

Abstract

Lossless data compression is a topic of great research interest in the field of computing,
especially for applications that depend on low bandwidth connections and limited storage. There
are various types of images, and many algorithms are used to compress these losslessly. The
performance of a lossless data compression algorithm depends on the compression ratio (CR),
encoding time (ET), and decoding time (DT). First, a transformation or prediction technique is
applied to an image, and then an entropy coding method for image compression.

In this thesis, we study and analyze the entropy coding techniques and recommend an en-
tropy coding technique as the best. Also, we show which parts of the algorithms need to be
improved.

Most of the research works compare the state-of-the-art techniques based on compression
ratio, encoding time, or decoding time to evaluate the effectiveness of an algorithm. While
a higher compression ratio is more important for some applications, others may require faster
encoding or decoding, or both. Alternatively, each of the three parameters can be equally signifi-
cant. Therefore, choosing an optimal algorithm from many algorithms based on an application’s
requirements is a significant challenge. This thesis proposed a model (PCBMS) that predicts an
algorithm as the best by analyzing the data from each perspective. However, a better prediction
depends on making a good balance between compression ratio, encoding, and decoding times.
Therefore, we proposed an alternative approach to PCBMS that can balance the parameters
better than PCBMS and gives more accurate predictions.

In terms of text compression, many techniques use Burrows-Wheeler transform and run-
length coding as part of compression. We present a different approach for text compression that
uses keys instead of the run-length technique during the coding of characters’ length.

We also discuss the state-of-the-art lossless data compression techniques in detail and finally
present some problems as future research directions.

Acknowledgment

First and foremost, I am incredibly grateful to my supervisor, Prof. Mohamed Hamada, for
his invaluable advice, continuous support, and patience during my Ph.D. study. His immense
knowledge and great experience have encouraged me in my academic research and daily life. I
am also grateful to him for his valuable feedback and suggestions to achieve my research goals.

I am highly indebted to pass my heartfelt thanks to JASSO (Japan Student Services Organi-
zation) for the financial support that has made my study and life in Japan a wonderful time.

My gratitude goes to my supervisory committee member Prof. Jungpil Shin, Prof. Rentaro
Yoshioka, and Prof. Yutaka Watanobe for their valuable comments and feedback on this disser-
tation. I want to thank all my friends, lab fellows, and companions in this journey.

Finally, I would like to express my gratitude to my parents, my wife, and my children.
Without their tremendous understanding and encouragement in the past few years, completing
my study would have been impossible.

v

Dedicated to my family.

vi

Table of Contents

Chapter 1 Introduction 3
1.1 Background . 3
1.2 Objectives . 5
1.3 Contributions . 6

1.3.1 List of Publications . 6
Journals . 6
Conferences . 6

1.3.2 Choosing the best entropy coding technique (Problem 1-3) 7
1.3.3 Selecting an Optimal Lossless Image Compression Technique (Problem

4) . 7
1.3.4 Impact of the state-of-the-art techniques (Problem 5-12) 7
1.3.5 Develop a lossless text compression method (Problem 13) 7

1.4 Thesis organization . 8

Chapter 2 Data Compression 10
2.1 Introduction . 10
2.2 How data is compressed . 11
2.3 Measurement Standards . 17
2.4 Summary . 17

Chapter 3 Transformation Techniques 19
3.1 Introduction . 19

3.1.1 Discrete Wavelet Transform (DWT) 19
Haar Wavelet . 20
Daubechies-4 Wavelet . 21

3.1.2 Burrows–Wheeler Transform (BWT) 23
3.2 Summary . 24

Chapter 4 Lossless Data Compression Techniques 26
4.1 Introduction . 26
4.2 Entropy Coding Methods . 26

4.2.1 Run-Length Coding . 26
4.2.2 Shannon-Fano Coding . 26
4.2.3 Huffman coding . 26
4.2.4 Lempel–Ziv–Welch (LZW) Coding 27
4.2.5 Arithmetic Coding . 27

4.3 Predictive Coding . 27
4.3.1 Lossless JPEG . 28
4.3.2 Joint Photographic Experts Group-Lossless Standard (JPEG-LS) 29
4.3.3 Portable Network Graphics (PNG) . 30

vii

4.3.4 Context-Based, Adaptive, Lossless Image Codec (CALIC) 30
4.3.5 WebP . 31
4.3.6 Free Lossless Image Format (FLIF) 31

4.4 Transform Coding . 31
4.4.1 JPEG 2000 . 32
4.4.2 JPEG XR (JPEG extended range) . 33
4.4.3 AV1 Image File Format (AVIF) . 35

4.5 LZ77 Algorithm . 35
4.6 Summary . 35

Chapter 5 Entropy coding techniques: A Survey 39
5.1 Introduction . 39
5.2 Entropy Coding Techniques . 41

5.2.1 Run-Length Coding . 41
Analysis of Run-length Coding Procedure 43

5.2.2 Shannon-Fano Coding . 43
Analysis of Shannon-Fano Coding . 44

5.2.3 Huffman coding . 44
Analysis of Huffman Coding . 44

5.2.4 Lempel–Ziv–Welch (LZW) Coding 46
Analysis of LZW Coding . 46

5.2.5 Arithmetic Coding . 46
Analysis of Arithmetic Coding Procedure 50

5.2.6 Experimental Results and Analysis 50
5.3 Summary . 63

Chapter 6 PCBMS: A Model to Select an Optimal Lossless Image Compression
Technique 65
6.1 Introduction . 65
6.2 Motivation and Problem Formulation . 67
6.3 Proposed Model . 68
6.4 Experimental Results and Analysis . 70
6.5 Tests to confirm the authenticity of the proposed method 70
6.6 Conclusions . 72

Chapter 7 The Impact of State-of-the-Art Techniques for Lossless Still Image Com-
pression 78
7.1 Introduction . 78
7.2 Experimental Results and Analysis . 80

Analysis based on usual parameters 80
Analysis based on our developed technique 91

7.3 Summary . 94

Chapter 8 Burrows–Wheeler Transform Based Lossless Text Compression Using
Keys and Huffman Coding 103
8.1 Introduction . 103
8.2 Previous Works . 104
8.3 Propose Method . 105
8.4 Experimental Results and Analysis . 106
8.5 Summary . 115

Chapter 9 Conclusions and Future Work 118

viii

List of Figures

Figure 2.1 Steps used to convert a continuous tone image to a digital one 10
Figure 2.2 An 8-bit greyscale image . 11
Figure 2.3 A 16-bit greyscale image . 11
Figure 2.4 An 8-bit RGB image . 12
Figure 2.5 A 16-bit RGB image . 12
Figure 2.6 Redundant data in an image . 12
Figure 2.7 An image with the corresponding pixel values 13
Figure 2.8 Comparison of histograms before and after application of a predictor . . . 15
Figure 2.9 Psycho-visual redundant image with grey levels 15
Figure 2.10Basic block diagram of lossless image compression 16

Figure 3.1 Basic block diagram of 2D wavelet transform 20

Figure 4.1 General Block Diagram of the Predictive Coding for Lossless Data Com-
pression . 28

Figure 4.2 Block diagram for the JPEG-LS encoder [1] 29
Figure 4.3 A General Block Diagram of Transform Coding 32
Figure 4.4 (a) JPEG 2000 encoder; (b) dataflow [2] 33
Figure 4.5 Dyadic decomposition of a single tile 34
Figure 4.6 JPEG XR encoder [84] . 35
Figure 4.7 JPEG XR decoder [80] . 36
Figure 4.8 AV1 encoder . 37

Figure 5.1 General block diagram of an image compression procedure. 42
Figure 5.2 Encoding procedure of Shannon-Fano 45
Figure 5.3 Huffman tree for encoding . 45
Figure 5.4 Arithmetic encoding procedure. 48
Figure 5.5 Arithmetic decoding procedure . 51
Figure 5.6 Original image list. 51
Figure 5.7 Encoding time comparison of the images. 54
Figure 5.8 Decoding time comparison of the images. 56
Figure 5.9 Average code length comparison of the images. 58
Figure 5.10Comparison of compression ratio. 60
Figure 5.11Efficiency comparison. 61
Figure 5.12Decompressed image list. 62

Figure 6.1 The graphical representation of Table 6.1 68
Figure 6.2 The outcomes of the proposed method for the Table 6.1 72
Figure 6.3 The outcomes of the proposed method for the ImageNet64 dataset of the

Table 6.2 . 73
Figure 6.4 The outcomes of the proposed method for the Open Images dataset of the

Table 6.2 . 73
Figure 6.5 The outcomes of the proposed method for the Table 6.3 74

ix

Figure 6.6 The outcomes of the proposed method for the Table 6.4 74
Figure 6.7 The outcomes of the proposed method for the Table 6.5 76
Figure 6.8 The outcomes of the proposed method for the Table 6.6 76

Figure 7.1 Examples of 8-bit greyscale images . 81
Figure 7.2 Encoding times for 8-bit greyscale images 82
Figure 7.3 Decoding times for 8-bit greyscale images 82
Figure 7.4 Examples of 8-bit RGB images . 83
Figure 7.5 Comparison of encoding times for 8-bit RGB images 84
Figure 7.6 Comparison of decoding times for 8-bit RGB images 84
Figure 7.7 Examples of 16-bit greyscale images . 86
Figure 7.8 Comparison of encoding times for 16-bit greyscale images 86
Figure 7.9 Comparison of decoding times for 16-bit greyscale images 87
Figure 7.10Examples of 16-bit RGB images . 88
Figure 7.11Comparison of encoding times for 16-bit RGB images 88
Figure 7.12Comparison of decoding times for 16-bit RGB images 89
Figure 7.13Comparison of average compression ratios 90
Figure 7.14Comparison of average encoding times 90
Figure 7.15Comparison of average decoding times 92
Figure 7.16Two-parameter GTP for 8-bit greyscale images 95
Figure 7.17Two-parameter GTP for 8-bit RGB images 96
Figure 7.18Two-parameter GTP for 16-bit greyscale images 97
Figure 7.19Two-parameter GTP for 16-bit RGB images 98
Figure 7.20Three-parameter GTP . 99

Figure 8.1 Comparison of letters’ frequency in the texts. 107
Figure 8.2 The highest frequencies of the same consecutive characters in the texts

after the Burrows–Wheeler transform. 108
Figure 8.3 Frequency comparison of different patterns of different lengths. 109
Figure 8.4 The general block diagram of the proposed encoding technique. 110
Figure 8.5 The general block diagram of the proposed decoding technique. 110
Figure 8.6 Graphical representation of the compression ratios. 112
Figure 8.7 Encoding time comparison. 113
Figure 8.8 Decoding time comparison. 114

x

List of Tables

Table 2.1 Variable length coding for the image in Figure 2.7 14

Table 4.1 Causal template . 28
Table 4.2 Predictor for Lossless JPEG . 29
Table 4.3 Predictor for PNG-based image compression 30

Table 5.1 The results of Shannon-Fano encoding procedure 43
Table 5.2 Huffman encoding procedure . 44
Table 5.3 LZW encoding procedure. 47
Table 5.4 Average code length and compression ratio. 48
Table 5.5 Initial dictionary. 48
Table 5.6 The decoding procedure of LZW coding 49
Table 5.7 Encoding time comparison. 53
Table 5.8 Decoding time comparison. 55
Table 5.9 Comparison of average code length. 57
Table 5.10 Comparison of compression ratio. 59

Table 6.1 Comparison of the average bpsp, encoding and decoding times on the
DIV2K dataset [3] . 68

Table 6.2 Comparison of the average bpsp, encoding and decoding times on Ima-
geNet64 and Open Images datasets [4] 71

Table 6.3 Random dataset 1 . 74
Table 6.4 Random dataset 2 . 75
Table 6.5 Random dataset 3 . 75
Table 6.6 Random dataset 4 . 76

Table 7.1 Comparison of compression ratios for 8-bit greyscale images 81
Table 7.2 Comparison of compression ratios for 8-bit RGB images 83
Table 7.3 Comparison of compression ratios for 16-bit greyscale images 87
Table 7.4 Comparison of compression ratios for 16-bit RGB images 89
Table 7.5 Summary of results . 100

Table 8.1 Comparison among compression ratios 116

xi

List of Abbreviations

Abbreviation

BCH

LZW

ANN

DCT

iDCT

DTT

iDTT

ROI

IWLCA

DWT

DFrFT

CR

ET

DT

RGB

SCIE

IEEE

BWT

HSV

CMYK

HDTV

SHV

GB

TB

HDDs

Gbps

AIC

DFT

MSE

SNR

Definition

BoseChaudhuri-Hocquenghem

Lempel–Ziv–Welch

Artificial Neural Network

Discrete Cosine Transform

Integer Discrete Cosine Transform

Discrete Tchebichef Transform

Integer Discrete Tchebichef Transform

Region of Interest

Improved Wavelet Lossless Compression Algorithm

Discrete Wavelet Transform

Discrete Fractional Fourier Transform

Compression Ratio

Encoding Time

Decoding Time

Red,Green, and Blue

Science Citation Index Expanded

Institute of Electrical and Electronics Engineers

Burrows–Wheeler Transform

Hhue, Saturation, and Value

Cyan, Magenta, Yellow, and Key (black)

High-Definition Television

Super Hi-Vision

Gigabyte

Terabyte

Hard Disk Drives

Gigabits per second

Average Information Content

Discrete Fourier Transform

Mean Squared Error

Signal-to-noise ratio

1

Abbreviation

PSNR

MSD

DC

AC

JPEG

DPCM

MED

JPEG-LS

LOCO-I

PNG

GIF

CALIC

GAP

FLIF

EBCOT

JPEG XR

PCT

QF

POT

AVIF

SVD

TIFF

PDF

MRI

RLE

OVP

GTP

LZMA

PCBMS

bpsp

CBP

HEVC

Definition

Peak signal-to-noise ratio

Mean Squared Deviation

Transform Coefficient

Joint Photographic Experts Group

Differential Pulse Code Modulation

Median Edge Detector

Joint Photographic Experts Group-Lossless Standard

Low Complexity Lossless Compression for Images

two-sided geometric distribution

Portable Network Graphics

Graphics Interchange Format

Context-Based, Adaptive, Lossless Image Code

Gradient-adjusted predictor

Free Lossless Image Forma

Embedded block coding with optimal truncation

JPEG extended range

Photo core transform

Quantisation factor

Photo overlap transform

AV1 Image File Format

Singular Value Decomposition

Tag Image File Format

Portable Document Format

Magnetic resonance imaging

Run-length encoding

Overall performance

Grand total performance

Lempel–Ziv–Markov chain algorithm

Parameter combination-based method selection

Bits per sub pixel

Context-based bit-plane codec

High Efficiency Video Coding

2

Chapter 1

Introduction

Digital data compression is an interesting feature of today’s advanced technology for stor-
age, transmission, and representation of autonomous machine perception. This chapter has
several objectives: (1) the background of the digital data compression; (2) our objectives and
contributions.

1.1 Background

The demand for digital information has increased dramatically over the past few decades
with the development of multimedia technology. Advances in technology have largely increased
the use of digital imagery. Still images are widely used in applications like digital radiography,
scientific imaging, zip file compression, museums/art galleries, medical, satellite images, etc.
Digital images consist of a huge amount of data. Reducing image size is becoming increasingly
important for both storing and transmitting digital images as they get more applications. Image
compression is a mapping from a higher-dimensional space to a lower-dimensional space. Image
compression plays a vital role in several multimedia applications, such as image transmission
and storage. The primary goal of image compression is to represent an image with a minimum
number of bits of acceptable image quality. All image compression techniques try to eliminate
statistical redundancy and use conceptual irrelevance while minimizing data volume as much as
possible.

With the advancement of the Internet, teleconferencing, multimedia, and high-definition
television technologies, the amount of information that computers handle has increased signifi-
cantly over the past few decades. Thus, storage and transmission of the digital image component
of multimedia systems is a significant problem. The amount of information needed to present
images at a satisfactory level of quality is extremely high. High-quality image data requires
a large amount of storage space and transmission bandwidth, which sometimes current tech-
nology is technically and economically incapable of managing. One possible solution to this
problem is to compress data to reduce storage space and transmission time.

The amount of information transferred over the internet doubles every year, and a consid-
erable portion of that information contains images. Reducing the bandwidth requires of any
device will result in significant cost reductions and make the device more affordable. Image
compression offers a way to represent an image more compactly so that images can be stored
compactly and transmitted quickly. The images are highly coherent meaning there is redundant
information here. Compression is gained through redundancy and irrelevancy reduction. Re-
dundancy means duplication and irrelevancy means the part of the image information that the
human visual system will not notice. Every data compression technique compresses data in two
steps: transformation/prediction and then entropy coding.

Alarabeyyat et al. in [5] proposed a lossless image compression technique using Bose-
Chaudhuri-Hocquenghem (BCH) and Lempel–Ziv–Welch (LZW) to improve the compression

3

ratio. They showed that the proposed algorithm provided a better compression ratio of 11.65%
and 28.66% compared to LZW and Huffman coding. In [6], a lossless image compression
method using an artificial neural network (ANN) and Huffman coding was proposed. The com-
pression procedure was tested by three datasets, namely CLEF med 2009, COREL1 k, and
standard benchmarking images. The proposed strategy clearly showed better compression ra-
tios compared to the other techniques mentioned. OwenZhao et al. proposed a scheme called
super-spatial structure prediction for lossless image compression in [7]. They were motivated
by motion prediction in video coding. They showed that the proposed method outperforms the
state-of-the-art lossless image compression techniques in terms of compression ratio. Discrete
Cosine Transform (DCT) is a standard transform technique used in lossy image compression,
and integer Discrete Cosine Transform (iDCT) is used for lossless compression. On the other
hand, Discrete Tchebichef Transform (DTT) is an orthogonal transform used for lossy image
compression. In [8], Xiao et al. introduced a lossless image compression technique called inte-
ger DTT (iDTT). The article showed that the iDTT method provides higher compression ratios
than iDCT. In [9], Zuo et al. proposed a medical image compression technique based on the
region of interest (ROI). In this paper, an image is divided into two parts: ROI and non-ROI
regions. A lossless compression technique is applied on the ROI regions, and a wavelet-based
lossy compression algorithm is applied on the non-ROI regions. The proposed approach is com-
pared to JPEG 2000, JPEG-LS, and CALIC. It showed better results in terms of compression
ratio than the methods mentioned. The wavelet transform divides an image into different but
interrelated multiresolution and multi-level sub-bands that help to reduce an image more. Jio Li
introduced Hilbert and singular value truncating to wavelet and proposed an Improved Wavelet
Lossless Compression Algorithm (IWLCA) in [10]. It was showed in the paper that the pro-
posed technique provides better compression than JPEG-LS and JPEG 2000. Naveen Kumar et
al. proposed a lossless image compression algorithm using a combination of two-dimensional
Discrete wavelet transform (DWT) and one-dimensional discrete fractional Fourier transform
(DFrFT) in [11]. In the first stage of the method, an image is divided into low and high fre-
quency sub-bands by applying the Daubechies wavelet filter. Secondly, level 1 quantization is
applied for both low and high frequency sub-bands. The fractional Fourier transform is used to
compress the low-frequency sub-bands, and high-frequency sub-bands are reduced by dropping
zeroes and storing only nonzero blocks and its position. The compressed wavelet coefficients
are further compressed using of level 2 quantization. Finally, arithmetic encoder followed by
run-length coding is applied for encoding. The article showed that the proposed algorithm has
significantly improved the compression ratio compared to DFrCT and DFrST. A novel predic-
tion technique was presented in [12] that treats image data as an interleaved sequence produced
by various sources. Finally, a lossless color image compression technique was proposed using
the prediction technique combining with template-matching prediction and a blending approach.
The proposed method also showed a better compression performance for different types of color
images.

There are many entropy coding techniques. Different compression algorithms use different
types of entropy coding techniques. In our studies, we have seen that a good entropy coding
technique can give a good compression performance. Various compression algorithms show
different performances in different types of images. From the above study, we have seen that
although almost all the research works have generally evaluated each algorithm based on the
compression ratio [13–26], the compression speed of the algorithm is also an important issue.
While compression ratios are essential for some applications, there are many algorithms where
encoding or decoding speed is necessary. Alternatively, in some applications, all three or any
two are very important. So, it is essential for users to know which compression algorithm
will work best on which type of image, and that is very challenging. Our study found that
text compression algorithms that use run-length coding for compression can not show a good
compression performance because the use of run-length coding increases the number of unique

4

1.2. OBJECTIVES

symbols and the number of characters during the length coding.

1.2 Objectives

This thesis deals with data compression that addresses four problems. The first, second,
and third problems are related to choosing the best entropy coding technique, calculating the
impact of the state-of-the-art lossless data compression techniques, and alternative key-based
text compression technique instead of using run-length based method.

1. Choosing an entropy coding technique

(a) Problem 1: Which is the best entropy coding technique?

(b) Problem 2: What are the limitations of the entropy coding techniques?

(c) Problem 3: Which part of the algorithms needs to be improved?

2. Selecting an Optimal Lossless Image Compression Technique

(a) Problem 4: The performance of a lossless data compression algorithm depends on
all parameters (bpp, encoding and decoding time) and does not singly depend on
any of them. Some techniques require more time for encoding than for decoding.
Some provide lower bpp than others. Therefore, the most important questions are:
1. which technique is better when any two of the parameters (compression ratio,
encoding, and decoding times) are equally significant for an application, or when all
parameters are equally valuable?; 2. is there any such technique that works well for
all types of data? Therefore, which technique is better for eight-bit RGB, eight-bit
grayscale, 16-bit RGB, 16-bit grayscale or binary or indexed images, among others?

3. Impact of the state-of-the-art lossless image compression techniques

(a) Problem 5: How good is each algorithm in terms of the CR for 8-bit and 16-bit
greyscale and RGB images?

(b) Problem 6: How good is each algorithm in terms of the ET for 8-bit and 16-bit
greyscale and RGB images?

(c) Problem 7: How good is each algorithm in terms of the DT for 8-bit and 16-bit
greyscale and RGB images?

(d) Problem 8: How good is each algorithm in terms of the CR and ET for 8-bit and
16-bit greyscale and RGB images?

(e) Problem 9: How good is each algorithm in terms of the CR and DT for 8-bit and
16-bit greyscale and RGB images?

(f) Problem 10: How good is each algorithm in terms of the ET and DT for 8-bit and
16-bit greyscale and RGB images?

(g) Problem 11: How good is each algorithm when all parameters are equally important
for 8-bit and 16-bit greyscale and RGB images?

(h) Problem 12: Which algorithms should be used for each kind of image?

4. Develop a lossless text compression method

(a) Problem 13: Applying run-length coding for text compression increases the number
of unique symbols, which increases the use of storage space.

5

1.3 Contributions

Contributions to this thesis are in the form of three published journal papers and one has been
submitted or in the process of being submitted that cover the objectives mentioned above. The
list of papers included in this dissertation is given in section 1.3.1. The contributions are shown
in three sections, where each section is directed by one of the proposed research problems.
Every section will later be extended to a chapter.

1.3.1 List of Publications

Journals

1. Md. Atiqur Rahman, and Mohamed Hamada, 2019. Lossless image compression tech-
niques: A state-of-the-art survey. Symmetry, 11(10), p.1274. (SCIE)

2. Md. Atiqur Rahman, and Mohamed Hamada, 2021. PCBMS: A Model to Select
an Optimal Lossless Image Compression Technique. IEEE Access, DOI: 10.1109/AC-
CESS.2021.3137345. (SCIE)

3. Md. Atiqur Rahman, Mohamed Hamada, and Jungpil Shin 2021. The Impact of State-
of-the-Art Techniques for Lossless Still Image Compression. Electronics, 10(3), p.360.
(SCIE)

4. Md. Atiqur Rahman, and Mohamed Hamada, 2020. Burrows–Wheeler Transform
Based Lossless Text Compression Using Keys and Huffman Coding. Symmetry, 12(10),
p.1654. (SCIE)

5. Md. Atiqur Rahman, and Mohamed Hamada, 2021. A prediction-based lossless im-
age compression procedure using dimension reduction and Huffman coding, Multimedia
Tools and Applications, Springer. (Accept with minor revision) (SCIE)

Conferences

1. Md. Atiqur Rahman, Mohamed Hamada, and Md Asfaqur Rahman, 2021, December.
Text compression based on an alternative approach of run-length coding using Burrows-
Wheeler transform and arithmetic coding, In 2021 IEEE 14th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC).

2. Md. Atiqur Rahman, Mohamed Hamada, and Md Asfaqur Rahman, 2022, A com-
parative analysis of the state-of-the-art lossless image compression techniques. The 4th
ETLTC International Conference on Information and Communications Technology (ETLTC
2022). (Submitted)

3. Md. Atiqur Rahman, and Mohamed Hamada, 2019, October. A semi-lossless image
compression procedure using a lossless mode of JPEG. In 2019 IEEE 13th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC) (pp. 143-
148). IEEE.

4. Md. Atiqur Rahman, and Mohamed Hamada, 2021. Lossless text compression using
GPT-2 language model and Huffman coding. In Proceedings of The 2021 3rd ETLTC
- ACM Chapter International Conference on Information and Communications Technol-
ogy.

5. Md. Atiqur Rahman,Md Faizul Ibne Amin,and Mohamed Hamada, 2020, August. Edge
Detection Technique by Histogram Processing with Canny Edge Detector. In 202020 3rd

6

1.3. CONTRIBUTIONS

IEEE International Conference on Knowledge Innovation and Invention (ICKII) (pp. 128-
131). IEEE.

6. Md. Atiqur Rahman, Most. Jannatul Ferdous, Md. Mamun Hossain, Md Rashedul Is-
lam, and Mohamed Hamada, 2019, May. A lossless speech signal compression technique.
In 2019 1st International Conference on Advances in Science, Engineering and Robotics
Technology (ICASERT) (pp. 1-7). IEEE.

1.3.2 Choosing the best entropy coding technique (Problem 1-3)

Publication 1: Lossless Image Compression Techniques: A State-of-the-Art Survey [27].
Contributions: Some of the entropy coding techniques provide better compression than the

other, while the other method takes less encoding and decoding time. Some algorithms are very
sensitive to noise. Thus, choosing an entropy coding strategy for lossless data compression is
a big challenge. We have analyzed entropy coding techniques in detail and propose an entropy
coding strategy as the best among them. We finally show the limitations of the algorithms and
show which part of the algorithms needs to be improved.

1.3.3 Selecting an Optimal Lossless Image Compression Technique (Problem 4)

Publication 2: PCBMS: A Model to Select an Optimal Lossless Image Compression Tech-
nique. [28]

Contributions: A mathematical model to select an optimal lossless image compression
technique is proposed in this chapter. This chapter shows that each algorithm was evaluated
based on a specific parameter in each research work. However, the performance of a lossless
image compression algorithm depends on all parameters (bpp, encoding and decoding time) and
does not singly depend on any of them. Therefore, the proposed method predicts a better lossless
image compression algorithm for any combination of parameters and provides the actual impact
of each algorithm.

1.3.4 Impact of the state-of-the-art techniques (Problem 5-12)

Publication 3: The Impact of State-of-the-Art Techniques for Lossless Still Image Com-
pression [29].

Contributions: The PCBMS model gives a better prediction to select a better lossless image
compression method. However, a better prediction depends on making a good balance between
compression ratio, encoding, and decoding times. Therefore, we proposed an alternative ap-
proach to PCBMS. The proposed method can balance the parameters better than PCBMS and
give more accurate predictions.

1.3.5 Develop a lossless text compression method (Problem 13)

Publication 4: Burrows–Wheeler Transform Based Lossless Text Compression Using Keys
and Huffman Coding [30].

Publication 4: Lossless text compression using GPT-2 language model and Huffman coding
[31].

Contributions: Many advanced text compression techniques use Burrows-Wheeler trans-
form, run-length coding, pattern finding and then an entropy coding technique, respectively, for
compression. Run-length coding increases the number of unique symbols during the coding of
characters’ length. As a result, the compression ratio is reduced. To solve the problem, we pro-
pose a key-based coding technique in place of run-length coding that increases the compression
ratio.

7

1.4 Thesis organization

This thesis is based on eight manuscripts, and they are grouped into six Chapters.

1. Chapter 2 gives a basic idea about data compression, how to compress, and the metrics
used to evaluate a data compression technique.

2. Chapter 3 explains the transformation techniques, such as Discrete Wavelet Transform
(DWT), Haar Wavelet, Daubechies-4 Wavelet, and Burrows-Wheeler Transform (BWT).

3. Chapter 4 describes the state-of-the-art data compression techniques, such as run-length
coding, Shannon-Fano Coding, Huffman coding, Lempel–Ziv–Welch (LZW) Coding,
Arithmetic Coding, Lossless JPEG, JPEG-LS, PNG, CALIC, WebP, FLIF, JPEG 2000,
JPEG XR, AVIF, and LZ77.

4. Chapter 5 contains a journal paper. This chapter analyzes the entropy coding techniques,
and proposes the best entropy coding technique. It also shows which part of the methods
needs to be improved.

5. Chapter 6 contains a journal paper. In this chapter, an evaluation technique (PCBMS) is
proposed that predicts an optimal lossless image compression method as the best.

6. Chapter 7 consists of a journal paper. In this chapter, we proposed an alternative approach
to PCBMS that can give a better prediction than PCBMS for each type of image, based
on users’ particular needs.

7. Chapter 8, which contains a journal paper where a key-based lossless text compression
method is proposed.

8. Chapter 9 concludes the thesis and also some future works. A summary of the thesis is
also given.

8

1.4. THESIS ORGANIZATION

9

Chapter 2

Data Compression

2.1 Introduction

A visual representation of an object is called an image, and a digital image can be defined
as a two-dimensional matrix of discrete values. When the colour at each position in an image is
represented as a single tone, this is referred to as a continuous tone image. The quantised values
of a continuous tone image at discrete locations are called the grey levels or the intensity [32],
and the pixel brightness of a digital image is indicated by its corresponding grey level. The steps
used to transform a continuous tone image to its digital form are shown in Figure 2.1.

