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On the Design of Adaptive Digital Neuromorphic Systems
ABSTRACT

With the increasing demand for computing machines that are analogous to the bio-
logical brain, the field of neuro-inspired computing has advanced to the exploration of
neuromorphic architectures that best the limitations of the traditional computer systems.
Traditional computer systems are based on the von Neumann architecture whose limita-
tion have diminished further development in such systems. The biological brain, however,
shows a disparity in structure, computational power, and power consumption, when com-
pared to the traditional computer system. Therefore, a biologically inspired approach to
computing, can potentially address some of the limitations faced in traditional computing
systems.

Spiking neural network (SNN) has gradually gained awareness by reason of its ability
to process and communicate sparse binary signals (spikes) in a highly parallel and event
driven manner analogous to the biological brain. However, simulating large scale SNN in
software is slow, and does not fully harness the energy efficiency of SNN. As an alterna-
tive, scalable multicore spike-based neuromorphic architectures that can support massive
number of neurons and synapses, and leverage the spike sparsity available in SNN to de-
liver rapid parallel processing with low power are being proposed. Nevertheless, realizing
such a neuromorphic architecture requires building small-sized spiking neuro-cores with
low-power consumption, efficient neural coding scheme, and lightweight on-chip learn-
ing. In this dissertation, we propose an adaptive digital neuromorphic system (NASH)
which leverages several design approaches to realize low power and adaptivity in a scalable
architecture.

First, to ensure efficient and low power spike processing, the proposed NASH utilizes
light-weight spiking neuro processing cores that employ a parallel neuron update (PNU)
mechanism proposed in this dissertation to enable rapid parallel spike processing. Sec-
ondly, for efficient learning, a neuromorphic learning framework that enables NASH to
explore various SNN learning approaches is employed. This learning framework also en-
ables efficient implementation of an on-chip learning rule which utilizes a parallel weight
update (PWU) mechanism proposed in this dissertation.

One additional issue that need to be addressed in realizing a spike-based neuromorphic
system capable of supporting large SNN, is the need for a scalable interneuron communi-
cation architecture that can support the enormous amount of traffic generated by massive
number of interconnected neurons. Also, highly connected neuromorphic architectures

xv



encounter the reliability issue where a single point of failure can affect operation. Since
neuromorphic systems rely heavily on spike communication, and an interruption in the
timing of spike communication can adversely affect its performance, adaptation is neces-
sary.

In addressing the issue of scalability and adaptation, NASH integrates spiking neuron
processing cores in a fault-tolerant three-dimensional network on chip (3D-NoC) com-
munication architecture which provide higher level of scalability, parallelism, low com-
munication cost, and reliability when compared to communication architectures such as
shared bus and two-dimensional network on chip (2D-NoC).

Finally, experiments are performed to evaluate the efficiency of NASH, and the result
of these experiments are compared to some baseline neuromorphic systems.
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適応型デジタルニューロモルフィックシステムの設計について 

概要 

 

生物学的脳に類似した計算機の需要が高まるにつれ、神経創発コンピューティングの分野

は、従来のコンピュータシステムの限界を最もよく満たす神経形態学的アーキテクチャの

探求に進んでいます。従来のコンピュータシステムはフォンノイマンアーキテクチャに基

づいており、その制限により、このようなシステムのさらなる開発が減少しています。しか

し、生物学的脳は、従来のコンピューターシステムと比較した場合、構造、計算能力、およ

び消費電力に格差を示しています。したがって、生物学的触発コンピューティングへのアプ

ローチは、従来のコンピューティングシステムが直面する制限のいくつかに対処できる可

能性があります。 

スパイキングニューラルネットワーク（SNN）は、生物学的脳に類似した高度に並列でイベ

ント駆動型の方法でスパースバイナリ信号（スパイク）を処理および通信する機能により、

徐々に認識を高めています。ただし、ソフトウェアで大規模な SNN をシミュレートするの

は遅く、SNN のエネルギー効率を十分に活用していません。別の方法として、膨大な数の

ニューロンとシナプスをサポートし、SNN で利用可能なスパイクのスパース性を活用して、

低電力で高速な並列処理を実現できる、スケーラブルなマルチコアスパイクベースのニュ

ーロモルフィックアーキテクチャが提案されています。ただし、このようなニューロモルフ

ィックアーキテクチャを実現するには、低消費電力、効率的なニューラルコーディングスキ

ーム、および軽量のオンチップ学習を備えた小型のスパイクニューロコアを構築する必要

があります。この論文では、スケーラブルなアーキテクチャで低電力と適応性を実現するた

めに、いくつかの設計アプローチを活用する適応型デジタルニューロモルフィックシステ

ム（NASH）を提案します。 

まず、効率的で低電力のスパイク処理を保証するために、提案された NASH は、この論文

で提案された並列ニューロン更新（PNU）メカニズムを採用する軽量スパイク神経処理コ

アを利用して、迅速な並列スパイク処理を可能にします。第二に、効率的な学習のために、

NASH がさまざまな SNN 学習アプローチを探索できるようにするニューロモルフィック

学習フレームワークが採用されています。この学習フレームワークは、この論文で提案され

ている並列重み更新（PWU）メカニズムを利用するオンチップ学習則の効率的な実装も可

能にします。 

大規模なSNNをサポートできるスパイクベースのニューロモルフィックシステムを実現す

る際に対処する必要があるもう 1 つの問題は、相互接続された多数のニューロンによって

生成される膨大な量のトラフィックをサポートできるスケーラブルな介在ニューロン通信

アーキテクチャの必要性です。また、高度に接続されたニューロモルフィックアーキテクチ

ャでは、単一障害点が動作に影響を与える可能性があるという信頼性の問題が発生します。

ニューロモルフィックシステムはスパイク通信に大きく依存しており、スパイク通信のタ
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イミングの中断はそのパフォーマンスに悪影響を与える可能性があるため、適応が必要で

す。 

NASH は、スケーラビリティと適応の問題に対処する際に、スパイクニューロプロセッシ

ングコアをフォールトトレラントな 3 次元ネットワークオンチップ（3D-NoC）通信アーキ

テクチャに統合し、共有バスや 2 次元ネットワークオンチップ（2D-NoC）などの通信アー

キテクチャと比較した場合、より高いレベルのスケーラビリティ、並列処理、低通信コスト、

および信頼性を提供します。 

 最後に、NASH の効率を評価するために実験が実行され、この実験の結果がいくつかのベ

ースラインニューロモルフィックシステムと比較されました。 

xviii
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1
Introduction

Traditional computer systems have significantly advanced over the years, demonstrating tremen-

dous performance in high precision numerical computations. They are based on the Von Neumann

architecture, which is good at solving such numerical computing problems. However, they are

faced with a number of limitations which potentially stall further improvements that are required

to meet recent growing computational needs. In overcoming these limitations, a neuro-inspired

computing paradigm that models the computational principles of the brain, could potentially serve

as a bridge to the next computational advancement. In this chapter, we first discuss the architec-

ture and limitations of traditional computers, then the brain’s computational principles that are

modeled to overcome these limitations. Next, we discuss brain-inspired systems and some of the

hurdles of realizing them. These hurdles translate to the motivation for this research, and to sur-

mount them, the dissertation objectives and contributions highlight the proposed system. Finally,
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the chapter is concluded with the dissertation outline.

1.1 NEURO-INSPIRED COMPUTING: BEYOND TRADITIONAL COMPUTERS

1.1.1 TRADITIONAL COMPUTING

The Von Neumann architecture as described in Figure 1.1, has the processing and memory unit

separate. Data and instructions are stored in memory, and the processing unit has to communicate

via busses with the memory to fetch and execute instructions on the data. The throughput of the

memory however, is lower than the rate at which the processing unit can work, and consequently

has become a bottleneck in traditional computer systems [12]. While the traditional computer

system have been able to demonstrate good performance at high precision numerical computations,

they are not able to carryout tasks that require cognition.

Decades ago, it was observed that exponential growth in the performance of traditional com-

puter systems can be achieved by increasing the number of transistors on a single chip. This obser-

vation was made in 1965 by Gordon Moore, the cofounder of intel, and based on it, he postulated

that the integration density of transistors will double every 18 months, increasing performance,

and reducing cost. This postulate known as moore’s law has been the feed-stock of the exuber-

ant advancement in the performance of traditional computer systems. However in recent years,

Moore’s law no longer holds to be true as it did decades ago. This is because increasing the num-

ber of transistors on a chip no longer increases performance at the expected rate. As desribed in

Figure 1.2, the challenge of quantum tunneling which arise from shrinking transistors make such

performance unattainable. Moreover, further increasing the number of transistors on a single chip

increases the power consumption and heat, as can be seen in Figure 1.3, making it very difficult to

cool.

With the end of Moore’s law in sight, a new computing approach is required to drive the next

wave of computer systems. One promising approach is Neuro-inspired computing which draws

inspiration from the biological brain. Studies from neuroscience show that the brain assumes a

different architecture and computational principle from traditional computer systems. The brain

is composed of billions of neurons which are highly interconnected via synapses. These neurons

combine memory and processing, and are able to communicate among themselves using short
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Figure 1.1: Computation paradigm is shifted from (a) von Neumann (centric computation)
to (b) brain-inspired computing (distributed computation).

electrical signals known as spikes. This architecture and computational principle enable the brain

to learn, and perform complex operations in a rapid, parallel, fault-tolerant, and energy efficient

manner.

Figure 1.2: End of the road; a shringking challenge of of physical gate length at 10nm [1].

1.1.2 NEURO-INSPIRED COMPUTING

Neuro-inspired computing aims to mimic the achitecture and computational principle of the

biological brain to realize computers that learn and operate in a similar manner. Over the years,
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Figure 1.3: Power density and clock frequency limitations in traditional computer sys-
tems [2].

two notable approaches have been employed in mimicing this principle. The first approach which

is a non spiking approach, is termed artificial neural network (ANN). Two known categories of

this approach include recurrent neural network (RNN) and convolutional neural network (CNN).

Several models of ANN have shown tremendous performance in tasks like classification, cluster-

ing, pattern recognition and prediction. These models which are trained using graphical processing

unit to enable them perform tasks, have significantly grown in size over the years, inculcating more

layers to form a deep neural network (DNN).This increase in size enable them carry out more com-

plex operations. Models like the Residual Network (ResNet) proposed a 152-layer CNN which

enabled it to achieve high accuracy on the ImageNet dataset in 2015. While these performance are

admirable, the computational cost of these large models are quite high. For example, the imple-

mentation of Google’s autoencoder [13] required a cluster of 16K processing cores, and consumes

100 kW of power to successfully recognize faces of cats from ten million images captured from

YouTube videos.

The second approach which have been employed in mimicking the brain’s computational prin-
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ciples is spiking neural network (SNN). This approach mimics more closely, the behavior of bi-

ological neural networks, and communicates via spikes in an event driven manner. In encoding

information as spikes, SNN employs several coding schemes that include rate coding, population

coding, and temporal coding [14]. Several spiking neuron models exist, and the prevalent ones

which are often found in typical SNNs are the integrate and fire (IF) model [15] and its vari-

ants which include the leaky integrate and fire (LIF). The neuronal dynamics of this model can be

thought of as an integration process, together with a spiking mechanism. Typical spikes irrespec-

tive of their amplitude and shape are handled as similar events, and from the outset to finish, lasts

about two milliseconds [16] traveling down axonal lengths. Another spiking neuron model which

is noted for its detailed modeling of biological neuron is the Hodgkin and Huxley model [17].

This model is nonlinear and stochastic. However, it is complex, making it less ideal for large-scale

simulation.

Software simulation of SNN [18] has shown to be a flexible way of exploring the behavior of

neuronal systems. However, simulating deep SNN in software is slow and consumes much power,

making it less suitable for both implementing real-time systems and precise large-scale simulations

of neural systems. Hardware implementation (neuromorphic system) on the other hand, provides

an alternative approach that holds the potential for independent spikes to be generated accurately,

and output spikes to be simultaneously fired in real-time. Also, hardware implementation has

the edge of computational acceleration over software simulations, and peculiar multi-neuro-core

neuromorphic architectures can leverage the parallelism and spike sparsity available in SNN to

deliver rapid processing with low power.

1.1.3 SPARSITY IN SPIKING NEURAL NETWORK

Studies have shown that neural activity and connectivity in the neocortex of the biological brain

are immensely sparse [19]. It is reported that about 0.5% to 2% of neural cells are active at any

given moment, and about 1% to 5% of connections exist between connected layers of neurons.

30% of these connections are reported to change every few days. These dynamics of the brain

enable it to demonstrate extemely low power consumption, and dynamic structural plasticity in

the neocortex [19]. Given that SNN operates in a manner more analogous to these neurons, deep

SNNs with such level of sparsity in connections and neuronal activity can demonstrate low power
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Figure 1.4: A Comparison of ANN and SNN implementations for a handwritten digit
recognition application.

consumption.

Given a sparse neural network as illustrated in Figure 1.5(b), inactive neurons at any point can be

power gated to reduce power consumption. However with all neurons active in the dense network

as described in Figure 1.5(a), the power consumption becomes higher. Significant energy and

acceleration can be gained while keeping performance the same when sparsity is employed [20].

1.2 MOTIVATION

In adopting the structure and computational principle of the brain coupled with the benefits

that hardware implementation provides, neuromorphic computing has the potential to provide

solution beyond the limitations faced by traditional computers. This structure and computational

principle also enable SNN to perform real-time cognition tasks which the traditional computer is

not good at. However, the design of an efficient neuromorphic system is met with a number of

hurdles that need to be surmounted. In this research three of those are considered, and they form

the motivation for this research.

The first hurdle considered in this research is power, and the motivation for this stems from

the understanding that the biological brain is postulated to operate at one exaflop with just 20
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Figure 1.5: Illustration of sparsity in spiking neural network.
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watts. Therefore, the need to aim towards low power and energy efficiency in neuromorphic system

design. In contrast to ANN where all neurons fire at every propagation cycle, spiking neurons fire

only when their voltage potential are stimulated beyond a threshold value [21]. As described in

Figure 1.4, ANN operation for classifying an image requires a single feed-forward pass through the

network, while SNN has to be appraised over a number of time-steps. However, peculiar hardware

that computes only when needed, can allow for event-driven neural operation, and leverage it to

demonstrate low power. It has been observed that spiking activity becomes more sparse with

increase in network depth [22]. Therefore, an increment in energy gains is expected in such event-

driven hardware with increase in network depth. For ANN, the amount of synaptic operations

(SoP) in a single network layer can be determined from the structure of the layer, while that of SNN

is the dot-product of the aggregate number of spikes in a layer and the corresponding number of

SoPs. A single SoP in ANN requires a multiplyaccumulate (MAC) operation, while SNN perform

only accumulate operation when an input spike is received. With MAC operations being more

complex, more energy is required for it, compared to accumulate operation [23]. Thus, the energy

consumption of SNN is expected to be much less when compared to ANN. It needs to be noted

that while SNN operation requires a number of time-steps as opposed to ANN, the actual time

needed to perform a single time-step in a neuromorphic system might be much less compared to a

feedforward operation for ANN, and despite the delay overhead, the power gains of event-driven

neuromorphic systems can significantly boost the energy efficiency of deep SNNs in comparison

to ANN [22].

