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Abstract

This study aims to explore the heart rate variability (HRV) and personal identi-
fication using the electrocardiogram (ECG) at different water temperatures (WTs)
during bathing. There are ten subjects in the experiment, including five males and
five females. The ECG is collected at five WTs conditions, which are 37±0.5 ℃,
38±0.5 ℃, 39±0.5 ℃, 40±0.5 ℃ and 41±0.5 ℃, respectively. Three ECG record-
ings are collected using the non-contacts electrodes at each preset WT condition
for each subject. Each recording is 18 minutes long, the sampling rate is 200 Hz.
Finally, we collect 150 ECG recordings and 150 WT recordings during bathing.
To perform the HRV analysis, 1-minute ECG segment is used each time. Twenty
HRV features which including the time domain, frequency domain, and the non-
linear domain measures are calculated. The variety of the measured HRV features
is analyzed using the k-means clustering analysis method based the preset WT
conditions during bathing. What’s more, the mean, standard deviation (SD), and
significant differences of the measured HRV features based on the WT conditions
are calculated. The experimental result shows that with increasing WT, the HRV
features of pLF, LF/HF, HR, and SD1/SD2 are monotonously and significantly
(p < 0.05) increased, and the D2, HF power, total power, pHF, mean RRI, SDNN,
RMSSD, SDSD, AURRI, SD1, and SD2 are monotonously and significantly (p <
0.05) decreased. Therefore, we confirm that the WT has an important impact on
the HRV. To accurately and quickly perform personal identification using ECG at
different WTs, firstly, we explore how to improve the personal identification per-
formance. We notice that increasing the diversity of training samples can greatly
improve the identification rate. Compare to the previous study, the accuracy
based on low WT is increasing from 12.17% to 90.49%, and the accuracy based on
high WT is increasing from 13.33% to 90.00%. Both of the two accuracy increased
approximately 6 times. Because the ECG has strong time-dependent characteris-
tics, then we design an recurrent neural network (RNN)-based accurate personal
identification system. The robust and best identification rate is more than 96.31%.
Finally, we investigate the impact of the number of heart beats on personal iden-
tification rate. When the number of selected QRS is 20 or greater, the robust
identification rate is more than 98.00%.



概要

この研究は、異なる水温（WT）でそれぞれ入浴中の心電図（ECG）を計
測し、心拍変動（HRV）と個人識別を調査することを目的としています。実験
に参加する被験者は、男性 5 人と女性 5 人の 10 人です。心電図は、37±0.5℃、
38±0.5℃、39±0.5℃、40±0.5℃、41±0.5℃の 5つのWT条件で収集します。各
被験者の設定した WT 条件で非接触電極を使用して 3 回心電図を記録しまし
た。1 回の記録時間は 18 分、サンプリングレートは 200Hz です。最終的に入
浴中に心電図記録 150 回と WT 記録 150 回を収集しました。HRV 解析には、
毎回 1 分間の心電図セグメントが使用されます。時間域、周波数域、非線形
域を含む 20 種類の HRV 特徴量を算出しました。測定された HRV 機能の多
様性は、あらかじめ設定された入浴中の WT 条件に基づいて k-means クラス
タリング分析法を使用して分析されます。さらに、WT 条件に基づいて、測定
された HRV 各特徴量の平均値、標準偏差（SD）、有意差を算出しました。実
験結果は、WT の上昇に伴い、pLF、LF / HF、HR、SD1 / SD2 の HRV 機能
が単調かつ有意に（p <0.05）増加し、D2 、HF パワー、総パワー、pHF、平均
RRI、SDNN、RMSSD、SDSD、AURRI、SD1、SD2が単調かつ有意に（p<0.05）
減少します。このことから、WT が HRV に重要な影響を与えていると考えら
れます。異なる WT で計測した ECG を使用して個人識別を正確かつ迅速に
行うために、まず個人識別のパフォーマンスを向上させる方法を検討します。
その結果、学習サンプルの多様性を高めることで、識別率を大幅に向上させる
ことができることがわかりました。従来手法と比較して、低 WT では 12.17％
から 90.49％に、高 WT では 13.33％から 90.00％に精度が向上していること
がわかります。両方とも約 6 倍の精度が向上しました。心電図は時間に依存
する特性が強いため、リカレントニューラルネットワーク（RNN）に基づく
正確な個人識別システムを設計しました。その結果、最高の識別率は 96.31％
以上です。最後に、心拍の個数が個人識別の識別率に与える影響について調査
します。選択された QRS の数が 20 以上の場合、ロバスト識別率は 98.00％以
上になります。
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Chapter 1

Introduction

This chapter mainly introduces the related knowledge about heart rate vari-
ability (HRV) and personal identification.

1.1 Historical Overview of HRV
Humans have been studying the HRV thousands of years ago. The pulse is

caused by changes in the pressure that blood exerts on arterial vessels when the
heart ejects blood. Heart rate refers to the number of times the heart beats
(systolic and diastolic) per unit time (1 minute), that is, the number of times the
heart beats per minute. In a resting state, the pulse rate and heart rate are almost
same for a healthy person. In some special cases, such as a pregnant woman or a
person with heart diseases, high blood pressure, asthma, or pregnancy, the pulse
rate will change. According to the existing historical records, humans began to use
the pulse to diagnose diseases from about 800 BC to 200 BC. A Chinese famous
physician of Bian Que (扁鹊, about 500 BC, also known as Qin Yueren, 秦越
人) diagnosed some diseases based on the variation of the pulse rate [2]. He used
his fingers to press the pulse of the patient to observe the pulse changes, and to
identify the rise and fall of viscera functions and the stagnation of blood, fluid, and
essence. At the same time, Bian Que also comprehensively used the methods of
looking, smelling and asking to diagnose diseases. Specifically, ”looking” means to
observe the patient’s development, complexion, tongue coating, face, etc. with the
eyes, and to detect the internal organs lesions through the external body surface.
”Smelling” means listening and smelling, listening to the patient’s voice, coughing,
wheezing, etc., sniffing the patient’s odor, if there is no bad breath, body odor, etc.,
through the level, strength, turbidity, and urgency of the patient’s language breath.
Distinguish between the deficiency and the actual cold and heat of the disease.
”Asking” is to inquire the patient’s symptoms, medical history, etc.; to understand
the medical history and family medical history, etiology, disease process, treatment
process, symptoms, diet, etc. through inquiries. Subsequently, an ancient Greek
physician and scientist named Herophilos (about 335 BC to 280 BC) used a water
clock to measure the pulse rate [3]. A British doctor named John Floyer (1649–
1734) invented a pulse watch, which can be used to accurately measure pulse
rate in clinical practice [4]. Rev. Stephen Hales (1677–1761) was the first to
report that the beat-to-beat interval and arterial pressure level varied during the
respiratory cycle [5]. Carl Ludwig (1816–1895) invented a device named smoked
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drum kymograph in 1847, which can be used to measure the mechanical activity.
He was the first person to record the amplitude and periodic oscillations of arterial
pressure waves that change during respiration. His experiment result showed that
the pulse rate regularly increased during inspiration and slowed during expiration
[6]. At the end of the 19th century and the beginning of the 20th century, Willem
Einthoven (1860-1927) used a galvanometer to accurately measure the changes
in current and recorded the electrical activity of the heart continuously for the
first time [7]. With the development and standardization of the electrocardiogram
(ECG), it has become possible to evaluate the successive changes in the heart
rhythm. In the early 1960s, Norman Jeff Holter invented a portable ECG recording
instrument, which can continuously record 24 hours of ECG. This invention allows
humans to further explore the relationship between heart rate (HR) changes and
cardiac disease [8]. Beginning in the early 1970s, Hyndman et al. used power
spectrum analysis methods to study the physiological basis of the various frequency
components that make up the periodic changes of the HR [9]. In 1987, Goldberger
and West evaluated the nonlinear dynamic characteristics of HRV [10]. Thanks to
these pioneering studies of predecessors, the field of HRV has expanded rapidly.
In recent years, both linear (time, frequency, and time-frequency domain) and
non-linear HRV analysis techniques have been used to quantify HRV.

1.2 Influencing Factors of HRV
HRV is an important indicator of physical and mental health. The instanta-

neous HRV rhythm represents a dynamic balance between the sympathetic nervous
system (SNS) and parasympathetic nervous system (PNS) branches of the auto-
nomic nervous system (ANS) [11]. Therefore, the quantitative analysis of HRV is
considered an effective method for the diagnosis of many cardiac diseases in clini-
cal applications. However, HRV is affected by many internal and external factors.
The internal factors mainly include mental stress, gender, age, and disease, while
the external factors mainly include sleep, drugs, alcohol, smoking, and diet.

1.3 HRV Analysis Techniques
The HRV analysis techniques mainly include linear and non-linear techniques,

and the linear HRV analysis technique divided into the time domain, frequency
domain, and time-frequency domain techniques.

1.3.1 Linear Analysis
1.3.1.1 Time Domain

Essentially, the HRV analysis is to calculate the variations of the R-R intervals
or the normal-normal intervals. SDNN: the standard deviation of all NN intervals;
SDANN: the standard deviation of the averages of NN intervals in all 5-minute
segments of the entire recording; RMSSD: the square root of the mean of the sum
of the squares of differences between adjacent NN intervals; MSDNN: Mean of
the standard deviations of all NN intervals for all 5-minute segments of the entire

2



1.3. HRV ANALYSIS TECHNIQUES

recording; SDSD: Standard deviation of differences between adjacent NN intervals;
NN50: Number of pairs of adjacent NN intervals differing by more than 50 ms in
the entire recording; pNN50: NN50 count divided by the total number of all NN
interval; The time domain measures mainly include the statistical measures and
geometric measures, they are easy to calculate, as is shown in Tab. 1.1.

1.3.1.2 Frequency Domain

Although the time domain HRV analysis techniques can measure the total
variability of HRV, there is a notable exception that they can not measure the
specific components of HRV. Since the late 1960s, with the rapid development of
signal processing technology, researchers began to study the frequency components
of HRV. Power spectral density (PSD) analysis decomposes the total variance of
a series of continuous beats into its frequency components, that is, how power is
distributed as a function of frequency; The spectral power for a given frequency
can then be quantified by determining the area under the curve within a specified
frequency range. The two most common spectral analysis approaches are Fast
Fourier Transform analysis (FFT) and autoregressive (AR) modeling. The HRV
parameters in frequency domain is shown in Tab. 1.2.

1.3.1.3 Time-Frequency Domain

When the spectral characteristics change rapidly, the conventional power spec-
trum methods like FFT and AR modeling that are not appropriate to analyze the
biomedical signals. On the other hand, time-frequency analysis has more ideal
time-varying spectral characteristics based on instantaneous frequency. The time-
frequency approach can be used to analyze the variation of the ANS behavior both
in steady-state and non steady-state.

1.3.2 Non-linear Analysis
With the development of digital signal processing technology, some non-linear

analysis technologies are also used to measure the HRV, such as the SD1: the
standard deviation of the PP perpendicular to the line of identity; SD2: the
standard deviation of the PP along to the line of identity; En(0.2): approximate
entropy computed with the threshold r set to 0.2*SDNN; En(rmax): approximate
entropy computed with the threshold r set to value which maximizes entropy; En(r
chon ): approximate entropy computed with the threshold r set to value computed
with the formula proposed by Chon; D2: correlation dimension, and so on. The
details are shown in Tab. 1.3.

1.3.3 Statistical Analysis
Statistical analysis refers to the establishment of a specific mathematical model

through mathematical principles and methods, which could scientifically, accu-
rately, and objectively perform mathematical statistics and analysis of the quan-
titative changes of a specific research object, and finally forming a quantitative
conclusion, and then revealing the development trend of the research object，rela-
tionships, and changes. Statistical analysis is the science of collecting, exploring,
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1.4. PERSONAL IDENTIFICATION

and presenting large amounts of data to discover underlying patterns and trends.
In this study, we use the clustering analysis and variance analysis technologies.

1.3.3.1 Clustering Analysis

Cluster analysis refers to the analysis process of grouping a collection of phys-
ical or abstract objects into multiple classes composed of similar objects. It is
an important human behavior. The goal of cluster analysis is to collect data to
classify on the basis of similarity. Clustering comes from many fields, including
mathematics, computer science, statistics, biology, and economics. Many cluster-
ing techniques have been developed based on different application fields. These
technical methods are used to describe data, measure the similarity between dif-
ferent data sources, and classify data sources into different clusters. Clustering
is a process of classifying data into different classes or clusters. Therefore, the
similarities are big in the same cluster. From a statistical point of view, clus-
ter analysis is a method of simplifying data through data modeling. Traditional
statistical cluster analysis methods include systematic clustering, decomposition,
addition, dynamic clustering, ordered sample clustering, overlapping clustering
and fuzzy clustering. Cluster analysis tools using k-means, k-center points and
other algorithms have been added to many well-known statistical analysis software
packages, such as SPSS, SAS, etc.

1.3.3.2 Variance Analysis

R.A. Fisher invented the analysis of variance (ANOVA) and used to test the
significance of the difference between the means of two or more samples. The basic
idea of variance analysis is to determine the influence of controllable factors on the
research results by analyzing and studying the contribution of different sources of
variation to the total variation. According to the different types of data design,
there are two methods of analysis of variance as follows: 1. To compare the mean
of multiple samples in a group design, the analysis of variance with a completely
random design should be used, that is, one-way analysis of variance. 2. For the
comparison of the mean values of multiple samples in the random block design,
the analysis of variance of the compatibility group design should be used, that is,
the two-factor analysis of variance.

1.4 Personal Identification
There are many personal identification methods. They can be divided into two

aspects, non-biometric and biometric methods.

