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Sleep Stage Classification and Obstructive Sleep Apnea
Detection Using Deep Learning

Abstract

Sleep is a one of a crucial physiological process of human body, which regulates the cellu-

lar and molecular mechanisms. Sleep helps in the rejuvenation of the body and is essential for

regulating both mental and physical health. Since the sleep directly regulate the physiological

functions, the quality of life is strictly associate with the quality of sleep. Recently, many stud-

ies have revealed that the sleep culture is significantly changed worldwide in past few decades.

These changes strongly corelated with public health consequences as well as social and eco-

nomic break downs. Therefore, it is very important to improve the diagnosis of sleep disorders

through sleep studies to optimize treatments for sleep disorders and to improve the quality of

sleep. One of the critical steps of sleep medicine is to identify the sleep stages. The most es-

tablished method is visual sleep stage scoring using polysomnography. The traditional sleep

scoringmethod can be a tedious and time-consuming process since it needs lot of human inter-

ventions. Because of that reason, there is a huge need for improved computer based automatic

sleep stage detection method. Especially, there is a huge demand for a system that can assist

the sleep technicians to perform the scoring efficiently and effectively. This research project

consists of twomain contributions. In the first main contribution, there are three experiments

focused on automatic sleep stage detection based on overnight polysomnography (PSG) data.

The final part is dedicated for detecting Obstructive Sleep Apnea Syndrome (OSAS). In sleep

stage detection part, experiment(I) brings a deep learning model to classify sleep stages based

on 4 electroencephalogram (EEG) electrodes and two electrooculogram (EOG) for 5-stage sleep

classification. In experiment (II), a combination of convolution blocks and a recurrent neural

network, is used to score 4-stage sleep stages automatically. Experiment (III) is dedicated to

improving the performance of the proposed model in Experiment(I) for 5-stage sleep scoring.
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In the second main contribution, an Obstructive Sleep Apnea (OSA) detection method

is proposed. Generally, an interruption of airflow resulting from an obstruction in the upper

airways is recognized as an Obstructive Apnea event. Overly shallow breathing lasting more

than 10 seconds also considers as an OSA episode. Uncontrolled Sleep Apnea causes diabetes,

strokes, heart attacks and even a shortened lifespan. It is very important to detect and treat

sleep apnea at the early stages to avoid long-term consequences of health especially for obese

and older persons.

Like the sleep stage classification case, manual method is slower and needs rigorous inter-

vention of sleep experts. Therefore, a novel method for obstructive sleep apnea detection based

on fused time-frequency representation is presented in the second main contribution. A com-

bination of spectral images formedwithContinuesWavelet Transform (CWT) and ShortTime

Fourier Transform (STFT) is used to classify the OSAS events from a single lead ECG signal.

For classifying the apneic and non-apneic events, a residual neural network was designed and

implemented.

2



1
Introduction

1.1 Background andMotivation
Sleep is an unconditional necessity for humans and plays a crucial role in maintaining the

stability of biological processes. Lack of sleepmay lead to drowsiness, severe fatigue, loss of day-

time performance, disturbance in circadian rhythm, impairments of mental activity, low per-

formance of the immune system, reduced cognitive functioning, and other disruptions on bio-

logical function causing long-time health risks [4] (see Fig. 1.1). On the other hand, long-term

sleep disruptions cause even more health consequences such as increased risk of hypertension,

diabetes, obesity or heart attack etc. Various studies show that sleep disorders or abnormali-

ties generally have a strong correlation with depression, diabetes, metabolic syndrome, sudden

3



death, heart failure and other cardiovascular diseases [5][6]. The average sleep duration of an

average person has decreased over the passed century due to the busy lifestyle of today’s society.

Nowadays, many people tend to miss their sleep due to various reasons like shift work, work

more hours, using Internet, and watching TV. Furthermore, around 20% road accidents and

injuries are associated with sleepiness of the driver, and most of these cases are reported the in

the early morning hours [7]. Sleep loss and sleep related disorders may significantly affect for

the economy resulting medical costs, hospital services, sleep diagnostic equipment and sleep

medicine. Sleep medicine related awareness among the general is reported low, even though

many individuals having sleep problems. It should be noted that the impact of sleep on health

and life quality is not recognized as a significant fact in the general public. However, sleep di-

agnostics is performed for some patients to evaluate the quality of sleep.

Figure 1.1: Overview of sleep

Sleep scoring is an essential part of sleep studies and diagnosis of sleep disorders. As sleep

directly influences our body functions and the quality of life, it is important to improve the

diagnosismethods of sleep related diseases. The cornerstone of these procedures is sleep scoring

andhypnogram. Hypnogram shows the relative representationof sleep stages throughout sleep

and it is useful to save time when evaluating sleep. This thesis focuses on automatizing the

process of sleep scoring to save time and avoid subjective mistakes of manual sleep scoring.

4



1.1.1 Polysomnography

Sleep functions are not fully discovered yet. But the measure of how well a person sleeps

significantly affects medical treatments, diagnosis, and clinical follow-ups. In order to evaluate

the sleep quality, the patient needs to spend a night in a designated sleep center and record a

polysomnography (PSG) [8]. The overnight recording is then analyzed by a physician or sleep

experts and utilized as the golden standard for clinical diagnosis of sleep disorders [9].

Figure 1.2: 10-20 Electrode Placement System for EEG data collection

Polysomnographywas first developed in 1960s, and became a golden standard and themost

fundamental approach in studying a sleep behavior of a subject. [10]. Typically, physiolog-

ical changes are collected using non-invasive surface electrodes such as electroencephalogra-

phy (EEG), electrooculography (EOG) and electromyography (EMG) during the sleep. These

three are the classical physiological signals which are used for the fundamental sleep analysis.

Fig.1.2 shows 10-20 Electrode Placement System for EEG data collection. In order to obtain a

polysomnogram a whole night recording is performed in a sleep laboratory. Besides the EEG,

EOG and EMG signals, signals related to breathing - nasal/oral airflow, thoracic effort and ab-

5



dominal effort, blood oxygenation, electrocardiography (ECG) and leads are also used to collect

data based on the situation.

EEG sensors records the brain activity produced by summation of electrical signals gener-

ated bymillions of brain neurons. Electroencephalogram signals usually categorized into differ-

ent frequency bands: delta (0.5 - 2Hz), theta (3 - 7 Hz), alpha (8 - 12 Hz) and beta (12 - 20 Hz).

According to many studies, spectral powers of different frequency bands highly correlate with

different sleep stages and therefore widely used PSG analysis. Electromyogram (EMG) is the

recording of electrical activity produced by skeletal, and electromyogram EOG is a recording of

the voltages generated by eyes movements.

A doctor, or a sleep physician can diagnose sleep related disorders or abnormalities using

the polysomnography records. Normally a polysomnography record is used to evaluate symp-

toms of sleep apnea. More detail of this disorder is further discussed in Chapter 2. Beside the

sleep apnea, narcolepsy (involves extreme drowsiness and ’sleep attack’ during the day time),

sleep-related seizure disorders, restless legs syndrome (involves uncontrolled flexing and exten-

sion of the legs during the sleep), REM sleep behavior disorder (acting out dreams during sleep,

unusual behaviors during sleep), chronic insomnia (difficulty falling asleep or maintaining the

sleepiness). Polysomnography testing is typically conducted in sleep laboratories established in

sleep clinics and hospitals. PSG is a non-invasive clinical procedure that monitors various sen-

sory data including breathing and cardiac parameters which further used to analyze the health

condition of a person [3].

