates the number of mis-classifications
by the experts, or in other words, � is the measurement of improvement in accuracy by our
framework relative to the router network. All the scores that we report In this chapter (figures
and tables) are relative to the backbone network, which in this case is the router network. It
is worth noting that, we use the online inference method during the testing. Thus for MS-Net,
we make the prediction for a single observation at each iteration as oppose to batch processing.
Due to modular nature of the framework, the online inference is the simplest implementation.

2.9.1 Performance on CIFAR-10
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Table 2.3: Performance on CIFAR-10 with variable probability distribution �. The back-
bone (ResNet-20) score is 92.68%, and the � score depicts the number of samples correctly
re-classified by MS-Net expert networks (relative to the backbone).

� ⇢ n acc. (%) �

0.3

2
2 93.70 +102

3 93.65 +97

3
2 94.74 +206

3 94.60 +191

4
2 94.80 +212

3 94.85 +217

0.5

2
2 93.65 +97

3 93.66 +98

3
2 94.75 +207

3 94.64 +196

4
2 95.00 +228

3 95.00 +228

0.7

2
2 93.60 +92

3 93.58 +90

3
2 94.83 +215

3 94.75 +207

4
2 95.03 +235

3 95.10 +242

0.9

2
2 93.54 +86

3 93.34 +66

3
2 94.15 +147

3 94.06 +138

4
2 95.38 +270

3 95.30 +261

1.0

2
2 93.30 +52

3 93.09 +41

3
2 93.85 +117

3 93.83 +115

4
2 94.01 +133

3 93.90 +123
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(a) Delta score for CIFAR-10 (b) Delta score for CIFAR-100.

Figure 2.5: The objective function of MS-Net optimized with different probability distri-
bution �. The y-axis depicts the � scores (no. of samples correctly re-classified by experts).
The x-axis represents the index of each data-points. Each point in the graph depicts the
number of samples correctly re-classified (of the ResNet-20 router) by the experts till that
particular data-index.

Figure 2.6: Performance (%) of MS-Net (with Resnet-20 backbone) on CIFAR-10 with
variable distribution for �. It is evident that optimizing the objective function with two
extreme values � = 0 or 1 does not provide with an optimal performance. Probability
distribution ranging from 0.3 to 0.9 tends to give the near optimal performance.

Figure 2.7: Performance (%) of MS-Net on CIFAR-100 (ResNet-20 backbone) with differ-
ent distribution for �. The optimal score for distribution 0.3 to 0.9 holds for CIFAR-100
too.
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Table 2.4: Performance on CIFAR-100 with variable probability distribution of �. The
backbone (ResNet-20) score is 69.58%, and the � score depicts the number of samples
correctly re-classified by MS-Net expert networks (relative to the backbone).

� ⇢ n acc. (%) �

0.3

2
2 71.00 +132

3 70.80 +127

3
2 71.27 +170

3 71.09 +152

4
2 71.06 +150

3 71.06 +150

0.5

2
2 71.07 +148

3 71.05 +142

3
2 71.10 +152

3 71.28 +170

4
2 71.05 +142

3 71.25 +167

0.7

2
2 71.00 +136

3 71.01 +142

3
2 71.03 +144

3 71.11 +152

4
2 71.52 +193

3 71.25 +167

0.9

2
2 70.68 +110

3 71.00 +141

3
2 70.85 +127

3 71.09 +151

4
2 71.61 +203

3 71.28 +170

1.0

2
2 69.73 +15

3 69.72 +14

3
2 69.74 +16

3 69.52 -5

4
2 70.16 +58

3 69.75 +17
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2.9. RESULT DISCUSSION

Table 2.3 represents the performance of MS-Net for CIFAR-10. From our experimental
results, we can deduce the following key observations.

1. As we increase the value of ⇢ the accuracy increases. Refer to Figure 2.8 (d), (e) for
graphical illustration of this phenomenon. However, for the case of CIFAR-10 increasing
top-n beyond the value 2 does not improve the performance further (Figure 2.8 (a), (b)
and (c)).

2. We observe gradual improvement in performance for the expert networks trained with
increasing � which can be confirmed by Figure 2.5 (a) and 2.6. The score gets lowest
when we train the expert networks with � = 1. This phenomenon suggests that train-
ing the expert networks solely on its subset classes (� = 1 i.e. clamping X = 1 in
the objective function during the whole training process) does not improve performance,
rather degrades. This degradation of result occurs due to imbalanced logit value in the last
layer since the expert networks do not encounter any training data from rest of the classes
(classes apart from the subset classes) during the training phase. Training these experts on
the whole set of data alternatively within the optimal range of probability distribution sub-
stantially improve the performance. This method acts as a very effective regularization,
as it prevents the experts from over-fitting on the dataset from subset classes. A graphical
overview of the effect of the probability distribution � is presented in the bar chart Figure
2.6.

3. In our experiment, we obtain the best score (with ResNet-20 backbone) for CIFAR-10
(95.38%) with ⇢ = 4, n = 2 and � = 0.9. The � score with the mentioned parameters is
+270, which means, integration of the expert networks with router further improves the
performance by +2.70%. In other words, the router with a backbone network ResNet-20
has a top-1 accuracy of 92.68% and by integrating the experts for further re-evaluation,
we levitate the top-1 score by +2.70 i.e. 95.38%.

2.9.2 Performance on CIFAR-100

Table 2.4 represents the result for CIFAR-100. For CIFAR-100, the same hyper-parameters
⇢ = 4, n = 2 and � = 0.9 give relatively high score of 71.68%. We can observe from the
Table 2.8 that router’s top-1 performance (ResNet-20) for CIFAR-100 is only 69.58%, and
with the integration of the experts the performance increases by 2.48%. This phenomenon
suggests that as we increase ⇢ and n we are more likely to get higher accuracy. The scores in
Table 2.8 depict that MS-Net has relatively lower score on CIFAR-100 compared to CIFAR-
10 and F-MNIST. This phenomenon is also observable for other state-of-the-art DNN (refer to
Table 2.9). The probable reason for such low performance is mostly due to fewer amount of
data per class in CIFAR-100. While CIFAR-10 has 6000 samples per class, CIFAR-100 has
only 600 samples. This problem has been mitigated to a certain extent recently by leveraging
large scale Transfer Learning (ImageNet pre-trained) [40], learning data augmentation policy
or Auto-Augment (AA) [113], task-specific NAS with Transfer Learning (TL) [36,114], Neural
Architecture through hybrid online TL with multi-objective evolutionary search procedure [115]
and so on. The MS-Net proposed in this study also has a significant improvement in performance
compared to the backbone networks. We may expect further improvement if we introduce TL
and other techniques described above.
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CHAPTER 2. MS-NET: MODULAR SELECTIVE NETWORK

Table 2.5: Performance on F-MNIST with � = 0.9. The backbone (ResNet-20) score for
F-MNIST is 95.22%, and the � score depicts the number of samples correctly re-classified
by MS-Net’s expert networks (relative to the backbone).

Dataset ⇢ n acc. (%) �

FMNIST

2
2 95.80 +60

3 95.96 +74

3
2 95.80 +60

3 96.77 +156

4
2 96.02 +80

3 96.77 +156
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2.9. RESULT DISCUSSION

Table 2.8: Performance of MS-Net for CIFAR-10 (C-10), CIFAR-100 (C-100) and F-
MNIST. The first section depicts the score of backbone networks itself, which also indi-
cates the performance of routers. The second section represents the performance of our
proposed framework (MS-Net) equipped with different backbone networks. We train MS-
Net with different backbone networks with exact same hyper-parameters.

Type Methods C-10 C-100 F-MMNIST # Param. (M)

ResNet-20 [109] 92.68 69.58 95.22 0.269

Backbone GoogleNet [88] 92.93 78.03 93.70 6.2

MobileNet [108] 94.43 68.08 95.00 2.36

MS-Net MS-Net (ResNet-20) 95.38 71.61 96.77 2.95
framework MS-Net (GoogleNet) 97.01 85.05 96.80 55.80

MS-Net (MobileNet) 96.01 78.03 96.80 21.24
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2.9.3 Performance on F-MNIST

Table 2.5 represents the result of MS-Net on F-MNIST. In order to avoid redundant experi-
ment the same hyper-parameters that give optimal score for CIFAR-10 and CIFAR-100 are set
during the training. The network achieves score of 96.77% on F-MNIST test set. The delta
score is +156, which is relatively higher. To our knowledge, the best score for F-MNIST was
96.30%, reported by Wide-ResNet-28-10 with Random Erasing data-augmentation [123]. Thus,
MS-Net achieves a state-of-the-art score for this particular dataset.

2.10 Hyper-parameter recommendation

2.10.1 Optimal value for ⇢, top-n evaluation and �

A very common intuition is that as we increase the n of the router we can score (at best)
as good as the router’s top-n prediction score. In practice, increasing n beyond the value 2
does not substantially improve the performance, however, increasing the value of ⇢ gradually
improves the accuracy of the network. For numerical comparison please refer to the Table
2.3 and 2.4. In addition, Figure 2.6 and 2.7 represent the effect of ⇢ and n for CIFAR-10 and
CIFAR-100 respectively. An interesting observation from the Figure 2.8 is that, as we increase ⇢
the performance levitates dramatically, on the contrary, increasing n does not increase accuracy
with a big margin. This is also the case for the CIFAR-100 dataset. The graphs in Figure 2.9
indicate that, for a fixed value of ⇢, increasing n further increases the accuracy, but not with
a substantial margin. Although in this literature, our experiment is limited to ⇢  4, we can
anticipate that for CIFAR-100 further increasing ⇢ will increase the accuracy. The reason is that
CIFAR-100 is relatively difficult dataset with a large number of classes. Thus, from the above
observations we can conclude with following guidelines for optimal parameters selection.

1. Evaluating till top-2 probable predictions of the router will suffice. This statement is true
at-least for all the dataset we have explored so far.

2. Setting the redundancy rate variable ⇢ to 3 provides with a comparable classification score
for all cases. We know that increasing ⇢ implies that we have more expert networks for
each class. Thus, in situation where we have enough resource budgets, we can increase
the variable ⇢ beyond 3 for more redundant expert networks and accuracy.

3. During the training phase the variable � of objective function (Eqn. (3.2)) plays a crucial
role in performance. Although there are no fixed value or theoretical bindings for �, we
recommend to avoid fixing � to two extreme values i.e. 0 and 1. Optimizing the expert
networks keeping � in range of 0.3 to 0.9 tend to give optimal score.

Thus, to keep the experiments simple, the training of MS-Net (implementation with dif-
ferent backbone networks) in the rest of the paper will confine to the above mentioned hyper-
parameters.
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CHAPTER 2. MS-NET: MODULAR SELECTIVE NETWORK

Table 2.10: Contrast of performance: The table represents the score differences for MS-
Net (ResNet-20 backbone) trained with and without the KD loss.

Dataset KD Acc.(%) Impr. delta (%)

CIFAR-10 YES 95.38 1.06

NO 94.32

CIFAR-100 YES 72.00 0.65

NO 71.35

FMNIST YES 96.77 1.21

NO 95.56

2.10.2 Effect of Knowledge Distillation

KD plays a vital role in training the expert networks. Earlier in the section 2.6 we proposed
a slight variant of objective function (Eq. (3.2)) where we replace the KD term with simple cross
entropy loss term (Eq. (2.7)). We train MS-Net on CIFAR-10, CIFAR-100 and F-MNIST lever-
aging the loss Losswokd depicted in Eq. (2.7). The hyper-parameters are exactly identical to the
experiments done with KD loss. The results show that, expert networks of MS-Net optimized
without KD loss drops in accuracy with a considerable margin. Figure 2.11 (a), (b) and (c) and
Table 2.10 depict the contrast between the � scores of MS-Net trained with and without the KD
loss for CIFAR-10, CIFAR-100 and F-MNIST respectively. In Figure 2.10 and Table 2.10 we
show the contrast for the classification accuracy. Using distillation in the loss term assists the
expert networks in retaining the existing knowledge of the router. This also ensures the experts
are at-least as good as the router network in the worst case scenario. In other words, the expert
networks are less prone to mis-classify samples that are already correctly classified by the router
networks.

2.11 Comparison to state-of-the-art results

In this section we provide a brief comparison of MS-Net to the performance of existing
state-of-the-art DNNs on CIFAR-10, CIFAR-100 and F-MNIST dataset. For comparison we
provide two tables, Table 2.8 and Table 2.9 , wherein, first table depicts the performance of
backbone networks (routers) and MS-Net frameworks (with different backbone networks), and
second table represents the performance of state-of-the-art DNNs. For the ease of comparison
and illustration, we divide the benchmark Table 2.9 into two types, where Type-I represents
the network with large number of parameters, Type-II with parameters and computational re-
source almost similar to our proposed framework. The Type-II networks also include several
architectures learned by using computationally expensive methods (e.g. evolutionary search and
reinforcement learning) equipped with transfer learning (TL). For bench-marking, we refer to
the site [124].

We can observe from the Table 2.8 that, MS-Net framework elevates the classification ac-
curacy with a significant margin relative to the backbone router. Comparing MS-Net frame-
work with Type-I networks from Table 2.9, the network actually performs with a neck-and-neck
scores. However, compared to Type-II networks (approximately similar parameter counts) MS-
Net performs with high score relative to most of the networks. The highest score that we obtain
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so far is with the backbone network GoogleNet, leveraging at most 55.80M parameters (Ta-
ble 2.8). This high score and setup undeniably come with a trade-off of more computational
resources and parameter budget.

Most recently, researchers have been trying to find the best structure using evolutionary al-
gorithms, reinforcement learning algorithms, and so on, and some very interesting results have
been obtained [37, 38, 93, 115]. For example, for the database CIFAR-10, the best performance
obtained so far is 98.9% (refer to Type-II section of Table 2.9) and the model’s training parame-
ter number is 64M [36]. However, based on the ‘no free lunch theorem’ [125], an optimal model
is usually fine-tuned for some specific database, and the model may not be useful for solving
other problems. Even for the same problem with more observed data, to preserve the best per-
formance, we have to use a very expensive process to re-design the model. On the other hand,
the MS-Net structure proposed in this study is very simple, and can leverage the performance
of any existing state-of-the-art models by increasing the inference cost slightly. In this sense,
MS-Net can be a good starting point for solving various problems.

2.12 Summary

In this chapter, we have proposed a modular neural network architecture termed as the MS-
Net (Modular Redundant Network). For a C-class classification problem, the network consisted
of a router network and C expert networks. In summary, the key idea of the research has been to
further re-evaluate the top-n most probable predictions of the router by leveraging these expert
networks. To effectively train these expert networks we have proposed a stochastic objective
function equipped with the knowledge distillation technique that facilitates alternative training
on a subset of expert data and whole set of data. This alternative training has been regulated
by clamping a Bernoulli random variable to each of loss function term. We have constructed
the subsets of data systematically by Round-Robin fashion. As a result, it has provided us
with a mean to control the redundancy of each class in the set of subsets, which have also
allowed us to know which expert network is a specialist on which subset (thus we have more
interpret-ability). We have shown that, with a very limited parameter budget and simple DNN as
backbone, our network has achieved performance comparable or sometimes equivalent to more
complex DNNs.
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Chapter 3

Optimized MS-Net: Stabilization of the
MS-Net Based on Inter-Class
Correlation

The chapter presents the successor of Chapter-2 MS-Net with several optimization imple-
mentation. In our original proposal in chapter 2, MS-Net is constructed based on a Round-
Robin dataset partition with controlled redundancy among the subsets of classes. In this chapter,
we propose a novel way for reducing the inference cost by performing Inter-Class-Correlation
(ICC) analysis through calculating the joint-probability of appearance of top-2 pair of classes
in router’s prediction. Next, we construct subset of classes on the most frequently occurring
class pairs from the ICC and train experts on those subsets. We do not explicitly enforce redun-
dancy in these subsets, thus during inference, only one expert is leveraged per sample. In best
case scenario we do not require experts as the predictions of router will suffice. We validate
O-MS-Net on four popular datasets which are CIFAR-10, CIFAR-100, FMNIST and SVHN.
With parameter budget of only 2.41M and ResNet-110 backbone O-MS-Net achieves 96.90%,
76.50%, 96.90% and 98.01% on CIFAR-10, CIFAR-100, FMNIST and SVHN respectively,
which is comparable to the original MS-Net performance.

3.1 Introduction

Modular design in machine learning is an effective and common approach to boost the per-
formance. Most common approaches to achieve modularity in learning systems are Random
forest [106], Bagging [63], Boosting [107] and so on. These approaches are collectively known
as the Ensemble [126]. While ensemble techniques with any backbone learning model have
shown promising results and good generalization capability they are quite expensive when im-
plemented with neural network backbone. Modern neural networks such as Convolutional Neu-
ral Networks (CNNs) are very deep and can be computationally prohibitive when leveraged in
a large ensemble system. Moreover, the performance boost that we actually obtain through the
ensemble does not provide us with a optimum trade-off between accuracy and computational re-
sources. To overcome these limitations design properties such as sub-task partitioned based neu-
ral networks [127], adaptive neural network inference [128], gating mechanism [47,73,99,100]
and so on were proposed. These techniques moderately reduce the number of neural networks to
be evaluated with substantially less compromise in performance as oppose to full-blown ensem-
ble method. Modern modular neural networks are not only limited to the modular design, these
networks are also now equipped with powerful transfer-learning techniques such as, Knowledge
Distillation (KD) [45], co-distillation [129], mutual distillation [59] and so on. These sort of
transfer learning assist each of the module of the whole system to take advantage of each other
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during the learning phase.
With all these virtues in mind we have proposed MS-Net discussed in the previous chapter.

MS-Net is a modular neural network framework with two primary module known as router and
experts. These design router/expert paradigm is not new and have been previously observed in
various remarkable literature’s [45, 47, 73, 99, 100]. However, MS-Net provides with two key
contributions which make it suitable for any backbone network.

• A systematic and efficient way to partition the whole task into set of sub-task, where
there is a limited redundancy of any class in those set of sub-task. This redundancy can be
controlled explicitly by the redundancy variable ⇢ based on the computational availability.

• stochastic loss function optimizes the expert networks to perform with high accuracy on
corresponding subset of classes while generalizing moderately of rest of the classes. The
stochastic nature of the loss function acts as a powerful regularizer for the expert network.

Keeping these key properties of MS-Net in mind we propose an improvement for MS-Net.
Below we present the contributions that address the limitations of MS-Net in this chapter:

1. The experts of MS-Net does not take into consideration about router’s weakness and
strength. This implies that, there are expert networks being evaluated for samples or
input which are very easy and could have been easily handled by the router (i.e. visually
easy samples). The chapter proposed an optimization technique for original MS-Net that
addresses this issue and significantly reduces the number of expert network evaluation
while maintaining performance close to the original MS-Net.

2. Another issue that the chapter tries to address, is it always desirable to evaluate multiple
expert network for a single prediction? Addressing this question is important since it
is intuitive that having multiple expert networks for a single class can sometimes have
negative effects, such as conflict or disagreement among the experts. Needless to say,
there are regularizer or objective function which allows co-learning (such as distillation
[129]) among the experts to overcome this limitation. We would like to address this issue
in our future work. However, in this chapter we tackle this issue by performing Inter-
Class-Correlation (ICC) analysis through calculating the joint-probability of appearance
of top-n classes in router’s prediction. In this study we limit the value of n to 2 and 3.
For the proposed optimized MS-Net, for every single input sample we evaluate only one
expert network and achieve performance comparable to the original MS-Net.

3.2 Prior arts

In this section we will give a brief overview on MS-Net, and related modular neural net-
works. The concept of modular neural network architecture was introduced around two decades
ago in literature [47] known as the mixture-of-experts. The architecture consisted of a tree like
structure with a gating network at non-terminal node and set of experts sitting in leaf node.
Modular architecture with gating mechanism for phonetic classification can also be observed
in [73, 99, 100].