1.4.1 Non-biometric Methods
The non-biometric techniques include ID cards, keys, personal identification

numbers (PINs), and passwords [12], as shown in Fig. 1.1. They are also called
traditional identification methods. The PINs code is a security code used to verify
the identity of a person. It is widely used for any digital content that needs to
be accessed, which can include communication equipment, car locks, home locks,
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and so on. Like a password, a PINs can also encrypt and protect the database so
that other people cannot access your data. Therefore, the PINs should be kept
secret because it is a credential to access important services, such as financial
transactions. The obvious difference between the PINs and the password is that
the PIN is limited to numbers (0-9), and the password can contain numbers,
uppercase and lowercase letters, punctuation, and so on. For each number in the
PIN, you have only 10 options available, but the password can have more options.
The more options for each character, the harder the password is to crack. So, the
password is safer than the PINs.

Although they have been used for personal identification and can protect sys-
tems and databases by restricting access, with the advancement of forgery tech-
nology, they are now easily cracked. Traditional passwords, PINs and ID cards
have many shortcomings. For example, in the process of use, passwords and PINs
are particularly dependent on the user’s memory and are easy to forget, keys and
IDs are also easily lost and stolen.

1.4.2 Biometric Methods
Because of the insecurity and inconvenience of the non-biometric, biometric

techniques have been attracting attention in recent years. The biometric feature
has some its own intrinsical characteristics, which are: Uniqueness: The charac-
teristics of any two people should be sufficiently different. Universality: A char-
acteristic that everyone should have. Collectability: Features can be measured
easily and quantitatively. Persistence: The features should be immutable enough
for a period of time (relative to the matching criteria) [13–18].

According to the above inherent characteristics of biometrics, the biometric
methods can be divided into behavioral biometrics and physical biometrics [19–24].
The gait, voice and signature which are associated with the behavior or dynamic
measurements of an individual that can be taken as the behavioral biometrics, as
shown in Fig. 1.2. The fingerprint, face, ear, DNA, iris, retina and hand geometry
which are associated with the shape or measurements of the human body that can
be taken as the physical biometrics [25–28], as shown in Fig. 1.3.

Traditional authentication technology depends on what you have and know,
while biometric authentication depends on your identity. Compared with tradi-
tional identity verification technology, biometric technology is more difficult to be
stolen, forgotten, borrowed or forged. Therefore, the authentication process based
on biometrics is safer. Each biometric feature has its own advantages. Firstly, be-
cause biometrics cannot be lost or forgotten (passwords can be lost or forgotten),
they are inherently more reliable than password-based authentication. Secondly,
password-based authentication can be passed by anyone who knows the password,
and the person who sets the password does not need to be present. However,
biometrics are more difficult to copy, share and distribute. The biometric iden-
tification system requires that the person being verified must be present at the
specified place at the specified time. In some cases, biometric technology can be
used in conjunction with passwords (or tokens) to enhance the security provided
by the authentication system. In addition, cracking a biometric system requires
more professional knowledge and experience. It not only costs more time and
money, but also often leaves more visit records and traces in the cracking process,
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which greatly increases the cost and risk of the crime. Therefore, the authen-
tication scheme based on biometrics is a powerful alternative to the traditional
authentication scheme.

However, with the advancement of various forgery technologies, each biometric
feature slowly exposed its own shortcomings. Some biometric features are exposed
on the surface of the human body. With the emergence of various forgery tech-
nologies, they are now easily forged and becoming more and more insecure. For
example, the fingerprints could be copied, facial features are easily forged by 3-D
models, iris could be photographed, sounds are recorded by a tape recorder, and
hand geometry or veins on the back of the hand can be also copied. According
to application requirements, appropriate biometrics should be used for a given
authentication application.

1.5 ECG-based Personal Identification
Among the current biometric technologies, DNA and ECG are the safest, and

they are extremely difficult to forge. Therefore, their applications are becoming
more and more extensive, and they are playing an increasingly important role in
civil, commercial and government applications. However, because DNA is difficult
to extract, DNA-based biometric technology is currently mainly used in govern-
ment applications for criminal and forensic investigations. Because ECG is easy to
collect, in recent years, ECG-based biometric technology has become a research
hotspot in academia and industry. Like DNA, the ECG is also regarded as an
emerging biometric technology.

The ECG shows the process of the electrical activity of the heart. It exists
in all the living person, and is usually used for medical diagnostic purposes in
clinical practice. A normal ECG waveform includes three important parts, which
are P wave, QRS complex and T wave [29–35]. Among them, the QRS complex
contains more discriminative information. Many previous studies have proposed
the use of QRS complex for personal identification [36–39].

L. Biel et al. used the ECG to perform personal identification in 2001 [40].
They collected the ECG signal using the standard 12-lead method when the sub-
jects were rest. Then, they extracted some ECG features and performed personal
identification in the predetermined group. The multivariate analysis method was
used during the identification process. Their experiment result confirmed that it
was feasible to perform personal identification with the features that extracted
from one lead. And only three electrodes attached on the subject was enough
when collected the ECG.

M. Kyoso and A. Uchiyama designed an identification system using the ECG
signal in 2001 [41]. First, they extracted some important ECG features from
the patients and registered them in the system. Then they performed personal
identification by comparing the new ECG features and the previously registered
ECG feature. The important ECG features and their combinations were used to
test the system.

Z. Zhang and D. Wei proposed an ECG-based human identification system
using the Bayes’ theorem in 2006 [36]. They collected 502 ECG recordings from
502 subjects. Each recording was segmented into two parts: half of the data was
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1.5. ECG-BASED PERSONAL IDENTIFICATION

used for training, half of the data was used for testing. The variables dimension of
the extracted ECG features were reduced using the principal component analysis
method. The Bayes theorem was used to performed personal identification. The
experiment result showed that the Bayes theorem method could achieve better
performance than the Mahalanobis distance.

A. D. Chan et al. used the Wavelet distance measure to perform personal
identification with ECG signal in 2008 [42]. The subject was holding two elec-
trodes on the pads of his thumbs using his thumb and index fingers during the
data collection process. There were 50 subjects in the experiment. Each subject
collected one ECG recording per day. Three ECG recording were collected for
each subject. One recording was used to train and the the other two recordings
were used to test. Three quantitative measures of correlation coefficient, percent
residual difference, and a novel distance measure based on wavelet transform were
used to perform classification. The final classification accuracy was 89%. They
confirmed that the accuracy based on the wavelet distance measure was higher
than that the other two methods by almost 10%.

T.-W. D. Shen et al. designed a one-lead ECG-based identification system for
a normal population in 2010 [43]. They collected 168 short-term ECG recordings
using Lead-I when the subjects were in rest state. And 50 ECG recordings were
randomly selected to train and test the system. The templates and new ECG
databases were generated by the signal averaging method during the denoising
process. Then the distance classification and template matching methods were
used to test the system performance. The identification rate was 98% based on
single algorithm and 100% based on the combined system model that added the
prescreening process. The final accuracy was 95.3% using the 168 ECG recordings
based on the combined model.

Z. Zhao and L. Yang proposed an ECG-based identification system using the
matching pursuit and support vector machine in 2011 [44]. The important in-
formation of the ECG signal was decomposed into different atoms by sparse de-
composition method with Gabor dictionary. Then, they used the support vector
machine to perform identification and achieved 95.3% identification rate with 20
subjects.

F. Zeng et al. designed a statistical-based ECG identification algorithm using
the matching reduced binary pattern theory in 2012 [45]. The experiment result
showed high identification rate and low computational complexity using the public
normal sinus rhythm and MIT-BIH arrhythmia databases. The main contributions
of this algorithm was that it didn’t need waveform complex information and de-
noising during the whole identification process.

Z. Zhao et al. proposed an ECG-based identification system using the ensem-
ble empirical mode decomposition (EEMD) in 2013 [46]. To reduce the effects
of noise and heart rate variability, they performed noise elimination, heartbeat
normalization, and quality measurement during the preprocessing process. The
K-nearest neighbors (KNN) was taken as the classifier. The Welch spectral analy-
sis was used to extract the significant heartbeat features and then decompose the
ECG into a number of intrinsic mode functions (IMFs). The principal component
analysis was used to reduce the dimensionality of the feature space. The sys-
tem achieved 95% identification rate with 90 subjects from three MIT-BIH ECG
databases that were the PTB, the long-term ST, and the ST change database.
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1.6 Artificial Neural Network
WS. McCulloch et al. published a paper titled a logical calculus of the ideas

immanent in nervous activity, which has since inspired people’s interest in studying
the Artificial Neural Network (ANN) in 1943 [47]. The ANN has been a research
hotspot since it emerged in the field of artificial intelligence (AI) in 1980s.

As we all know, the brain has super learning and thinking abilities. It can
analyze incomplete, unclear, and vague information and make its own judgments
based on these information. Simply put, an ANN is a computer program that
simulates the way of processes information of the human brain. It collects knowl-
edge by detecting patterns and relationships in the data, and abstracts the human
brain neuron network from the perspective of information processing, establishes
a certain simple model, and forms different networks according to different con-
nection methods. Specifically, an ANNs is composed of processing units called
neurons. Multiple processing units are connected to multiple artificial neurons
through different weight coefficients to form an ANNs. The number of process-
ing units, weight coefficients, and neurons can all be considered adjustable, which
reflects that the nature of neural networks is actually a complex parameterized
system.

1.6.1 Convolutional Neural Network
Convolutional Neural Network (CNN) is one of the representative algorithms

of deep learning, and the research on it began in the 1980s.
Alexander Waibel et al. invented the first CNN, which was time delay neural

network (TDNN) in 1987 [48]. TDNN was a CNN which was applied to speech
recognition field. Its input was the preprocessed speech signal using FFT. Its
hidden layer consisted of two one-dimensional convolution kernels that were used to
extract the shift-invariant features in the frequency domain. In 1988, W. Zhang et
al. invented the shift-invariant ANN (SIANN) which was a two-dimensional CNN
in the field of medical images detection in 1988 [49]. Y. LeCun et al. independently
constructed a CNN for image classification, it was the original version of LeNet
in 1989 [50]. It consisted of two convolutional layers, two fully connected layers,
a total of 60,000 learning parameters, which were much larger than TDNN and
SIANN. It was structurally close to modern CNNs.

Subsequently, Y. LeCun et al. designed a CNN named LeNet-5 dedicated
to handwritten digits recognition in 1989 [51]. The LeNet-5 added a pooling
layer compare to the LeNet which was used to filter the input features, but it
still followed LeNet’s learning strategy. Both of the LeNet-5 and its subsequent
variants defined the basic structure of modern CNNs. The shift-invariant features
of the input images could be effectively extracted depended on the alternately
construction of the convolution-pooling layers in the LeNet-5. The success of
LeNet-5 has aroused people’s attention to the application of CNNs. Microsoft
developed an optical character recognition (OCR) system using CNN in 2003 [52].
Other applied research based on CNNs has also been developed, including portrait
recognition and gesture recognition [53, 54].

Dure to the advancement of deep learning theory, especially the emergence of
layer-by-layer learning and fine-tuning techniques, CNNs began to develop rapidly,
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1.7. MOTIVATION OF THIS STUDY

and the structure continued to deepen, and various learning and optimization
theories were introduced after 2006. A. Krizhevsky et al. designed a famous CNNs
named AlexNet and it became the champion in the competition of ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) in 2012 [55]. Then, several famous
CNNs repeatedly became the champion in this competition, which were the ZFNet
in 2013, GoogLeNet and VGGNet in 2014, ResNet in 2015 [56–58].

To sum up, the CNN is a kind of feedforward neural network with convolution
calculation and deep structure. It constructs the visual perception mechanism of
the creature, which can perform supervised learning and unsupervised learning.
It is also called a shifting invariant ANN (SIANN) due to it can perform shift-
ing invariant classification. The convolutional kernel parameter sharing and the
sparseness of the inter-layer connection in the hidden layer enable the CNN to
smaller computational computations for grid-like topology features such as pixel
and audio, have a stable effect and have no additional feature engineering re-
quirements for the data. In the late 20th century, with the introduction of deep
learning theory and the improvement of numerical computing equipment, CNN
has developed rapidly and is widely used in computer vision, pattern recognition,
natural language processing and other fields.

1.6.2 Recurrent Neural Network
Although the CNN has very powerful picture information processing capabil-

ities, when it is used to process pictures or signals with temporal characteristics,
it shows certain congenital defects. Therefore, people have proposed an algorithm
specifically used to process pictures with obvious timing characteristics, which is
called Recurrent Neural Network (RNN) [59]. It is also a kind of ANN. Each
node of it is strictly arranged in a directional array according to the time series.
Therefore, RNN is very good at dealing with the nonlinear characteristics of time
series. Its biggest feature is that it has a powerful parameters sharing ability and
memory ability. RNN is mainly used to deal with various time series problems,
such as stock forecasts, weather forecasts, typhoon forecasts, machine translation,
speech recognition and other natural language processing (NLP) fields. Currently,
the more famous RNNs are: Bidirectional RNN and Long Short-Term Memory
networks (LSTM).

1.7 Motivation of This Study
Many previous papers confirmed that the HRV were affected by many factors,

such as the sleep, diet, drug, exercise, stress et al. This study aims to explore the
impact of water temperatures (WTs) on HRV during bathing.

In our previous study [60], we found that the WTs had an important impact
on the personal identification using ECG during bathing. This study explores how
to improve the personal identification performance using ECG during bathing. To
accurately and fastly perform personal identification using ECG during bathing,
choosing a suitable classifier is especially important. Therefore, we explore the
impact of different classifiers such CNN and RNN on the personal identification
rate using ECG during bathing.
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In order to reduce the computational complexity and improve identification
accuracy, the number of heart beats should be moderate. Therefore, this study
also explores the impact of the number of heart beats on the personal identification
rate using ECG during bathing.