1.1.2 Sleep stages

Sleep stages are scored in 30 second sequential time segments starts from the beginning of

the PSG recording. The epochs are then assigned sleep stage based on the rules and regulations

defined in sleep stage criteria mentioned above. If more stages are seen during a single epoch,

the stage occupies the largest portion in the epoch is assigned.

• Stage ‘ W ’ is the state of wake. It ranges from full vigilance to early stages very light

sleepiness

6



• Stage ‘ N1 ’ is phase that the human body transition in between wakefulness and sleep

• Stage ‘N2 ’ ismain body of light sleep. Memory consolidation is taken place, andmuscle

activity decreases. The awareness of the outside world starts to fade gradually

• Stage ‘ N3 ’ is also known as deep sleep or slow-wave sleep. In this stage it is difficult to

awake and less responsive outside simulations

• Stage ‘ R ’ is the phase where most vivid dreams happen in. Body does not move, and

the eyes move rapidly, while chin muscle tone activity stays low

• Wake (W)

Based on ASSM manual, at least 50% presence of alpha waves in EEG recordings is the

most significant discriminative observation for this sleep epoch. Alpha waves are nor-

mally in the range of frequencies from 8 to 13 as shownHz Fig.1.3 Alphawaves [1]. Even

without the alpha rhythm is presented, Wake stage is classified, if any of the following

observations are present.

– Eye blinks at a frequency of 0.5 - 2 Hz

– Reading eye movements

– Irregular conjugate rapid eyemovements associatedwith normal or high chinmus-

cle tone

Furthermore, alpha rhythm is presented only with closed eyes. With open eyes alpha

rhythm is replaced by low-amplitude mixed-frequency EEG pattern.

Figure 1.3: Alpha waves [1]

• N1 stage

An epoch is scored asNREM 1, if it generates alpha rhythm and attenuated and replaced

by low amplitude, mixed frequency activity for more than 50% of the epoch.
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In epochs, where there is no alpha rhythm presented, the stage is recognized by presence

of low-amplitudemixed-frequency waves in the range 4-7Hz with slow eyemovements,

or vertex waves. If there are no k-complexes associated with external arousal are pre-

sented, the epoch is still marked as N1 [2].

• N2 stage

For stage N2, presence of k-complexes and sleep spindles within frequencies of 13-16 Hz

is expected for stage N2.

Figure 1.4: k-complexes and sleep spindles [2]

K-complex consists of a negative short wave followed by a positive component standing

out from a background EEG as shown in Fig.1.4 [1]. The length of one k-complex is

normally less than 0.5 s. Sleep spindles are a train of waves with frequency 11-16 Hz .

The duration is about 0.5 s. The same activity as on EEG can be found on EOG. EMG is

elevated, but still lower than in stageW. Stage N2 ends when it changes into other stages

(N3, W, or REM). It changes into N1 or W arousal observed in EEG, or the conditions

of stageN2 are not observed. Major BodyMovement (MBM) also can be presented dur-

ing N2 stage. MBMs are normally followed by slow eye movements and low-amplitude

mixed-frequencywaveswithout k-complexes or sleep spindles caused by arousal. If there

are no eye movements observed after MBM, the stage is continued to be categorized as

N2[2].

• N3 stage
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Presence of slow waves occurring at least in 20 % of the epoch, can be observed in an

N3 epoch. Slow waves have frequencies of 0.5-3 Hz and the amplitude of slow waves

has to be at least 75 µV . Sleep spindles are not much considered in marking stage N3.

The activity of EOG signal is similar to EEG and the EMG amplitude is changing and

relatively low [2].

• R stage

Rapid eye moment is normally captured from EOG signal and is the basic observation

of the REM. Irregular and sharp waves with initial deflection with a duration of less

than 500ms can also observed. Besides that, EEG saw tooth waves (in frequencies of 2-6

Hz) can also be appeared. Chin EMG muscle tone is quite low in this stage compared

to other stages. Transient muscle activity, ( < 0.25 s), can be observed on chin EMG or

anterior tibialis EMG. In stageR low-amplitudemixed-frequencywaves onEEG likely to

be presented. An epoch is still can be recognized as stage R even if no REM occur, when

low amplitude mixed-frequency EEG signal persists, while EMG is at its minimum, and

no k-complexes or sleep spindles are present [2].

Although, the visual inspection method (manual sleep stage scoring) is the most practiced

method in sleep medicine, visual inspection is a laborious and complex task. The manual sleep

scoring is associated with expert human interventions. Though sleep stage guidelines are well-

defined and standardized, [11] sleep stage scoring involves some vagueness. Such kind of vague-

ness can be identified as the shakiness of individual interpretation on the sleep rules. Therefore

expert-based stagingmight be bias to some extent. Given the equitable inter-rater disagreement

between sleep experts in manual sleep scoring, it is extremely important to to develop a reliable

automatic sleep stage classification system. The inter rater agreement is only 76.8% [12], and

the inter-scorer agreement in a large group is approximately 83% [13]. However, an automatic

sleep stage scoring system is very practical and efficacious as a computerized assistant. AndAlso,

it would be very useful for sleep technicians and exhibits the potential to decrease the cost of a
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sleep study.

1.1.3 Sleep stage scoring

Sleep stages defined based on different physiological and neuronal activities. Sleep scoring,

or sleep staging, is the process of classifying these stages is performed by a trained human expert

based on visual interpretation of the PSG signals. This process is very critical since sleep stage

scoring are the base for further examination. Clinically, sleep technicians follow established

guidelines, such as Rechtschaffen and Kales (R&K) criteria (published in 1968 by Rechtschaf-

fen and Kales, ) to score the sleep stages manually [14]. In R & K manual, 6 sleep stages

can be identified, namely Stage Wake, S1, S2, S3, S4 and (Rapid eye movement) REM. Even

though R & K manual is considered as a widely used standard for analyzing human sleep for

40 years, it should be noted that the manual has been criticized for leaving space for subjective

interpretation[15]. Lately, American Academy of Sleep Medicine (AASM) has modified the

R & K standard guidelines in 2007. According to AASM manual, there are five sleep stages

defined namely, stage W, Non-Rapid Eye Movement (stage N1, N2 and N3) and Rapid Eye

Movement (stage R).

1.1.4 Hypnogram and sleep cycles

Hypnogram is graphical representation of stages of sleep as a function of time [16, 17].

After determining sleep stages, a visual depiction of the behavior of sleep stage is represented

in hypnogram. Furthermore, physicians can examine succession of stages over the night. A

hypnogram normally consists of 5 to 6 sleep cycles. Generally, a sleep cycle lasts about 90 to 110

minutes, and during that time the bodymoves through five stages of sleep. The first sleep cycle

normally has a shorter REM sleep and longer deep sleep. But later in the night, REM periods

tends to lengthen and deep sleep time gradually decreases.

Fig. 1.5 [18] and Fig. 1.6 (image source : http://www.ceams-carsm.ca/en/normal-sleep)

illustrate hypnogram of a healthy person. However, in reality, hypnograms differs from per-

son to person. Hypnogram is a very useful in recognizing persons who suffering from sleep
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Figure 1.5: Hypnogram and sleep cycles of a healthy person

disorders.