Figure 2.1: Steps used to convert a continuous tone image to a digital one

The bit depth indicates the number of bits used to represent a pixel, where a higher bit depth
represents more colours, thus increasing the file size of an image [33]. A greyscale image is a
matrix of AxB pixels, and 8-bit and 16-bit greyscale images contain 28 = 256 and 216 = 65536
different colours, respectively, where the ranges of colour values are from 0–255 and 0–65535.
Examples of 8-bit and 16-bit greyscale images are shown in Figures 2.2 and 2.3, respectively.

A particular way of representing colours is called the colour space, and a colour image is
a linear combination of these colours. There are many colour spaces, but the most popular are
RGB, HSV and CMYK. RGB contains the three primary colours of red, green and blue, and is
used by computer monitors. HSV (hue, saturation, value) and CMYK (cyan, magenta, yellow,
and key (black)) are often used by artists and in the printing industry, respectively [32]. A colour
image carries three colours per pixel; for example, since an RGB image uses red, green and
blue, each pixel of an 8-bit RGB image has a precision of 24 bits, and the image can represent
224 = 16, 777, 216 different shades. For a 16-bit RGB image, each pixel has a precision of 48
bits, allowing for 248 = 281, 474, 976, 710, 656 different shades. Typical examples of 8-bit and
16-bit RGB images are shown in Figures 2.4 and 2.5, respectively. The ranges of colour values
for 8-bit and 16-bit images are 0–255 and 0–65535, respectively.

For an uncompressed image (X), the memory required to store the image is calculated using

10

2.2. HOW DATA IS COMPRESSED

Figure 2.2: An 8-bit greyscale image Figure 2.3: A 16-bit greyscale image

Equation 2.1, where the dimensions of the image are AxB and the bit depth is N.

Storage = AxBxNx2−13KB (2.1)

2.2 How data is compressed

Data compression is a significant issue and a subject of intense research in the field of
multimedia processing. We give a real example below to allow for a better understanding of
the importance of data compression. Nowadays, digital cinema and high-definition television
(HDTV) use a 4K system, with approximately 4096x2160 pixels per frame [34]. However, the
newly developed Super Hi-Vision (SHV) format uses 7680x4320 pixels per frame, with a frame
rate of 60 frames per second [35]. Suppose we have a three-hour colour video file based on
SHV video technology, where each pixel has a precision of 48 bits. The size of the video file
will then be (7680x4320x48x60x3x60x60) bits, or approximately 120,135.498 GB. According
to the report in [36], 500 GB to 1 TB is appropriate for storing movies for non-professional
users. Seagate, an American data storage company, has published quarterly statistics since 2015
on the average capacity of Seagate hard disk drives (HDDs) worldwide. In the third quarter of
2020, this capacity was 4.1 TB [37]. Can we imagine what would have happened? We couldn’t
even store a three-hour color SHV video file on our local computer. Compression is another
important issue for data transmission over the internet. Although there are many forms of media
that can be used for transmission, fibre optic cables have the highest transmission speed [38],
and can transfer up to 10 Gbps [39]. If this video file is transferred at the highest speed available
over fibre optic media without compression, approximately 26.697 hours would be required,
without considering latency. Latency is the amount of time required to transfer data from the
original source to the destination [40]. In view of the above problems, current technology is
entirely inadequate, and the only effective solution is data compression.

11

Figure 2.4: An 8-bit RGB image Figure 2.5: A 16-bit RGB image

An image is a combination of information and redundant data, as shown in Figure 2.6.
One of the most important issues in image compression is how much information an image
contains. If an image contains a number of unique symbols SL, and P(k) is the probability of
the kth symbol, the average information content (AIC) that an image may contain, also known
as entropy, is calculated using Equation 2.2. Image compression is achieved through a reduction
in redundant data.

Figure 2.6: Redundant data in an image

AIC = −
SL∑
k=1

log(P (k)P (k) (2.2)

Suppose two datasets A and B point to the same image or information. Equation 2.3 can
then be used to define the relative data redundancy (Rdr) of set A, where the CR is calculated
using Equation 2.4.

Rdr = 1− 1

CR
(2.3)

12

2.2. HOW DATA IS COMPRESSED

CR =
A

B
(2.4)

Three results can be deduced from Equations 2.3 and 2.4.

1. When A = B, CR = 1, Rdr = 0, there is no redundancy, and hence no compression.

2. When B ≪ A,CR → infinite, Rdr → 1, dataset A contains the highest redundancy
and the greatest compression is achieved.

3. When B ≫ A,CR → 0, Rdr → −infinite, dataset A contains large memory than the
original.

In digital image compression, there are three types of data redundancy: coding, inter-pixel,
and psycho-visual redundancy [41, 42]. Suppose we have the image shown in Figure 2.7 with
the corresponding grey levels.

Figure 2.7: An image with the corresponding pixel values

The 10x10 image shown in Figure 2.7 contains nine different values (S) (118, 119, 120,
139, 140, 141, 169, 170, 171), and for a fixed code length, each values can be coded as an
8-bit code-word, since the maximum value (171) requires a minimum of 8 bits to code. As a
result, 800 bits are required to store the image. In contrast, a variable code length is based on
probability, where codes of shorter length are assigned to values with higher probability. The
probability of the kth values is calculated using Equation 2.5, where N is the total number of
values in an image. If Lk represents the length of the code-word for the values Sk, then the
length of the average code-word can be calculated using Equation 2.6, where SL is the total
number of different values. Table 2.1 shows the variable length coding for the image in Figure
2.7.

P (k) =
Sk
N

(2.5)

13

Table 2.1: Variable length coding for the image in Figure 2.7

Symbol
(S)

Probability
(P(k))

Code-word
Code-word
length (Lk)

LkPk

118 0.12 100 3 0.36
119 0.16 1 3 0.48
120 0.12 11 3 0.36
139 0.01 1111 4 0.04
140 0.17 0 3 0.51
141 0.12 10 3 0.36
169 0.11 101 3 0.33
170 0.09 1110 4 0.36
171 0.1 110 3 0.3

Lavg = 3.1 bits

Lavg =

SL∑
k=1

LkP (k) (2.6)

From Table 2.1, we get approximate values of CR = 2.581 and Rdr = 0.613, and the
compressed image takes 300 bits rather than 800 bits. These results show that the original
image contains redundant code, and that the variable length coding has removed this redundancy
[43, 44].

Interpixel redundancy can be classified as spatial, spectral, and temporal redundancy. In spa-
tial redundancy, there are correlations between neighbouring pixel values, whereas in spectral
redundancy there are correlations between different spectral bands. In temporal redundancy,
there are correlations between the adjacent frames of a video. Interpixel redundancy can be
removed using run-length coding, the differences between adjacent pixels, predicting a pixel
using various methods, thresholding, or various types of transformation techniques such as dis-
crete Fourier transform (DFT) [44].

To remove interpixel redundancy from the image in Figure 7 using run-length coding, we
code the image as follows: (120,1) (119,1) (118,8) (120,1) (119,8) (118,1) (120,9) (119,1)
(120,1) (119,6) (118,3) (141,1) (140,8) (139,1) (141,6) (140,4) (141,5) (140,5) (171,1) (170,2)
(169,7) (171,2) (170,4) (169,4) (171,7) (170,3), requiring 312 bits. Twelve bits are required to
code each pair, and an 8-bit code word is used for the grey level, since the maximum gray level
is 171. A 4-bit code word is used for the length of the grey level, since the maximum value for
the length of the gray level is nine.

The main purpose of using prediction or transformation techniques can be described as
follows. To create a narrow histogram, a prediction or various other types of transformation
techniques can be applied to give a small value for the entropy. For example, we apply the
very simple predictor given below to the image shown in Figure 2.7, where A

′
represents the

predicted pixels. Figure 2.8(a) shows the histogram of the original image, and Figure 2.8(b)
shows the histogram obtained after applying the predictor shown in Equation 2.7.

A
′
(p, q) = A(p, q − 1)−A(p, q) (2.7)

Figure 2.8 shows that the histogram of the original image contains nine different values,
of which eight have approximately the same frequency, and the highest frequency is 17. After
applying the predictor, the histogram contains only five values, of which only two (0 and 1)
contain 90% of the data, thus giving a better compression ratio. The interpixel redundancy of
an image can be removed using one or more techniques in combination. For example, after

14

2.2. HOW DATA IS COMPRESSED

Figure 2.8: Comparison of histograms before and after application of a predictor

applying the predictor to the original image in Figure 2.7, we can apply both run-length and
Huffman coding, with the result that only 189 bits are required to store the image rather than
800 bits.

Psycho-visual redundancy [45] simply reduces the grey levels of an image. The human
brain responds to the most important features, such as edges and textures, rather than using all
of the visual information to recognise an object. The image in Figure 2.9 shows the results of
removing the redundant psycho-visual data from the image in Figure 2.7. Although there is a
large difference between the two images in terms of the grey levels (Figure 2.9 contains only
three grey levels rather than nine), the brain processes them similarly. Psycho-visual redundancy
can therefore be used for lossy image compression.

Figure 2.9: Psycho-visual redundant image with grey levels

15

The construction of an image compression technique is highly application-specific. A gen-
eral block diagram of lossless image compression and decompression is shown in Figure 2.10.

Figure 2.10: Basic block diagram of lossless image compression

The mapping shown in Figure 2.10 is used to convert an image into a non-visual form to
decrease the interpixel redundancy. Run-length coding, various transformation techniques, and
prediction techniques are typically applied at this stage. At the symbol encoding stage, Huff-
man, arithmetic and other coding methods are often used to reduce coding redundancy. The
image data are highly correlated, and the mapping process is a very important way of decorre-
lating the data and eliminating redundant data. A better mapping process can eliminate more
redundant data and give better compression. The first and most important problem in image
compression is to develop or choose an optimal mapping process, while the second is to choose
an optimal entropy coding technique to reduce coding redundancy [46]. In channel encoding,
Hamming coding is applied to increase noise immunity, whereas in decoding, the inverse proce-
dures are applied to give a lossless decompressed image. Quantisation, an irreversible process,
removes irrelevant information by reducing the number of grey levels, and is applied between
the mapping and symbol encoding stages in lossy image compression [47–49].

16

2.3. MEASUREMENT STANDARDS

2.3 Measurement Standards

Measurement standards offer ways of determining the efficiency of an algorithm. The seven
measurement standards are used to evaluate a lossless image compression algorithm. Three of
these, the MSE, SNR, and PSNR, are used to detect the amount of error present in a recon-
structed image. The MSE is often called the quantisation error variance or the mean squared
deviation (MSD). It represents an approximate measurement of the distortion, and is used to
determine the quality of a reconstructed image B (p, q) compared to the original A (p, q). The
MSE is calculated using Equation 2.8 [50–52].

MSE =
1

pxq

p∑
m=1

q∑
n=1

[A(m,n)−B(m,n)]2 (2.8)

The value of the MSE is inversely proportional to image quality: a very small MSE repre-
sents a high-quality reconstructed image [53–55]. However, one problem with the use of MSE
is that when the types of degradation of two images are different, a low MSE does not mean
that the original and reconstructed images are almost identical. In this case, many applications
use the SNR in place of the MSE. The SNR is defined in Equation 2.9 [56–58], and provides a
better indication of noise.

SNR = 10 ∗ log10

[
1

pxq

∑p
m=1

∑q
n=1 [A(m,n)]

2

1
pxq

∑p
m=1

∑q
n=1 [A(m,n)−B(m,n)]2

]
(2.9)

Another criterion is the PSNR, which is used when considering the size of the error relative
to the 2nbpp value for an image, where nbpp is the number of bits per pixel. A higher value for
the PSNR represents a higher-quality image. The PSNR is defined by Equation 2.10:

PSNR = 10 ∗ log10
[
(2nbpp − 1)2

MSE

]
(2.10)

The CR is the ratio between the size of an uncompressed image and its compressed version.
Entropy is generally estimated as the average code length of a pixel in an image; however, in
reality, due to statistical interdependencies among pixels, this estimate is overoptimistic. For
example, Table 1 shows that the CR is 2.581 but the estimated entropy for the same data is 3.02.
Hence, the entropy-based compression ratio is 2.649. To solve this issue, Equation 2.11 is used
to calculate the bits per pixel(bpp). The bpp [59] is the number of bits used to represent a pixel,
i.e. the inverse of the CR. The ET and DT are the times required by an algorithm to encode and
decode an image, respectively.

bpp =
B

A
(2.11)

2.4 Summary

Data compression has been used for hundreds of years. The introduction of information the-
ory and communication networks has comprehensively accelerated the area and added necessity
to its use. At the beginning of this chapter, a brief explanation has been given on how to convert
an image from a continuous tone image to a digital form and about the structure of various kinds
of images. Following that, an image compression procedure has been shown step by step for
quick understanding. Finally, The metrics used to evaluate a data compression algorithm are
discussed, and their limitations are also addressed.

17

18

Chapter 3

Transformation Techniques

3.1 Introduction

A transform applied for data compression is a mathematical computation same as Fourier
transform, which is executed by grouping the input data into vectors or matrices and multiplying
these with a transform matrix to weight the input representations. Applying a transform tech-
nique in data compression is that the transform should decorate the representations in the input
data and concentrate the energy in the first resulting transform coefficients. The energy of a ma-
trix or vector is represented as the sum of the squares of the components p2+q2+r2+s2+... . If
the energy is focused in the first coefficients, they keep the essential information and have large
values. In contrast, the later coefficients have small and not-so-essential values. Compression
can be obtained by heavily quantizing the small insignificant coefficients and lightly quantizing
the significant coefficients or even not modifying them.

The transform coefficients can further be viewed as the frequency components of the in-
put data. The frequency expresses how vital parts of the input data are varying between them.
The initial transform coefficient describes the DC element with frequency 0, whereas the latter
coefficients correspond to AC components of the input data with increasing frequencies. Trans-
formation techniques [60, 61] is a mathematical operation that receives an input sequence and
maps it into another form. There are many advantages of the transformation. For example, the
transformed sequence may require less storage space and provide data compression. We can
easily apply an operation on the transformed data than the original. In the field of data compres-
sion, transformation is widely used because of its decorrelation and other characteristics. There
are many transformation techniques: such as discrete cosine transform (DCT), discrete wavelet
transform (DWT), Burrows-Wheeler Transform (BWT), etc. Some of the transformation tech-
niques are explained in this chapter.

3.1.1 Discrete Wavelet Transform (DWT)

Discrete Fourier Transform (DFT) decomposes an image into sinusoidal basis functions
of different frequencies, where Wavelet Transform (DWT) decomposes into a set of mutually
orthogonal wavelet basis functions. The main difference between DFT and DWT is that the
wavelet basis functions are spatially localized. However, both transformation techniques are
entirely reversible. There are many wavelet functions. The two most common are the Haar and
Daubechies-4 wavelets functions. DWT decomposes a two dimensional data (like an image)
into four bands: LL (left-top), HL (right-top), LH (left-bottom) and HH (right-bottom). HL and
LH bands, respectively, indicate the variation along the x-axis and y-axis. In other words, HL
and LH give the vertical and horizontal features of an image. HH gives the diagonal features,
and LL approximates the input image, which is further decomposed. The general block diagram
of DWT decomposition for an image (p x q) is shown in 3.1.

19

Figure 3.1: Basic block diagram of 2D wavelet transform

Haar Wavelet

Mathematically, the Haar wavelet family is a sequence of square-shaped functions, which is
the most straightforward orthogonal wavelet transform. It is calculated by repeating the differ-
ence and averaging between odd and even samples of a signal. For the formation of orthonormal
bases, Scaling functions play a significant role. The idea of scaling functions is most clearly ex-
plained using Haar wavelets. The Haar scaling function is defined by the following equation
(3.1). It meets the normalization conditions shown in equation (3.2).

ϕ(p) =


0 p ≤ 0
1 0 < p ≤ 1
0 p > 1

(3.1)

(ϕ, ϕ) =

∫ ∞

−∞
ϕ∗(p)ϕ(p)dp =

∫ 1

0

ϕ(p)dp = 1 (3.2)

A practical example of haar wavelet transformation is given below step by step. This trans-
form involves the forward and the reverse transform. In the forward transformation scaling and
wavelet coefficients are calculated. The scaling and wavelet coefficients are computed using the
following equations (3.3), and (3.4), respectively, where a and b are two adjacent pixels of an
image. Transformation happens column by column and then row by row. Let consider a matrix
(HM) is given in the following equation (3.5).

Scaling_coefficients =
a+ b

2
(3.3)

Wavelet_coefficients =
a− b
2

(3.4)

20

3.1. INTRODUCTION

HM =


100 200 80 120
40 60 180 220
200 200 120 100
300 100 20 40

 (3.5)

In the first state, the Haar forward wavelet transform is applied column by column, and the
following transformed matrix (3.6) is calculated from the original matrix (3.5). In the second
stage, the same operation is performed row by row on the transformed matrix (3.6). Finally, we
get the matrix (3.7) as a transformed matrix after one pass.

HM =


150 100 −50 −20
50 200 −10 −20
200 110 0 10
200 30 100 −10

 (3.6)

HM =


100 150 −30 −20
200 70 50 0
50 −50 −20 0
0 40 −50 10

 (3.7)

In terms of inverse Haar Wavelet Transform, the transform first goes row by row and then
column by column using equations (3.8), and (3.9). The output of the first stage of the inverse
transformation is the same as the matrix (3.6), and the reconstructed matrix after one pass trans-
formation is the same as the original matrix HM.

Xi,j = ai,j + ai+2,j (3.8)

Xi+1,j = ai,j − ai+2,j (3.9)

Daubechies-4 Wavelet

In the frequency domain, sinusoidal functions are perfectly localized using Fourier trans-
form, and it is difficult in the spatial domain. However, the wavelet basis is perfectly localized
in both domains. In addition to this localization, we need that all basis functions be mutu-
ally normalized and orthogonal. These features are obtained through the recursion process of
Daubechies wavelets formula. The scaling functions and wavelets are defined using the dilation
equation (3.10), where ϕ(p) is known as the scaling function. The scaling function is normal-
ized by equation (3.11). The fourth-order mother wavelet ψ(p) is defined in equation (3.12) in
terms of scaling function.

ϕ(p) =
√
2
M−1∑
i=0

Ciϕ(2p− i) (3.10)

∫
ϕ(p) dp = 1 (3.11)

21

ψ(p) =
√
2
M−1∑
i=0

(−1)iCM−1−iϕ(2p− i) (3.12)

The filter coefficients of the Daubechies (D4) are shown in the following equations (3.13-
3.20) reported in [62]. And the coefficients are used to decompose a signal, where h and g
represent the high and low frequency, respectively. For example, using the Daubechies discrete
wavelet transform, the transformation and reconstruction of a signal (A = [2 4 5 7 2 3 1 6]) are
explained below step by step.

h0 =
1 +
√
3

4
√
2

(3.13)

h1 =
3 +
√
3

4
√
2

(3.14)

h2 =
3−
√
3

4
√
2

(3.15)

h3 =
1−
√
3

4
√
2

(3.16)

g0 =
1−
√
3

4
√
2

(3.17)

g1 = −
3−
√
3

4
√
2

(3.18)

g2 =
3 +
√
3

4
√
2

(3.19)

g3 = −
1 +
√
3

4
√
2

(3.20)

This transformation uses four filter coefficients and the following matrix (3.21). The outputs are
calculated using the equation (3.22), and the final encoded outputs are 4.51, -0.3, 8.33, -1.95,
2.92, -2.96, 5.44, and -1.69.

W =



h0 h1 h2 h3 0 0 0 0
h3 −h2 h1 −h0 0 0 0 0
0 0 h0 h1 h2 h3 0 0
0 0 h3 −h2 h1 −h0 0 0
0 0 0 0 h0 h1 h2 h3
0 0 0 0 h3 −h2 h1 −h0
h2 h3 0 0 0 0 h0 h1
h1 −h0 0 0 0 0 h3 −h2


(3.21)

22

3.1. INTRODUCTION

W (i) =



h0 h1 h2 h3 0 0 0 0
h3 −h2 h1 −h0 0 0 0 0
0 0 h0 h1 h2 h3 0 0
0 0 h3 −h2 h1 −h0 0 0
0 0 0 0 h0 h1 h2 h3
0 0 0 0 h3 −h2 h1 −h0
h2 h3 0 0 0 0 h0 h1
h1 −h0 0 0 0 0 h3 −h2


×



2
4
5
7
2
3
1
6


(3.22)

The reconstruction process is done using the inverse wavelet transformation, which is just
the W’s transposed matrix. The Daubechies inverse transformation matrix is given in the fol-
lowing equation (3.23). Finally, the reconstructed outputs (A) are calculated using the equation
(3.24) reported in [63], and the decoded outputs are 1.981, 3.958, 4.992, 6.984, 1.981, 2.957,
2.018, 9.915.

W T =



h0 h3 0 0 0 0 h2 h1
h1 −h2 0 0 0 0 h3 −h0
h2 h1 h0 h3 0 0 0 0
h3 −h0 h1 −h2 0 0 0 0
0 0 h2 h1 h0 h3 0 0
0 0 h3 −h0 h1 −h2 0 0
h2 h3 0 0 h2 h1 h0 h3
h1 −h0 0 0 h3 −h0 h1 −h2


(3.23)

A =



h0 h3 0 0 0 0 h2 h1
h1 −h2 0 0 0 0 h3 −h0
h2 h1 h0 h3 0 0 0 0
h3 −h0 h1 −h2 0 0 0 0
0 0 h2 h1 h0 h3 0 0
0 0 h3 −h0 h1 −h2 0 0
h2 h3 0 0 h2 h1 h0 h3
h1 −h0 0 0 h3 −h0 h1 −h2


×



4.51
−0.3
8.33
−1.95
2.92
−2.96
5.44
−1.69


(3.24)

3.1.2 Burrows–Wheeler Transform (BWT)

The Burrows-Wheeler transform (BWT), also called block-sorting compression, was in-
vented by Michael Burrows and David Wheeler in 1994 based on Wheeler transform. It rear-
ranges a set of characters into runs of similar characters [64]. It is used for data compression
techniques such as bzip2. It is entirely reversible, and no extra information is stored without
the position of the last character. The transformed character set can be easily compressed by
run-length coding. The pseudo-codes of the forward and inverse Burrows-Wheeler transforms
are given in [65, 66].

23

3.2 Summary

Many techniques have been developed to perform lossless data compression. All of these
techniques try to exploit some regularities in the input data to achieve coding efficiency. There
are two types of techniques such as transform and spatial domain. Transform domain techniques
perform a linear transformation of the input image and usually work extremely well, and spatial
domain techniques exploit local inter-pixel correlation directly. The main limitation of transform
techniques is their computational complexity. This chapter provided detailed explanations of
several transform techniques with examples.

24

3.2. SUMMARY

25

Chapter 4

Lossless Data Compression Techniques

4.1 Introduction

A review of several important lossless data compression algorithms is discussed in this chapter.
Section 4.2 explains the entropy coding methods such as run-length, Shannon-Fano, Huffman,
LZW, and Arithmetic coding. As predictive coding, Lossless JPEG, JPEG-LS, PNG, CALIC,
WebP, and FLIF are presented in section 4.3. JPEG 2000, JPEG XR, and AVIF are given as
transform coding in section 4.5, and LZ77 is presented in section 4.5. Finally, we conclude this
chapter in section 4.6.

4.2 Entropy Coding Methods

Entropy coding is a term that refers to lossless coding technology that replaces data elements
with coded representations and vice versa. An entropy coding technique generates and assigns
a unique prefix-free code to each unique symbol that happens at an input.

4.2.1 Run-Length Coding

Run-length is a lossless coding procedure that stores only a mark and a count when a series
of identical values appears at consecutive times. This strategy is more cost-effective instead of
encoding each pixel [41, 67, 68]. In that strategy, it chooses the first pixel from an image and
then connects it to the output string and counts the number of succeeding occurrences of the
selected pixels. Lastly, it appends the count to the destination string. This process continues
until reading the whole pixels of an image is finished. The working procedure for run-length
coding for compression and decompression are given in [69].

4.2.2 Shannon-Fano Coding

Shannon-Fano coding generates a prefix code based on a set of symbols and their frequen-
cies. In that procedure, all frequencies are arranged in descending order and then divide into
two groups whose total frequencies are as close as possible to being equal reported in [70]. The
encoding and decoding procedures are given below. The Shannon-Fano encoding and decoding
procedures are shown in [27].

4.2.3 Huffman coding

Huffman is a lossless data compression algorithm that uses fewer bits to encode those pixels
that happen more regularly. Huffman typically builds a tree based on the probabilities of an im-
age. Finally, encoding is done using the tree [19,71,72]. The encoding and decoding procedures
of Huffman coding are given in [27].

26

4.3. PREDICTIVE CODING

4.2.4 Lempel–Ziv–Welch (LZW) Coding

Lempel–Ziv–Welch (LZW) is generally used for lossless text compression, invented by
Abraham Lempel, Jacob Ziv, and Terry Welch. This strategy is easy to implement and broadly
applied for Unix file compression, published in 1984 as an updated version of LZ78. It encodes
a sequence of characters with a unique code using a table-based lookup algorithm. In this al-
gorithm, the first 256 8-bit code, 0-255, is inserted into a table as an initial entry because an
image contains 0–255 distinct pixels. The encoded codes come from 256 to 4095, which will
be embedded into the table’s bottom [73, 74]. This algorithm works better in text compression
and provides most noticeably a terrible outcome for another sort of compression. The encoding
procedure of the algorithm is shown in [27].

The Lempel–Ziv–Welch (LZW) decoding procedure uses the same initial dictionary used in
the encoding step, and decoding is done using the procedures shown in [27].

4.2.5 Arithmetic Coding

Arithmetic coding is a lossless data compression procedure where a set of symbols is pre-
sented using a fixed number of bits reported in [75–80]. It uses a different approach than Huff-
man coding, and it does not require an integer number of bits per symbol and hence works prop-
erly in situations where Huffman coding struggles. The fundamental concept of arithmetic cod-
ing is very easy. Arithmetic coding connects sequences of symbols with various sub-intervals
of [0, 1). The width of a sub-interval is proportional to the probability of the similar sequence
of symbols, and the arithmetic code of a sequence of symbols is a floating-point number in the
corresponding interval [81–84]. It takes likelihood data from a dataset and applies the proce-
dures shown in [27], where N and CF indicate the number and cumulative frequency. UL, LL,
LUL, and LLL indicate upper, lower, last upper, and the last lower limit of the current range,
respectively. The tag value is calculated using Equation 4.1.

tag =
LLL+ LUL

2
. (4.1)

The decoding procedure of arithmetic coding receives tag, symbols, and corresponding
probabilities, and the tag is converted into its floating-point number and follows the the method-
ology shown in [27] for decoding. For decompression, if the tag is in between in any range, then
the range’s symbol is taken as the decoded value. The range (r) and Newtag (NT) are calculated
using Equations 4.2 and 4.3, respectively.

r = (UL− LL), (4.2)

NT =
tag − LL

r
. (4.3)

4.3 Predictive Coding

Predictive coding is a technique that predicts Pn using a predictor for the current pixel Xn from
the previous N number of pixels XN+n, and calculate the prediction errors En between the
current pixel’s Xn and the predicted values Pn. The main advantage of this technique is that
the prediction errors considerably decrease statistical dependencies between adjacent pixels.
Finally, an entropy coding technique is used to encode the prediction errors. The general block
diagram of the prediction technique for data compression is shown in 4.1.

27

Figure 4.1: General Block Diagram of the Predictive Coding for Lossless Data Compression

4.3.1 Lossless JPEG

The Joint Photographic Experts Group (JPEG) format is a DCT-based lossy image com-
pression technique, whereas lossless JPEG is predictive. Lossless JPEG uses the 2D differential
pulse code modulation (DPCM) scheme [85], and predicts a value (P) for the current pixel (P)
based on up to three neighbouring pixels (A, B, D). The causal template used to predict a value
is shown in Table 4.1. If two pixels (B, D) from Table 4.1 are considered in this prediction, and
then the predicted value (P) and prediction error (PE) are calculated using Equations (4.4) and
(4.5), respectively.

Table 4.1: Causal template

P =
D +B

2
(4.4)

PE = P − P (4.5)

As a result, the prediction errors remain close to zero, and very large positive or negative
errors are not commonly seen. The error distribution therefore looks almost like a Gaussian
normal distribution. Finally, Huffman or arithmetic coding is used to code the prediction errors.
Table 4.2 shows the predictor used in the lossless JPEG format, based on three neighbouring
pixels (A, B, D). In lossy image compression, three types of degradation typically occur and
should be taken into account when designing a DPCM quantiser: granularity, slope overload,
and edge-busyness [86]. DPCM is most sensitive to channel noise.

A real image usually has a nonlinear structure, and the DPCM uses a linear predictor, This
is why problems can occur. This gave rise to the need to develop a perfect nonlinear predictor.
One of the most widely used nonlinear predictors is the median edge detector (MED) which is
used by JPEG-LS to address these drawbacks.

28

4.3. PREDICTIVE CODING

Table 4.2: Predictor for Lossless JPEG

Mode Predictor
0 No prediction
1 D
2 B
3 A
4 D+B-A
5 D+(B-A)/2
6 B+(D-A)/2
7 (D+B)/2

4.3.2 Joint Photographic Experts Group-Lossless Standard (JPEG-LS)

JPEG-LS was designed based on LOCO-I (Low Complexity Lossless Compression for Im-
ages) [1, 87], and a standard was eventually introduced in 1999 after a great deal of develop-
ment [88–90]. JPEG-LS improves the context modelling and encoding stages by applying the
same concept as lossless JPEG. Though the discovery of arithmetic codes [91, 92] conceptually
separates the stages, the separation process becomes less clean under low-complexity coding
constraints, due to the use of an arithmetic coder [93]. In context modelling, the number of
parameters is an important issue, and must be reduced to avoid context dilution. The number
of parameters depends entirely on the number of context. A two-sided geometric distribution
(TSGD) model is assumed for the prediction residuals to reduce the number of parameters. The
selection of a TSGD model is a significant issue in a low-complexity framework, since a better
model needs only very simple coding. Merhav et al. [94] showed that adaptive symbols can be
used in a scheme such as Golomb coding, rather than more complex arithmetic coding, since
the structure of Golomb codes provides a simple calculation without requiring the storage of
code tables. Hence, JPEG-LS uses Golomb codes at this stage. Lossless JPEG cannot provide
an optimal CR, because it cannot de-correlate by first order entropy of their prediction residuals.
In contrast, JPEG-LS can achieve good decorrelation and provide better compression perfor-
mance [95, 96]. A general block diagram for JPEG-LS is shown in Figure 4.2.