1.8 Structure of This Dissertation
This study includes five chapters, chapter 1 is the introduction, which presents

the relevant knowledge about HRV, HRV analysis, non-biometric and biometric
personal identification methods, ECG-based personal identification history and
methods, the development of ANN which including CNN and RNN, the main
motivation of this study, the structure of this study. Chapter 2 elaborates the
measurement of the ECG during bathing. Chapter 3 introduces the HRV analysis
during bathing, twenty HRV features which including time domain, frequency do-
main, and non-linear domain are calculated in this study. Chapter 4 mainly elab-
orates the personal identification using ECG during bathing. Firstly, we explore
how improve the personal identification performance using CNN. We transform
the segmented QRS into the binary images and then perform personal identifica-
tion using the CNN. Then, in order to quickly and accurately perform personal
identification during bathing, the ECG data is collected at five mostly used WTs
during bathing, which are 36.5 ℃–37.5 ℃, 37.5 ℃–38.5 ℃, 38.5 ℃–39.5 ℃, 39.5
℃–40.5 ℃, 40.5 ℃–41.5 ℃, respectively. Finally, we explore the impact of dif-
ferent heart beats on the personal identification rate during bathing using ECG
signal. We confirmed that when the number of test heart beats is more than
20, the variety of identification rate curve becomes stable. The structure of this
dissertation is shown in Fig. 1.4.
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1.8. STRUCTURE OF THIS DISSERTATION

Figure 1.4: Structure of this dissertation.
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Chapter 2

Measurement of Bathtub ECG

2.1 Historical Overview of Bathtub ECG
The research of bathtub ECG has a long history, many previous studies explore

the collection and application of the bathtub ECG. In order to relieve the burden
of the physicians and make early heart diseases detection and preventive diagnosis
purpose, S. C. Kwatra et al. used a composite conductive medium formed by the
patient’s body and the external liquid medium such as tap water in a bathtub at
a patient’s home to collect ECG signal [61]. Then the suitably processed signals
are transmitted to the physician’s clinic by the telephone line. However, the
disadvantage of this method is that the magnitude and phase of the ECG signal
will distort in the low-frequency region in the process of transmission through the
bathtub and recording electrodes.

T. Togawa et al. collected the bathtub ECG with three silver electrodes [62].
They add some salt into the water or let the water through an ion exchange resin
column to change the electrical conductivity of the bathtub water. Then the ECG
signal was collected by the battery-operated ECG unit with a high gain differential
amplifier through a hum filter. They found that covering electrodes with porous
materials can reduce the baseline wandering wandering while the bathtub water
was stirred, and increasing the conductivity of the water can reduce the amplitude
of the ECG signal.

Y. K. Lim et al. proposed using insulated electrode to record the bath-
tub ECG [63]. The electrodes made by copper plate coated with Polyethylene
Terephthalate (PET) film were placed on the bathtub. The designed high-input-
impedance amplifier was used to amplify the sensed ECG signal by the high
impedance insulated electrode. Although the amplitude of the R peaks was very
big in the recording with this method, however, there were many common-mode
noise and power line noise.

K. Motoi et al. developed a new sensor system installed in a bathtub, which
allows simultaneous monitoring of the ECG together with the respiration and
showed its usefulness for detecting the drowning in elderly care [64].

M. Ishijima proposes unobtrusive approaches to the health monitoring at home
and assess their quality for the medical use [65]. The fundamental concept is
that while the subject uses some household furniture or appliance fitted with
sensors, the health monitoring is done automatically and unobtrusively without
the subject’s knowing about it.
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2.1. HISTORICAL OVERVIEW OF BATHTUB ECG

Many elderly easily suffer from sudden death because of suddenly extend or
shrink of blood vessels during daily bathing at home. Therefore, in order to prevent
those accidents, S.-J. Jang et al. designed a bathtub-typed detector to collect the
continuous ECG signal in the bathtub during a bath, which is able to acquire
single channel ECG via 3 stainless electrodes attached in bathtub [66]. They
use the band-pass filter which has very narrow bandwidth to prevent the motion
artefact, consequently, QRS complex of ECG measured is able to be detected
reliably. The experimental results showed that the collected ECG signal had a
high quality although the subject’s skin was out of contact with electrodes.

S. Tanaka et al. designed a bathtub system to monitor the ECG during
bathing, their bathtub system is shown in Fig. 2.1 [1].

Figure 2.1: A bathtub system with electrodes for monitoring ECG [1].

There are four electrodes attached on the inner surface of the bathtub, the
ECG signal is collected after the potential differences between two electrodes (I,
II, III) are amplified and filtered. Fig. 2.2 shows the ECG signal waveform which
is recorded by their bathtub system (red lines) using the lead I.

The blue lines represent the ECG is recorded using the general approach, which
places the electrodes on the body surface. The red lines show the ECG is recorded
by their designed bathtub. The ECG signal collected by these two methods are
basically consistent.

Many previous studies proposed to collect the ECG signal during bathing with
the electrodes attached on the inner surface of the bathtub. These electrodes in-
side the bathtub bring great inconvenience to the subjects. Therefore, K. Motoi
et al. proposed a new attempt which is concerned with the initial development of
a method to measure an ECG through tap water without conscious awareness of
the presence of electrodes that are placed outside the bathtub wall [67]. Their ex-
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Figure 2.2: Typical recording of ECG signal obtained by the bathtub system (red
lines) and by the conventional methods (blue lines) [1].

perimental result showed that the designed bathtub system was useful and precise
for recording the ECG signal compared with the conventional direct methods.

The ECG signal, in particular QRS components, were successfully detected
utilizing capacitive coupling electrodes placed outside the bathtub wall. Also,
the RRI and respiration intervals were determined with reasonable accuracy as
compared with the conventional direct methods.

2.2 Measurement System
The ECG collection system in this study includes four rectangular stainless

steel electrodes, all of them are placed on the bathtub wall. When the subject is
in the bathtub during bathing, the four electrodes are near the right foot, right
arm, left foot, and left arm, respectively.

The electricity on the skin surface, which is produced by the electrical activity
of the heart, arrives in the four electrodes through the water without contact with
the subject, and three-lead ECG are recorded. The lead I ECG is the potential
difference between the left arm (positive) and right arm (negative), the lead II
ECG is the potential difference between the left foot (positive) and right arm
(negative), and the lead III ECG is the potential difference between the left foot
(positive) and left arm (negative). The detailed schematic diagram of four limb
leads is shown in Fig. 2.3.

Four shielded wires are respectively welded onto the four electrodes. The
three-lead ECG arrives in the ECG collection monitor (Open Brain Computer In-
terface Biosensing Ganglion Board-OpenBCI Ganglion; OpenBCI, USA) through
the shielded wires, as is shown in Fig. 2.4, and the ECG monitor and the laptop (a
MacBook Pro) are connected using a standard Bluetooth 4.0, and all the collected
ECG recordings are stored on the laptop. The designed ECG collection system in
this study is shown in Fig. 2.5 [68].

The ECG recording procedures were approved by the University of Aizu Re-
search Ethics Committee. Written informed consent was obtained from each par-
ticipant before the experiment.
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2.2. MEASUREMENT SYSTEM

Figure 2.3: Connection of four limb leads.

Figure 2.4: ECG monitor: OpenBCI Ganglion Biosensing Board.

Figure 2.5: ECG collection system.
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Ten subjects (five males and five females) aged 23 to 40 years old (mean±SD:
28.5±4.8 years) who were students from the University of Aizu participated in the
data collection. The BP, body temperature, and body weight were recorded before
and after the ECG collection, the water temperature and room temperature were
recorded every second during the ECG collection using a temperature monitor
(TR-71wb/nw; T&D Corporation, Japan), as shown in Fig. 2.6.

Figure 2.6: Bath water and bath room temperature monitor.

The ECG data was collected using the non-contact electrode at five differ-
ent WTs during bathing, which were 36.5℃–37.5℃, 37.5℃–38.5℃, 38.5℃–39.5℃,
39.5℃–40.5℃, 40.5℃–41.5℃, respectively. Each subject collected 5 ECG record-
ings at each preset bathtub WT condition and each recording was 18 minutes long
with a sampling rate of 200 Hz. In total, 150 ECG recordings and 150 temperature
recordings were collected during bathing. The variety of water temperature from
one subject is shown in Fig. 2.7.
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2.2. MEASUREMENT SYSTEM
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Chapter 3

HRV Analysis

3.1 Introduction

According to statistics from the World Health Organization (WHO), Japan’s
life expectancy has been among the best in the world’s life expectancy rankings in
recent years. This is not only due to Japan’s excellent air and safe food, but also
closely related to the unique healthcare habits of Japanese people in daily life. Sur-
vey data shows that almost every family has a bathtub, which shows that bathing
is very popular in daily family life in Japan. When people enter the bathtub, es-
pecially in the cold winter, the stimulation from the water temperature (WT) and
the water pressure will induce the sudden change of the heart rate (HR), which
has been causing many drowning accidents during bathing every year, especially
for elderly people with heart disease. As we all know, if a person’s HR exceeds
the safe range, life will be seriously threatened, especially for people with heart
diseases. If the dependence of WT and HR is known, then, we can dynamically
adjust the level of the WT and use the WT to affect the HR, so that the HR is
within a safe range all the same during bathing. In addition, the sensitivity of
different people to WT is dissimilar due to individual differences, it is necessary
to establish a suitable WT control model for everyone. Therefore, the preliminary
task of this study aims to explore the impact of WT on the HR, which is performed
using the HR variability (HRV) analysis. The pulse rate and the heart rate (HR)
are almost synchronized for the healthy person. However, they are not the same
when a person is in a sick situation, especially for patients with cardiac diseases.
Therefore, the HRV analysis is meaningful and helpful for the long-term health-
care. The variety of HR are closely related to the human nervous system. The
sympathetic nervous system (SNS) and parasympathetic nervous system (PNS)
branches of the autonomic nervous system (ANS) collectively control the balance
of the various systems of the body [11]. For a healthy person, the level of the
instantaneous HR is in a dynamic balance situation all the time. Therefore, the
level of HR could be taken as a label of healthy or unhealthy. In the academic
research and the clinical applications, the quantitative analysis of HRV could be
used to diagnosis some diseases and mental stress. However, the HRV is easily
affected by many internal and external factors. Now, only many a few factors
have be revealed, which is insufficient for us to predict the physical and mental
health conditions using the HRV analysis.
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3.1. INTRODUCTION

3.1.1 HRV and Age/Gender
It is well known that the heart size of a newborn baby and an adult are not

the same. When a person gets older, his heart will be different from when he was
young. In other words, the heart will change with age. Changes in the size and
shape of the heart can also cause some changes in HR. Not only that, HR is also
reflected in gender differences. For example, for the same newborn baby, the cry
of male babies is often louder than that of female babies. The same adult men
are more powerful and explosive than adult women. On the sports field, there are
separate men’s team matches and separate women’s team matches. This is the
best example.

All in all, the HR is always in a dynamic process in a short time. Ramaek-
ers et al. and Schwartz et al. found that the levels of some HRV features would
drop when a person was getting older, while Ramaekers et al. noticed that the peo-
ple under 40 years old showed obvious HRV differences for different gender [69,70].
Lochner et al. found that the HRV level of men was obvious higher than that of
the women [71]. Nagy et al. confirmed that the girls showed significantly higher
baseline of HR level, which was determined by the gender differences from at the
beginning of the birth [72]. Bonnemeier et al. discovered that the differences
of HRV level for different gender were significantly reduced with aging [73]. Ya-
masaki et al. found that the women’s pLF was obvious lower than men’s, and the
aging highly determined the LF level [74].

3.1.2 HRV and Diseases
The diseases have an important impact on the HRV level, which the patients

and the healthy people show obvious different HRV level, especially for the patients
with cardiac diseases. Wilkowska et al. noticed that the depressed patients showed
obvious lower HRV level than that of the nondepressed patients [75]. Lutfi and
Sukkar confirmed that the higher BP values and the lower HRV levels appeared at
the same time, people who had such a situation suffered a higher risk of developing
hypertension [76]. T. Tombul et al. found that the HRV level of the multiple
sclerosis patients was significantly lower than that of the healthy people [77]. D.
Gurses et al. observed that the HRV levels of some time domain parameters
(mean RRIs, SDNN, RMSSD, and PNN50) showed obvious lower trends for the
thalassaemic patients than that of the healthy people [78]. M. Lan et al. confirmed
that the patients with allergic rhinitis in the sitting position showed obvious lower
LF% and LF/HF levels and higher mean RRIs levels than that of the healthy
[79]. DelRosso et al. noticed that the sympathetic activation of the children with
obstructive sleep apnea showed increased trends during sleep stage [80].

3.1.3 HRV and Stress
As the pace of life accelerates, people are facing increasing mental pressure. If

the long-term mental stress is not relieved and released, it will lead to the emer-
gence of various chronic diseases. Mental stress can also have a significant impact
on HRV. The higher mental stress will lead to more activated SNS levels of the
ANS branch [81]. Therefore, many previous studies explored the impact of differ-
ent stressors on mental stress [82–91]. Some studies noticed that the level of HR
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was obvious higher during stress states than that of non-stress states [84,86,92–99],
while the mean R-R intervals (RRIs) [84, 86–89,91, 93–95,100] and the square root
of the mean of the squares of the successive differences (RMSSD) between adja-
cent normal to normal intervals (NNs) [87,89,101–108] were obvious lower during
stress states. Kofman et al. found that the percentage of high frequency power in
total power (pHF) was obvious lower, while the percentage of low frequency power
in total power (pLF) was obvious higher during an examination stress state [83].
Melillo et al. confirmed that the normal estimated glomerular filtration rate leaded
to obvious higher HRV level of the LF/HF ratio [109], while Hjortskov et al. found
that computer work stress states also leaded to obvious higher HRV level of the
LF/HF ratio [82].

3.1.4 HRV and Sleep
Sleep quality greatly affects people’s physical and mental health. During sleep,

the various systems of the human body are recuperated, and the human basal
metabolic rate is reduced, so that physical strength is restored and immunity is
strengthened. The brain is also well rested during sleep, and various indicators of
the body have changed. The HRV level is significantly changing during sleep, and
different sleep stages have an important impact on the HRV. Herzig et al. found
that the level of HR during slow wave sleep (deep sleep) was significantly lower
than that of during REM sleep [110]. Padole and Ingale noticed that the normal,
sleeping, and meditation states leaded to different HRV levels [111]. Arslan et al.
revealed that the HRV levels of the HF, TP, standard deviation (SD) of NN inter-
vals (SDNN), and pNN50 were obvious lower and the LF/HF ratio was obvious
higher during the sleep deprivation stage [112]. ÁR. Sűdy et al. proved that the
HRV levels of the young healthy men with social jetlag during sleep on workdays
and free days were obvious different [113].