Modular network topology was popular and often practiced for speech recognition. How-
ever, modular network design approach for visual object recognition was relatively sparse until
recently Hinton [45] proposed a special type of network ensemble which can learn to classify
fine-grained classes. These fine-grained classes are often mis-classified by the generalist model
(also known as the router network). In addition, unlike the mixture-of-expert the proposed
framework can be trained in parallel.

A large and generalized modular framework was proposed in [130]. The network employed
thousands of feed-forward sub-networks (or experts) with a trainable gating network. The output
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of gating network is sparse as it select few experts during the inference. The network was
primarily evaluated for language modeling and machine translation task. However, the design
of the network allowed to be adopted for other domain as well.

Modular Selective Network or MS-Net [127] is also a modular network with router and
expert module. The framework leverages the expert network to reevaluate routers top-n predic-
tion. In the original literature the value of n varied from 2 to 3. The MS-Net framework first
partitions the dataset into C number of subsets. Each of the subsets has a controlled overlapping
of classes. This overlapping degree is termed as the redundancy rate ⇢ which can be explicitly
controlled before training and testing as well . As we increase the value of ⇢ the occurrence of
classes also increases proportionally in each of the subset. For each subset of classes the frame-
work has an expert network (thus a total of C expert networks). During the inference phase, it is
possible to control how many expert we want to deploy for the routers top-n predicted classes.
Thus, during inference the prediction is always performed through expert networks weighted by
routers confidence. The literature [127] provides a detailed ablation study on the effects of ⇢,
routers top-n and knowledge distillation on performance.

3.3 Optimizing MS-Net

3.3.1 Recapping MS-Net Data Partitioning Technique

In the original MS-Net the construction of subset of classes required no prior knowledge
about router strength or weakness, thus it did not require router evaluation. The dataset or the
concept was partitioned systematically in to several subsets through the Round-Robin method.
A redundancy variable known as the ⇢ was introduced which explicitly controlled the redun-
dancy of any particular class among the constructed subsets. In other words, as ⇢ increased
the occurrence of dataset from any particular class will increased proportionally. MNNs imple-
mented based on this data partitioning technique showed boosted accuracy.

Now, this approach is very suitable in situation where we do not have prior knowledge about
the i) difficulty of dataset; ii) strength and weakness of the router network. In this chapter we
put emphasis on the aforementioned factors and try to reduce number of expert networks during
the inference phase, while maintaining performance comparable to the original MS-Net.

3.3.2 Key Idea

In case of Optimized MS-Net (O-MS-Net) we first evaluate the router to obtain a prior
knowledge about the difficulty of dataset. This approach is not new. Research [45] have actually
first leveraged the router (known as the generalist in original literature) to get prior knowledge
about the confusable set of classes in dataset. The literature performed K-Means clustering on
the co-variance matrix of the predictions of the generalist model. Later, several neural networks
were trained on the obtained clusters of classes to obtain specialists. HydraNet [67] which is a
special type of MNN with shared backbone leveraged the clustering technique to group visually
similar classes, and assigned each group to some particular CNN branches.

Our approach is similar to prior research in a sense that, we try to group classes based on
the visual similarity. However, we do not perform any clustering or projection of data on latent
space. Clustering although is simple to implement and visually assuring it has several issues.
First, deciding the number of clusters is difficult, and sometimes it can lead to imbalanced
class partitioning. Cluster based partitioning can also welcome redundancy which we do not
encourage in the current implementation motivation.

In our partitioning implementation we leverage simple softmax information from the router
network to construct consusable subset of classes. Softmax is leveraged mainly for the multi-
class problem where each class is assigned certain confidence (probability) based on the output
logits of neural networks for the corresponding input. The class with the highest confidence is
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assumed to be the correct answer. What about classes with second highest confidence or the
third? Research [45] has demonstrated that the softmax output of any neural network is a very
valuable piece of information. Softmax output of neural network implicitly depicts the visual
similarity among the classes. Let us visually demonstrate this simple statement through the
Figure 3.1. Lets consider the left example from the Figure 3.1. The ground truth label for this
image is dog. However, the network predicted the image as cat with a 31% confidence, and
with 29% the network assumes it a dog. Truth be told, both cat and dog actually shares various
visual similarities which have been reflected in the networks softmax output. In this case, the
network no only convey us the information about visual similarities, it also show its weakness in
classifying this visually similar pair of classes. Thus, we can use this simple and valuable piece
of information to construct pair-wise subset of dataset. This approach only considers those tuple
of classes which are visually confusing to router. This summarize our key idea of optimization.

Figure 3.1: Illustration of softmax output for two instances from CIFAR-10 dataset. We
leverage ResNet-20 to generate the softmax output

3.3.3 Inter-Class-Correlation based Data Partition

The section provides detailed procedure and formal explanation of the aforementioned data
partition technique. We term this technique as Inter-Class-Correlation (ICC) based data parti-
tion.

Let us assume the router network as y = R(.) : D �! T , where D = {di|i = 1, ..., N} is the
dataset and T = {ti|i = 1, ..., N} is the corresponding teacher signal. Here N is the number of
training data. The output of the router network R(.) is the softmax defined in Eq. (3.1), where
we obtain the probabilities say Q = {q1, ..., qC} for all C classes as follows.

qi =
exp(zi)P
j exp(zj)

. (3.1)

Here, Z = {z1, ..., zC} are the logit scores for the corresponding classes. The output Q is
assumed to be sorted and we take the corresponding sorted argument P = {p1, .., pC}. These
sorted arguments are the prediction class by the router ordered based on the confidence. Now
our assumption is that, for any input, the top-2 (we consider n = 2 for top-n in this formal
definition) predictions based on the softmax confidence will be visually similar or have close
resemblance. Our target is to construct subsets of tuples from top-2 classes which are frequently
mistaken or confused by the router network. To obtain these subsets we will leverage a set
of validation data say Dval and corresponding ground truth Tval (data that the router has not
encountered during the training phase). During validation, for any input d we count the co-
occurrence of the top-2 predictions p1 and p2 to ultimately get Pr((p1, p2)|(d, t)), which depicts
the join-probability of appearance of top-2 predictions p1, p2 by the router R() given ground
truth t associated with the input datum d. Here, p1 and p2 can take any value from {1, .., C},
where C is the number of classes available in the dataset. We also assume that either of p1 or p2
is a correct answer. Conveniently, we can also extend the ICC for the top-2 to top-3 by simply
extending the calculation to Pr((p1, p2, p3)|(d, t)). In the case of considering top-3 predictions,
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we have higher probabilities of having correct answers in the chosen tuples. Moreover, for large
datasets with large number of classes the number of confusable classes can be huge. In such
case the straight forward solution is to increase n of the top-n while calculating the ICC. In this
way, co-occurrence of more confusing classes (more than two) can be encoded. It should be
noted that the more we increase the value of top-n the more classes the experts should focus on.
Besides, the proportion of correct answer in the top-n varies with the difficulty of the dataset
(refer to Table 3.4)

Once we complete calculating the join-probability of appearance of top-2 predictions for the
validation set we construct the square matrix J of join-probability which takes shape of C,C.
The matrix takes the following form:

J =

0

BBBBB@

c1,1 c1,2 · · · c1,C

c2,1 c2,2 · · · c2,C

...
...

. . .
...

cC,1 cC,2 · · · cC,C

1

CCCCCA

Each cell ci,j in J is basically the join-probability (un-normalised) of class-index i and j

co-occurring together in router’s top-2 prediction for input t. More formally, each cell ci,j =
Pr(i, j|(d, t)).

For ease of understanding let us take a visual example of matrix J . In Figure 3.2 we illustrate
J for 3 well-known public dataset, CIFAR-10, FMNIST and SVHN produced by 3 variants of
ResNet networks i.e. ResNet-8, 20 and 110. We will discuss more about these dataset in the
later section. For now, let us discuss the un-normalized version of J calculated based on the
output of ResNet-8 for CIFAR-10 dataset. From Figure 3.2 (a) it is quite easy to deduce that
class index pair {3, 5} are frequently mistaken, i.e. class index 3 is often confused with class
index 5 and vice-versa. If we refer to Table 3.1 we can see that the class index pairs are cat, dog.
This observation actually supports our discussion in previous section 3.3.2. We depict some of
the confusable pairs of classes (for top-2) such as {{3, 5}, {2, 3}, {2, 4}, {1, 9}..} that we obtain
from Figure 3.2 (a), (b) or (c) in the Table 3.2. We also include instances of top-3 frequently co-
occurring tuples of classes in the same Table 3.2. Such as, {{{3, 4, 5}, {2, 3, 5}, {3, 5, 7}..}. A
very important observation from Figure 3.2 is that, the confusable class pairs for any dataset are
consistent regardless of network architecture. The only contrast is that, bigger networks make
less mistakes relative to the smaller one on those confusable pair of classes. This is an implicit
indication that ICC based data partition is consistent and can be reliably leveraged to obtain the
subset classes.

Once we have these confusable pairs of classes, we prepare a set of subsets say, S =
{sub1, sub2, .., subK}. Here K is the total number of subsets we consider. Each element of
S is a confusable pair (in case of top-2) or tuple of class indexes (in case of top-3) arranged in
sorted order (sorted based on their count of join probabilities). The cardinality of the element of
S depends on the value of n of top-n (refer to Table 3.2). In addition, there are no theoretical
support and definite lower or upper bound for the value of K, i.e. how many experts to con-
struct. This value is set based on factors such as, the number of difficult classes within a dataset,
amount of computational resource at our disposal during training and so on. In the latter section
of the chapter we provide some detailed insights on the value of k.

3.3.4 Training Phase

For router and expert networks, original MS-Net leverages ResNet-20, GoogleNet and Mo-
bileNet as the backbone. However, GoogleNet and MobileNet can be over-parameterized, com-
plex and heavy for O-MS-Net expert networks (expert networks in this research are specialist
for only two class and generalist on rest). Thus, in this research we leverage ResNet-8 (the light-
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(a) ResNet-8, C-10 (b) ResNet-20, C-10 (c) ResNet-110, C-10

(d) ResNet-8, FMNIST (e) ResNet-20, FMNIST (f) ResNet-110, FMNIST

(g) ResNet-8, SVHN (h) ResNet-20, SVHN (i) ResNet-110, SVHN

Figure 3.2: Illustration of matrix J in un-normalized form. Each cell depicts the number
of sample often confused for the corresponding class index. Each heatmap also has a color
indicator depicting approximation on total number of samples mistaken by the router
on validation set. For example, approximately 200 sample from class {3, 5} by Router
ResNet-8 is confused with each other.
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Table 3.1: Classes of CIFAR-10 dataset.

Class Index Class Name

0 airplane

1 automobile

2 bird

3 cat

4 deer

5 dog

6 frog

7 horse

8 ship

9 truck

Table 3.2: Few instances of confusable pair of class index for CIFAR-10 dataset.

top-n subset ID. class pairs

sub1 {3, 5}

sub2 {2, 3}

2 sub3 {2, 4}

sub4 {1, 9}

sub5 {0, 8}

sub1 {3, 4, 5}

sub2 {2, 3, 5}

3 sub3 {3, 5, 7}

sub4 {1, 8, 9}

sub5 {4, 5, 7}

Table 3.3: Performance of experts on the corresponding confusable subset classes for
CIFAR-10 dataset. The backbone network in this Table is ResNet-8. Each row depicts
the performance of expert (trained on that corresponding subsets) on subset classes, all
classes, and performance of router on the corresponding subset classes

subsets expert on sub. (%) expert on all (%) router. on sub. (%)

sub1 85.70 80.90 79.15

sub2 91.6 78.17 79.10

sub3 93.5 79.61 86.55

sub4 95.50 79.96 93.70

sub5 95.55 81.96 91.25

50



3.3. OPTIMIZING MS-NET

est ResNet with only 8 layers), ResNet-20 and ResNet-110 as they are very lightweight in terms
of parameters and faster to train. We train ResNet-8 and ResNet-110 from scratch for the router
network using the exact same hyper-parameters specified in the original MS-Net for ResNet-20
(we will discuss more about hyper-parameters in the later section of this chapter). We do not
require training ResNet-20 as we use the same router model from previous study with MS-Net.

For expert networks training, we perform sequential training like the original MS-Net. We
train each expert networks by optimizing the stochastic loss function that we have proposed for
MS-Net in previous chapter. The number of expert is exactly equal to the number of subsets
we construct. Thus, we have total K experts denoted as E = {e1, e2, .., eK}. We depict the
simplified version of loss function as follows:

Lossei = X CEsubi + (1� X ) KDall (3.2)

In the Eqn. 3.2, X is a Bernoulli random variable which takes a value of 1 with probability
Prob(X = 1). In this study we set Prob(X = 1) = 0.5, which implies that experts are trained
with subset ground-truth labels for 50% of time and in rest of time trained on the softened labels
provided by the teacher network. As our previous study for MS-Net, here the teacher network is
the router network. An important question that can rise is, how many experts should we have in
the framework? For original MS-Net the answer is straight-forward, as Lemma 1 suggest the
total number of expert network is always equal to the number of classes available in the dataset.
Thus, to keep comparison and our study consistent we keep the number of expert almost similar
to the original MS-Net. However, it is important to note that, increasing the number of experts
in this proposed optimization has two effects, i) the more experts we have, the more confusing
classes we are likely to correct; ii) increased training time.

3.3.5 Test Phase

During the test phase, for the original MS-Net the number of expert evaluation depends on
the variable ⇢ and top-n. The framework has exactly ⇢ experts for each class (the parameter ⇢ is
tun-able based on computational availability). Thus, during inference if we consider the top-n
of the router, we will require ⇢ * n experts for one sample every time. This can get exhaustive
and redundant for samples that are relatively easier for router. O-MS-Net only evaluates one
expert neural network per sample. On top of that, O-MS-Net does not leverage experts for
sample that can be easily classified by the router. We have already shown in section 3.3.3 how
we can leverage the join-probability of co-occurrence of confusing classes to know for which
samples experts should be deployed.

We provide a simple test phase procedure for O-MS-Net as follows. We assume the input
sample is d.

– Step #1 Router R(.) takes the input sample d and provide with it top-2 (or top-3 depend-
ing on dataset and implementation) most likely predictions p1 and p2.

– Step # 2 Check if the top-2 predictions p1 and p2 occur exactly in same order in our set
of subsets S.

– Step # 3 If the predictions do not occur in subsets S we assume router is confident and
return its top-1 prediction.

– Step # 4 Else if the prediction occurs in similar order in the S we load the relevant expert
for that pair of confusing classes.

– Step # 5 We return the arg-max of the output of the expert say e(.) weighted by the
routers confidence as e(d) ⇤R(d).

51



CHAPTER 3. OPTIMIZED MS-NET: STABILIZATION OF THE MS-NET BASED ON INTER-CLASS
CORRELATION

Algorithm 3: Testing phase of Optimized-MS-Net (evaluating up to top-2 of routers predic-
tion)

Input: Dataset
Output: accuracy

1 Router network: R(.)
2 Routers top-2 class prediction: pred1, pred2
3 set of expert networks: E = {ei(.)|i = 1, ..,K}

4 subsets by the ICC method S = {subi(.)|i = 1, ..,K}

5 Boolean: routerIsConfident = True
6 Counter: correct = 0
7 for d, t in enumerate(D, T ) do
8 pred1, pred2 = R(d)
9 for i, sub in enumerate(S) do

10 if (pred1 & pred2 )2 in sub then
11 set routerIsConfident = False
12 end
13 if routerIsConfident == True then
14 if pred1 == t then
15 correct = correct + 1
16 end
17 else
18 end
19 # We will go to expert if router prediction does not suffice
20 for i, sub in enumerate(S) do
21 if sub \ {pred1, pred2} 6= ; then
22 prede = ei(d)
23 end
24 end
25 if prede == t then
26 correct = correct + 1
27 end
28 end
29 end
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Table 3.4: Top-1, 2 and 3 performance of Routers for CIFAR-10, CIFAR-100, FMNIST,
and SVHN

Router Dataset top-1 (%) top-2 (%) top-3 (%)

C-10 88.52 96.01 98.28

ResNet-8 C-100 60.5 73.74 80.28

F-MNIST 94.23 98.58 99.60

SVHN 93.98 97.75 98.64

C-10 92.68 97.20 98.73

ResNet-20 C-100 69.58 79.13 84.83

F-MNIST 95.22 98.92 99.76

SVHN 96.45 98.54 99.17

C-10 93.15 97.58 99.00

ResNet-110 C-100 71.44 82.13 87.21

F-MNIST 95.50 98.83 99.70

SVHN 96.70 98.57 99.50

3.4 Test Phase Algorithm

We provide more formal definition of test-phase in the Algorithm 3. Line 1-6 we initialize
the data-loader, construct subset by ICC, initialize expert networks and so on. In line 8 we take
the top-2 probable prediction by the router i.e. {pred1, pred2}. Next, we check if these top-2
predictions are in our confusing class subsets. If they exist in the confusing class subsets we
simply assume router R(.) is not confident. In the line 10 we check if R(.) is confident or not,
if confident, we take its prediction as our final prediction, thus we do not require to go to expert
any longer. However, if Router is not confident we further go to line 19. The loop in line 20�21
checks if our pre-constructed subset have non-empty intersection with the top-2 predictions of
router. If we have non-empty intersection we perform inference through that corresponding
expert network.

3.5 Experiments

3.5.1 Datasets

Datasets that we leverage to evaluate O-MS-Net are CIFAR-10, CIFAR-100, Fashion MNIST
(FMNIST) and SVHN (The Street View House Numbers) . The CIFAR-10 dataset has 60,000
32X32 color images. 50,000 of them are for training and rest for the testing. CIFAR-100 also
consists of 60,000 color images with 100 classes and 600 images per class. 50,000 of them are
for training and rest 10,000 for the testing. The partition for train and test have been officially
set by the original dataset provider [111]. FMNIST dataset is also moderately large dataset with
fashion accessories consisting of 60,000 training images and 10,000 test images. The images
of FMNIST are 28X28 gray-scale image. SVHN is a color image dataset with 73,257 training
images and 26,032 test images provided officially. Each image is 32X32 in shape.

SVHN is relatively new dataset that we leverage for the first time in this dissertation to
evaluate O-MS-Net along side aforementioned datasets. CIFAR-10 and CIFAR-100 are visually
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Table 3.5: Performance of Optimized MS-Net on CIFAR-10 based on the top-2 ICC analy-
sis. The router and expert networks architecture are identical. The � column depicts the
improvement overall network achieves with corresponding experts relative to the router
network, i.e. the number of samples correctly re-classified by the experts.

Backbone only router (%) # of experts with expert (%) � (%)

ResNet-8
88.52

3 89.50 +0.98

5 90.00 +1.48

10 92.20 +3.68

ResNet-20
92.68

3 93.93 +1.25

5 95.30 +2.62

10 95.90 +3.22

ResNet-110
93.15

3 94.83 +1.68

5 95.54 +2.39

10 96.90 +3.75

Table 3.6: Performance of Optimized MS-Net on CIFAR-10 based on the top-3 ICC analy-
sis.

Backbone # of experts with expert (%) � (%)

ResNet-8

3 90.88 +2.36

5 91.36 +2.84

10 93.61 +5.09

ResNet-20

3 94.30 +1.62

5 95.80 +3.12

10 96.46 +3.78

ResNet-110

3 95.14 +1.99

5 95.77 +2.62

10 96.95 +3.80
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Table 3.7: Performance of Optimized MS-Net on CIFAR-100 based on the top-2 ICC anal-
ysis..