Figure 1.6: Hypnogram of a healthy person
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1.2 Dissertation outline
The contents of the rest of the thesis is listed and summarized as follows:

• Chapter 2Literature Review and Background. This chapter includes a detailed literature

review about machine learning techniques and automatic feature extraction methods,

a summary of automatic sleep stage approaches, and a literature review on obstructive

sleep apnea syndrome is presented.

• Chapter 3Automatic sleep stage detection using raw PSG signals based on deep learning

models. This chapter describes the three methods proposed for sleep stage classification

based on deep learning models with two data sets collected for this work. Three experi-

ments performed on automatic sleep stage classification is presented in this chapter.

• Chapter 4 Obstructive sleep apnea syndrome detection based on fused Time-Frequency

spectral images. A novel method for obstructive sleep apnea detection based on fused

time-frequency representation is presented in this chapter. A combination of spectral

images formedwith continuouswavelet transform(CWT)andShortTimeFourierTrans-

form (STFT) is used to classify the OSA events from single lead ECG signal.

• Chapter 5Discussion: This chapter discusses the overall contribution and performances

of the proposed methods.

• Chapter 6 Conclusion and future works. This chapter conclude the whole study and fu-

ture works are suggested based on the conclusions of this study.
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2
Literature Review and Background

Recently, several studies focused ondeveloping an automatic sleep stage scoringmechanism

indicate that the need for computer assistance for sleep stage scoring is realized and broadened

over time. Mainly, the studies can be grouped into two main genres based on the feature ex-

traction techniques. The first type relies on hand-engineered features where prior knowledge

of signals is crucial to extract themost significant features correlated with sleep related informa-

tion. The other studies rely on automated feature extraction, such as deep learning algorithms,

where pertained features are used to perform the classification.

13



2.1 Hand engineered feature extraction methods
Asmentioned in chapter 1 Sleep medicine uses polysomnography (PSG) to record biologi-

cal signals for the analysis of sleep related disorders. Fig.2.1 shows the classical procedure for de-

veloping automatic sleep stage scoring systems. The first step is the PSG data acquisition from

interested subjects. Secondly the acquired data are pre-processed. The presence of artifacts

may cause the misinterpretation of sleep related information such as sharp vertex waves, and

K-complexes etc. Noisy PSG data causes significant accuracy drops in automatic sleep scoring

systems. Therefore, the preprocessing step is an essential part for prior to any further analysis

[19].

Figure 2.1: Automatic sleep stage classification

2.1.1 Feature extraction and classification

Extracting most informative, discriminative and independent features is the key for any

successful classifier[20]. Features can be identified as time domain, frequency domain, time-

frequency domain and nonlinear time domain features such as statistical parameters (mean,

standard deviation, skewness, kurtosis etc), zero crossing rate, andHjorth parameters represent
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the morphological characteristics of a signal [21][22]. Time domain features are widely used

in real-time applications. Frequency domain features are one of the most frequently utilized

type of features in EEG signal based research problems. To obtain spectral characteristics of

the time domain, the signal should be transferred to the frequency domain using Fourier trans-

form (FT). Another way of obtaining meaningful features is time-Frequency domain analysis.

Due to the non-stationary nature of EEG signal, time-frequency features are very useful and

efficient in extracting information. One such kind of very simple time-frequency analysis is

Short Time Fourier transform (STFT). In STFT, signal is uniformly windowed and then FT

is applied to each window to form the time frequency representation of the signal. Wavelet

Transform (WT) is also a popular time-frequency transform in the field which utilize a bank of

filters to decompose a signal different into frequency scales[23].

As shown in Fig.2.1, feature selection is the next part. in the feature selection section amini-

mumnumber of features is chosen to reduce redundancy. Statistical techniques such as sequen-

tial forward selection (SFS) and sequential backward selection (SBS) are popular in the field as

simple feature selection methods[24][25]. The final section is classification, which separates

the feature vector into classes. Some of the popular classifiers used in sleep stage scoring are

K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), Linear

Discriminant Analysis (LDA) &Nearest Centers (NC), Neural Network (ANN), and Hidden

MarkovModel (HMM).

2.1.2 Support Vector Machine

Support Vector Machine (SVM) is a widely used supervised classification method in many

classification problems. Each data item can be represented as a point in n-dimensional space

(where n is number of features). The value of each feature is then be a particular coordinate.

In SVM algorithm, the classification is performed by finding the best hyper-plane that sepa-

rates the two classes with the maximum the margin width around the separating hyper-plane

whileminimizing the training error. SVMis trainedusingLagrangemethod, by considering the

problemas constrained optimizationproblem. SVMis recognized as a good classifier because of
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its appealing features such as clearer separating margin, effectiveness in high dimensional mar-

gins where samples are lesser than the number of dimensions, andmemory efficiency. And also,

SVMs are criticized because of its higher training time for large data sets, inability of performing

well for noisy data. However, SVM has been successfully adopted for sleep stage classification

in previous studies [26][27][28][29].

2.1.3 K-Nearest Neighbor

The K-Nearest Neighbor (KNN) algorithm is one of the simplest algorithms among all

machine learning algorithmsused inmany classificationproblems. This algorithmassumes that

similar things exist in close proximity. In other words, KNN exploits the fact that similar things

are near to each other in the feature space. KNN assigns a label to input patterns depending

on the majority vote of k-nearest samples [30]. A typical Euclidean distance measure is used to

calculate how far each sample is to the target class.

2.1.4 Random Forest

Random Forest (RF) consists of an ensemble of tree-structures [31], where each individual

tree plays the role of a single classifier. In RF, the training samples are fed to the trees as random

as possible through a random selection followed by different bootstrap selections. This process

continues several times to blend the samples in the training phase. The output is determined

using a votingmethod of each trees’ outputs. In order to train aRF classifier, an arbitrary num-

ber (usually large number of trees are used) of decision tree are randomly generated. Each tree

in the tree forest are trained independent to each other so that they have a partial observation

of the train samples. The performance of a random forest depends on its trees’ individual per-

formance [32].

2.1.5 Linear Discriminant Analysis & Nearest Centers

Linear Discriminant Analysis (LDA) is developed in 1936 by Fisher. In binary class cases,

LDA can be considered as a classifier and, is used as a feature-extraction method in other cases.
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LDA provides separable features for the next classifier. In implementing LDA, input samples

are projected onto a few number of hyper-planes (depends on the number of classes) such that

the separability is maximized in the projected space. LDA is optimized by a Fisher criterion.

The final decision or the classification is made by utilizing a distance-based classifier to the LDA

outputs. LDA works as a feature extractor and the projected features are then put into the

relevant classes based on the minimum distance of the input to the center of each class [33].

2.1.6 Artificial Neural Network (ANN)

ANN can be identified as an artificial information processing system associated with inter-

connected nodes called neurones. An artificial neural network works similarly to the human

brain’s neural network. Thses networks are designed following the mechanism of real biologi-

cal neural cells. A “neuron” can be recognized as amathematical function that accumulates and

classifies information according to a specific rule or function. The individual neurons employ

activation functions such as sigmoid, hyperbolic and linear functions. Generally a neural net-

work contains multiple layers of interconnected nodes. Once the number of hidden layers gets

large, the network become deep, in which the memory of the network is also improved to con-

serve the information of input samples. Recently, ANNs are heavily utilized in automatic sleep

stage scoring [34][35][36][37]. The schematic diagram of a feed-forward multi-layer neural

network is shown in Fig.2.2.