3.1.5 HRV and Other Factors
The HRV is not only affected by the above factors, but also affected by many

other factors. Hynynen et al. confirmed that the marathon or moderate exercise
sessions leaded to obvious higher HR level and lower HRV level for the healthy
men at night [114]. James et al. noticed that the severe intensity exercise resulted
in obvious HRV changed [115]. Davy et al. found that the physically active
leaded to significantly increased HRV level and cardiac baroreflex sensitivity for the
women than that of the women with sedentary state [116]. Zuanetti et al. proved
that antiarrhythmic drugs resulted in obvious HRV variety for the patients [117].
Murgia et al. found that the HRV during the smoking cessation were obvious
higher [118]. Young et al. noticed that the diet had an important impact on
the link between mood and HRV [119]. Latha et al. confirmed that the stress
levels of the medical students were significantly reduced when the students were
listening the classical music [120]. Sollers et al. learned that the varying ambient
temperature had an important impact on the HRV [121]. Shin investigated that
the impact of the ambient temperature on the pulse rate variability and HRV was
different, the higher of the ambient temperature, the greater of the difference [122].
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3.2. MOTIVATION

3.2 Motivation
Although many previous studies explored the impact of some factors on the

HRV, a few studies investigated the impact of WTs on the HRV. Mourot et al.
and HC. Choo et al. learned that different WTs resulted in the HRV changing
significantly when a person was immersing in the water [123,124]. Y. Kataoka et al.
confirmed that the WTs of 38 ℃ and 41 ℃ had an important impact on the HRV,
but only measured a few HRV features [125]. F Edelhäuser et al. found that the
WTs of 33 ℃, 36 ℃, and 39 ℃ had an important impact on the HRV level when
the whole-body was immersing in the water [126].

The main purpose of this study aims to explore the impact of different WTs
on HRV during bathing. The experiment was carried out based on the most
commonly used WTs in the daily family life, twenty HRV features (included time
domain, frequency domain, and non-linear domain) were calculated.

3.3 Method
All the processes of this study are performed using the MATLAB (R2019a).

The flowchart of ECG processing, HRV features calculation, and statistical anal-
ysis are shown in Fig. 3.1.

3.3.1 ECG Processing
There are many noises in the raw ECG. Firstly, in order to remove the base-

line wandering which is produced by the respiration and motion artifacts of the
subjects during bathing, the ECG is decomposed several important components
which including the baseline wandering using the single-level 1-D discrete wavelet
transform (DWT). The Daubechies wavelet at level 10 is used in this process
because of its better capacity in decomposing the ECG signal. Then the ECG
is reconstructed again at level 8 after the baseline wandering component is sub-
tracted from the raw ECG signal. The equation of the DWT is shown in (3.1)
and (3.2).

Wψ(s, τ) =

∫ +∞

−∞
x(t)ψs,τ (t) dt (3.1)

ψs,τ (t) =
1√
s
ψ(
t− τ

s
) (3.2)

where x[t] is relative to real-valued wavelet, s = 2j and τ = k*2j are called scale
and translation parameters, respectively, (j, k) ∈ Z2. Wψ (s,τ) denotes the wavelet
transform coefficients and ψ is the fundamental mother wavelet.

What’s more, the hum noise is obvious with unknown frequency components
although the baseline wandering is removed. Therefore, the fast Fourier transform
(FFT) is used to reveal the spectrum distribution of the hum noise. The equation
of the FFT is shown in (3.3).

X(f) =
+∞∑

n=−∞

x(n)w(n)e−j2πfn, (3.3)
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3.3. METHOD

where x(n) is a sampled signal in time domain representation as is shown in
equation (3.4),

x(n) = Asin(2π
f0
fs
n+ θ), (3.4)

f0 is the fundamental frequency, fs is the sampling frequency, A is the amplitude,
θ is the initial phase angle, and n = 0, 1, 2, . . . , N−1. N is the number of
sampling points. Therefore, the equation (3.3) can be replaced by equation (3.5).

X(f) =
A

2j
[ejθW (

2π(f − f0)

fs
)− e−jθW (

2π(f + f0)

fs
)], (3.5)

The spectrum analysis result is shown in Fig. 3.2. The main frequency spec-
trum of normal people’s ECG is below 30 Hz [127]. The hum noise is from the
obvious 50 Hz component, which is mainly produced by the electromagnetic in-
terference between the power supply network and its equipment.

Figure 3.2: Spectrum analysis result.

To remove the component of the 50 Hz hum noise, a second-order infinite
impulse response (IIR) digital notch filter is used. Before the numerator and
denominator coefficients of the digital notch filter are calculated, the bandwidth
is set at 0.0071 at the -3 dB level, and the ω must meet the condition of 0.0 < ω
< 1.0. The difference equation of digital notch filter is defined in (3.6).

y[n] =
N∑
i=0

bix[n− i]−
M∑
i=1

aiy[n− i], n ≥ 0 (3.6)

where x[n] is the filter input, y[n] is the filter output, and ai and bi are the
numerator and denominator coefficients of the digital notch filter, respectively.
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Then, the ECG is smoothed using the 5-points moving average method. The
5-points moving average method is defined in (3.7):

y[n] =
1

M

M−1∑
j=0

x[n− j] (3.7)

where x[n] is the input signal, y[n] is the output signal, and M is 5.
Next, in order to reduce the computational complex, the ’mapminmax’ func-

tion is used to normalize the ECG, as is shown in (3.8):

y =
x−Xmin

Xmax−Xmin
(3.8)

where x is the input data, y is the output data, Xmax is the biggest value of the
input signal row vector, Xmin is the smallest value of the input signal row vector.

At last, the function of ’findpeaks’ is used to detect the R peaks of the ECG.
When all the positions of R peaks are detected, the RRI is calculated. There are
some outliers of the RRI, as is shown in Fig. 3.3. Because the median filter has an
outstanding capability in suppressing the isolated outlier noise without blurring
sharp changes in the original signal, it is used which is set at 1-D 11th order to
remove the RRI outliers. The 1-D 11th order median filter is defined in (3.9):

y[i] = median{x[i], i ∈ w} (3.9)
where x[i] is the input signal, y[i] is the output signal, and w is the moving
window length.

The outputs of each process is shown in Fig. 3.4.

3.3.2 HRV Parameters

In this study, twenty HRV features are measured. Specifically, the time domain
HRV features include the HR, mean RRI, SDNN, RMSSD between adjacent NNs,
SD of the successive differences between adjacent NNs (SDSD), and area under
RRI (AURRI). The frequency domain HRV features include very LF (VLF) power
(0.003–0.04 Hz), LF power (0.04–0.15 Hz), HF power (0.15–0.4 Hz), total power
(0–0.4 Hz), pLF, pHF, and the LF/HF ratio. The nonlinear domain HRV features
include the correlation dimension (D2), the SD of the Poincare plot perpendicular
to the line of identity (SD1), the SD of the Poincare plot along to the line of identity
(SD2), the SD1/SD2 ratio, and the sample (SE), fuzzy (FE), and approximate
entropies (AE).

What needs special explanation is that the RRI data must be resampled before
the frequency features are calculated. Nyquist’s sampling theorem shows that the
sample rate must be more than two times of the highest frequency of the signal.
The highest frequency of the HRV is 0.4 Hz. Therefore, the new resampling rate
of RRI in this study is set at 2 Hz. The cleaned RRI and the resampled RRI is
shown in Fig. 3.5. To calculate the power spectral density (PSD) of the resampled
RRI for a N points sequence, the discrete Fourier transform (DFT) is used, as is
defined in (3.10):
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3.4. RESULTS AND DISCUSSION

X[k] =
N−1∑
n=0

x[n]e−i
2π
N
nk. (3.10)

where k = 0, 1, 2, ... , N-1, and i2=-1.

3.3.3 Statistical Analysis
In this study, all the measured HRV features are calculated using the ultra-

short-term (1-min) method. Each collected ECG recording is segmented into 18
equal parts, each segmentation is 1 min and is used to calculate the HRV features.
All the measured HRV features are analyzed based on three WTs conditions,
which are low WTs (36–38 ℃), medium WTs (38–40 ℃), and high WTs (40–42
℃), respectively. The clustering analysis method is used to visualize the variation
trend of the measured HRV features based on different WTs conditions. In order
to quantitatively analyze the changes of each measured HRV feature, the mean
and the standard deviation (SD) are calculated. Then, the significant difference
based on different WTs is analyzed using the t-test methods.

3.4 Results and Discussion
The clustering result is shown in Fig. 3.6, which clearly reflects the variation

trend of each measured HRV features based on different WTs conditions. The
bigger black dots are calculated using the K-means clustering analysis method
based on each measured HRV feature. The measured HRV features are shown
using the smaller dots with blue, yellow, and green colors, which are calculated
using 1-min ECG. With increasing WT, the HRV features of pLF, LF/HF, HR,
and SD1/SD2 are monotonously and significantly (p < 0.05) increased, and the
D2, HF power, total power, pHF, mean RRI, SDNN, RMSSD, SDSD, AURRI,
SD1, and SD2 are monotonously and significantly (p < 0.05) decreased.

The SDs of the HR with blue, yellow, and green colours are 3.38, 4.65, and 4.17,
respectively. The main reason is that when the WTs is lower (about 36 ℃–38 ℃),
the simulation of the WTs on the subjects is smaller, the HR is almost same with
the rest state. But when the WTs is higher (about 40 ℃–42 ℃), the simulation of
the WTs on the subject is too high, and the HR of each subject is also too quick,
so the SDs of HR for all the subjects is not high, which is 4.17. Each subject has
different sensitivity to WTs due to the individual differences. The differences of
the impact of WTs on the subjects are very large under 38 ℃–40 ℃ condition.
Although the value of instantaneous HR is lower at 38 ℃–40 ℃ than that of the
HR at 40 ℃–42 ℃, the SD of HR is 4.65 at 38 ℃–40 ℃, which is higher than that
of the SD at 40 ℃–42 ℃.

We can also find that the distribution of the controlled WTs is uneven, as is
shown in Fig. 3.6. In fact, the data collection conditions are not same for each
subject. When the WTs is in the range of 40 ℃–42 ℃, some subjects can endure
the high WTs, but some other subjects feel uncomfortable. Therefore, for personal
safety, we have to turn on the cooling fan in this case. What’s more, when the
WT is about 42 ℃, which is higher than the ambient temperature, it drops very
quickly. The distribution of the HRV data near the 42 ℃ is rare.
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3.5. CONCLUSION

The significant difference of each measured HRV feature is visualized using
the box plot, as is shown in Fig. 3.7. The distribution of each measured HRV
feature at different levels based on each WT condition is very clear. Each measured
HRV feature includes some outliers, which could also reflects that the sensitivity
to the WT is different The higher of the WTs, the bigger of the stimulation
on the subjects, the more difficult for the subjects to adapt the data collection
environment. With the WTs increasing, the outliers of the HR is increasing. The
significant difference of the HR based on each two WTs conditions is existing and
obvious. We can not find the obvious variations of the VLF, LF, SE, FE, and AE
from the box plot, and the t-test results do not show significant differences for the
five HRV features.

The mean and SD of the 20 measured HRV features which including time do-
main, frequency domain, and non-linear domain are shown in Tab. 3.1, and the
pairwise significant differences of each two WT conditions are calculated. The
multivariate analysis of t-test variance method is used to calculate the significant
difference, where p1 represents the significant difference between low and medium
WT conditions, p2 represents the significant difference between medium and high
WT conditions, and p3 represents the significant difference between low and high
WT conditions. The experiment results show that with the increasing WT, the SD
of the HR, mean RRI, AURRI, pLF, pHF, LF/HF ratio, and SD1/SD2 are first
rising and then reduced, and the SD of LF, HF, TP are first reduced and then ris-
ing.

3.5 Conclusion
Some conclusions are revealed in this study. Individual differences lead to

different sensitivity to WTs during bathing. When the WT is 40℃–42℃, the
subjects 1, 6, and 9 can not tolerate the high WT because they are very sensitive
to the high WT. Their foreheads quickly begin to sweat during the first 3 minutes,
which is called the adaptation phase during bathing. The WT drops quickly during
the first 3 minutes and they feel more comfortable during 4th-11th minutes. But
the adaptation phases is the first minute for the other seven subjects. These seven
subjects begin to sweat more after the first 10 minutes in the same high WT
environment. The body weights of the subjects 1, 6, and 9 decreased more than
the other seven subjects after the data collection, which shows that they are more
sensitive to the high WT. Based on this finding, we speculate that people who
are more sensitive to WT are less able to withstand water and WT pressure, and
under higher WT conditions, they are more likely to experience higher mental and
physical stress.

When the WT is 40℃–42℃, the subjects 2, 3, 5, and 10 feel a little uncomfort-
able at the beginning of data collection and then quickly adapt to the environment.
When the WT is 36℃–38℃, all the ten subjects can adapt to the environment
quickly. When the WT is 38℃–40℃, the subjects can relax themselves and feel
more comfortable than that the other WT conditions.

Both of the experiment results and the questionnaire survey results show that
the WTs have an important impact on the HRV during bathing. Although some
discoveries are revealed in this study, there are also some limitations. First, the
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3.5. CONCLUSION

experiment only includes ten subjects, the number is too small. What’s more,
the experiment should includes the healthy and unhealthy people from the young
to older. Second, the variations of the WT is too big during the data collection
process. Third, the controled WTs condition is inconsistent for all the subjects.
For example, when the WT is 40℃ –42℃, some subjects just feel a little uncom-
fortable and can continue to collect the data. But some other subjects can not
endure the high WT environment. Therefore, Therefore, in order to be safe, in
this case, we must turn on the cooling fan for these wishers.