Figure 4.2: Block diagram for the JPEG-LS encoder [1]

The prediction or decorrelation process of JPEG-LS is completely different from that in
lossless JPEG. As shown in Table 4.1, the LOCO-I or MED predictor used by JPEG-LS [96]

29

predicts a value (P) according to Equation (4.6).

P =


min(D,B), if C ≥ max(D,B)

max(D,B), if C ≤ min(D,B)

D +B −A, otherwise.

(4.6)

4.3.3 Portable Network Graphics (PNG)

Portable Network Graphics (PNG) [97–99], a lossless still image compression scheme, is
an improved and patent-free replacement of the Graphics Interchange Format (GIF). It is also
a technique that uses prediction and entropy coding. The deflate algorithm, a combination of
LZ77 and Huffman coding, is used as the entropy coding technique. PNG uses five types of
filter for prediction [100], as shown in Table 4.3 (based on Table 4.1).

Table 4.3: Predictor for PNG-based image compression

Type byte Filter name Prediction
0 None Zero
1 Sub D
2 Up B
3 Average The rounded mean of D and B

4 Paeth [55] One of D, B, or A (whichever
is closest to P = D+B-A)

4.3.4 Context-Based, Adaptive, Lossless Image Codec (CALIC)

Context-based, adaptive, lossless image codec (CALIC) is a lossless image compression
technique that uses a more complex predictor (gradient-adjusted predictor, GAP) than lossless
JPEG, PNG, and JPEG-LS. GAP provides better modelling than MED by classifying the edges
of an image as either strong, normal, or weak. Although CALIC provides more compression
than JPEG-LS and better modelling, it is computationally expensive. As shown in Table 4.1,
Wu [101] used the local horizontal (Gh) and vertical (Gv) image gradients (Equations (4.7) and
(4.8) to predict a value (P) (Equation (4.9) for the current pixel (P) using Equation (4.10). At
the coding stage, CALIC uses either Huffman coding or arithmetic coding; the latter provides
more compression, but takes more time for encoding and decoding since arithmetic coding is
more complex. The encoding and decoding methods in CALIC follow a raster scan order, with
a single pass of an image. There are two modes of operation, binary and continuous tone. If
the current locality of an original image has a maximum of two distinct intensity values, binary
mode is used; otherwise, continuous tone mode is used. The continuous tone approach has four
components: prediction, context selection and quantisation, context modelling of prediction
errors, and entropy coding of the prediction errors. The mode is selected automatically, and no
additional information is required [102].

Gh = |D −K|+ |B −A|+ |C −B| (4.7)

Gv = |D −A|+ |B − F |+ |C −G| (4.8)

30

4.4. TRANSFORM CODING

P =



D, if(Gv −Gh > 80); Sharp horizontal edge
M+P

2 , if(Gv −Gh > 32); Horizontal edge
3∗M+P

4 , if(Gv −Gh > 8); Weak horizontal edge
B, if(Gv −Gh < −80); Sharp vertical edge
M+B

2 , if(Gv −Gh < −32); Vertical edge
3∗M+B

4 , if(Gv −Gh < −8); Weak vertical edge

(4.9)

M =
D +B

2
+
C −A

4
(4.10)

4.3.5 WebP

In 2010, Google introduced WebP based on VP8 [103, 104]. It is now one of the most
successful image formats and supports both lossless and lossy compression. WebP predicts
each block based on three neighbor blocks, and blocks are predicted in four modes: horizontal,
vertical, DC, and TrueMotion [105, 106].

The lossy procedure of WebP is developed based on the intra-frame coding of the VP8 video
format reported in [103, 107]. When WebP performs lossy compression, non-predicted blocks
and misspredicted data are compressed in a sub-block of 4x4 pixels using a Walsh-Hadamard
transform or a discrete cosine transform (DCT). Rounding errors is avoided with fixed-point
arithmetic in this transform. Finally, an entropy coding technique is applied to compress the
output. A clear explanation of the encoding procedure of WebP has been given in [108]. WebP
supports parallel decoding.

Though WebP provides better compression than JPEG and PNG, only some browsers sup-
port WebP. Also, AVIF and JPEG-LS are developed to supersede WebP. Another disadvantage
is that lossless WebP does not support progressive decoding [104, 105].

4.3.6 Free Lossless Image Format (FLIF)

Free Lossless Image Format (FLIF) is one of the best lossless image formats and provides
better performance than the state-of-the-art techniques in terms of compression ratio. Many
image compression techniques (e.g. PNG) support progressive decoding that can show an im-
age without downloading the whole image. In this stage, FLIF is better as it uses progressive
interlacing that is an improved version of the progressive decoding of PNG. FLIF is developed
based on MANIAC (Meta-Adaptive Near-zero Integer Arithmetic Coding), a variant of CABAC
(context-adaptive binary arithmetic coding. The detailed coding explanation of FLIF is given
in [109, 110]. One of the main advantages of FLIF is that it is responsive by design. As a
result, users can use it as per their needs. FLIF provides excellent performances on any kind
of image [111, 112]. In [109], Jon et al. show that JPEG and PNG work well on photographs
and drawings images, respectively, and there is no single algorithm that works well on all types
of images. However, they finally conclude that only FLIF works better on any kinds of image.
FLIF has many limitations such as no browser still supports FLIF [113] and takes more time for
encoding and decoding an image.

4.4 Transform Coding

Transform coding is a sort of data compression technique that linearly transforms an image to
concentrate as much energy into as few transform coefficients as possible. This type of transfor-
mation provides no compression but allows the many small coefficients to be approximated by
zero. These techniques are excellent as high-frequency components are reduced and efficiently

31

adapted to take advantage of the human visual system’s frequency response features. In terms of
lossless compression, the transformation is perfectly reversible. A better quantization technique
is applied for lossy compression, resulting in a lower quality copy of the original data.

In these types of transformation techniques, computational complexity is the main limi-
tation. A two-dimensional image’s transformation takes approximately nlog2n additions and
multiplications per pixel. There are many techniques used to reduce the complexity. The first
is the use of separable transforms that decrease computation by doing all the horizontal and
then the vertical transformations of an image. This technique reduces the calculation to log2n.
The second technique breaks an image into blocks and then transforms each of those blocks
independently. Since the forward and inverse transform are both complex, the encoding time is
approximately equal to decoding time. These kind of image transformation techniques are dis-
crete wavelet transform (DWT), discrete cosine transform (DCT), etc. A general block diagram
of transform coding is shown in 4.3.

Figure 4.3: A General Block Diagram of Transform Coding

4.4.1 JPEG 2000

JPEG 2000 is an extension complement of the JPEG standard [114], and is a wavelet-based
still image compression technique [115–118] with certain new functionalities. It provides better
compression than JPEG [119]. The development of JPEG 2000 began in 1997, and become
an international standard [120] in 2000. It can be used in lossless or lossy compression within
a single architecture. Most image or video compression standards divide an image or a video
frame into square blocks, to be processed independently. For example, JPEG uses the Discrete
Cosine Transform (DCT) to split an image into a set of 8x8 square blocks for transformation.
As a result of this processing, extraneous blocking artefacts arise during the quantisation of the
DCT coefficients at high CR, producing visually perceptible faults in the image [2, 121–123].
In contrast, JPEG 2000 transforms an image as a whole using a discrete wavelet transformation
(DWT), and this addresses the issue. One of the most significant advantages of using JPEG 2000
is that different parts of the same image can be saved with different levels of quality if necessary
[124]. Another advantage of using DWT is that it transforms an image into a set of wavelets,
which are easier to store than pixel blocks [125, 126]. JPEG 2000 is also scalable, meaning
that a code stream can be truncated at any point. In this case, the image can be constructed but
the resolution may be poor if many bits are omitted. JPEG 2000 has two major limitations: it
produces ringing artifacts near the edges of an image, and is computationally more expensive
[126]. A general block diagram for the JPEG 2000 encoding technique is shown in Figure 4.4.

Initially, an image is transformed into the YUV colour space rather than YCbCr for lossless

32

4.4. TRANSFORM CODING

Figure 4.4: (a) JPEG 2000 encoder; (b) dataflow [2]

JPGE2000 compression, since YCbCr is irreversible and YUV is completely reversible. The
transformed image is then split into a set of tiles. Although the tiles may be of any size, all the
tiles in an image are the same size. The main advantage of dividing an image into tiles is that the
decoder requires very little memory for image decoding. In this tiling process, the image quality
can be decreased for low PSNR and the same blocking artifacts like JPEG can arise when more
tiles are created. The LeGall-Tabatabai (LGT) 5/3 wavelet transform is then used to decompose
each tile for lossless coding [124, 125], while the CDF 9/7 wavelet transform is used for lossy
compression [125].

Quantisation is carried out in lossy compression, but not in lossless compression. The out-
come of the transformation process is the sub-band collection and the sub-bands are further
split into code blocks, which are then coded using the embedded block coding with optimal
truncation (EBCOT) process, in which the most significant bits are coded first. All bit planes of
the code blocks are perfectly stored and coded, and a context-driven binary arithmetic coder is
applied as an entropy coder independently to each code block. In lossy compression, some bit
planes are dropped. While maintaining the same quality, JPEG 2000 provides about 20% more
compression than JPEG and works better for larger images.

After the DWT transformation of each tile, we obtain four parts: the top left image with
lower resolution, the top right image with higher vertical resolution, the bottom left image with
lower vertical resolution, and the bottom right image with higher resolution in both directions.
This decomposition process is known as dyadic [114], and is illustrated in Figure 4.5 based on
a real image, where the entire image is considered as a single tile.

4.4.2 JPEG XR (JPEG extended range)

Like JPEG, JPEG Extended Range (JPEG XR) is a still image compression technique that
was developed based on HD photo technology [127, 128]. The main aim of the design of JPEG
XR was to achieve better compression performance with limited computational resources [129],
since many applications require a high number of colours. JPEG XR can represent 2.8 × 1014

colours, compared to only 16,777,216 for JPEG. While JPEG-LS, CALIC, and JPEG 2000 use
MED, GAP and DWT, respectively, for compression, JPEG XR uses a lifting-based reversible

33

Figure 4.5: Dyadic decomposition of a single tile

hierarchical lapped biorthogonal transform (LBT). The two main advantages of this transfor-
mation are that both encoding and decoding require relatively few calculations, and are com-
pletely reversible. Two operations are carried out in this transformation: a photo core transform
(PCT), which employs a lifting scheme, and a photo overlap transform (POT) [130]. Similar to
DCT, PCT is a 4x4 wavelet-like multi-resolution hierarchical transformation within a 16 × 16
macroblock. This transformation improves the image compression performance [130]. POT
is performed before PCT to reduce blocking artifacts at low bitrates. Another advantage of
using POT is that it reduces the ET and DT at high bitrates [131]. At the quantisation stage,
a flexible coefficient quantisation approach based on the human visual system is used that is
controlled by a quantisation factor (QF), where QF varies depending on the colour channels,
frequency bands, and spatial regions of the image. It should be noted that quantisation is done
only for lossy compression. An inter-block coefficient prediction technique is also implemented
to remove inter-block redundancy [127]. Finally, JPEG XR uses adaptive Huffman coding as
an entropy coding technique. JPEG XR also allows for image tiling in the same way as JPEG
2000, meaning that the decoding of each block can be done independently. JPEG XR permits
multiple colour conversions, and uses the YCbCr colour space for images with 8 bits per sample
and the YCoCg color space for RGB images. It also supports the CMYK colour model [126].

34

4.5. LZ77 ALGORITHM

General block diagrams for JPEG XR encoding and decoding are shown in Figures 4.6 and 4.7,
respectively.

Figure 4.6: JPEG XR encoder [84]

4.4.3 AV1 Image File Format (AVIF)

AOMedia Video 1 (AV1), developed in 2015 for video transmission, is a royalty-free video
coding format [132], and AV1 Image File Format (AVIF) is derived from AV1 and uses the same
technique for image compression. It supports both lossless and lossy compression. AV1 uses a
block-based frequency transform and incorporates some new features based on Google’s VP9
[133]. As a result, the AV1’s encoder gets more alternatives to allow better adaptation to various
kinds of input and outperforms H.264 [134]. The detailed coding procedure of AV1 is given
in [135,136]. AVIF and HEIC provide almost similar compression. HEIC is patent-encumbered
H.265 format and illegal to use without getting patent licenses. On the other hand, AVIF is
free to use. There are two biggest problems in AVIF. It’s very slow for encoding and decoding
an image, and does not support progressive rendering. AVIF provides many advantages over
WebP. For example, it provides a smaller sized image and a more quality image, and supports
multi-channel [137]. A detailed encoding procedure of AV1 is shown in Figure 4.8 [138].

4.5 LZ77 Algorithm

LZ77 stands for Lempel-Ziv compression method developed in 1977, a lossless data com-
pression algorithm, developed by Abraham Lempel and Jacob Ziv in 1977 [74] and 1978 [139].
It maintains a sliding window during data compression and encodes from a sliding window over
previously seen characters. But, it always starts at the beginning of the input during decoding.
The pseudo-code of LZ77 is shown in [31].

4.6 Summary

Many techniques are used to compress data losslessly. They are classified into three classes:
entropy coding, predictive coding, and transform coding. This chapter explained in detail

35

Figure 4.7: JPEG XR decoder [80]

the most widely used lossless data compression standards from each category. Their coding
schemes and limitations were described in detail.

36

4.6. SUMMARY

Figure 4.8: AV1 encoder

37

38

Chapter 5

Entropy coding techniques: A Survey

Modern daily life activities result in a massive amount of data, which creates a big challenge
for storing and communicating them. For example, hospitals produce a considerable amount of
data daily, making it a significant challenge to store it in limited storage or to communicate them
through the restricted bandwidth over the Internet. Therefore, there is an increasing demand for
more research in data compression and communication theory to deal with such challenges.
Such research responds to the requirements of data transmission at high speed over networks.
Every advanced algorithm compresses an image in two steps. At first, a prediction or trans-
formation method is applied to an original image and then encoded using an entropy coding
technique. Some of the entropy coding techniques may provide better compression than the
other, while the other method may take less encoding and decoding time. Some algorithms are
very sensitive to noise. Thus, choosing an entropy coding strategy for lossless data compression
is a big challenge. This study focuses on a deep analysis of the most common entropy coding
techniques with a common numeric example for a clear comparison. Finally, we propose the
best entropy coding technique based on the analysis.

5.1 Introduction

The utilization of the computer in modernized activities is increasing virtually everywhere.
As a result, sending a plethora of data, especially images and videos, over the cyber world is
the most challenging issue because of circumscribed bandwidth and storage capacity; and it is
time-consuming and costly, as reported in [140]. For instance, a conventional movie camera
customarily uses 24 frames per second. However, current video standards sanction 120, 240, or
300 frames per second. Video is a series of still images or frames passed per second, and a color
image contains three panels: red, green, and blue. Suppose you would like to send or store a
three-hour color movie file of 1200 × 1200 dimension, and 50 frames are passed in every second.
It takes approximately (1200 × 1200 × 3 × 84 × 50 × 10,800) bits = 17,797,851.5625 Megabits =
2172.5893 gigabytes storage if a pixel is coded in 8 bits, which is a sizably voluminous challenge
to store in a computer or send over the cyber world. Here, 3 is the number of channels of a color
image: R, G, and B, and 10,800 is the total number of seconds. Additionally, the medium of
transmission and latency are two significant issues for data transmission. If the video file is sent
over a medium of 100 Mbps, approximately (17,797,851.5625 Megabits)/100 = 177,978.5156
s = 49.4385 h is required because the medium can send 100 Megabits per second. For these
reasons, compression is needed, and it is a paramount way to represent an image with fewer
bits keeping its quality. An immensely colossal volume of data can be sent through an inhibited
bandwidth at high speed over the cyber world reported in [47, 141]. The general block diagram
of an image compression procedure is shown in Figure 5.1.

There are many image compression techniques. An image compression technique is ver-
bally expressed to be the best when it contains less average code length, encoding, and decod-

39

ing times and provides more compression ratio. Image compression algorithms are extensively
applied in medical imaging, computer communication, military communication via radar, tele-
conferencing, magnetic resonance imaging (MRI), broadcast television, and satellite images
reported in [142]. Some applications require high-quality visual information, and others need
less quality, reported in [143, 144].

From this perspective, compression is divided into two types: lossless and lossy. All pristine
data are recuperated correctly from an encoded data set in lossless, whereas the lossy technique
retrieves virtually all data sempiternally, eliminating categorical information, especially redun-
dant information reported in [87, 145]. Lossless is mainly utilized in facsimile transmissions
of bitonal images, ZIP file format, digital medical imagery, internet telephony, and streaming
video files reported in [146].

The foremost intention of implementing a compression algorithm is to diminish redundant
data reported in [147]. Run-length coding, for example, is a lossless procedure where a set of
the same consecutive pixels (runs of data) are preserved as a single value and a count stated
in [41,82]. But, long runs of data do not exist in authentic images mentioned in [67,148], which
is the main difficulty of run-length coding. Article [68] shows that a chain code binarization
with run-length, and LZ77 provides a more satisfactory result than the traditional run-length
technique from a compression ratio perspective. The authors in [149] show a different way of
compression utilizing a bit series of a bit plane and demonstrate that it provides a better result
than conventional run-length coding.

The entropy encoding techniques are proposed to solve the difficulties of a run-length algo-
rithm. Entropy coding style encodes source symbols of an image with code words of different
lengths. There are some well-recognized entropy coding methods: Shannon–Fano, Huffman,
and arithmetic coding. The first entropy coding technique is Shannon–Fano, which gives a bet-
ter result than run-length reported in [150]. The authors in [151] show that Shannon–Fano cod-
ing provides 30.64% and 36.51% better results for image and text compression, respectively,
compared to run-length coding. However, Nelson et al. stated in [152] that Shannon–Fano
sometimes generates two different codes for the same symbol and does not ascertain optimal
codes, which are the algorithm’s two main problems. From this perspective, Shannon–Fano
coding is an inefficient data compression technique reported in [41, 82].

Huffman is another entropy coding algorithm that solves the difficulties of Shannon–Fano
reported in [153,154]. In that technique, pixels that are happening more frequently are encoded,
utilizing fewer bits shown in [155, 156]. Huffman coding is a good compression technique.
Rufai et al. proposed a singular value decomposition (SVD) and Huffman coding-based image
compression procedure [157]. SVD is used to decompose an image first, and the rank is reduced,
ignoring some lower singular values. Lastly, the processed representation is coded by Huffman
coding, which shows a better result than JPEG2000 for lossy compression. In [158], three
algorithms: Huffman, fractal algorithm, and Discrete Wavelet Transform (DWT) coding, have
been implemented and compared to show the best coding procedure. It indicates that Huffman
works better to reduce redundant data, and DWT improves the quality of a compressed image,
whereas the fractal provides a better compression ratio. The main problem of Huffman coding
is that it is very sensitive to noise. It can not reconstruct an image perfectly from an encoded
image if any changes happen [72].

Another lossless entropy method is arithmetic coding, which gives a short average code
compared to Huffman coding reported in [78]. In [159], Masmoudi et al. proposed a modi-
fied arithmetic coding technique that encodes an image from top to bottom block-row wise and
block by block from left to right instead of pixel by pixel using a statistical model. The precise
probability between the current and its neighboring block are calculated by reducing the Kull-
back–Leibler gap. As a result, around 15.5% and 16.4% bitrates are decremented for static and
adaptive order sequentially. A block-predicated lossless compression has been proposed using
adaptive arithmetic coding and finite mixture models, reported in [24]. Here, an image is par-

40

5.2. ENTROPY CODING TECHNIQUES

titioned into non-overlapping blocks and encoded every block individually utilizing arithmetic
coding. This algorithm provides 9.7% better results than JPEG-LS reported in [87, 160] when
the work is done in a predicted error domain instead of a pixel domain. Articles [76, 77] state
that arithmetic coding provides a better compression ratio. But, it takes so much time that it is
virtually unutilizable for dynamic compression. Also, its use is restricted by patent. On the other
hand, though Huffman coding provides marginally less compression, it utilizes significantly less
time to encode an image than arithmetic coding. That’s why it is suitable for dynamic compres-
sion reported in [78, 79]. Furthermore, an image encoded by arithmetic coding can corrupt the
entire image for a single bit error because it has very impecunious error resistance reported
in [80, 81]. Contiguous to, the primary inhibition of entropy coding is that it increments the
complexity of CPU stated in [82, 83].

LZW (Lempel–Ziv–Welch) is a dictionary predicated compression technique that reads a
sequence of pixels and then groups the pixels into strings. Lastly, the strings are converted into
codes. In that technique, a code table with 4096 common entries is utilized, and the fixed codes
0–255 are assigned first in a table as an initial entry because an image can have a maximum
of 256 different pixels from 0 to 255. It works better in the case of text compression reported
in [84]. However, Saravanan et al. propose an image coding procedure utilizing LZW, which
compresses an image in two stages shown in [41, 161, 162]. Firstly, a picture is encoded using
Huffman coding. Secondly, after concatenating all the code words, LZW is applied to compress
the encoded image, which provides a better result. However, the main challenge of that tech-
nique is to manage the string table.

This study uses a common numeric data set and shows the step-by-step details of imple-
mentation procedures of the entropy coding techniques, demonstrates comparisons among the
methods, and explains the difficulties of the methods based on the experimental results. The
organization of this study is shown as follows: the encoding and decoding procedure; and the
analysis of run-length, Shannon–Fano, Huffman, LZW, and Arithmetic coding are discussed in
Sections 5.2. The experimental results of some benchmarked images are explained in Section
5.2.6, and concluding statements are presented in Section 5.3.

5.2 Entropy Coding Techniques

5.2.1 Run-Length Coding

Run-length coding is a lossless compression procedure that takes the occurrence of data instead
of statistical information, and it is generally utilized in TIFF and PDF formats reported in [140].
In the encoding, a single value and the count of the same consecutive values are stored. For
instance, the encoding and decoding procedures are shown in Algorithm 1 and Algorithm 2,
respectively, based on the 50 elements (A = [6 7 6 6 6 7 7 7 7 7 7 7 7 7 5 4 4 4 4 7 7 7 7 7 7 7 7
7 5 5 5 7 7 3 3 3 2 2 2 5 5 5 5 5 5 5 5 5 1 1]).

It shows that only twenty-six elements are preserved in two matrices instead of 50 items that
designates that (26*8)=208 bits are sent to the decoder (50*8)= 400 bits. So, the average code
length is 208/50 = 4.16 bits, and ((8-4.16)/8)*100 = 48% working memory is saved for the data
set.

For example, the first 6 and 7 of the array (items) are reiterated once at positions 1 and 2,
respectively. And the next 6 and 7 are repeated three times from positions 3 to 5 and 9 times
from positions 6 to 14, respectively. This process will continue until the reading of all elements
from the items array is finished. Conclusively, we get the same list as the original list(A) after
decoding.

41

Figure 5.1: General block diagram of an image compression procedure.

Algorithm 1: Run-length encoding procedure

1 Calculate the difference (B = [1 -1 0 0 1 0 0 0 0 0 0 0 0 -2 -1 0 0 0 3 0 0 0 0 0 0 0 0 -2 0

0 2 0 -4 0 0 -1 0 0 3 0 0 0 0 0 0 0 0 -4 0 1]) using f(x) = f(x+ 1)− f(x);

2 Assign 1 to each non-zero data of B and we get B = [1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1];

3 Save the positions of all ones into an array (position = [1 2 5 14 15 19 28 31 33 36 39

48 50]) and the corresponding data into (items =[6 7 6 7 5 4 7 5 7 3 2 5 1]) from A.

The arrays position and items are stored or sent as the encoded list of the original 50

elements;

Algorithm 2: Run-Length Decoding Procedure

1 The two arrays position and items are received for decoding, and the decoder follows

the style shown below for decompression;

2 Read each element from the array items and write the element repeatedly until its

corresponding number in the position array is found;

42

5.2. ENTROPY CODING TECHNIQUES

Table 5.1: The results of Shannon-Fano encoding procedure

i Pi Ei Bi
∑N−1

i=0 Pi Bi Pi log2 Pi CR BPP
7 0.42 00 2 0.84 -0.526

3.226 0.31

4 0.08 01 2 0.52 -0.292
5 0.26 10 2 0.16 -0.505
6 0.08 1100 4 0.32 -0.292
3 0.06 1110 4 0.24 -0.244
2 0.06 1111 4 0.24 -0.244
1 0.04 1101 4 0.16 -0.186

Lavg=2.48 Entropy= 2.289

Analysis of Run-length Coding Procedure

Run-length coding works well when an image contains long runs of identical samples that
customarily does not appear in an authentic image which is the main quandary of run-length
coding reported in [47, 141]. For example, the data(A) is rearranged with a slight change and
the rearranged list is C = [1 6 7 6 6 7 7 7 4 7 7 7 7 5 7 4 4 7 4 7 7 7 7 7 7 7 5 7 7 5 5 7 7 3 3 2 3
2 2 5 5 5 5 6 5 5 5 5 5 1]. We apply run-length coding on C; and get [1 2 3 5 8 9 13 14 15 17 18
19 26 27 29 31 33 35 36 37 39 43 44 49 50] and [1 6 7 6 7 4 7 5 7 4 7 4 7 5 7 5 7 3 2 3 2 5 6
5 1] in position and items arrays . There is no compression here because the two arrays contain
50 elements together which is precisely identically tantamount to the initial list(C).

5.2.2 Shannon-Fano Coding

Shannon-Fano is a lossless coding technique that takes sorted probabilities in descending
order of an image and separated them into two groups where each group’s total sum is almost
equivalent reported in [70].

Run-length coding does not perform any compression on the array C and the array contains
seven different components (7, 5, 4, 6, 3, 2, 1) and their probabilities are 0.42, 0.26, 0.08, 0.08,
0.06, 0.06 and 0.04, respectively. As indicated by the algorithm, the two groups left (0.42, 0.08)
and right (0.26, 0.08, 0.06, 0.06, 0.04) are made, and the Shannon-Fano encoding procedure is
applied to the groups, demonstrated in Figure 5.2.

Efficiency is determined using the following equation 5.1, which is also utilized to measure
a compression algorithm’s performance. The array (C) encoded results appear in Table 5.1,
where Ei represents the encoded code-word of ith symbol.

efficiency =
entropy

Lavg
∗ 100% (5.1)

Using Table 5.1 The Shannon-Fano coding provides [110111000011001100000000010000
0000100001010 001000000000000001000001010000011101110111111101111111110101010
1100101010101 01101] bitstream of the data set (C), which is sent for decompression together
with symbols and their probabilities. It looks that Shannon-Fano saves ((8-2.48)/8)*100 = 69%
storage where run-length coding can save no memory for the same data set. So, Shannon-Fano
provides a 69% better result than run-length coding for the data set, and the algorithm profi-
ciency is 92.298%.

In decoding, Shannon-Fano receives the encoded bitstream, items, and their relating proba-
bilities. It builds a similar tree as Figure 5.2 dependent on the probabilities. Finally, we get the
same data list as array C.

43

Table 5.2: Huffman encoding procedure

i Pi Ei Bi
∑N−1

i=0 Pi Bi Pi log2Pi CR BPP
7 0.42 1 1 0.42 -0.526

3.448 0.29

5 0.26 01 2 0.52 -0.505
4 0.08 0001 4 0.32 -0.292
6 0.08 0010 4 0.32 -0.292
3 0.06 0011 4 0.24 -0.244
2 0.06 00000 5 0.3 -0.244
1 0.04 00001 5 0.2 -0.186

Lavg=2.32 Entropy= 2.289

Analysis of Shannon-Fano Coding

In Shannon-Fano coding, we cannot be sure about the codes generated. There might be
two different codes for a same symbol depending on the way we build our tree shown below
through an example. Assume two groups (7=.42 and 6=.08) and (5=.26, 4=.08, 2=.06, 3=.06,
1=.04) are made instead of (7=.42 and 4=.08) and (5=.26, 6=.08, 2=.06, 3=.06, 1=.04) simply
exchanging two probabilities between two groups appeared in bold . And if we apply Shannon-
Fano decoding on the received bitstream, we get (D = [1 4 7 4 4 7 7 7 6 7 7 7 7 5 7 6 6 7 6 7 7
7 7 7 7 7 5 7 7 5 5 7 7 2 2 3 2 3 3 5 5 5 5 4 5 5 5 5 5 1]) as decoded values. In the decoded list,
the bold symbols represent the changed components of the original list which are considered
as loss. There are 14 elements in the decoded list that the Shannon-Fano’s rebuilt tree can not
reproduce perfectly. So it losses (14/50)*100= 28% data for only 50 elements.

5.2.3 Huffman coding

Shannon-Fano coding sometimes produces the most flawed code for some probabilities set
because it cannot produce an optimal tree. David A. Huffman illustrated a coding procedure
that consistently makes an optimal tree and tackles the issues in Shannon-Fano coding reported
in [19, 163]. Shannon-Fano coding is a top-down methodology, whereas Huffman coding uses
the reverse route, from the leaves to the root. Huffman coding uses the statistical information
of an image like Shannon-Fano coding. Figure 5.3 and Table 5.2 demonstrate a graphical repre-
sentation of the Huffman tree, and the outcomes depend on the same data used in Shannon-Fano
coding.

Based on Table 5.2, Huffman produces [0000100101001000101 11000111110110001000110
001111111101110101110011001 10000000110000000000010101010010010101010100001] as
encoded bitstream for the data set (C) that is sent for decoding with symbols and their corre-
sponding probabilities. In this way, Huffman coding saves 71% memory space, which is 69%
and 2% more than Run-length and Shannon-Fano coding, respectively and the efficiency of
Huffman coding is 98.664% which is 6.366% more than Shannon-Fano coding.

Huffman coding provides an optimal prefix code and receives encoded bitstream, items, and
corresponding probabilities and uses the following methodology for decompression. Finally,
Huffman produces the indistinguishable data as the original list (C).