ANNs are trained by back propagation algorithms. Even though training of an ANN is

relatively slower, ANNs are comparatively fast in the test phase. One of the major drawback

of ANNs is the over-fitting to the noisy samples placed along the margin space between classes.

However, the hyper parameter such as network size , layer size, and activation functions should

be selected carefully since such parameters can affect the classifier’s performance.
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Figure 2.2: ANN architecture, feed-forward network,‘W’ represent the weight matrices , and ‘x’ and ‘y’
represent inputs and outputs respectively

2.2 Automatic feature extraction methods involved

with sleep stage classification
Mostly, automatic feature extraction based methods use pretrained Networks. Chambon

et al. in has proposed end-to-end deep learning approaches to perform automatic sleep stage

classification based on multi-channel and multi-model PSG signals [38]. Their method can

correctly classify the sleep stages with a confidence of 91%. In summary, a deep architecture

can extract information from EEG, EOG, and EMG channels and perform classification using

learned representations along with an end classifier. Furthermore, Akara et al. [39] proposed a

deep learningmodel, namedDeepSleepNet, basedon raw single-EEGchannelwithoututilizing

any hand-engineered features. The approach uses CNN based feature extraction method and

bidirectional long-short term memories (LSTM) to perform the classification of sleep stages

from raw EEG epochs. CNN combined with fine-grained segments is successfully used to clas-

sify sleep stages with different combinations of multiple PSG channels including EEG, EOG,
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and EMG [40]. The experiments performed with the proposed CNN architecture for multi-

ple channels have been obtained the highest accuracy of 90.11 % for 11-channel configuration

[40]. In addition to the 11-channel configuration, they proposed 5-, 7-, and 9-channel config-

uration with classification confidence of 83%, 88%, and 89% respectively. The present study

emphasizes on the capability to handle different kinds of physiological signals including EEG

and EOG.

2.2.1 A brief summary of automatic sleep stage approaches

As explained above, the EEG is the best signal which represent the electrical activity of the

brain. EEG patterns show various behaviors during sleep stages. These kind of behaviors have

successfully been used to develop automatic sleep stage scoring systems. Table.2.1 shows re-

search approaches that use only EEG signals to classify the sleep stages.

Electrical activity of the human heart is monitored with ECG recordings. Some studies

show that sleep stage classificationwithECG is less complex compared to complete PSGanalysis

[47–49]. Table.2.2 summaries such kind of methods which use ECG signals to score the sleep

stages.

Human scorers use a combination of multiple physiological signals to determine the sleep

stages. Even though multiple signals introduce redundant in formations, it is important for

sleep technicians to confirm an interested event from different channels. The standardmethod

todiagnose sleepdisorders rely onmultiple PSG signals. EEG signals in combinationwith other

PSGsignals, such as ECG,EOGandEMGhave alsobeenutilized to implement computer based

sleep stage scoring systems as shown in Table.2.3.

2.3 Obstructive sleep apnea syndrome

2.3.1 Sleep apnea

Sleep apnea (aka. sleep apnoea, SA) is one of the most common chronic diseases and is

caused by the complete or partial discontinuation of airflow that accompanies an obstruction
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of the upper airway for a short time [57, 58]. A complete pause of at least 10 s in the airflow

through the upper airway during sleep is usually considered as an apnea-episode as shown in

Fig.2.3.

Mainly three types of sleep apneas can be recognized based on the breathing style , namely

central SA (CSA), obstructive SA (OSA), and mixed apnea [58]. CSA is mainly caused by the

instability in the central nervous system. In a CSA episode, a blockage of the airway at the back

of the throat causes to create an apneic event. If the airway block is disturbed partially, then

the pathology is termed hypopnea [59]. Such a hypopnea event involves at least 10 s of shallow

breathing. This kind of shallow breathing lowers the air volume entering the lungs to low levels

(below normal levels) and causes blood-oxygen desaturation of at least 4%. An occurrence of

OSA is recognized when a person has a complete airflow pause in the upper airway for at least

10 s. During anOSA event, the airway is cloggedwhile there are still respiratory efforts happens

against the obstruction [60]. Furthermore, mixed apnea is identified when the apnea starts as a

CSA and terminates as anOSA. Therefore, mixed apnea has both features fromCSA andOSA

.

Figure 2.3: Sleep apnea syndrome

Undiagnosed and untreated repetitive apneic episodes can cause a variety of health compli-

cations, including excessive sleepiness in daytime, cardiovascular and neurological issues such

as memory impairment, high blood pressure, acute coronary syndrome, and congestive heart
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failure [60, 61]. According to previous studies [58, 62, 63], around 3–7% of adult men and

2–5% of adult women worldwide suffer severely from SA. Specifically, 14% of men and 5%

of women in the United States suffer from OSA syndrome, and the prevalence of the OSA is

continuously growing in various populations worldwide[64].

Figure 2.4: Prevalence of obstructive sleep apnea

In clinical work, the seriousness of apnea and hypopnea events is qualitatively measured

using the apnea–hypopnea index (AHI) (see Fig.2.5). The AHI value is defined as the average

number of apnea/hypopnea episodes occurring within one hour. In general, a subject showing

an AHI value greater than five is considered as a person with SA [59, 65]. A mild OSA case is

identified if theAHI value lies between 5 and 15. ThemoderateOSApatients showAHI values

between 15 and 30. Severe cases have AHI values above 30 [66].

The most common diagnostic method for OSA suspects is polysomnography (PSG). In

PSG, various physiological signals are acquired from sleeping patients including, airflow, res-

piratory effort, electroencephalogram (EEG), electrocardiogram (ECG), and oxygen saturation

(SpO2). The specific patterns in these physiological signals are then scrutinized by sleep experts

to detect sleep-related disorders such as OSA. Therefore, PSG is known as gold standard for

OSA detection for long time and the the study is also used to perform comprehensive evalua-

24



tion of the cardio-respiratory system. More detail about PSG can be found in subsection 1.1.1.

Even though OSA detection based on PSG test, the some cases are still not recognized [67].

A typical PSG test requires dedicated nursing staff and expensivemedical equipment specif-

ically designed for polysomnography related bio data acquisition. The PSG diagnosis method

therefore needs dedicated supervision of expert human personals. Besides that, a normal PSG

test is time-consuming, expensive, and uncomfortable for patients since many sensors are at-

tached to the body when the subject is sleeping. One of a main objectives of this study is to

minimize these technical and economic complications of sleep studies based on conventional

PSG studies. There are number of automatic SA detection methods proposed during the past

two decades. These methodologies are usually relies on the analysis of the cardiopulmonary

(CP) bivariate signal (a combination of heart rate (HR) and respiratory rate (RR) signals), or

ECG-derived respiration (EDR).

Figure 2.5: Apnea–hypopnea index (AHI)

Recording respiratory activity via sensors positioned around the nose is uncomfortable for

the subject. Because, respiratory activity is completely or partially clogged during an apnea/hy-

popnea episode, variations in the RR signal can be observed. Therefore the RR signal is some-

times obtained indirectly via EDR signals or inductance plethysmography [68, 69]. The EDR

signal is widely used to detect sleep associated disease or issues since it accurately reflects respi-

ratory activity during the the sleep. Besides that, ECG electrodes can be easily attached to the

body without disturbing sleep, with comparison to direct respiratory sensors placed close to

the nose. Therefore, ECG signal can be identified as an appealing option for apnea detection .