Backbone only router (%) # of experts with expert (%) � (%)

ResNet-8 60.50

10 62.93 +2.43

30 65.55 +5.05

50 66.04 +5.54

ResNet-20 69.58

10 71.15 +1.57

30 72.50 +2.92

50 72.81 +3.23

ResNet-110 71.44

10 73.50 +2.06

30 75.94 +4.50

50 76.50 +5.06

Table 3.8: Performance of Optimized MS-Net on CIFAR-100 based on the top-3 ICC anal-
ysis.

Backbone # of experts with expert (%) � (%)

ResNet-8

10 63.01 +2.51

30 68.46 +7.96

50 68.95 +8.45

ResNet-20

10 72.70 +3.12

30 74.71 +5.13

50 74.90 +5.32

ResNet-110

10 74.42 +2.98

30 76.95 +5.51

50 77.30 +5.86
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Table 3.9: Performance of Optimized MS-Net on FMNIST based on the top-2 ICC analy-
sis..

Backbone only router (%) # of experts with expert (%) �(%)

ResNet-8
94.23

3 95.10 +0.87

5 95.50 +1.27

10 95.80 +1.57

ResNet-20
95.22

3 95.70 +0.48

5 96.20 +0.98

10 96.88 +1.66

ResNet-110
95.50

3 96.10 +0.60

5 96.45 +0.95

10 96.75 +1.25

Table 3.10: Performance of Optimized MS-Net on FMNIST based on the top-3 ICC analy-
sis.

Backbone # of experts with expert (%) � (%)

ResNet-8

3 95.52 +1.29

5 95.72 +1.49

10 96.31 +2.08

ResNet-20

3 96.21 +0.99

5 96.44 +1.22

10 96.98 +1.76

ResNet-110

3 96.24 +0.74

5 96.51 +1.01

10 97.00 +1.78
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Table 3.11: Performance of Optimized MS-Net on SVHN.

Backbone only router (%) # of experts with expert (%) � (%)

ResNet-8
94.00

3 95.20 +1.20

5 95.70 +1.70

10 96.10 +2.10

ResNet-20
96.45

3 97.30 +0.85

5 97.70 +1.25

10 97.80 +1.35

ResNet-110
96.70

3 97.30 +0.6

5 97.70 +1.00

10 98.01 +1.31

very interpretable and reliable to understand the confusing set of classes and performance of
experts on them. However, additionally we choose SVHN for several reasons. First, SVHN is a
challenging dataset due to existence of several noise in the images. It is basically a digit dataset
similar to MNIST. However, unlike MNIST, SVHN is real world digit images extracted from
the house numbers in Google Street View images [131] which consists of several noise (such as
blurry and incomplete images). Second, images of this dataset have several distraction. A single
image can consist of several overlapping digits or multiple digits in a single frame. This requires
classifiers to be pin-point accurate. The noise and distraction in this dataset make prediction for
neural network challenging. Evaluating performance of experts for such sample can be ideal
and a proper measurement of performance.

The aforementioned dataset mostly comes with official training and test set. Thus, to save
the checkpoints we segregate the original training dataset into two parts with 10% for validation
and checkpoint saving and rest for training experts and routers.

3.5.2 Implementation and Hyper-parameter Settings

We implement the networks of O-MS-Net in the PyTorch framework [112], and perform all
the experiments on single NVIDIA GeForce RTX 2080 GPU. The setting of hyper-parameters
such as, batch size, number of epochs and so on during training slightly vary across different
datasets. However they have been kept consistent and similar to the original MS-Net. We
optimize all the networks (router and experts) through Stochastic Gradient Descent(SGD) with
momentum. We set the initial learning rate for all routers to 0.1. The rest of hyper-parameter
for routers for different dataset is depicted in the Table 3.12.

Training Expert Network is slightly different than router. We do not encourage training
the experts from scratch. One of the major reason for not doing so, is to avoid over-fitting the
experts on the subset data. Each of subset is composed on two confusable set of classes. Thus,
subset is composed of very few dataset and over-fitting on these dataset will be easier for these
experts. So we adopt the solution for avoiding over-fitting from original literature [45]. The
solution is to simply initialize expert networks with the weights of router network. In this way,
we can preserve general knowledge about all the classes for the experts. The next step is exactly
similar to the naive-fine-tuning task. We fine-tune each layers of expert networks with different
learning rate. Such as, the initial learning rate for the first two CNN ResNet blocks (applicable
to any ResNet networks) of experts is set to 0.0001. The rest of CNN blocks and fully connected
layers have initial learning rate of 0.1. The goal was to preserve features learned by the earlier
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layer (since they are learned from all class data). However, it is also possible to freeze earlier
layers to preserve global features provided by Router. We have not tried it, but we anticipate
similar performance. The rest of hyper-parameters are depicted in the Table 3.12. Training and
testing of all the routers and experts are performed in single run. Performing multiple run of
experiments will definitely provide us with more reliable measure of performance and better
weights with substantially increased cost in training time.

Table 3.12: Training hyper-parameters for router and experts

Network Dataset Batch size Epochs Steps

C-10 32 300 50

Router C-100 128 300 50

F-MNIST 64 200 60

SVHN 64 300 80

C-10 32 30 8

Experts C-100 16 25 8

F-MNIST 64 30 10

SVHN 16 25 8

3.6 Results Discussion

Performance of router is crucial for MS-Net and also O-MS-Net. We train all routers from
scratch with similar hyper-parameters (depicted in Table 3.12) with single run. Table 3.4 de-
picts the top-1 and top-2 performance of the router. Intuitions suggest, the top-1 is lower bound
performance that we can at least expect from O-MS-Net (or MS-Net too) and the top-2 is the
upper bound performance that we anticipate to achieve. An important and key observation about
router is that, the top-1 accuracy is fluctuating (actually improving) slightly as architecture get
more complex (refer to Table 3.4). However, the top-2 predictions are relatively consistent irre-
spective of the architecture and its complexity. On top of that, the heat-map for Joint-probability
of occurrence of top-2 confusing class-pairs are consistent irrespective of training setup, archi-
tecture or any hyper-parameter. This suggests the top-1 performance of router does not need
to be strictly consistent. The performance will suffice as long as top-2 is consistent, which is
indeed consistent for all four datasets that we explored so far.

3.6.1 Performance on CIFAR10 and CIFAR100

We study O-MS-Net for CIFAR-10 with three different variants of ResNet network as we
depict in the Table 3.10. The number of experts we test the whole network with are 3, 5 an 10
for CIFAR-10 dataset. As we increase the number of experts we have consistent improvement in
performance, which is expected. Because, as we increase number of experts we are considering
more confusable set of classes to correct. The performance of the experts are significantly
better than their router network on these confusable set of classes which we illustrate in Table
3.3. Moreover, Table 3.3 also demonstrates that these experts are not over-fit on the subset data,
rather they have generalized quite well on all classes. This credit goes to the proposed stochastic
objective function in the original MS-Net. Adding more experts requires more training time,
while pushing O-MS-Net to close the gap with the upper bound target, that is the top-2 accuracy
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of router. The best score we obtain so far is 96.90%with the ResNet-110 backbone with 10
experts. The total number of parameters is therefore 18.7M during training time. However,
during inference only 1 expert is leveraged which make the total parameter count 3.4M per
sample.

CIFAR-100 dataset is challenging for both MS-Net and O-MS-Net. One of the primary
reason is large number of classes, yet with very few samples per class. The router itself suf-
fers to achieve good top-2 performance (refer to Table 3.4). However, O-MS-Net still exhibits
consistent and positive � score as we increase experts. As number of classes is large we report
scores starting from 10 experts and eventually increasing number of experts to 30. Table 3.7
represents the performance of O-MS-Net on CIFAR-100.

3.6.2 Performance on FMNIST and SVHN

Performance of O-MS-Net on FMNIST and SVHN is quite consistent like the CIFAR-10.
As we leverage more expert networks, the performance gap gets closer to the upper bound (i.e.
top-2)for respective datasets (refer to Table 3.4). Consistent performance on all these dataset
convinces us that O-MS-Net data partition policy and performance of experts are effective as
we increase more experts (thus covering more confusable set of classes). However, O-MS-Net
is more favourable and tractable in-terms of training time where number of classes is relatively
smaller. With increased number classes it might be ideal to increase the value of n for top-n
evaluation or in order words to consider more confusable set of classes. This procedure will
of-course require more training time as experts will increase.

3.6.3 Visual Demonstration and Discussion on Confusing Samples

The section demonstrates and discusses on visually difficult samples corrected by the expert
networks. It is indeed desirable to understand what set of samples are mis-classified by the
router and why?, and also samples that are corrected by the experts. This will assist in finding
out the classification performance (subjective judgment) of experts for samples for the fine-
grained confusable set of classes. We depict few cherry-picked samples corrected by experts for
CIFAR-10 and SVHN in Figure 3.3. The depicted samples in the aforementioned figures are
also the anticipated top-1 error by the router. Three human raters were involved in picking the
samples depicted in Figure 3.3. The samples are color coded, where green color indicates that
human raters agree with the expert networks prediction. Red indicates that human raters are not
sure about the prediction (i.e. confusing for human raters). The first word for every sample is
the expert prediction and the second word is routers prediction.
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Figure 3.3: Instances of samples from CIFAR-10 and SVHN that are corrected by the
expert networks. First word for every sample is the expert prediction and second word is
the routers prediction.
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3.6.4 Comparison with MS-Net

Table 3.13 depict the performance comparison for MS-Net and O-MS-Net. MS-Net in chap-
ter 2 performed detailed empirical and ablation study with ResNet-20 backbone. To make the
comparison comparable and fair we depict all the scores of MS-Net with ResNet-20 with re-
dundancy value ⇢ = {2, 3, 4} and keeping top-n fixed to 2. For the O-MS-Net of this chapter
we present scores with ResNet-20 backbone consisting of varying number of expert networks,
i.e. varying the value of K. The value of K i.e. the number of experts for CIFAR-10, FMNIST
are k = {3, 5, 10}. CIFAR-100 has more number of classes thus we present results of O-MS-
Net with value of K = {10, 30, 50}. Training parameters thus varies greatly for CIFAR-100
dataset. Since CIFAR-100 training parameters can vary we depict the value within the bracket in
the column Train. Params.. However, during inference irrespective of number of experts in our
disposal we leverage one experts (or no experts at best case scenario when router is confident for
that certain datum). Comparing MS-Net and O-MS-Net head to head is not straight-forward due
to several contrast. To keep our comparison simple let us focus on number of parameters lever-
aged (or number of experts) per sample. In the following points we summarize our observation
from Table 3.13.

• O-MS-Net is substantially better than original MS-Net when we consider cost of inference
per sample. Let us consider an example from the Table 3.13. We take the lightest MS-Net
(first row) and lightest O-MS-Net (sixth row) and compare head to head. Performance
of both model is very close for CIFAR-10 and FMNIST. The contrast in parameter usage
and experts per sample is significant.

• MS-Net provides with systematic control and freedom to adjust redundancy. This can be
helpful for situation where we need explicit redundancy for fault tolerance. O-MS-Net
does not guarantee redundancy in our current implementation.

• Training cost of MS-Net is very high as it requires to train C experts within whole frame-
work. O-MS-Net suffices with K experts, where K can be must smaller than C yet
perform substantially better than MS-Net.

• With O-MS-Net we can afford to leverage much more complex DNNs as the backbone yet
keep parameter count tractable and lower than MS-Net during both training and testing
(Refer to row 3, 8 and 9 for comparison).

3.7 Training Setting Recommendations for O-MS-Net

There are several hyper-parameters that can substantially effect the performance of O-MS-
Net. Proposed O-MS-Net is quite sensitive to hyper-parameter settings as it consists of training
several decoupled expert networks and router network. Irrespective of hyper-parameter settings
we can always anticipate positive � relative to the baseline router network. However, for better
and consistent performance in this section we provide several training guideline for O-MS-Net.

3.7.1 ICC with top-2 and top-3

An obvious intuition is that as we evaluate more top-n of the router we can correct more
samples through experts. The empirical result reflects this intuition. We visualize this effect of
top-2 versus top-3 performance (with varying backbone networks) for CIFAR-10, CIFAR-100
and FMNIST datasets in Figure 3.4. In original MS-Net as we increase value of n (of top-n) we
required evaluating more expert neural networks. For O-MS-Net the number of expert neural
network to be evaluated during the inference phase remains the same despite the increment in
the value of n.
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(a) ResNet-8, C-10 (b) ResNet-8, C-100, (c) ResNet-8, FMNIST, top-2

(d) ResNet-20, C-10, top-2 (e) ResNet-20, C-100, top-2 (f) ResNet-20, FMNIST, top-2

(g) ResNet-110, C-10, top-2 (h) ResNet-110, C-100, top-2 (i) ResNet-110, FMNIST, top-2

Figure 3.4: Delta score of O-MS-Net when experts are constructed based on top-2 and
top-3 based ICC. When we train experts based on ICC of routers top-2 the experts gain
specialization on two classes and generalizes on rest of classes (refer to the loss function
equation 3.2). When we increase to top-3 of router each experts specializes on three set of
classes (based on ICC of top-3 triplet of classes). Since top-3 based ICC cover more class
we get slightly better improvement in performance.
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(a) ResNet-8, C-10, top-2 based ICC (b) ResNet-20, C-10, top-2 based ICC (c) ResNet-110, C-10, top-2 based ICC

(d) ResNet-8, C-10, top-3 based ICC (e) ResNet-20, C-10, top-3 based ICC (f) ResNet-110, C-10, top-3 based ICC

(g) ResNet-8, C-100, top-2 based ICC (h) ResNet-20, C-100, top-2 based ICC(i) ResNet-110, C-100, top-2 based
ICC

(j) ResNet-8, C-100, top-3 based ICC (k) ResNet-20, C-100, top-3 based ICC(l) ResNet-110, C-100, top-3 based
ICC

(m) ResNet-8, FMNIST, top-2 based
ICC

(n) ResNet-20, FMNIST, top-2 based
ICC

(o) ResNet-110, FMNIST, top-2 based
ICC

(p) ResNet-8, FMNIST, top-3 based
ICC

(q) ResNet-20, FMNIST, top-3 based
ICC

(r) ResNet-110, FMNIST, top-3 based
ICC

Figure 3.5: Statistics on number of times each experts invoked during the inference phase
on test data of CIFAR-10, 100 and FMNIST. The bar-charts are sorted based on the most
frequently leveraged experts. It is clear from the figure that the dominant experts (fre-
quently picked by the router) are for the difficult classes. The figures depict frequency of
experts for both top-2 and top-3 cases.

64



3.7. TRAINING SETTING RECOMMENDATIONS FOR O-MS-NET

Increasing the value of n effects the size of subsets (of class indexes) on which the experts
are trained on. Such as, with value of n = 2 and n = 3 the cardinality of subset of class indexes
would be 2 and 3 respectively. This implies that as we increase value of n the experts requires
focusing on more classes. As experts focuses on more classes the framework basically do not
require too many experts to cover the confusable set of classes (since any expert itself covers
more classes). We can depict this effect from the Figure 3.5. We observe that the number of
expert networks leveraged by the top-2 version O-MS-Net is relatively higher than the top-3
version.

The effect of value n in terms of performance depends on the difficulty of dataset. Let us
refer to Figure 3.4 where we can observe that the delta gap between top-2 and top-3 performance
(for ResNet-8, 20, 110) for CIFAR-10 and FMNIST dataset is relatively smaller than CIFAR-
100 dataset. This indicates that increasing top-n for difficult dataset like CIFAR-100 provides
considerable performance gain. Thus we can recommend to consider evaluating more top-n for
dataset with large number of classes, as smaller value of n for weak router will not suffice.

A question still remain, how should we decide the value of top-n when we do not have
prior knowledge on dataset? Should we keep on training O-MS-Net with increasing value of
n till we reach the bottleneck performance ? Then again, the obtained value of n in such case
would be dataset specific, and needless to say very expensive. A simple approach to decide
would be, to consider the accuracy gap between O-MS-Net-top-n0 and router top-(n0

� 1). If
the top-(n0

�1) accuracy of router is considerably comparable (or better than) to the O-MS-Net
top-n0 (also for original MS-Net) performance we can decide to limit the value to n

0. This is
because, since router’s top-(n0

� 1) performance is already better or equal to the O-MS-Net
top-n0 performance increasing value of n0 will not provide any significant performance.

To understand this let us consider a simple example with the help of Table 3.4, 3.10 and
3.6. From Table 3.4 we find that the top-2 and top-3 performance of router (with Resnet-20
backbone) for CIFAR-10 dastaset are 97.20 % and 98.73 % respectively. The top-2 and top-3
version of O-MS-Net with same router and ten experts obtain accuracy of 95.90 % and 96.46
%. It is clear that O-MS-Net top-3 version has a slight performance gap with the router top-2
accuracy. This is actually a clear indication to limit value of n0 to 3. In addition to that it should
be noted that increasing n increases the cardinality of subset of classes index (obtained through
ICC). As cardinality of respective subset increases expert will require focusing on more classes.

3.7.2 Value of K

Value of K is a very important hyper-parameter for O-MS-Net. Unlike the original MS-Net
there is no theoretical upper or lower bound for the value of K. Thus our prior knowledge or
heuristics were leveraged when deciding the value of K. Such as, for dataset with small number
of classes (CIFAR-10, FMNIST, SVHN) we leverage at-most 10 experts. On the other hand
for dataset like CIFAR-100 we leverage at-most 50 experts. It is intuitional that as we leverage
more experts we cover more confusable set of classes, that is increment of delta in positive
direction. However, for dataset with smaller number of classes the effect of positive delta starts
to fade after we increase number of experts (i.e. value of k) beyond 5. This implies that for
these particular dataset we might not require more than 5 experts in total.

For visual assurance let us refer to Figure 3.5. In Figure 3.5 the orange bar depicts the
frequency of each experts leveraged for the test set. The blue bar is the ICC of the classes
(classes on which corresponding experts were trained) based on validation set. We know based
on the ICC on validation set we construct experts on corresponding classes. The Figure shows
that ICC is fairly a good approximation of classes that requires experts. However, there are
certain experts that are leveraged considerably more than we anticipated (refer to sudden spikes
in the bar-chart of Figure 3.5). This is one of the key reason on why upper and lower bound of
K is difficult to fix.
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Table 3.14: Performance of Optimized MS-Net on CIFAR-100 with small K.

Backbone router (%) # of experts with expert (%) � %

ResNet-8 60.50

1 61.05 +0.55

3 62.00 +1.50

5 62.53 +2.02

ResNet-20 69.58

1 69.80 +0.22

3 70.43 +0.85

5 71.16 +1.58

ResNet-110 71.44

1 72.00 +0.56

3 72.80 +1.36

5 73.22 +1.78

3.7.3 Weight Initialization for Expert Networks

Weight initialization is an important design choice for O-MS-Net and MS-Net. Weight
initialization is used to define the initial values for the parameters in neural network models
prior to training the models on a dataset. Current DNNs are so heavily parameterized and
stochastic in nature that, the initial weight choice can make 1-1.5% performance difference
in every single run. Thus, making the obtained results very difficult and uncertain to repeat.
Moreover a proper weight initialization can assists in reaching optimum results in less number
of epochs with certain degree of guarantee. Several heuristics are incorporated while initializing
weights, such as, sampling Gaussian or uniformly distributed values for weights. Best practice is
actually initializing neural networks with pre-trained weights if exists (for vision task generally
ImageNet trained weights are used).

In this research we recommend initializing expert neural networks with routers weights (as-
suming that both router and expert networks have identical topology). This approach has been
recommended earlier in literature [45]. Also it is not recommended to perform random initial-
ization of expert networks when subset cardinality is smaller. Expert networks are trained on
very small proportion of original dataset (few subset of classes). The amount of dataset are rel-
atively smaller which are very easy to over-fit on. Moreover with such small amount of data the
network does not learn good feature representation that can provide with proper generalization.
Initializing with routers weight greatly assists in prevailing knowledge (originally known as the
dark knowledge, a term coined by Prof. Hinton) on the rest of the class, and also provides with
better feature preservation in the earlier layers. It is worth mentioning that, randomization of
weight might be welcoming in situation where we have sufficient subset data to train the experts.