Analysis of Huffman Coding

The main problem of Huffman coding is that it is very sensitive to noise. A minor change
in any bit of the encoded bitstream would break the whole message reported in [?]. Assume the
decoder receives items, probabilities, and the encoded bitstream with only three altered bits at
the positions 5th, 19th, 54th. Then we get [2 6 7 6 6 5 7 4 7 7 7 7 5 7 4 4 7 4 7 7 7 7 7 7 7 3 5 5
7 7 3 3 2 3 2 2 5 5 5 5 6 5 5 5 5 5 1] as decoded values where bold elements (total 23) indicate

44

5.2. ENTROPY CODING TECHNIQUES

Figure 5.2: Encoding procedure of Shannon-Fano

Figure 5.3: Huffman tree for encoding

45

loss of data. In addition, it produces only 47 elements rather than 50 elements. So it devastates
((23+3)/50)*100 = 52% data.

5.2.4 Lempel–Ziv–Welch (LZW) Coding

Lempel–Ziv–Welch (LZW) is generally used for lossless text compression technique used to
encodes a sequence of characters with a unique code using a table-based lookup algorithm. This
algorithm works better in text compression and provides most noticeably a terrible outcome for
another sort of compression. Since the previously mentioned original list (C) contains only 7
(1–7) different values, only 1–7 are inserted into the table as an initial dictionary first. Applying
the LZW encoding procedure on C shown in Table 5.3 and we get the decoded list that appears
in Table 5.4. Finally, the encoded bitstream is sent to the decoder. Each piece of encoded data is
converted into a 6-bit binary because the biggest value is 33 in the encoded list, and just 6 bits
are required to represent 33.

Since the average code length is 3.84, as shown in Table 5.4, LZW saves 36% memory,
which is 28.7356% and 29.3103% more than Shannon–Fano and Huffman coding individually
for the same dataset. Furthermore, the only encoded bitstream is sent to the decoder for decom-
pression.

For instance, the mentioned encoded bitstream converts every six bits into decimal value
and is assigned 1–7 as the initial dictionary is shown in Table 5.5. The decoding demonstration
for the encoded data (Code) is shown in Table 5.6, and we get a similar list as C after decoding.

Analysis of LZW Coding

The searching dictionary is a significant challenge in the LZW compression technique be-
cause it is more complicated and time-consuming. Moreover, an image that does not carry many
repetitive data at all cannot be reduced, and it is suitable for deducing file size that carries more
repeated data reported in [73, 74].

5.2.5 Arithmetic Coding

Arithmetic coding is a lossless data compression procedure where a set of symbols is pre-
sented using a fixed number of bits reported in [75, 78]. The original array (C) contains 50
elements. The encoding style of 50 items in a figure is challenging, which is why only the
encoding style for ten items is shown. Suppose that the 10-item list is [2 3 4 3 4 4 4 1 4 1].
There are four different items (4 3 1 2) on the list, and their corresponding probabilities are 0.5,
0.2, 0.2, 0.1, individually. The four elements (4 3 1 2) contain 50%, 20%, 20% and 10% data,
respectively. Thus, each limit is divided into 50%, 20%, 20%, and 10% each time to encode
each element, shown in Figure 5.4 for all ten elements.

For the example shown in Figure 5.4, the LLL and LUL are 0.9551925 and 0.9551975.
Thus, the tag is 0.955195. The bitstream of the tag value is 001111000110111. Thus, the
average code length is 15/10 = 1.5 bits, and the compression ratio is 5.3333. Finally, the tag’s
bitstream, symbols (4,3,1,2), and their corresponding probabilities (0.5, 0.2, 0.2, 0.1) are sent to
the decoder for decompression. When Arithmetic coding is applied on data set (C), it produces
[00000101100110101110100101111100101010111011110011 1111010101100101110011001
1100000000101011010010110 110111100001011] bitstream from the provided tag. Thus, the
average code length and compression ratios are 2.3000 bits and 3.4783 separately, which saves
71.25% of storage. It appears that run-length, Shannon–Fano, Huffman, and LZW coding use
44.7115%, 7.2581%, 6.5041%, and 33.908% more memory than arithmetic coding.

The decoding procedure of arithmetic coding receives tag, symbols, and corresponding
probabilities, and the tag is converted into its floating-point number. For decompression, if
the tag is in between in any range, then the range’s symbol is taken as the decoded value. The

46

5.2. ENTROPY CODING TECHNIQUES

Table 5.3: LZW encoding procedure.

Row Number Encoded Output Dictionary

Index Entry

1 - 1 1
2 - 2 2
3 - 3 3
4 - 4 4
5 - 5 5
6 - 6 6
7 - 7 7
8 1 8 16
9 6 9 67
10 7 10 76
11 6 11 66
12 9 12 677
13 7 13 77
14 7 14 74
15 4 15 47
16 13 16 777
17 13 17 775
18 5 18 57
19 14 19 744
20 15 20 474
21 15 21 477
22 16 22 7777
23 16 23 7775
24 18 24 577
25 7 25 75
26 5 26 55
27 24 27 5773
28 3 28 33
29 3 29 32
30 2 30 23
31 29 31 322
32 2 32 25
33 26 33 555
34 26 34 556
35 6 35 65
36 33 36 5555
37 26 37 551
38 1 - -

39 0 Stop Code

47

Table 5.4: Average code length and compression ratio.

Encoded Data Encoded Bit’s Stream (6 Bits Each) ACL CR

1 6 7 6 9 7 7 4 13
13 5 14 15 15 16
16 18 7 5 24 3 3 2
29 2 26 26 6 33 26

1 0

0000010001100001110001100010
0100011100011100010000110100
1101000101001110001111001111
0100000100000100100001110001
0101100000001100001100001001
1101000010011010011010000110

100001011010000001000000

3.84 2.083

Table 5.5: Initial dictionary.

Initial Dictionary

Index Entry

1 1
2 2
3 3
4 4
5 5
6 6
7 7

Figure 5.4: Arithmetic encoding procedure.

48

5.2. ENTROPY CODING TECHNIQUES

Table 5.6: The decoding procedure of LZW coding

Row Number Code Output Full Conjecture

1 1 1 8: 1?
2 6 6 8: 16 9: 6?
3 7 7 9: 67 10: 7?
4 6 6 10: 76 11: 6?
5 9 67 11:66 12: 67?
6 7 7 12: 677 13: 7?
7 7 7 13:77 14: 7?
8 4 4 14:74 15: 4?
9 13 77 15:47 16: 77?

10 13 77 16: 777 17: 77?
11 5 5 17:775 18:5?
12 14 74 18:57 19:74?
13 15 47 19:744 20:47?
14 15 47 20:474 21:47?
15 16 777 21:477 22:777?
16 16 777 22:7777 23:777?
17 18 57 23:7775 24: 57?
18 7 7 24:577 25:7?
19 5 5 25:75 26: 5?
20 24 577 26:55 27:577?
21 3 3 27:5773 28:3?
22 3 3 28:33 29:3?
23 2 2 29: 32 30: 2?
24 29 32 30:23 31: 32?
25 2 2 31:322 32:2?
26 26 55 32:25 33:55?
27 26 55 33:555 34:55?
28 6 6 34:556 35:6?
29 33 555 35:65 36:555?
30 26 55 37:5555 38:55?
31 1 1

49

whole decoding procedure of the ten values is demonstrated in the following list using Figure
5.5, and we get the exact list [2 3 4 3 4 4 4 1 4 1] like the original. Here, the floating value of
the corresponding tag’s bitstream is 0.955195.

1. tag = 0.955195. Since .9 < = tag < = 1.0, Thus, decoded value is 2 because the symbol 2
is in range.

2. NT1 = (tag-LL)/r = 0.55195 and it is in between 0.5 and 0.7, so the decoded value is 3.

3. NT2 = (NT1 - LL)/r = 0.25975 and it is in between 0 and 0.5, so the decoded value is 4.

4. NT3 = (NT2 - LL)/r = 0.5195 and it is in between 0.5 and 0.7, so the decoded value is 3.

5. NT4 = (NT3 - LL)/r = 0.0975 and it is in between 0 and 0.5, so the decoded value is 4.

6. NT5 = (NT4 - LL)/r = 0.195 and it is in between 0 and 0.5, so the decoded value is 4.

7. NT6 = (NT5 - LL)/r = 0.39 and it is in between 0 and 0.5, so the decoded value is 4.

8. NT7 = (NT6 - LL)/r = 0.78 and it is in between 0.7 and 0.9, so the decoded value is 1.

9. NT8 = (NT7 - LL)/r = 0.4 and it is in between 0 and 0.5, so the decoded value is 4.

10. NT9 = (NT8 - LL)/r = 0.8 and it is in between 0.7 and 0.9, so the decoded value is 1.

Analysis of Arithmetic Coding Procedure

The authors in [77, 78] state that arithmetic coding provides a better compression ratio.
However, it takes so much time that it is virtually not utilizable for dynamic compression. Fur-
thermore, its use is restricted by the patent. On the other hand, though Huffman coding provides
marginally less compression, it utilizes much less time to encode an image than arithmetic cod-
ing. That is why it is good for dynamic compression reported in [78, 79]. Furthermore, an
image encoded by arithmetic coding can corrupt the entire image for a single bit error because
it has a very impecunious error resistance reported in [80–82]. Another problem is that an entire
code-word must be taken to start interpreting a message. Contiguous to the direct inhibition of
entropy coding is that it increments CPU’s complexity stated in [83, 84]. Suppose the decoder
receives the tag of the original 50 elements with only a first bit altered, and we get [6 5 4 2 7 7
7 7 7 2 7 5 6 7 7 7 7 4 7 7 7 7 7 7 1 7 7 6 5 7 5 7 7 7 2 4 7 2 7 5 7 5 7 1 5 7 1 7 1 1] as
a decoded list where the bold symbols indicate the altered values. In the list, 31 elements have
been altered, which means (31/50) × 100 = 62% of the data have been corrupted.

5.2.6 Experimental Results and Analysis

The outcomes and investigation of entropy coding methods have been demonstrated in this
segment. The entropy coding techniques have been applied to the different types of bench-
marked images. In this study, we have initially used three PC-created photographs. The next
twenty-two medical images from the DICOM Image dataset [164] of various sizes appeared in
Figure 5.6. Encoding time, decoding time, average code length, compression ratio, PSNR, and
efficiency have been used to analyze the algorithms’ performance.

The encoding and decoding time are the periods of time required to encode and decode an
image. Average code length determines the number of bits used to store a pixel on average, and
the compression ratio represents the ratio of original and compressed images. Pick signal-to-
noise ratio ((PSNR)) is used to measure the quality of an image. Less encoding and decoding
time, short average code length, and higher compression ratio tell how much faster an algorithm

50

5.2. ENTROPY CODING TECHNIQUES

Figure 5.5: Arithmetic decoding procedure

Figure 5.6: Original image list.

51

is and how much less memory it uses. The higher efficiency and PSNR convey that an image
contains high-quality information. The encoding time, decoding time, average code length, and
compression ratio are shown in Tables 5.7–5.10. Figures 5.7–5.10 show the graphical represen-
tation of encoding time, decoding time, average code length, compression ratio, and efficiency,
respectively, based on the twenty-five images.

Table 5.7 shows that arithmetic and run-length coding take the highest (4.0178) and low-
est (0.1349) milliseconds on average. In contrast, Shannon–Fano, Huffman, and LZW take
0.5873, 0.2488, and 0.1054 milliseconds, respectively, to encode the images. It appears that
arithmetic coding uses 96.6424%, 85.3825%, 93.8076% and 97.3767% more time than run-
length, Shannon–Fano, Huffman, and LZW coding, respectively. However, Huffman coding
uses much less time (0.0062) on average in decoding, whereas arithmetic coding uses more time,
which is demonstrated in Table 5.8. On the other hand, LZW uses more time than Shannon–
Fano and Huffman coding but less than Arithmetic and Run-Length coding. Figures 5.7 and 5.8
show the graphical representation of encoding and decoding time for comparison.

Tables 5.9 and 5.10 show average code length and compression ratio, respectively. It looks
that RLE uses 10.5618 bits per pixel, on average, which is 24.2553% more memory being used
than the original images, which is the reason it is not used directly for real image compression.
On the other hand, LZW uses the lowest number of bits (5.9365) per pixel, but the problem
of LZW is that it sometimes uses more memory than an original, which happened for image
21 shown in Table 5.9. Arithmetic coding uses the second-lowest number of bits per pixel on
average. Thus, arithmetic coding is the best coding technique because it provides a better com-
pression ratio than other state-of-the-art techniques without LZW shown in Table 5.10. Figures
5.9 and 5.10 demonstrate the graphical representation of average code length and compression
ratio separately for comparison.

All the entropy coding strategies are lossless. Thus, the pick signal-to-noise ratio and mean
squared error (MSE) for each algorithm are inf and zero, respectively, for every case. However,
arithmetic and run-length coding, on average, have the highest (99.9899) and lowest (58.6783)
efficiency than the other methods shown in Figure 5.11. Even though LZW coding’s proficiency
provides better outcomes and sometimes provides terrible results, it is not used for image com-
pression in real applications. The list of the decompression images is shown in Figure 5.12.

From the previously mentioned perspectives, arithmetic coding is the best way when more
compression is required; however, it isn’t helpful for a real-time application because of taking
additional time in encoding and decoding steps. Searching in a dictionary is a big challenging
issue for LZW coding, and it provides the worst results for image compression. Shannon–Fano
coding sometimes does not give optimal code and provides two different codes for the same
element, which is why it is obsolete now. Run-length coding is not suitable for a straightforward
real image compression.

Thus, it very well may be reasoned that Huffman coding is the best algorithm for the recent
technologies among the state-of-the-art lossless methods mentioned used in various applica-
tions. However, if we can decrease the encoding and decoding time in arithmetic coding, it will
be the best algorithm. On the other hand, Huffman coding will work more if we can decrease
its average code length keeping its same encoding and decoding times.

In this research work, all the experiments are done using C, Matlab (version 9.4.0.813654
(R2018a). Natick, Massachusetts, USA: The MathWorks Inc.; 2018) and Python languages. For
the coding environments, Spyder (Python 3.6), Codeblocks (17.12, The Code::Blocks Team)
and Matlab are utilized. Furthermore, we utilized an HP laptop (Palo Alto, California, United
States) that contained the Intel Core i3-3110M @2.40 GHz processor (Santa Clara, USA), 8 GB
DDR3 RAM, 32 KB L1D-Cache, 32 KB L1I-Cache, 256 KB L2 Cache and 3 MB L3 Cache,
where L1D, L1I, and L2 Caches contained 8-way set associative, 64-byte line size each, and
L3 Cache contained 12-way set associative, 64-byte line size. According to the algorithms
used for testing, the CPU-Time is 1.499 × 10−6O(P), 6.481 × 10−6O(P + |β| ∗ log|β|),

52

5.2. ENTROPY CODING TECHNIQUES

Table 5.7: Encoding time comparison.

Images RLE Shannon–Fano Huffman LZW Arithmetic

1 0.171 0.8667 0.2056 0.123 5.5032
2 0.167 0.7524 0.1304 0.105 2.9515
3 0.121 0.6455 0.2673 0.109 2.223
4 0.027 0.2983 0.4699 0.022 0.3101
5 0.167 0.6735 0.215 0.106 3.7628
6 0.187 0.7304 0.2534 0.106 3.3215
7 0.141 0.6262 0.1925 0.105 2.9568
8 0.165 0.7816 0.2183 0.118 4.6419
9 0.186 0.6002 0.2252 0.107 4.4352
10 0.137 0.5079 0.1816 0.106 7.3937
11 0.126 0.4753 0.2182 0.106 4.5515
12 0.096 0.449 0.2545 0.106 2.9656
13 0.113 0.4942 0.2034 0.11 5.2077
14 0.161 0.8058 1.0607 0.108 5.525
15 0.102 0.5208 0.1932 0.106 4.3877
16 0.112 0.4978 0.1979 0.106 3.8302
17 0.092 0.4684 0.1939 0.106 4.5352
18 0.186 0.6756 0.2139 0.118 5.9698
19 0.189 0.687 0.166 0.116 5.7538
20 0.086 0.4395 0.2088 0.111 2.227
21 0.112 0.5085 0.2059 0.106 3.217
22 0.103 0.4413 0.2007 0.11 2.5256
23 0.122 0.5298 0.1617 0.105 3.8022
24 0.172 0.6697 0.2004 0.107 4.7927
25 0.132 0.5369 0.1818 0.106 3.6537

Average 0.1349 0.5873 0.2488 0.1054 4.0178

53

Figure 5.7: Encoding time comparison of the images.

54

5.2. ENTROPY CODING TECHNIQUES

Table 5.8: Decoding time comparison.

Images RLE Shannon–Fano Huffman LZW Arithmetic

1 0.059 0.0061 0.0029 0.009 6.2899
2 0.048 0.0056 0.0038 0.013 3.273
3 0.048 0.005 0.0047 0.012 2.774
4 0.01 0.0021 0.011 0.002 0.3718
5 0.058 0.0082 0.0072 0.106 4.5912
6 0.078 0.0077 0.007 0.024 4.1704
7 0.052 0.0075 0.0071 0.021 3.6072
8 0.066 0.0096 0.0084 0.037 5.7222
9 0.07 0.0059 0.0093 0.033 5.4118
10 0.059 0.0046 0.0051 0.029 5.6243
11 0.049 0.0065 0.0089 0.024 5.347
12 0.029 0.0055 0.0056 0.017 3.3815
13 0.036 0.0065 0.0049 0.019 4.7372
14 0.055 0.0094 0.0078 0.036 7.6486
15 0.038 0.0071 0.0034 0.024 5.0222
16 0.036 0.0072 0.0038 0.022 4.5165
17 0.038 0.0032 0.0056 0.019 4.7644
18 0.064 0.0044 0.0116 0.032 9.3636
19 0.071 0.0101 0.0043 0.041 6.7193
20 0.031 0.0064 0.0092 0.016 2.7133
21 0.038 0.0031 0.0032 0.024 4.2221
22 0.037 0.0056 0.0041 0.015 2.8519
23 0.05 0.0074 0.0037 0.026 4.696
24 0.059 0.0043 0.0074 0.033 5.7915
25 0.058 0.0079 0.004 0.03 4.4087

Average 0.0495 0.0063 0.0062 0.0266 4.7208

55

Figure 5.8: Decoding time comparison of the images.

56

5.2. ENTROPY CODING TECHNIQUES

Table 5.9: Comparison of average code length.

Images RLE Shannon–Fano Huffman LZW Arithmetic

1 2.6114 2.861 2.4394 1.554 2.4265
2 5.0743 3.649 3.3302 2.8331 3.264
3 5.9338 4.035 3.6893 3.2044 3.6267
4 11.6135 6.652 6.2437 7.3533 6.2264
5 8.8868 5.904 5.349 5.0304 5.3195
6 7.9404 5.429 4.6825 4.3298 4.672
7 8.5559 5.614 4.9738 4.8468 4.9537
8 12.194 7.04 6.529 6.4582 6.4999
9 11.0768 6.557 6.1968 6.0463 6.1744

10 12.1297 7.857 7.4268 7.1652 7.3972
11 12.8617 7.733 7.2676 7.5491 7.2354
12 8.4888 5.887 5.3107 5.2507 5.2929
13 10.3832 6.661 6.1475 5.7646 6.1093
14 11.4108 7.272 6.7362 6.2315 6.6092
15 11.2102 7.936 7.4703 7.1055 7.4378
16 11.1044 7.825 7.3288 7.0915 7.3002
17 11.5137 7.056 6.6154 6.5353 6.5865
18 10.7582 6.724 6.3173 6.0833 6.2888
19 15.3026 6.781 6.2937 7.0633 6.2509
20 11.6004 6.951 6.3686 6.4392 6.3459
21 14.3268 7.831 7.3847 8.0181 7.3486
22 11.5411 6.635 6.1382 6.1512 6.1147
23 13.2045 7.845 7.3723 7.2199 7.3443
24 10.4551 6.503 6.0551 5.7253 6.0129
25 13.8657 7.612 7.1845 7.3613 7.1488

Average 10.5618 6.514 6.0341 5.9365 5.9995

57

Figure 5.9: Average code length comparison of the images.

58

5.2. ENTROPY CODING TECHNIQUES

Table 5.10: Comparison of compression ratio.

Images RLE Shannon–Fano Huffman LZW Arithmetic

1 3.0635 2.7961 3.2795 5.1481 3.2969
2 1.5766 2.1924 2.4023 2.8237 2.451
3 1.3482 1.9825 2.1684 2.4966 2.2059
4 0.6889 1.2026 1.2813 1.0879 1.2849
5 0.9002 1.3551 1.4956 1.5903 1.5039
6 1.0075 1.4737 1.7085 1.8477 1.7123
7 0.935 1.425 1.6084 1.6506 1.615
8 0.6561 1.1364 1.2253 1.2387 1.2308
9 0.7222 1.2201 1.291 1.3231 1.2957

10 0.6595 1.0181 1.0772 1.1165 1.0815
11 0.622 1.0346 1.1008 1.0597 1.1057
12 0.9424 1.3589 1.5064 1.5236 1.5115
13 0.7705 1.201 1.3014 1.3878 1.3095
14 0.7011 1.1002 1.1876 1.2838 1.2104
15 0.7136 1.0081 1.0709 1.1259 1.0756
16 0.7204 1.0223 1.0916 1.1281 1.0959
17 0.6948 1.1337 1.2093 1.2241 1.2146
18 0.7436 1.1898 1.2664 1.3151 1.2721
19 0.5228 1.1798 1.2711 1.1326 1.2798
20 0.6896 1.1509 1.2562 1.2424 1.2607
21 0.5584 1.0216 1.0833 0.9977 1.0886
22 0.6932 1.2058 1.3033 1.3006 1.3083
23 0.6059 1.0198 1.0851 1.1081 1.0893
24 0.7652 1.2301 1.3212 1.3973 1.3305
25 0.577 1.0509 1.1135 1.0868 1.1191

Average 0.875128 1.30838 1.428224 1.545472 1.43798

59

Figure 5.10: Comparison of compression ratio.

60

5.2. ENTROPY CODING TECHNIQUES

Figure 5.11: Efficiency comparison.

61

Figure 5.12: Decompressed image list.

62

5.3. SUMMARY

2.746× 10−6O(P + |β| ∗ log|β|), 1.171× 10−6O(P) and 4.452× 10−5O(|β|+ P) for Run-
length, Shannon–Fano, Huffman, LZW and Arithmetic coding, respectively, where P indicates
the number of pixels and β represents the number of different pixels of an image.

5.3 Summary

This study presents a detailed analysis of some commonly used entropy coding techniques,
such as run-length, Shannon–Fano, Huffman, LZW, and arithmetic coding. The relevance of
these techniques comes from the fact that most of the other recently advanced lossless or lossy
algorithms use one of them as a part of their compression procedure. All the mentioned algo-
rithms have been discussed using a common numeric data set. Later, both computer-generated
and actual medical images are used to assess the efficiency of such entropy coding methods. We
also used standard metrics such as encoding time, decoding time, average code length, com-
pression ratio, efficiency, and PSNR to measure the superiority of such techniques. Finally, we
noticed that Huffman coding outperforms other entropy coding methods in the case of real-time
lossless compression applications.

63

64

Chapter 6

PCBMS: A Model to Select an Optimal
Lossless Image Compression
Technique

This chapter presents a parameter combination-based method selection (PCBMS) approach
to select an optimal lossless data compression technique and provides an analysis based on
experimental results to show its effectiveness. There are different types of data such as image,
audio, video, and text. These data are classified based on the number of bits. Many algorithms
have been developed to compress data over the past few decades, but no developed algorithm
works well on all types of data. Lossless data compression techniques are mainly evaluated
based on the compression ratio, encoding, and decoding time. While a higher compression
ratio is more important for some applications, others may require faster encoding or decoding,
or both. Alternatively, each of the three parameters can be equally significant. Choosing an
optimal algorithm from many algorithms based on an application’s requirements is a significant
challenge. By analyzing the data from each perspective, this model recommends an algorithm
as the best for each type of data. Based on the proposed model, an analysis is provided. For
some sets of data, it has been demonstrated that the proposed method gives a better prediction
to select an algorithm according to the needs of an application.

6.1 Introduction

As technology advances, the demand for data compression is increasing daily, and new
applications are being developed in which data compression is more significant. Some state-of-
the-art data compression algorithms provide higher compression ratios, but require longer times
for encoding, decoding, or both. Meanwhile, a fast algorithm cannot compress more [29]. The
same situation occurs in the case of machine or deep learning-based lossless data compression
models.

Schiopu et al. proposed a deep learning-based lossless image coding technique named
CBPNN (an integration of the IResLNN predictor and the context-based bit-plane codec (CBP)
[165] and compared it to lossless HEVCIntra [166], lossless JPEG (JPEG-LS) [87], context-
based, adaptive, lossless image codec (CALIC) [167], free lossless image format (FLIF) [109],
and MP-CNN [168]. This article shows that CBPNN outperforms 4.5% over REP-CNN [169]
for the EPFL dataset [36] and 13.7%, 35.4%, 31.3%, and 10.6% over MP-CNN, JPEG-LS,
CALIC, and FLIF, respectively, for the UVG-TUT dataset [37]. However, the High Efficiency
Video Coding (HEVC) standard outperformed 20.12% for the video frames on the UVG-TUT
dataset on average. Although speed is an essential factor of data compression, the article did not
discuss the encoding or decoding speeds of the algorithms.

65

Rhee et al. [170] proposed a lossless image compression technique based on the learning of
pixel values and contexts through multilayer perceptrons (MLPs) and compared various types of
nonlearning based codecs (Better Portable Graphics (BPG) [171], Portable Network Graphics
(PNG) [172], JPEG-LS [87], JPEG 2000 [121], LCIC [173], WebP [174], FLIF [109], JPEG-
XL [175]) and learning-based (L3C [3], CBPNN [165], CWPLIC [176], PixelCNN [177], MS-
PixelCNN [178], IDF [179]) codecs on different datasets. For the 4KUHD grayscale dataset,
the proposed method provided better performance in terms of bits per pixel (bpp) than BPG,
PNG, JPEG-LS, JPEG 2000, LCIC, WebP, FLIF, JPEG-XL and CWPLIC, except for CBPNN.
However, CBPNN requires more time. Although CBPNN results in approximately 31.28%
more compression, it requires 85% more time than the proposed method. For the ImageNet
64x64 dataset, only PixelCNN, MS-PixelCNN, and integer discrete flow (IDF) require 26.24%,
21.8%, and 15.56% less storage but are 99.92%, 91.7%, and 77.97% slower, respectively, than
the proposed method. The method also provided better performance for the FLICKR2K and
DIV2K datasets. The article also showed a comparison to the classic dataset. FLIF and the
proposed method give the lowest 11.10 and 4.25 bpp for the color and grayscale images in the
dataset, respectively. However, the proposed method was slower than the nonlearning-based
techniques.

Ma et al. [180] proposed an optimized image compression scheme called iWave++, which
supports lossy and lossless compression, where iWave++ is a trained wavelet-like transform
technique. This article compared two deep learning-based methods (L3C [3] and Gated Pixel-
CNN [177]) and four classical techniques (PNG, JPEG 2000, WebP, and FLIF) on two different
datasets (ImageNet32 and ImageNet64) based on bpp, and the results showed that iWave++
outperformed all methods except Gated PixelCNN. However, Gated PixelCNN had more pa-
rameters than iWave++. In the article, the authors also showed another version of iWave++,
called Universal iWave++, and gave a comparison based on the results of the grayscale Kodak
dataset [108]. The outcomes showed that Universal iWave++ outperformed all methods (JPEG
2000, WebP, and FLIF) in terms of bpp.

Salimans et al. proposed PixelCNN++ [181], an updated version of PixelCNN, and showed
that PixelCNN++ provided a better compression performance than Deep Diffusion [182], Non-
linear independent components estimation (NICE) [183], DRAW [184], Deep GMMs [185],
Conv Deep Recurrent Attentive Writer (DRAW) [186], real-valued nonvolume preserving (Real
NVP) [187], PixelCNN [188], VAE with inverse autoregressive flow (IAF) [189], Gated Pixel-
CNN [177], and PixelRNN [190] on the CIFAR-10 dataset.

Ionut et al. proposed an improved CNN-based intraprediction method (AP-CNN) for loss-
less video coding applications [191]. The authors explained that CNN-based data compression
techniques required a considerable amount of time for compression. They also showed that the
proposed method provided 5% and 5.8% better reduction than Lossless HEVCIntra [166] on the
HEVC-vTSEQ and TUT-vTSEQ datasets, respectively, and was approximately 97.71% faster
than the CNN-based technique for the Basket-ballPass video sequence.

BPG is a lossy image compression technique developed based on the HEVC video coding
standard [166]. In their article, Mentzer et al. [192] leveraged the BPG and a convolutional
neural network-based probabilistic model to develop a lossless image compression technique
and compared it with L3C, PNG, JPEG 2000, WebP, and FLIF based on four datasets: Open
Images [193], CLIC.mobile, CLIC.pro [66], and DIV2K [194]. In terms of bits per subpixel
(bpsp), the authors showed that their approach continuously outperformed L3C, PNG, WebP,
and JPEG 2000 and provided a better outcome than FLIF for the Open Image dataset.

All published research works compare the state-of-the-art techniques based on the bpp, en-
coding time or decoding time [3,87,109,121,165–192,195–197]. In this type of comparison, we
can easily determine which algorithm is better based on which parameter. For example, if we
have two algorithms, A1 and A2, A1 may provide more compression than A2 but takes longer
for encoding and decoding. In this case, we cannot easily state that A1 is better because the

66

6.2. MOTIVATION AND PROBLEM FORMULATION

actual performance of a lossless data compression algorithm depends on all parameters (com-
pression ratio, encoding time, and decoding time). For some applications, we must choose an
algorithm that provides better performance based on a combination of any two or three eval-
uation parameters, which is a major challenge. In addition, based on the requirement of an
application, finding an optimal lossless data compression algorithm for each type of data is a
significant challenge. There are various types of data, such as eight-bit and 16-bit grayscale and
RGB (red, green, blue) images, binary images, indexed images, audio, video, text, and different
algorithms show different performances for different data. To solve these issues, a mathemat-
ical theory is proposed in this article. An analysis based on some experimental results is also
provided.

The organization of this publication is as follows. In Section 6.2, we present the motivation
for the research work and define the problems. Then, in Section 6.3, the proposed model is
presented, which can assist in selecting a better lossless data compression algorithm based on
the demand of a user. Finally, Section 6.4 provides an analysis based on experimental results,
and Section 6.6 presents the study conclusions.