Some HRV features are significantly and monotonously increasing or decreasing
when the WT is increasing, which is highly consistent with our initial hypothesis.
However, further improvements are still needed. In future research works, we
will compare the HRV levels between the bathing state and the rest state. We
will quantitatively analyze the influence of WTs on mental stress level. Finally,
we hope to accurately evaluate the mental stress during bathing via the HRV
analysis in the daily life. The relationship between the HRV and causes of death
from cardiac diseases during bathing is unknown now, which should be explored
in the future work. In addition, we will explore how to control the WTs according
to the HRV levels during bathing, so that the people feel more comfortable.
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Chapter 4

Personal Identification

4.1 Introduction
There are many drowning accidents during bathing every year [128], especially

among the elderly with heart diseases. The main reason may be that when the
people enter the bathtub, the high WT and water pressure have an important
impact on the people, which induces sudden change of the HR and cause sudden
death during bathing. If we can monitor the health condition according to the
level of dynamic changes of HR in real time during bathing, then some drowning
accidents will be avoided in advance. And when the drowning accidents is hap-
pening, we can send the personal information which including the name, gender,
address, medical history, medication history, and medication contraindications,
etc. to the nearest hospital and quickly take some first aid measures. However,
the preliminary task is how to accurately and quickly perform personal identifi-
cation during bathing. There are many personal identification methods can be
used, such as the fingerprint, iris, face, voice, etc. However, all of them have to
rely on special equipments such as a scanner, camera, voice recorder, and so on.
Moreover, the bathroom is a private and humid environment, it is not suitable
to install these equipments in the bathroom. Therefore, this study proposes a
new personal identification method using the ECG signal at different WTs dur-
ing bathing. In our previous study, we confirmed that it was feasible to perform
personal identification using ECG during bathing. And we also noticed that the
different water temperatures (WTs) had an important impact on the personal rate
during bathing. To be specific, when we use the ECG which is collected at low
WT (38±0.5℃) to train and test the classification model, the best and robust
identification rate is 82.67%. But when we use the ECG at high WT (42±0.5℃)
to test the trained model, the identification rate is only 13.33%. In the same way,
when we use the ECG which is collected at high WT (42±0.5℃) to train and
test the classification model, the best and robust identification rate is 85.50%.
But when we use the ECG at low WT (38±0.5℃) to test the trained model, the
identification rate is only 12.17%.

This chapter mainly introduces the personal identification using the ECG sig-
nal during bathing. In the above chapter, we notice that the WTs have an impor-
tant impact on the HRV, which results in the significant varieties in the level of
some HRV characteristics. The main reasons may be the irritation of the water
temperature and water pressure on the people during bathing. What’s more, our
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4.2. IMPROVEMENT OF PERSONAL IDENTIFICATION RATE

previous study confirmed that different WTs have an important impact on the
identification rate. Therefore, we will first explore how to improve the identifica-
tion performance of using ECG during bathing. Because ECG has a strong time
dependence, in order to improve the identification accuracy and reduce compu-
tational complexity, a RNN-based identification system is designed. Finally, in
order to quickly and accurately perform personal identification during bathing, we
explore the impact of the number of heart beats on the identification rate.

4.2 Improvement of Personal Identification Rate
In each cardiac cycle, as the pacing point, the atrium, and the ventricle are

successively excited, there will be changes in bioelectricity. The repeated me-
chanical beating of the heart generates static electricity on the surface of human
skin. We collect this static electricity through special equipment, which could be
drew out by the electrocardiograph. Then we can get a series of digital signals,
which is called the electrocardiogram (ECG). The ECG exists in all the living
creatures and has its unique characteristics. The first characteristic is that it has
strong randomness. It is a quasi-periodic signal and has strong non-linearity and
non-stationarity, which cannot be described mathematically with accurate math-
ematical functions. The second characteristic is that it is extremely weak. ECG
is a very weak signal, the amplitude is about millivolt (mv) level. Its frequency
range is about [0.05Hz, 100Hz], where the signal energy is mainly concentrated
in [0.5Hz, 45Hz]. The third characteristic is that it is easily affected by the poor
interference resistance. Because of the distinctions in anatomy, size, and position
of the heart, the ECG differs in all people. And it also shows individual difference
because different sex, age, body weight, chest configuration, health conditions, and
so on. Because the ECG is very weak, it is extremely susceptible to the influence
of human internal and external environments during the acquisition process, such
as the movement of human limbs, breathing, electromagnetic interference in the
surrounding environment, etc. Therefore, the directly collected ECG signal in-
cludes a lot of noise. Common noises include baseline wandering, power frequency
interference, electromyogram(EMG) interference, and motion artifacts. There are
some important features in ECG signal, all of the features are unique and dis-
tinguishable for each person. The most important components of the ECG in a
healthy person include the P wave, QRS complex, and T wave, as are shown in
Fig. 4.1. The depolarization of the atria produces the P wave, the depolarization
of the ventricles produces the QRS complex wave, and the repolarization of the
ventricles produces the T wave [129]. According to the collection method using
different leads, the ECG can be distinguished into three types, which are 3-lead
ECG, 5-lead ECG and 12-lead ECG. The most common ECG in the clinical appli-
cation is named 12-lead ECG, which can record the potential changes of 12 sets of
leads on the body surface at the same time, and draw 12 sets of lead signals. The
3-lead and 5-lead ECG are mostly used in situations where the electrical activity of
the heart needs to be continuously monitored in real time, such as during surgery
or on the way of an ambulance is transferring a patient. Now, the ECG has been
taken as a useful and standard tool for the cardiac diseases detection both in the
clinical application and academic research work because of its noninvasive and
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convenient collection method.

Figure 4.1: Main components of the normal ECG waveform.

Many previous studies took the ECG as an identification tool and achieved
well performance. Since L. Biel et al. explored the feasibility of the ECG as an
identification tool in 1999 [130], then more and more studies took the ECG as a
emerging and useful biomedical identification tool in recent years [15, 131–144].
However, there are a few studies used the bathtub ECG to perform personal
identification. In our previous study, we have proven the feasibility of bathtub
ECG in identity validation [145] and achieved good result. We also explored
the impact of bathtub water temperature on identity validation with ECG signal
during bathing and we found that it had an important impact on the identity
validation rate [60]. This study aims to explore how to improve the identification
performance using ECG at low and high WT during bathing.

4.2.1 Methods and Materials
4.2.1.1 Subjects and ECG Recordings

The data collection system is shown in Fig. 2.5. In this study, the sampling
rate is 100 Hz, and the ECG monitor is not the OpenBCI Ganglion Biosensing
Board, we use another monitor to collect the ECG signal. The data collection
procedures which involving the human subjects described in this study were ap-
proved by the Public University Corporation, the University of Aizu Research
Ethics Committee. Written informed consent was obtained from each participant
before the experiments. Ten participants which were the subjects in the university
of Aizu attended the data collection. There were five males and five females, who
were approximately between 20 and 25 years old. The data collection process was
detailed as follows: firstly, the WTs was controled at 38±0.5 ℃. After 220 s,
we increased the WTs, which was controled at 42±0.5 ℃. After 220 s, the data
collection was finished.

4.2.1.2 Data Processing and Analysis

The collected data includes many noises. In order to remove the baseline
wandering noise, the Wavelet decomposition and reconstruction method is used.
First, the raw ECG is decomposed into several components using the ’db6’ mother
wavelet at level 4. Then the approximation coefficients is subtracted from the raw
ECG. Next, the ECG is reconstructed. The decomposition and reconstruction
result is shown in Fig. 4.2.
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4.2. IMPROVEMENT OF PERSONAL IDENTIFICATION RATE

Figure 4.2: Process of the ECG decomposition and reconstruction.
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In order to reduce the computational complex, the ECG is normalized into the
range of 0 to 1 using the ’mapminmax’ function, the equation is shown in (4.1):

y =
x−Xmin

Xmax−Xmin
(4.1)

where x is the input data, y is the output data, Xmax is the biggest value of the
input signal row vector, Xmin is the smallest value of the input signal row vector.

Next, the R peaks are detected using the function of ’findpeaks’, where the
’MinPeakProminence’ is 0.42. Then all the RRI and amplitude of R peaks are
calculated, the details are shown in Fig. 4.3 and Fig. 4.4. A to J represents every
subject respectively, L represents 38±0.5 ℃ bathtub water temperature and H
represents 42±0.5 ℃ bathtub water temperature.

We can find that the RRI level of each subject in low WT condition (38±0.5
℃) is higher than that in high WT condition (42±0.5 ℃), as is shown in Fig.
4.3. However, compare with the R peaks amplitude in low WT, there are three
situations of the R peaks amplitude in high WT: the R peaks amplitudes of the
subject A, F, G, and J are significantly increasing, the R peaks amplitudes of the
subject B, D and H are almost unchanged, and the R peaks amplitudes of the
subject C, E and I are significantly decreasing. The details are shown in Fig. 4.4

4.2.1.3 Data Structure and CNN Model Design

In this study, the convolutional neural network (CNN) is used to perform
personal identification. Before the classification, the training data and test are
prepared. The QRS complex is the most important component of the ECG.
Therefore, the QRS complex is used to perform classification. The duration of
a complete QRS complex is about 60 ms to 100 ms for a healthy person. In order
to segment a complete QRS complex, the segmentation includes 28 points, which
is 280 ms. Specifically, when all the R peaks are detected, centering on the posi-
tion of each detected R peak, 13 sampling points forward and 14 sampling points
backward are segmented, which is represented using a 1×28 one-dimensional ar-
ray. Finally, 470 QRS complex are segmented for each subject, where the first
235 QRS complex are segmented at 38±0.5 ℃, and the other 235 QRS complex
are segmented at 42±0.5 ℃.

Based on each WT condition, the 1st to 28th QRS complex are taken as the
first image, the 2nd to 29th QRS complex are taken as the second image, and so
on. Finally, 208 images are prepared, the first 167 (about 80%) images are taken
as the training data and the other 41 images (about 20%) are taken as the testing
data. One of the images is shown in Fig. 4.5. For all the subjects, the number
of training images is 3340, where first 1670 images are from the low WT and the
other 1670 images are from the high WT. And the number of test images is 820,
where first 410 images are from the low WT and the other 410 images are from
the high WT.

The designed CNN model includes five layers, the details are shown in Fig.
4.6. The input data is a 28×28 grayscale image. The convolution layer includes
20 3×3 filters. After one convolution operation, its output includes 20 26×26×
subsampling images. The downsampling result of the pooling layer can be rep-
resented using 13×13×20 3D array. The fully connected method is used in the
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4.2. IMPROVEMENT OF PERSONAL IDENTIFICATION RATE

Figure 4.5: 28 1D QRS complexes to 2D QRS imaging.

hidden layer. In the output layer, the ’softmax’ function is used to calculate the
identification rate. The output of the ’softmax’ function is a 10×1 vector, each
value indicates the possibility of each subject. When the label of the input data is
same with the row of the maximum of this vector, then accept; otherwise, reject.

4.2.2 Results and Discussion

In this study, we do not use the transfer learning method. All the parameters
of the CNN model are firstly initialized. If the training epoch is too short, the
model will not converge quickly and its classification performance will be very
poor. But if the training epoch is too long, then the model will be overfitting and
its generalization ability will not be strong. Therefore, the training epoch should
be moderate. During the training process, all the training images are randomly
rearranged with a new order. During the test process, the varieties of accuracy
which includes the low WT and high WT are shown in Fig. 4.7. We can find that
the identification rates of the low and high WT data are no more than 91%, and
the variation curves of low and high WT are not stable.

To reveal the reasons, some evaluation parameters are defined, such as the
true positive (TP), false positive (FP), true negative (TN), false negative (FN),
Precision, Recall, F-score, TP rate (TPR), FP rate (FPR), where,

precision =
TP

TP + FP
(4.2)
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Figure 4.6: CNN model.

Recall (TPR) = TP

TP + FN
(4.3)

F-score =
2 ∗ precision ∗Recall
precision+Recall

(4.4)

FPR =
FP

FP + TN
(4.5)

What’s more, the confusion matrix of the multi-classification problem is used,
as is shown in Fig. 4.8 and 4.9. When the test data is from the low WT, the
trained model easily took the subject 1 as subject 9, and took the subject 10 as
the subject 4. When the test data is from the high WT, the trained model easily
took the subject 1 as subject 3 and 4, and took the subject 3 as the subject 10,
and also easily took the subject 9 as subject 2. The detailed accuracy of each
subject on the low and high WT is shown in Tab. 4.1 and 4.2.

In order to choose a moderate and better training epoch, the receiver operating
characteristic (ROC) curve is used, which are shown in Fig. 4.10 and 4.11. The
area under curve (AUC) is shown in Tab. 4.3. It shows that when the training
epoch is in the range of 400 to 500, the classification model becomes stable. When
the training epoch is more than 500, the model will be overfitting.

The training data must be randomly rearranged with a new order before the
training process, or the training model will not converge, and the final accuracy
is only 10%. When design the classification model, the number and size of the
filter on the convolutional layer is most important. What’s more, the learning
rate and the batch size also affect the convergence curve and identification rate.
Only when all parameters are in a reasonable range can the constructed model
achieve the best classification performance. In this study, the learning rate is test
from the range of 0.01 to 0.6, and the batch size is test from 10 to 100. Finally,
the learning rate is set at 0.01 and the batch size is set at 50. The training data
is constructed using the ECG which is collected at low and high WT, then the
accuracy of low WT is increasing from 12.17% to 90.49%, and the accuracy of
high WT is increasing from 13.33% to 90.00%. It can be seen that increasing
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Figure 4.7: Varieties of accuracy based on different training epoch.

Table 4.3: Varieties of AUC based on different training epoch.

Epoch 100 200 300 400 500 600
AUC on Low WT 0.59 0.60 0.84 0.97 0.97 0.43
AUC on High WT 0.75 0.83 0.75 0.94 0.96 0.72

the diversity of samples can greatly improve the identification rate. When the
training epoch is increasing from 100 to 600, the AUC of the low WT is increasing
first and then suddenly decreasing. However, the AUC of the high WT is slowly
increasing and then slowing decreasing. When the training epoch is smaller than
400, the trained model has a strong ability to classify the images from the high
WT. When the training epoch is in the range of 400 to 500, the trained model has
the strongest ability to classify both of the images from low WT and high WT.
But when the training epoch is bigger than 500, the classification ability of the
trained model drops rapidly, especially it has a poorest classification ability for
the low WT, which once again illustrates the importance of the training epoch to
the model classification ability.