The second hurdle is scalability, and the motivation for this comes from the brain’s ability to

densely house billions of highly connected neurons. To design in silicon, a neuromorphic system

capable of housing even a fraction of the number of neurons in the brain, and sustaining the traffic

of their communication, a scalable inter-neuron communication architecture is required. Further-

more, since the timing of spikes is used to encode information in SNN, such inter-neuron com-

munication architecture should not violate the timing of spikes, as this will afftect the performance

of the SNN. There are various communication interconnects that could be employed when design-

ing inter-neuron communication architectures, and they include shared bus and packet-switched

network on chip (NoC) [24]. A shared bus however, is a poor choice when implementing a large-

scale SNN since it suffers adversely with increased number of nodes. The nonlinear increase in
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neural connectivity will be too much for such an interconnect to handle. An interconnect that

has been considered as a potential solution is the 2D packet-switched NoC (2D-NoC). However,

with further scaling, 2D-NoC interconnects begins to experience communication challenges that

affect power and performance, especially in large-scale SNN chips. 3D packet-switched NoC

(3D-NoC), on the other hand, enables scaling and parallelism in the third dimension by com-

bining NoC and 3D ICs (3D-ICs) [24]. With the help of its short through silicon vias (TSVs)

that enable communication between layers, it can reduce communication costs. These merits of

3D-NoC make it suitable for large-scale SNN applications. Moreover, the brain is biologically

organized in a 3D structure; therefore, by adopting the 3D interconnect, neuromorphic systems

can inherit the shape, and the interconnects of a biological brain.

Finally, the third hurdle considered in this research is reliability. Despite being known for having

some underlying fault-tolerance attribute resulting from their densely parallel framework, SNNs

face some fault challenges, especially those assumed from implementing them in hardware [25].

When faults occur in inter-neuron connection the firing rate of post synaptic neurons are affected,

and they become silent or near silent [26]. Such faults can have adverse effect especially in critical

applications such as autonomous driving and biomedical devices. To handle such faults, an efficient

fault-tolerant approach needs to be considered.

1.3 DISSERTATION OBJECTIVES AND CONTRIBUTIONS

In this dissertation, we present an adaptive digital neuromorphic system that leverages efficient

spiking neuron processing cores to exploit the inherent 3D structure of the brain on a fault-tolerant

3D-NoC based architecture to achieve high scalability, small foot print, and rapid parallel spike

processing with low power. The main contributions of this dissertation are summarized as follows:

1. A light-weight Spiking Neuron Processing Core that enables rapid parallel spike process-

ing, suitable for 3D-NoC-based spiking neuromorphic architecture. The goal is to provide

small-sized spiking neuro-cores with rapid processing, low-power consumption, efficient

neurocoding scheme; which is the backbone of the proposed digital neuromorphic system.

The rapid parallel spike processing is achieved using a parallel neuron update (PNU) algo-

rithm presented in this dissertation.
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2. A neuromorphic learning framework which explores several SNN learning approaches on

the proposed adaptive digital neuromorphic system. This learning framework enables sev-

eral learning approaches, inclusing rapid on-chip learning with trace based spike time de-

pendent plasticity (STDP) using a parallel weight update (PWU) mechanism presented in

this dissertation.

3. Integration of spiking neuron processing cores into an adaptive scalable neuron commu-

nication architecture to realize an adaptive digital neuromorphic system.. Adopting the

anatomical topology of brain which is an interconnection of small works requires the synapses

of an SNN to be partitioned and mapped into interconnected neuro cores that represent the

small world networks. The 3D-NoC based spiking neuromorphic architecture provides this

topology, by integrating the spiking neuron processing cores into a scalable interconnect that

provides efficient interneuron communication.

1.4 DISSERTATION OUTLINE

The rest of this dissertation is organized as follows:

• In chapter 2, A review of neural network backgroud, its evolution, topologies, and learning

approaches are presented.

• In chapter 3 A survey of important related works which describe different neuromorphic

systems is presented. We focus mainly on their architecture targeting scalability. Addition-

ally, we also present a survey of fault-tolerance in neural network systems.

• Chapter 4 Describes the parallel neuron update (PNU), and parallel weight update (PWU)

mechanism employed the the Spiking neuro core design. The neuromorphic learning frame-

work which explores SNN learning approaches is described.

• Chapter 5 presents and evaluate the architecture of the light-weight spiking neuro core

which serves as the backbone of the proposed system.

• Chapter 6, describes the architecture and design of the proposed adaptive digital neuromor-

phic system. We describe the scalable 3D-NoC based communication architecture, learn-
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ing, and the integration process of realizing the proposed system. Finally, the performance

and complexity of the proposed system is evaluated.

• Finally in Chapter 7, we present the conclusion that has been drawn from this research, and

discuss guidelines for future works.
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2
Brain Inspired Computational Principle:

Background

T
HE NEURO-BIOLOGICAL SYSTEM is made up of roughly 85 billion neurons which

form the elementary processing unit behind most of the unique operations of the

brain. These neurons are connected to each other in an intricate pattern. They

percieve changes in the environment, convey these changes to other neurons, and directs body

responses to these perceptions [16]. Because these neurons are able to carryout information pro-

cessing in a rapid, parallel,fault tolerant and energy efficient manner, they have received so much

attention, and become and inspiration in designing computational systems. In this chapter, We

first discuss biological neurons and the dynamics that are abstracted from them to model artificial
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Figure 2.1: Brain inspired computational priciple: (a) The mamalian brain [3]. (b) Neurons. (c) Mathe-
matical model of a neuron. (d) Synapse.

neurons. Next we discuss artificial neurons and how they have evolved in their representation of

biological neuronal dynamics. Afterwards, we discuss the implementation of these neural networks

in terms of neuron models, learning, and implementation approaches.

2.1 NEURAL NETWORK

A crude description of a biological neuron is presented in Figure 2.1. From it, we can see that the

neuron consists of several parts: The dendrite, axon, cell bodywhich is called soma, and the synapse.

The dendrite serves as input channel to the neuron, and receives information as electrochemical

signals (action potential/ spike) from other neurons (presynaptic neurons) and transmit to the

soma for processing [16]. The soma serves as the central processing unit, performing nonlinear

processing operations by integrating the received action potentials into its membrane potential
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V(t). until it crosses a threshold Vth and activates (fire) an action potential (spike). The axon takes

on the role of an output device, and transmits the spike to other neurons (postsynaptic neurons)

whose dendrites are connected to any of the axon terminals. This connection among neurons is

enabled via the synapses. The neuro-biological system is formidably connected. A typical cortical

neuron is connected to up to 104 presynaptic neurons, and some cerebellar neurons are connected

to up to a quarter of a million presynaptic neurons [16].

A spike fired from the axon of a presynaptic neuron has an amplitude of about 100 mV and and

last a duration of about 1-2 ms arriving the postsynaptic neuron [5]. It is considered the primary

unit of information communication among neurons. A group of spikes pattern fired by a single

neuron at regular or irregular intervals is called spike train, and retain their shape as they propagate

along the axon [5]. The shape of all spikes from a neuron are similar, and remain the same as

they propagate along the axon. As a result, spike shape do not carry any information. However,

information is embedded in the the frequency of spikes, and in the precise timing of each spike.

Neuroscience stusies have shown that when a cortical neuron repeatedly receives similar fluctuating

input spikes, the timing of its output spikes are strikingly precise over repeated trials, and the output

spike pattern seem to be unique. As a result, neurons have been shown to generate different spike

patterns depending on their input spike history [27].

After a neuron fires a spike, it enters a refractory period as shown in Figure 2.1(c) where further

spike cannot be fired immediately. As shown in Figure 2.1(b), the site where the axon of a presy-

naptic neuron and the dendrite of a postsynaptic neuron meet is called the synapse. This is where

neurotransmitters (Na and Ca2+) triggered by a spike are released by the presynaptic neuron. These

neurotransmitters are detected by the receptors on the dendrite of the postsynaptic neuron, and

this causes them to open. The open neurotransmitters then allow the influx of ions that increases

the membrane potential of the postsynaptic neuron [16].

Figure 2.1(c) describes a computational neuron model. Input signals (e.g., x0) received from

the axon of other neurons are multiplied with the weight of the synapse that connects them (e.g.,

w0). weighted inputs (e.g., w0x0) are then transported by the dendrite to the soma of the receiving

neuron. At the soma, the weighted inputs are summed up as the neuron membrane potential, and

passed through an activation function that maps it to the output of the neuron.

Over the years, several artificial neural network modeling approach have been proposed, differ-
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Figure 2.2: Generations of artificial neural network [4].

ing in topology and features so as to capture the dynamics of neural computation. As described

in Figure 2.2, these modeling aproach have evolved through three generations, while emulating

the computational principles of the biological brain. In the first generation:, the neurons were

referred to as perceptrons. These perceptrons process only digital signals using a single layer. The

sum of weighted inputs of this neuron is mapped to the neuron output using binary threshold.

Some exmaples of perceptrons include Hopfield networks, and Boltzmann machines. The second

generation neurons are interconnected to have conventional artificial neural network. This gener-

ation of neurons map the sum of their weighted inputs to their output using activation functions

such as sigmoid, exponential, and polinomial, which have continuous set of possible outputs. Also,

this second generation network employ learning algorithms which are based on gradient descent.

Examples of this generation of neural netwok include feedforward, radial basis function units and

recurrent sigmodial neural network. The third generation which is referred to as spiking neural

network is modeled in a manner more analogous to the dynamics of biological neurons compared

to previous generations. It is event-driven, and operates by accumulating input spikes at its mem-

brane potential. An output spike is fired by the neuron only when its membrane potential exceeds

a certain threshold.

2.1.1 NEURAL NETWORK TOPOLOGIES

To perform tasks, artificial neurons like their biological counterparts need to be interconnected.

The manner in which neurons are interconnected determines their topology. A summary of some

neural network topologies illustrated in Figure 2.3 are described as:

• Feed forward neural networks: This network topology described in Figure 2.3(a) is orga-

15



Figure 2.3: Some prevalent neural network topologies.
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nized into three categories of layers: The input, hidden, and output layer. The connections

between neurons in this network are made across layers and not within a layer. Information

flows in a forward direction from the input layer, through the hidden layer(s), and finally to

the output layer. The back propagation learning method is usually employed in training this

network. The multilayer perceptron is another network with similar topology as the feed

foward neural network. An example of a feed forward neural network usually employed in

pattern recognition and classification tasks, is the radial basis function [28].

• Hopfield neural network (HFs): This network topology [29] shown in Figure 2.3(b), pos-

sess cyclic and recursive characteristics. They are made up of binary threshold neurons with

recurrent connections between them, and can behave in several ways which include: set-

tling in a stable state, oscilllating, or following less predictable disorganized trajectories. The

global energy of Hopfield NN is determined by summing up several contributions. Each

contribution can also be determined from one symmetric connections between neurons, and

the binary states of the two neurons.

• Convolutional neural networks (CNNs): The convolutional neural network [30] is a pop-

ular neural network topology mainly employed in analyzing and classifying image data. As

shown in Figure 2.3(c), it has an architecture that consists of a stack of distinct layers which

are; convolution, pooling, and fully connected. The convolution layer is a mathematical

function of convolution which is a unique kind of linear operation that multiplies two func-

tions to produce a thrid. Using several filters, it employs a process called feature extraction

to identify and separate different features of an image for analysis. The output of the con-

volution layer is called feature map, and it holds information such as corners and edges of

the extracted image. These features are then propagated to the pooling layer which often

follows the convolution layer.

The pooling layer is tasked with reducing the size of output feature map from the convolu-

tion layer to reduce computational costs. It does this by emplolying one of several types of

pooling operations to reduce the connections between layers, and individually operate on

each feature map. Types of pooling operations which can be employed for this task include

Max Pooling; which takes the largest element in the feature map, Average Pooling; which
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takes the average of elements within a section of the feature, and Sum Pooling; which takes

a sum of the elements within a section of the feature. The Pooling Layer also serves as a

link between a convolutional layer and a fully connected Layer.

The fully connected layer is usually the last layer of a convolutional neural network, and

consists layers of neurons that are completely connected, along with their weights and bi-

ases. Features from the pooling layer are usually flattened before they are fed to the fully

connected layer for classification.

• Recurrent neural networks (RNNs): The recurrent neural network is derived from the feed

forward neural network. However, as described in Figure 2.3(d), its hidden layers are re-

placed with recurrent layers. The layers of an RNN don’t only receive inputs from previous

layers, but also the output of its own layer [31]. The ability of RNNs to process sequences of

inputs with their internal state, make them suitable for speech recognition and connected

handwriting recognition.

2.2 CONVENTIONAL ARTIFICIAL NEURAL NETWORK

This section describes conventional artificial neural network (ANN) which is the second gener-

ation of neural networks, the learning methods employed in training it, and some rof its hardware

implementation approaches.

2.2.1 SYNAPSE LEARNING RULES

Learning in neural networks is simply the process of finding the best set of synaptic weights

for maximixing a neural network’s accuracy. Implementing learning has been one of the major

challnges in the design of neuromorphic systems. Learning in neuromorphic system is imple-

mented either on-chip or off-chip. The choice of implementation approach is made on a number

of factors which inlude the neural network model, and hardware resources. In this subsection we

review sonme of the learning approach and rules employed in training conventional artificial neural

network.
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2.2.1.1 SUPERVISED LEARNING

Supervised learning approach entails training a neural network based on input-output pairs,

where the network learns by example. One of prevalent learning methods used in training con-

ventional ANN is the backpropagation (BP) learning rule. This learning rule trains an ANN by

modifying its synaptic weights based on the error rate obtained in its previous training stage. It

can be employed in training neural network topologies such as feed-forward, recurrent, and con-

volution. The BP learning rule is usualy implemented off-chip [32] on a traditional host machine.