In order to demonstrate the above discussion we train O-MS-Net with random weight ini-
tialization for expert networks. We basically leverage Xavier Weight Initialization of Pytorch
implementation [132]. We depict the performance of O-MS-Net with random initialization in
Table 3.15, 3.16 and 3.17 for CIFAR-10, CIFAR-100 and FMNIST datasets respectively. The re-
sults in these tables are a clear indicator that randomly initialized expert networks when trained
on subset data fails to maintain consistency for all the datasets. Below we highlight few impor-
tant key points:

• Randomly initialized expert networks are well-suited in situation when there are
sufficient amount of samples per class. Such as for CIFAR 10 (refer to Table 3.15) and
FMNIST (refer to Table 3.17). These dataset have sufficient samples per class, as a result
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Table 3.15: Performance of Optimized MS-Net on CIFAR-10 with expert networks trained
through random initialization.

Backbone only router (%) # of experts with expert (%) � (%)

ResNet-8
88.52

3 89.10 +0.52

5 90.10 +1.58

10 92.05 +3.53

ResNet-20
92.68

3 94.00 +1.32

5 95.20 +2.52

10 95.70 +3.02

ResNet-110
93.15

3 94.94 +1.79

5 95.30 +2.15

10 96.50 +3.35

Table 3.16: Performance of Optimized MS-Net on CIFAR-100 with expert networks
trained through random initialization.

Backbone only router (%) # of experts with expert (%) � (%)

ResNet-8 60.50

10 59.38 -1.12

30 61.59 +1.09

50 64.74 +4.24

ResNet-20 69.58

10 67.57 -2.01

30 68.91 -0.67

50 71.22 +1.64

ResNet-110 71.44

10 67.32 -4.12

30 68.34 -3.1

50 69.87 -1.57
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Table 3.17: Performance of Optimized MS-Net on FMNIST with expert networks trained
through random initialization.

Backbone only router (%) # of experts with expert (%) �(%)

ResNet-8
94.23

3 95.25 +1.02

5 95.57 +1.34

10 95.76 +1.53

ResNet-20
95.22

3 95.68 +0.46

5 95.90 +0.68

10 96.35 +1.13

ResNet-110
95.50

3 96.15 +0.65

5 96.30 +0.80

10 96.54 +1.04

experts optimized with stochastic loss function achieve performance comparable to the
router initialized networks. For both of these datasets the � value is positive consistently.

• CIFAR-100 is already a challenging dataset due to large number of visually similar classes
(many classes and sub-classes among them, such as, different types of vehicles, trees,
Reptiles and so on). Moreover, number of samples per class is substantially low which
does not help experts to learn rich features. This difficulty is easily depictable from Table
3.16, where � value is negative for most of the combination of experts. Thus, situation
where number of sampler per class is sparse, it is recommended to i) initialize with
router’s weight (or any pre-trained weights such as, ImageNet); and ii) put more
weight in KD terms in loss function when training the experts (recommended weight
↵ = 0.8).

3.8 Summary

The chapter proposed optimization for MS-Net (Modular Selective Network). Proposed
optimization significantly reduces the number of expert required to match original MS-Net per-
formance. The key idea was to leverage the softmax property of neural networks, whose top-n
probability distribution exhibits certain degree of visual similarity and proximity. The impor-
tance of this information have been first demonstrated first in literature [45]. We leverage and
augment such information to calculate the join-probability of co-occurrence of certain visually
similar or confusing class pairs from the routers performance on validation set. More impor-
tantly we demonstrate that this join-probability is very stable irrespective of network architec-
ture, thus ensuring partition stability. From the calculated join-probability matrix we construct
subset of datatset for the expert networks. Such data partitioning technique for the MS-Net is
much more systematic, efficient, straight-forward and easy to implement as oppose to cluster-
ing based data partitioning. Performance of O-MS-Net through this data partitioning technique
required leveraging at most one expert network during the inference. In the best case scenario
O-MS-Net does not need any expert as the prediction of router will suffice. Empirical study on
four well-known dataset demonstrated its superiority in-terms of parameter counts and perfor-
mance over original MS-Net.

68



Chapter 4

CMNN: Coupled Modular Neural
Network

The chapter proposes a generalized version of MS-Net where instead of having several de-
coupled modules like MS-Net, modules are coupled through shared backbone network. Thus,
all the modules shares same intermediate feature maps through the backbone network. Thus the
network architecture is named Coupled Modular Neural Network or CMNN.

A CMNN is a network consisting of � closely coupled sub-networks, where � is termed
as the branching factor in this paper. We call the whole network a super-graph and each sub-
network a sub-graph. Each sub-graph is a stand-alone neural network and shares a common
block with other sub-graphs. To effectively leverage the super-graph we propose a simple but
easy-to-implement Round-Robin-based learning algorithm. Each training iteration contains two
phases. In the first phase, we choose a sub-graph in a Round-Robin fashion and train it using
knowledge of the super-graph (distillation). In the second phase, we fine-tune the super-graph
based on the updated sub-graphs. This algorithm produces a different copy of the super-graph at
each iteration which acts as an improved teacher network for the sub-graph; and a different copy
of one of the sub-graphs which functions as a new building block for the super-graph. To validate
and test CMNN and the proposed algorithm, we conduct experiments on CIFAR-10, CIFAR-
100, and a private On-Road-Risk (ORR) dataset. Empirical results on all these three datasets
indicate that we not only obtain a strong sub-graph network, the learning framework can also
produce strong ensemble performance which substantiates the diversity introduced throughout
the learning framework.

4.1 Introduction

Since the introduction of Convolutional Neural Networks (CNNs) [7, 8] development and
progress in computer vision tasks such as, object recognition [9–11]; object detection and lo-
calization [12, 13]; semantic image segmentation [14–17]; image generation [18–20]; neural
style transfer [21, 22] and so on have boosted dramatically. CNNs have gained high preference
and success mainly due to its ability to automatically learn both discriminative and constructive
features; and can approximate complex input-output mappings through the convolutional and
pooling layers using back-propagation algorithm [6]. In the very beginning CNNs (such as [23])
were simple and consisted of limited hyper-parameters and factors such as number of layers,
number of channels per layer, and Sigmoid or Hyperbolic Tangent non-linearity. However,
gradually these networks have evolved and started to get more complex, deeper, and accurate
with the introduction of the template such as fixed filter size with a large number of channels or
feature maps [24], skip connection between non-consecutive layers [25], multi-path or branch
design [26] and so on. Well-known and most practiced networks such as ResNet, DenseNet,
GoogleNet, and so on leverage the aforementioned templates. These networks have served as a
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very strong backbone networks for object detection [12,133], classification task [25,27], and so
on.

However to achieve near-human level accuracy usually it is preferred to leverage the deeper
and heavier version of these networks such as ResNet-1202, DenseNet-BC (L=190, k=40). In
practice, these networks are too heavy to be deployed on mobile devices with limited compu-
tational resources. Needless to say, the lighter and shallow version of these networks can be
leveraged in mobile devices but with a compromise for accuracy. Hence there is a growing
need to make neural networks smaller and faster without hampering or compromising perfor-
mance. Recently there have been several approaches to make neural networks affordable in
low computational devices, such as i) making them compact and smaller by model compression
techniques [45,59,91]; ii) different regularization techniques to assist smaller networks to gener-
alize well [134,135]; iii) automated Neural Architecture Search (NAS) through different search
procedures [36–38, 136]; iv) redundant parameter pruning [92]; and v) modular or block-like
design of neural networks [84, 100].

Among all these approaches recently model compression through Knowledge Distillation
(KD) has gained increased popularity due to its implementation simplicity and availability of
strong teacher networks. Automated Machine Learning (AutoML) techniques such as network
pruning and NAS are also widely practiced now and have shown promising results. In fact
most of the recent state-of-the-art neural network architectures such as the AmoebaNet-A (N=6,
F=448) [32], EfficientNet-B7 [36], NASNet-A [37] obtained through NAS have outperformed
hand-crafted neural networks in terms on accuracy and efficiency. However, these benefits come
with a huge computational cost. Such as network obtained by reinforcement learning-based
approach [38] required around 450 GPUS for four days to perform a single experiment. Similar
case is also applicable for the evolutionary based approach [34]. Moreover, the topology of
these networks are evolved for task or dataset specific purpose. It is simply very expensive to
perform such a large-scale network topology search and training thousands of these models on
lab-level computers or for day-to-day machine learning practitioners.

In order to make the search space for neural topology smaller and affordable research
[97, 137, 138] introduced the concept of weight sharing among multiple neural networks. This
approach avoids training each of the neural networks from scratch. The key concept is to first
construct a strong and complex directed acyclic hyper-network. Afterwards, the search algo-
rithm searches for optimal sub-networks within the same large hyper-network, thus reducing the
search space within the hyper-network. The search strategy or sampling of sub-networks within
the hyper-network can vary across different literature. Such as, research [139] leveraged evo-
lutionary algorithm to adapt the sub-networks of corresponding super-network, research [140]
employs a controller network trained by policy gradient based on reinforcement learning to
search for the most efficient sub-networks within the whole network.

In this paper, we propose a modular structural learning framework for the Deep Convolu-
tional Neural Networks (DCNNs) termed as the Coupled Modular Neural Network (CMNN)
framework. CMNN has a very close resemblance to the research [97, 137, 138] in terms of
network architecture. Our proposed framework consists of three primary blocks known as the
shared common block, multiple hidden blocks, and the aggregation block. These three primary
blocks together make the super-graph network. The super-graph consists of multiple sub-graphs
where each sub-graph is a stand-alone neural network. Each of the stand-alone sub-graph net-
works shares weights with other sub-graph networks through the shared common block. A
single sub-graph consists of a shared common block, a single hidden block, and finally a single
linear layer. We depict the big picture of the network in Figure 4.1.

Our network architecture has a very close resemblance to the literature of NAS such as
[97, 138] in terms of weight sharing among multiple sub-nets within one hyper-net. How-
ever we do not employ any search strategy to search for optimal neural architecture. In our
framework each of the sub-graph is prefixed and identical to one another in terms of network
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architecture. The target of our framework is to leverage light weight neural networks as the
sub-graph (needless to say multiple light weight sub-graphs together compose the super-graph)
and boost the performance of respective sub-graph networks by leveraging the knowledge of
complex super-graph through distillation.

We perform all the experiments with different ResNet networks as the backbone (Resnet-20,
56, and 110). In the experiment, we show that our proposed framework can substantially boost
the performance of each sub-graph relative to the original backbone ResNet network. Once the
network training and validation are completed, based on the computational availability either
sub-graph, super-graph or ensemble of all sub-graphs can be leveraged for the inference task.
We can easily sample the best performing sub-graph from the framework for the inference task.
It is worth noting that, our primary goal is not focused on achieving an improved ensemble
of neural networks, rather leverage the knowledge of the complex structure of the super-graph
network to boost sub-graph performance. However, while doing so, we have actually obtained
good ensemble performance. In this way, we preserve the simplicity of the end network while
achieving performance boost. Our contribution to this article can be summarised as follows:

• We propose a simple modular-based structural learning framework for the DCNNs. We
built the framework upon the concept of sub-graph/super-graph design. All the sub-graphs
are stand-alone neural networks that we train by distilling knowledge from the complex
super-graph.

• We explore three variants of super-graph architectures i.e. different ways of combining
the output of all the sub-graphs while training the super-graph. The aggregation methods
are i) concatenation of Global Averaged Pooled (GAP) features from all the sub-graphs,
known as Feature Concatenation (FC) method; ii) averaging the GAP feature maps from
all the sub-graphs known as Feature Averaging (FA) method; and iii) Log-Softmax Av-
erage (LSA) of output from individual sub-graphs. We provide an empirical study on
these three variants of feature aggregation methods for CMNN on various datasets and
conclude that FC-based CMNN provides the best super-graph and sub-graph networks.

• The third contribution is the novel part. In order to effectively leverage the complex struc-
ture of the super-graph and obtain a strong sub-graph network, we propose a simple and
effective knowledge Distillation based Round-Robin training procedure. We confirm the
effectiveness of this distillation-based training procedure through empirical study, Class
Activation Mapping (CAM) analysis of the sub-graph and super-graph networks.

• We validate the implementation of CMNN on CIFAR-10, CIFAR-100 and Tiny ImageNet
datasets. In addition to that, we also perform experiments where we use CMNN as the
backbone network of On-Road Risk (ORR) classification system that we have designed
for the mobility scooter in the literature [4].

We arrange the paper in the following order.

1. Section 4.2: This section covers key researches conducted for neural network compres-
sion through knowledge distillation, efficient architecture search, super-graph/sub-graph
type architectures, and so on.

2. Section 4.3: An overview on Coupled Modular Neural Network (CMNN) architecture.

3. Section 4.4: Here we present an explanation on various aggregation methods of feature
vectors from sub-graph networks while training super-graph. The explanation also in-
cludes the formulation of objective functions and step-by-step explanation of algorithm
to train CMNN.
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4. Section 4.5: This section includes implementation settings, dataset preparation, and all
empirical result discussion through Tables and Figures.

5. Section 4.6: The section discusses on limitations of the CMNN. Later, few recommenda-
tions are provided to mitigate the limitations to a certain degree.

4.2 Literature Review

The task of obtaining an efficient and accurate neural networks has been approached from
different points of view, such as through efficient architecture design and optimization, intro-
ducing regularization terms in loss function, and so on. In the section, we explore and explain
research works on neural networks which share similar motivation as ours.

Knowledge Distillation (KD) is currently the most popular and simple to implement ap-
proach for compressing neural networks without significant loss of performance. The concept
was first introduced in [91] depicted as model compression. The key idea of model compres-
sion [91] was to train a compact and lightweight network to mimic the complex function learned
by a cumbersome ensemble [65]. Instead of training the compact neural network on an orig-
inal and small set of datasets, the training of the network was carried out on a large set of a
dataset that is pseudo-labeled by the huge and complex ensemble of neural networks. This
approach pushes the smaller neural network prediction capability close to the set of ensemble
neural networks. A more generalized version of model compression has been proposed in re-
search [45], where instead of pseudo-labeling approach, knowledge transfer was carried out by
teacher-student training set up. The key idea was to optimize a loss function where the logits
(the inputs to the final softmax) of the student model are pushed to match the softened logits of
the cumbersome teacher model (or ensemble of multiple teacher models). This training proce-
dure thus encourages the student model into learning the class probability distributions by the
teacher model.

Previously KD distillation strategy was off-line which consisted of two steps, first, the
teacher model required to be trained, and second, the distillation of knowledge from the trained
teacher to students. To mitigate this limitation, research works [59] proposed one step dis-
tillation process where both teacher and students mutually learn from each other during the
training phase. In our proposed framework we leverage a similar variant of the online distilla-
tion objective function to optimize the sub-graph known as the co-distillation proposed in [129].
Originally, the co-distillation of [129] allows training multiple copies of independent (no weight
sharing) neural networks in parallel by enabling each model to match the average prediction of
other models. The distillation-based training was carried out even before the teacher model has
fully converged. A similar distillation-based approach was proposed in [58] termed as the ”On
the fly Native Ensemble (ONE)”.

A key contrast between large scale co-distillation training [129] and ONE [58] is the neural
structural design. In ONE framework the teacher model is a multi-branch network with identical
auxiliary branches replicated for certain times. Each of the particular branches is referred to as
a student model and is infused within the teacher network. Both teacher and student models are
trained simultaneously. The student models (also known as the branch) in ONE are encouraged
to mimic the output of the teacher network. The output of the teacher network is basically the
weighted average of softened logits from all the branches. During inference, the best-performing
branches (or student models) are selected.

Our proposed framework thus has a very close resemblance to [58,129] in a sense that, the
objective function pushes each of the sub-graphs to match the aggregated output of the complex
super-graph. However, in contrast to [58, 129], i) our framework explores different aggrega-
tion methods of the sub-graph network output during training phase; and ii) the architecture
design, backbone architectures, and training scheme for the whole framework are substantially
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different from previous related researches. The training procedure that we present in this litera-
ture is simple but effective for coupled sub-graph type networks which we substantiate through
extensive empirical study.

Ensemble Learning (EL) is regarded as the machine learning interpretation for ‘Wisdom
of the crowd’ where a set of classifiers are trained individually [141], and during the inference
phase prediction of each trained classifiers are combined to make the final prediction [126].
This method achieves very reliable fault-tolerant computation and suitable bias-variance trade-
off. Some of the most commonly practiced EL methods are AdaBoost [142], Bagging [63],
Random Forest [106], Gradient Boosting [107] and so on. Usually, most of the machine learn-
ing models (such as decision trees, support vector machines, multi-layer perceptron are the
popular ones) can be implemented into these EL learning frameworks as the backbone clas-
sifier. However, modern neural networks have also been observed to benefit from ensemble
techniques, particularly CNNs [143]. It is needless to say that the training and testing phase of
the ensemble framework is very expensive. Building on the stated fact, the ensemble of neural
networks can be much more resource-hungry, which can limit the practical applicability [101].
Research [144] proposed strategies to mitigate the tedious problem of training many neural net-
works in an ensemble framework by saving multiple copies of weight checkpoints while training
a single neural network. Each of the checkpoints was assumed to be converging to several local
minima on its optimization path. While this approach mitigates the training time problem, the
inference and model size problem still prevails. Slightly similar work can be found in [117],
where during the training phase periodic restarts were simulated by re-initializing the learning
rate to some value and eventually scheduled to decrease. Afterward, all the models before and
after restart are leveraged in the ensemble inference. Our proposed learning framework is not an
ensemble of neural networks. In our framework, we rather leverage the whole network (termed
as the super-graph) to train and boost the performance of each individual sub-graph. Of course,
given enough resource budget we can utilize our framework like the classical ensemble method
where all the branches prediction are aggregated using several combination strategies.

Multi-Branch and Multi-Column networks are very popular and common design paradigm
for current state-of-the-art neural networks. This design paradigm advocates the usage of com-
mon template building blocks stacked in a sequential manner to form the complete model [24].
These template building blocks are built upon the concept of grouped convolution, where mul-
tiple kernels of varying sizes are present per layer. This results in a wider neural network with
relatively fewer parameters and rich features. Such kind of approach can be termed as local
level branching. On the other hand, [24] proposed multi-branch architecture which is branched
in global level, i.e. multiple architectures of networks are coupled in parallel to form the final
composite network model. Research [145] proposed hierarchical tree-structured neural net-
works where multiple neural networks are coupled together through intermediate layer sharing.
During inference, depending on the computational budget more or less neural networks within
the tree are evaluated. In addition, the paper also proposed a novel KD method to encourage
diversity and boost the performance of individual networks within the tree of a neural ensem-
ble. In contrast to these remarkable approaches where multiple neural networks are leveraged
for the prediction we focus on boosting the performance of a single neural network through
constructing a large super-graph network consisting of multiple baseline sub-graph networks.
In addition, proposed learning framework preserves the diversity among these sub-graph net-
works.