6.2 Motivation and Problem Formulation

Day-by-day development of a learning-based data compression technique is increasing. Ad-
ditionally, nonlearning methods such as FLIF, Avif, and WebP are currently used in many ap-
plications. For example, if a dataset contains different types of images, various learning and
nonlearning lossless image compression techniques can be applied. Among the state-of-the-
art techniques, a better technique based on the compression ratio, encoding time, or decoding
time can be easily found. With the advancement of technology, users’ requirements are increas-
ing. Various types of applications are being developed based on different conditions. Some
applications may require a higher compression ratio and lower encoding time, lower encoding
and decoding time, or higher compression ratio and lower decoding time. Alternatively, all
three parameters are equally important. It has been observed that the method or learning-based
model that provides a better compression ratio takes a longer time to encode or decode. Some
techniques require more time for encoding than for decoding. Therefore, the most important
questions are: 1. which technique is better when any two of the parameters (compression ratio,
encoding, and decoding times) are equally significant for an application, or when all parame-
ters are equally valuable?; 2. is there any such technique that works well for all types of data?
Therefore, which technique is better for eight-bit RGB, eight-bit grayscale, 16-bit RGB, 16-bit
grayscale or binary or indexed images or text, among others? For example, Table 4 from an
article published in Computer Vision and Pattern Recognition (CVPR) 2019 [3] is depicted in
Table 6.1. This table shows a comparison of the average encoding time, decoding time, and bpsp
for 512 x 512 crops from the DIV2K dataset. Based on the results, the authors claim that their
proposed method (L3C) outperforms WebP, JPEG 2000, and PNG on the DIV2K dataset. The
table also shows that FLIF provides 2.887% more compression than L3C. We can agree with
the authors that L3C outperforms PNG, JPEG 2000, and WebP in terms of bpsp; however, the
encoding and decoding procedures of L3C are very slow in comparison to all other methods. Al-
though FLIF outperformed all methods in terms of bpsp, it is approximately seven times slower
in encoding and slightly faster in decoding than L3C. From Table 6.1, we can quickly determine
that JPEG 2000 and PNG are better for encoding and decoding times, respectively. Based on
any two or all parameters from Table 6.1, we cannot determine whether L3C is better because
it requires more time to encode and decode. It continues to be difficult to state which method
actually works well for images (a graphical representation of Table 6.1 is shown in Figure 6.1
for quick understanding). How do we find a good algorithm in these cases? This research article
proposes a straightforward but innovative technique to choose a better lossless data compression
algorithm based on all parameters or any combination of them.

67

Table 6.1: Comparison of the average bpsp, encoding and decoding times on the DIV2K dataset
[3]

Codec Encoding (s) Decoding (s) bpsp
L3C 0.242 0.374 3.386
PNG 0.213 6.09 ×10−5 4.733
JPEG 2000 1.48 ×10−2 2.26 ×10−4 3.471
WebP 0.157 7.12 ×10−2 3.447
FLIF 1.72 0.133 3.291

Figure 6.1: The graphical representation of Table 6.1

6.3 Proposed Model

Suppose that we have N images (I1, I2, ..., IN), apply P methods (M1,M2, ...,MP) on
them, and obtain the result of (E1,i, E2,i, ..., EN,i), (D1,i, D2,i, ..., DN,i), and (BPI1,i, BPI2,i,
..., BPIN,i) as the encoding time, decoding time, and bits per item for each image, respectively,
for the ith method. Similarly, we obtain the encoding time, decoding time, and bits per item
for each method. Here, BPI is the number of bits per pixel (bpp), bits per subpixel (bpsp), or
bits per symbol (bps). The average encoding time (AET), average decoding time (ADT), and
average bits per item (ABPI) are calculated using Algorithm 3 for the ith method:

Better methods can be found for each individual parameter using Algorithm 4. The best
method in terms of encoding time (BMET), best method in terms of decoding time (BMDT),
and best method in terms of bits per item (BMBPI) represent a better method in the case of
encoding time, decoding time, and bits per item, respectively, for images (I1, I2, I3, ..., IN).

To calculate the performance of the algorithms based on all parameters, all values must be
converted to a space in which all values are measured based on a specific value (for example, 1).
As a result, in the case of a particular parameter, it is easy to observe the effect of an algorithm on
the results of all methods. Thus, we converted the values obtained from Algorithm 3 to another
space using Algorithm 5, where BETj , BDTj , and BBPIj represent the balanced encoding

68

6.3. PROPOSED MODEL

Algorithm 3: Average values

1 i← 1;
2 while i≤ P do
3 AETi← 1

N (E1,i + E2,i + E3,i + ...+ EN,i);

4 ADTi← 1
N (D1,i +D2,i +D3,i + ...+DN,i);

5 ABPIi← 1
N (BPI1,i +BPI2,i + ...+BPIN,i);

6 i← i+ 1;
7 end

Algorithm 4: The best method selection approach

1 Individual_Method Selection(AET, ADT, ABPI, M);
2 MinAET , MinADT , and MinABPI ← a big value;
3 i← 1;
4 while i≤ P do
5 if AET [i]<MinAET then
6 MinAET ← AET [i];
7 BMET ←Mi;
8 end
9 if ADT [i] <MinADT then

10 MinADT ← ADT [i];
11 BMDT ←Mi;
12 end
13 if ABPI[i] <MinABPI then
14 MinABPI ← ABPI[i];
15 BMBPI ←Mi;
16 end
17 i← i+1;
18 end
19 return (BMET , BMDT , BMBPI) ;

69

time, balanced decoding time and balanced bits per item, respectively, for the jth method. The
goodness of any lossless data compression algorithm depends on lower encoding time, lower
decoding time, and lower BPI. In Algorithm 5, a lower value for each parameter indicates the
higher performance of an algorithm:

Algorithm 5: Balanced values

1 j = 1;
2 while j≤ P do
3 BETj = AETj∑P

i=1 AETi
;

4 BDTj = ADTj∑P
i=1 ADTi

;

5 BBPIj = ABPIj∑P
i=1 ABPIi

;

6 j = j + 1

7 end

Then, we calculated the overall impact of each algorithm for each combination of parame-
ters and selected an algorithm as the best for each category using Algorithm 6. In the algorithm,
IEDK , IEBPIK , IDBPIK , and IEDBPIK indicate the overall impact of the Kth algo-
rithm in terms of a combination of encoding and decoding times, encoding time and bits per
item, decoding time and bits per item, and all parameters, respectively.

6.4 Experimental Results and Analysis

This section analyzes recently published results in well-known journals and conferences. In
all figures in this article, ET and DT represent the encoding time and decoding time, respectively.
The outcomes of the proposed method in Table 6.1 are shown in Figure 6.2. Mentzer et al. [3]
published Table 6.1 in the CVPR 2019. Figure 6.2 shows that JPEG 2000 provides the highest
(40.6%, 31.8%, 32.9%, and 88.9%) performances for "bpsp+ET+DT", "bpsp+ET", "bpsp+DT",
and "ET+DT", respectively. According to Table 6.1, FLIF performed well in terms of bpsp;
however, the method provided the lowest performances (7.0%, 6.7%, and 0.6%) for all cases
except "bpsp+DT", as shown in Figure 6.2. For "bpsp+DT", L3C provided the lowest (7.5%)
performance. Therefore, JPEG 2000 is better for all of these cases.

Cao et al. [4] compared some classical and learning-based methods on two datasets (Im-
ageNet64 [198] & Open Images [193]) as demonstrated in Table 6.2. This table shows that
PNG outperforms both datasets in terms of encoding and decoding speed. However, in terms of
bpsp, IDF and SReC provide better results for ImageNet64 and Open Images, respectively. The
results of our proposed method are demonstrated in Figure 6.3 and Figure 6.4 for ImageNet64
and Open Images of Table 6.2, respectively. Figure 6.3 shows that WebP provided the highest
(21.9% and 21.5%) performances for the combinations "bpsp+ET+DT" and "bpsp+DT", respec-
tively, for the ImageNet64 dataset. However, for the combinations "bpsp+ET" and "ET+DT",
FLIF and PNG gave the highest (20.1% and 87.7%) performances. Meanwhile, for the Open Im-
ages dataset, Figure 6.4 shows that WebP, SReC, FLIF, and PNG provided the highest (21.7%,
21.5%, 21.2%, and 59.1%) performances, for the combinations "bpsp+ET+DT", "bpsp+ET",
"bpsp+DT", and "ET+DT", respectively.

6.5 Tests to confirm the authenticity of the proposed method

We have provided evidence to confirm the veracity of the proposed method. Tables 6.3-6.6
present some random values for the methods (M1, M2, M3, ..., M15). We intentionally set low

70

6.5. TESTS TO CONFIRM THE AUTHENTICITY OF THE PROPOSED METHOD

Algorithm 6: The best method selection approach based on any combination

1 SelectedMethod Selection(BET, BDT, BBPI, M);
2 C = 1;
3 K = 1;
4 while C ≤ P do
5 A1[C] = BET [C] +BDT [C];
6 A2[C] = BET [C] +BBPI[C];
7 A3[C] = BDT [C] +BBPI[C];
8 A4[C] = BET [C] +BDT [C] +BBPI[C];
9 C = C + 1;

10 end
11 while K≤ P do
12 IEDK = 1

A1[K]×
∑P

C=1
1

A1[C]

× 100;

13 IEBPIK = 1
A2[K]×

∑P
C=1

1
A2[C]

× 100;

14 IDBPIK = 1
A3[K]×

∑P
C=1

1
A3[C]

× 100;

15 IEDBPIK = 1
A4[K]×

∑P
C=1

1
A4[C]

× 100;

16 K = K + 1;
17 end

18 Set the index of the highest value of IEDK , IEBPIK , IDBPIK , and IEDBPIK to
ILV ;

19 Return M [ILV [1]], M [ILV [2]], M [ILV [3]], and M [ILV [4]] that represent a method
as the best in terms of a combination of encoding and decoding times, encoding time
and bits per item, decoding time and bits per item, and all parameters, respectively.

Table 6.2: Comparison of the average bpsp, encoding and decoding times on ImageNet64 and
Open Images datasets [4]

ImageNet64 Open Images
Method Encoding (s) Decoding (s) bpsp Encoding (s) Decoding (s) bpsp

PNG [99] 1.3× 10−3 8.0× 10−5 5.74 0.17 9.8× 10−5 4.03
WebP [103] 0.021 2.1× 10−4 4.64 0.4 7.0× 10−4 3.03
FLIF [109] 0.022 0.01 4.54 1.23 0.3 2.87

L3C [3] 0.031 0.023 4.42 1.33 1.13 2.99
IDF [179] 1.33 1.02 3.9 57.31 62.33 2.76

SReC 0.044 0.071 4.29 0.99 1.15 2.7
MIN 1.3× 10−3 8.0× 10−5 3.9 0.17 9.8× 10−5 2.7

71

Figure 6.2: The outcomes of the proposed method for the Table 6.1

values for methods M10, M2, M7, and M5 in Tables 6.3, 6.4, 6.5, and 6.6 for the encoding and
decoding time, encoding time and bps, decoding time and bps, and all parameters, respectively.
Based on the proposed method, the outcomes are demonstrated in Figures 6.5-6.8 for Tables
6.3-6.6, respectively. Figures 6.5-6.8 show the highest performances (16.2%, 13.8%, 11.1%,
and 15.5%) for methods M10, M2, M7, and M5, respectively. Therefore, the results show that
the proposed method perfectly predicts the best technique of many methods for any combination
of parameters.

6.6 Conclusions

A mathematical model to select an optimal lossless image compression technique is pro-
posed in this article. This study shows that each algorithm was evaluated based on a specific
parameter in each research work. However, the performance of a lossless image compression
algorithm depends on all parameters (bpp, encoding and decoding time) and does not singly
depend on any of them. Therefore, the proposed method predicts a better lossless image com-
pression algorithm for any combination of parameters and provides the actual impact of each
compared algorithm as a percentage.

Experimental results show that the proposed method perfectly predicts a better lossless im-
age compression method for any combination of parameters. The results in this article show
that although learning-based methods provide a good bpsp, the classical methods are better for
lossless image compression overall.

72

6.6. CONCLUSIONS

Figure 6.3: The outcomes of the proposed method for the ImageNet64 dataset of the Table 6.2

Figure 6.4: The outcomes of the proposed method for the Open Images dataset of the Table 6.2

73

Table 6.3: Random dataset 1

Method bpsp Encoding (s) Decoding (s)
M1 4.202 0.943 0.297
M2 4.871 1.765 0.776
M3 2.087 1.357 0.579
M4 2.577 1.008 1.101
M5 4.111 0.918 1.182
M6 4.721 1.496 0.609
M7 2.568 0.893 0.998
M8 2.084 1.467 0.769
M9 2.391 0.694 0.488
M10 4.331 0.626 0.125
M11 5.959 0.882 1.347
M12 5.501 0.938 0.217
M13 2.519 1.809 0.979
M14 4.936 1.535 1.439
M15 5.158 1.161 0.643
MIN 2.084 0.626 0.125

Figure 6.5: The outcomes of the proposed method for the Table 6.3

Figure 6.6: The outcomes of the proposed method for the Table 6.4

74

6.6. CONCLUSIONS

Table 6.4: Random dataset 2

Method bpsp Encoding (s) Decoding (s)
M1 5.243 1.086 1.184
M2 2.231 0.244 1.236
M3 3.134 0.724 0.706
M4 5.336 0.484 0.951
M5 2.39 1.37 1.355
M6 2.25 0.345 0.835
M7 4.933 0.601 1.42
M8 3.115 0.577 1.006
M9 3.495 1.228 0.499
M10 4.797 1.109 0.685
M11 4.796 1.545 0.957
M12 3.904 0.971 1.121
M13 4.693 0.915 0.403
M14 2.36 1.554 0.099
M15 2.979 1.279 1.124
MIN 2.231 0.244 0.099

Table 6.5: Random dataset 3

Method bpsp Encoding (s) Decoding (s)
M1 2.996 0.698 1.461
M2 2.55 0.825 1.875
M3 2.702 0.878 1.189
M4 3.907 1.578 1.123
M5 5.685 1.015 1.664
M6 4.569 0.938 1.557
M7 2.543 0.727 0.666
M8 3.278 1.118 1.031
M9 5.037 1.088 1.658
M10 5.699 1.381 1.206
M11 4.525 1.263 1.313
M12 4.634 1.897 1.758
M13 5.507 1.179 1.125
M14 5.002 0.725 0.801
M15 2.971 0.801 0.896
MIN 2.543 0.698 0.666

75

Figure 6.7: The outcomes of the proposed method for the Table 6.5

Table 6.6: Random dataset 4

Method bpsp Encoding (s) Decoding (s)
M1 3.086 1.341 1.009
M2 3.909 0.811 1.125
M3 5.193 0.838 1.414
M4 4.972 1.493 0.37
M5 2.498 0.288 0.189
M6 2.77 1.488 0.318
M7 4.047 0.778 1.402
M8 5.726 1.049 0.711
M9 2.776 0.868 0.818
M10 2.683 1.234 1.178
M11 3.865 0.296 0.615
M12 2.941 1.509 1.314
M13 2.988 1.176 1.363
M14 3.963 1.298 1.797
M15 2.526 1.099 0.464
MIN 2.498 0.288 0.189

Figure 6.8: The outcomes of the proposed method for the Table 6.6

76

6.6. CONCLUSIONS

77

Chapter 7

The Impact of State-of-the-Art
Techniques for Lossless Still Image
Compression

A great deal of information is produced daily, due to advances in telecommunication, and
the issue of storing it on digital devices or transmitting it over the Internet is challenging. Data
compression is essential in managing this information well. Therefore, research on data com-
pression has become a topic of great interest to researchers, and the number of applications in
this area is increasing. Over the last few decades, international organizations have developed
many strategies for data compression, and there is no specific algorithm that works well on all
types of data. The compression ratio, as well as encoding and decoding times, are mainly used
to evaluate an algorithm for lossless image compression. However, although the compression
ratio is more significant for some applications, others may require higher encoding or decoding
speeds or both; alternatively, all three parameters may be equally important. The main aim of
this research is to analyze the most advanced lossless image compression algorithms from each
point of view and evaluate the strength of each algorithm for each kind of image. We develop
a technique regarding how to evaluate an image compression algorithm that is based on more
than one parameter. The findings that are presented in this research may be helpful to new re-
searchers and to users in this area.

7.1 Introduction

A huge amount of data is now produced daily, especially in medical centres and on social
media. It is not easy to manage these increasing quantities of information, which are impractical
to store and take a huge amount of time to transmit over the Internet. According to the sixth
edition of a report by DOMO [199], more than 2.5 quintillion bytes of data are produced daily,
and this figure is growing. The report further estimates that approximately 90% of the world’s
data were produced between 2018 and 2019, and that each person on earth will create 1.7 MB
of data per second by 2020. As a result, storing large amounts of data on digital devices and
quickly transferring them across networks is a significant challenge. There are three possible
solutions to this problem: better hardware, better software, or a combination of both. However,
so much information is being created that it is almost impossible to design new hardware that is
sufficiently competitive, due to the many limitations on the construction of hardware, as reported
in [200]. The development of better software is therefore the only solution to the problem.

One solution from the software perspective is compression. Data compression is a way
of representing data using fewer bits than the original, to reduce the consumption of storage
and bandwidth and increase transmission speed over networks [27]. Data compression can be

78

7.1. INTRODUCTION

applied in many areas, such as audio, video, text and images, and can be classified into two
categories: lossless and lossy [201]. In lossy compression, irrelevant and less significant data
are removed permanently, whereas in lossless compression, every detail is preserved and only
statistical redundancy is eliminated. In short, lossy compression allows for slight degradation
in the data, while lossless methods perfectly reconstruct the data from its compressed form
[69, 152, 156, 202]. There are many applications for lossless data compression techniques, such
as medical imagery, digital radiography, scientific imaging, zip file compression, museums/art
galleries, facsimile transmissions of bitonal images, business documents, machine vision, the
storage and sending of thermal images taken by nano-satellites, observation of forest fires etc.
[13, 32, 125, 203, 204]. In this article, we study the compression standards used for lossless
image compression. There are many such methods, including run-length coding, Shannon–Fano
coding, Lempel–Ziv–Welch (LZW) coding, Huffman coding, arithmetic coding, lossless JPEG,
PNG, JPEG 2000, JPEG-LS, JPGE XR, CALIC , AVIF, WebP, FLIF, etc. However, we limit
our analysis to lossless JPEG, PNG, JPEG 2000, JPEG-LS, JPGE XR, CALIC, AVIF, WebP and
FLIF since these are the latest and most fully developed methods in this area. Although there
are also many types of image, such as binary images, 8-bit and 16-bit grayscale images, 8-bit
indexed images, and 8-bit and 16-bit RGB images, we cover only 8-bit and 16-bit grayscale and
RGB images in this article. A detailed review of run-length, Shannon–Fano, LZW, Huffman and
arithmetic coding was carried out in [27]. Four parameters are used to evaluate a lossless image
compression algorithm: the compression ratio (CR), bits per pixel (bpp), encoding time (ET)
and decoding time (DT), and bpp is the simply the inverse of the CR; we therefore consider
only the CR, ET and DT when evaluating these methods. Most studies in this research area
use only the CR to evaluate the effectiveness of an algorithm [205–208]. Although there are
many applications for which higher CRs are important, others may require higher encoding or
decoding speeds. Other applications may require high CR and low ET, low ET and DT, or high
CR and decoding speed. In addition, there are also many applications where all three of these
parameters are equally important. In view of this, we present an extensive analysis from each
perspective, and examine the strength of each algorithm for each kind of image. We compare
the performance of these methods based on public open datasets. More specifically, the main
aim of this research is to address the following research issues:

RI1: How good is each algorithm in terms of the CR for 8-bit and 16-bit greyscale and RGB
images?

RI2: How good is each algorithm in terms of the ET for 8-bit and 16-bit greyscale and RGB
images?

RI3: How good is each algorithm in terms of the DT for 8-bit and 16-bit greyscale and RGB
images?

RI4: How good is each algorithm in terms of the CR and ET for 8-bit and 16-bit greyscale and
RGB images?

RI5: How good is each algorithm in terms of the CR and DT for 8-bit and 16-bit greyscale and
RGB images?

RI6: How good is each algorithm in terms of the ET and DT for 8-bit and 16-bit greyscale and
RGB images?

RI7: How good is each algorithm when all parameters are equally important for 8-bit and 16-
bit greyscale and RGB images?

RI8: Which algorithms should be used for each kind of image?

The remainder of this research is structured as follows. Based on the usual parameters
used to evaluate a lossless image compression technique, a detailed analysis of the experimental
outcomes obtained using these algorithms is provided in section 7.2. In section 7.2, we define

79

our proposed evaluation technique and give an extensive investigation based on the method.
Finally, we conclude the paper in section 7.3.

7.2 Experimental Results and Analysis

The dependence of many applications on multimedia computing is growing rapidly, due to
an increase in the use of digital imagery. As a result, the transmission, storage and effective use
of images are becoming important issues. Raw image transmission is very slow, and gives rise
to huge storage costs. Digital image compression is a way of converting an image into a format
that can be transferred quickly and stored in a comparatively small space. In this paper, we
provide a detailed analysis of the state-of-the-art lossless still image compression techniques.
As we have seen, most previous survey papers on lossless image compression focus on the
CR [19, 131, 156, 201, 202, 209–211]. Although this is an important measurement criterion, the
ET and DT are two further important factors for lossless image compression. The key feature
of this paper is that we not only carry out a comparison based on CR but also explore the
effectiveness of each algorithm in terms of compressing an image based on several metrics. We
use four types of images: 8-bit and 16-bit greyscale and RGB images. We applied state-of-
the-art techniques to a total of nine uncompressed images of each type, taken from a database
entitled "New Test Images - Image Compression Benchmark" [30].

Analysis based on usual parameters

In this section, we have analyzed based on every single parameter. Figures 7.1-7.3 show the
8-bit greyscale images and their respective ETs and DTs, and Table 7.1 shows the CRs of the
images. Table 7.1 shows that FLIF gives the highest CR for the artificial.pgm, big_tree.pgm,
bridge.pgm, cathedral.pgm, fireworks.pgm, and spider_web.pgm 8-bit greyscale images. For
the rest of the images, AVIF provides the highest CR. JPEG XR gives the lowest CRs (3.196,
3.054 and 2.932) for three images (artificial, fireworks and flower_foveon, respectively), while
for the rest of the images, lossless JPEG gives the lowest CR. In terms of the ET, Figure 7.4
shows that JPEG-LS gives the shortest times (0.046 and 0.115 s) for two images (artificial and
fireworks) and JPEG XR gives the shortest times for the remainder of the images. FLIF takes
the longest times (3.28, 15.52, 6.18, 2.91, 6.19, 2.73, 3.27 and 4.32 s, respectively) for all the
images except flower_foveon.pgm. For this image, AVIF takes the longest time (1.54 s).

Figure 7.5 shows that at the decoding stage, CALIC takes the longest times (0.542, 0.89
and 0.898 s) for three images (fireworks.pgm, hdr.pgm, and spider_web.pgm, respectively), and
WebP takes the longest times (3.26 and 2.33 s) for two images (big_tree.pgm and bridge.pgm,
respectively), while FLIF takes the longest times for the rest of the images. On the other hand,
PNG takes the shortest times, respectively, for all the images.

Examples of 8-bit RGB images are shown in Figure 7.4. Table 7.2 and Figures 7.5 and 7.6
show the values of CR, ET and DT for each of the images. From Table 6, it can be seen that FLIF
give the highest CRs (18.446 and 5.742) for two images (artificial.PPM and fireworks.PPM,
respectively), and AVIF gives the highest CRs for the rest of the images. JPEG XR gives the
lowest CRs (4.316 and 3.121) for two images (artificial and fireworks, respectively), and for
the remaining seven images, lossless JPEG gives the lowest CRs. Figure 7.5 shows that FLIF
requires the longest ETs for all the images. JPEG XR gives the shortest ET for all images except
artificial.pgm, for which JPEG-LS gives the shortest ET (0.16 s). For decoding, CALIC takes
the longest time for all images except for bridge, cathedral, and deer, as shown in Figure 7.6,
and FLIF takes the longest times (4.75, 2.379 and 5.75 s, respectively) for these images. Figure
7.6 also shows that JPEG XR takes the shortest time (0.157 s) to decode artificial.ppm, and PNG
takes the shortest for the rest of the images.

Figures 7.7-7.9 and Table 7.3 show the 16-bit greyscale images and their respective ETs,

80

7.2. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 7.1: Examples of 8-bit greyscale images

Table 7.1: Comparison of compression ratios for 8-bit greyscale images

Image Name
(Dimensions) JPGE-LS JPEG 2000 Lossless

JPEG PNG JPEG XR CALIC AVIF WebP FLIF

artificial.pgm
(2048× 3072)

10.030 6.720 4.884 8.678 3.196 10.898 4.145 10.370 13.260

big_tree.pgm
(4550× 6088)

2.144 2.106 1.806 1.973 2.011 2.159 2.175 2.145 2.263

bridge.pgm
(4049× 2749)

1.929 1.910 1.644 1.811 1.846 1.929 1.973 1.943 1.979

cathedral.pgm
(3008× 2000)

2.241 2.160 1.813 2.015 2.038 2.254 2.222 2.217 2.365

deer.pgm
(2641× 4043)

1.717 1.748 1.583 1.713 1.685 1.727 1.872 1.794 1.775

fireworks.pgm
(2352× 3136)

5.460 4.853 3.355 4.095 3.054 5.516 4.486 4.858 5.794

flower_foveon.pgm
(1512× 2268)

3.925 3.650 2.970 3.054 2.932 3.935 4.115 3.749 3.975

hdr.pgm
(2048× 3072)

3.678 3.421 2.795 2.857 2.847 3.718 3.825 3.456 3.77

spider_web.pgm
(2848× 4256)

4.531 4.202 3.145 3.366 3.167 4.824 4.682 4.133 4.876

81

Figure 7.2: Encoding times for 8-bit greyscale images

Figure 7.3: Decoding times for 8-bit greyscale images

82

7.2. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 7.4: Examples of 8-bit RGB images

Table 7.2: Comparison of compression ratios for 8-bit RGB images

Image Name
(Dimensions) JPGE-LS JPEG 2000 Lossless

JPEG PNG JPEG XR CALIC AVIF WebP FLIF

artificial.pgm
(2048× 3072)

10.333 8.183 4.924 10.866 4.316 10.41 6.881 17.383 18.446

big_tree.pgm
(4550× 6088)

1.856 1.823 1.585 1.721 1.719 1.886 2.254 1.835 1.922

bridge.pgm
(4049× 2749)

1.767 1.765 1.553 1.686 1.735 1.784 2.21 1.748 1.866

cathedral.pgm
(3008× 2000)

2.120 2.135 1.734 1.922 2.015 2.126 2.697 2.162 2.406

deer.pgm
(2641× 4043)

1.532 1.504 1.407 1.507 1.480 1.537 1.915 1.567 1.588

fireworks.pgm
(2352× 3136)

5.262 4.496 3.279 3.762 3.121 5.279 5.432 4.624 5.742

flower_foveon.pgm
(1512× 2268)

3.938 3.746 2.806 3.149 3.060 3.927 5.611 4.158 4.744

hdr.pgm
(2048× 3072)

3.255 3.161 2.561 2.653 2.716 3.269 4.614 3.213 3.406

spider_web.pgm
(2848× 4256)

4.411 4.209 3.029 3.365 3.234 4.555 6.017 4.317 4.895

83

Figure 7.5: Comparison of encoding times for 8-bit RGB images

Figure 7.6: Comparison of decoding times for 8-bit RGB images

84

7.2. EXPERIMENTAL RESULTS AND ANALYSIS

DTs and CRs. From Table 7.3, it can be seen that FLIF gives the highest CRs for all the
images except deer.pgm, flower_foveon.pgm, and hdr.pgm. For these images, AVIF provides
the highest CRs (3.742, 8.273, and 7.779, respectively). Lossless JPEG gives the lowest CR
(2.791) for artificial.pgm, and PNG gives the lowest for the rest of the images. Figure 7.8 shows
that FLIF gives the highest ETs for all the images except big_tree.pgm. For this image, JPEG
2000 takes the highest (4.579 s). JPEG-LS gives the lowest ETs (0.186, 0.238, 0.257 and 0.406
s) for four images (artificial, cathedral, fireworks, and spider_web, respectively) and JPEG XR
gives the lowest for the rest of the images. In terms of decoding, CALIC and lossless JPEG give
the highest DTs (0.613 and 0.503 s) for artificial.pgm and flower_foveon.pgm, respectively, and
JPEG 2000 gives the highest DTs (1.078, 0.978, and 1.736 s) for three images (fireworks, hdr,
and spider_web, respectively). For the rest of the images, FLIF takes the highest DTs. On the
otherhand, PNG gives the lowest DTs for all images shown in Figure 7.9.

The 16-bit RGB images and their CRs, ETs and DTs are shown in Figure 7.10, Table 8 and
Figures 7.11-7.12, respectively. From Table 7.4, it can be seen that FLIF gives the highest CRs
(37.021 and 12.283) for artificial.ppm and fireworks.ppm, respectively and AVIF for the rest
of the images. Lossless JPEG gives the lowest CRs (2.6952 and 1.6879) for the artificial and
fireworks images, respectively, and PNG gives the lowest for the rest of the images. In terms of
the encoding time, JPEG 2000 gives the highest (14.259, 5.699 and 5.672 s) for three images
(big_tree.pgm, bridge.pgm, and fireworks.pgm, respectively), and FLIF gives the highest ETs
for the rest of the images in Figure 7.11. JPEG XR takes the lowest ETs for all the images.
Figure 7.12 shows that CALIC gives the longest DT (2.278 s) for artificial.ppm, and FLIF gives
the longest DTs (2.05, 3.27, and 5.01 s) for three images (flower_foveon.pgm, hdr.pgm, and spi-
der_web.pgm, respectively), while JPEG 2000 takes the longest DTs for the rest of the images.
PNG gives the shortest DT (0.292, and 0.28s) for fireworks.pgm and hdr.pgm, respectively, and
JPEG XR gives the shortest for the rest of the images. It should be noted that although Figures
7.1 and 7.7, and Figures 7.4 and 7.10 are visually identical, these four figures are completely
different in terms of the bit depths and channels in the images.