There, it is used to trains the ANN weights, and after the training, the trained weights are mapped

to the hardware platform. This learning rule has demonstrated high precision in its training, tak-

ing advantage of the software platform. However, it is not suitable for neuromorphic systems that

require frequent re-training of their synaptic weights. There have been several on-chip implemen-

tations of BP on neuromorphic systems [33], and variants of it, have also been either optimized or

simplified for on-chip implementation [34]. Other supervised learning algorithms include support

vector machines, and linear regression.

2.2.1.2 UNSUPERVISED LEARNING

In contrast to the supervised learning approach, the unsupervised learining approach has no

inpu-output pair, and has no example to learn from. This learning approach is quite unpopular,

and there have been some usupervised learning rules based on self organizing maps [35] that have

been implemented on neuromorphic chips.

2.2.2 FUNDAMENTAL IMPLEMENTATION

In conventional ANN input signals and weights are represented with real values, and the imple-

mentation methods can be categorised either as analog or digital. Analog implementations offer

rapid processing, power efficiency, and low area cost. However, they are susceptible to noise which

makes representation of real numbers difficult, and accuracy limited. Digital implementation on

the other hand, provides programmability, high precision, and reliability. Compared to analog im-

plementation, they suffer from high area cost and latency. Hardware implementation platforms

for ANN include CMOS technologies, and FPGAs.
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2.3 SPIKING NEURAL NETWORK

Conventional ANNs have shown impressive results in various applications ranging from visual

to signal processing [36]. However, when compared to biological neurons, they are highly ab-

stracted and lack the ablility to assert the complex temporal dynamics observed in biological neu-

rons. As a result, Spiking Neural Networks (SNNs); the third generation of ANN focuses on more

biological plausibility bymodeling biological neuronsmore closely. SNNs are able to amply express

the dynamics of biological neurons, and also, represent and integrate several information in time,

frequency, and phase. Due to their ability to closely model the complex information processing

observed in the brain, SNNs offer a promising computing paradigm which is potentially adept at

handling considerable amount of data, and representing them with spike trains. Furthermore, they

are well suited for low power hardware implementation (neuromorphic). In this section, we first

present the fundamentals of spiking neural network regarding spiking neuron models, encoding

methods, and learning rules. We then briefly introduce interneuron communication architectures

and platforms for implementing neuromorphic systems.

2.3.1 SPIKING NEURON MODELS

As described in previous sections, SNN unlike its predecessors, is more analogous to the be-

haviour of the brain, and over the years, several spiking neuron models have been proposed. These

spiking neuron models [37] differ in the level of details they abstract from biological neurons. In

this subsection, we describe some of the prevalent models.

2.3.1.1 LEAKY INTEGRATE AND FIRE

The Leaky Integrate and Fire (LIF) neuron model which is described in Figure 2.4 is one of

the prevalent spiking neuron models. Its operation can be described as an accumulation process,

together with leakage and firing mechanism. Vl
j of a LIF neuron j in layer l at a time-step t is

described as:

V(t) = V(t− 1) +
∑
i
wij

∗xl−1
i (t− 1)− λ (2.1)

where wij is the synaptic weight from neuron i to j, λ is the leak and xl−1
i is pre-synaptic spike

from previous layer l− 1.
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Figure 2.4: Leaky-integrate-and-fire (LIF) neuron model: (a) Circuit diagram of the LIF
neuron model [5]. (b) Dynamics of the LIF neuron membrane potential V, simulated for
10ms.

As shown in Figure 2.4(b), when the value of accunulated weighted spikes is completed, the

value of V(t) is compared with the threshold value θ. If it exceeds, a spike is fired and the neuron

resets. This is mathematically expressed as:


1, if Vj

l > θ

0, otherwise
(2.2)

2.3.1.2 HODGKIN-HUXLEY

TheHodgkin-Huxley neuronmodel described in Figure 2.5(a) was proposed In the early 1950s [17],

is a mathematical representation of neuron dynamics. It describes the electric current through the

membrane potential V of a neuron, providing the details of spike generation, as given in (2.3)

dv
dt = (

1
C)I− gkn4(v− Ek)− gNam3h(v− ENa)− gL(v− EL) (2.3)

where C is the capacitance of the circuit, I is the external current, conductances are potassium

gk, sodium gNa, and leakage gL. Gating parameters n, m, and h are determined by (2.4), (2.5),

and (2.6), respectively

dn
dt = (n∞(v)− n)/τn(v) (2.4)

21



Figure 2.5: A simulation of the hodgkin and huxley model with input current of 10 and
simulation time of 10ms: (a) Dynamics of the neuron voltage. (b) Dynamics of the gating
variables (m, h, n). (c) The conductances of Na, K, and L. (d) The current of Na, K and
L [6].
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Figure 2.6: Spiking and bursting behaviors of known types of cortical neurons reproduced
by the Izhikevicz neuron model [7].

dm
dt = (m∞(v)− m)/τm(v) (2.5)

dh
dt = (h∞(v)− h)/τh(v) (2.6)

The Hodgkin-Huxley model is the most biological plausible spiking neuron model. However,

it requires many parameters, which increases its complexity, making it consume huge amount of

hardware resources. It, therefore, is extremely expensive for large scale implementations.

2.3.1.3 IZHIKEVICH

Compared to Hodgkin-Huxley, a less complex model was proposed by Izhikevich [7]. The

model is described by the following equations:

dv
dt = 0.04v2 + 5v+ 140− u+ I (2.7)

du
dt = a(bv− u) (2.8)
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
v← c

u← u+ d
if v ≥ 30mV (2.9)

where v is the membrane potential of the neuron, u is a membrane recovery variable, I is the neuron

current, a, b, c, d are parameters of themodels, in which the various values of these parameters result

in different types of neuron spike patternd described in Figure 2.6. When membrane potential v

exceeds the threshold (30mV), the membrane potential v and recovery variable v are reset as 2.9.

In summary, among existing spikingmodels, Hodgkin-Huxley, Izhikevich, andLeaky Integrate-

and-Fire (LIF) are often used. The Hodgkin-Huxley type is the best when measurable physiolog-

ical parameters are highly considered. However, it is composed of many coefficients. This leads

to challenges when implementing large SNNs because of high cost. In contrast, we can simulate

hundreds of thousands of neurons when using LIF neural model; but, it is incapable of producing

rich spiking patterns. Finally, the Izhikevich exhibits a good compromise in terms of biophysical

similarity and computational cost. It is close to the Hodgkin-Huxley model in biological plausi-

bility while analogous to the LIF in computational complexity.

2.3.2 NEURAL CODING SCHEMES

It is well known that information transfered among neurons in the brain are encoded in spike

patterns, and a neural code describes how this informatiion is represented with electrical activity in

a pattern, both in the neuron level, and in networks of neurons [16]. Although, extensive studies

have been carried out on neural coding schemes of spike patterns with the aim of understanding

the cognitive system and the principle of information transmission and processing in the brain,

information encoding still remains a wrangle in the computational neuroscience community. It

was previously postulated that the brain encodes information through spike rates due to its experi-

mental discovery in sensory systems such as visual and motor cortex. However, rate coding scheme

is defined by long processing time and slow information transmission, and neuroscience research

have uncovered rapid processing in the brain that cannot be achieved by rate coding scheme alone.

The human visual processing have been discovered to carry out a recognition task in less than

100ms using neurons in various layers from the retina to the temporal lobe [38]. Each neuron

takes about 10ms to process spikes, making the time-window too small to achieve rate coding.

Tasks which require rapid processing can be accomplished using precise timing of spikes. One
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Figure 2.7: SNN Neural Coding Methods.

issue that has been associated with the rate coding scheme is that the firing of so many spikes for

a stimulus requires ample amount of energy and resources. However, it is posited that the precise

timing of spikes encodes more information in a small network of spiking neurons. Therefore, it

can be said that information is likely to be encoded not just in the number of spikes or firing rate,

but also, in the precise timing of individual spikes. In this subsection, we describe these two coding

schemes and how they are employed in encoding information in SNN.

2.3.2.1 RATE CODING

The rate coding scheme which is sometimes called frequency coding, conveys stimulus infor-

mation based on the firing rate of a neuron, which is proportional to the level of stimulus. As

described in Figure 2.7(a), it can be performed for a single neuron in terms of the average of spike

count in an interval of duration over a single trial, and density rate of spike count over several trials.

A population activity rate can also be performed for a population of neurons which have similar

characteristics, and interract together [39].

2.3.2.2 TEMPORAL CODING

From studies, it has been shown that the temporal resolution of neural code is on a scale of

milliseconds. Therefore, Figure 2.7(b), describes how information is represented in the precise

timing of spikes. Variants of temporal coding include:

• Time to First Spike: In this coding scheme, only the first spike after stimulus is considered,

and then the timing of this spike is used to encode information. A strong stimulation in a

neuron could cause it to fire, shortly after a stimulation, while the following spike becomes
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weaker [40].

• Phase: In phase coding, temporal information is encoded into spikes using a reference

global oscillator, and the relative time difference between spikes. The global oscillators

function as an internal reference to signals. An evidence of this coding scheme was discov-

ered in the hippocampus of the rat [41].

2.3.2.3 RANK ORDER CODING

Rank order coding [42] employs a somewhat similar priciple as temporal coding by taking the

temporal information of spikes into consideration. However, it adopts a simpler approach which

uses the relative timing of spikes across a population of neurons, rather than their precise timing.

As shown in Figure 2.7(c), rank order coding depends only on the order in which spikes arrive,

making it considerably easier to compute. With factorial N possible orderings, a rank order code

can relay up to log2(N!) bits of information where each presynaptic neuron can fire only a single

spike.

2.3.3 SPIKING NEURAL NETWORK LEARNING RULES

The computational substrate employed by the biological brain to carry out its cognitive fuctions

is facilitated by the plasticity of synapses described in Figure 2.8(a), which connect biological neu-

rons to form networks. Several studies have taken diverse approaches in describing the functions

attributed to synaptic plasticity, and this has led to many forms and mechanisms of SNN learning

algorithms. The enhancement or depression of synaptic transmission in the brain is significantly

influenced by activities. These activities span temporal domains in the range of milliseconds, hours,

days, and presumably even longer as basically all excitatory synapses in the biological brain assert

various forms of synaptic plasticity [16]. As an inspiration for an energy efficient system, promi-

nent forms of plasticity observed at excitatory synapses in the brain are modeled in spiking neural

network using various learning algorithms which are generally classified as unsupervised, or super-

vised. In this subsection, we prsent a broad overview of the mechanisms, possible functions of the

long-term potentiation (LTP) and long-term depression (LTD) phenomenas observed in synaptic

plasticity, and describe some of the prevalent unsupervised SNN learning algorithms that model

them. We also present some supervised learning algorithm which are employed in SNN learning.
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Figure 2.8: Synaptic Plasticity: (a)The physiological mechanism of synaptic plasticity in the
brain. (b) Spike timing dependent platicity (STDP) curve.

2.3.3.1 UNSUPERVISED LEARNING

One of the most prevalent SNN learning rules implemented in neuromorphic systems goes by

the term ”Spike timing dependent plasticity” (STDP) [43] which refers to the observation that the

precise timing of spikes significantly enhances or depresses synaptic transmission. As described

in Figure 2.8(a), a presynaptic spike pre preceding a postsynaptic spike post within a small time

window enables receptors to open Nup, and if this persists for an extended period of time, leads

to long-term potentiation (LTP). If the order is reversed, and the post synaptic spike precedes the

presynaptic spike, the receptors become closed Ndown, and results to long-term depression (LTD)

if it persists for an extended period of time. Inducing such presynaptic and postsynaptic spike pairs

repeatedly with a fixed time interval gives the timing-dependence of plasticity. As illustrated in

Figure 2.8(b), such an STDP curve is thought to facilitate the prediction plasticity which results

from varying the time intervals. Consequently, the STDP curve is considered as a learning rule

which delineates how a specific type of synapse engages in information storage and eventually

cognition. The STDP learning rule is further defined by the following equation [44].

W(δt) =


A+e−δt/τ+ , if δt ≥ 0

A−e−δt/τ− , if δt < 0
(2.10)
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where A+ and A− are the rate of synaptic potentiation and depression respectively, and τ+ and

τ− are time constants that characterize the span of positive and negative learning window.

2.3.3.2 SUPERVISED LEARNING

Apart from the unsupervised learning, supervised learning for SNNs is also a significant re-

search area. Over the years, several SNN supervised learning rules have been proposed, and in this

subsection, we present some of them.

The authors in [45] successfully implemented the spike-driven synaptic plasticity (SDSP) learn-

ing rule which update synaptic weights in the event of a presynaptic apike. Modified versions of

STDP has been proposed as a supervised learning algorithm by different researchers. An inflected

STDP (weight-dependent STDP) was also proposed in [46] as a method of estimating gradients

for online supervised learning in a multi-layer SNN.

Several Back propagation based SNN learning algorithms have been designed and proposed by

several researchers for training Neuromorphic SNNs. One of the popular ones SpikeProp [47],

acts on SNNs that use explicit spike time temporal coding. Each neuron fires only one spike, and

the timing of the spike is modified using error back propagation. Spike Prop is limited, in that it

learns the timing of output spikes but cannot adapt the number of spikes.

One of the known SNN supervised learning algorithm Tempotron [48], is an online gradient

based learning rule that implements a binary classification of multi-neuronal spike patterns. It

classifies spike patterns either as a target pattern (P+) if the neuron fires a minimum of one spike

in response to it, or a null pattern(p-) if the neuron does not fire at all. Several modifications on

Tempotron have been proposed by researchers to handle different tasks.

In [49], the authors proposed a supervised learning algorithm that implements error back propa-

gation and usesmemristor as synapse device. This algorithm unlike others, does notmodify weights

but stores and recalls patterns by changing the delay of every connection, making for uncompli-

cated neuromorphic implementation without multipliers or digital-analog converters (DAC).

2.4 FUNDAMENTAL IMPLEMENTATION

Research interests in the development of hardware based neural network have increased over the

years as a result of the breakthrough achieved by deep learning. In this regard, several architectures,
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Table 2.1: Platform comparison for neuromorphic implementation [11].