Some studies have shown that SA event is strongly associated with variations of the signal,

including Heart Rate Variability (HRV), morphological variations in the ECG signal [70–72],

and variations in the ECG signal’s QRS duration [73, 74]. Therefore, many studies have been

carried out based on these observations, and algorithms based on morphological-variation fea-

25



tures have tended to show improved performance [71, 75].

This experiment also focuses on ECG signal variability, HRV, and morphological varia-

tions during an apneic event. This study aims to capture such features using time-frequency

representations. A fused combination of time–frequency representations (TFRs) is utilized to

intensify theHRV-based andQRS-based variations in ECG signals. The presence or absence of

apneic episode is then detected bymeans of a deep convolutional neural network (CNN) using

a fused spectral images generated from two TFR (scalograms and spectrograms). Compared

with other existing methods, this experiments showed improved performance in detecting ap-

neic events because it not only combines a variety of TFRs but also exploits recent advances in

CNN-based classifiers.

2.3.2 OSAS and apnea detection)

During the previous two decades, many works have been proposed to separate sleep apnea

events from the normal event, using a number of physiological signals including ECG, EDR,

and respiratory signals [76–78]. According to Guilleminault et al. [79], the presence of an

apneic episode is related to the concomitant variation in the RR intervals in the ECG signal.

A considerable number of research attempts have been made to implement automatic OSA-

detection methods using a single ECG lead. Khandoker et al. have proposed an sleep apneas

detection method using features extracted from successive wavelet-coefficient of the RR inter-

vals and the EDR signal from the R waves in the QRS complex [80]. They have successfully

adapted a support vector machine (SVM) classifier to perform the classification. In their work,

more than 90%of test subjectswere identified so that the apnea cases can be distinguished from

the normal cases. Song et al. developed a apnea detection method using a discriminative hid-

den Markov model (HMM) based on the ECG signals for ECG segments [81]. In that study,

frequency-domain and time-domain features were extracted from the EDR and ECG signals

were used to distinguish the apneic events. The per-segment detection accuracy of Songsmodel

was 86.2% for PhysioNet Apnea-ECG database.

Kunyang et al. have also proposed a neural-network (NN)-basedmodel that used anHMM
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for identifying sleep apnea episodes using ECG signal [82]. In their work, a combination of

sparse auto encoders, NNs, and HMMs was used to develop the framework. A classification

accuracy of 84.7% was achieved for per-segment apnea detection. Hayano et al. proposed a

screening method for OSA using cyclic variations in heart rate (CVHR) [83]. The agreement

between the SA and the presence or absence of CVHR in each one-minute periodwas found to

be 83%. Sharma et al. achieved 84.4% accuracy for one-minute ECG signals in detecting apnea

using a least-squares (LS) SVM classifier with aGaussian radial-basis-function (RBF) kernel for

features derived fromHermite expansion coefficients [75]. Later, Viswabhargav et al. proposed

an apneadetectionmethodwherebyEDRandRRsignalswereutilized to extract sparse residual

entropy (SRE) features, using an SVMclassifier [65]. In their study, anRBF-kernel-based SVM

classifier achieved 85.43% sensitivity and 92.60% specificity for the SRE features.

Tripathy et al. introduced a novel method that analyzed the CP signal using fast and adap-

tive bivariate EMD coupled with cross time-frequency [84]. The CP signal was formulated us-

ing both the HR and RR signals derived from the ECG signal. Their method achieved average

sensitivity and specificity values of 82.27% and 78.67%, respectively, using an SVM classifier

and “random forest” classifiers in a 10-fold cross-validation method.

Singh et al. proposed a method based on the heartbeat interval and EDR, where sliding-

mode singular spectrum analysis was used to extract features, with sensitivity and specificity

values being 82.45% and 79.72%, respectively [85].

In these methods, many of the features of the ECG signal used in the classification are de-

rivedmanually. These include waveform parameters such as instantaneous amplitude (IA) and

instantaneous frequency (IF), residual entropy features, statistical features, and other specifi-

cally derived features.
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Table 2.4: Comparison of automated systems proposed for OSA detection using CinC-2000 PhysioNet
database [3]

Author Methodology Performance

1 Chazal et al.

[86],2000

No. of Features: 128

Features:

Statistical features from RR duration, PSD of RR

interval, R-peak Spectrum of R-wave

Classifiers:

Linear discriminants (LD)

Avg.acc= 89.8%

Avg.sen= 86.5%

Avg.spec= 91.9%

(using 35-fold cv)

2 Chazal et al.

[87],2003

No. of Features: 88

Features:

Statistical features of EDRP and RR duration

Power spectral density of RR interval Power spec-

tral density of EDR signal

Classifiers:

LD, quadratic discriminants (QD)

Avg.acc = 90%

Avg.sen = 86.4%

Avg.spec =92.3%

(using 35-fold cv)

3 Chazal et al.

[88],2004

No. of Features: 88

Features:

Statistical features of EDRP and RR duration

Power spectral density of RR-interval Power spec-

tral density of EDR signal

Classifiers:

LD

Avg.acc = 89.5%

K-value =0.8

(Using 35-fold

CV)
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4 Babaeizadeh et al.

[89],2010

No. of Features: 12

Features:

Spectral Power in frequency ranges different

Classifiers:

Quadratic Classifier

Avg.acc= 84.70%

Avg.sen= 76.70%

Avg.spec= 89.60%

Training:testing

Data = 50:50

5 Bsoul et al.

[90],2011

No. of Features: 111

Features:

Daubechies DWT based Statistical features From

EDRP andHRV in time domain: 20 From EDRP

and HRV in spectral domain: 91

Classifiers:

Gaussian SVM

Avg.acc= 89.08%

Acse=96.05%

F1-score = .90

(using 30-fold cv)

6 Xie and

Minn

[91], 2012

No. of Features: 111

Features

Statistical features in timedomain20Statistical fea-

tures in spectral domain 91

Classifiers:

Bagging with REPTree (Reduced Error Pruning

Tree)

Avg.acc= 77.74%

Avg.sen= 69.82%

Avg.spec= 80.29%

(using 10-fold cv)

7 Liu et al.

[92],2012

Features:

Hilbert Huang transform

Avg.acc = 79.10%

Avg.sen = 73.10%

Avg.spec = 71.2%

Without k-fold

CV

8 Kesper et al.

[93], 2012

Features:

Hilbert Huang transform Statistical features in

spectral domain

Avg.acc= 80.50%

Data = 50:50

Training:testing
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9 Sadr and

Chazal

[94], 2014

No. of Features: 68

Features:

Statistical features in time frequency domain 4 and

Power spectral density of interval: 32 RR Power

spectral density of signal: 32 EDR

Classifiers:

Extreme learning machine classifier (ELM)

Avg.acc= 87.70%

Avg.sen= 81.30%

Avg.spec= 91.70%

(using 35-fold cv)

10 Nguyen et al.

[95], 2014

No. of Features: 32

Features:

Recurrence Quantification Analysis (RQA) fea-

tures of Heart Rate Variability (HRV)

Classifiers:

SVM and Neural Networks (NN)

Avg.acc = 85.26%

Avg.sen = 86.37%

Avg.spec = 83.47%

Using three-fold

CV

11 Hassan et al.

[96],2015

No. of Features: 25

Features:

EMD based Statistical features of intrinsic mode.

functions (IMFs)

Classifiers:

Extreme learning machine (ELM)

Avg.acc= 83.77%

Without cv
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12 Varon et al.