Super-graph and sub-graph networks, also known as the hyper-net and sub-net in the lit-
erature, have proven to mitigate the expensive process of NAS by drastically reducing the search
space. Moreover, networks with a super/sub-graph architecture can substantially reduce the
number of parameters by encouraging coupling and parameter sharing across the sub-graphs.
Research work [97] has proposed an efficient NAS that sampled optimal sub-graph network
from a large computational graph by leveraging a reinforcement learning-based controller net-
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work. It has been demonstrated that such approach can reduce the search cost of standard NAS
process by a factor of 1000⇥, and yet achieve competitive performance for standard image clas-
sification tasks. One shot model architecture search by [138] proposed technique to accelerate
the architecture search by constructing an auxiliary hyper-net (analogous to our super-graph)
that generated the weights for several sub-nets. The sub-nets were later validated on the classi-
fication task, where it showed competitive performance. A recent work [139] proposed a novel
concept of Neural Architecture Transfer (NAT), where a pre-trained multi-objective super-net
was constructed, from which task-specific sub-nets were sampled without requiring any expen-
sive additional training. The process was carried out in an iterative manner, where the super-net
was repeatedly adapted while in the meantime, searching for task-specific sub-nets. Besides
visual image classification task, sub-graph based deep networks have demonstrated success in
the graph classification task. Such as, Research work [146] proposed novel sub-graph based
self-attention network, where different sub-graphs learn different level of features. Similarly,
research work [147] proposed sub-graph based neural network to learn disentangled sub-graph
representations, which is considered relatively challenging task. Graph classification model
known as the SUGAR [148] was proposed that performed through sub-graph level selection to
learn discriminative sub-graph representation. Although our proposed super-graph/sub-graph
based network is mainly focused on visual image classification task, it is thus clear that, the
concept of sub/super-graph can be a general scheme for solving problems of other domains.

Modular design with gating mechanism for the neural networks has proven to be very
efficient during the inference phase. Research [74] proposed a neural architecture that is com-
posed of many additional modules besides the main module. Each main module delivers error
gradients and tries to approximate the loss and output of the main module. Research [67] pro-
posed a multi-branch network that is equipped with a gating network. Each branch was trained
to specialize in the sub-task. The inference cost was optimized using the gating network. Re-
search [45] proposed a modular type network that consisted of two main parts, a generalist
network and a set of independent expert networks. The expert network is trained on the set
of data that are often confused and mis-classified by the generalist model. Recently, in re-
searches [44, 101] we proposed a modular neural network framework consisting of gating and
expert networks. The gating network was leveraged to dynamically select expert neural net-
works for further inference. The expert neural networks were trained on data consisting of
subset of classes that was prepared systematically in a Round Robin fashion.
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4.3 Coupled Modular Neural Network

The framework primarily consists of two parts, sub-graphs and super-graph. We depict the
detailed architecture of the framework in Figure 4.1. In the following paragraph, we give a clear
overview on each part of the framework.

• Sub-graphs: In the context of the proposed framework, a sub-graph is a building block
of a super-graph and a stand-alone neural network. The sub-graph network is built up of
a shared common block, a single hidden block followed by a fully connected linear layer
for classification task. There are multiple sub-graph networks in the framework and the
number of sub-graphs within a single super-graph is determined by the number of times
each hidden block is replicated (refer to Figure 4.1 for clear demonstration). The term
controlling this replication of hidden block is known as the branching factor which is
denoted by � in this literature. Each block of sub-graph (such as common block, hidden
block) consists of series of operations acting on the input such as convolutional operation,
max or average pooling, batch normalization, Rectified Linear Unit (ReLU), and so on.
Each of the hidden blocks should have an identical series of operations. The common
block in this framework is shared among all the sub-graphs owing to the assumption that,
initial layers are responsible for learning the primary common features [58]. In addition,
this shared weight design method enables us to reduce the training cost [58]. The later
part of the network i.e. the hidden blocks and respective linear layers allow the network
to learn diverse features. At the end of the training, we sample the best sub-graph network
for the inference based on its performance on the validation set.

• Super-Graph comprises of the shared common block, all the hidden blocks (excluding
the linear layers attached to each hidden block for classification), aggregation block fol-
lowed by a linear layer for classification. The aggregation block and the linear layer
are the only components that make the super-graph different from its constituent unit
(i.e. sub-graph). The implementation and definition of aggregation block can be different
based on the choice of combining the output of hidden block units. After performing the
aggregation the network passes aggregated features of hidden blocks to the linear layer
which is responsible for classification and loss calculation. The width and complexity of
the super-graph increases as we increase the variable � for the network.

An important issue in constructing such a network is the appropriate design choice for each
particular block [67]. To overcome this issue we leverage series of ResNet neural network ar-
chitecture as the backbone. ResNet networks are very well-known for mitigating the vanishing
gradient problem by leveraging the skip connection layers known as the identity shortcut con-
nection. As a result of this shortcut connection deeper network performs at least as good as
the shallower counterparts and if not better. For our framework, the ResNet series network
is suitable for its inherent compartment-like architecture. The ResNet series architectures (for
CIFAR-10 and CIFAR-100) in general consist of 6n + 2 layers where n can take values of
{3, 5, 7, 9, 18}. These stacked 6n layers can be divided into three blocks, where each group
of 2n convolutional layers consist of {16, 32, 64} filter maps respectively [25]. Thus, this
compartment-type architecture of ResNet based on the number of filter maps is suitable for
designing each particular block of our framework. More precisely, we can assign each group
of 2n CNN layers for each block of CMNN. However, there still rises a question on how many
CNN groups should be assigned for the shared common block and the hidden blocks. Similar
to the basic design choice of [58] the first convolutional layer and 4n layer group of ResNet
(also known as the conv2x and conv3x blocks in the original literature [25]) are assigned for
the shared common block. The assumption is that the earlier layer is mostly responsible for
learning primary features which can be shared across all the hidden blocks, thus reducing the
training cost and encouraging parameter reuse [58, 67].
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We allocate the rest of the 2n (known as the conv4x block) layers configuration of the
ResNet to the hidden block. We replicate the last 2n layers � times where � is the branching
factor. These hidden block parameters are independent of one another and initialized randomly.
The assumption is each of these hidden blocks learns diverse features during the training phase,
and we aggregate these features and later distill the knowledge back to every single sub-graph.
We will discuss more on aggregation method in section 4.4.

Apart from the layer re-configuration for the CMNN we introduce a few implementation
modifications to the ResNet architecture. Such as, we replace all the ReLU activation with the
LeakyReLU . LeakyReLu takes negative slope angle as its parameter [132]. We adhere to the
default parameter settings of PyTorch which is 1e�2. We also change the stride values of the
CNN layers in conv4x to 1 (originally it was 2). We adopt this approach to encourage the last
block to learn fine-grained features.

4.4 Training Procedure of CMNN

The training phase for CMNN consists of three key steps, i) first pre-train the super-graph
for a certain number of epochs (this step is crucial as it gives a very good starting point for the
sub-graph networks), ii) train sub-graph network using the distillation loss where the teacher
network is the pre-trained super-graph network and ii) next, fine-tune the super-graph at the end
of training one sub-graph. We perform the later two steps alternatively, i.e choose one sub-graph
network from many (in Round-Robin fashion), train the sub-graph by leveraging the super-graph
network as the teacher and then fine-tune the super-graph to produce a different copy of teacher
network for the next sub-graph training (refer to Figure 4.2 for a visual demonstration).

In the following paragraph, we introduce and explain all the important notations for network
parameters, objective functions, and so on.

First, let us assume that we have training dataset D = {di|i = 1, .., N}, where N is the num-
ber of samples in that dataset. T = {ti|i = 1, .., N} is the corresponding ground-truth labels,
where ti is associated with di for i = {1, 2, ..., N}. Next, we denote the sub-graph networks
which say takes an input d as f sub

b (d; ✓b), where b = {1, 2, ...,�}. Thus, we have � sub-graph
networks and there corresponding parameters are ⇥ = {✓1, ✓2, .., ✓�} respectively. Now, for the
ease of explanation we further expand the parameter ✓b of each sub-graph as follows.

✓b = {✓c, ✓bh , ✓bf } (4.1)

where, ✓c, ✓bh and ✓bf are shared common block, hidden block and fully connected layers param-
eters respectively. We can express the sub-graph network as f

sub
blin

(f sub
bhid

(fcom(d; ✓c); ✓bh); ✓bf )

which gives us the logit vector zb as the output. Thus, logits zb = [zb1 , zb2 , .., zbC ]
> where, the

subscript b is the indicator stating from which sub-graph the logits came from. For ease of nota-
tion we denote the sub-graph as f sub

b (d; ✓b) in short-form. For the super-graph let us assume the
parameter sets as ✓s. Now ✓s will cover its own parameters and all the parameters of sub-graphs
as well, depicted as follows.

✓S = {✓c, ✓SF , ✓bh[1:�]} (4.2)

Thus, the super-graph network can be expressed as f
sup
lin (f sub

bhid[1:�]
(fcom(d; ✓c); ✓h); ✓F ) or

in-short form as f sup(d; ✓S). The super-graph f
sup(d; ✓S) outputs logit vector zcomb where, the

subscript comb actually depicts the way we obtain the logits which can be through Feature Con-
catenation (FC) (con), Feature Average (FA) (avg) or Log-Softmax Average (LSA). Each mod-
ule of the sub-graph i.e. the common block fcom(d; ✓c) and hidden block f

sub
bhid

(fcom(d; ✓c); ✓h)
give us the high-level and lower-level feature maps respectively.
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4.4.1 Aggregation method for hidden blocks

In this literature, we explore three different variants of combining methods of sub-graph’s
output to construct the super-graph. These methods are:

1. Feature Concatenation: In this method we first obtain the sub-graph’s common block
feature and hidden block features from fcom(d; ✓c) and f

sub
bhidden

(fcom(d; ✓c); ✓h) respec-
tively , where b = {1, ...,�}. Let us denote the common block feature vector as ofeat

and hidden block feature vectors for the sub-graphs as obh . Next, these feature vectors go
through the GAP layer where features get transformed to single linear vector of size 64.
We concatenate each of this vector of length 64 to obtain final feature vector of length
64 ⇤ � which we depict as follows.

outcon = GAP (ofeat)||GAP (obh1 )||..GAP (obh� ) (4.3)

Here, || depicts the concatenation operation between consecutive feature vectors. These
feature vectors once again pass through the GAP operation. Finally, we feed these con-
catenated and pooled feature vectors to the fully connected layer of the super-graph to
obtain logits zcon = [zcon1 , zcon2 , .., zconC ]

>. The fully connected layer of super-graph
with concatenation combination method has a shape of (64⇤beta, C), where C is the total
number of classes available in the dataset. It is worth noting that for the concatenation op-
eration the length of the feature vector increases as we increase the value of �. This also
assists in preserving more feature information from all the hidden blocks and common
blocks which we will demonstrate through the Class Activation Mapping (CAM) analysis
in the later part of the literature.

2. Feature Averaging: Feature Averaging in this literature is the operation of averaging
the feature map from all the sub-graphs hidden block CNN layers. While all the opera-
tion is analogous to the previous mentioned FC method, the only contrast is the feature
combining method which results in a feature vector of length only 64.

outavg =
1

|⇥|

X

✓i2⇥
GAP (f sub

bhid(fcom(d; ✓c); ✓i)) (4.4)

where, ⇥ = {✓1, ✓2, .., ✓�} and |⇥| = �. The size of outavg is 64 which implies that the
fully connected layer of super-graph will have a shape of (64, C) neurons.

3. Log-Softmax Average: This combination method averages the Log-Softmax confidence
predicted by each sub-graph network for the target class. The combination method is quite
similar to the Loss Average (LA) method of the multi-branch network of [24]. However,
unlike the FC and FA method where we leverage the hidden block features of the sub-
graph, the LSA method leverages the fully connected layers of the sub-graph networks.
Thus, during the super-graph training phase, we combine and average the LogSoftmax
confidence obtained from the logits of all the sub-graphs fully connected layers as follows.

pavg(c|d) =
1

�

�X

b=1

log(pb(c|d, ✓b)) (4.5)

where the probability distribution vector for target classes obtained by sub-graph networks
through the softmax is defined as follows:

pb(c|d, ✓b) = SM(zbc) =
exp(zbc)PC
i=1 exp(zbi)

(4.6)
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Where, c 2 {1, .., C}, and C is the total number of classes available in the dataset D
and, vector of logits zb = [zb1 , zb2 , .., zbC ]

> for the branch b. For the LSA combination
method, each of the sub-graph networks undergoes full-forward propagation during the
super-graph training.
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4.4.2 Objective Functions for Super-graph Training

The first objective is to achieve a strong super-graph network. From the previous section we
observe that the super-graph network f

sup(d; ✓S) gives zcomb logits which are un-normalised
log probability output by the network. Thus we can define,

psup(c|d, ✓S) = SM(zcombc) =
exp(zcombc)PC
i=1 exp(zcombi)

(4.7)

Here again, the subscript comb 2 {con, avg}, i.e. we can obtain logits from either FC or FA
version of super-graph. We leverage the cross-entropy loss to train the super-graph network.

L
sup
comb = �

NX

i=1

CX

c=1

�(ti, c) log(psup(c|di, ✓S)) (4.8)

where, �(ti, c) is the Kronecker delta function defined by

�(ti, c) =

(
1, ti = c,
0, ti 6= c

However, for the LSA version of the super-graph network, we have a slight change in the
objective function. In LSA combination method all the sub-graphs of the network undergo
forward propagation to obtain the logits zb and eventually we apply softmax on those logits as
we depict in the Eqn. 4.6. Afterward, we average the LogSoftmax of all the sub-graph networks
which we depict as pavg in Eqn. 4.5. Once we obtain pavg we can perform the cross-entropy
loss as follows:

L
sup
avg = �

NX

i=1

CX

c=1

�(ti, c) log(pavg(c|di)) (4.9)

4.4.3 Objective Function for sub-graph training

First, we perform warm-up pre-training of super-graph before we start full-scale training of
sub-graph networks, as this procedure provides a good initialization for the sub-graph networks.
Once we obtain the pre-trained super-graph the training procedure continues in a Round-Robin
fashion, where we train each sub-graph through distillation followed by fine-tuning the super-
graph (refer to the Figure 4.2). The loss term that we optimize for any sub-graph b is depicted
in its simplified form as follows:

L
sub
b = ↵L

sub
ce + (1� ↵)Lsub

kd (4.10)

where, 0 < ↵ < 1. Here, ↵ is the hyper-parameter that controls the weight and emphasis
between KD and cross-entropy loss. As our core idea of constructing the super-graph from
many sub-graphs is actually to boost the performance of each sub-graph we tend to keep ↵

fixed to a very low value of 0.2. This depicts that throughout the training process of the sub-
graph networks we emphasize distilled knowledge from the super-graph network. However,
performing cross-validation of KD hyper-parameter ↵ may give us better training set-up with
an increase in the cost of extra model training. In this literature we do not perform a detailed
empirical study on the effect of the hyper-parameter ↵, instead, we seek guidance from the
previous study [45, 58, 149] for choosing the optimal value of ↵. In general, there is a lot of
encouragement to leverage higher weights (i.e. low alpha value) when the teacher network is
strong.

Now returning back to the Eqn. 4.10, we elaborate the equation which consists of the cross
entropy term L

sub
ce and KD term L

sub
kd . The L

sub
ce calculates loss based on the output pb(c|d, ✓b)
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of the sub-graph b as follows:

L
sub
ce = �

NX

i=1

CX

c=1

�(ti, c) log(psub(c|di, ✓b)) (4.11)

The second term of the loss is the KD term which optimizes each of the sub-graph to bring them
close to the performance of the complex super-graph. The calculation of KD for super-graph
variants FC and FA differs slightly from the LSA method. Let us first formulate the KD term for
the FC and FA.

To effectively enable KD we soften the probability distributions at temperature T (here T =
5 for all cases) for the teacher super-graph as:

p̃
sup
comb(c|d, ✓S) = SM(zcombc ;T )

=
exp(zcombc/T )PC
i=1 exp(zcombi/T )

(4.12)

Now, if the choice of combing method for the super-graph teacher network is LSA we will
require to soften the probability distribution obtained from each sub-graph network. Thus, we
require a slight modification in the Eqn. 4.6 as follows:

p̃b(c|d, ✓b) = SM(zbc ;T )

=
exp(zbc/T )PC
i=1 exp(zbi/T )

(4.13)

Next, we take the average of the softened probability distribution from each individual sub-graph
as follows:

p̃
sup
avg(c|d) =

1

�

�X

b=1

log(p̃b(c|d, ✓b)) (4.14)

Here p̃avg(c|d) is the average value of all softened probability distribution produced by all the
sub-graph networks. This averaging method is quite similar to the branch’s prediction averaging
method depicted in earlier literature [58, 145]. In this literature, we thus have three choices of
super-graph as teacher network that we can leverage to train the sub-graph network. These three
choices are p̃

sup
comb(c|d, ✓S) and p̃

sup
avg(c|d). For the ease of formulating the KD loss term let us

assume all these three types of teacher super-graph network as p̃t(c|d, ✓S) Thus, the KD term
stands as:

L
sub
kd = �

NX

i=1

�X

b=1

CX

c=1

p̃b(c|di, ✓b) log
p̃b(c|di, ✓b)

p̃t(c|di, ✓S)
(4.15)

In this literature we leverage the Kullback Leibler divergence to bring the sub-graph probability
distribution close to the super-graph. It is also possible to leverage other loss terms.

4.4.4 Explanation of Round-Robin training algorithm

In this section we provide a brief explanation of the training algorithm for CMMN. We
depict the pseudo-code in the Algorithm 4 and visual depiction of the training in Figure 4.2.

In Algorithm 4, line 1 - line 3 perform dataset and network initialization. At the beginning of
the training process, we first perform pre-training of the super-graph network. The pre-training
steps are performed in lines 6-8. Value of epoch1 is 50 for all datasets. Next, we start the
sub-graph network training from line 13. Value of epoch2 is 300 for all datasets. In line 15 we
perform Round-Robin selection of a sub-graph. Sub-graph optimization begins from line 16.
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After performing a single pass in sub-graph we set the learning rate to a very low value (lr =
0.0001 in this study for all cases of the datasets) for fine-tuning step (refer to line 18). After
training a single sub-graph network, we fine-tune the super-graph network with the defined low
learning rate (line 19).

4.4.5 Computational Complexity Analysis of CMNN

There are two key factors that contribute to the computational complexity of the CMNN.
The first one is the depth of the backbone ResNet network, and the second is the value of the
branching factor �. In the following paragraph we provide a simple analytical formulation for
the computational complexity of CMNN, and later in Table 4.9 we provide the FLOP counts for
both sub-graph and super-graph networks (cost per unit sample during test phase) for several
ResNet backbone networks.

The complexity during training is proportional to the value of the branching factor �. As
we increase the value of � we will subsequently have more sub-graph networks coupled to com-
pose a complex super-graph. Although the complexity or the size of the common block (refer to
Figure 4.1) remains constant for any value of � (because the common block is shared among all
the sub-graphs), the number of hidden blocks increases proportionally. For ease of understand-
ing and formulation, let us consider a function K that calculates the cost of any particular block.
We can assume that, the function K can return either the number of trainable parameters or the
FLOPs count, given any block of the CMNN as the argument or input. The block can be i) the
shared common block (cb); ii) a hidden block (hb), or iii) a feature aggregation block (fab). The
cost will include training a particular sub-graph network (that we choose by Round-Robin fash-
ion) and fine-tuning the whole super-graph per epoch. Thus, during training the total estimated
cost per epoch would be:

Ktrain(CMNN) = 2⇥K(cb) +K(hb)⇥ (� + 1)+

2⇥K(fab)
(4.16)

On the other hand, the estimated cost per epoch for training a single backbone network would
be:

Ktrain(backbone) = K(cb) +K(hb) +K(fab) (4.17)

From the Eqn. 4.16 and 4.17, ignoring the constant factors, it is indicating that branching
factor � is the dominating part in determining the complexity of CMNN. Moreover, in order
to provide equal training chances for all sub-graphs, the number of epochs needed to train the
CMNN should be approximately � times larger than that needed for training the backbone
network.