Parallel
com-
puter

FPNN
in
FPGA

DSP FPGA Analog
ASIC

Digital
ASIC

Speed + + - + +++ ++
Area - - + - + +++ ++
Cost - - ++ ++ ++ - - - -
Design time + +++ ++ ++ - - - -
Reliability ++ ++ ++ ++ - - +
- - very unfavorable, - unfavorable
+ favorable, ++ very favorable, +++ highly favorable

and several technologies relating to implementation type and platform, synapses, and inter-neuron

communication are being explored for both conventional ANN and SNN acceleration [50]. The

computational model of Conventional ANNs is quite different from that of SNN. ANN opera-

tions are characterized bymatrix-vector multiplications which are often easily performed on central

processing units (CPUs), graphics processing units (GPUs), and recently, tensor processing unit

(TPU). Conversely, SNN as described in prior sections are event driven, and alongside the con-

ventional ANN accelerators, research on the acceleration of SNNs in hardware have significantly

increased in recent years. SNN is often simulated in discretized timesteps, and in those timesteps,

the state of every neuron is evaluated. Shorter simulation timesteps, usually gives better simulation

results, however; this leads to prolonged simulation time. Consequently, a specialized hardware

that leverages the dynamics of SNN for rapid low power simulation on several hardware platforms

will not only enable biologically plausible neurons and synapses to be simulated, but will also pro-

vide better understanding of the brain’s operation [50].

2.4.1 HARDWARE IMPLEMENTATION METHODS AND PLATFORMS

update There have been increased interest in the potential benefits of neural network optimiza-

tion techniques in hardware. These benefits which include high performance and energy efficiency,

are the driving force for this increased interest. To this aim, several hardware platforms are be-

ing exploited, and among them, field programmable gate arrays (FPGAs) and application specific

integrated circuits (ASICs) are mostly employed. In this subsection, we present some of these

hardware platforms and describe their advantages and limitations towards neural network acceler-

ation.
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A summary of the comparison among parallel computers, FPGA, DSP, and both analog and

digital ASIC is presented in Table 2.1.

Field Programmable Gate Array (FPGA:) An FPGA is a specialized hardware that is partic-

ularly designed to be reconfigurable based on the requirement of the user. It consists of several

programmable logic blocks and configurable interconnections which enable the interconnection of

its blocks to realize different configurations. Its configurability, short development time, low cost,

and recent increased support for multiply and accumulate operations makes it a deriable platform

for implementing ANNs. Because of these advantages FPGAs are increasingly being employed in

several applications such as real-time hand gesture detection and tracking [51] and face tracking

and identity verification in video sequances [52]. However, its resources are constrained, therefore

it cannot used to simulate large neural networks.

ASIC: With the increasing need to perform deep learning in a rapid and energy efficient man-

ner, many customASIC and system on chip (SoC) chips are being developed by several laboratories

and companies around the world. because ASIC is application specific, it is much more power effi-

cient, and can run at higher clock frequency than FPGAs. The implementation of ASIC chips are

generally divided into Analog and Digital. Despite the similarity of analog ASIC to the brain, dig-

ital Full custom ASIC is the prevalent platform for spiking neuromorphic implementation. This

is due to the ease of information storage, processing and decision making in digital systems. Two

well-known examples of digital neuromorphic systems are TrueNorth [53] and SpiNNaker [54].

Compared to digital approaches, analog platforms are less common due to challenges in imple-

mentations. They are attractive for their energy-efficiency and throughput in AI applications. Ex-

ample of analog ASIC is intel’s electronically trainable analog neural network (ETANN) 80170NX

chip [55] which consists of 64 neuron that are fully connected, together with their synapses. A

mixed signal chip was proposed in [56] and utilized capacitors for weight storage. neural signals

are conveyed as currents. This makes the system relatively robust and scalable thanks to neural

signals being maintained over long distances.

2.4.2 LEARNING

Several opproaches are considered when implementing learning on neural network acceletors,

and this is influencd by the target application. The two implementation approaches considered in
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this regard are on-chip and off-chip. If the target is to design a general accelerator for machine

learning where the application requires realtime adaptation, especially in a dynamic environment,

then on-chip learning is required chip. however, if the target application does not require real-time

adaptation, off-chip learning is considered appropriate.

The off-chip learning approach is realized by performing a training of the neural network on a

some high end server, and afterwards, the resulting network along with its configuration param-

eters and trained synaptic weights are programmed on the chip. With this learning approach the

complexity and resource demand of learning is alleviated from the chip. The draw back however,

is that the resulting neural network cannot learn a new task without loosing accuracy. Its synaptic

weights and configuration parameters will have to be updated from time to time, for improvement,

or to enable it perform other tasks depending on the requirement of the target application. au-

thors in [57], performed some training with backpropagation where an ANN was first trained, and

then converted to SNN by mapping real-value inputs/activations to average firing rates of Poisson

spikes. This training approach can be used on neuromorphic systems as off-chip learning.

On-chip learning on the other hand requires that the training of synaptic weights to be per-

formed on-chip, which necessitates the inclusion of learning circuits and memory on chip. For

SNN, Unsupervised learning algorithms like STDP and its equvalents are often considered suit-

able for on-chip learning since no information is transmitted between neurocores in performing

synapse update. The drawback however is that the learning circuit and memory further increases

the complexity of the chip in terms of area and power. Nevertheless, there are ongoing research

on energy efficient on-chip learning. Conversely. existing supervised learning algorithms on the

other hand are not considered suitable for on-chip learning because complex neuron and synaptic

models with fixed point value gradient communication among neurocores, which signifcantly in-

creases complexity. Furthermore, algorithms like backpropagation is likely to have high operation

latency, since forward propagation will have to be put on hold for learning to occur.

2.4.2.1 SYNAPSE MEMORY TECHNOLOGIES

In traditional computer systems, memory speed is a bottleneck because processors have signifi-

cantly improved over the years surpassingmemory speed and throughput, and this leaves processors

idle while waiting for memory. But SNN is different. It’s architecture provides memory in com-
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pany with processing, and they both operate in parallel. These spiking neurons process with events,

and as opposed to traditional processors that operate and communicate in megahertz and gigahertz

ranges, they communicate in around 10 hertz. This difference in speed enables neuromorphic pro-

cessors to use time multiplexing to combine many events into a single communication channel.

In SNN, Storing and reading of synaptic wights constitute the major operation, and designing a

large SNN with enormous number of synapses will require large memory bandwidth. So while

communication speed is not somewhat a challenge in neuromorphic systems, memory bandwidth

definitely is one that need to be overcome. In addressing this challenge, researchers have taken

several approach to realizes these synapses in CMOS by exploring various memory technologies.

Some of these memory technologies include; static random-access memory (SRAM), a prominent

memory technology in semiconductor design. in [58] a neuromorphic chip with 256 neurons that

implements a transposable 8-transistor SRAM based crossbar which grants row and column access

was employed.

A typical SRAM contains six transistors (6-T), and although having high leakage current and

low density, SRAM offers multiple read and write. Its major advantages are speed and reliability

when compared to other memory technologies [59]. The eight transistor (8-T) SRAM has two

transistors more than the typical SRAM. These two transistors adds access to the word and bit

lines in transposed orientation to the typical 6-T design. To handle the general leakage power of

the chip, ultra-high-Vt devices which reduced it by 3, at a cost of increased minimum operating

volatage of the memory array is leveraged. Another memory technology is embedded dynamic

random-access memory (eDRAM) which was used in [60] to design a high-density 3D memory

for a programmable digital neuromorphic architecture.
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Figure 2.10: Illustration of address event representation (AER) inter neuron communication
communication.

eDRAM is a capacitor-based memory integrated on the same multi-chip module. Due to its

simple conventional one 1-transistor 1-capacitor design, it is inclined to having less area cost when

compared to SRAM. However, with the gradual leakage of its storage charge during operation,

its retention period is low. also, its design is not easily compatible with CMOS. in [61], a spin

transfer torque ram (STT-RAM)was propsed as a stochastic memristive synapse for neuromorphic

systems. An STT-RAM is a magnetic RAM which uses magnetic tunnelling junction (MTJ) in

its cells, and its simple design has small area when compared to SRAM and eDRAM. By adapting

a schema proposed in [62], the authors organized the STT-RAM MJT as a crossbar connecting

input and output neurons. However, the magnetization of the STT-RAM makes writing process

slow, and consumes more energy. Another memory technology that has been used in the design

of neuromorphic chips, is Resistive random-access memory (RRAM or ReRAM). It is a memory

technology that rely on the resistance change of its cells to store information, and it has similar

architecture to eDRAM. in [63] the authors proposed an FPGA-based hardware emulator for

neuromorphic chip with RRAM-based crossbar. RRAM offers low area, low power, and easy

integration on CMOS. However, it suffers fron stuck at faults (SAF) [64] which may cause short

circuiting and lead to increased power [63], and dynamic switching variation which leads to a large

variation in the resistance of the memory [65]. Other memory technologies include the Phase

Chanhe Memory (PCM), A summary of some memory technology is presented in Figure 2.2
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2.4.3 INTER NEURON COMMUNICATION

To connect PEs together, these systems use various communication architectures such as com-

mon bus [66], ring [67], and network-on-chip [68]. Efficient inter-neuron Communication is

crucial for the operation of a neuromorphic system, and several existing networking solutions are

edapted to achieve this. In adapting existing networking solutions, it is important to address the

challenges that stem from the disparity between the requirements of computer networks and those

of neuromorphic systems. While exiting communication architectures are known to connect thou-

sands of nodes at different levels, neuromorphic systems need to connect millions of neurons at the

chip- or core level. Hence, the efficiency communication architectures, employed for inter neuron

communication has to be in several orders of magnitude.

A known communication protocol popularly employed for inter neuron communication in neu-

romorphic systems is the address-event representation (AER), which is used to transmit spikes

from an array of presynaptic neurons on one core/chip to an array of postsynaptic neurons on

another core/chip [69]. As illustrated in Figure 2.10, an address-encoder in a source core/chip

generates a unique binary address for each presynaptic neuron whenever it spikes, and a data bus is

used to transmit these address to the destination core/chip, where an address decoder updates the

corresponding post synaptic neuron. To establish communication between connected cores/chps,

a four phase hand shake is performed using the pair of connections shown in Figure 2.10. The

source core/chip initiates the handshake by asserting a request signal, and the destination core

acknowledges. The sent address event is assumed to be valid when the request signal arrives the

destination, which requires their propagation delays to be matched.

AER is suitable for SNN implementations since it only needs to be active whenever neurons

fire. To scale up the system, a hierarchical AER as a tree structure was implemented in [70].

Figure 2.11 illustrates the variety of neuron communication interconnect emoployed in neuro-

morphic system design. Figure 2.11(a), describes the shared bus interconnect where processing

elements (neurocores) use a shared bus for communication. Given SNNs can have extremely high

traffic, the shared bus approach is not suitable for neuromorphic implementation because with

number of nodes, communication in the dsystem suffers adversely. Figure 2.11(b) illustrates a dif-

ferent type of communication interconnect where processing elements are diredtly connected to
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Figure 2.11: inter-neuron communcation architectures. NC- neural core, R- Router. (a)
Shared bus (b) Point-to-point (c) Network on chip.

each other from point to point. This communication are=chitecture is also not good for SNN im-

plenention because a lot of lengthy wires are required to connect many processing elements which

is not practical. Network on chip (NoC) wchich is shown in Figure 2.11(c) on the other hand, is

commonly implemented for on-chip inter meuron communication because it more scalable.

2.5 CONCLUSION

In this chapter, we presented an overview of artificial neural networks including the spiking

neural network as the latest generation and how they are implemented. Compared to conventional

approaches, SNNs offer not only the capability of simulating biological neural networks but also

extreme energy efficiency thanks to event-based operations and fewer operation computations. In

the next chapter, we focus on how prior works tried to solve the interconnect challenge in spiking

neuromorphic and faults in neural networks.
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3
Related Works

Q
UITE A NUMBER OF NEUROMORPHIC SYSTEMS have been proposed over the years. These

neuromorphic systems leverage the extensive trasnsistor resource available, and scal-

able architectures to provide scalable neuromorphic architectures capable of support-

ing SNN with massive number of synapses. In this chapter, we review some of these neuromorphic

systems, together with the various interconnect architectures they employ. We also review some

existing works on fault tolerance, and their approach.

3.1 NEUROMORPHIC SYSTEM ARCHITECTURES

A number of large-scale neuromorphic systems have emerged in recent years, taking advantage

of the enormous transistor resource now available on a single microchip and, in some case, a full

silicon wafer. Recent increase in technological capabilities combine, alongside scalable architec-
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tures, enable neuromorphic systems to support scales of neural network which incorporate millons

of neurons with billions of synapses.

3.1.1 DIGITAL IMPLEMENATION

3.1.1.1 HIERARCHICAL BUS

In [71] an extension of the AER protocol, that enables auditory processing elements to

send events using a shared asynchronous bus that requires no external logic for arbitration

was proposed. Several of these implemented auditory processing elements utilize a shared

asynchronous bus for communication.

3.1.1.2 2D PACKET SWITCHED

With the aim of modelling large scale SNN with massive number of synapses, the

SpiNNaker project [54] proposes a full custom digital neuromorphic system. Housing

a total of one million mobile integer cores, each with 32Kbytes of instruction memory

and 64Kbytes of data memory. The project aims to simulate up to a billion neurons in

real-time, and also provide support for different neural models. Each SpiNNaker chip is

designed on a 130nm CMOS, and houses 18 ARM968 cores. 16 of those cores are used

to implement spiking neuron models, one is used for monitoring, while the remainder as

spare which can be used in the event of fault. To interconnect the cores, a 2D triangular

mesh communication fabric is employed. The spinnaker system have been used for ap-

plications such as Vision processing, robotic control, and realtime implementation of 2.5

million neuron Spaun model [72].

TheLoihi neuromorphic chip [73] designed by intel is another 2D packet switched neu-

romorphic architecture that comprises a total of 131 072 leaky-integrate-and-fire neurons

distributed among 128 digital cores interconnected to form a spatial asynchronous 2D

mesh. Each Loihi chip houses 1024 neurons, 128 kB of synaptic state, and 20 kB of rout-

ing tables which can be variably allocated accross its neurons. Spike based communication

among neurons is represented with a 32-bit packet which contain destination neuron ad-

dress, source neuron address, and graded-value payload. for inter-chip communication,
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four off-chip interfaces are implemented, and the offchip packets are further encapsulated

with a 32-bit header, used to specify chip address [73].

TrueNorth [53] system is a known hardware-based SNN chip developed by IBM with

2D packet switched interconnect. With a full custom digital ASIC design, each chip in

5.4 million transistor 28nm, houses 4,096 neural cores. Each core contains 256 integrate-

and-fire neurons, and each neuron has a fan in of 256. With a 256×256 synapse crossbar,

each core is able to selectively connect presynaptic spikes with postsynaptic neurons. For

communication among cores, configurable point-to-point routes are setup such that out-

put spike events from one core is directly routed to another core as input. This direct

connection extend to cores on other chips as well. A total of 16 chips directly connected

on a circuit board have been developed.