[97],2015

No. of Features: 28

Features:

Standard deviation of RR (S1) serial correlation

coefficients (r): 5 Standard deviation of EDR

(ECGDerived respiration signals (S2): 3 Principal

Component’s relative power (PC) orthogonal

subspace projections(F): 18

Classifiers:

Least Squares–Support Vector Machine (LS–

SVM)

Avg.acc= 84.74%

Avg.sen= 84.71%

Avg.spec= 84.69%

Using 10-fold cv

13 Hassan et al.

[98],2016

No. of Features: 36

Features:

TQWT based -scale factor of normal inverse gaus-

sian probability distribution function (NIG pdf):

18 tail Heaviness of NIG pdf: 18

Classifiers:

Adaptive Boosting

Avg.acc= 87.33%

Avg.sen= 81.99%

Avg.spec= 90.72%

Training:testing

Data = 50:50

14 Surrel and

Murali

[99], 2018

Features:

Power spectrum analysis

Avg.acc= 83.2%

Without k-fold cv

15 Li et al.

[100],2018

Features:

Markovmodel based featureswith decision fusion,

SVM and ANN classifiers

Avg.acc= 84.7%

Avg.sen= 88.9%

Avg.spec= 82.1%

Training:testing

Data = 50:50

Some features are derived from the QRS complex and selected manually. In some cases,

much manual preprocessing is required when performing specific derivations, including EDR
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signal extraction and QRS localization prior to the extraction of specific features.

Moreover, most existing approaches use frequency-domain and time-domain representa-

tions and nonlinear features derived from physiological signals, where substantial knowledge

and relevant experience is required.To address this issue, Wang et al. proposed a method based

on amodified LeNet-5 CNN,where feature extraction is automatedwith an accuracy of 87.6%

in the classification of OSA [101].

Recently, deep learning has become widely implemented in medical imaging and signal

analysis because of its advances in pattern recognition and image-based studies. Researchers

have also used deep-learning techniques to address ECG-related research issues such as arrhyth-

mia detection [102–107] and other research applications [108, 109]. In these studies, deep neu-

ral networks (DNNs) were introduced successfully to extract descriptive and distinguishable

features automatically from the input data, which were then used to perform the classification.

McNames et al. employed spectrogram signatures calculated from ECGs via Fast Fourier

Transform(FFT) to classifyOSA[110]. Theyobtained a case-baseddetection accuracyof 92.6%.

Singh et al. proposed a method based on ECG scalograms that were created via wavelet trans-

forms to detect OSA using a DNN [111]. Their method achieved an accuracy of 86.22% and a

sensitivity of 90% in per-minute OSA classification.
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3
Automatic Detection of Sleep Stage Using

PSG Signals

This chapter describes three methods to use artificial neural networks and deep neural net-

works for sleep stage classification. Mainly the proposed methods are trained with fairly large

data sets fromhealthy and non healthy subjects. The architecture of the proposedmethods and

the training procedure is discussed in-detail in later sections of this chapter.

3.1 Dataset and pre-processing
Two PSG datasets were used in this study. The data were recorded with two devices in

two different places. The dataset(D1) was performed at the Biomedical Information Engineer-
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ing Lab, The University of Aizu, Japan with healthy volunteer subjects. The second data set

(D2) was recorded at the Fukushima Otsuki Clinic, Fukushima, Japan between 2014.02.03 –

2016.02.17, and all recording were recorded from sleep patients. All the recordings have been

recorded by Premium Alice 6 LDxS PSG Sleep Systems (Philips Corp. USA). Mainly these

recordings consist of 4 EEG, 2 EOG channels, one EMG channels. Besides that, recordings of

‘RR’, ‘ECG II’, ‘Leg 1’, ‘Leg 2’, ‘Flow Patient’, ‘Flow Patient’, ‘Snore’, ‘Effort THO’, ‘Effort

ABD’, ‘Body’, ‘Pleth’, ‘SpO2’, ‘Technical’ were included in those recordings. Basically, all the

data processing and analysis were performed with Python programing language.

To convert the recorded signal into a representative signal which can be further worked

with, the original signal should be processed. In other words, biomedical signals are often cor-

rupted or deformed by other waves during the process of data collecting. Mostly these signals

are likely to be affected by biologically or other technical issues. The recorded data set is origi-

nally sampled with 200 Hz. Artifacts can be identified as breathing movements artifacts, pulse

artifacts caused by wrong placement of electrodes, power line hum etc. Typically, ECG artifacts

such as spike occurrence in the stage of QRS complex, and EOG artifacts caused by blinking

and eye moments can be identified as common biological artifacts.

However, some hardware pre-filters have already been applied for EEG and EOG signals as

defined below. Table3.1 shows parameters for a EEG signal corresponds to an one hour time

frame.

Table 3.1: Parameters of raw EEG signal

parameter value
samples in file 720000 samples
maximum 300 µV
minimum -300 µV

digital maximum 32767
digital minimum -32768

prefilter HP:0.32 Hz LP:93.6 Hz N:50 60Hz
sample frequency 200 Hz

Each recording was found as one-hour long data chunk (.edf file), and the sleep stages cor-

respond to the PSG recordings have been annotated by professional sleep technicians. Basically
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6 channels consisting of EEG (C3-M2, C4-M1, O1-M1); EOG and (LOC-M2, EOGROC-M1)

were taken into consideration in the analysis. The sleep stages of each recording have been

manually scored by professional sleep technologists as wake, REM, S1, S2, S3, S4, MOMENT,

and NOT-SCORED epochs. The PSG data has been collected as one hour long data chunk

.edf file. As the first step, PSG data were extracted from the raw EDF (European Data Format)

files using a python library called PyEDFlib. After the annotated labels were extracted from

the .rml files provide by expert sleep technicians. The annotated data were then rearranged by

merging S3 and S4 into one sleep stage, so that the analysis can be done using five stages (Wake,

N1, N2,N3,REM). Epochs labeled as NOT-SCORED and MOMENT were excluded as they

were not included in five stage sleep scoring criterion. All the PSG channels taken into anal-

ysis were sampled at 200Hz. For the sake of simplicity, each PSG signal was then decimated

by 2. After then each signal was feature-scaled using min-max normalization method before it

was segmented into segments of 30 s. All the signals have been filtered with hardware filters.

However, in some patients, some parts of the PSG signals have been heavily affected by the

movements of the body. Fig. 3.1 shows such kind of effected epoch due to the movements of

the electrode placement, and Fig. 3.2 shows a normal epoch.

Finally 30 s of time segments extracted fromeachPSGsignalswere concatenated into (6*3000,1)

array and the corresponding label was attached to each epoch. Python Data Analysis Library

called pandas – was used to perform the data rearrangements discussed above. After perform-

ing all the rearrangements and artifact removing, labels were converted into one hot encoding

and saved as Python numpy arrays for further analysis. Each numpy array contains shuffled

epochs from 10 subjects. The preprocessing block diagram is shown in Fig. 3.3

3.2 Evaluation metrics for multi-class scenario
To evaluate the proposed models, we use overall accuracy (acc), per-class recall (RE), per-

class precision (PR), and per-class F1-score (F1) as defined in (3.1), (3.2),(3.3), and (3.5), respec-

tively [112]. Furthermore, we computed Cohen’s kappa coefficients (κ).
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acc =
C∑
c=1

TPc
N

(3.1)

Recall (also termed as true positive rate, sensitivity, probability of detection) reflects the

correctly predicted proportion of all positive samples.

recall =
TP

TP + FN
(3.2)

Precision (also termed as positive predictive value) reflects the proportion of positive pre-

dictions that is actually correct.

precision =
TP

TP + FP
(3.3)

Specificity (also known as True Negative Rate) reflects the proportion of negatives that are

correctly detected.