4.2.3 Conclusions and Future Work
This study explores how to improve the identification performance using the

ECG during bathing. The experiment result shows that increasing the diver-
sity of training samples can greatly improve the identification rate of the model.
The identification rate of this study increased by about 6 times compare to the
previous study. What’s more, appropriate model parameters have an important
influence on the convergence speed and identification ability of the model. The
most important is that the training epoch should not be too short or too long.

The final identification rate is not more than 91% for both of low and high
WT. There are two possible reasons. The first is that there are too much noises in
the collected ECG and the signal processing is not very good. The second reason
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Figure 4.10: ROC curve of low WT based on different training epoch.
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Figure 4.11: ROC curve of high WT based on different training epoch.
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is that the ECG is a time-dependence signal, maybe the CNN has a poor ability
to classify such a signal. In the future work, we will select a better ECG collection
monitor and collect the ECG data with less noise. We will also choose a better
way to remove the noise. Because the ECG has a time-dependent characteristic,
in order to improve the identification performance, we will try and choose a better
classification method.

4.3 RNN-based Personal Identification
In the above section, we explore how to improve the identification rate using

ECG during bathing. We find that increasing the diversity of the training data
can greatly improve the identification rate. However, the final identification rate
is not more than 91% for the low and high WT, which can not meet the practical
application. We think there are two reasons, which are that the raw ECG includes
more noise and the denoise method is not appropriate, and the CNN is not good
at classifying the time-dependent signal. Therefore, this study proposes the RNN-
based personal identification using the ECG at different WTs during bathing, aims
to design an accurate and fast identification system.

The recurrent neural network (RNN) is a kind of artificial neural network
(ANN). It has a strong ability to deal with the time-dependent problems. In
this study, we use the long short-term memory (LSTM) network to perform per-
sonal identification using the ECG at different water temperatures (WTs) during
bathing. The LSTM network is particularly good at dealing with classification
problems that are time-dependent. It has been used in the field of deep learn-
ing since it was proposed in 1997, which is suitable for processing and predicting
important events with relatively long intervals and delays in time series.

LSTM is a special recurrent neural network which is proposed to solve the
problem of ’gradient disappearance’ in the structure of recurrent neural networks.
The reason why LSTM can remember long-term information lies in the designed
’gates’ structure. The ’gates’ structure is a method for information to pass selec-
tively, including a ’sigmoid’ neural network layer and a pointwise multiplication
operation. The ’sigmoid’ function is shown in equation (4.6):

 δ(x) = 1

1 + e−x
(4.6)

where the output of ’sigmoid’ function is an array in the range of 0 and 1, it
is generally used for binary classification problems. The output value close to 0
means ’not allowed’, and the output value close to 1 means ’allowed’.

There are three important gates in the LSTM, as is shown in Fig. 4.12. The
first stage is the ’forget gate’, which determines what information needs to be
forgotten from the previous node, which will ’forget the unimportant, remember
the important’. The next stage is the ’input gate’, which determines what new
information can be stored in the cell state. The final stage is the ’output gate’,
which determines the output values.

The output ft in forget gate is shown in equation (4.7): it represents the
forgotten probability of the previous cell state.

ft = δ(Wf · [ht−1, xt] + bf ) (4.7)
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Figure 4.12: Components of one layer in the whole RNN architecture.

where ht−1 is the output of last layer, xt is the input of current layer, δ is the
activation function of ’sigmoid’ in equation (1). ft is in the range of [0,1], 0 means
’reject’, 1 means ’accept’.

The output Ct in input gate is shown in equation (4.8):

Ct = ft ∗ Ct−1 + it ∗ C̃t (4.8)

Ct represents the new cell state, it ∗ C̃t represents the quantity of new in-
formation which is retained, it and C̃t are shown in equation (4.9) and (4.10)
respectively:

 it = δ(Wi · [ht−1, xt] + bi) (4.9)

 C̃t = tanh(WC · [ht−1, xt] + bC) (4.10)

The output gate is used to control how much of the layer’s cell state should be
filtered, the output ht in this layer is shown in equation (4.11):

ht = ot ∗ tanh(Ct) (4.11)
where ot is shown in equation (4.12):

ot = δ(Wo · [ht−1, xt] + bo) (4.12)
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4.3.1 Methods and Materials
4.3.1.1 Data Processing and Analysis

The data collection system is shown in Fig. 2.5, and the ECG monitor is shown
in Fig. 2.4, it is the Open Brain Computer Interface Biosensing Ganglion Board.
In this study, we collect the ECG signal at five different WT conditions, which in-
clude the most commonly used bathtub water temperature environments in daily
life. During the data processing stage, we perform baseline removal, spectrum
analysis, 50 Hz noise removal, signal smoothing, R peaks detection and QRS com-
plex segmentation. The flowchart of data processing and personal identification
is shown in Fig. 4.13.

In order to remove the noise in the raw data, we perform the spectrum analysis.
The spectrum analysis result shows that the raw data includes obvious 50 Hz hum
noise, which is produced by the electromagnetic interference of the power supply
network and its equipment. And the movement and respiration of the subjects dur-
ing bathing produces obvious baseline wandering. First, we use the 1-D Wavelet
decomposition and reconstruction method to remove the baseline wandering. The
mother wavelet of ’db6’ at level 10 is used to decompose the raw ECG. Then the
approximation coefficient is subtracted from the raw ECG data. Next, the ECG
is reconstructed using the Wavelet reconstruction at level 8. According to the
characteristics of the raw ECG, we notice that the decomposition at level 10 and
reconstruction at level 8 can not only effectively separate the baseline wandering
component from raw ECG data, but also could keep the useful information of the
ECG data as much as possible. To remove the 50 Hz electromagnetic interference
hum noise, we choose the the second-order infinite impulse response (IIR) notch
digital filter and 1-D digital filter. When calculate the numerator coefficient and
denominator coefficient of the digital notching filter, we set the notch located at
0.5 Hz and the bandwidth at 0.0071 at the –3 dB level. The magnitude response
is shown in Fig. 4.14, and the difference equation of the 1-D digital filter is shown
in equation (4.13).

y[n] =
N∑
i=0

bix[n− i]−
M∑
i=1

aiy[n− i], n ≥ 0 (4.13)

where x[n] is input to the filter, y[n] is output to the filter, ai and bi are the
numerator coefficient and the denominator coefficient of the digital notching filter.

Finally, the ECG is smoothed using the 5-point moving average method. The
definition of the moving average is shown in equation (4.14):

y[n] =
1

M

M−1∑
j=0

x[n− j] (4.14)

where x[n] is input signal, y[n] is output signal, M is 5.
The outputs of each step in the data processing are shown in Fig. 4.15. Then

we use the ’findpeaks’ function to detect the R peaks. And the QRS complex
is segmented based on the detected positions of the R peaks, which is a 1×30
array (centering on the position of the R peak, 14 sampling points before and 15
sampling points after are segmented).
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Figure 4.14: Magnitude response.

4.3.1.2 Data Structure and Classification Model Design

In this study, one of artificial recurrent neural networks (RNNs) named long
short-term memory (LSTM) network is used to perform personal identification
because of its strong ability to deal with time series problems that appears strictly
in chronological order. There are eight layers in the designed LSTM newworks.
The first layer is the input layer, the input is a one-dimensional vector with the
size of 1×30. The second layer is the LSTM layer with 125 hidden units. The
third layer is the dropout layer with a 20% drop rate. The fourth layer is the
LSTM layer with 100 hidden units. The fiveth layer is the dropout layer with a
20% drop rate. The sixth layer is the fully connected layer. The seventh layer is
the softmax layer. The eighth layer is the output layer. The information of the
LSTM networks is shown in Tab. 4.4.

Table 4.4: Detailed parameters of LSTM networks.

Layers Parameters
1 Input sequence input with 1×30 array
2 LSTM 125 hidden units
3 Dropout 20%
4 LSTM 100 hidden units
5 Dropout 20%
6 FullyConnected 10 layers
7 Softmax softmax
8 Output crossentropyex
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Figure 4.15: Noise removal and signal smoothing process.
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4.3.2 Results and Discussion
During the training progress, the learning rate is set at 0.001 and the schedule

of the learning rate is constant. The min batch size is 10 and the training epoch
is 10. The hardware resource is single GPU. First, five single classification models
(model 1-5) are trained based on each WT condition and the cross-validation
method is used. The experiment result shows that the identification rate is highest
when the training and test data is from the same WT for each trained single model.
And the number of heart rate is increasing with the WT increasing. Then a mixed
classification model is trained which the training data includes the ECG from the
five different WT conditions. When we use the ECG of each WT condition to test
the mixed model, each of the accuracy is more than the accuracy that using the
single model. This result once again proves that increasing the diversity of samples
can greatly improve the identification rate. The information of the dataset and
the identification accuracy are shown in Tab. 4.5.

The ECG is stable with a short-term immutability characteristic under a nor-
mal circumstances for a healthy person. But some internal reasons such as disease
outbreaks or external reasons such as external stimuli will affect the ECG. The
stimulation of the water pressure and hot water temperature has an important
impact on the ECG, which is also reflected in the impact on the identification
rate. For each single and mixed model, the training data and test data are from
different sessions, which is collected at different days. This is more reasonable for
the application purpose. And the generalization ability of the trained model is
stronger than that the training data and test are from the same sessions. The
identification rate of the mixed model is more than 96.31% based on the most
common used WTs (36-42 ℃) in the daily life. It shows that it can meet the
practical application. The average accuracy of the mixed classification model is
97.68%, the highest accuracy is 98.43%, which is based on the 38±0.5 ℃ WT
condition. The questionnaire survey results show that when the WT condition is
38±0.5 ℃ and 39±0.5 ℃, all the subjects feel very comfortable during the data
collection. The variations of the ECG is smaller at the two WT conditions. The
identification rate are higher at these two WT conditions than that the other WT
conditions. Therefore, we notice that the more comfortable of the subject, the
smaller variations of the ECG during bathing, and the higher identification rate
using ECG during such a WT condition. When the WT is 37±0.5 ℃, only a
few subjects feel a little cold at the beginning of the data collection. When the
WT is 40±0.5 ℃, the subjects feel a little uncomfortable but can endure the hot
temperature. But when the WT is 40±0.5 ℃, all the subjects feel uncomfortable
and several subjects can not endure the hot temperature. And the identification
rates are lowest at these two higher WT conditions than that the other WT con-
ditions. When the WT is higher than 38±0.5 ℃, the identification rate and the
WT have a negative correlation, that with the WT increasing, the identification
rate is decreasing.

4.3.3 Conclusion and Future Work
This study proposes a RNN-based personal identification system using the

ECG at different water temperatures (WTs) during bathing. The long short-term
memory (LSTM) network is used to perform classification. The experiment result
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Table 4.5: Dataset and validation accuracy.

Model WT for Training Data No. of Training Data WT for Test Data Accuracy (%)
37±0.5 97.79
38±0.5 87.03

1 37±0.5 15219 39±0.5 77.28
40±0.5 80.47
41±0.5 80.69
37±0.5 80.98
38±0.5 97.97

2 38±0.5 16047 39±0.5 85.99
40±0.5 91.32
41±0.5 85.16
37±0.5 84.61
38±0.5 79.41

3 39±0.5 17323 39±0.5 96.26
40±0.5 77.42
41±0.5 79.66
37±0.5 82.29
38±0.5 94.07

4 40±0.5 17329 39±0.5 83.07
40±0.5 96.16
41±0.5 85.39
37±0.5 92.54
38±0.5 93.92

5 41±0.5 18095 39±0.5 87.77
40±0.5 89.93
41±0.5 94.85
37±0.5 98.14
38±0.5 98.43

Mixed [36.5, 41.5] 84013 39±0.5 98.16
40±0.5 97.34
41±0.5 96.31
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shows that increasing the diversity of the training data could greatly improve
the identification rate. When the training and test data are from the same WT
condition, each trained single model could achieve the highest accuracy. When
the WT is higher than 38±0.5 ℃, the identification rate of the mixed model
is decreasing with the WT increasing. They have a negative correlation. The
training data of the mixed model includes the most common used WT conditions,
and the identification rate of the mixed model is more than 96.31% based on each
WT condition, which could meet the practical applications. All the length of the
training and test data are 18 minutes. Therefore, in the future work, we will
explore the number of heart beats on the identification rate.

4.4 Number of Heartbeats and Personal Identi-
fication Rate

4.4.1 Motivation
Bathing is an effective and cheap way to release the mental stress and keep

the body cleaning, which has been very popular in the daily life. However, one
statistical results display that there are about 5,398 drowning accidents during
bathing in Japan in 2018 [128]. And the trend of the drowning accidents has
been increasing these years. The reason for so many drowning accidents is that
people cannot be rescued in time when a drowning accident occurs. In addition,
some survivors will suffer long-term psychological effects after being physically
traumatized because they have not received timely and appropriate treatment.
When the drowning accident is happening, if the information of the people could
be immediately sent to the nearest emergency services, then the possibility of the
mortality will reduce. Therefore, how to accurately and quickly perform personal
identification during bathing is the preliminary task. In the above section, we
propose a RNN-based personal identification system using the ECG at different
WT condition during bathing. Although the identification rate of the mixed model
is higher than 96.31%, each of training and test data is 18 minutes, it cost a long
time recognize a person. This study aims to explore the impact of the number of
heartbeat on the identification rate.