In [45], a quad-core binary weight neuromorphic chip was proposed. Each core houses

512 LIF neurons, a total of 528k binary synapses grouped in three levels, and a stochastic

spike-driven synaptic plasticity learning. Communication among the cores are enabled

via the 2D-NoC star-based topology communication architecture.

3.1.1.3 3D PACKET SWITCHED

The work in [74] investigated the architecture and design of a 3D stacked neuromor-

phic accelerator. The 3D stacking architecture used face-to-face bonding of two 20cm

wafers with micro-bumps. A Recent work was presented in [75] about a neuromorphic

system for the simulation of large-scale conductance-based SNNs. The architecture was

implemented in six Altera Stratix III FPGA boards to simulate one million neurons [75].

Another recent work was presented in [76], where the authors proposed an SNN archi-

tecture based on 3D memristive synapses. An AER multicast routing mechanism was

used for inter-neuron communications. Although the NoC architecture meets the re-

quirements of the system, it is hardly deployed in embedded neuromorphic systems [77].

The authors in [78] proposed a neuromorphic architecture for large-scale biophysically

meaningful neural networks with multi-compartment neurons in a 3D-NoC architecture,
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using four Altera stratix III FPGAs. However, this system utilizes a butterfly fat-tree-

based topology, which although mimics the brain’s connectivity more closely, cannot be

mapped on an ASIC design as its shape will lead to wastage of silicon area. Moreover, the

point-to-point connection at the parent node limits path diversity, and due to the band-

width imbalance in this topology, thermal hot-spots can be created. In [79], a 3D-NoC

based neuromorphic system was proposed, which houses neuro cores in 2D mesh topol-

ogy layers that are stacked to form a 3D architecture. Communication with the stacked

layers was enabled using through silicon vias (TSV).

3.1.2 ANALOG IMPLEMENTATION

3.1.2.1 HIERARCHICAL BUS

The work in [80] proposes a multichip analog neural processing communication ar-

chitecture that utilizes a nonarbitered, asynchronous shared-bus for communication of

events. Although this approache support multicast and broadcast routing, it suffers from

the limitation of scalability when the network size increases.

3.1.2.2 2D PACKET SWITCHED

The BrainScales [81] system which is supported by the EU Human Brain project uses

above-threshold analogue circuits to implement models of neuronal dynamics. These

above threshold circuits enable BrainscaleS to run at up to 10K times biological speed.

BrainScaleS utilizes wafer-scale integration, and a wafer has 48 reticles, each of which

house 8 hgh-count analogue neural netrwork (HiCANN) die. Each of the 8 HICANN

dies, embeds 512 adaptive exponential integrate and fire (AdExp) neurons with about

100K synapses [72]. For communication among dies, Hi-speed serial channel are em-

ployed to convey presynaptic spikes from 64 neurons in a HiCANN die to post synaptic

neurons in another HiCANN die.

In contrast to BrainScaleS, the Neurogrid [82] system uses subthreshold analogue cir-

cuits to model neuron dynamics, together with digital spike communication. The neurons

on Neurogrid are inplemented using a shared leaky integrator dendritic structture. Each
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Neurogrid chip is accompanied by a router with which it communicates spike packets

with other chips. The routers utilize a 2D tree based multicast routing approach where

spike packetes are routed to upstream routers up the tree till it reaches a router above the

intended destinations. The maximum number of neurons per Neurogrid layer is limited

(up to 2,175 neurons), and this makes it unable to offer biological real time behavior [82]

The ROLLS neuromorphic processor [83]. ROLLS has 128K analog synapse and

256 neuron circuits that support biologically plausible dynamics and bi-stable spike-based

plasticity mechanisms that endow it with on-line learning abilities.

3.2 FAULT-TOLERANT NEURAL NETWORK

Over the years, several works that focus on fault-tolerance in neural network hardware

hae been proposed [84]. Some of these works and the various approaches they employ in

realizing fault-tolerance are in Figure 3.1

3.2.1 LEARNING-BASED APPROACHES

The learning based fault tolerance approach modifies conventional learning rules, and

uses them to handle faults that occur in neural networks systems. The authors in [85]

proposed a fault-tolerant method which temporarily injects faults in hidden neurons dur-

ing training process. In this method, about three neurons are randomly injected for each

input example. A modified training rule was also presented in [86]. This rule func-

tions by adding a regularization term to the cost function. In [87], a back propagation

based method was proposed for dealing with faults that arise in classification applications.

This method constrains weights to a certain range. The modified learning methods have

demonstrated good performance, and do not need external interactions after the training.

However, their computation cost is significantly high, and they require a long time to

complete their training process.

Another method that is widely employed is the retraining methods. this method was

employed in [88], where periodic retraining in GPGPU is performed to improve fault

tolerance. TheWork in [89] proposed a retraining scheme that handles the effect of timing
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errors in neuromorphic systems.
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This retraining scheme is performed when the output results of a neural network have

been affected by timing errors. The authors in [97] propsed a learning scheme which

mimics the self-repair ability observed in the brain, by reestablishing the firing rate of

neurons in the event of synaptic faults.

3.2.2 ARCHITECTURE-BASED APPROACHES

The architecture based approach to fault tolerance primarily employs redundancy in

the hidden neurons and synapses of pretrained networks. In [90] the authors proposed a

fault-tolerant architecture which employs redundant neurons. The authors in [91] utilized

redundant critical hidden neurons together with a technique called augumentation to half

the weights of synapses between augumented neurons and output neurons.

Apart from faults that occur in neurons, the connection between neurons can also be

faulty, therefore they have also been of concern. In handling such faults, the authors

in [92] propoosed a method called weight shipping where the weights of faulty connec-

tions are shifted to other connections of the neurons that are not faulty. The authors in [93]

also proposed fault-tolerant self-repairing architecture which uses a self-detect and self-

repair mechanism to detect and repair up to 40% synaptic faults, while maintaining good

system performance. However, the evaluation of this fault-tolerant method was done

with only two neurons, and the performance may deterriorate due to area overhead when

the architecture is scaled. SpiNNaker [94] also employs, an emergency routing mecha-

nism that uses redundant adjacent connections to automatically redirect blocked packets

to their destination when there is a congested or faulty connection in its 2D-NoC torus

topology. This mechanism enables the SpiNNaker system to mitigate timing violations

of SNNs in the event of congestion or faulty connections.

3.2.3 HYBRID APPROACHES

Thehybrid approach to fault-tolerance combines both the learning-based and architecture-

based approaches. The authors in [95] proposed a two-phase method which first removes

unresponsive hidden neurons by measuring their response when sending inputs to them.
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Afterwards, redundant neurons are added, and the network is retrained. The evaluation

results of this approach show an improvement in the system’s fault-tolerance when per-

forming two multiclass classification problems. This work was further extended in [96],

where the authors first used weight constrained backpropagation training to avoid fault-

tolerant degradation that results from unconstrained weights. During the training, some

faults are injected into some neurons and connections. The network is then pruned to

remove irrelevant neurons. After prunning, redundant neurons are added to the network

to share the role of critical neurons in the network. The evalution results of this method

showed better robustness when compared to other methods.

3.3 CONCLUSION

To summarize, we reviewed in this chapter some existing neuromorphic systems to-

gether with their neuron communication architecture. We also presented some existing

works on faults tolerance in neural networks and the various approaches they employed.

From the review, we can see that 3D-NoCs has the potential to provide high parallelism,

scalability, and small footprint when employed in neuromorphic system design.
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4
Neuromorphic Design Approach and

Learning framework

T
HE BRAIN HAS ITS PROCESSING ELEMENTS (NEURONS), organized in such a

way that they function and communicate in a highly parallel manner. neu-

romorphic systems aim to model this in hardware by distributing the mem-

ory (synapses) of an SNN architecture into small neurocores such that they are close to

processing. Each neurocore houses some neurons, and some part of the synapses along

with their weights. During simulation, each core receives and transmit packets using

address event representation (AER) through a network on chip communication infras-

tructure. As illustrated in Figure 4.1 each neurocore in a neruomorphic system integrates
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Figure 4.1: Illustration of neuromorphic system design approach.

neuron circuitry for integration of inputs to neuron membrane potential, synapse mem-

ory for storing synaptic weights, and possibly neuron states, a control circutry, and finally,

input and output interfaces for spike communication. The number of neurons embed-

ded in each neurocore depends on the complexity of the neurons. The organization of a

neurocore in a neuromorphic system is influnced by a number of factors which include

the SNN topology, and the target application. The choice of platform whether digital or

analog, depends on the prefernce of the designer. Several approaches can be employed

in the neurocores for updating neurons. One prevalent approach that have been observed

in most neuromorphic systems, is the implementation of a single neuron, which utilizes

time multiplexing to simulate several neurons, combining events into a single commu-

nication channel. This approach is advantageous since it reduced hardware complexity.

However, this approach requires a lot of clock cycles to update the neurons in a single

timestep especially in neuromorphic systems with large number of neuron. Furthermore,

more complex neuron implementations will require more clock cycles which may not be

suitable for some applications [98]. Mimicking the organization of the brain, some design

take a different approach by having more neuron circuits on a neurocore, so as to enable

rapid parallel operation. In this chapter, we present a parallel neuron update mechanism,
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Figure 4.2: The parallel neuron update (PNU) mechanism.

and parallel weight update mechanism that leverages neuron circuits of a neruo core for

rapid spike processing.

4.1 PARALLEL NEURON UPDATE (PNU) MECHANISM

As described in previous chapters, communication in SNN are done via spikes, and

these spikes are represented with binary values; 1 indicating the presence of spike event,

and 0 otherwise. The PNU illustration described in Figure 4.2 shows how spikes from

presynaptic neurons P0 to Pk in a previous layer, are used to udate the post synaptic neurons

N0 to Nn in the next layer. As described in Algorithm 4.1, all spike from the presynaptic

neurons are multiplexed onto a single vector with length K, representing the number of

presynaptic neurons. The post synaptic layer uses distrubuted synapse memory SM0 to

SMn, one for each postsynaptic neuron. At the PNU, the presynaptic spike vector is taken

through several one-hot operations to find which index of the spike vector has spike event,

i.e the presynaptic neuron with spike. The spike vector index with event is used as synapse

memory address, for the synapse memory of all post synaptic neuron connected to the
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Algorithm 4.1: Algorithmic description of the parallel neuron update (PNU)
mechanism.
Input: input presynaptic spike (i_pre_spk)
Output: weight, address (addr)
/* store input presynaptic spike array */

1 i_pre_spk_reg[0:k] = i_pre_spk[0:k];
/* Check for spike events in the presynaptic spike array */

2 if |i_pre_spk_reg[0:k] == 1 then
3 neuron_update == True;
4 else
5 neuron_update == False;

/* If events are present in the presynaptic spike array, begin processing the

events */

6 if neuron_update == True then
/* Obtain memory address of the synapses associated to the neurons to be

updated using onehot encoding */

7 one_hot_res[0 : k] = one_hot(i_pre_spk_reg[0 : k], res[0 : k]);
8 for i← 0 to k by 1 do
9 if one_hot_res[i] == 1 then
10 addr = i;

/* Fetch the weights from the synapse memory address */

11 weights[0 : n] = SM[0:n](addr, weight[]);
/* Update postsynaptic neurons N[0:n] with the weights */

12 N[0:n](weights[0 : n]);

/* When all weights are updated, set update complete to true */

13 update_complete == True;
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Figure 4.3: Illustration of the parallel weight update (PWU) mechanism

presynaptic neuron that vector index represents. The width of of this address depends

on the number of presynaptic neurons K, and is given as 2x≥ K. When the address has

been received at the synapse memory, the weights stored at those address are sent to all

corresponding postsynaptic neurons at once.

4.2 PARALLEL WEIGHT UPDATE (PWU) MECHANISM

The parallel weight update (PWU) mechanismdescribed in Figure 4.3, follows the same

operation principle as the PNU. However this mechanism is employed during learining,

and is used to update synaptic weights. As described in Algorithm 4.2, when the learning

rule eg (trace based STDP) implemented on a neuromorphic system have been deter-

mined, the presynaptic spike trace is sent to the PWU, using the same onehot mechanism

as the PNU, the synapse memory addresses of the weights to be updated are obtained from

the presynaptic spike trace. These addresses are sent to all the synapsememory within SM0

to SMn whose neuron is and connected to the presynaptic neurons. The synapse weights

stored at those addresses are then sent to the adders A0 to An to be updated, and after the

update, the new weight values are written back to the same address. With this mecha-
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Algorithm4.2:Algorithmic description of parallel weight update (PWU) mech-
anism.
Input: input presynaptic spike trace (i_pre_spk_t)
Output: weight, address (addr)
/* store input presynaptic spike trace array */

1 i_pre_spk_t_reg[0:k] = i_pre_spk_t[0:k];
/* Check for spike events in the presynaptic spike trace array */

2 if i_pre_spk_t_reg[0:k] == 1 then
3 weight_update == True;
4 else
5 weight_update == False;

/* If events are present in the presynaptic spike trace array, begin weight update

for the events */

6 if weight_update == True then
/* Obtain memory address of the synapses to be updated using onehot encoding */

7 one_hot_res[0 : k] = one_hot(i_pre_spk_reg[0 : k], res[0 : k]);
8 for i← 0 to k by 1 do
9 if one_hot_res[i] == 1 then
10 addr = i;

/* Read the weights from the synapse memory (SM) address */

11 weights[0 : n] = SM[0 : n](addr, weight_out[], 0);
/* send weights to adder (A) for update */

12 weights_new[0 : n] = A[0:n](weights[0 : n]);
/* Write the updated weights back to the SM */

13 SM[0:n](addr, 0, weight_in[]) = weights_new[0 : n];

/* When all neurons are updated, set update complete to true */

14 update_complete == True;

51



Figure 4.4: Learning framework for neuromorphic systems.

nism, a neuromorphic system that incorporates multiple neuron circuits can explore the

parallellism available in SNN.

4.3 NEUROMORPHIC LEARNING FRAMEWORK

In comparisonwithANN, SNNhas fewer learning algorithms and techniques. Some of

these techniques employed in neuromorphic system design are summarized in the learning

framework described in Figure 4.4. The learning freamework consists of three approaches.