Specificity =
TN

TN + FP
(3.4)

The F1 score denotes the harmonic mean of precision and recall, and thus considers both

metrics into an optimal blend for analyzing model performance.

F1 = 2 ·
precision ∗ recall
precision+ recall

(3.5)

where TP, TN, FP, FN, and N denote true positives, true negatives, false positives, false

negatives, and total samples, respectively. TPc is the true positives of class c.

For per-classmetrics, the interested class is considered as a positive and the rest is considered

as negative class. Furthermore, we computed area under curve-receiver operating characteristic

curve (AUC-ROC) to evaluate theperformanceof ourmodel. The areaunder the curve (AUC)

of a receiver operating characteristics (ROC) curve is used to check or visualize the performance

of the multi-class classification problem [113].
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3.3 Experiment I (CNNmodel)
In the experiment I, only patient data set was used. The sleep stages correspond to the PSG

recordings have been annotated by professional sleep technicians. In a nutshell, 176,864 epochs

were used to train the proposed in experiment 1 and 3,857 epochs were used to evaluate the

network as shown in Fig. 3.4

The architecture of the proposed method I is consisting of two CNN branches as shown

in Fig. 3.5. Mainly, the model starts with 2D input array (6,3000) as shown in Fig. 3.8. This

is formed by rearranging the epoch discussed above. As shown in Fig. 3.5 three preliminary

convolutional layers are used to extract sleep related the appropriate temporal and frequency

domain information. Secondly, the network is divided into two branches formed with dif-

ferent filter sizes and different stride values. The first set of convolution layers is formed by

rectangular shaped kernels ((1,2),(1,4) and (1,4)) followed by rectangular shaped max pooling

layers, which affects to one channel when convolving. The two branches are mostly formed

with square shaped kernels, which can extract details from multiple channels at a time. As il-

lustrated in Fig. 3.5, the final section consists of several fully connected layers with Sigmoid and

ReLU activations. SoftMax layer with 5 units corresponding to each sleep stage was utilized as

the classification layer. The proposed CNN was designed and trained from starch using Keras

with TensorFlow as back-end.

3.3.1 Training the network

Adam optimizer was used to minimize categorical cross entropy between predicted classes

and actual labels onmini batches size of 100 epochs (training samples). The learning ratewas set

to 10−4 and, Tensor Board was used to visualize learning curves to further fine tune (adjusting

hyper-parameters) the network using test data. Validation accuracy and loss were used as an

early stopping criterion to avoid over-fitting. Since the data set is fairly large, it is not possible to

load the training data set at once. Therefore, Keras “fit_generator” function was used to train

the network.
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Especially, Adamoptimizer is a very popular optimizing algorithmdue to its appealing char-

acteristics such as adaptive learning rate and fast convergenceovermini batchupdates [114][115].

The update rules of Adam optimizer is illustrated in equation (3.6).

Specifically, Adam optimizer algorithm concerns an exponentially decaying average of the

gradient m̂t and exponentially decaying average of past squared gradients v̂t to control the adap-

tive learning rate with constant values β1, β2, and . We used the default values of 0.001 for η,

0.9 for β1, 0.999 for β2, and 10−8 for , as suggested in the previous study [115].

θt+1 = θt −
η

√
v̂t +

m̂t (3.6)

where, v̂t denotes the exponentially decaying average of past squared gradients, m̂t denotes

the exponentially decaying average of past gradients, θ denotes model parameters, η denotes

learning rate, and denotes a very small number to prevent any division by zero.

3.3.2 Results

Fig. 3.6(a) shows thenormalized confusionmatrix andFig. 3.6(b) showsper-class evaluation

matrices for the proposedmethod I. The overall accuracy of the proposedmodel is evaluated as

84.13%. The Precision, Recall and F1-Score also calculated approximately as 84 %. There are

38,569 trainable parameters in the proposed method,

3.3.3 Model visualization

Fig. 3.8 shows an input epoch reshaped to (6,3000) corresponding to a deep sleep stage. The

height of 2D input corresponds to 6 channels of 4 EEG channels and 2 EOG channels and the

length corresponds to time samples. As described earlier each channel has 3000 data points per

epoch. Several experiment were conducted to see the output of convolutional filter activations.

Fig. 3.9 shows the output of the max pooling layer corresponds to layer 6 , the feature maps

highlight two things. Similarly, Fig. 3.9 the correspondingmax-pool output from the right side

which caries 32 feature maps. Fig. 3.11 shows the output of a layer 7 convolutional layer. As

can be seen in Fig. 3.11 the feature map extract more complex features. The darker segments
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are closer to zero and lighter segments show values close to 1. The values of each feature map is

scaled into 0 - 1 range.

3.4 Experiment II
In Experiment I, 5-stage sleep classification was considered. However, temporal inter con-

nections of the features were not effectively utilized to classify the five sleep stages. The purpose

of this approach was to implement a four-stage classification. Mainly, the model is constructed

so that it can extract features without utilizing hand engineered features. Subsequently, a Re-

currentNeuralNetwork (RNN) is used to learn temporal sequence informationof sleep epochs.

In this experiment one base model was developed using six PSG channels. The base model was

then adopted for single channel configurations yielding multiple models. The architecture of

experiment II is embedded with two main parts inspired by the work done by A. Supartak et

al.[116]. As mentioned above, the first segment is designed so that the model can extract dis-

criminative features from the raw PSG input. As illustrated in Fig. 3.12 a set of convolutional

branches are dedicated to pull out selective time-invariant features from the raw PSG signals.

The second block is attached to the end of the feature extracting block to learn the sequential

trends of the PSG signals in an epoch. The whole CNN architecture is designed for 30 s PSG

epoch similar to the experiment I.

3.4.1 Feature Learning

As mentioned above, the first block of the CNNmodel is designed for extracting different

wave patterns of PSG signals using convolutional operations. In this model, each single branch

was designed so that it can perform convolutional operation with different sizes of 1D con-

volutional kernels. Because we were interested in capturing maximum possible the obligatory

features correlated with sleep stage classification, we considered to utilize few CNN branches.

After a series of experiments, we decided to use five CNN blocks such a way that the kernel

sizes are varied gradually from smaller to larger as shown in Fig. 3.12. Fundamentally, filters

with smaller kernel sizes are likely to be working well in isolating highly localized features in the
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PSG waves. On the other hand, the filters with larger kernel sizes are sufficiently performs well

in segregating highly globalized features. In other words, smaller kernels can pull out the fea-

tures associated with abrupt changes, and filters with larger kernel sizes are good at producing

features associated with the basic patterns of the signal. As shown in the Fig. 3.12, the input

is formed separately from 6 PSG channels including 4 EEG channels and 2 EOG channels like

the previous experiments. Each 1D convolutional layer is followed by a rectified linear (ReLU)

activation layer. The parameters of each layer can be found in Fig. 3.12. Since we are interested

in 6 PSG channels in this study, the input can be identified as a combination of six 1D arrays.