Figure 7.13 shows the average CRs for all four types of image. It can be seen that FLIF
gives the highest (4.451, 9.013, 5.002, and 10.114) CRs for all type of images and achieves
compression that is 10.99%, 23.19%, 40.1%, 26.2%, 43.14%, 7.73%, 26.38%, and 13.46%
higher for the 8-bit greyscale images, 79.97%, 80.37%, 82.56%, 81.98%, 43.65%, 79.68%,
26.72%, and 14.01% higher for the 16-bit greyscale images, 23.43%, 31.09%, 49.18%, 31.97%,
48.02%, 22.75%, 16.41%, and 8.92% higher for the 8-bit RGB images, and 81.51%, 81.83%,
84.76%, 82.91%, 48.34%, 81.32%, 16.84%, and 7.65% higher for the 16-bit RGB images than
JPEG-LS, JPEG 2000, Lossless JPEG, PNG, JPEG XR, CALIC, AVIF, and WebP, respectively.
If the CR is the main consideration for an application, we can see from Figure 7.13 that FLIF is
better for all four types of image.

Figure 7.14 shows the average encoding times. It can be seen that JPEG XR requires the
shortest average ET (0.167, 0.376, 0.455 and 0.417 s) for the 8-bits greyscale, 16-bit greyscale,
8-bit RGB and 16-bit RGB images, respectively.In terms of encoding, JPEG XR is on aver-
age 32.39%, 72.03%, 48.77%, 85.17%, 82.49%, 92.08%, 87.44%, and 96.73% faster for 8-bit
greyscale images, 20.84%, 75.84%, 19.66%, 69.41%, 55.4%, 79.64%, 75.49%, and 85.35%
faster for 16-bit greyscale images, 41.29%, 78.4%, 58.41%, 84.27%, 84.46%, 82.68%, 81.14%,
and 93.59% faster for 8-bit RGB images, and 61.95%, 91.15%, 72.96%, 88.64% and 83.42%,
84.65%, 83.85%, and 91.63% faster for 16-bit RGB images than JPEG-LS, JPEG 2000, lossless
JPEG, PNG, CALIC, AVIF, WebP, and FLIF respectively. If the ET is the main consideration
for an application, we can draw the conclusion that compression using JPEG XR is best for all
types of images.

The average DT is shown in Figure 7.15. PNG gives the shortest DT (0.072, 0.161 and 0.223
s) for the 8-bit greyscale, 16-bit greyscale and 8-bit RGB images, respectively, while JPEG XR
gives the shortest (0.398 s) for the 16-bit RGB images. On average, PNG decodes 74.19%,

85

Figure 7.7: Examples of 16-bit greyscale images

Figure 7.8: Comparison of encoding times for 16-bit greyscale images

86

7.2. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 7.9: Comparison of decoding times for 16-bit greyscale images

Table 7.3: Comparison of compression ratios for 16-bit greyscale images

Image Name
(Dimensions) JPGE-LS JPEG 2000 Lossless

JPEG PNG JPEG XR CALIC AVIF WebP FLIF

artificial.pgm
(2048× 3072)

4.073 4.007 2.791 4.381 6.393 4.174 8.282 20.846 26.677

big_tree.pgm
(4550× 6088)

1.355 1.325 1.287 1.181 4.028 1.324 4.35 4.229 4.537

bridge.pgm
(4049× 2749)

1.309 1.279 1.244 1.147 3.696 1.373 3.944 3.843 3.971

cathedral.pgm
(3008× 2000)

1.373 1.337 1.293 1.191 4.084 1.342 4.450 4.398 4.749

deer.pgm
(2641× 4043)

1.252 1.241 1.225 1.132 3.371 1.339 3.742 3.549 3.557

fireworks.pgm
(2352× 3136)

1.946 1.809 1.740 1.604 6.116 1.955 8.967 9.773 11.647

flower_foveon.pgm
(1512× 2268)

1.610 1.591 1.523 1.316 5.884 1.663 8.273 7.626 8.029

hdr.pgm
(2048× 3072)

1.595 1.563 1.491 1.297 5.755 1.569 7.779 7.040 7.754

spider_web.pgm
(2848× 4256)

1.736 1.771 1.554 1.367 6.386 1.742 9.658 8.442 10.196

87

Figure 7.10: Examples of 16-bit RGB images

Figure 7.11: Comparison of encoding times for 16-bit RGB images

88

7.2. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 7.12: Comparison of decoding times for 16-bit RGB images

Table 7.4: Comparison of compression ratios for 16-bit RGB images

Image Name
(Dimensions) JPGE-LS JPEG 2000 Lossless

JPEG PNG JPEG XR CALIC AVIF WebP FLIF

artificial.pgm
(2048× 3072)

4.335 4.734 2.695 4.896 8.644 4.404 13.783 36.292 37.021

big_tree.pgm
(4550× 6088)

1.302 1.261 1.249 1.150 3.441 1.284 4.504 3.614 3.841

bridge.pgm
(4049× 2749)

1.274 1.243 1.240 1.132 3.470 1.283 4.414 3.445 3.739

cathedral.pgm
(3008× 2000)

1.379 1.333 1.267 1.218 4.036 1.383 5.397 4.292 4.851

deer.pgm
(2641× 4043)

1.197 1.173 1.236 1.100 2.961 1.196 3.826 3.096 3.176

fireworks.pgm
(2352× 3136)

2.378 1.832 1.688 2.053 6.453 2.384 11.318 10.048 12.283

flower_foveon.pgm
(1512× 2268)

1.724 1.664 1.494 1.371 6.121 1.765 11.217 8.305 9.513

hdr.pgm
(2048× 3072)

1.535 1.518 1.473 1.275 5.432 1.586 9.219 6.391 6.819

spider_web.pgm
(2848× 4256)

1.702 1.784 1.531 1.360 6.466 1.718 12.018 8.576 9.787

89

Figure 7.13: Comparison of average compression ratios

Figure 7.14: Comparison of average encoding times

90

7.2. EXPERIMENTAL RESULTS AND ANALYSIS

87.21%, 45.86%, 55.28%, 91.57%, 87.86%, 93.55%, and 93.66% faster for 8-bit greyscale im-
ages, 56.84%, 89.87%, 42.5%, 55.4%, 81.85%, 86%, 85% and 87% faster for 16-bit greyscale
images, and 75.92%, 88.78%, 56.45%, 52.25%, 91.13%, 88.24%, 87.77% and 88.95% faster
for 8-bit RGB images than JPEG-LS, JPEG 2000, lossless JPEG, JPEG XR, CALIC, AVIF,
WebP, and FLIF, respectively. However, for 16-bit RGB images, JPEG XR is 63.45%, 91.76%,
53.99%, 22.72%, 83.75%, 85.8%, 85.42% and 87.12% faster than JPEG-LS, JPEG 2000, loss-
less JPEG, PNG, CALIC, AVIF, WebP, and FLIF, respectively, for the same case. When DT is
the main consideration for an application during compression, we can conclude from Figure 28
that PNG is better for 8-bit greyscale, 16-bit greyscale and 8-bit RGB images, whereas JPEG
XR is better for 16-bit RGB images.

Analysis based on our developed technique

The average performance of each method (MN) for each parameter (PM) is calculated using
equation (7.1), where N is the number of images.

AV(MN,PM) =
1

N

N∑
i=1

PM,

where PM ∈ (CR,ET & DT)

(7.1)

The truth is: “Lossless data compression techniques are mainly evaluated based on com-
pression ratio (CR), encoding time (ET), and decoding time (DT)”. Beside, a better lossless
image compression is proportional to the compression ratio and inversely proportional to the
encoding and decoding times. Since the performance of a lossless algorithm depends on the
CR, ET and DT, we develop a technique defined in equations (7.2-7.4) to calculate the overall
impact for each algorithm in terms of compression ratio, encoding and decoding times, where
K1 is a constant. A better K1 makes a good balance among the compression ratio, encoding
and decoding times. The compression ratio makes a good balance with encoding and decoding
times if K1 is the average of OV PET and OV PDT .

OV P(MN,CR) =
AV(MN,CR)∑
All methodsAVCR

×K1 (7.2)

OV P(MN,ET) =

∑
All methodsAVET
AV(MN,ET)

(7.3)

OV P(MN,DT) =

∑
All methodsAVDT
AV(MN,DT)

(7.4)

Considering all of these parameters simultaneously, we calculate the grand total perfor-
mance of each method using the equation 7.5. Overall performance means how good is each
method averagely among all methods in terms of each individual evaluation parameter whereas
grand total performance is a combination of two or more parameters.

GTP(MN) =

∑NP
k=1OV PMN∑

All methods

∑NP
k=1OV PMN

× 100,

where 2 ≤ NP ≤ TP)

(7.5)

91

Figure 7.15: Comparison of average decoding times

92

7.2. EXPERIMENTAL RESULTS AND ANALYSIS

In the equation 7.5, NP is the number of parameters considered when calculating the grand
total, and TP is the total number of parameters. For lossless image compression, TP can be a
maximum of three because only three parameters (compression ratio, encoding and decoding
times) are used for evaluating a method. Finally, we apply the Algorithm 7 to find a better
lossless image compression algorithm.

Algorithm 7: Selected Method Name (SMN)

1 BestTechnique(NP, MethodList) ;
2 Initialize Max← 0;
3 SM← 0;
4 K← 1;
5 NM← Number of methods;
6 P← GTP(NP,NM);
7 while K≤ NM do
8 if Max<P then
9 Max← P;

10 SM← K;
11 end
12 end
13 Return MethodList[SM];

We show the two-parameter GTP (i.e. the GTP for each combination of two parameters)
in Figures 7.16–7.19 for 8-bit greyscale, 8-bit RGB, 16-bit greyscale, and 16-bit RGB images,
respectively. Figure 7.16(a) shows that JPEG XR and AVIF give the highest (25.128%) and the
lowest (5.068%) GTPs, respectively, in terms of CR and ET. Figure 7.16(b) shows that PNG
and WebP provide the highest (27.607%) and the lowest (5.836%) GTPs, respectively, in terms
of CR and DT. For ET and DT, Figure 7.16(c) shows that JPEG XR and FLIF provide the high-
est (25.429%) and the lowest (1.661%) GTPs, respectively. We can draw the conclusion from
Figure 7.16 that JPEG XR is better when CR and ET are the main considerations for an appli-
cation, and this method performs 23.43%, 61.23%, 43.32%, 73.59%, 67.91%, 79.83%, 73.38%,
and 79.34% better than JPEG-LS, JPEG 2000, lossless JPEG, PNG, CALIC, AVIF, WebP and
FLIF, respectively. PNG is better when CR and DT are the main considerations for an applica-
tion, and this method performs 61.63%, 75.11%, 42.28%, 50.99%, 76.11%, 76.25%, 78.86%,
and 76.54% better than JPEG-LS, JPEG 2000, Lossless JPEG, JPEG XR, CALIC, AVIF, WebP,
and FLIF, respectively. JPEG XR is better when ET and DT are the main considerations for
an application, and performs 35.35%, 71.84%, 27.93%, 22.84%, 82.09%, 86.34%, 86.89%, and
93.47% better than JPGE-LS, JPEG 2000, lossless JPEG, PNG, CALIC, AVIF, WebP, and FLIF,
respectively.

Figure 7.17 shows the two-parameter GTP for 8-bit RGB images. Figure 7.17(a) shows
that JPEG XR and PNG give the highest (23.238%) and the lowest (7.337%) GTP of the state-
of-the-art methods in terms of CR and ET, and JPEG XR performs 29.1%, 63.13%, 50.68%,
68.43%, 67.79%, 62.94%, 59.62%, and 68% better than JPEG-LS, JPEG 2000, lossless JPEG,
PNG, CALIC AVIF, WebP, and FLIF, respectively. In terms of CR and DT, PNG and CALIC
achieve the highest (26.291%) and lowest (6.260%) GTPs, as shown in Figure 7.17(b), and PNG
performs 62.09%, 74.69%, 51.58%, 47.77%, 76.19%, 70.87%, 68.75%, and 67.7% better than
JPEG-LS, JPEG 2000, lossless JPEG, JPEG XR, CALIC, AVIF, WebP, and FLIF, respectively.
Figure 30(c) shows the GTP based on ET and DT. It can be seen that JPEG XR and FLIF
have the highest (25.609%) and lowest (3.139%) GTPs. JPEG XR performs 44.19%, 77.73%,
41.05%, 16.51%, 83.39%, 80.12%, 78.78%, and 66.84% better than JPEG-LS, JPEG 2000,
lossless JPEG, PNG, CALIC, AVIF, WebP, and FLIF, respectively. Finally, we can conclude
from Figure 30 that JPEG XR is better for 8-bit RGB image compression when either CR and

93

ET or ET and DT are the major considerations for an application. However, PNG is better when
CR and DT are most important.

For 16-bit greyscale images, Figure 7.18 shows the two-parameter GTP for the state-of-the-
art techniques. In terms of CR and ET, JPEG XR achieves the highest GTP (19.305%) and JPEG
2000 the lowest (5.327%) of the methods shown in Figure 7.18(a). It can also be seen that JPEG
XR performs 34.87%, 72.41%, 35.54%, 68.96%, 58.53%, 44.38%, 34.31%, and 33.01% better
than JPEG-LS, JPEG 2000, lossless JPEG, PNG, CALIC, AVIF, WebP, and FLIF, respectively.
Figure 7.18(b) shows the GTP based on CR and DT, and it can be seen that PNG and JPEG
2000 have the highest (20.288%) and lowest (3.866%) GTPs. Figure 7.18(b) shows that PNG
performs 50.69%, 80.94%, 38.95%, 31.16%, 73.63%, 50.5%, 43.21%, and 38% better than
JPEG-LS, JPEG 2000, lossless JPEG, JPEG XR, CALIC, AVIF, WebP, and FLIF, respectively.
PNG and FLIF achieve the highest (20.352%) and lowest (3.833%) GTPs in terms of ET and
DT, as shown in Figure 7.18(c), and PNG performs 20.81%, 78.37%, 8.23%, 8.23%, 60.52%,
77.22%, 74.12%, and 81.17% better than JPEG-LS, JPEG 2000, lossless JPEG, JPEG XR,
CALIC, AVIF, WebP, and FLIF, respectively. Hence, based on Figure 7.18, we conclude that
JPEG XR is better for 16-bit greyscale image compression when either CR and ET is the main
considerations for an application. PNG is better when CR and DT or ET and DT are considered
important for this type of image.

Figure 7.19 shows the GTP of each method for 16-bit RGB images. Figures 7.19(a-c) show
that JPEG XR achieves the highest GTP (29.348%, 24.075%, and 35.779%), and JPEG 2000
the lowest (3.963%, 3.340%, and 3.069%) in all cases. JPEG XR performs 62.35%, 86.5%,
72.52%, 84.8%, 80.12%, 58.93%, 55.12%, and 58.91% better in terms of CR and ET; 63.61%,
86.13%, 57.44%, 31.96%, 79.78%, 55.1%, 51.08%, and 59.52% better in terms of CR and DT;
and 62.62%, 91.42%, 64.46%, 59.11%, 83.57%, 85.16%, 84.55%, and 89.61%, better in terms
of ET and DT than JPEG-LS, JPEG 2000, lossless JPEG, PNG, CALIC, AVIF, WebP, and FLIF,
respectively. We can conclude from Figure 7.19 that JPEG XR is best for 16-bit RGB image
compression for any application.

Figure 7.20 shows the three-parameter GTP (CR, ET and DT) for the state-of-the-art tech-
niques. Figures 7.20 (a, b, c, and d) show that JPEG XR achieves the highest GTP (21.957%,
21.120%, 17.306% and 29.865%) for 8-bit greyscale, 8-bit RGB, 16-bit greyscale and 16-bit
RGB images, respectively. JPEG XR performs 28.65%, 64.05%, 25.5%, 19.01%, 71.57%,
77.9%, 76.75%, and 81.13% better for 8-bit greyscale images, 35.59%, 67.36%, 37.4%, 12.05%,
72.11%, 66.88%, 64.3%, and 70.81%, better for 8-bit RGB images, 24.88%, 73.95%, 15.19%,
7.97%, 58.77%, 52.03%, 44.43%, and 44.95% better for 16-bit greyscale images, 62.79%,
88.61%, 65.1%, 59.94%, 81.57%, 69.69%, 67.26%, and 70.21% better for 16-bit RGB images
than JPEG-LS, JPEG 2000, Lossless JPEG, PNG, CALIC, AVIF, WebP, and FLIF, respectively.
We can therefore conclude from Figure 7.20 that JPEG XR is better for the four types of im-
age when all three parameters (CR, ET and DT) are equally important for lossless still image
compression for an application. To allow for a straightforward comparison, we summarise the
analysis presented in this paper in Table 7.5, and the two best methods are shown in each cate-
gory.

In this research work, Matlab (version 9.8.0.1323502 (R2020a)) was used for these exper-
iments, on a DELL desktop computer with an Intel(R) Core(TM) i7-8700 CPU @3.20GHz
3.19GHz (Intel, Santa Clara, CA, USA).

7.3 Summary

Lossless still image compression is a topic of intense research interest in the field of com-
puting, especially for applications that rely on low bandwidth connections and limited storage.
There are various types of images, and different algorithms are used to compress these in a loss-
less way. The performance of a lossless algorithm depends on the CR, ET and DT, and there

94

7.3. SUMMARY

Figure 7.16: Two-parameter GTP for 8-bit greyscale images

95

Figure 7.17: Two-parameter GTP for 8-bit RGB images

96

7.3. SUMMARY

Figure 7.18: Two-parameter GTP for 16-bit greyscale images

97

Figure 7.19: Two-parameter GTP for 16-bit RGB images

98

7.3. SUMMARY

Figure 7.20: Three-parameter GTP

99

Table 7.5: Summary of results

Grayscale Images (8 bits)
Compression ratio Encoding time Decoding Time First choice Second choice

✓ ✓ ✓ JPEG XR PNG
✓ ✓ - JPEG XR JPEG-LS
✓ - ✓ PNG Lossless JPEG
- ✓ ✓ JPEG XR PNG
✓ - - FLIF CALIC
- - ✓ PNG Lossless JPEG
- ✓ - JPEG XR JPEG-LS

Grayscale Images (16 bits)
✓ ✓ ✓ JPEG XR PNG
✓ ✓ - JPEG XR FLIF
✓ - ✓ PNG JPEG XR
- ✓ ✓ PNG Lossless JPEG
✓ - - FLIF WebP
- - ✓ PNG Lossless JPEG
- ✓ - JPEG XR Lossless JPEG

RGB Images (8 bits)
✓ ✓ ✓ JPEG XR PNG
✓ ✓ - JPEG XR JPGE-LS
✓ - ✓ PNG JPGE-XR
- ✓ ✓ JPEG XR PNG
✓ - - FLIF WebP
- - ✓ PNG JPEG XR
- ✓ - JPEG XR JPEG-LS

RGB Images (16 bits)
✓ ✓ ✓ JPEG XR PNG
✓ ✓ - JPEG XR WebP
✓ - ✓ JPEG XR PNG
- ✓ ✓ JPEG XR PNG
✓ - - FLIF WebP
- - ✓ JPEG XR PNG
- ✓ - JPEG XR JPEG-LS

100

7.3. SUMMARY

is a range of demand in terms of different types of performance. Some applications place more
importance on the CR, and others focus mainly on the ET or DT. Two or all three of these pa-
rameters may be equally important in some applications. The main contribution of this research
article is that we have analysed state-of-the-art techniques from each perspective, and have eval-
uated the strengths of each algorithm for each kind of image. We also recommend the best two
state-of-the-art methods from each standpoint.

From the analysis presented here, we can see that FLIF is optimal for the four types of im-
ages, in terms of the CR. However, JPEG XR and PNG provide better performance in terms of
encoding and decoding speeds, respectively, for 8-bit greyscale and RGB, and 16-bit greyscale.
For 16-bit RGB images, JPEG XR works fastest. When the CR and ET are the main consider-
ations, JPEG XR provides better performance for the four types of image. PNG achieves good
performance for 16-bit greyscale images when encoding and decoding times are most important,
and JPEG XR performs best for other types of images. When CR and DT are most important,
PNG is better for 16-bit greyscale, 8-bit greyscale and RGB images, and JPGE-XR is better
for 16-bit RGB images. If all parameters are equally important for lossless compression in an
application, JPEG XR are better for the four types of image.

An important outcome of this research is that it can allow users to easily identify the optimal
compression algorithm to use for an application, based on their particular needs. For example,
there are many data storage applications like Google Drive, OneDrive, Dropbox etc., where
compression ratio is more important. In this case, FLIF could be the best choice for all types
of image. On the other hand, compression ratio and encoding time are more important than
decoding time during photo attachment in a mail, and in instant messaging when photo is shared,
all the three parameters are equally important. For this two cases, JPEG XR could be the best
selection for all categories of image.

101

102

Chapter 8

Burrows–Wheeler Transform Based
Lossless Text Compression Using Keys
and Huffman Coding

Text compression is one of the most significant research fields, and various algorithms for
text compression have already been developed. This is a significant issue, as the use of internet
bandwidth is considerably increasing. This article proposes a Burrows–Wheeler transform and
pattern matching-based lossless text compression algorithm that uses Huffman coding in order
to achieve an excellent compression ratio. In this article, we introduce an algorithm with two
keys that are used in order to reduce more frequently repeated characters after the Burrows–
Wheeler transform. We then find patterns of a certain length from the reduced text and apply
Huffman encoding. We compare our proposed technique with state-of-the-art text compression
algorithms. Finally, we conclude that the proposed technique demonstrates a gain in compres-
sion ratio when compared to other compression techniques.

8.1 Introduction

Managing the increasing amount of data that are produced by modern daily life activities is
not a simple task. In articles [212,213], it is reported that, on average, 4.4 zettabytes and 2.5 ex-
abytes of data were produced per day in 2013 and 2015, respectively. On the other hand, the use
of the internet is increasing. The total numbers of internet users were 2.4, 3.4, and 4.4 billion
in 2014, 2016, and 2019, respectively [214]. Though hardware manufacturing, companies are
producing plenty of hardware in an attempt to provide a better solution for working with huge
amounts of data, it’s almost impossible to maintain this data without compression.

Compression is the representation of data in a reduced form [215], so that data can be saved
while using a small amount of storage and sent with a limited bandwidth [47, 141, 216, 217].
There are two types of compression techniques: lossless and lossy [218, 219]. Lossless com-
pression reproduces data perfectly from its encoded bit stream, and, in lossy compression, less
significant information is removed [152, 220].

There are various types of lossless text compression techniques, such as the Burrows–
Wheeler transform (BWT), run-length coding, Huffman coding, arithmetic coding, LZ77, De-
flate, LZW, Gzip, Bzip2, Brotli, etc. [221,222]. Some statistical methods assign a shorter binary
code of variable length to the most frequently repeated characters. Huffman and arithmetic cod-
ing are two examples of this type of statistical method. However, Huffman coding is one of the
best algorithms in this category [27]. Some dictionary-based methods, such as LZ77, LZW, etc.,
create a dictionary of substrings and assign them a particular pointer based on the substring’s
frequency. In [223], Robbi et al. propose a Blowfish encryption and LZW-based text com-

103

pression procedure and show a better result than LZW coding. Deflate provides a slightly poor
compression, but its encoding and decoding speeds are fast [224]. Although researchers have
developed many lossless text compression algorithms, they do not fulfill the current demand;
researchers are still trying to develop a more efficient algorithm.

From this point of view, we propose a lossless text compression procedure while using the
Burrows–Wheeler transformation and Huffman coding in this paper. In our proposed method,
we apply a technique using two keys that reduces only the characters repeated consecutively
more than two times after the Burrows-Wheeler transformation. Finally, we find all the patterns
that have more frequencies and then apply Huffman coding for encoding. We explain our pro-
posed method in detail and compare it against some popular text compression methods. In this
paper, previous work is shown in Section 8.2. The proposed techniques are explained in Sec-
tion 8.3. In Section 8.4, we present the experimental results and analysis, and we give further
research directions. Finally, we conclude the article in Section 8.5.

8.2 Previous Works

Run-length coding is one of the text compression algorithms. It calculates symbols and
their counts. When run-length coding is directly applied to data for compression, it sometimes
takes more storage than the original data [69]. Shannon–Fano coding generates prefix codes of
variable length based on probabilities and provides better results than run-length coding, but it
is not optimal, as it cannot produce the same tree in encoding and decoding. David Huffman
developed a data compression algorithm, reported in [163], which is normally used as a part
of many compression techniques. In this technique, a binary tree is generated by connecting
the two lowest probabilities at a time when the root of the tree contains the summation of the
two probabilities. The tree is then used to encode each symbol without ambiguity. However,
Huffman coding cannot achieve an optimal code length when it is applied directly. Arithmetic
coding outperforms Huffman coding in terms of average code length, but it takes a huge amount
of time for encoding and decoding.

LZW is a dictionary-based lossless text compression algorithm and an updated version of
LZ78 [225]. In this technique, a dictionary is created and initialized with strings all of length
one. Subsequently, the longest string in the dictionary that matches the current input data is
found. Although LZW is a good text compression technique, it is more complicated due to its
searching complexity [45]. Deflate is also a lossless compression algorithm that compresses a
text by using LZSS and Huffman coding together, where LZSS is a derivative of LZ77. The De-
flate procedure finds all of the duplicate substrings from a text. Subsequently, all of the sub-
strings are replaced by the pointer of the substring that occurred first. The main limitation of
Deflate is that the longer and duplicate substring searching is a very lazy mechanism [226]. Gzip
is another lossless, Deflate-based text compression algorithm that compresses a text while using
LZ77 and Huffman coding [227]. The pseudo-code of LZ77 is reported in the reference [228].

The Lempel–Ziv–Markov chain algorithm (LZMA) that was developed by Igor Pavlov is
a dictionary-based text compression technique that is similar to LZ77. LZMA uses a com-
paratively small amount of memory for decoding and it is very good for embedded applica-
tions [229]. Bzip2, on the other hand, compresses only a single file using the Burrows-Wheeler
transform, the move-to-front (MTF) transform and Huffman entropy coding techniques. Al-
though bzip2 compresses more effectively than LZW, it is slower than Deflate but faster than
LZMA [230]. PAQ8n is a lossless text compression method that incorporates the JPEG model
into paq81. The main limitation of PAQ8n is that it is very slow [231, 232]. Brotli, which
was developed by Google, is a lossless text compression method that performs compression
using the lossless mode of LZ77, a Huffman entropy coding technique and second order con-
text modeling [233]. Brotli utilizes a predefined static dictionary holding 13,504 common
words [234,235]. It cannot compress large files well because of its limited sliding window [236].

104

8.3. PROPOSE METHOD

Burrows–Wheeler transform (BWT) in [237] transforms a set of characters into runs of
identical characters. It is completely reversible, and no extra information is stored without the
position of the last character. The transformed character set can be easily compressed by run-
length coding. The pseudo-codes of the forward and inverse Burrows–Wheeler transforms are
reported in [238].

8.3 Propose Method

There are many algorithms used to compress a text. Some examples are Huffman, run-
length, LZW, Bzip2, Deflate, Gzip, etc. coding-based algorithms [239–243]. Many algorithms
focus on the encoding or decoding speed during text compression, while others concentrate on
the average code length. Brotli provides better compression ratios than other state-of-the-art
techniques for text compression. However, it uses a large static dictionary [235]. What makes
our proposal special? We can apply our proposed method to a large file as well as a small
file. The main limitation of BWT is that it takes huge amounts of storage and a lot of time
to transform a large file [244–246]. Our first interesting innovation is that we split a large file
into a set of smaller files, where each file contains the same number of characters, and then
apply the Burrows–Wheeler transform (BWT) to the smaller files individually to speed up the
transformation. We do not use any static dictionary because searching for a word or phrase in
a dictionary is very complicated and time consuming [27]. We change the use of run-length
coding a bit after the Burrows–Wheeler transform (BWT), because run-length coding takes
the symbol and its count, and it only works well when characters are repeated more in a text.
When a character is alone in a text, which normally happens, two values (the character and its
count) are stored after encoding, which increases the use of storage. Our second interesting
change is that we will only replace the characters repeated more than three times in a row by
a key, the character, and its count. The position of the character’s sequence in a reduced text
is identified by the key. Huffman coding provides more compression if a text has a higher
frequency of characters. We have analyzed ten large text files from [30], and the outcomes are
shown in Figure 8.1. The figure shows that the frequency of lowercase letters in any text is
always much higher than other types of letters.

Figure 8.1 shows that, on average, all of the files contain 71.46%, 3.56%, 15.48%, 2.40%,
1.14%, and 5.96% small letters, capital letters, space, newline, zero to nine, and others, re-
spectively. We have calculated that, averagely, the frequency of lowercase letters is 94.95%,
78.11%, 96.67%, 98.31%, and 91.72% higher than the frequency of capital letters, spaces, new-
lines, zero-to-nine (0–9) characters, and other characters, respectively.

Additionally, we have analyzed 5575 small text files of lengths less than or equal to 900
characters. We see that a maximum of twenty of the same characters are repeated consecutively
at a time after the Burrows–Wheeler transform is applied to the small texts that are shown in
Figure 8.2. There are twenty-six lowercase characters in the English alphabet. Accordingly, we
have replaced the character count in lowercase letters using the formula (character’s count + 96),
so that the lowercase letters keep the frequency higher and we can obtain a higher compression
ratio. The proposed above-mentioned idea can only reduce the characters repeated four times
or more at a time. However, a file can contain many other characters that can be repeated two
or three times. Our third interest is to reduce the characters that are repeated exactly three times
using the formula (second key, the character). As a result, we can only store two characters
instead of three and further reduce the length of the file. Changing characters that appear twice
does not help to reduce the file length, so we keep these characters the same.