The first approach involes converting conventionally trained ANN into SNN by adapting

the synaptic weights, and other parameters of the spiking neurons, so as to realize a similar

input/outputmapping as theANN.To achieve this, we employ themethod in [57], by first

training the ANN with backpropagation. The trained parameters are then transformed

into an SNN model similar to the target neuromorphic system. The input/outputs are also

encoded with a suitable spike coding scheme. The resulting SNN weights are normalized,

quantized into a lower bit representation required by the target neuromorphic system, and

afterwards, they are mapped to it. This method however is not always feasible, because

not all ANNs can easily be converted into SNN.

The second approach directly trains an SNN in software using variants of backpropa-

gation for supervised learning. The resulting trained weights are then adapted, normal-

ized, and mapped to the neuromorphic system. This approach however, is not aimed at
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achieving biological plausibility. The thrid approach focuses on on-chip learning with an

on-chip trace based spike-timing-dependent-plasticity (STDP) learning rule presented in

chapter 5. This is achieved by either performing learning directly on-chip, or designing

the environment of the neuromorphic system in a simulator (Bindsnet [99]), and per-

forming learning with same STDP model inmplemented on chip. After the learning is

completed in the simulation environment, it can also be done on the neuromorphic system

for validation.

4.4 CONCLUSION

In summary, this chapter has presented the design approach employed in the design of

the proposed digital neuromorphic system. The PNU mechanism enable parallel neuron

update for quick spike processing, and the PWU mechanism enables parallel of update

of weights for rapid learning. The learning framework presented in the summarizes the

various approaches that are employed in performing learning on the proposed digital neu-

romorphic system. In the next chapter we present how these design and learn approach

are integrated to build the light-weight neuro processing cores of the proposed system.
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5
Light-weight Neuron-Processing Core

Architecture

I
N REALIZING A SCALABLE MULTICORE NEUROMORPHIC ARCHITECTURE, an ef-

ficient design of the of the individual cores that make up the architecture is

required. Therefore we present in this chapter, the architecture and design

of a light-weight spiking neuron processing core, suitable for a multi-core neuromorphic

architecture.
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Figure 5.1: High level view of the spiking neuron processing core.

5.1 SPIKING NEURON PROCESSING CORE ARCHITECTURE

The SNPC is shown in Fig. 5.1c, and it contains 256 physical LIF neurons, a crossbar-

based synapse, a control unit, a synapse memory, and an STDP learning module [100].

In this section, we describe these components and how they operate.

5.1.1 SYNAPSE CROSSBAR

The neurons in the biological brain are arranged in a 3D manner, and this allows for

more connection between them. To attempt having the same level of connection in the

SNPC, a crossbar approach (which aims at merging memory and neuron update details)

is used to implement the synapses. An illustration of the synapse crossbar can be seen

in Figure 5.1. The crossbar which is a composite of an array of axons and dendtrites
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Figure 5.2: Signal diagram of crossbar operation.

crossing each other in an othorgonal manner with the horizontal representing the axon,

and the vertical representing the dendrite of the LIF neurons. Synapses are represented

by the intersections, and the value of those synapses are stored at the synapse memory.

The synapse memory is implemented with an on-chip SRAM. A total of 65K synapses

are represented in the synapse crossbar. Figure 5.2 illustrates the pipelined process of

fetching synaptic weights from synapse memory after its address has been determined

from the input spike [101].

An input spike train to the SNPC is received as a vector. During operation, the received

presynaptic spike vector is sent to the crossbar. At the crossbar, an OR operation is per-

formed on the vector to check for the presence of spike event(s). In the presence of spike

event(s), the PNU (parallel neuron update) mechanism is applied to the spike vector, to

get the memory address of the corresponding synapses whose values are stored on the in

the synapse memory. When the memory address have been gotten, they are used to fetch

the synapse values, and sent to the corresponding post-synaptic neurons for computation.

In the absence of spike event, the neuron update is not performed.
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Figure 5.3: Block diagram of the leaky integrate-and-fire neuron.

5.1.2 SYNAPSE MEMORY

The SNPC synapse memory stores the weights of each of the 65K synapses represented

in the crossbar. It is implemented with SRAM, and each synapse is represented with 8

bits. With a fan in of 256, a single neuron utilizes 256× 8 bits SRAM. The SNPC design

embeds 256 physical LIF neurons, and each of the neurons has an SRAM. This design

approach enables the synapse weights to be read from the synapse memory, to update the

neurons in parallel.

5.1.3 LEAKY INTEGRATE AND FIRE NEURON

A block diagram of the implemented LIF neuron is described in Fig. 5.3. The neuron

membrane potential is accumulated by adding up the input weighted spikes received from

the synapse memory in the integrator [102]. The resulting value is then stored in a 14-bit

register, which utilizes 13-bit to store the membrane voltage value and 1-bit for overflow.

Tomimic the leak current found in biological neural membrane, a set leak value that causes

decay in the membrane voltage value is received by the neuron when the leak is activated.

After the leak ooperation, the value of the membrane potential is compared with the

neuron threshold value. If it exceeds the threshold, an output spike is fired. If not, no spike

is fired. In the event of an output spike, the membrane potential value is reset to zero, and

the neuron enters a refractory period that lasts a few time steps [102]. As illustrated in
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Figure 5.4: Signal diagram of LIF neuron operation.

Fig. 5.4, the refractory count gradually counts down every time step from the set refractory

period to zero. While in the refractory period, the neuron cannot accumulate weighted

input spikes. However, when the refractory period is over, accumulation of weighted input

spikes resume. The LIF neuron model is adopted in this design because it has proved to

be effective for most learning applications and is suitable for digital implementation due

to its modest hardware cost [103]. The SNPC design enables the embedded 256 neurons

to be updated in one cycle using the PNU mechanism.

5.1.4 LEARNING MODULE

To achieve on-chip learning in each of the 65k synapses represented in the synapse

crossbar, an efficient implementation of the trace-based spike timing dependent plasticity

learning rule (STDP) [104] is performed. The update logic of the implemented trace-

based STDP is presented in Fig. 5.5. A learning operation requires 16 pre-synaptic spike

trace arrays, each from a classification time step. These pre-synaptic spike trace arrays

are stored in a circular memory using a 4-bit time step counter. To begin learning, the

presence of a postsynaptic spike trace array(s) stored in a memory is verified. Then the pre-
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Figure 5.5: An illustration of the trace-based STDP learnig implementation.

synaptic spike trace arrays are grouped into 8 Before and 8 After, based on their arrival time

relative to the postsynaptic spike trace array(s). An OR operation is further performed on

the 8 Before spike arrays and on the 8 After spike arrays to obtain two arrays. Using one

hot operation and the postsynaptic spike trace array(s), the associated synapses’ memory

addresses are obtained from the Before and After arrays. The corresponding synapse values

are then fetched from the synapse memory, increased for the Before spike events, decreased

for the After spike events, and then written back to the synapse memory. The implemented

trace-based STDP enables the parallel update of synapses using the PWU (parallel weight

update) mechanism.

5.1.5 CORE CONTROLLER

The SNPC core controller is designed as a state machine shown in Figure 5.6, control-

ling the SNPC’s operation. As described in It starts off Idle, which is the first and default

state. At this state the SNPC does nothing while waiting for input spikes. The arrival of
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Algorithm 5.1: Core controller operation.
Input: input spike (i_spk), start, valid_spike
Output: Output spike (o_spk)

1 if reset == True then
2 spike_buf = 0
3 state = state_idle
4 else
5 switch State do
6 /* SNPC in idle state */

7 case state_idle do
8 if start == True then
9 next_state = state_dwnld_spike

10 else
11 next_state = state_idle

/* Download input spike vector */

12 case state_dwnld_spike do
13 if Valid_spike == True then
14 spike_reg = i_spk
15 next_state = state_comp._spike
16 else
17 next_state = state_dwnld_spike

/* Process input spikes */

18 case state_comp_spk do
19 if xbar_last_spike = True then
20 next_state = state_leak
21 else
22 PNU = True
23 next_state = state_comp._spike

/* Enable decay in neuron membrane potential */

24 case state_leak do
25 LIF_neuron(0, leak, 0)
26 next_state = state_fire

/* Check fire condition for output spike */

27 case state_fire do
28 o_spk =LIF_neuron(0, 0, fire)
29 next_state = state_upld_spk

/* upload output spike to network interface (NI) */

30 case state_upld_spk do
31 NI =o_spk; next_state = state_learn

/* If learn condition is met, else go to idle */

32 case state_learn do
33 if learn_valid == True then
34 PWU = True
35 next_state = state_idle
36 else
37 next_state = state_idle 60



Figure 5.6: State machine of core controller.

a presynaptic spike vector is preceded by a signal which triggers the control unit to change

its state to the second state, allowing the presynaptic spike vector to be received. After

the presynaptic spike vector is received, the third state is enabled. In the third state, the

synapse crossbar is activated to identify and update the postsynaptic neurons by sending

the corresponding synapse values stored in the synapse memory. After the last postsynap-

tic neuron has been updated, a signal is sent from the crossbar to the control unit to move

to the fourth state. The fourth state enables decay in the value of the postsynaptic neurons’

membrane voltage, and is followed by a fifth state that triggers the postsynaptic neurons

to check for an output spike by comparing the value of their membrane potential with that

of the set threshold. At the sixth state, the spikes generated by the neurons are sent to

the postsynaotic neurons. When the sixth state is complete, the condition for learning is

examined. If satisfied, the learning, which is the seventh state, begins, and when finished,

a signal is sent to the control unit to return to the default state. If the learning condition

is not satisfied, the learning is skipped to the default state.
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5.2 EVALUATION RESULTS

5.2.1 EVALUATION METHODOLOGY

In this section, we evaluate the performance and hardware complexity of the SNPC.

The SNPC was designed in Verilog-HDL, synthesis and layout were made with Cadence

tools, using the NANGATE 45nm open-cell library [105] as the standard cells. Open-

RAM[106] was used for generating the systemmemory andTSV fromFreePDK3D45 [107].

For formance evaluation, the SNPC was used to classify the modified national institute

of standards and technology database (MNIST) [108]. The MNIST dataset is made up

of hand written digits from 0 to 9, and contains a total of 60K training images and 10K

inference images. Each MNIST image is a 16 × 16 grayscale image. The rate coding

scheme was with poisson distribution was used to encode the images into spikes. The

hardware complexity of the SNPC in terms of power and area is also analyzed.

The poisson model of spike train generation is described in [109] as : Given a time

period (0,T), the probability of a spike occurring during that period is given as:

P{1 spike during δt} ≈ rδt (5.1)

The period [0,T] is first subdivided into series of intervals each of duration δt. Next, a

sequence of random numbers x[i] uniformly distributed between 0 and 1, are generated.

Then for each interval, if the value of rδt ≥ x[i], a spike is generated. If not, no spike is

generated.

5.2.2 PERFORMANCE EVALUATION

In evaluating the SNPC performance with MNIST dataset classification, two exper-

iments were performed. In the first experiment, the MNIST images were classified us-

ing weights that were trained off-chip. As depicted in Figure 5.7(a), these weights were

trained as 256:225:10 ANN using backpropagation on matlab, and afterwards converted

to SNN using an approach adopted from [110]. Each of the synaptic weights are first

62



Figure 5.7: MNIST dataset classification on SNPC: (a) Classification with off-chip learn-
ing. (b) Classification with on-chip learning.

represented with 8 bits, and subsequently varied to analyze the effect of varying synapse

precision on the accuracy. Two SNPC modules were used for this experiment, each rep-

resenting one layer of the network. The hidden layer of 225 neurons are mapped to the

first SNPC while the second layer of 10 neurons are mappeed to the second SNPC. Each

of the 10 output neurons is assgned to each MNIST label from 0 to 9. Input spikes are

sent directly to the first SNPC, and output spikes from the first SNPC are directly sent

to the second SNPC, for processing. Before the classification begins, the trained weights

are first mapped to the SNPCs. Afterwards the classification begins and the spike trains

which have a total period of 35ms and 35 intervals of duration 1ms for each image, are fed

to the SNPC. To determine the output of each image classification, the total number of

spikes fired by each output neuron are compared. The label of the neuron with the highest

number of output spikes become the selected label. At the end of the classification, the

SNPC achieved an accuracy of 96.71%.

For the second experiment, we perform on-chip learning, with a similar network as [110].

As described in Figure 5.7(b), the network has a single layer of 100 neurons with inhibitory

recurrent connections to other neurons. With the inhibitory recurrent connections, any

neuron that spikes, inhibits the other neurons. As opposed to the off-chip learning net-

work, this network has an output of 100 neurons, and each output neuron is assigned

63



after training to the label in which it spikes the most. At the end of the classification, the

SNPC achieved an accuracy of 72.9%.

Each of the synaptic weights are first represented with 8 bits, and subsequently varied

to analyze the effect of varying synapse precision on the accuracy, and area of the SNPC

In the second experiment, the MNIST images were trained and classified using the

on-chip trace-based STDP learning module on a 256:100 network as described in Fig-

ure 5.7(b)

5.2.3 HARDWARE COMPLEXITY ANALYSIS

Table 5.1: Hardware complexity report.

System SNPC
Power Estimation(mW ) 57.55

Area(mm2) 1.290
FrequencyMHz 142

As described in Table 5.1, the SNPC occupies a silicon area of 1.290mm2 excluding

pads. At 1.1V, 25°C and a clock frequency of 142MHz, the SNPC consumes a total

dynamic and leakage power of 57.55mW. Because of the substantial amount of memory

access required for moving synapse values during learning and classification, most of the

energy consumed by the SNPC can be attributed to memory access.

5.3 CONCLUSION

In this chapter, we introduced the architecture and design of spiking neuron processing

core (SNPC), desribed its components, and their operation. The hardware complexity in

terms area and power was evaluated, and a performance evaluation with MNIST dataset

classification was also performed with on-chip and off-chip learning. In the next chapter,

an integration of the SNPC into a scalable 3D-NoC-based fault-tolerant interconnect is

presented.
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6
On The Design of Adaptive Scalable

3D-NoC-based Neuromorphic System

R
Ecent progress in tract-tracing connectomics has helped deepen our un-

derstanding of the topology of the brain [111] and has buttressed findings

which reveal that the anatomical topology of the brain network is orga-

nized as a three-dimensional small world networks. Such a network is typified by dense

local clustering of neurons with short connection lengths, and a few long-range connec-

tions between clusters [112]. As described in previous chapters, the brain is formidably

connected, and to attemt realizing a fraction of that level of connection while keeping a

reasonable communiction cost, a scalable architecture which also assumes the 3D structure
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Figure 6.1: High level view of the proposed NASH system.

of the brain is imperative. As a result, we present in this chapter, a scalable spike-based

neuromorphic system (NASH), based on three-dimensional network on chip communi-

cation architecture. We begin by describing the overall architecture, then the architecture

of the individual components. Next, we present the various routing algorithms employed

in routing spikes withinNASH system. Afterwards, we present the network performance,

system performance, and hardware complexity evaluation of NASH. Finally, we present

the conclusion.