Complexity during the test phase depends on if we leverage i) a CMNN sub-graph, ii) a
closely coupled super-graph, or iii) a loosely coupled ensemble of all sub-graphs. Since we are
interested only in leveraging a single sub-graph in the current study, the test phase computational
cost of the CMNN is basically similar to that of a stand-alone ResNet network. A generalized
formulation for computational complexity for all cases would be:

Ktest(CMNN) = K(cb) + �
0
⇥K(hb) +K(fab) (4.18)

When the value of �0 = 1, we are leveraging only a single sub-graph network. For the cases
ii) and iii), �0 equals to the branching factor �. Based on the Eqn. 4.18 we provide computational
complexity in the unit 108 FLOPs during the test phase for sub-graph and super-graph (per unit
sample) with varying ResNet backbone networks and �

0 values in the Table 4.9. The Table also
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depicts FLOPs count for rest of the models for comparison, which are directly illustrated from
respective literature.

Algorithm 4: Training phase of CMNN depicted in Figure 4.2
Input: Dataset
Output: � branched Super-graph network.

1 Training Dataset: D = {di|i = 1, .., N}

2 Teacher signal: T = {ti|i = 1, .., N}

3 Super-graph network: f sup()

4 Sub-graph networks: f sub
b () b = {1, ...,�}

5 # First, pre-train super-graph network for epoch1
6 for i in enumerate(epoch1) do
7 for d, t in enumerate(D, T ) do
8 Train super-graph network f

sup(d) by optimizing the Eqn.4.8 or Eqn. 4.9 based
on the preferred feature aggregation methods.

9 end
10 end
11 # sub-graph training starts from here
12 for i in enumerate(epoch2) do
13 # select sub-graph in Round-Robin fashion
14 b = (b+ 1) mod �

15 for d, t in enumerate(Dsub, Tsub) do
16 optimize f

sub
b (d) using the Eqn.4.10

17 Set learning rate of super-graph to lr = 0.0001
18 fine-tune super-graph f

sup(d)

19 end
20 end

4.5 Experiments

4.5.1 Datasets and Parameters settings

Datasets that we leverage to evaluate CMNN are CIFAR-10 (Canadian Institute For Ad-
vanced Research) [111], CIFAR-100 [111], Tiny ImageNet [150] and a private On-Road-Risk
(ORR) dataset by [4]. CIFAR-10 dataset is a collection of 60,000 color images with 10 classes,
where 50,000 images are for training and rest 10,000 for testing. CIFAR-100 data is similar
to CIFAR-10 with 60,000 images. However, CIFAR-100 has 100 classes, thus containing 600
images per class. Tiny ImageNet is a subset of dataset from the original ImageNet. The dataset
consists of 200 classes (subset of classes from 1000 classes of ImageNet) . There are total
100,000 images for training, and 10,000 images for validation. Thus, 500 images per class for
training and 50 images for validation. The same validation set is actually leveraged as test set to
report the performance of trained models in several literature. This is because the ground-truth
for validation is publicly available. In addition, the dataset is down-sampled from 256 ⇥ 256
to 64 ⇥ 64 resolution with a view to make the dataset affordable in constrained computational
environments [150].

Due to the very limited computing resources in a university laboratory, we have selected the
above three public datasets for the visual object classification task evaluation. We also leverage
the ORR dataset on the other hand to evaluate the performance of the network when integrated
with the ORR classification system proposed by us in [4]. We will provide a brief overview and
working mechanism of the ORR classification system in the later part of the literature
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4.5. EXPERIMENTS

Figure 4.3: Class statistics of ORR dataset. The image is directly depicted from the [3, 4]
.

The ORR dataset by [4] is a private multi-class classification dataset which was constructed
and leveraged to evaluate the ORR classification model. The dataset is a real-world on-road risk
dataset that was collected using a real-sense depth camera d435 mounted on the shoulder of a
mobility scooter. Several videos were captured with this mounted camera which were afterward
pre-processed, such as, conversion to still frames, selection of diverse images from a sequence
of images, removing redundancy from the images, and so on. All these steps are taken to ensure
that the dataset can provide a reliable measure of the performance of any classification model.
The dataset primarily consists of 10 classes commonly encountered on the streets, which are,
bump, column, dent, fence, creature, vehicle, wall, weed, traffic cone, and normal [4]. The class
normal usually depicts safe situation. There are 5,774 images in the dataset. Each of these 5,774
images is further segmented into 22 small images known as the Cell of Interest (COI), resulting
in a total of 127,028 images for fine-grained classification. All the images are labeled. For more
detail, we recommend referring to the literature [4]. We provide a brief overview and statistics
of the dataset in Figure 4.3. We will release the dataset soon to the public for academic purpose.

We implement training and testing procedure in PyTorch Deep Learning Framework
[132]. We conduct all experiments on single NVIDIA GeForce RTX 2080 GPU. We keep most
of the hyper-parameters during training consistent and similar for all the datasets. We use the
Stochastic Gradient Descent (SGD) optimizer with momentum for training. The momentum is
set to 0.9. As we mentioned earlier before the full-scale training starts we pre-train the super-
graph network to provide each sub-graph network a good initialization point. Thus, we train the
super-graph network for 50 epochs beforehand (applicable for all the datasets). Next, we begin
the training of the sub-graph networks in a Round-Robin fashion. After each sub-graph network
finishes an iteration the super-graph network is fine-tuned with a very small learning rate (lr).
The initial learning rate for the training sub-graph network is set to 0.1 and fine-tuning learning
rate for the super-graph is set to 0.0001. The total number of training epochs for all the dataset
is 300 (for CMNN with � = 3). For larger CMNN with � = {5, 7} we set training epochs to
500. Learning rate scheduler is set to change learning rate at epochs {80, 160, 250} by a factor
of 0.1.

For all the experiments, during the Round-Robin step (i.e. step 2) we leverage 80% of
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CHAPTER 4. CMNN: COUPLED MODULAR NEURAL NETWORK

the training datasets for training, while rest 20% for validation. During the step-2 process,
since both sub-graph and super-graph will undergo training we need to reduce the training time
(as we have many sub-graph to train). Thus, instead of feeding whole training data to each
sub-graph network we perform training of each sub-graph on a small subset of training data
consisting of all the classes. We prepare these subsets of dataset in a random fashion with
replacement. Although this approach looks like Bagging [63], in practice it is not, because,
during the fine-tuning of super-graph we eventually leverage all the training data. We save
the best weight based on the performance on the validation set. In practice, various strategies
and criteria can be adopted for saving the best weights, such as, saving weights based on the
ensemble performance or based on super-graph performance. In this paper, we save weights
based on the best performance of any of the sub-graph on the validation set. That is, we are
saving weights based on the best accuracy obtained so far on the validation set by either of the
sub-graph networks.
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CHAPTER 4. CMNN: COUPLED MODULAR NEURAL NETWORK

Figure 4.5: Illustration of the ORR classification model. We directly depict this image
from [4]. The input image was first segmented into certain pre-defined size patches. Each
of patches depicts a certain location of the original image. These patches are next fed to
the CNN classification model to predict the classes of patches. In this research, we set the
backbone network i.e. the CNN-model with the sub-graph networks that we obtain from
the our proposed framework. The sub-graph network after integration performs risk
classification for the pre-defined cells or image patches. Any pre-defined cells if classified
by the CNN network as ”obstacle” is assumed to be risky for mobility scooter to proceed.

.

Figure 4.6: Instances from ORR dataset
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4.5. EXPERIMENTS

Table 4.2: Empirical study of CMNN super-graph and sub-graph networks on C-10 dataset
with FA based training. The super-graph parameter count is similar to the FC based
super-graph which we depict in previous Table 4.1. For the original baseline score of the
ResNet network refer to the previous Table 4.1.

Model � Sub* (%) Sup. (%) |fV | � (%)

CMNN-20

3 92.76 93.00

64

+1.51

5 92.52 92.80 +1.27

7 92.85 93.60 +1.60

CMNN-56

3 94.50 94.60 +1.47

5 94.68 94.80 +1.65

7 95.15 95.20 +2.12

CMNN-110

3 94.80 94.90 +0.91

5 95.20 95.20 +1.31

7 95.20 95.10 +1.31

4.5.2 CIFAR-10 and CIFAR-100

We leverage CIFAR-10 and CIFAR-100 for detail empirical study on the effect of �. In
addition, we also perform study on the effect of sub-graph combining method during the train-
ing phase for varying value of �. In order to keep the rest of experiments (with ORR and
Tiny ImageNet datasets) simple and computationally tractable we adhere to the optimal training
hyper-parameters (such as, smaller value of �, best sub-graph combining methods and so on)
that we obtain from the study with CIFAR-10 and CIFAR-100.

Analysis of sub-graph combining method and the effect of the number of sub-graphs

In this section, we discuss about the performance of the proposed framework for three dif-
ferent sub-graph combination variants. The performance comparison for the three combination
methods, FC, FA and LSA are depicted in Figure 4.7. In addition, Tables 4.1, 4.2 and 4.3 depict
empirical study for the CIFAR-10 dataset. For the CIFAR-100 dataset we recommend referring
to Tables 4.4, 4.5 and 4.6.

We train and evaluate CMNN with all proposed combination methods (backbone networks
ResNet-20, 56 and 110) consisting of 3, 5 and 7 sub-graphs for CIFAR-10 and CIFAR-100
datasets. For simplicity we only represent the best sub-graph network score in all the Tables
marked with the asterisk ⇤. We depict the original performance of ResNet networks for CIFAR-
10 and CIFAR-100 in Table 4.1 and 4.4 respectively under the column ‘Original’. We also
illustrate the performance improvement relative to the corresponding baseline ResNet network
under the column ‘�’. � is basically the performance difference between the best sub-graph and
corresponding similar ResNet version, i.e. � = Sub

⇤
�Original. Following points summarize

our observation from the aforementioned Figures and Tables.

• It is very important to construct an accurate super-graph network because an accu-
rate super-graph can properly supervise a sub-graph network through distillation.
It is quite intuitive that FC based super-graph network can provide a better teacher
network for the sub-graph networks relative to the FA and LSA methods, since FC
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CHAPTER 4. CMNN: COUPLED MODULAR NEURAL NETWORK

Table 4.3: Empirical study of CMNN super-graph and sub-graph networks on C-10 dataset
with LSA based training.

Model � Sub* (%) Sup. (%) |fV | � (%)

CMNN-20

3 92.75 93.64

64

+1.50

5 93.30 93.75 +2.05

7 93.50 93.60 +2.25

CMNN-56

3 94.20 94.26 +1.17

5 94.68 94.80 +1.65

7 95.15 95.20 +2.12

CMNN-110

3 94.80 94.90 +0.91

5 95.20 95.20 +1.31

7 95.10 95.20 +1.21

Table 4.4: Empirical study of CMNN super-graph and sub-graph networks on C-100
dataset with FC based training.

Model � Sub⇤ (%) Sup. (%) |fV | Original (%) � (%)

CMNN-20

3 71.45 71.67 256

69.00

+2.45

5 72.35 72.35 384 +3.35

7 72.44 72.90 512 +3.44

CMNN-56

3 71.45 72.02 256

69.30

+2.15

5 72.50 73.00 384 +3.20

7 72.60 73.10 512 +3.30

CMNN-110

3 75.77 76.05 256

71.14

+4.63

5 76.00 77.90 384 +4.86

7 77.70 78.00 512 +6.56
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4.5. EXPERIMENTS

Table 4.5: Empirical study of CMNN super-graph and sub-graph networks on C-100
dataset with FA based training

Model � Sub⇤ (%) Sup. (%) |fV | � (%)

CMNN-20

3 71.22 71.50

64

+2.22

5 71.35 72.00 +2.35

7 71.70 72.10 +2.70

CMNN-56

3 71.70 71.95 +2.40

5 71.80 72.20 +2.50

7 72.20 72.50 +2.90

CMNN-110

3 75.10 75.60 +3.96

5 76.00 76.20 +4.86

7 77.40 77.50 +6.26

Table 4.6: Empirical study of CMNN super-graph and sub-graph networks on C-100
dataset with LSA based training

Model � Sub⇤ (%) Sup. (%) |fV | � (%)

CMNN-20

3 71.00 71.20

64

+2.00

5 71.50 71.70 +2.50

7 71.90 72.00 +2.90

CMNN-56

3 71.60 72.00 +2.3

5 71.80 72.70 +2.5

7 71.80 72.70 +2.5

CMNN-110

3 74.00 74.50 +2.86

5 75.06 75.80 +3.92

7 75.80 76.01 +4.66
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CHAPTER 4. CMNN: COUPLED MODULAR NEURAL NETWORK

Figure 4.8: Class Activation Mapping (CAM) analysis on CMNN super-graph, sub-graph,
and common shared branches. It is expected that common branch CAM will not be precise
in terms of quality. However, as we move to respective sub-graphs the CAM gets more
focused on the object of interest region. In addition, the super-graph prediction and CAM
are precise (as super-graph learns rich features from individual branches), and due to
distillation during the training phase between sub-graph and super-graph, the sub-graph
CAM is almost identical to the super-graph which is precise and of good quality.
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preserves more feature information from each sub-graph network. These rich fea-
tures preservation come with slightly increased length in the final feature vector. As we
can see from Table 4.1, as the number of branch increases the corresponding feature vector
length |fV | increases too. However, preserving these feature vectors assist in obtaining a
relatively better and accurate sub-graph network. For example, CMNN super-graph with 5
coupled sub-graphs, with FC based combination method and with ResNet-110 backbone
or in-short CMNN-FC-110-5 achieves 96.00% accuracy. Out of 5 sub-graph networks,
the best sub-graph accuracy we obtain is 95.70%. This observation is also consistent and
similar for CIFAR-100 dataset. For the CIFAR-100 dataset, the best sub-graph performs
with 78.00% accuracy obtained through the FC based super-graph network.

• All the sub-graph networks that we obtain through distillation from super-graph
(type FC, FA, and LSA) improve substantially in-terms of accuracy relative to its
corresponding baseline ResNet model (refer to the � scores in all the empirical study
Tables). We can observe this performance improvement from the Figure 4.7. In the
Figure 4.4 and 4.7, X-axis with the value 1 depicts the performance of the original ResNet
networks. The subsequent labels such as subgraph3⇤, subgraph5⇤ and subgraph7⇤

represent the performance of sub-graph networks that we obtain from their corresponding
3, 5 and 7 branched super-graph networks (denoted as supergraph3, supergraph5 and
supergraph7) respectively.

• Sub-graph networks that we train through FC and FE based super-graph networks
show a consistent increment in performance as opposed to LSA method. LSA has
shown a slight inconsistency for the CIFAR-10 and CIFAR-100 datasets in terms of
performance relative to both FC and FA. Our experiment findings from the LSA based
super-graph network are actually consistent with the findings of [143]. It has been shown
that averaging the logits or probabilities of multiple neural networks during the training
phase has the negative effect of reducing the diversity in the gradients during the back-
propagation through the ensemble.

• As we increase the value of � for CMNN with any ResNet backbones (such as,
ResNet-20, 56 or 110) there are increasing trend in performance for FC and FE
variants. This phenomenon is true for both the super-graph and the sub-graph networks
as we illustrate in Figure 4.4 and 4.7. However, the performance saturates as the number
of branches reaches beyond 5.

Comparison with Other Multi-branch networks

CIFAR-10 and CIFAR-100 datasets are commonly leveraged datasets for evaluating Image
classification models. Due to its frequent use and practice, the number of benchmark scores
for these datasets are also abundant. In the last couple of years, neural networks have achieved
outstanding performance in these datasets. Such outstanding performance are the results of
i) development of large scale transfer learning [40]; ii) unprecedented level neural network
scaling in terms of factors such as depth, width, and learn-able parameters [151]; iii) efficient
and accurate data specific neural network topology search through evolutionary algorithms [34],
reinforcement learning [38].

Although these methodologies have proven to provide human-level accuracy (or sometimes
surpassing human level) for recognition tasks they are expensive to carry out in lab-level re-
sources. Thus, for the bench-marking and comparison, we adhere to neural networks which
have close resembles to our approach in terms of factors such as, topology or architecture de-
sign, network size, and so on.

In Table 4.9 we depict the best performing sub-graph networks that we sample from the
super-graph network. Each of the sub-graphs is a stand-alone ResNet network that we train
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CHAPTER 4. CMNN: COUPLED MODULAR NEURAL NETWORK

through our learning framework depicted in Figure 4.2. For ease of comparison, we represent
sub-graph networks with 3 different backbone networks i.e. ResNet-20, 56, and 110. We present
all the sub-graph networks obtained from the FC-based super-graph. We also present the per-
formance of two large networks i.e. best performing super-graph networks and ensemble of its
sub-graphs. We perform the ensemble by simply averaging the predictions of each sub-graph
network within the super-graph.

From the Table 4.9 for the CIFAR-10 dataset sub-graph from FC based super-graph or in-
short CMNN-FC-Sub with any backbone improves accuracy relative to ONE-1 (i.e. with single
branch) and HNE considerably while keeping parameter count very low as the original ResNet
network. More precisely, CMNN-FC-Sub with ResNet-56 and 110 backbone perform with
neck and neck score with both large and small multi-branch HNE network. Now, when we
consider our largest networks, which are super-graph and the ensemble of sub-graphs, we have
a substantial performance gain while maintaining moderate parameter counts. Such as, CMNN-
FC-Ensemble-5 (i.e. CMNN with 5 coupled sub-graphs) which has around 8.39M parameters
perform with 96.00% accuracy on test set. This performance is on par with ensembles by ONE-
1 [58] and Coupled Ensembles-6/8 [24].

For the CIFAR-100 dataset, our network has a good performance improvement when we
consider the trade-off between network complexity and accuracy. Such as, CMNN-FC-Sub
with ResNet-110 backbone or in-short CMNN-FC-Sub-110 has considerable improvement over
most of the small multi-branch HNE [145] and multi-branch HydraNet [67]. ONE [58] on the
other-hand obtained better testing accuracy for CIFAR-100 relative to the CMNN-FC-Sub-110.
The ensemble of our sub-graphs has slightly better performance relative to the ONE ensemble.
Compare to the large HNE [145] we achieve comparable performance.

From this comparative study, we can simply conclude two key points

• First, the sub-graph that we obtain through the super-graph actually performs with a com-
petitive score while maintaining original parameter count.

• Second, our learning framework (visualized in Figure 4.2 and algorithm illustrated in
Algorithm 4) encourages each of the sub-graph in the super-graph to be diverse from
one another. A good improvement in ensemble accuracy supports this claim. Moreover,
performing ensemble with this lightweight network is still affordable and simple when we
compare it with a single complex model, thanks to the concept of shared backbone which
encourages parameter re-usage [67].
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4.5. EXPERIMENTS

Table 4.7: Performance on ORR dataset

Model � Comb. Sub⇤ (%) Sup. (%) � (%)

CMNN-20

3

FC 92.95 91.30 +0.54

FA 92.24 92.21 -0.17

LSA 92.68 92.61 +0.27

CMNN-56

FC 93.10 92.88 +0.14

FA 92.89 92.98 -0.07

LSA 93.40 93.44 +0.44

CMNN-110

FC 93.50 92.48 +0.30

FA 91.26 91.82 -1.94

LSA 93.36 93.36 +0.16

Table 4.8: Classification performance comparison for ORR dataset

Source Backbone Acc. (%) Params. (M) FPS

ORR [3]

ResNet-50 90.51 23.52 23.46

ResNet-101 90.50 58.15 15.84

ResNet-152 89.02 60.19 12.03

Vanilla

ResNet-20 92.41 0.27 99.00

ResNet-56 92.96 0.85 36.95

ResNet-110 93.20 1.70 20.25

CMNN-FC
(Ours)

ResNet-20 92.95 0.27 99.00

ResNet-56 93.10 0.85 36.95

ResNet-110 93.50 1.70 20.25
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4.5. EXPERIMENTS

Table 4.10: Performance of three branched CMNN super-graph and sub-graph networks
on Tiny ImageNet dataset with FC based training. The Table depicts only the best per-
forming sub-graph that we represent with asterisk ⇤.