Many previous studies explored the ECG in the field of personal identifica-
tion. Since L. Biel et al. firstly proposed the ECG in the application of personal
identification in 2001 [40], then more and more studies use the ECG to perform
identification and achieve good result in the academic development and the prac-
tical application. Compare with the traditional identification methods such as the
gait, voice, signature, fingerprint, face, ear, iris, retina and hand geometry, now
the ECG-based identification method has been taken as an emerging biometric. In
recent twenty years, with the development of the artificial neural networks (ANNs)
and digital signal processing technologies, the ECG-based identification method
has also achieved rapid improvement and prosperity. TH. Yen et al. proposed
an ECG-based identification system with a portable, real-time, smartphone-based
characteristics [146]. It can identify seven types heartbeat with only 78 millisec-
onds and achieved 98.34% accuracy. MG. Kim et al. designed a non-fiducial-based
identification system using the ECG [138]. They used a 1-D ensemble network in
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the classification and achieved 99.6% accuracy based on only 1-sec ECG for each
subjects. JS. Arteaga-Falconi et al. designed an ECG authentication algorithm
in the application of mobile devices [147]. This algorithm achieved a 1.41% false
acceptance rate and a 81.82% true acceptance rate using only 4 second ECG.
AF. Hussein et al. proposed a fiducial points-based identification system using
the ECG [148]. They used the discrete cosine transform to extract the ECG fea-
tures and achieved 97.78% accuracy with only 1.21 seconds ECG. DP. Coutinho
et al. designed an ECG identification system and achieved 99.5% accuracy only
using 5 heartbeats for the test patterns [149]. SZ. Fatemian et al. introduced
an identification system using ECG and achieved 99.61% identification rate us-
ing only 2 heart beats [131]. M. Li et al. designed an ECG-based identification
system and achieved 0.5% equal error rate (EER) and 98.3% identification rate
in the test stage with only ten seconds ECG [150]. A. Lourenço et al. proposed
an identification system using the finger ECG [151]. They used 30 heartbeats to
register the enrolment template and the other 30 heartbeats to construct the test
templates. Finally, the designed system achieved 94.3% identification rate and
13.0% EER based on a group of 16 subjects. I. Odinaka et al. proposed an iden-
tification system using the ECG signal based on a comparatively large sample of
269 subjects [152]. And they explored the impact of long-term variability, health
status, data fusion, number of training and testing heartbeats, and database size
on the identification rate. The experiment result confirmed that with increasing of
training and test heartbeats, the EER reduced and identification rate increased.
When the training and testing heartbeats were from different days, the designed
system could achieve 5.58% EER in verification, 76.9% accuracy in rank-1 recog-
nition, and 93.5% accuracy in rank-15 recognition. B. H. Kim et al. introduced an
ECG-based identification system using the long short-term memory network and
obtained an overall identification rate of 99.73% with only 3 test heartbeats [153].
H. M. Lynn et al. proposed a recurrent neural network-based identification system
using the ECG signal [154]. They performed classification using a deep bidirec-
tional GPU network model and achieved 97.60% identification rate using only 3
test heartbeats.

Although the above studies explored the relationship between ECG length
and the identification rate, no studies were based on ECG during bathing. The
collection of the ECG is noninvasive, it must need to attach several electrodes
on the skin surface, which cause uncomfortable and inconvenience to the people
during the collection process. Therefore, in order to reduce the uncomfortable
and inconvenience, S. C. Kwatra et al. firstly designed an ECG collection system
using the non-contact electrodes during bathing in 1986 [61]. Then, more and more
studies investigated the ECG during bathing [62–67]. The sensitivity to WTs for
different people is different because of the individual difference. The WTs have an
important impact on the ECG because of the the water pressure on the chest and
thermal stimulus on hemodynamics during bathing, which will cause additional
physical and mental stress on the people. In our previous studies, we noticed that
the WT has an important impact on the identification rate and designed a RNN-
based identification system using the ECG at different WTs during bathing. This
study aims to explore the impact of ECG length on the identification rate using
the convolutional neural network (CNN).
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4.4.2 Methods and Materials
4.4.2.1 Features Extraction

The data collection system is shown in Fig. 2.5, and the ECG monitor is
shown in Fig. 2.4. The data processing process is shown in Fig. 4.13. In this
study, we propose a fiducial points-based identification system using the QRS
complex of the ECG. Therefore, how to accurately segment the QRS complex
has an important impact on the identification rate. During the data collection,
the sampling rate is 200 Hz and the sampling interval is 5 milliseconds. The
duration of the complete QRS complex wave for a healthy person is about 80–
120 milliseconds. In order to segment a complete QRS complex wave, we segment
30 sampling points centering on the position of the detected R peak, which is
150 milliseconds. Then we transform the one-dimensional (1-D) segmented QRS
complex wave into a one-dimensional (2-D) binary image, as is shown in Fig. 4.16.

4.4.2.2 Identification

For each subject, all the training, validation, and test data are the transformed
binary images, which are from the first, second, and third ECG recordings based
on each WT condition. The size of the binary image is a 30 × 30 2-D matrix, with
the values of zero or one. The numbers of training and validation images are 84297
and 81867. There are two stages in the whole classification process. In the first
stage, we use a simple 2-D CNN to perform classification, as is shown in Fig. 4.17.
It includes input layer, convolution layer, ReLU layer, pool layer, fully connected
layer and the output layer. In the input layer, we feed into a binary image with
the size of 30 × 30, which represents a QRS complex wave. In the convolution
layer, twenty filters with a size of 9 × 9 are used to perform the convolution
computation, the result of the convolution computation could be represents by a
22 × 22 × 20 3-D matrix. The main purpose of the convolution computation aims
to extract the characteristics of the input data. The Relu layer is also named the
increasing activation function: it often uses to increase the nonlinear segmentation
ability of the network. After the ’ReLU’ computation, the input and output are
same. In the pooling layer, the output is represented using an 11 × 11 × 20 3-D
matrix. There are two main functions of the pooling layer. The first is to compress
the space size of the input data volume and reduce the number of parameters
in the network, and also reduce the complexity of network calculations, thereby
avoiding excessive consumption of computing resources. The second is to compress
unnecessary features, extract main features, prevent overfitting, and improve the
generalization ability of the model. Then, we perform ’reshape’ operation and
two times of fully connected operations. In the output layer, we calculate the
identification rate using the ’Softmax’ function. The output of the ’Softmax’
function is a 10×1 vector. Each value represents the possibility of each subject. If
the label of the input image is same with the row of the maximum of the vector,
then accept; otherwise, reject.

In the second stage, the majority vote method is used to perform the secondary
classification. In order to investigate the impact of ECG length on the identifica-
tion rate, we randomly select N (1 to 60) consecutive QRS complex waves from
the third recording for each subject to test the trained model. When the number
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of correctly identified heartbeats is greater than or equal to half of N, then it is
accepted; otherwise, it is rejected.

4.4.3 Results and Discussion
During the test stage, in order to effectively evaluate the performance of the

trained model, some performance evaluation parameters are defined, such as the
true positive (TP): true positive samples which is predicted to be positive samples
by the model, true negative (TN): true negative samples which is predicted to be
negative samples by the model, false positive (FP): true negative samples which is
predicted to be positive samples by the model, false negative (FN): true positive
samples which is predicted to be negative samples by the model, precision, recall,
F-score, TP rate (TPR), FP rate (FPR). Specifically,

Precision =
TP

TP + FP
(4.15)

Recall (TPR) = TP

TP + FN
(4.16)

F-score =
2 ∗ precision ∗Recall
precision+Recall

(4.17)

FPR =
FP

FP + TN
(4.18)

During the training stage, in order to achieve a high accuracy with a low
computational complex, different combinations of important training parameters
are tested. At last, the learning rate is set at 0.01, the batch size is set at 256,
and the epoch is set at 40. The validation result is shown in Fig. 4.18 and Tab.
4.6. The experiment result of subject 6 shows the highest FPR (0.57%). From
the confusion matrix we can find that the trained model easily takes the subject
6 to subject 8, and takes the subject 2 as the subject 6, 8, and 9. The FPR of
the subject 3 is 0 and the precision of the subject 3 is 99.98%, which shows that
the trained model achieves a strongest discrimination ability for subject 3. The
average FPR is 0.14%, the average precision is 98.71%. Therefore, this trained
model could be applied in the next stage.

When we investigate the impact of heartbeats on the identification rate, in
order to reduce the random errors and increase the robustness of the trained
model, the identification process is performed 1000 times. The final identification
rate of each heartbeat is the average of 1000 times identification rate. First,
the trained model is directly used to explore the impact of heartbeats on the
identification rate. The best and robust identification rate is about 90% when the
number of heartbeats is three or greater. Next, the majority vote method is used
based on the preliminary classification result. When the number of heartbeats is
17 or greater, the average and robust identification rate is more than 98%. The
relationship between the number of heartbeats and the identification rate based on
1000 times experiments before and after majority vote is shown in Fig. 4.19. When
the number of heartbeats is 17 or greater, the identification rate is more than 98%
based on the majority vote method, which is higher than the identification rate of

69



9
9

.9
%

8
9

3
4

0
.0

%

2

0
.0

%

0

0
.0

%

1

0
.0

%

0

0
.0

%

1

0
.0

%

0

0
.0

%

0

0
.0

%

2

0
.0

%

0

0
.0

%

2

9
5

.4
%

7
4

4
0

0
.0

%

0

0
.0

%

3

0
.1

%

9

2
.0

%

1
5

7

0
.3

%

2
3

1
.0

%

7
7

1
.1

%

8
7

0
.0

%

1

0
.0

%

0

0
.0

%

0

1
0

0
.0

%

8
5

8
9

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.0

%

2

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.4

%

2
9

9
9

.1
%

6
9

1
8

0
.0

%

2

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.4

%

3
1

0
.0

%

3

0
.0

%

0

0
.0

%

0

0
.0

%

1

0
.0

%

2

9
9

.9
%

8
5

1
9

0
.0

%

2

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.1

%

5

0
.0

%

0

0
.0

%

0

0
.0

%

1

9
4

.8
%

7
8

1
7

0
.0

%

0

5
.2

%

4
2

5

0
.0

%

1

0
.0

%

0

0
.0

%

4

0
.1

%

8

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.2

%

1
6

9
9

.4
%

8
1

7
5

0
.1

%

1
1

0
.1

%

5

0
.0

%

3

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.4

%

2
9

0
.0

%

0

9
9

.6
%

8
1

4
2

0
.0

%

0

0
.0

%

0

0
.0

%

1

0
.1

%

9

0
.6

%

5
5

0
.4

%

3
6

0
.0

%

1

0
.0

%

0

0
.0

%

0

0
.0

%

0

9
8

.9
%

9
2

5
5

0
.0

%

0

0
.0

%

0

0
.0

%

1

0
.2

%

2
2

0
.0

%

2

0
.0

%

3

0
.0

%

0

0
.0

%

0

0
.0

%

0

0
.0

%

2

9
9

.7
%

8
8

6
8

1
2

3
4

5
6

7
8

9
1
0

T
ru

e S
u

b
ject ID

123456789

1
0

Predicted Subject ID

Figure
4.18:

C
onfusion

m
atrix

ofthe
validation

result
based

on
first

recognition
stage.

70



4.4. NUMBER OF HEARTBEATS AND PERSONAL IDENTIFICATION RATE

Ta
bl

e
4.

6:
Va

lid
at

io
n

re
su

lt.

Su
bj

ec
t

T
P

FP
FN

T
N

Pr
ec

isi
on

(%
)

F-
sc

or
e

(%
)

T
PR

(%
)

FP
R

(%
)

1
89

34
6

7
74

78
7

99
.9

3
99

.9
3

99
.9

2
0.

01
2

74
40

35
9

25
75

91
0

95
.4

0
97

.4
8

99
.6

7
0.

47
3

85
89

2
10

7
75

03
6

99
.9

8
99

.3
7

98
.7

7
0.

00
4

69
18

65
44

76
70

7
99

.0
7

99
.2

2
99

.3
7

0.
08

5
85

19
5

16
75

19
4

99
.9

4
99

.8
8

99
.8

1
0.

01
6

78
17

43
2

20
5

75
28

0
94

.7
6

96
.0

9
97

.4
4

0.
57

7
81

75
47

23
75

48
9

99
.4

3
99

.5
7

99
.7

2
0.

06
8

81
42

29
51

3
75

05
0

99
.6

5
96

.7
8

94
.0

7
0.

04
9

92
55

10
2

13
0

74
24

7
98

.9
1

98
.7

6
98

.6
1

0.
14

10
88

68
30

7
74

82
9

99
.6

6
99

.7
9

99
.9

2
0.

04
To

ta
l

82
65

7
10

77
10

77
75

25
29

98
.7

1
98

.7
1

98
.7

1
0.

14

71



90% without the majority vote method. It increases about 8.89%. The curve of
the identification rate based on the majority vote is very stable when the number
of heartbeats is 20 and later. The relationship of the number of heartbeats and
the identification rate for each subject is shown in Fig. 4.20. When the number
of heartbeats is 20 or greater, the identification rate of each subject is more than
95%. Both of Fig. 4.19 and Fig.4.20 show that the trained model is accurate and
robust.

The QRS complex wave is the most discriminative feature of the ECG. There-
fore, it is taken as the identification marker in this study, which is transformed
into a 2-D binary image with a size of 30 × 30. The matrix of the binary image
only includes the values of 0 and 1. Compare with the RGB and grayscale images,
the binary image can greatly reduce the computational complexity. The ability
of the image classification is strong and powerful for the CNN. So the identifi-
cation problem is taken as an image classification problem, which aims to apply
the characteristic of the CNN. There are five layers of the designed CNN, which
are the input layer, convolutional layer, ReLU layer, pooling layer, and fully con-
nected layer. It has a low computational complexity. The classification curve
could quickly converge with a high identification rate based on a low training
epoch.