6.1 OVERALL ARCHITECTURE

Figure 6.1 shows the overall architecture of the proposed NASH in a 4× 4× 4 config-

uraton [113]. NASH is a 3D mesh-based architecture composed of several nodes. Each

node is made up of a spiking neuron processing core (SNPC) adopted from chapter 4, a

multicast 3D router (MC-3DR) and a network interface (NI). An output spike from a

LIF neuron while performing a task is sent to post-synaptic neurons, which could be in

another node within the 3D network. The spike is encoded at the NI as a packet and sent

to the local MC-3DR, which routes it to the destination node(s) where the post-synaptic

neurons reside. At the destination node(s), the packet is decoded into spikes at the desti-
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nation NI, and sent to the local SNPC. In the following subsections, we describe in details

the various components of proposed adaptive scalable 3D-NoC-based neuromorphic sys-

tem.

6.1.1 TOPOLOGY

The NASH architecture, employs a 3D-Mesh topology to enable scalability and high

performance [114]. The authors in [115] analyzed several 2D communication architec-

ture (i.e., mesh NoC, tree, shared bus, and point-to-point) for neural networks using

various spike routing algorithms. Their evaluation result show that the 2D mesh NoC

with multicast routing is good for SNNs. As described in [116], the 3D-mesh communi-

cation architecture outweighs 2D counterpart, and this is verified in the evaluation results

described in subsequent sections.

6.1.2 FAULT-TOLERANT THREE-DIMENSIONAL MULTICAST ROUTER

Figure 6.2 illustrates the architecture of the FTMC-3DR, which is based on [79, 117].

It consists of seven input and seven output ports: one port for connecting to the local net-

work interface with which spike packets can be injected into or received from the network,

four for connecting to neighboring routers in the north, east, south, and west direction

using the intra-layer links, and the remainder for up and down ports are used for con-

necting to the routers in the closest layers, through the TSVs. Each FTMC-3DR routes

multicast packets using four pipeline stages. In the first stage, which is buffer writing

(BW), the spike flit received either from the NI or neighboring routers are stored in the

buffer of an input port [118]. In the second pipeline stage, routing calculation (RC) ob-

tains the source address of the stored flit, and uses it to derive the next address where the

flit is to be delivered, which is either in the X, Y, or Z dimension. After this address is

derived, the third stage begins. In this stage, the switch-allocator (SA), which handles a

stall/go flow-control, and the matrix arbitration (matrix-arbiter scheduler) are triggered to

allocate an output port through which the flit, will be delivered to the next routeror local

SNPC. After the right output port has been allocated, the fourth stage, crossbar traversal
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Figure 6.2: Architecture of multicast 3D spike router.

(CT) begins, and the packet traverses the crossbar through the allocated output port, to

the next destination.

6.1.3 FAULT TOLERANCE

The reliability if neuromorphic systems is considered important, especially for critical

applications like biological, space and autonomous systems. As a result, incorporating

fault-tolerance in neuromorphic system design is imperative. There are a number of pos-

sible faults that can occur in such a 3D-NoC based neuromorphic architecture and they

are generally classified as soft errors, hard faults and TSV defects [119, 120]. Some possi-

ble hard faults and soft errors are illustrated in Figure 6.3, where Figure 6.3(a), describes a

faulty open wire with a crack in it. This fault leads to an increase in resistance, and prevents
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(b)(a)

Single Event Transient

Figure 6.3: An Illustration of hard faults and soft errors [8]: (a) Open wire defect (hard
fault); (b) Single event transient (soft error).

the wire from reaching the threshold votage, which results in the transmission of wrong

signals. In Figure 6.3(b), shows the effect of a single-event particle transient fault on an

AND gate, where a wrong value is sampled due to a glitch [121].

Hard faults such as permanent and intermittent, mostly occur at manufacturing. How-

ever, intermittent faults can also recurrently occur during operation, and cease after some

time. At high temperatures, this fault can lead to timing violations, and at cooler temper-

atures, maintain normal operation, leading to inconsistency in operation. As a result, they

are often not detected during testing. For transient faults, repeating the faulty operation,

and code-based techniques such as error correction code [122] can be employed to tackle

them. Soft errors on the other hand emerge as a result of electron-holes caused by charged

particles from cosmic rays [123]. When accumulated, these charges may change the state

of a logic, leading to faulty operation. The effect of soft errors are not so adverse because

they occur within a short period. However, they are unpredictable and unavoidable. In

general, these faults are recorded be the cause of about 80% of the failures that occur in

systems [8, 124], and

The FTMC-3DR utilizes a complex recovery technique which reconfigures the system

using redundant structural resources to handle hard faults that may occur in the input-

buffers, crossbar, and links [125, 126]. In this subsection, we discuss these techniques and

how they are realized in the router
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6.1.3.1 FAULT-TOLERANT BUFFER

To handle deadlock problems that may occur in the input buffers, a mechanism called

Random Access Buffer (RAB) was inherited from [10]. As shown in Figure 6.4, this

mechanism enabled by the buffer controller in each input port, which tasked with detect-

ing deadlock. It does this by handling the assignment of read and write addresses where

a timer is used to observe a request being processed. When this request is not seved after

a certain amount of time, a deadlock notice is flagged [127]. The buffer controller then

proceeds to read the head of the next packet in the buffer, and if its requested output port

is different, a request is then made to the switch allocator to grant it. When this request is

granted, the corresponding packet is then read from the buffer, and free slots are created

to store other incoming packets [127]. After the incoming packets have been written to

the buffer, a recheck is performed for the blocked packet, and served.

The RAB along with detecting deadlock, is also able to detect transient, intermittent,

and permanent faults in the input-buffer [9], which enable it to recover from transient,

intermittent, and permanent faults that may occur in the input buffer.

6.1.3.2 FAULT-TOLERANT CROSSBAR:

In handling faults that may occur in the router crossbar, we employed a mechanism

called Bypass-Link-on-Demand (BLoD) [10] which was proposed in our previous work.

As described in Figure 6.5, the BLoD provides additional escape links which are used to

bypass the crossbar in the event of faults.

6.1.3.3 FAULT-TOLERANT TSV

The routers employed in the NASH system require inter-layer connection, and this

is achieved using TSVs [128] that serve as inter layer link. For enable each inter-layer

connection, a router needs a set of TSVs. Consequently, a router is equipped with four

TSV-clusters, and can also utilize a maximum of four nearby TSV-clusters. Therefore, a

total of eight TSV clusters are employed to handles inter-layer connections for a router.

because of high fault rate and clustering distribution, which occur in TSV, fault-tolerance
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Figure 6.4: Block diagram of random access buffer (RAB) [9].

Figure 6.5: Block diagram of bypass-link-on-demand [10].

71



in TSVs have become imperative. To handle faults that may occur in the TSV, we adopt

from our previous work, an architecture sharing TSV clusters [129][130]. These TSVs

do not follow the conventional method where they are grouped together, rather, they are

divided into four groups, and in the event that a TSV-cluster of a router becomes faulty,

to satisfy the SNN timing constraint, one out of its four neighboring clusters can be used

as a replacement with the help of supporting modules that implement a sharing algo-

rithm, instead of having redundant ones. To enable sharing, the verticval connections of

each router are assigned weights, and these weighs help to decide its priority during shar-

ing/borrowing. These weight are ususally assigned during the design process. However,

they can also be updated by a dedicated module. By changing the weights of the routers,

different TSV mappings can be created. The sharing algorithm first enables all routers in

the system share information regarding their weighs, and the status of their TSV clusters

with neighboring routers [131]. When this is completed, a mapping process begins where

routers with defected TSV clusters determine which of its neighbors is a possible candi-

date to borrow from. This choice however, depends on whether the candidate’s weight is

smaller than its own weight, the TSV’s of the candidate are healthy and has not already

been borrowed by another router, and the it has the least weight among all the consid-

ered candidates. These criterias help each router determine a candidates to borrow from.

The borrowing process is completed when the router sends a borrow request to the deter-

mined to utilize its TSV cluster as a substitute for its faulty one. However, if no possible

candidate is found, the inter-layer connection of the router is disabled. As illustrated in

Figure 6.6, there are two similar supporting modules; S-UP and S-DOWN that are em-

ployed to manage this sharing process. For both inter-layer connections; up and down, a

total of four configuration (two each) are adopted for the input and output ports.

In the event that a TSV-cluster is borrowed, the borrowing router manages this TSV

until it is disabled, after which the borrowed TSV-cluster becomes free, and is returned to

the lending router. Consequently, a similar chain created in borrowing the TSV cluster,

is also created in also created in returning it.
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Figure 6.7: Network interface encoder.

6.1.4 NETWORK INTERFACE

The Network interface is the communication link between the SNPC and the FTMC-

3DR. It is composed of two modules: Encoder and Decoder. The encoder which is de-

scribed in Figure 6.7 receives output spike vector from the SNPC and encodes it into

flits of packets using an 81-bit flit format described in Figure 6.2 before sending to the

3D-MCR to be routed to the destination SNPC. The first 2 bits of the flit indicate the
′′Type′′ of the flit: ”00” for configuration and ”11” for the spike. The next 9 bits (3 bits each

for X, Y, and Z dimensions) are used to represent the address of the source neuron. The

following 6 bits are a record of the time in which the source neuron fired the spike. The

last 64 bits are used for the spike vector. In contrast to the encoder, the decoder which

is described in Figure 6.8 receives packets from the MC-3DR and decodes it into spikes

before sending to the SNPC.

6.2 SPIKE ROUTING ALGORITHMS

To ensure efficient communication of spikes within NASH, the K-means based multi-

cast routing algorithm (KMCR), and the shortest path K-means based routing algorithm
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Figure 6.8: Network interface decoder.

were adopted from a previous work [117]. In this section, we describe these algorithms

and their operation.

6.2.1 K-MEANS BASED MULTICAST SPIKE ROUTING ALGORITHM (KMCR)

The KMCR is a combination of K-means clustering and tree-base routing. The algo-

rithm routes packets by first partitioning destination nodes into subgroups. From each

subgroup, a centroid a node which has a minimum mean distance to other nodes in the

subgroup is selected. This distance is calculated using the manhattan distance. After the

centroids have been decided, a routing tree is formed connecting the source node and the

centroids. To complete the routong path, a spanning sub-tree is formed from the centroid

to the destinations in each subgroup.

6.2.2 SHORTEST PATH K-MEANS BASED MULTICAST SPIKE ROUTING ALGORITHM (SP-

KMCR)

The SP-KMCR algorithm operates in a similar manner as the KMCR. However, after

destination subsets have been generated, the distance from source to all the destination

nodes in the subsets are calculated. Then as illustrated in Figure 6.10, a node in each

subgroup with the shortest path from the source is selectedand labelled SP nodes. Unlike

the KMCR which sends to the centroids, the SP-KMCR first routes packets to the SP
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Figure 6.9: Illustration of the k-means based multicastRrouting algorithm.

nodes from the source as shown in Figure 6.10. From these SP nodes, spikes are then

routed to destination nodes as described in Figure 6.10. The SP-KMCR despite using

shortest path, requires more computations than the KMCR, and since computations for

both algorithms are done offline, their runtime overhead ends up the same.

6.2.3 FAULT-TOLERANT SHORTEST PATH K-MEANS BASED MULTICAST SPIKE ROUTING

ALGORITHM (FTSP-KMCR)

The FTSP-KMCR algorithm [132] design is based on the SP-KMCR, and routes

packets by first computing offline, primary routing tree and backup branches from a source

to destinations. When the offline computations have been completed, the routing tables
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Figure 6.10: Illustration of the shortest Path k-means based multicast rrouting algorithm.

are configured with the computation results. An illustration of the primary route and

backup branches are described in Figure 6.10. The primary routes are computed using

the SP-KMCR, while the backup branches are alternative routes from the primary route.

These backup branches are used as a bypass in the event of faults in the primary link. The

aim of the FTSP-KMCR is to mitigate timing violations due to faulty links in SNNs.

In addition to the fault tolerant routing of spikes, a fault management algorithm is also

employed by the router to handle received packets. After a packet has been received, the

fault_flag value is extracted to verify if it is in the primary route or backup branch. The

source address of the packet is also extracted to determine its expected primary output

port. If the expected primary output port is not faulty, the packet is sent through it to the
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next router. In the event that the primary output port is faulty, the output port is changed

to use the backup branch, and the fault_flag value of the packet is updated to inform the

next router that the packet is on a backup branch.

6.2.4 ANALYTICAL ASSESSMENT

The efficiency of NASH given a randomly connected (RNDC) SNN and multicast

algorithm can be determined by the distance from source to destination, the efficient

bandwidth, the average spike rate (SR) and the maximal spiking frequency described in

equations 6.1-6.6 which are expressed in [79] as:

The total number of functional link given as:

TL = 3(1− α)
3√n2( 3
√
n− 1). (6.1)

Number of hops for each packet from source to destination:

TotalDistRNDC
3DMesh,MC = C+DistRNDC

= C+ 3λ (6.2)

The efficient bandwidth:

BWRNDC
eff,MC

∼=
wTL√
n+ 3 4

√
n .fNoC.UNoC

. (6.3)

The average spike rate for each SNPC:

fMC
p,out =

BWRNDC
eff,MC

n

=
3w(1− α)( 3

√
n− 1)

3
√
n(
√
n+ 3 4

√
n) .fNoC.UNoC. (6.4)
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The maximal spiking frequency:

fMC
spike,max =

s
Tcycle.DistRNDC =

s.fNoC
3λ

. (6.5)

The K ratio derived from (6.4) and (6.5):

K =
fMC
p,out

fMC
spike,max

=
3w(1− α)( 3

√
n− 1)3 4

√
n

s. 3
√
n(
√
n+ 3 4

√
n) .UNoC

(6.6)

Where Dist is the mean distance between two nodes, w the number of wires contained

in a link, fNoC the link frequency,UNoC the link utilization factor, Tcycle the delay in the link,

s the number of neurons in one SNPC, C ∼=
√
n is the number of connections per neuron,

λ ∼= 4
√
n is a spatial connectivity constant, and α is the fault rate in the links [133].