Model Sub.⇤(%) Sup.(%) Orig. (%) � (%)

CMNN-20 54.50 55.10 53.10 +1.40

CMNN-56 59.30 60.50 58.20 +1.10

CMNN-110 61.80 62.10 59.48 +2.32

4.5.3 Tiny ImageNet

Overview

Tiny ImageNet is relatively a difficult dataset compared to the CIFAR-10 and CIFAR-100.
First, the dataset consists of twice more classes than CIFAR-100, second, the dataset has large
number of fine-grained classes which are visually very similar (subset of ImageNet dataset).
The images of this dataset are down-sampled thus loosing several fine details, resulting in fine-
grained classification difficulty. The dataset has currently gained increased attention due to its
reduced size and resolution, which allow experiments to be performed under constrained envi-
ronment with in a limited time and computational budget. Most of SOTA literature that report
benchmark scores are usually pre-trained on large ImageNet dataset. Later, fine-tuning was per-
formed on the down-sampled Tiny-ImageNet dataset to achieve competitive score. For instance,
recent visual image classification model known as the Vision Transformer (VIT) [43] fine-tuned
a large ImageNet pre-trained transformer to achieve state-of-the-art accuracy of 84.65% on the
ImageNet dataset.

Performance of CMNN and its backbone

For maintaining the consistency throughout the paper and in-order to keep the super-graph
and sub-graph networks light-weight, we adhere to the similar architectures for experiments with
Tiny ImageNet, i.e. the ResNet-20, 56, and 110 (same backbone networks that are designed for
CIFAR-10/100 experiments). Now, it is true that for dataset like ImageNet and Tiny ImageNet,
networks with larger number of feature maps and channels are preferable (such as ImageNet
version ResNet-18, 34, 50, 101, 152 and so on), as demonstrated in previous experiments [153]
and literature [154, 155]. It is practically possible to integrate ImageNet version ResNet to
CMNN to construct more heavier and powerful super-graph and sub-graph networks. Also,
theoretically, this approach will boost performance to a good extent (as we have seen in our
earlier experiments that larger super-graph network provides better teacher networks). But,
this can make computation very expensive, specially training phase which consists of periodic
super-graph and sub-graph training. However, through this work we demonstrate that even with
light weight ResNet networks as the backbone of CMNN, we can alleviate the performance and
perform with accuracy comparable to most of the deeper networks.

First of all, we train the backbone networks ResNet-20, 56, and 110 on Tiny ImageNet
with training hyper-parameters similar to CIFAR-10/100. In this experiment we perform all
the training from scratch, i.e. we do not leverage any extra training data for pre-training the
models. Now, these scores will serve us as the baseline reference to calculate the �. Next, we
train three branched FC based (with � = 3) CMNN with ResNet 20, 56, and 110 backbones.
We depict the performance of CMNN and its respective backbones on Tiny ImageNet in Table
4.10. In Table 4.10 the fourth column depicts the performance of backbone networks ResNet-
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CHAPTER 4. CMNN: COUPLED MODULAR NEURAL NETWORK

Table 4.11: Performance comparison of three branched CMNN (FC based super-graph
training) with other multi-model networks on Tiny-ImageNet.

Model Acc. (%) Params. (M)

DenseNet + ResNet [152] 60.00 -

Snapshot Ensemble-ResNet-110-6 (↵0=0.1) [144] 59.46 10.20

Snapshot Ensemble-ResNet-110-6 (↵0=0.2) [144] 60.60 10.20

Single Cycle Ensembles-ResNet-110-6 [144] 57.40 10.20

ResNet-20 53.10 0.27

ResNet-56 58.20 0.85

ResNet-110 59.48 1.70

ResNet-20 (Vanilla-Distillation) 54.00 0.27

ResNet-56 (Vanilla-Distillation) 59.10 0.85

CMNN-20-FC-sub-1 (ours) 54.50 0.27

CMNN-56-FC-sub-1 (ours) 59.30 0.85

CMNN-110-sub-1 (ours) 61.80 1.70

CMNN-110- FC-Super-3 (ours) 62.10 5.10

CMNN-110-Ensemble-3 (ours) 62.87 5.10
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4.5. EXPERIMENTS

20, 56, and 110 with naive training settings. Next, the third column represents the performance
of three branched CMNN super-graph with varying ResNet backbone, which we train through
leveraging the proposed learning framework. It is quite clear that the three branched super-
graphs of CMNN have considerable performance gain. Such as, super-graph with ResNet-110
backbone scores 62.10%. The best performing sub-graphs sampled from these super-graphs are
depicted in the second column. Sub-graph networks (which are stand-alone ResNet networks)
gain around {+1.40,+1.10,+2.32}% accuracy relative to the performance of its exact baseline
architectures ResNet-20, 56, and 110 respectively. The improvement in performance relative
to the respective baseline are depicted in the last column of Table 4.10. Such improvement is
due to the effect of distillation and co-operative learning from the multi-branch teacher network,
which in this case is the super-graph network. It is conclusive that, as sub-graph network gets
deeper (or complex) super-graph network eventually gets stronger, which in the later step serves
as a strong teacher network.

Comparison with Other Models

For the demonstration of efficacy and comparative study for CMNN on the Tiny-ImageNet
dataset we consider several ensemble or multi-model type networks performance in Table 4.11.
For the balanced comparison we mostly adhere to the ensemble system with similar ResNet
backbones. In addition, to demonstrate the effect of knowledge distillation that is induced
through our proposed learning system we also represent performance of the backbone networks
that we train with vanilla distillation, where the ResNet-110 is the teacher network.

Snapshot Ensemble [144] which consists of six identical ResNet-110 models during the in-
ference performs with an accuracy of 60.60% (when ↵0=0.1) and 59.46% (when ↵0=0.2). In
contrast, the super-graph and the ensemble of CMNN-110 with only three branches (parameter
budget of only 5.10M) achieve 62.10% and 62.87% accuracy respectively. Now, when we con-
sider a single sub-graph from the super-graph of CMNN-110 we achieve an accuracy of 61.80%.
Needless to say, the sub-graph is basically equivalent to the ResNet-110 network, which has a
parameter count of only 1.70M. Moreover, performance of the sampled sub-graph (of CMNN-
110) has a considerable performance improvement relative to both its baseline (around +2.32%,
refer to row 15 of Table 4.10 and also Table 4.11). Similarly, sub-graphs of CMNN-20 and
CMNN-56 (row 18, 19) have slightly better performance relative to the exact same baseline
models trained with (vanilla distillation) and without distillation.

Thus, it is clear from the study with Tiny ImageNet that, i) the distillation effect in CMNN
is quite effective and dominant in producing improved sub-graph performance relative to its
baseline version; ii) ensemble with fewer sub-graphs (�=3 in this case) is very lightweight yet
provides improvement in accuracy.

In this comparative study we have mostly adhered to ensemble or multi-model networks
with parameter budget approximately similar to CMNN. However, it is important to note that
there are currently several contributions that have achieved remarkable accuracy on the Tiny
ImageNet dataset with relatively heavier ImageNet version backbone networks. Such as, the
Deep Ensembles (DE) of PreActResNet-18 (width=2) [156] with parameter counts 89.80M and
134.70M achieve accuracy 68.06% and 69.05% respectively. The backbone of this framework
is ResNet-18 which is itself sufficiently parameterized relative to the light weight baseline in
our experiments (i.e. ResNet-20, 56 and so on). As a result, as the PreActResNet-18 and its DE
versions are scaled up there are substantial growth in parameters [156].
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4.5.4 On Road Risk Classification

Overview

In this section, we give a brief overview on the ORR classification model. To learn more
about this model we recommend referring to our original literature [4].

State-of-the-art object detection models such as YOLO [133] and SSD [13] perform one-
stage object detection by predicting the bounding box through regression and classifying the
object within the bounding box. This task is performed on the feature maps produced by the
CNN backbone and neck networks. Bounding box prediction and classification are not only
limited to one feature map, rather multiple feature maps are leveraged for fine-grained object
localization of various shapes and sizes. Moreover, these detection networks are composed of
multiple blocks of networks, such as backbone, neck, and head networks for dense prediction.
For the purpose of ORR dataset, we take a different approach in literature [4] with a view to
obtaining high-speed performance. Although YOLO [133] provides superior performance, even
the lightest version of these networks are sometimes very expensive for us to run on the mounted
hardware of the mobility scooter. Moreover, for mobility scooter the risk detection task needed
to be performed on a very specific predefined location for which [13,133] can be redundant and
overuse.

Thus, ORR classification model (refer to Figure 4.5) was proposed which concentrates on a
very specific predefined Cell of Interest (COI) and classifies any anomaly or risky events only
on those pre-defined cells. The core working mechanism of the network is in the systematic
segmentation of the frame into certain number of image patches. The input frame is basically
segmented into two kinds of sub-region. The first sub-region has six small squares or cells, each
of size (68,68), and the second sub-region has 16 large cells, each of size (106,106). Next, each
of 22 cells (or COI) is feed to the CNN model to predict (i.e. classification) the class within that
cell. The CNN basically performs multi-label classification for the corresponding cell. Thus, the
whole task boils down to only concentrating on the individual COI through CNN. This property
makes the proposed ORR classification model very suitable for mobile devices. Moreover, any
CNN network of preference can be integrated with the system depending on computational
availability. Usually, the heavier and complex the network is, the better is the performance of
ORR classification model. It is very important to design a backbone network for the block-wise
detection network which is lightweight in terms of parameter count and also performs well in
terms of accuracy.

CMNN as the backbone of ORR classification model

Implementing CMNN as the backbone of the ORR classification model can assist in mea-
suring its practicality both in terms of speed and accuracy. First, we leverage the ORR dataset
to train a 3-branched CMNN-FC network. The ORR dataset is a large dataset, thus we con-
sider the simpler 3-branched CMNN for the experiment (as it is efficient and quick to train).
The CMNN-FC version has shown consistent performance for the CIFAR-10 and CIFAR-100
datasets. We can also see similar performance for the ORR in Table 4.7. Next, we sample the
best performing sub-graph from the 3-branched CMNN-FC and integrate it with the ORR clas-
sification model as the backbone network. In addition, for the comparison, we collect all the
benchmark results on the ORR dataset depicted in the paper [4], and we obtain trained ResNet-
20, 56, and 110 without CMNN framework. We represent the comparison score in Table 4.8.
In Table 4.8 under the source column, ‘ORR’ depicts the highest accuracy obtained so far in
the original literature [4]. The ‘W/O CMNN’ depicts training original ResNet networks without
our learning framework. Lastly, we present the performance of networks when trained with the
CMNN learning framework. CMNN based learning framework produces a network which is
light weight inherently and performs with better accuracy relative to performance depicted in
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original literature [4].
Thus CMNN learning framework can be adopted in the scenario where accuracy and net-

work complexity are very important trade-off. The performance gain relative to the original
network (naive training) is not substantial, however, the gain is consistent for the smaller ver-
sions of the network. That is, smaller networks are more likely to gain from the CMNN learning
framework.

4.6 Limitations and Recommendations

In this section we briefly discuss about limitations of the CMNN, later we provide a few im-
plementation recommendations in-order to minimize and mitigate the effect of these limitations
to a certain extent.

The first limitation that we can easily realize is the training cost of CMNN. It is quite clear
from the Algorithm 4 that, during the second stage of training, for each epoch two networks
undergo training. First the sub-graph training, followed by � branched super-graph fine-tuning.
Thus, the training cost is higher, and the reasons are 1) cost per epoch is (� + 1) times larger;
and 2) number of epochs needed to train the CMNN should be approximately � times larger that
that needed for training the backbone network (to provide equal training chances for all the sub-
graphs). For instance, a single run experiment (with hyper-parameters mentioned earlier) with
three branched CMNN on CIFAR-10/100 datasets takes approximately three days on a single
NVIDIA 2080 RTX GPU.

Mitigation of the first limitation might require training implementation improvement.
Given enough computational budget (specifically more GPU memory) several sub-graphs can
be optimized in parallel during the training phase. In addition, the super-graph can also under-go
fine-tuning in parallel. This implementation although will require relatively more GPU memory,
the training time might get reduced considerately.

The second limitation is related to the sensitivity of CMNN to initial state of the super-
graph network. We know that the training procedure of CMNN is sequential (Round-Robin
fashion), where the super-graph (teacher) and sub-graph (student) are optimized alternatively.
Thus, insufficiently trained (or no pre-training) super-graph can result in either longer conver-
gence time for sub-graph (not guaranteed) or training collapse. This is because, the distillation
of knowledge from poorly trained super-graph will not be effective as the sub-graph will repeat-
edly try to mimic the un-converged output of super-graph network.

Mitigation of the second limitation will require well trained teacher network. Thus, for a
stable training and to avoid collapse it is recommended to sufficiently pre-train the super-graph
network (refer to the first procedure of the Algorithm 4). This approach will not only provide
a well initialized teacher network, but also a good initialization for the sub-graph networks.
Besides stability, we can anticipate that leveraging a third teacher network (assuming very accu-
rate) to distill its knowledge to the super-graph can provide better generalization and also good
accuracy. We believe this is something that is worth exploring in the future work.

4.7 Summary

In this chapter, we have proposed Coupled Modular Neural Network (CMNN) framework.
The framework was built based on the concept of sub-graph and super-graph design pattern.
Each of the sub-graph networks is a standalone ResNet neural network coupled with other sub-
graphs through a shared common backbone. To effectively leverage this complex super-graph
network we propose a Knowledge Distillation based Round-Robin training procedure. In sum-
mary, the training procedure first started by warming up the super-graph network through pre-
training for certain epochs. This step provided all the sub-graph networks with a good weight
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initialization and also a sub-optimal teacher network. Next, the Round-Robin training of the
sub-graph started. During the Round-Robin training phase, each of the sub-graphs gets selected
to be trained through the distillation, where the super-graph was the teacher network. At the end
of sub-graph training, the super-graph gets fine-tuned. The fine-tuning phase produced a slightly
different set of weights for super-graph (teacher network) for the next sub-graph training. Our
extensive empirical study confirms two things, first, through this super-graph/sub-graph design,
we obtain a boosted sub-graph network in terms of accuracy which performs substantially bet-
ter than its naive baseline version and sometimes outperforming its deeper version. Second, our
proposed novel learning algorithm for this framework introduced diversity among the sub-graph
networks which has been reflected through the ensemble performance. The coupling among
sub-graphs through weight sharing, Round-Robin based training and fine-tuning introduced an
additional form of regularization

Super-graph-Sub-graph (or also known as hyper-net, sub-net in several literature) based
architectures design are now getting more attention due to several advantages, such as enabling
online distillation, limiting search space for finding efficient and strong sub-network, and so
on. One of the research direction we would like to take in our future work is that, instead of
feeding a random batch of the dataset to the sub-graph networks during the training phase which
consists of all classes, we would like to feed the dataset with a subset of classes constructed in
a systematic way (Such as our previous work on modular MS-Net [44]). Thus, each sub-graph
can gain specialty in certain aspects of the dataset. HydraNet [67] was implemented based on
this principle, however, HydraNet employs conditional execution of selective branches. We are
curious to explore how each specialized sub-graph can leverage co-distillation to mutually learn
from one another and performs on whole during inference.
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Chapter 5

A Unified Modular Selective Network
Model

The chapter mainly discusses several open issues and supplementary experiments on MS-
Net. First, we shed a light on how several variants of MS-Net of Chapters 2, 3, and 4 proposed
in this dissertation can be unified to have a self-contained framework. Next, we discuss open
issues such as designing expert-aware routers, improving coordination and consistency among
experts through distillation, and so on. In the later part, we provide a list of some possible future
works on MNN.

5.1 Unified MS-Net

Decoupled MNNs are very feasible for leveraging parallel training and testing as stated
in [45] and demonstrated in [130]. But such a system still does not make full and proper utiliza-
tion of parameters. Such as, features learned by the earlier layers by either router or experts are
more or less similar and primary. If these features can be shared among these experts the system
can be made much more efficient. Chapter 4 actually leveraged such a system where a common
block has been shared by several modules. However, these modules were not explicitly enforced
to gain any specialty on a certain subset of data, unlike MS-Net and O-Ms-Net. A promising
research direction would be to unify MS-Net and its variant from all previous chapters to pro-
duce a coupled version of MS-Net, where a router of MS-Net can be fused into CMNN to select
relevant features maps (instead of relevant expert networks). Instead of boosting each sub-graph
network of CMNN in all classes, each sub-graph can be encouraged to specialize in subset data
(confusable set of data). It would be interesting to experiment on how different expert branches
of CMNN leverage the Online-distillation to cooperatively learn and perform on whole.

Such unified framework would basically be a Coupled Modular Selective Network or CMS-
Net with following properties:

• O-MS-Net with shared backbone network, i.e. router and all the experts will share a
common backbone like CMNN. Each branch of CMS-Net will be a specialist in a cer-
tain confusable subset of classes and generalist on rest. This although looks intuitively
promising, several issues should be considered. Such as proper implementation of an
objective function, learning dynamics among the branches, and so on.

• Instead of aggregating the feature vectors from all the sub-graphs (like the CMNN), ag-
gregation can be performed only on selective feature vectors through a router network.
Thus, the router network should learn to select relevant features from several branches of
the network for the input data (or datum).
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Figure 5.1: An illustration of Unified MS-Net.

• Such a network can still be end-to-end trainable (as several modules are coupled) and can
make efficient use of dataset and parameters.

• Controlled redundancy should exist in such a system. Chapter 2 has already shown how
redundancy can significantly improve performance. This property will also increase the
chance of the router choosing at least one correct expert branch (or network).

• Besides ResNet series more state-of-the-art networks should be explored and leveraged
to test the versatility of Coupled MS-Net.

5.2 Open Issues and Experiments

5.2.1 Expert Aware Router (EAR)

The performance of MS-Net or O-MS-Net is dependent on how well the router can route
the input data to the set of trained experts. The upper-bound performance that we can anticipate
is the router’s top-2 accuracy (in case we choose to evaluate only the top-2). However, if the
router makes a mistake in routing the input to its relevant expert networks there is no way of
correction. This is why we introduce controlled redundancy in Chapter 2 in MS-Net, where we
assume if one wrong expert is chosen, we still have chances to correct the prediction through
other redundant expert networks. The choice of experts has been based on the top-n predictions
of the router. But the routing task can also be cast as explicitly choosing expert networks. That
is, instead of relying on routers top-n prediction we can train the router to directly map to
the relevant expert networks. To be more precise, we train a router to score or vote for the most
relevant experts to be leveraged (during the inference phase). Thus, instead of having a SoftMax
output from the router, we leverage the Sigmoid layer providing multiple outputs (for choosing
multiple experts). Thus the proposed router is termed as the Expert Aware Router, as in this
case router is more aware of the experts rather than classes of dataset.

Model PSF top-2 CBO

O-MS-Net-20 72.15 79.13 77.89

Table 5.1: Performance So Far (PSF), top-2, Can be Obtained (CBO) for CIFAR-100
dataset with O-MS-Net, ResNet-20 backbone
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Figure 5.2: Demonstration of inference phase of EAR. In this figure the input datum x has
class ID 3 (i.e the ground truth label). The router is trained to put more confidence on
experts that has non-empty intersection with its set of class ID. In this case router output
True for experts with class ID tags {3, 5} and {2, 3}. The final output is average of selected
experts based on the routers output vector S.

Motivation of EAR

If we look at the empirical results, we will see that gap between the upper-bound perfor-
mance (i.e. the top-2 performance of router) and MS-Net performance is still substantially big.
On the other hand performance of individual expert networks on their corresponding subset is
very accurate. Hence, a more reliable router can assist in reducing this gap. Such router should
be a Expert Aware Router, where router will have prior knowledge on performance of experts.
Let us consider a simple case in Table 5.1. Value under PSF column is the performance that
we have achieved so far by O-MS-Net-20. top-2 is the upper-bound score that can be obtained
at best if and only if the routing and expert accuracy are 100% (which is theoretically impossi-
ble). Lastly, CBO is the score that can be obtained given that the router accuracy is 100%. The
practical goal is to achieve CBO upper bound.