We have analyzed eleven large text files after applying the Burrows–Wheeler Transform
and the text reduction techniques using the two keys explained above in order to find specific
patterns. We find patterns of lengths two, three, four, five and six, and the outcome of the
analysis is demonstrated in Figure 8.3. This figure shows that the patterns of length two provide

105

63.03%, 79.02%, 81.49%, and 83.23% higher frequencies than the other patterns of lengths
three, four, five, and six, respectively. This is why we selected patterns of length two and then
applied the Huffman encoding technique for compression. This decreases the use of storage and
increases the encoding and decoding speeds, because the detection of patterns of long lengths
is relatively complex, and we normally obtain much lower frequencies of patterns. Figures 8.4
and 8.5, respectively, show the general block diagrams of the proposed encoding and decoding
procedures. Additionally, the encoding and decoding procedures of the proposed method are
given in Algorithms 8 and 9, respectively.

Algorithm 8: The proposed encoding procedure

1 Read a text file as an input and calculate the length of the file (N);
2 Split the text into a set of small files of the same size (SS);
3 Apply the Burrows-Wheeler Transform on each text file separately and save the

corresponding transform key. Set I =1.;
4 while I ≤ N do
5 if the number of the same consecutive characters is greater than three then
6 Store the tuple (key1, the character and their count) to ReducedText where

count is converted into a character using the formula (counts+96);
7 I = I+count;
8 else if the number of the same consecutive characters is exactly three then
9 Store key2 and the character to ReducedText.;

10 I = I+3;
11 end
12 else
13 Save the character to the array ReducedText.;
14 I = I+1;
15 end
16 end
17 Find the specific patterns from ReducedText that have higher frequencies;
18 Apply Huffman encoding technique to get an encoded bit-stream;
19

8.4 Experimental Results and Analysis

Some experimental results are shown and explained in this section. We made a comparison
with some other methods in order to show the usefulness of our proposed method. However,
it is essential to determine the comparison parameters before making any comparisons. Here,
the state-of-the-art techniques and the proposed method are compared based on the compression
ratio (CR) that is calculated using Equation (8.1). It is a very important measurement criterion
in this context [242]. Additionally, the encoding and decoding times are considered in the
comparison.

CR =
Original text size

Compressed text size
(8.1)

There are many lossless text compression algorithms, but we select PAQ8n, Deflate, Bzip2,
Gzip, LZMA, LZW, and Brotli for comparison in this article, because those are the state-of-the-
art techniques in this area, and Brotli is one of the best methods among them. We use some
sample text files of different sizes from the UCI dataset for testing the aforementioned algo-
rithms. Compression ratios are used in order to evaluate each method based on the sample texts.
We apply state-of-the-art techniques and the proposed method on twenty different texts. Ta-

106

8.4. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 8.1: Comparison of letters’ frequency in the texts.

Algorithm 9: The proposed decoding procedure

1 Apply Huffman decoding technique on the receive encoded bit-stream and store to
PreReconstructedText1;

2 Set I=1 and calculate the length of the PreReconstructedText1 (Len);
3 while I ≤ Len do
4 if PreReconstructedText1[I]==Key1 then
5 Add (Int(PreReconstructedText1[I+2])-96) number of PreReconstructedText1

[I+1] characters to PreReconstructedText2;
6 I = I+3;
7 else if PreReconstructedText1[I]==Key2 then
8 Add three PreReconstructedText1[I+1] characters to PreReconstructedText2;
9 I = I+2;

10 end
11 else
12 Add PreReconstructedText1[I] character to PreReconstructedText2;
13 I = I+1;
14 end
15 end
16 Split PreReconstructedText2 into a set of small files, where each file contains SS

number of characters, and apply the inverse Burrows-Wheeler transform to each file
with its corresponding TransformKey to get back the reconstructed text;

17

107

Figure 8.2: The highest frequencies of the same consecutive characters in the texts after the
Burrows–Wheeler transform.

108

8.4. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 8.3: Frequency comparison of different patterns of different lengths.

109

Figure 8.4: The general block diagram of the proposed encoding technique.

Figure 8.5: The general block diagram of the proposed decoding technique.

110

8.4. EXPERIMENTAL RESULTS AND ANALYSIS

ble 8.1 shows the experimental results in terms of compression ratios of the texts and Figure 8.6
shows their graphical representation for quick comparison.

Table 8.1 shows that averagely LZW provides the lowest (1.288) compression ratio and
Brotli the highest (1.667) among state-of-the-art techniques. Although PAQ8n provides 3.04%,
4.3%, 5.5%, and 3.91% better results than Brotli for the texts 3, 15, 16, and 20, respectively,
Brotli shows 1.44%, 10.86%, 14.94%, 9.78%, 20.52%, and 22.74% more compression than
PAQ8n, Deflate, Bzip2, Gzip, LZMA, and LZW, on average. It can be seen that the proposed
technique provides better results, having a higher (1.884) compression ratio on average. Specif-
ically, the proposed technique demonstrates, on average, a compression ratio 12.79% higher
than PAQ8n, 21.13% higher than Deflate, 24.73% higher than Bzip2, 20.17% higher than Gzip,
31.63% higher than LZMA, 31.7% higher than LZW, and 11.52% higher than Brotli. We can
see from Figure 6 that the compression ratio for the proposed technique is higher for every sam-
ple.

We also calculate the encoding and decoding times, which are shown in Figures 8.7 and
8.8, respectively. For encoding, on average, LZMA and Brotli take the highest (5.8915 s) and
the lowest (0.0131 s) amounts of time, respectively, and the proposed technique takes 0.0375 s.
PAQ8n and LZMA are 45.65% and 99.36% slower than the proposed coding technique. On the
other hand, the proposed strategy takes 56.53%, 2.4%, 17.33%, 38.13%, and 65.07% more time
than Deflate, Bzip2, Gzip, LZW, and Brotli, respectively. For decoding, on average, Brotli
and LZMA take the lowest (0.007 s) and the highest (0.5896 s) amounts of time, respectively,
and the proposed coding technique takes 0.0259 s. The proposed technique is 59.08% and
96.61% faster than PAQ8n, and LZMA, respectively; it is 49.81%, 47.1%, 7.34%, 27.8%, and
72.97% slower than Deflate, Bzip2, Gzip, LZW, and Brotli, respectively. In the case of both
encoding and decoding time, we can conclude that our proposed coding method is faster than
PAQ8n and LZMA and slower than the other methods that are mentioned in this article. Brotli
performs the best out of the state-of-the-art methods in terms of compression ratios, encoding,
and decoding times. However, our proposed method outperforms not only Brotli, but also the
other state-of-the-art lossless text compression techniques that are mentioned in this article in
terms of the compression ratio.

Text compression has two notable aspects based on its application: speed and storage effi-
ciency. There are many applications, like Instant messaging, where speed is more important.
On the other hand, a higher compression ratio is the primary concern for data storage applica-
tions. Because the proposed method provides more compression, it works better for the data
storage applications. The compression ratio is inversely proportional to the total number of bits
in a compressed file. Although the proposed method takes more time for encoding and decod-
ing, a file compressed by the proposed method can be sent more quickly through a transmission
media, because the number of bits in the file is less than in other files compressed by other
methods. Steganography is a very well-known technique used for information hiding and is
very important for Today’s technology [218, 219]. Additionally, we can also use the proposed
compression method with steganography when transferring a file securely over the Internet.
To obtai a stego-text, we may first apply the steganography technique to a text file and then
compress the stego-text by the proposed method to get a more secure text.

In this research work, we use the languages C++ and MATLAB (version 9.8.0.1323502
(R2020a)); CodeBlocks (20.03) and MATLAB are used as the coding environments. We also
use an HP laptop with the Intel Core i3-3110M @2.40 GHz processor.

As a research direction, we can suggest from our investigation that Brotli is one of the best
text compression methods. Brotli cannot provide satisfactory results for a large file compression
due to its limited sliding window. However, it is a relatively fast compression method. If we can
solve the sliding window problem satisfactorily while maintaining the same speed, Brotli will
perform well from every point of view. On the other hand, our proposed method is somewhat
slow. If we can increase its encoding and decoding speed, it will give better results.

111

Figure 8.6: Graphical representation of the compression ratios.

112

8.4. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 8.7: Encoding time comparison.

113

Figure 8.8: Decoding time comparison.

114

8.5. SUMMARY

8.5 Summary

Lossless text compression is a more significant matter when there is a highly narrow-band
communication channel and less storage available. We have proposed a completely lossless
text compression while using the Burrows–Wheeler transform, two keys, and Huffman coding.
What distinguishes our proposed method? First, to speed up the transformation, we split a large
text file into sets of smaller files that ultimately increase the speed of compression. Second, we
do not count all characters, which is done in run-length coding. We count only the characters
that are repeated more than two times consecutively and replace the value of the letter count by
a lowercase letter to increase the frequency of characters in the text, as each text contains the
maximum number of lowercase letters. Third, we look for patterns of a certain length that have
the highest frequency, so that we can get better results after applying Huffman coding.

The experimental outcomes show that the proposed method performs better than the seven
algorithms that we compared it to: PAQ8n, Deflate, Bzip2, Gzip, LZMA, LZW, and Brotli.
When used on the twenty sample texts, the proposed method gives an average of 21.66% higher
compression than the methods that were described in this research.

One good aspect of our method is that we do not use any static dictionary, which helps
to speed up the compression somewhat. Another special feature is that we find patterns of
the same length. As a result, the complexity of finding patterns is minimal, and the highest
frequency patterns are found, which leads to a better compression ratio.

115

Table 8.1: Comparison among compression ratios

Texts PAQ8n Deflate Bzip2 Gzip LZMA LZW Brotli Proposed

1 1.582 1.548 1.335 1.455 1.288 1.313 1.608 1.924
2 1.497 1.427 1.226 1.394 1.214 1.283 1.544 1.935
3 1.745 1.655 1.46 1.574 1.338 1.399 1.692 1.925
4 1.523 1.463 1.261 1.382 1.2 1.268 1.531 1.899
5 1.493 1.408 1.228 1.39 1.195 1.17 1.625 1.949
6 1.242 1.228 1.051 1.199 1.057 1.036 1.25 1.429
7 1.154 1.04 1.026 1.061 1 0.946 1.287 1.448
8 1.566 1.43 1.316 1.465 1.298 1.254 1.783 1.893
9 1.295 1.265 1.092 1.219 1.05 1.275 1.38 1.536
10 1.495 1.371 1.307 1.419 1.216 1.174 1.511 1.629
11 1.455 1.309 1.219 1.373 1.168 1.134 1.466 1.632
12 1.497 1.306 1.249 1.37 1.222 1.209 1.58 1.773
13 1.369 1.201 1.126 1.25 1.097 1.092 1.493 1.66
14 1.595 1.407 1.336 1.462 1.321 1.305 1.637 1.773
15 1.559 1.302 1.243 1.38 1.249 1.227 1.492 1.788
16 2.401 2.082 2.214 2.121 1.888 1.559 2.269 2.466
17 1.38 1.211 1.353 1.302 1.113 1.103 1.428 1.903
18 1.755 1.537 1.477 1.585 1.401 1.394 1.782 1.931
19 1.507 1.37 1.261 1.417 1.247 1.234 1.542 1.815
20 2.02 1.744 2.01 1.783 1.596 1.43 1.941 2.033

Average 1.643 1.486 1.418 1.504 1.325 1.288 1.667 1.884

116

8.5. SUMMARY

117

Chapter 9

Conclusions and Future Work

Lossless still image compression is a topic of intense research interest in the field of com-
puting, especially for applications that rely on low bandwidth connections and limited storage.
In this thesis, we contributed to the theory and practice of lossless data compression in some
ways. In the following, We give a brief description of the problems considered in this thesis and
our proposed solutions.

1. In Chapter 2, we focused on three things. First of all, we explained the basic concept of
how to transform a continuous tone image to its digital form. Secondly, we explained in
detail how to compress an image. Finally, we explained the measurement standards used
to evaluate a data compression algorithm.

2. In Chapter 3, we studied the transformation techniques used for data compression and
explained the techniques based on numeric data for clear understanding.

3. In Chapter 4, we studied the state-of-the-art lossless data compression techniques. In
particular, the encoding and decoding procedures of the techniques are explained in detail.

4. In Chapter 5, we studied the entropy coding methods used in each of the advanced data
compression techniques. Since, choosing an entropy coding strategy for data compression
is a big challenge. We explained the methods based on a common numeric data set. We
also gave an extensive analysis based on the experimental results of some images and
recommended the best entropy coding technique. We finally showed the limitations of
the algorithms and demonstrated which part of the algorithms needs to be improved.

5. In Chapter 6, we proposed a mathematical model to select an optimal lossless image
compression technique is proposed in this chapter. This chapter shows that each algo-
rithm was evaluated based on a specific parameter in each research work. However, the
performance of a lossless image compression algorithm depends on all parameters (bpp,
encoding and decoding time) and does not singly depend on any of them. Therefore, the
proposed method predicts a better lossless image compression algorithm for any combi-
nation of parameters and provides the actual impact of each algorithm.

6. The PCBMS model gives a better prediction to select a better lossless image compres-
sion method. However, a better prediction depends on making a good balance between
compression ratio, encoding, and decoding times. Therefore, we proposed an alternative
approach to PCBMS in Chapter 7. The proposed method can balance the parameters bet-
ter than PCBMS and give more accurate predictions.

7. In Chapter 8, we studied the text compression method. When run-length coding is used in
terms of data compression, it increases the number of unique symbols during the coding
of characters’ length. As a result, the compression ratio is reduced. To solve the problem,

118

8.5. SUMMARY

we proposed a key-based coding procedure in place of run-length coding that increases
the compression ratio.

Some algorithm provides better compression ratios. Others may be able to speed up en-
coding or decoding or both. One algorithm gives better results for one type of image, another
algorithm gives better results for another type of image. Another problem is that an algorithm
can give better performance for an image in a similar type of image. In contrast, another algo-
rithm may give better results for another image of the same type. So, finding the best algorithm
for each individual image is a big challenge. For this issue, designing a deep convolutional neu-
ral network-based model will be an interesting direction for future work.

119

References

[1] M. J. Weinberger, G. Seroussi, and G. Sapiro, “Loco-i: A low complexity, context-
based, lossless image compression algorithm,” in Proceedings of Data Compression
Conference-DCC’96. IEEE, 1996, pp. 140–149.

[2] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The jpeg 2000 still image compression
standard,” IEEE Signal processing magazine, vol. 18, no. 5, pp. 36–58, 2001.

[3] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool, “Practical full reso-
lution learned lossless image compression,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2019, pp. 10 629–10 638.

[4] S. Cao, C.-Y. Wu, and P. Krähenbühl, “Lossless image compression through super-
resolution,” arXiv preprint arXiv:2004.02872, 2020.

[5] A. Alarabeyyat, S. Al-Hashemi, T. Khdour, M. H. Btoush, S. Bani-Ahmad, R. Al-
Hashemi, S. Bani-Ahmad et al., “Lossless image compression technique using combi-
nation methods,” Journal of Software Engineering and Applications, vol. 5, no. 10, p.
752, 2012.

[6] M. U. A. Ayoobkhan, E. Chikkannan, K. Ramakrishnan, and S. B. Balasubramanian,
“Prediction-based lossless image compression,” in International Conference on ISMAC
in Computational Vision and Bio-Engineering. Springer, 2018, pp. 1749–1761.

[7] X. O. Zhao and Z. H. He, “Lossless image compression using super-spatial structure
prediction,” IEEE Signal Processing Letters, vol. 17, no. 4, pp. 383–386, 2010.

[8] B. Xiao, G. Lu, Y. Zhang, W. Li, and G. Wang, “Lossless image compression based on
integer discrete tchebichef transform,” Neurocomputing, vol. 214, pp. 587–593, 2016.

[9] Z. Zuo, X. Lan, L. Deng, S. Yao, and X. Wang, “An improved medical image compression
technique with lossless region of interest,” Optik, vol. 126, no. 21, pp. 2825–2831, 2015.

[10] J. Li, “An improved wavelet image lossless compression algorithm,” Optik, vol. 124,
no. 11, pp. 1041–1044, 2013.

[11] R. N. Kumar, B. Jagadale, and J. Bhat, “A lossless image compression algorithm using
wavelets and fractional fourier transform,” SN Applied Sciences, vol. 1, no. 3, pp. 1–8,
2019.

[12] T. Strutz, “Context-based predictor blending for lossless color image compression,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 26, no. 4, pp. 687–695,
2015.

[13] B. Rusyn, O. Lutsyk, Y. Lysak, A. Lukenyuk, and L. Pohreliuk, “Lossless image com-
pression in the remote sensing applications,” in 2016 IEEE First International Conference
on Data Stream Mining & Processing (DSMP). IEEE, 2016, pp. 195–198.

120

REFERENCES

[14] G. Al-Khafaji and L. E. George, “Fast lossless compression of medical images based on
polynomial,” International Journal of Computer Applications, vol. 70, no. 15, 2013.

[15] C. Perra, “Lossless plenoptic image compression using adaptive block differential pre-
diction,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2015, pp. 1231–1234.

[16] R. R. S. Tomar and K. Jain, “Lossless image compression using differential pulse code
modulation and its application,” in 2015 International Conference on Computational In-
telligence and Communication Networks (CICN). IEEE, 2015, pp. 397–400.

[17] A. D. Wilson, “Fast lossless depth image compression,” in Proceedings of the 2017 ACM
International Conference on Interactive Surfaces and Spaces, 2017, pp. 100–105.

[18] H. Zhang, X.-q. Wang, Y.-j. Sun, and X.-y. Wang, “A novel method for lossless image
compression and encryption based on lwt, spiht and cellular automata,” Signal Process-
ing: Image Communication, vol. 84, p. 115829, 2020.

[19] A. J. Hussain, A. Al-Fayadh, and N. Radi, “Image compression techniques: A survey in
lossless and lossy algorithms,” Neurocomputing, vol. 300, pp. 44–69, 2018.

[20] T. Bruylants, A. Munteanu, and P. Schelkens, “Wavelet based volumetric medical image
compression,” Signal processing: Image communication, vol. 31, pp. 112–133, 2015.

[21] D. Venugopal, S. Mohan, and S. Raja, “An efficient block based lossless compression of
medical images,” Optik, vol. 127, no. 2, pp. 754–758, 2016.

[22] L. Yang, X. He, G. Zhang, L. Qing, and T. Che, “A low complexity block-based adaptive
lossless image compression,” Optik, vol. 124, no. 24, pp. 6545–6552, 2013.

[23] R. Sumalatha and M. Subramanyam, “Hierarchical lossless image compression for
telemedicine applications,” Procedia Computer Science, vol. 54, pp. 838–848, 2015.

[24] A. Masmoudi, W. Puech, and A. Masmoudi, “An improved lossless image compression
based arithmetic coding using mixture of non-parametric distributions,” Multimedia Tools
and Applications, vol. 74, no. 23, pp. 10 605–10 619, 2015.

[25] A. Abdollahi, N. Bruce, S. Kamali, and R. Karim, “Lossless image compression using list
update algorithms,” in International Symposium on String Processing and Information
Retrieval. Springer, 2019, pp. 16–34.

[26] A. Khan, A. Khan, M. Khan, and M. Uzair, “Lossless image compression: application of
bi-level burrows wheeler compression algorithm (bbwca) to 2-d data,” Multimedia Tools
and Applications, vol. 76, no. 10, pp. 12 391–12 416, 2017.

[27] M. Rahman, M. Hamada et al., “Lossless image compression techniques: A state-of-the-
art survey,” Symmetry, vol. 11, no. 10, p. 1274, 2019.

[28] M. A. Rahman and M. Hamada, “PCBMS: A model to selectan optimal lossless image
compression technique,” IEEE Access, DOI:10.1109/AC-CESS.2021.3137345, 2021.

[29] M. Rahman, M. Hamada, J. Shin et al., “The impact of state-of-the-art techniques for
lossless still image compression,” Electronics, vol. 10, no. 3, p. 360, 2021.

[30] M. Rahman, M. Hamada et al., “Burrows–wheeler transform based lossless text com-
pression using keys and huffman coding,” Symmetry, vol. 12, no. 10, p. 1654, 2020.

121

REFERENCES

[31] M. A. Rahman and M. Hamada, “Lossless text compression using gpt-2 language model
and huffman coding,” in In Proceedings of The 2021 3rd ETLTC - ACM Chapter Inter-
national Conference on Information and Communications Technology. ACM, 2021.

[32] R. C. Gonzalez, S. L. Eddins, and R. E. Woods, Digital image publishing using MATLAB.
Prentice Hall, 2004.

[33] E. R. Dougherty, Digital image processing methods. CRC Press, 2020.

[34] M. Kitamura, D. Shirai, K. Kaneko, T. Murooka, T. Sawabe, T. Fujii, and A. Takahara,
“Beyond 4k: 8k 60p live video streaming to multiple sites,” Future Generation Computer
Systems, vol. 27, no. 7, pp. 952–959, 2011.

[35] T. Yamashita and K. Mitani, “8k extremely-high-resolution camera systems,” Proceed-
ings of the IEEE, vol. 101, no. 1, pp. 74–88, 2012.

[36] U. TODAY, “Usatoday.com,” https://www.usatoday.com/story/tech/columnist/komando/
2012/11/30/komando-computer-storage/1726835/, 2020, [Accessed 14 September
2020].

[37] Statista, “Seagate Average HDD Capacity Worldwide 2015-2020,” https://www.statista.
com/statistics/795748/worldwide-seagate-average-hard-disk-drive-capacity/, 2020, [Ac-
cessed 14 September 2020].

[38] D. Cunningham, B. Lane, and W. Lane, Gigabit ethernet networking. Macmillan Pub-
lishing Co., Inc., 1999.

[39] V. Ramasubramanian, D. Malkhi, F. Kuhn, M. Balakrishnan, A. Gupta, and A. Akella,
“On the treeness of internet latency and bandwidth,” in Proceedings of the eleventh inter-
national joint conference on Measurement and modeling of computer systems, 2009, pp.
61–72.

[40] M. Rabbani and P. W. Jones, Digital image compression techniques. SPIE press, 1991,
vol. 7.

[41] M. Nelson and J.-L. Gailly, “The data compression book 2nd edition,” M & T Books, New
York, NY, 1995.

[42] G. Padmaja and P. Nirupama, “Analysis of various image compression techniques,”
ARPN Journal of Science and Technology, vol. 2, no. 4, pp. 371–376, 2012.

[43] M. Barni, Document and Image compression. CRC press, 2018.

[44] S. Dhawan, “A review of image compression and comparison of its algorithms,” Inter-
national Journal of electronics & Communication technology, vol. 2, no. 1, pp. 22–26,
2011.

[45] J. A. Storer, Image and text compression. Springer Science & Business Media, 2012,
vol. 176.

[46] S. E. Umbaugh, Computer imaging: digital image analysis and processing. CRC press,
2005.

[47] K. Sayood, Introduction to data compression. Morgan Kaufmann, 2017.

[48] X. Lu, H. Wang, W. Dong, F. Wu, Z. Zheng, and G. Shi, “Learning a deep vector quanti-
zation network for image compression,” IEEE Access, vol. 7, pp. 118 815–118 825, 2019.

122

REFERENCES

[49] Y. Zhang, H. Cao, H. Jiang, and B. Li, “Visual distortion sensitivity modeling for spa-
tially adaptive quantization in remote sensing image compression,” IEEE Geoscience and
Remote Sensing Letters, vol. 11, no. 4, pp. 723–727, 2013.

[50] C. Cai, L. Chen, X. Zhang, and Z. Gao, “End-to-end optimized roi image compression,”
IEEE Transactions on Image Processing, vol. 29, pp. 3442–3457, 2019.

[51] S. Liu, W. Bai, N. Zeng, and S. Wang, “A fast fractal based compression for mri images,”
IEEE Access, vol. 7, pp. 62 412–62 420, 2019.

[52] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE signal processing
letters, vol. 9, no. 3, pp. 81–84, 2002.

[53] D.-s. Huang, “Radial basis probabilistic neural networks: Model and application,” Inter-
national Journal of Pattern Recognition and Artificial Intelligence, vol. 13, no. 07, pp.
1083–1101, 1999.

[54] T. Ishigaki, S. Sakuma, M. Ikeda, Y. Itoh, M. Suzuki, and S. Iwai, “Clinical evaluation of
irreversible image compression: analysis of chest imaging with computed radiography.”
Radiology, vol. 175, no. 3, pp. 739–743, 1990.

[55] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory,
vol. 28, no. 2, pp. 129–137, 1982.

[56] Z. Zhang, G. Dai, X. Liang, S. Yu, L. Li, and Y. Xie, “Can signal-to-noise ratio perform
as a baseline indicator for medical image quality assessment,” IEEE Access, vol. 6, pp.
11 534–11 543, 2018.

[57] D. M. Chandler and S. S. Hemami, “Vsnr: A wavelet-based visual signal-to-noise ratio
for natural images,” IEEE transactions on image processing, vol. 16, no. 9, pp. 2284–
2298, 2007.

[58] V. Kuperman, Magnetic resonance imaging: physical principles and applications. El-
sevier, 2000.

[59] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison of
the coding efficiency of video coding standards—including high efficiency video coding
(hevc),” IEEE Transactions on circuits and systems for video technology, vol. 22, no. 12,
pp. 1669–1684, 2012.

[60] R. Seymour, D. Stewart, and J. Ming, “Comparison of image transform-based features
for visual speech recognition in clean and corrupted videos,” EURASIP Journal on Image
and Video Processing, vol. 2008, pp. 1–9, 2007.

[61] V. K. Bairagi, A. M. Sapkal, and M. Gaikwad, “The role of transforms in image com-
pression,” Journal of The Institution of Engineers (India): Series B, vol. 94, no. 2, pp.
135–140, 2013.

[62] N. Astaf’eva, “Wavelet analysis: basic theory and some applications,” Physics-Uspekhi,
vol. 39, no. 11, p. 1085, 1996.

[63] D. Popov, A. Gapochkin, and A. Nekrasov, “An algorithm of daubechies wavelet trans-
form in the final field when processing speech signals,” Electronics, vol. 7, no. 7, p. 120,
2018.

[64] M. Burrows and D. Wheeler, “A block-sorting lossless data compression algorithm,” in
Digital SRC Research Report. Citeseer, 1994.

123

REFERENCES

[65] H. M. Rahman, Md Atiqur and R. M. Asfaqur, “Text compression based on an alternative
approachof run-length coding using burrows-wheelertransform and arithmetic coding,” in
2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-
on-Chip (MCSoC). IEEE, 2021.

[66] En.wikipedia.org, “Burrows–Wheeler Transform,” https://en.wikipedia.org/wiki/
Burrows_Wheeler_transform/, 2020, [Accessed 27 May 2020].

[67] S.-D. Kim, J.-H. Lee, and J.-K. Kim, “A new chain-coding algorithm for binary im-
ages using run-length codes,” Computer vision, Graphics, and Image processing, vol. 41,
no. 1, pp. 114–128, 1988.

[68] B. Žalik, D. Mongus, and N. Lukač, “A universal chain code compression method,” Jour-
nal of Visual Communication and Image Representation, vol. 29, pp. 8–15, 2015.

[69] M. A. Rahman and M. Hamada, “A semi-lossless image compression procedure using
a lossless mode of jpeg,” in 2019 IEEE 13th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC). IEEE, 2019, pp. 143–148.

[70] C. E. Shannon, “A mathematical theory of communication,” The Bell system technical
journal, vol. 27, no. 3, pp. 379–423, 1948.

[71] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Reso-
nance, vol. 11, no. 2, pp. 91–99, 2006.

[72] T. Xue, Y. Zhang, Y. Shen, Z. Zhang, X. You, and C. Zhang, “Adaptive spatial modulation
combining bch coding and huffman coding,” in 2018 IEEE 23rd International Conference
on Digital Signal Processing (DSP). IEEE, 2018, pp. 1–5.

[73] Z. Yan-li, F. Xiao-ping, L. Shao-qiang, and X. Zhe-yuan, “Improved lzw algorithm of
lossless data compression for wsn,” in 2010 3rd International Conference on Computer
Science and Information Technology, vol. 4. IEEE, 2010, pp. 523–527.

[74] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE
Transactions on information theory, vol. 23, no. 3, pp. 337–343, 1977.

[75] G. G. Langdon, “An introduction to arithmetic coding,” IBM Journal of Research and
Development, vol. 28, no. 2, pp. 135–149, 1984.

[76] L. Sasilal and V. Govindan, “Arithmetic coding-a reliable implementation,” International
Journal of Computer Applications, vol. 73, no. 7, 2013.

[77] J.-J. Ding and I.-H. Wang, “Improved frequency table adjusting algorithms for context-
based adaptive lossless image coding,” in 2016 IEEE International Conference on Con-
sumer Electronics-Taiwan (ICCE-TW). IEEE, 2016, pp. 1–2.

[78] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,”
Communications of the ACM, vol. 30, no. 6, pp. 520–540, 1987.

[79] D. Salomon, Data compression: the complete reference. Springer Science & Business
Media, 2004.

[80] D. A. Clunie, “Lossless compression of grayscale medical images: effectiveness of tra-
ditional and state-of-the-art approaches,” in Medical Imaging 2000: PACS Design and
Evaluation: Engineering and Clinical Issues, vol. 3980. International Society for Op-
tics and Photonics, 2000, pp. 74–84.

124

REFERENCES

[81] J. Kim and C.-M. Kyung, “A lossless embedded compression using significant bit trun-
cation for hd video coding,” IEEE Transactions on Circuits and Systems for video tech-
nology, vol. 20, no. 6, pp. 848–860, 2010.

[82] M. Sharma et al., “Compression using huffman coding,” IJCSNS International Journal
of Computer Science and Network Security, vol. 10, no. 5, pp. 133–141, 2010.

[83] M. Kato, “Motion video coding with adaptive precision for dc component coefficient
quantization and variable length coding,” Sep. 24 1996, uS Patent 5,559,557.

[84] C. Lamorahan, B. Pinontoan, and N. Nainggolan, “Data compression using shannon-fano
algorithm,” d’CARTESIAN, vol. 2, no. 2, pp. 10–17, 2013.

[85] W. B. Pennebaker and J. L. Mitchell, JPEG: Still image data compression standard.
Springer Science & Business Media, 1992.

[86] N. S. Jayant and P. Noll, “Digital coding of waveforms: principles and applications to
speech and video,” Englewood Cliffs, NJ, pp. 115–251, 1984.