6.3 MAPPING AND INTEGRATION

It needs to be noted that the method employed in mapping SNNs onto NoC based

systems play a vital role in deploying SNN applications. It not only affects the overall

performance of the system, but also its power consumption. Two mapping techniques

were proposed by the authors in [134]. The first technique, uses a relatively conventional

approach which maps highly communicating tasks together, and the second technique

uses an approach that depends on degree of active neurons. In this evaluation, we mapped

SNNs onto NASH in a layer-to-layer fashion to take full advantage of the utilized routing

algorithm and the 3D mesh NoC topology, as illustrated in Figure 6.11. In this mapping

technique, the neurons in the same network layer are mapped to the same NASH layer,

and output spikes are sent only to neurons in the next layer. This approach offers multiple

parallel connections between layers (vertical connections), less congestion, and low spike

latency when compared to the baseline system [125]. In [135] a mapping method named
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Figure 6.11: SNN mapping for MNIST classification on 3 × 3 × 3 NASH: The first layer of 784 neurons
without neural computation is mapped to L1 on 9 cores (88 neurons each for cores 000-021, and 80 neurons
on core 022). The second layer of 225 neurons is mapped to L2 on 9 cores (25 neurons each for cores 100-
122). The third layer is mapped to L3 on 2 cores (5 neurons each for cores 210 and 211).

MigSpike which uses enhanced migration methods and built in hardware architecture to

place spare cluster of neurons, where faulty neurons in the system migrate to in the event

of failure. It achieves this by creating chains of migrations for unmapped neurons from

their nodes to suitable ones within the system. Also, a max-flow min-cut adaptation and

a genetic algorithm approach are employed in in resolving this migration problem.

The NASH configuration of 3× 3× 3, and an SNN size of 784:225:10 was used in the

evaluation. The input layer of 784 neurons is mapped to the first layer of NASH, utilizing

88 neurons from each of the 9 nodes in the layer. The hidden layer of 225 neurons is also
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mapped onto the second layer of NASH and utilized 25 neurons from each node in the

layer. Finally, the output layer of 10 neurons is mapped to the third layer and utilized five

neurons each from two of the nodes in the layer. For a baseline architecture of (9 × 3)

used for comparison, the input layer was mapped to the first nine vertical cores utilizing

88 neurons from each core, the second layer to the second 9 vertical cores utilizing 25

neurons from each core, and the third layer on 2 of the third nine vertical cores using five

neurons from each core.

6.4 EVALUATION RESULTS

6.4.1 EVALUATION METHODOLOGY

The proposed system was designed in Verilog-HDL, functional simulation was done

with Modelsm, synthesis and layout were made with Cadence tools. For ASIC imple-

mentation, we use NANGATE 45nm open-cell library [105] as the standard cells, Open-

RAM [106] for generating the system memory and TSV from FreePDK3D45 [107].

6.4.2 PERFORMANCE EVALUATION

6.4.2.1 EVALUATION WITH HAND WITTEN DIGIT CLASSIFICATION

To explore the efficiency of NASH, we evaluate its performance by classifying Modified

National Institute of Standards and Technology (MNIST) dataset [108] using SNN of

784:225:10 that was trained offline, and 784:100, trained on-chip. The MNIST bench-

mark was chosen for this evaluation because of its wide use, providing a basis for com-

parison with existing works. The MNIST images were converted to spikes with Poisson

neural coding.

In carrying out the evaluation, we perform two experiments. The first experiment eval-

uates the classification accuracy and average classification time (ACT) on bothNASH and

the baseline architecture using the SP-KMCR, the XYZ-UB and the XY-UB algorithms

without faults, over various spike arrival windows (SAWs). The ACT is the average time

taken to classify one MNIST image, and the SAW is the time duration given for all flits
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(spikes) from source SNPCs to arrive at a destination SNPC. The countdown of SAW

begins after the first flit arrives, and any flit that arrives after it reaches zero is not decoded.

After all flits that arrived within the SAW have been decoded, the SAW is reset. For the

second experiment, we evaluate the accuracy and ACT on both NASH and the baseline

architecture using the FTSP-KMCR algorithm over various fault rates.

Figure 6.12: MNIST classification accuracy over various SAW on NASH and baseline architecture using
the XYZ-UB and XY-UB algorithms.

In the first experiment, the accuracy over various SAWs are presented for the XYZ-

UB in Fig. 6.12 and the SP-KMCR in Fig. 6.14. For the XYZ-UB, NASH at SAWs

0.1, 0.12, and 0.14, show 25.2%, 5.04%, and 10.3% better accuracy respectively, than

the baseline architecture. Also, for the SP-KMCR, NASH at SAWs 0.1, 0.12, and 0.14,

show 25.6%, 20.5%, and 10.2% better accuracy respectively, than the baseline architecture.

This difference in accuracy is because more spikes arrived before the end of the SAWs on

NASH, enabling more spikes to be processed, which resulted in better accuracy. At SAW

0.16, the accuracy on both algorithms reach 97.6% and saturates. This is because, at this

SAW, all spikes for both architecture arrive, and further increasing the SAW as seen at

SAW 0.18 does not cause any change in the accuracy.

For the XYZ-UB in Fig. 6.13, the ACT of the baseline architecture at SAWs 0.1, 0.12,
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Figure 6.13: MNIST average classification time over various SA. with the XYZ-UB and XY-UB algo-
rithms.

and 0.13 despite having lower accuracy, are 2.9%, 0.6%, and 1.2% respectively lower than

that of NASH. For the SP-KMCR in Fig. 6.15, the ACT of the baseline architecture at

SAWs 0.1 and 0.12 with also lower accuracy, are 3.2% and 2.3% respectively lower than

that of NASH. This can be attributed to the time taken by the destination SNPC on

NASH to process the increased number of spikes that arrived. However, for the XYZ-

UB, at the accuracy saturation point of SAW 1.6 when all spikes arrive for NASH and the

baseline architecture, NASH shows 1.1% lower ACT than the baseline architecture. For

the SP-KMCR, even though NASH had reached an accuracy saturation point at SAW

0.14 and had to process more spikes than the baseline architecture that had not, it still

shows 0.4% lower ACT. At SAW 1.6 when both NASH and the baseline architecture

had reached saturation, NASH shows an even lower ACT of 2.5% than the baseline ar-

chitecture.

For the second experiment, the accuracy and ACT of NASH and the baseline archi-

tecture over various fault rates using the FTSP-KMCR algorithm are evaluated. A SAW

of 0.2 is chosen for this experimentbecause both NASH and the baseline architecture

have reached accuracy saturation, giving enough time for the changes in the ACT to be
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Figure 6.14: MNIST classification accuracy over various SAW with the SP-KMCR algorithms.

monitored when fault rate is varied. As described in Fig. 6.16, NASH and the base-

line architecture both maintain the saturation accuracy of 97.6% from 0 to 5% fault rate.

However, at 10% fault, the accuracy of the baseline architecture drops to 90%, and further

reduces to 55.77% and 41.05% as the fault rate reaches 20% and 30% respectively. NASH

on the other hand, maintains the saturation accuracy all through. The differences in ac-

curacy between NASH and the baseline architecture is because a NASH node has higher

path diversity than the baseline architecture, so in the event of faulty links, NASH has

more links that can be utilized as backup compared to the baseline architecture, therefore

delivering more spikes to the destination within the SAW than the baseline architecture.

In Fig. 6.17 the ACT for NASH and the baseline architecture starts at 45.96 and 46.98

microseconds respectively with zero fault rate, and slightly increases by 2% as fault rate

reaches 5%. However, as the fault rate further increases, the ACT of NASH increases,

while that of the baseline decreases. At 30% fault rate, NASH utilizes 40% more ACT

compared to the baseline architecture. The increase in ACT is due to the time taken to

process the increased number of spikes that arrived within the SAW, which led to better

accuracy in Fig. 6.16. While the decrease in ACT for the baseline is because fewer spikes
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Figure 6.15: Average classification time of MNIST image over various SAW with the XYZ-UB and XY-
UB algorithms.

arrive within the SAW, reducing the number of spikes processed by the its destination

SNPCs, which led to lower accuracy, as shown in Fig. 6.16.

6.4.3 HARDWARE COMPLEXITY ANALYSIS

In this subsection, we evaluate and analyze NASH node’s hardware complexity, and

then compare with the baseline node using the XY-UB, XYZ-UB, SPKMCR, and FTSP-

KMCR algorithms.

Table 6.1: Hardware Complexity Comparison of NASH and the Baseline Nodes.

architecture XY-UB XYZ-UB SP-KMCR FTSP-KMCR
Architecture Baseline NASH Baseline NASH Baseline NASH
Area (mm2) 1.312 1.316 1.316 1.322 1.320 1.325
Power (mW) 66.16 66.63 66.50 66.84 68.22 70.10

As described in Table 6.1 and Fig. 6.21, an FTSP-KMCR NASH node occupies a

silicon area of 1.325mm2 excluding pads. Fig. 6.18 shows that the synapse crossbar and

SRAM-based synapsememory occupy a significant portion of the chip area at 90.3%. This

is because of the considerable amount of stored synapses. All 256 neurons occupy 1.3%

of the node area, the STDP learning module occupy 7.8%, and the network interface and
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Figure 6.16: MNIST classification accuracy over various fault rates using the FTSP-KMCR.

router occupy 0.6%. At 1.1V, 25°C and a clock frequency of 142MHz, an FTSP-KMCR

NASH node consumes 70.10mW. Assuming that all 256 neurons spike at the same rate,

each spike event results to 256 synaptic operations in one cycle. With cortical fast spiking

neurons able to generate spikes at rates up 582Hz, the corresponding rate of synaptic op-

eration in NASH is 37M synaptic operations per second. Therefore, a clock frequency of

142MHz is sufficient to operate at biological real time. Because of the substantial amount

of memory access required for moving synapse values during learning and classification,

most of the energy consumed by NASH can be attributed to memory access.

A comparison ofNASHand the baseline architecture of XY-UB,XYZ-UB, SP-KMCR,

and FTSP-KMCR algorithms presented in Table 6.1 show that the NASH node of these

algorithms occupy larger footprint and has higher power consumption when compared to

the baseline architecture nodes. This is due to NASH’s increased design complexity and

its higher degree of path diversity enabled by TSVs, whose diameter also add to the foot-

print. Figure 6.20 evaluates how changes in synapse precision affect both the hardware

complexity and the performance of NASH. With increased precision, the area, power and

performance increases, and reduces otherwise. The energy per synaptic operation (SOP)
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Figure 6.17: Average classification time of MNIST image over various fault rates with theFTSP-KMCR
algorthm.

of NASH is a division of the power consumption of the SNPC and the rate of synaptic

operation. NASH performs a maximum of 256 operations in one cycle, except for the

STDP synapse update, which takes two cycles.

6.5 CONCLUSION

In summary, this chapter presented the architecture, hardware design, and evaluation of

an adaptive scalable 3D-NoC-based neuromorphic system with on-chip learning, named

NASH. The proposed system leverages the high scalability and parallelism, low commu-

nication cost, and high throughput available in 3D-NoC to present a neuromorphic ar-

chitecture capable of supporting large SNN with massive number of synapses. To handle

challenges that may arise in spike communication and lead to performance degradation,

we employed the FTSP-KMCR routing algorithm. We presented the network and per-

formance evaluation of NASH with and without faults. From the evaluation results, we

found that NASH achieved an accuracy of 79.4% and 97.6% on MNIST data set classifi-

cation with on-chip and off-chip learning, respectively. Moreover, the experiments show

that the proposed NASH achieves better accuracy with less ACT when compared to the
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Figure 6.18: Area analysis of a NASH node.

baseline architecture and sustains a 97.6% accuracy with up to 30% fault rate while expe-

riencing a 40% increase in the ACT as opposed to the baseline architecture. In the next

chapter, we present the conclution of this thesis, and describe directions that will guide

our future work.

88



Figure 6.19: Accuracy evaluation over various synapse precision

Figure 6.20: Hardware complexity over various synapse precision.
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Figure 6.21: Layout of a 2× 2 NASH system.
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7
Conclusion and Future Works

I
N THIS DISSERTATION, we presented an adaptive scalable 3D-NoC-based

neuromorphic system (NASH).NASH shows essential characteristics, such

as low latency, high throughput, high reliability, and low footprint which

make it suitable for large-scale SNN-based embedded artificial intelligence (AI) imple-

mentations.

Prior to presenting the NASH design, we presented the architecture of a light-weight

spiking neuron processing core (SNPC) with on-chip learning, which is the backbone of

NASH. Embedding 256 physical neuron and 65K synapses in 256 distributed SRAMs of

256-bank, the SNPC is able to perform parrallel update of neurons and synapses using the

PNU and PWU mechanisms. The SNPC was evaluated by classifying MNIST 16×16
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images with off-chip and on-chip learning. From the evalution, the SNPC was able to

achieve an accuracy of 96.71 and 72.9% with off-chip and on-chip learning respectively.

NASH then integrates several SNPCs in a 3D-NoC communication architecture which

enable it to provide high scalability, parallelism, low communication cost, and high through-

put. To handle challenges that may arise in spike communication and lead to performance

degradation, NASH enables adaptivity, by adoopting the FTSP-KMCR routing algo-

rithm. The evaluation result from classifying 28×28 MNIST images on NASH achieved

an accuracy of 79.4% and 97.6% for on-chip and off-chip learning, respectively. More-

over, the experiments show that the a better accuracy was achieved with less ACT when

compared to the baseline processor, and the accuracy of 97.6% was sustained with up to

30% fault rate while experiencing a 35% increase in the ACT as opposed to the baseline

system.

It is important to note that there are several other issues that need to be addressed in

the NASH system. One of these issues is mapping. In this dissertation, we used the

layer based mapping approach. Howwver a comprehensive mapping technique needs to

be ivestigated because mapping influences the overall performance of the neuron com-

munication architecture. Furthermore, other forms of adaptivity need to be investigated.

This research focused only on permanent faults that may occur in the communication links

among neurons, however; other parts such as neurons and memory, need to be consid-

ered. Another issue that needs to be addressed is application. The evaluation of NASH

was done by classifying MNIST dataset, but while MNIST is a popular dataset for evalu-

ating machine learning systems, It does not fullly exploit the advantages of NASH. There-

fore applications (eg. biological) that will fully harness the advantages of NASH for im-

proved performance and energy efficiency need to performed. These issues in all, provide

a roadmap that will guide future works.
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