Formulation of EAR

We formulate the EAR as the multi-label classification problem. For the original MS-Net
and its variant the router R(.) output logit vector Z = {z1, z2, .., zC} is run through Softmax
function (refer to equation 3.1) to obtain the probability vector Q = {q1, q2, .., qC}. Based on
this probability vector we select top-n experts to further re-evaluate the input datum. It is clear
that the router in this case is a simple C class classifier, thus it has C output nodes. In the case of
EAR we have K output nodes, where K is the total number of experts we have in our disposal.
It should be noted that the value of K equals C for MS-Net. For the stable MS-Net (chapter 3)
the value of K can vary depending on the difficulty of dataset.

The logit vector from EAR say Z = {z1, z2, .., zK} is run through the Sigmoid function
to obtain score vector S = {s1, ..., sK}. The score vector is later binarized based on certain
threshold (we set threshold to 0.5) to select relevant expert. Thus, if output si equals to value
1 the ith expert is chosen, where si 2 S. Several si can take the value 1 in which case several
experts can be chosen (this is applicable when we have redundant experts). The implementation
of router requires the teacher signal to be transformed to one-hot encoded vector. Let us elabo-
rate through a simple example (refer to Figure 5.4). Suppose we have total 3 experts (i.e. value
of K = 3). Each of the three experts specializes on class {3, 5}, {2, 3} and {0, 8} respectively.
Now, if an input signal x has ground truth label 3 the transformed ground truth label for the
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Table 5.2: Performance of EAR framework on CIFAR-100.

Backbone baseline EAR prec. (%) EAR rec. (%) EAR whole (%) O-MS-Net (%)

ResNet-8 69.50 78.07 64.00 70.30 72.51

ResNet-20 71.44 81.00 70.00 73.25 75.96

EAR during training would be {1, 1, 0}, since class ID 3 exist in the {3, 5} and {2, 3}. This is
one-hot encoded vector which is basically a mapping from the input to corresponding relevant
experts. Hence the task of router boils down to mapping the input to relevant experts from K

choices. While we train the EAR on these transformed dataset the expert training are identical
to the MS-Net or O-MS-Net.

Experiments with EAR To train and test EAR we leverage our previously pre-trained expert
networks of O-MS-Net (refer to the Chapter 3). The backbone network for router and experts
for this experiment are ResNet-20 and 110. We train the EAR (only the router) on the one-hot
encoded training data for 300 epochs with initial learning rate set to 0.1. We use the Stochastic
Gradient Descent (SGD) optimizer which is scheduled to decrease the learning rate by factor
0.1 at steps 80, 160, and 240. We leverage the CIFAR-100 dataset to train and test the EAR
framework. A total of 30 experts are integrated into the framework. Table 5.2 represents the
brief experiment with EAR.

In Table 5.2 column baseline depicts the accuracy of ResNet-20 and 110 on CIFAR-100 test
set. The third and fourth columns respectively depict the router’s precision and recall scores
in selecting the correct experts for the test data. We report the precision and recall score at
threshold of 0.5 in this experiment. Encouraging high precision in this case will force router to
be very selective in picking at least one right expert. Whereas a high recall value encourages
redundancy as router will try to select multiple relevant experts for a single input data. Now as
we perform inference with EAR along with all the experts, we achieve classification score of
70.30 % and 73.25% for ResNet-20 and 110 backbones respectively on the CIFAR-100 dataset.
EAR framework achieves a considerable positive delta compared to the baseline scores.

However, the performance of EAR framework is still fairly lower than the O-MS-Net (con-
sisting of same number of experts and parameters). The performance on EAR framework is
mainly dependent on the accuracy of the router network in selecting the relevant expert. From
Table 5.2 it is clear that the performance of router is not satisfactory. Thus router performance
is the bottleneck in the EAR framework. Apart from the ResNet series network, we have also
explored several multi-layer perceptron (MLP) networks backbone for the router. There is still
a performance gaps compared to the original MS-Net.

5.2.2 Conflict and Co-ordination of Expert Modules

The router of the original MS-Net selects n expert networks for each datum during the infer-
ence phase based on its top-n predictions. It is true that inference through several expert neural
networks based on top-n probable predictions encourages fault tolerance. However, a major
limitation of having several experts is the conflict and competition among the networks. The
effect of this conflict is not empirically significant but it holds back the network from achieving
the anticipated performance. Such as performance close to routers top-n accuracy. We know
that each of the experts is biased towards its own subset class (because we sample more training
data from the subset classes during the training phase). In other words, the experts compete
against each other by putting more softmax confidence on its own designated classes. We are
currently exploring two key ideas to resolve this conflicting behaviour of experts. The first ap-
proach is the simplest one which we term One Class MS-Net. It is a data-centric approach. The
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Figure 5.3: Dataloader construction for the One-Class-MS-Net. Data x is fed to router
which is assigned certain confidence by the router network. The data x is afterward as-
signed to n dataloaders based on top-n prediction by router.

Figure 5.4: Distillation based training of expert neural networks. The original MS-Net
(chapter 2) and O-MS-Net (chapter 3) trains each experts in stochastic matter on samples
drawn from the subset classes (or known as the expert class indexes) and all classes. In this
approach samples are drawn from three dataloaders, where dataloader subi encourages
co-ordinance among experts.

109



CHAPTER 5. A UNIFIED MODULAR SELECTIVE NETWORK MODEL

Table 5.3: Performance of One-Class MS-Net with varying backbone and top-n.

Backbone 1-C-MS-Net-2 (%) 1-C-MS-Net-3 (%) O-MS-Net-2 (%) O-MS-Net-3 (%)

ResNet-8 93.04 93.37 92.20 93.61

ResNet-20 95.50 96.70 95.90 96.45

second approach is distillation-based approach where we introduce a novel dynamic learning
system known as the Selective Expert Ensemble Distillation or in short SEED. In the following
sub-section, we will briefly explain them.

Data-Centric Approach

The key idea is to train a set of experts on common subset of training data such that these set
of experts have consistent agreement during the test phase. We prepare these subset of training
data by leveraging the router network. The idea is very similar to ICC based data partition
where we first take the routers top-n prediction labels for an input datum. For the ease of
understanding let us assume that the top-n predictions are p1, p2 and p3. Next, we make n

copies of the input datum and assign each of the copy to n dataloaders respectively. We denote
the dataloaders as S = {sub1, sub2, .., sub3}, where each subi consists of samples designated
to the corresponding expert ei.

After we construct subset of samples (it should be noted that each subset si 2 S in this ex-
periment is composed of training samples not classes indexes) we train the experts on training
data sampled uniformly from these three dataloaders, i.e. suball, subi, subexp. As a result of
these training method experts are more coherent with each other that is reflected in the brief
experiments in Table 5.3. Previously MS-Net struggled with conflicting experts as we increased
the number of expert evaluation. In this proposed approach the conflicting behaviour is moder-
ately resolved, as we can see the 1-Class-MS-Net (with 3 experts per sample) almost matches
performance with O-MS-Net (with 1 expert per sample). In addition, increasing top-n also
exhibit improvement in performance.

Although the current data centric approach resolved conflict among experts, this is still a
open research where we can improve the coordination among experts to extract more perfor-
mance from the MS-Net framework. The efficacy and versatility of this data-centric approach
for modular neural networks is yet to be explored in detail. We are currently running more
experiments.

Distillation Approach

In our studies so far, distillation was one of the key strategies in training modular neural
networks. Indeed, we have proposed few variants of distillation-based cost function to train
and regularize the expert networks. Let us briefly summarize the distillation-based approaches
before we introduce the new idea.

• In chapter 2 and 3 for the expert training we leverage a static router network as the teacher
network. The router is relatively weak as it shares the same architecture as the expert
network. However, the main task of distillation is to preserve the routers generalized
knowledge in the experts besides gaining expertise on its subset data. Because of the
distillation term in loss function the experts can avoid over-fitting on the subset data.

• In chapter 4 we introduce a different form of distillation, where the teacher network is not
static. During each iteration the teacher network weight is perturbed slightly. Thus, the
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Figure 5.5: Training demonstration of expert networks with static vs. dynamic teachers.
Here teacher network is the ensemble of several experts. Ensemble of experts (teacher)
can change depending on which expert (student) we are training. In this figure x is the
input and y is the ground-truth label, sg is the stop gradient operation.
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teacher network is slightly different at each iteration, hoping that it encourages diversity
during training.

Now, one of the key limitations of chapter 2 and 3 distillation-based approach is that the
teacher network is static and distillation only occurs from the static teacher to experts. There are
no expert to expert communication during training, or in order words distillation from expert to
expert. A simple question that may arise, why do experts need co-distillation among themselves?
The answer is, during the inference phase the aggregated SoftMax confidence by several experts
are not calibrated. That is, the output by the individual experts can compete. Moreover, experts
are not aware of each other’s confidence. Thus, we propose a new variant of co-distillation
loss that encourages consistency among experts. In the following section we provide a detailed
overview.

Selective Expert Ensemble Distillation

The key idea is, instead of leveraging the output of static teacher we leverage the ensemble
of experts and router (aggregated softmax) as the teacher signal. The experts that participate in
the distillation term depend on the current expert we are training. For clear understanding let us
refer to a visual example. In figure 5.5 the row static depicts the distillation approach adopted
in chapter 2 and 3. In case of static teacher, the teacher is the router network (R). In dynamic
case, we leverage ensemble of experts together with the router network. For instance, in figure
5.5 based on the ICC we assume that experts e1, e2 and e3 co-occur together frequently. Thus,
experts e1, e2 and e3 participate together during the training phase. When we are training expert
e2 we leverage ensemble of e3, e1 and R as the teacher signal. The error signal during training is
back-propagated through e3 only, while rest part of the graph is detached from back-propagation
calculation. The rest of experts e1 and e2 are trained in similar way in the next iteration.

In figure 5.6 we provide a complete framework of the proposed selective ensemble distil-
lation. In the first step, we train expert ei through distillation from the aggregated output of
selected ensemble of experts (by the MS-Net router). In the second step, once training of ei
is completed the trained expert is pushed back to the expert pool (which also acts as one of
the teacher network in certain iteration), and next expert ei+1 in the queue is pop out. In third
step, expert ei+1 is trained in similar fashion as step 1. These three steps should be performed in
Round-Robin fashion until all the C experts are sufficiently trained or converged. Once we com-
plete training all the experts in queue we will obtain C trained weights. The rest of procedure
(inference phase) is identical to MS-Net.

An important question is, what do we except from experts trained in such fashion? In short,
the proposed distillation based training encourages the SoftMax confidence or the output dis-
tribution of frequently participating experts to be coherent and stable. The outcome of this
approach is actually implicitly similar to the data-centric approach. In data-centric approach
frequently co-occurring experts observe or pay attention to similar data to achieve consistent
output. In case of distillation based approach frequently co-occurring experts shares the Soft-
Max distribution through co-distillation to achieve consistent output.

Experiments with SEED

Table 5.4 represent brief experiments with the proposed selective expert ensemble distilla-
tion. We would like to state that the results reported in table 5.4 are not performed through
carefully selected (or grid searched) hyper-parameters. Moreover, we adhere to single run for
quick experiments. We train SEED using the 1-Class-MS-Net strategy, thus we have C experts
in total for C classes. For demonstrating the effect of teacher network we depict the performance
of O-MS-Net with similar backbone networks and same number of expert networks. SEED-1-
Class model performs considerately better than O-MS-Net for both top-2 and top-3 based router
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Figure 5.6: Selective Expert Ensemble Distillation. In step 1, train current experts through
distillation from the ensemble of experts (selected through the router). In step 2, push
back the trained expert and pop out a new expert. In step 3, train the pop out expert.
We perform step 1 to step 3 in iterative fashion until we are satisfied with the collective
performance of the experts.

evaluation. SEED-1-Class requires leveraging more experts than O-MS-net. Thus, we can an-
ticipate slightly better results. However, leveraging several experts can introduce conflict, thus
hurting performance. The ensemble distillation assists in resolving this conflict. We can observe
that increasing top-n evaluation now consistently improve performance.

5.3 Future Works

Modular Neural Networks are now getting high preference in neural computation as it opens
up the possibility to substantially increase the capacity of neural networks without any explosion
in parameters during the inference phase. The inherent modularity gives freedom to explore a
range of efficient design possibilities and use cases. Such as, efficient design of router and ex-
perts’ architecture; learning routing policy to smartly co-ordinate experts; incremental learning
or life-long learning; multi-modal modular architecture; efficient implementation on hardware

Table 5.4: Performance of Selective Expert Ensemble Distillation (SEED) framework (refer
to figure 5.6) on CIFAR-10 dataset (with ResNet-8 as backbone). The meaning of SEED-1-
Class is Selective Expert Ensemble Based Distillation with 1-Class MS-Net variant. 1-Class
depicts that each expert in the framework is expert on one class only, and generalist on rest
of classes. Hence, total C experts in the framework.

Model teacher top-n acc. (%)

SEED-1-Class selective ensemble 2 93.50

SEED-1-Class selective ensemble 3 94.54

O-MS-Net static router 2 92.20

O-MS-Net static router 3 93.61

113



CHAPTER 5. A UNIFIED MODULAR SELECTIVE NETWORK MODEL

and so on. In the following bullet points we list some future works that we plan to explore (or
anticipate future researchers to consider) as follows:

• The architecture of experts and routers leveraged in our studies are not necessarily the
most appropriate one. Both router and experts share the same architecture in our study.
However, constructing architecture of experts based on its designated dataset (subset of
expert data) will be more appropriate. Such architecture can be designed either through
leveraging human heuristics and prior knowledge or through automated search (such as,
evolutionary search, random search, R-4 rule and so on). Searching for appropriate ar-
chitecture can further simplify expert networks for easy tasks and complicated (deeper)
architecture for difficult tasks. Optimization of router network is also important.

• We leverage routers SoftMax confidence to route the input datum to the pre-trained ex-
perts. However, the choice of routing policy is still open research and several rout-
ing policies can be adopted. Such as, learning routing task end-to-end through back-
propagation [130]; casting the task of routing as a reinforcement learning problem [157]
(the reinforce algorithm optimizes to learn policy that encourages only sparse activation
of few units in whole network); learning routing task and expert through optimizing max-
imum log likelihood function [158] and so on. These strategies are yet to be explored in
the context of designing Modular Selective Network.

• As we know experts of MS-Net (of chapter 2 and 3) are independent, which implies that
these networks can be trained and tested in parallel. Training of MS-Net in multiple GPU
in parallel is an interesting implementation challenge that we look forward to exploring.
In addition, optimization of sub-graph networks in parallel can also be achieved for Chap-
ter 3. The learning dynamics of several sub-graphs together with super-graph in parallel
is a research direction worth exploring.
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Chapter 6

Conclusion

So far, we have seen that modular design for Deep Neural Networks (DNNs) is a promising
direction to achieve an accurate and efficient image classification system. Such as, making
neural networks modular requires very few parameters to learn complex tasks as opposed to
single complex networks. Moreover, it is computationally expensive to train a deep and complex
neural network in a single GPU machine. Loading a large DNN in a single lab-level GPU
(say NVIDIA GTX 1080) indeed sometimes runs out of memory (error such as RuntimeError:
CUDA out of memory.). On the other hand, when we have a modular neural network, training
each module sequentially in a single GPU is easily manageable. This is because each of the
modules is a lightweight DNN with substantially low parameters (and layers). It is true that
as the number of modules in the network increases training time increases proportionally. But
during test time the number of modules leveraged and the total number of parameter costs per
sample are still substantially lower than deeper and complex networks.

In this dissertation, we have proposed a novel modular neural network architecture termed
Modular Selective Neural or MS-Net. Through several theoretical analyses and empirical stud-
ies with MS-Net and its subsequent variants, we have shown that modular neural networks
achieve performance comparable (or sometimes outperform) to the complex monolithic DNNs.
In the following paragraphs, we conclude the dissertation in a chapter-wise manner.

In Chapter 2, we have first introduced MS-Net for the visual object recognition task. For a
C-class classification problem, the network consisted of one router and exactly C expert net-
works. The key idea of the research has been to further re-evaluate the top-n most probable
predictions of the router by leveraging these expert neural networks. A novel systematic Round-
Robin-based data partitioning technique was introduced for MS-Net, where we could explicitly
control the redundancy of classes occurring in the constructed subset of the dataset. This prop-
erty has given the overall network with boosted performance with no significant parameter cost.
The research has also proposed a stochastic objective function for the expert networks which has
been equipped with the Knowledge-Distillation (KD) term that facilitated alternative training on
subset data and the whole set of data. This alternative switching during the training phase has
been regulated by clamping a Bernoulli Random variable to each loss function term. Optimizing
this loss function has resulted in a well generalized expert network. In summary, we have shown
that, with a very limited parameter budget and simple Deep Neural Network (DNN) backbone,
our network has achieved performance comparable or sometimes equivalent to more complex
monolithic DNNs.

Chapter 3 is the successor of the originally proposed MS-Net where we have optimized the
network by constructing expert neural networks for only a set of classes that are often con-
fused or mistaken by the router network. These confusable set of classes have been obtained by
leveraging the SoftMax information of the router, whose top-n probability distribution exhibit
a certain degree of visual similarity. An interesting observation is that these confusable sets of
classes are consistent irrespective of the architecture of the router networks. During the infer-
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ence phase, experts were leveraged when routers top-n predictions have non-zero overlapping
with confusing classes. Thus, only relevant experts were utilized during inference. This ap-
proach has substantially reduced per sample expert usage, yet performing with neck-and-neck
accuracy with original MS-Net. O-MS-Net has not leveraged any redundancy during inference
as the network directly addresses the confusable set of classes. However, the study did not advo-
cate getting rid of redundancy. In fact, redundancy is very important to build a more reliable and
error-tolerant neural network system. In chapter 5 we actually discussed how well-regularized
redundancy can make such a network more accurate.

Lastly, in Chapter 4, we demonstrated that a modular neural network is best utilized when
coupled through a shared backbone. This allowed efficient use of datasets and parameters.
Thus a generalized and efficient version of MS-Net has been proposed. The generalized version
encouraged parameter sharing among several modules through a shared common backbone,
hence the network has been termed Coupled Modular Neural Network (CMNN). The framework
has been built based on the concept of super-graph and sub-graph design, where each of the
sub-graphs is a standalone neural network coupled with other sub-graph networks within the
framework. All the sub-graphs together form a complex and wide super-graph network. To
effectively leverage this complex super-graph network an online knowledge-distillation-based
Round-Robin training procedure was introduced. In conclusion, the training procedure first
started by warming up the super-graph network through pre-training for certain epochs. This
step ensured that all the sub-graph networks’ weights are properly initialized. The next stage is
the Round-Robin training of the sub-graphs. During the Round-Robin training phase, each of
the sub-graphs gets selected to be trained through the co-distillation, where the super-graph was
the teacher network. At the end of sub-graph training, the super-graph gets fine-tuned. The fine-
tuning phase produced a slightly different set of weights (different modes in parameter space) for
the super-graph (teacher network) for the next sub-graph training. Extensive empirical studies
confirm two things, first, through this super-graph/sub-graph design, we obtained sub-graph
networks which performed substantially better than its naive baseline version and sometimes
outperformed its deeper version. Second, the proposed novel learning algorithm introduced
diversity among the sub-graph networks which produced strong ensemble performance.

A big picture of our contribution has been depicted in Figure 6.1. The Figure represents im-
portant common properties and contrasts among the versions of MS-Net of the aforementioned
Chapters.
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