In order to ensures the experimental results are robust and practical, the train-
ing, validation, and test data are from different sessions. The validation rate is
98.71% in the preliminary classification stage, as is shown in Tab. 4.6. The num-
ber of correctly recognized binary images is 82657, and The number of incorrectly
recognized binary images is 1077. The confusion matrix of the preliminary clas-
sification result is shown in Fig. 4.18. It shows that the trained model easily
takes the subject 2 as subject 6 and takes the subject 6 as subject 8, which greatly
reduces the overall identification rate. In the test stage, N (1 to 60) adjacent
and consecutive binary images are randomly selected for each subject from the
third recording and then fed into the trained CNN model. The relationship of the
number of heartbeats and the identification rate is shown in Fig. 4.19. It shows
that the trained model is fluctuating and not robust. The average identification
rate is about 90%, the SD of the identification rate for ten subject is large. In
order to increase the identification rate, a majority vote algorithm is applied in the
secondary classification stage. According to the majority vote mechanism, if the
number of binary images which is correctly identified is greater than or equal to
half of N, then it is accepted; otherwise, it is rejected. The average identification
rate is about 98.00% when the number of heartbeats is greater than twenty after
the majority vote is used, with an increase of about 8.89 percentage points. The
variation of the average identification rate is shown in Fig. 4.19. The curve with
red is convergent and stable. Fig. 4.20 shows that the identification rate of each
subject is robust when the number of heartbeats is 20 or greater.

During the data collection process, we can divide it into three stages, which
are the adaptation period, stable period, and pressure rise period. The first two
minutes is called the adaptation period. In this stage, when the subject enter the
bathtub, the heart rate will increase and the ECG has a strong fluctuation. The
subject must adapt to the water pressure on the chest and thermal stimulus on
hemodynamics. The third to twelfth minutes is called the stable period. In this
stage, the ECG is stable, the subject has adapted to the WT environment and
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feel more comfortable. The thirteenth to eighteenth minutes is called the pressure
rise period. In this stage, the physical and mental stress of the subject will greatly
increases because the subject has been in the bathtub about twelve minutes. And
the subject will feel uncomfortable due to a long time of water pressure on the chest
and thermal stimulus on hemodynamics. The different periods has an important
impact on the ECG, and different WTs has a stronger impact on the ECG. In
addition, the ECG differs among different people due to the individual differences
and different sensitivity to water pressure and WT. Therefore, how to accurately
detect the positions of the R peaks at different WT conditions is the biggest
challenge of this study. The ECG has a stronger fluctuation during bathing than
that during resting state. It is difficult for a algorithm to detect the R peaks
at different periods, and it is more difficult to correctly detect all the R peaks at
different WT conditions. There are many outliers of the R peaks detection results.

During the feature extraction stage, we transform the segmented QRS complex
wave into a binary image. This transformation will change the relative positions
of the sampling points. The shape of the QRS complex is not all the same in the
binary image with a 1-D QRS complex shape. This transformation contributes
to reducing the computational complexity during the training stage, but it can
not retain all the inherent features of the ECG. Some important information of
the ECG will lose. What’s more, there are thirty sampling points (150 ms) in
the segmented QRS complex. For a healthy person, the duration of a complete
QRS complex is about 80 ms to 120 ms. Although the segmented data includes
a complete QRS complex wave, thirty sampling points is insufficient when it is
transformed into a binary image. Imagine intuitively, the more of the sampling
points, the more the converted image can retain the inherent characteristics of the
original signal. However, further experiments are needed to verify whether the
sampling points have an important impact on the identification rate.

4.4.4 Conclusion and Future Work
This study investigates the number of heartbeats on the identification rate

at different WTs during bathing. There are three major contributions in this
study. The first contribution is that the identification problem is formulated as
the image classification problem, which could be fully utilized the powerful image
classification capabilities of CNN. Specifically, we transform the 1-D QRS com-
plex wave into the binary image and take the binary image as the input data.
The second contribution is that we use a combination of preliminary classification
and secondary classification method to perform personal identification. In the
preliminary classification stage, a CNN is used. In the secondary classification
stage, a majority vote algorithm is designed to perform the personal identification
based on the preliminary classification result. The identification rate increases by
about 10%. The third contribution is that the designed identification system has
a strong robustness and identification performance. In order to increase the gen-
eralization ability and ensure high enough robustness of the system, the training
data, validation data, and test data are taken from different sessions (days), which
is collected in the commonly used WT (36.5 ℃–41.5 ℃) conditions. In the test
stage, N (1 to 60) adjacent and consecutive QRS complex waves are randomly
selected for each subject from the third recording, which could meet the practical
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application. And the final identification rate is the average of 1000 experiment
results, which could fully ensure the robustness of the system.

To the best of our knowledge, this is the first study to explore the impact
of heartbeats on the identification rate at different WTs during bathing. The
average identification rate is more than 98% when the number of heartbeats is 20
or greater. The identification system achieves high performance. It has a strong
robustness, which could meet the practical application in daily life. Although
some discoveries are revealed in this study, there are also some limitations. First,
in order to reduce the noise, the subject is told to keep as still as possible during
the data collection process, which will cause inconvenience to the subject. Of
course, it contributes to reducing the noise and achieving higher identification rate.
However, this approach is a bit out of the reality, because a person cannot always
keep still while in a bathtub. Actually, the amplitude of the ECG is very weak,
which is in the order of millivolts. In this study, we use the non-contact electrodes
to collect the ECG. The weak electricity on the skin surface is conducted to the
electrode through the water medium. The collected data will includes obvious
baseline wandering and other noise when the subject do not keep still during the
data collection process. Second, the controlled WT conditions are not unified for
all subjects. When the WT is more than 41 ℃, some subjects can not bear the
hot environment and feel very uncomfortable. Therefore, for the personal safety of
subjects, we turned on the cooling fan. Third, the water pressure on the chest and
thermal stimulus on hemodynamics will cause additional stress to the subjects
during the ECG collection process, which may create some bias regarding the
results.

In the future research works, we will explore the relationship of sampling rate
and identification rate. In order to further reduce the computational complexity
and outliers of the R peaks detection, we will explore how to perform personal
identification using the non-fiducial points method. Besides, we will investigate
the impact of frequency domain ECG features on the identification rate.
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Chapter 5

Results and Discussion

In this study, we perform HRV analysis and personal identification using ECG
signal at different WTs during bathing. With the increased WT, 11 HRV features
(i.e., mean RRI, SDNN, RMSSD, SDSD, AURRI, HF power, total power, pHF, D2,
SD1, and SD2) were significantly (p < 0.05) and monotonously reduced and four
of the HRV features (i.e., HR, pLF, LF/HF ratio, and SD1/SD2) were significantly
(p < 0.05) and monotonously rising, which shows that the WT has an important
impact on the HRV during bathing. Before the identification system is designed
using the RNN, we explore how to improve the identification rate. The experiment
result shows that increasing the diversity of training samples can greatly improve
the accuracy of identification. The main reason of using the RNN to design the
identification system is that the ECG is a kind of time dependent signal and the
RNN is good at dealing with time series problems. The results of the five trained
models show that when the trained data and test data are from the same WTs
condition, the identification rate is highest. The training data of the final mixed
model are from five different WTs and each test result is more than 96%. Then,
we explore the number of test heart beats on the identification rate. The result
shows that when the number of test heart beat is 20 or greater, the identification
rate is more than 98% and then becomes stable.

To accurately and quickly perform personal identification at different WTs
during bathing, a novel identity validation method using the 1-D ECG signal
during bathing based on different bathtub water temperature ranges has been
proposed. For each subject, both of the training ECG recording and test ECG
recording are 18 mins, one recording is used to train and another recording is used
to test, and each dataset represents a QRS complex. Under normal circumstances,
a person’s ECG is stable in the short term. However, the ECG will also change due
to internal reasons such as disease outbreaks or external reasons such as external
stimuli. During the data collection stage, the body below the neck of the subject is
in the water, the stimulation from the water pressure and hot water temperature
will cause some changes to the ECG.

Tab. 4.5 shows the details of the training dataset, test dataset, and accuracy.
When the bathtub water temperature increases, the number of total heartbeats is
also increasing, the RRI and amplitude of the ECG also change at different bathtub
water temperature. For classification model 1, the 10 training ECG recordings
are collected at 37±0.5 ◦C water temperature range, total training heartbeats
are 15219, the test ECG recordings are collected at 5 different bathtub water
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temperature ranges, respectively. Tab. 4.5 shows that only the test dataset is
collected at the same bathtub water temperature range with the training dataset,
the classification accuracy is highest, which directly proves that the ECG changes
greatly at different bathtub water temperature.

For the final classification model, the average accuracy is 97.68%, the highest
accuracy is 98.43%, which is based on the 38±0.5 ◦C water temperature range.
Our questionnaires show that most of the subjects feel more comfortable when the
bathtub water temperature ranges are 38±0.5 ◦C and 39±0.5 ◦C, and they feel
a little cold when the bathtub water temperature is 37±0.5 ◦C, but they feel too
hot when the bathtub water temperature ranges are 40±0.5 ◦C and 41±0.5 ◦C.
Therefore, we can conclude that the ECG is more stable when the subject feels
comfortable and the classification accuracy is also higher at a comfortable state.

In the future research work, we will find more subjects, which should include
the child and the older, the healthy and unhealthy, as well as the people from
different skin colors and races. We will also explore how to collect the ECG
during bathing and how to perform identity validation using ECG if there are 2
or more people in the bathtub.

During the data-processing stage, the median filter was used three times to
remove the outliers of the RRI signal. The skin surface electricity is very weak, in
the millivolts. The gentle movement of the four limbs will induce relatively large
fluctuations in the ECG amplitude. Therefore, the raw ECG signal includes some
noise and there are some outliers in the R peaks detection and RRI signal results.
If the median filter is only used once to remove the RRI outliers, then either only
the outliers with big amplitude can be removed or there is a gross distortion in
the RRI signal after the outliers are removed. Therefore, the median filter was
used to remove the outliers with big, median, and small amplitudes, respectively.

Different changes in WT during bathing have very different impacts on HRV.
For example, if the WT drops from 40℃ to 38℃ during the data collection process,
the subject will feel very uncomfortable in the first minute and need a longer time
to adapt to the WT environment. But, if the WT increases from 38℃ to 40℃
during the data collection process, the subject will adapt to the WT environment
easily. Even if the WT reaches 40℃, the subjects will not feel very uncomfortable
because they have adapted to this WT environment. A WT of 40℃ appeared
during two different processes, but had very different instantaneous effects on
the HRV and their physiological meanings were also different in these processes.
Therefore, some outliers appear in the box plot as shown in Fig. 2.8.

With the increasing WT, some change trends in the HRV features were con-
sistent with previous research (e.g., from rest to stress states). The change trend
in HR was consistent with [84, 86, 92–99], while the change trend in mean RRI
was consistent with [84, 86–89, 91, 93–95, 100], the change trend in RMSSD was
consistent with [87,89,101–108], the change trend in the LF/HF ratio was consis-
tent with [82, 107, 109], the change trend in pLF is consistent with [83], and the
change trend in SD2 was consistent with [155]. What’s more, the HRV feature of
AURRI was newly defined in this study and its unit is s2. The AURRI reflects
the fluctuation of HRV signal over time: i.e., with the increasing WT, the mean
RRI and AURRI are reduced.

With the increasing WT, the HR in medium and high WT increased by 6.53%
and 15.78%, respectively, compared with the low WT, which reflects a decreased
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4.4. NUMBER OF HEARTBEATS AND PERSONAL IDENTIFICATION RATE

vagal modulation. The significantly and monotonously reduced SDNN with in-
creasing WT shows a significantly reduced whole HRV fluctuation, which is highly
consistent with the significantly and monotonously reduced total spectral power
(0–0.4 Hz). The LF power (0.04–0.15 Hz) in the PSD reflects both SNS and PNS
activities, while the HF power (0.15–0.4 Hz) in the PSD reflects the PNS activity
and the LF/HF ratio represents the balance between the SNS and PNS activi-
ties. With the increasing WT, the LF and HF are significantly and monotonously
reduced, which reflects the finding that SNS and PNS activities are enhanced
significantly. The increased LF/HF ratio shows that the ratio of the cardiac sym-
pathetic to parasympathetic tones (i.e., the sympathovagal balance) was enhanced
significantly, which shows that the stimulation of high WT on the subject was also
enhanced significantly. The stimulation on the subject under high WT increased
by 6.43% and 5.20% over the low and medium WT, as shown in Tab. 2.1.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions
This study mainly explores the HRV analysis and personal identification at

different bathtub WT during bathing. The main contributions of this study are
shown as follows:

Firstly, in chapter 3, we find that different WT has an important impact on
the HRV during bathing. The statistics show that with increasing WT, 11 HRV
features are significantly (p < 0.05) and monotonously reduced, four HRV features
are significantly (p < 0.05) and monotonously rising, two HRV features are rising
first and then reduced, two HRV features (fuzzy and approximate entropy) are
almost unchanged, and vLF power is rising.

Secondly, in chapter 4, our research reveals that the WT has an important
impact on the personal identification rate using ECG during bathing. Different
water temperature will affect the amplitude and interval of ECG, especially the
interval between normal R-R peaks, which leads to great differences in ECG under
different water temperatures, which will have a great impact on the recognition
rate. Therefore, the training sample must contain data at various water tempera-
tures, so that the generalization ability and robustness of the obtained model will
be stronger.

Thirdly, a fast and robust identification system is designed. The RNN can
achieve better performance than the CNN when dealing with and classification
the time series signal. The trained model can quickly and accurately identify
a person’s identity in the most commonly used water temperature environment
(36 ℃-42 ℃). This model can meet the practical application in daily family life,
general small nursing homes and other scenarios.

Finally, our study confirms that the number of test heart beats has an im-
portant impact on the identification rate using ECG during bathing. When the
number of test heart beats is 20 or greater, the identification rate is more than
98% and then the identification rate curve becomes stable.

6.2 Future Work
With the urgent need for medical and health care in the daily life, many topics

should be proposed in the future works.
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6.2. FUTURE WORK

Firstly, we will continue to explore how to perform personal identification in
real time using the ECG during bathing at different WTs. And then perform HRV
analysis during bathing and the resting state at the same time.

Secondly, the quantitative analysis of ECG amplitude and interval as well
as the geometric characteristic and spectral differences based on different water
temperature during bathing should be performed.

Thirdly, real-time mental and physical stress monitoring and evaluation model
using ECG are needed.

Lastly, how to perform precise and fast cardiac disease prediction using ECG
in daily life is an important problem to be addressed.
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