[87] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The loco-i lossless image compression
algorithm: Principles and standardization into jpeg-ls,” IEEE Transactions on Image pro-
cessing, vol. 9, no. 8, pp. 1309–1324, 2000.

[88] I. Ueno and F. Ono, “Proposed modification of loco-i for its improvement of the perfor-
mance." iso,” IEC JTC1/SC29/WG1 document, Tech. Rep.

[89] M. Weinberger, G. Seroussi, and G. Sapiro, “Fine-tuning the baseline." iso,” IEC
JTC1/SC29/WG1 document, Tech. Rep.

[90] M. J. Weinberger, G. Seroussi, and G. Sapiro, “Palettes and sample mapping in jpeg-ls."
iso,” IEC JTC1/SC29/WG1 document, Tech. Rep.

[91] M. Weinberger, G. Seroussi, G. Sapiro, and E. Ordentlich, “Jpeg-ls with limited-length
code words." iso,” IEC JTC1/SC29/WG1 document, Tech. Rep.

[92] J. J. Rissanen, “Generalized kraft inequality and arithmetic coding,” IBM Journal of re-
search and development, vol. 20, no. 3, pp. 198–203, 1976.

[93] J. Rissanen and G. Langdon, “Universal modeling and coding,” IEEE Transactions on
Information Theory, vol. 27, no. 1, pp. 12–23, 1981.

[94] N. Merhav, G. Seroussi, and M. J. Weinberger, Lossless compression for sources with
two-sided geometric distributions. Citeseer, 1998.

[95] M. J. Weinberger, G. Seroussi, and G. Sapiro, “From logo-i to the jpeg-ls standard,”
in Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348),
vol. 4. IEEE, 1999, pp. 68–72.

[96] N. D. Memon, X. Wu, V. Sippy, and G. Miller, “Interband coding extension of the new
lossless jpeg standard,” in Visual Communications and Image Processing’97, vol. 3024.
International Society for Optics and Photonics, 1997, pp. 47–58.

[97] G. Roelofs, PNG: the definitive guide. O’Reilly Media, 1999.

[98] C. Wilbur, “Png: The definitive guide,” Journal of Computing in Higher Education,
vol. 12, no. 2, pp. 94–97, 2001.

125

REFERENCES

[99] Libpng.org, “PNG specification: Filter Algorithms,” http://www.libpng.org/pub/png/
spec/1.2/PNG-Filters.html, 2020, [Accessed 5 October 2020].

[100] A. W. Paeth, “Image file compression made easy,” in Graphics Gems II. Elsevier, 1991,
pp. 93–100.

[101] X. Wu, “An algorithmic study on lossless image compression,” in Proceedings of Data
Compression Conference-DCC’96. IEEE, 1996, pp. 150–159.

[102] X. Wu and N. Memon, “Calic-a context based adaptive lossless image codec,” in 1996
IEEE International Conference on Acoustics, Speech, and Signal Processing Conference
Proceedings, vol. 4. IEEE, 1996, pp. 1890–1893.

[103] Web.archive.org, “Diary Of An x264 Developer » H.264 and VP8 for still image cod-
ing: WebP,” https://web.archive.org/web/20150319214453/http://x264dev.multimedia.
cx/archives/541, 2021, [Accessed 30 March 2021].

[104] M. Pintus, G. Ginesu, L. Atzori, and D. D. Giusto, “Objective evaluation of webp image
compression efficiency,” in International Conference on Mobile Multimedia Communi-
cations. Springer, 2011, pp. 252–265.

[105] Z. Si and K. Shen, “Research on the webp image format,” in Advanced Graphic Commu-
nications, Packaging Technology and Materials. Springer, 2016, pp. 271–277.

[106] H. Singh, Practical Machine Learning and Image Processing. Springer, 2019.

[107] G. Ginesu, M. Pintus, and D. D. Giusto, “Objective assessment of the webp image coding
algorithm,” Signal Processing: Image Communication, vol. 27, no. 8, pp. 867–874, 2012.

[108] G. Developers, “Compression Techniques | Webp | Google Developers,” https:
//developers.google.com/speed/webp/docs/compression, 2021, [Accessed 19 January
2021].

[109] J. Sneyers and P. Wuille, “Flif: Free lossless image format based on maniac compression,”
in 2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016, pp.
66–70.

[110] N. Soferman, “Flif, the new lossless image format that outperforms png, webp and bpg,”
2021.

[111] Flif.info, “FLIF - Free Lossless Image Format,” https://flif.info/, 2021, [Accessed 2 Jan-
uary 2021].

[112] ——, “FLIF - Example,” https://flif.info/example.html, 2021, [Accessed 2 January 2021].

[113] ——, “FLIF - Software,” https://flif.info/software.html, 2021, [Accessed 2 January
2021].

[114] M. Boliek, “Jpeg2000 part i final draft international standard,” (ISO/IEC FDIS15444-1),
ISO/IEC JTC1/SC29/WG1 N1855, 2000.

[115] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The jpeg2000 still image coding system:
an overview,” IEEE transactions on consumer electronics, vol. 46, no. 4, pp. 1103–1127,
2000.

[116] P. Schelkens, A. Skodras, and T. Ebrahimi, The JPEG 2000 suite. John Wiley & Sons,
2009, vol. 15.

126

REFERENCES

[117] D. Santa-Cruz, T. Ebrahimi, J. Askelof, M. Larsson, and C. A. Christopoulos, “Jpeg 2000
still image coding versus other standards,” in Applications of digital image processing
XXIII, vol. 4115. International Society for Optics and Photonics, 2000, pp. 446–454.

[118] H. R. Sheikh, A. C. Bovik, and L. Cormack, “No-reference quality assessment using
natural scene statistics: Jpeg2000,” IEEE Transactions on image processing, vol. 14,
no. 11, pp. 1918–1927, 2005.

[119] Z. P. Sazzad, Y. Kawayoke, and Y. Horita, “No reference image quality assessment for
jpeg2000 based on spatial features,” Signal Processing: Image Communication, vol. 23,
no. 4, pp. 257–268, 2008.

[120] C. S. Swartz, Understanding digital cinema: a professional handbook. Taylor & Francis,
2005.

[121] M. Rabbani, “Jpeg2000: Image compression fundamentals, standards and practice,”
Journal of Electronic Imaging, vol. 11, no. 2, p. 286, 2002.

[122] T. Kim, H. M. Kim, P.-S. Tsai, and T. Acharya, “Memory efficient progressive rate-
distortion algorithm for jpeg 2000,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 15, no. 1, pp. 181–187, 2005.

[123] Z. Liu, L. J. Karam, and A. B. Watson, “Jpeg2000 encoding with perceptual distortion
control,” IEEE transactions on image processing, vol. 15, no. 7, pp. 1763–1778, 2006.

[124] J. Zhang and T. M. Le, “A new no-reference quality metric for jpeg2000 images,” IEEE
Transactions on Consumer Electronics, vol. 56, no. 2, pp. 743–750, 2010.

[125] A. C. Bovik, The essential guide to video processing. Academic Press, 2009.

[126] M. Unser and T. Blu, “Mathematical properties of the jpeg2000 wavelet filters,” IEEE
transactions on image processing, vol. 12, no. 9, pp. 1080–1090, 2003.

[127] B. Crow, “Bill Crow’s Digital imaging & photography blog,” https://docs.microsoft.com/
en-us/archive/blogs/billcrow/, 2020, [Accessed 8 October 2020].

[128] F. Dufaux, G. J. Sullivan, and T. Ebrahimi, “The jpeg xr image coding standard [standards
in a nutshell],” IEEE Signal Processing Magazine, vol. 26, no. 6, pp. 195–204, 2009.

[129] F. De Simone, L. Goldmann, V. Baroncini, and T. Ebrahimi, “Subjective evaluation of
jpeg xr image compression,” in Applications of Digital Image Processing XXXII, vol.
7443. International Society for Optics and Photonics, 2009, p. 74430L.

[130] C. Tu, S. Srinivasan, G. J. Sullivan, S. Regunathan, and H. S. Malvar, “Low-complexity
hierarchical lapped transform for lossy-to-lossless image coding in jpeg xr/hd photo,” in
Applications of Digital Image Processing XXXI, vol. 7073. International Society for
Optics and Photonics, 2008, p. 70730C.

[131] T. D. Tran, J. Liang, and C. Tu, “Lapped transform via time-domain pre-and post-
filtering,” IEEE Transactions on Signal Processing, vol. 51, no. 6, pp. 1557–1571, 2003.

[132] S. Zimmerman, “A Look At AV1 And The Future Of Video Codecs: Google’s Answer To
HEVC,” https://www.xda-developers.com/av1-future-video-codecs-google-hevc/, 2021,
[Accessed 2 January 2021].

[133] J. Ozer, “What Is VP9?. [online] Streaming Media Magazine,” https://www.
streamingmedia.com/Articles/Editorial/-111334.aspx, 2021, [Accessed 2 January 2021].

127

REFERENCES

[134] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the h. 264/avc
video coding standard,” IEEE Transactions on circuits and systems for video technology,
vol. 13, no. 7, pp. 560–576, 2003.

[135] Y. Chen, D. Mukherjee, J. Han, A. Grange, Y. Xu, S. Parker, C. Chen, H. Su, U. Joshi,
C.-H. Chiang et al., “An overview of coding tools in av1: the first video codec from the
alliance for open media,” APSIPA Transactions on Signal and Information Processing,
vol. 9, 2020.

[136] Y. Chen, D. Murherjee, J. Han, A. Grange, Y. Xu, Z. Liu, S. Parker, C. Chen, H. Su,
U. Joshi et al., “An overview of core coding tools in the av1 video codec,” in 2018 Picture
Coding Symposium (PCS). IEEE, 2018, pp. 41–45.

[137] LambdaTest, “AVIF Image Format - The Next-Gen Compression Codec,” https://www.
lambdatest.com/blog/avif-image-format/, 2021, [Accessed 2 January 2021].

[138] En.wikipedia.org, “AV1,” https://en.wikipedia.org/wiki/AV1, 2021, [Accessed 19 Jan-
uary 2021].

[139] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate coding,”
IEEE transactions on Information Theory, vol. 24, no. 5, pp. 530–536, 1978.

[140] A. C. Bovik, Handbook of image and video processing. Academic press, 2010.

[141] D. Salomon and G. Motta, Handbook of data compression. Springer Science & Business
Media, 2010.

[142] J. Ding, J. C. Furgeson, and E.-M. Sha, “Application specific image compression for vir-
tual conferencing,” in Proceedings International Conference on Information Technology:
Coding and Computing (Cat. No. PR00540). IEEE, 2000, pp. 48–53.

[143] S. Bhavani and K. Thanushkodi, “A survey on coding algorithms in medical image com-
pression,” International Journal on Computer Science and Engineering, vol. 2, no. 5, pp.
1429–1434, 2010.

[144] G. K. Kharate and V. H. Patil, “Color image compression based on wavelet packet best
tree,” arXiv preprint arXiv:1004.3276, 2010.

[145] M. Haque and F. Ahmed, “Image data compression with jpeg and jpeg2000,” 8th Inter-
national Confrrence on Computer and Information Technology, pp. 1064–1069, 2005.

[146] M. A. Joshi, Digital image processing: An algorithmic approach. PHI Learning Pvt.
Ltd., 2018.

[147] S. Golomb, “Run-length encodings (corresp.),” IEEE transactions on information theory,
vol. 12, no. 3, pp. 399–401, 1966.

[148] W. Burger and M. J. Burge, Digital image processing: an algorithmic introduction using
Java. Springer, 2016.

[149] S. Benndorf, “Method for the compression of data using a run-length coding,” Feb. 12
2013, uS Patent 8,374,445.

[150] S. Shanmugasundaram and R. Lourdusamy, “A comparative study of text compression
algorithms,” International Journal of Wisdom Based Computing, vol. 1, no. 3, pp. 68–76,
2011.

128

REFERENCES

[151] S. Kodituwakku and U. Amarasinghe, “Comparison of lossless data compression algo-
rithms for text data,” Indian journal of computer science and engineering, vol. 1, no. 4,
pp. 416–425, 2010.

[152] M. A. Rahman, S. M. S. Islam, J. Shin, and M. R. Islam, “Histogram alternation based
digital image compression using base-2 coding,” in 2018 Digital Image Computing:
Techniques and Applications (DICTA). IEEE, 2018, pp. 1–8.

[153] J. H. Pujar and L. M. Kadlaskar, “A new lossless method of image compression and
decompression using huffman coding techniques.” Journal of Theoretical & Applied In-
formation Technology, vol. 15, 2010.

[154] M. K. Mathur, S. Loonker, and D. Saxena, “Lossless huffman coding technique for image
compression and reconstruction using binary trees,” International Journal of Computer
Technology and Applications, vol. 3, no. 1, 2012.

[155] G. Vijayvargiya, S. Silakari, and R. Pandey, “A survey: various techniques of image
compression,” arXiv preprint arXiv:1311.6877, 2013.

[156] M. A. Rahman, J. Shin, A. K. Saha, and M. R. Islam, “A novel lossless coding technique
for image compression,” in 2018 Joint 7th International Conference on Informatics, Elec-
tronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision &
Pattern Recognition (icIVPR). IEEE, 2018, pp. 82–86.

[157] A. M. Rufai, G. Anbarjafari, and H. Demirel, “Lossy medical image compression using
huffman coding and singular value decomposition,” in 2013 21st Signal Processing and
Communications Applications Conference (SIU). IEEE, 2013, pp. 1–4.

[158] R. P. Jasmi, B. Perumal, and M. P. Rajasekaran, “Comparison of image compression
techniques using huffman coding, dwt and fractal algorithm,” in 2015 International Con-
ference on Computer Communication and Informatics (ICCCI). IEEE, 2015, pp. 1–5.

[159] A. Masmoudi and A. Masmoudi, “A new arithmetic coding model for a block-based
lossless image compression based on exploiting inter-block correlation,” Signal, Image
and Video Processing, vol. 9, no. 5, pp. 1021–1027, 2015.

[160] X. Li and M. T. Orchard, “Edge-directed prediction for lossless compression of natural
images,” IEEE Transactions on image processing, vol. 10, no. 6, pp. 813–817, 2001.

[161] H. Yokoo, “Improved variations relating the ziv-lempel and welch-type algorithms for
sequential data compression,” IEEE transactions on information theory, vol. 38, no. 1,
pp. 73–81, 1992.

[162] C. Saravanan and M. Surender, “Enhancing efficiency of huffman coding using lempel ziv
coding for image compression,” International journal of soft computing and Engineering,
vol. 2, no. 6, pp. 38–41, 2013.

[163] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Pro-
ceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[164] Osirix-viewer.com, “DICOM Image Library,” https://www.osirix-viewer.com/resources/
dicom-image-library/, 2019, [Accessed 19 January 2020].

[165] I. Schiopu and A. Munteanu, “Deep-learning-based lossless image coding,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 30, no. 7, pp. 1829–1842,
2019.

129

REFERENCES

[166] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency
video coding (hevc) standard,” IEEE Transactions on circuits and systems for video tech-
nology, vol. 22, no. 12, pp. 1649–1668, 2012.

[167] X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE transac-
tions on Communications, vol. 45, no. 4, pp. 437–444, 1997.

[168] I. Schiopu and A. Munteanu, “Macro-pixel prediction based on convolutional neural net-
works for lossless compression of light field images,” in 2018 25th IEEE International
Conference on Image Processing (ICIP). IEEE, 2018, pp. 445–449.

[169] ——, “Residual-error prediction based on deep learning for lossless image compression,”
Electronics Letters, vol. 54, no. 17, pp. 1032–1034, 2018.

[170] H. Rhee, Y. I. Jang, S. Kim, and N. I. Cho, “Lossless image compression by joint predic-
tion of pixel and context using duplex neural networks,” IEEE Access, 2021.

[171] F. Bellard, “Bpg image format,” URL https://bellard. org/bpg, vol. 1, p. 2, 2015.

[172] T. Boutell and T. Lane, “Png (portable network graphics) specification version 1.0,” Net-
work Working Group, pp. 1–102, 1997.

[173] S. Kim and N. I. Cho, “Hierarchical prediction and context adaptive coding for lossless
color image compression,” IEEE Transactions on image processing, vol. 23, no. 1, pp.
445–449, 2013.

[174] W. B. P. Version, “1.0 hardware reference guide, xp-002202892, network engines,” Inc.,
Jun, vol. 1, p. 92, 2000.

[175] J. Alakuijala, R. van Asseldonk, S. Boukortt, M. Bruse, I.-M. Coms, a, M. Firsching,
T. Fischbacher, E. Kliuchnikov, S. Gomez, R. Obryk et al., “Jpeg xl next-generation im-
age compression architecture and coding tools,” in Applications of Digital Image Process-
ing XLII, vol. 11137. International Society for Optics and Photonics, 2019, p. 111370K.

[176] H. Rhee, Y. I. Jang, S. Kim, and N. I. Cho, “Channel-wise progressive learning for loss-
less image compression,” in 2020 IEEE International Conference on Image Processing
(ICIP). IEEE, 2020, pp. 1113–1117.

[177] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and
K. Kavukcuoglu, “Conditional image generation with pixelcnn decoders,” arXiv preprint
arXiv:1606.05328, 2016.

[178] S. Reed, A. Oord, N. Kalchbrenner, S. G. Colmenarejo, Z. Wang, Y. Chen, D. Belov,
and N. Freitas, “Parallel multiscale autoregressive density estimation,” in International
Conference on Machine Learning. PMLR, 2017, pp. 2912–2921.

[179] E. Hoogeboom, J. W. Peters, R. v. d. Berg, and M. Welling, “Integer discrete flows and
lossless compression,” arXiv preprint arXiv:1905.07376, 2019.

[180] H. Ma, D. Liu, N. Yan, H. Li, and F. Wu, “End-to-end optimized versatile image compres-
sion with wavelet-like transform,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020.

[181] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++: Improving the pixel-
cnn with discretized logistic mixture likelihood and other modifications,” arXiv preprint
arXiv:1701.05517, 2017.

130

REFERENCES

[182] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised
learning using nonequilibrium thermodynamics,” in International Conference on Ma-
chine Learning. PMLR, 2015, pp. 2256–2265.

[183] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent components estima-
tion,” arXiv preprint arXiv:1410.8516, 2014.

[184] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, “Draw: A recurrent
neural network for image generation,” in International Conference on Machine Learning.
PMLR, 2015, pp. 1462–1471.

[185] A. van den Oord and J. Dambre, “Locally-connected transformations for deep gmms,” in
International Conference on Machine Learning (ICML): Deep learning Workshop, 2015,
pp. 1–8.

[186] K. Gregor, F. Besse, D. Jimenez Rezende, I. Danihelka, and D. Wierstra, “Towards con-
ceptual compression,” Advances In Neural Information Processing Systems, vol. 29, pp.
3549–3557, 2016.

[187] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real nvp,” arXiv
preprint arXiv:1605.08803, 2016.

[188] N. Kalchbrenner, A. Oord, K. Simonyan, I. Danihelka, O. Vinyals, A. Graves, and
K. Kavukcuoglu, “Video pixel networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1771–1779.

[189] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling, “Im-
proved variational inference with inverse autoregressive flow,” Advances in neural infor-
mation processing systems, vol. 29, pp. 4743–4751, 2016.

[190] A. Van Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural networks,”
in International Conference on Machine Learning. PMLR, 2016, pp. 1747–1756.

[191] I. Schiopu, H. Huang, and A. Munteanu, “Cnn-based intra-prediction for lossless hevc,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 7, pp.
1816–1828, 2019.

[192] F. Mentzer, L. V. Gool, and M. Tschannen, “Learning better lossless compression using
lossy compression,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 6638–6647.

[193] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova, H. Rom,
J. Uijlings, S. Popov, A. Veit et al., “Openimages: A public dataset for large-scale
multi-label and multi-class image classification,” Dataset available from https://github.
com/openimages, vol. 2, no. 3, p. 18, 2017.

[194] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution:
Dataset and study,” in Proceedings of the IEEE conference on computer vision and pat-
tern recognition workshops, 2017, pp. 126–135.

[195] J. Li, J. Wu, and G. Jeon, “Gpu acceleration of clustered dpcm for lossless compression
of hyperspectral images,” IEEE Transactions on Industrial Informatics, vol. 16, no. 5, pp.
2906–2916, 2019.

[196] M. Li, K. Ma, J. You, D. Zhang, and W. Zuo, “Efficient and effective context-based
convolutional entropy modeling for image compression,” IEEE Transactions on Image
Processing, vol. 29, pp. 5900–5911, 2020.

131

REFERENCES

[197] T. Suzuki, “Wavelet-based spectral–spatial transforms for cfa-sampled raw camera image
compression,” IEEE Transactions on Image Processing, vol. 29, pp. 433–444, 2019.

[198] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled variant of imagenet as an
alternative to the cifar datasets,” arXiv preprint arXiv:1707.08819, 2017.

[199] Oomo.com, “Becoming a data-driven CEO | Domo,” https://www.domo.com/solution/
data-never-sleeps-6, 2020, [Accessed 19 January 2020].

[200] W. Pan, Z. Li, Y. Zhang, and C. Weng, “The new hardware development trend and the
challenges in data management and analysis,” Data Science and Engineering, vol. 3,
no. 3, pp. 263–276, 2018.

[201] I. Blanes, E. Magli, and J. Serra-Sagrista, “A tutorial on image compression for optical
space imaging systems,” IEEE Geoscience and Remote Sensing Magazine, vol. 2, no. 3,
pp. 8–26, 2014.

[202] F. Liu, M. Hernandez-Cabronero, V. Sanchez, M. W. Marcellin, and A. Bilgin, “The
current role of image compression standards in medical imaging,” Information, vol. 8,
no. 4, p. 131, 2017.

[203] E. Syahrul, “Lossless and nearly-lossless image compression based on combinatorial
transforms,” Ph.D. dissertation, Université de Bourgogne, 2011.

[204] Y. Deigant, V. Akshat, H. Raunak, P. Pranjal, and J. Avi, “A proposed method for loss-
less image compression in nano-satellite systems,” in 2017 IEEE Aerospace Conference.
IEEE, 2017, pp. 1–11.

[205] S.-G. Miaou, F.-S. Ke, and S.-C. Chen, “A lossless compression method for medical
image sequences using jpeg-ls and interframe coding,” IEEE transactions on information
technology in biomedicine, vol. 13, no. 5, pp. 818–821, 2009.

[206] J. Taquet and C. Labit, “Hierarchical oriented predictions for resolution scalable lossless
and near-lossless compression of ct and mri biomedical images,” IEEE Transactions on
image processing, vol. 21, no. 5, pp. 2641–2652, 2012.

[207] S. S. Parikh, D. Ruiz, H. Kalva, G. Fernández-Escribano, and V. Adzic, “High bit-depth
medical image compression with hevc,” IEEE journal of biomedical and health informat-
ics, vol. 22, no. 2, pp. 552–560, 2017.

[208] J. Lee, J. Yun, J. Lee, I. Hwang, D. Hong, Y. Kim, C. G. Kim, and W.-C. Park, “An
effective algorithm and architecture for the high-throughput lossless compression of high-
resolution images,” IEEE Access, vol. 7, pp. 138 803–138 815, 2019.

[209] J. ITU-T, “Xr image coding system–image coding specification,” ITU-T Recommenda-
tion, vol. 832, 2009.

[210] J. Shukla, M. Alwani, and A. K. Tiwari, “A survey on lossless image compression meth-
ods,” in 2010 2nd International Conference on Computer Engineering and Technology,
vol. 6. IEEE, 2010, pp. V6–136.

[211] C. Zhang and T. Chen, “A survey on image-based rendering—representation, sampling
and compression,” Signal Processing: Image Communication, vol. 19, no. 1, pp. 1–28,
2004.

[212] O. U. G. Programs, “How Much Data Is Produced Every Day?” https://www.
northeastern.edu/graduate/blog/how-much-data-produced-every-day/, 2020, [Accessed
on 17 September 2020].

132

REFERENCES

[213] B. Walker, “Every day big data statistics—2.5 quintillion bytes
of data created daily.VCloudNews ,” http://www.vcloudnews.com/
every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily, 2015, [Ac-
cessed on 17 September 2020].

[214] Blog.microfocus.com, “How Much Data Is Created on The Inter-
net Each Day? Micro Focus Blog,” https://blog.microfocus.com/
how-much-data-is-created-on-the-internet-each-day/, 2020, [Accessed on 18 May
2020].

[215] H. Larkin, “Word indexing for mobile device data representations,” in 7th IEEE Interna-
tional Conference on Computer and Information Technology (CIT 2007). IEEE, 2007,
pp. 399–404.

[216] I. M. Pu, Fundamental data compression. Butterworth-Heinemann, 2005.

[217] S. Porwal, Y. Chaudhary, J. Joshi, M. Jain et al., “Data compression methodologies for
lossless data and comparison between algorithms,” International Journal of Engineering
Science and Innovative Technology (IJESIT) Volume, vol. 2, pp. 142–147, 2013.

[218] M. Saračević, S. Adamović, and E. Biševac, “Application of catalan numbers and the lat-
tice path combinatorial problem in cryptography,” Acta Polytechnica Hungarica, vol. 15,
no. 7, pp. 91–110, 2018.

[219] M. Saračević, S. Adamović, V. Miškovic, N. Maček, and M. Šarac, “A novel approach
to steganography based on the properties of catalan numbers and dyck words,” Future
Generation Computer Systems, vol. 100, pp. 186–197, 2019.

[220] M. Pandey, S. Shrivastava, S. Pandey, and S. Shridevi, “An enhanced data compression
algorithm,” in 2020 International Conference on Emerging Trends in Information Tech-
nology and Engineering (ic-ETITE). IEEE, 2020, pp. 1–4.

[221] C. Oswald and B. Sivaselvan, “An optimal text compression algorithm based on frequent
pattern mining,” Journal of Ambient Intelligence and Humanized Computing, vol. 9,
no. 3, pp. 803–822, 2018.

[222] J. Portell, R. Iudica, E. García-Berro, A. Villafranca, and G. Artigues, “Fapec, a versatile
and efficient data compressor for space missions,” International journal of remote sens-
ing, vol. 39, no. 7, pp. 2022–2042, 2018.

[223] R. Rahim, “Combination of the blowfish and lempel-ziv-welch algorithms for text com-
pression,” 2017.

[224] A. Gupta, A. Bansal, and V. Khanduja, “Modern lossless compression techniques: Re-
view, comparison and analysis,” in 2017 Second International Conference on Electrical,
Computer and Communication Technologies (ICECCT). IEEE, 2017, pp. 1–8.

[225] T. A. Welch, “Technique for high-performance data compression,” Computer, no. 52,
1984.

[226] D. Salomon, A concise introduction to data compression. Springer Science & Business
Media, 2007.

[227] M. Nelson and J. Gailly, The data compression book 2nd edition. M T Books, New
York, NY, 1995.

133

REFERENCES

[228] En.wikipedia.org, “HLZ77 And LZ78,” https://en.wikipedia.org/wiki/LZ77_and_LZ78,
2020, [Accessed on 27 May 2020].

[229] ——, “Burrows–Wheeler Transform,” https://en.wikipedia.org/wiki/Burrows_Wheeler_
transform, 2020, [Accessed on 27 May 2020].

[230] I. M. El-Henawy, E. R. Mohamed, N. A. Lashin et al., “A hybrid technique for data
compression,” International Journal of Digital Content Technology and its Applications,
vol. 9, no. 2, p. 11, 2015.

[231] H. Kaur and B. Jindal, “Lossless text data compression using modified huffman
coding-a review,” in Proceedings of the International Conference on Technologies for
Sustainability-Engineering, Information Technology, Management and the Environment.
Citeseer, 2015, pp. 1017–1025.

[232] V. T. Todorov, R. K. Kountchev, M. G. Milanova, R. A. Kountcheva, and C. W. Ford Jr,
“Method and apparatus for lossless run-length data encoding,” Apr. 29 2008, uS Patent
7,365,658.

[233] P. G. Howard and J. S. Vitter, “New methods for lossless image compression using arith-
metic coding,” Information processing & management, vol. 28, no. 6, pp. 765–779, 1992.

[234] F. S. Awan and A. Mukherjee, “Lipt: A lossless text transform to improve compression,”
in Proceedings International Conference on Information Technology: Coding and Com-
puting. IEEE, 2001, pp. 452–460.

[235] G. Manzini, “The burrows-wheeler transform: theory and practice,” in International Sym-
posium on Mathematical Foundations of Computer Science. Springer, 1999, pp. 34–47.

[236] D. Adjeroh, T. Bell, and A. Mukherjee, The Burrows-Wheeler Transform:: Data Com-
pression, Suffix Arrays, and Pattern Matching. Springer Science & Business Media,
2008.

[237] 7-zip.org, “7Z Format,” https://www.7-zip.org/7z.html, 2020, [Accessed on 25 August
2020].

[238] R. A. Patel, Y. Zhang, J. Mak, A. Davidson, and J. D. Owens, Parallel lossless data
compression on the GPU. IEEE, 2012.

[239] M. Mahoney, “Large Text Compression Benchmark,” http://mattmahoney.net/dc/text.
html, 2020, [Accessed on 7 September 2020].

[240] ——, “Data Compression Programs,” http://www.mattmahoney.net/dc/, 2020, [Accessed
on 7 September 2020].

[241] J. Alakuijala and Z. Szabadka, “Brotli compressed data format,” Internet Engineering
Task Force, 2016.

[242] Theregister.com, “Google’s New Squeeze: Brotli Compression Open-Sourced,” https://
www.theregister.com/2015/09/23/googles_brotli_compression_opensourced, 2020, [Ac-
cessed on 7 August 2020].

[243] J. Alakuijala, E. Kliuchnikov, Z. Szabadka, and L. Vandevenne, “Comparison of brotli,
deflate, zopfli, lzma, lzham and bzip2 compression algorithms,” Google Inc, 2015.

[244] D. Salomon, “Data compression,” in Handbook of massive data sets. Springer, 2002,
pp. 245–309.

134

REFERENCES

[245] Corpus.canterbury.ac.nz, “The Canterbury Corpus,” http://corpus.canterbury.ac.nz/,
2020, [Accessed on 30 May 2020].

[246] P. Gage, “A new algorithm for data compression,” C Users Journal, vol. 12, no. 2, pp.
23–38, 1994.

135