Formally the raw input can be represented asX = {x1, x2, ..., xi, ...xN }, whereN is the number

of training epochs. All inputs are then concatenated as illustrated in Fig. 3.14. Each time step

in the concatenated input carries six features representing six PSG channels explained above.

x̃i = xEEG
C3

i | |xEEGC4i | |xEEGO1i | |xEEGO2i | |xEOGLi | |xEOGRi (3.7)

hki = CNN θk (̃xi) , {k = 1, 2 . . . , 5} (3.8)

Gi = h1i | |h2i | |h3i | |h4i | |h5i (3.9)

Where, | | is the concatenation operation; x̃i is the ith input (after concatenation operation);

CNN θk is the CNN branch parameterized by θk; hikis the set of features extracted from kth

CNNbranch for ith sample; andGi is the combined feature sequence. After conducting several

experiments (pre experiments), the kernel sizes were picked up as fractions of sampling rate fs.

Combined featuresGi are then passed to the next layer.
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3.4.2 Sequence Learning

In the sequence learning section, we utilized Gated Recurrent Units (GRU) to learn se-

quential trends of extracted features from the first section of the model. According to the

AASM manual, sequence trends of the PSG wave patterns are considered in determining the

corresponding sleep stage. The sleep scoring is made depending on how long wave pattern

appeared in the epoch. Besides that, the transition sequence of the wave patterns such as K-

complexes and sleep spindle are also thoroughly examined before labeling the epoch. For in-

stance, one or more trains of sleep spindles can be observed in a light sleep epoch with low

amplitude and mixed frequency activities. Such kind of sequential trends and temporal infor-

mation are expected to be learned with stacked GRU units. Basically, two stacked GRU units

were employed as the sequence learning part. Considering the feature set as (Gi), the sequence

learning part can be described as follows. Considering the Gi as a sequence of features with M

time steps,Gi can be redefined asGiT so that,

GTi = {g t1i , g
t2
i , ..., g

tm
i , ...gi

tM } (3.10)

a1,itm = GRUα1(a
1
tm−1 , g

tm
i ) (3.11)

a2,itm = GRUα2(a
2
tm−1 , a

1,i
tm ) (3.12)

Where, g tmi is an extracted feature vector of t thm time step for ith training example; a1,itm and

a2,itm are the recurrent outputs of the RNN layers respectively. GRUα1 and GRUα2 layers are

parameterized by α1 and α2.

3.4.3 Complete Model

After series of experiments we fixed the Kernel sizes of the first layers of the CNNbranches,

starting from 1
10 × fs. Kernel sizes of the convolutional layers are10fs100 ,

8fs
100 ,

4fs
100 ,

3fs
100 , and

2fs
100
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respectively.

The stride sizes of the first two convolutional branches, were set to 1
25

th of sampling rate,

while the other three were set to 1
50

th of sampling rate. The kernel sizes and strides of subse-

quent convolutional layers were kept at smaller values. The feature extracting section and the

sequence learning section is combined via two convolutional layers. Finally, fully connected

layers followed by a SoftMax layer is employed to classify four sleep stages.

3.4.4 Multi-step training

Multi-channel models

The training was done in a few steps. Firstly, the feature extraction CNN branches were

trained. In the first training session only the feature extraction section was trained with a Soft-

Max layer attached directly to the concatenation layer. Categorical cross-entropy loss was used

as the loss function to evaluate the error betweenmodel predictions and the actual sleep stages.

Adam optimizer was used to perform the supervised pre-training session, with a learning rate

of (lr1 = 0.001). Since our data set is large, we set the mini-batch size as 50 for each training

iteration. Subsequently two fine-tuning training sessions were performed to train the rest of

the model.

After determining parameter sets θk, {k = 1, 2, . . . , 5} for all branches ofCNN θk , SoftMax

layer was removed from the pre-trained section. The sequence learning part was attached to

the pre-trained part. The sequence learning part consists of two convolutional layers and amax

pooling layer prior to the stacked GRU units. The output of the sequence learning portion

was attached to a fully connected neural network followed by a SoftMax layer as illustrated in

Fig. 3.13. In the second training session, the pre-trained part was disabled for training, and only

the newly attached part was enabled for training.

Since the prier layers have been already trained for extracting features, a lower learning rate

was employed (lr2 = 0.0007) during this training session. The best model was continuously

saved during training if the validation accuracy is increased against the training iteration. In
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order to save the bestmodel, we used early stopping criteria inKeras library. In the final training

session, all the layers were frozen except the fully connected layers and the model was retrained

with a learning rate of lr3 = 0.0007.

Single-channel models

Weperformed some additional experiments to verify the feasibility of using thismodelwith

a single EEG channel. In this experiment, we assigned only one EEG channel for all inputs at a

time and retained the model with the same data set. In all single channel experiments, training

was disabled for all the feature extraction block and the whole model was then retrained using

Adam optimizer with a learning rate of 0.0009. After performing the same experiment for the

four EEG channels, we yielded 4 single channel configurations for each data set.

3.4.5 Implementation

Similar to the Experiment I, the second CNN was also implemented and trained from

ground up using an Python environment using Keras deep learning API library with Tensor-

Flowasback-end. Furthermore, thismodelwas trainedwithGPUsupport (NVIDIAGEFORCE

GTX 1070). As mention earlier we used two data sets. But in in all experiment scenarios, we

used same configuration to retrain the model for healthy data set (mod_D1) and patient data

set (mod_D2). And, the same configuration was used to train and test the single-channel mod-

els. Since the patient data set is comparatively large, we used ∼ 6% of data from 172,512 total

epochs to test the trained model for very experiments. On the other hand ∼ 12% of 59,480

total epochs from the healthy data set was used to test the models. The validation split ratio

was kept same for all experiments during all experiments. During each pre-training session, the

best model was saved based on the validation accuracy.

3.4.6 Results
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Multi-channel models

Fig. 3.14 shows a raw PSG input epoch corresponding to a deep sleep epoch. As described

above, each channel has 3000 data samples. The visualizations of few convolutional filter ac-

tivations corresponding to the epoch illustrated in Fig. 3.14 is shown in Fig. 3.15. As can be

seen in Fig. 3.15, the feature maps highlight two things. Firstly, the most influential features

have been extracted from the raw PSG signal. Secondly, trivial information has been cut off

from the feature map as a result of the ReLU activation function. The visualized feature map

in Fig. 3.15(a), which corresponds to the first convolutional layer of the 4th branch, illustrates

how the convolutional filters have been adapted to capture the generic features from the raw

signal. As shown in Fig. 3.15(d) in the final layers, most of the unnecessary features have been

removed from the feature map, while the pertinent information for deep sleep stage have been

emerged.

In this phase, we evaluated trained models with an unseen data set from both data sets. As

shown in Fig. 3.16, (mod_D1) performed well in classifying light sleep stage with a confidence

of 96% . Besides that, wake, deep, and REM showed 85%, 80%, and 76% respectively. The

overall accuracy is recorded as 89.30% for healthy data set. On the other hand, (mod_D2) also

having an accuracy of 95% for light sleep stage, while the REM, wake, and deep stages showed

confidence levels of 88%, 82%, and 74% respectively. Receiver operating characteristic (ROC)

curves for the multi-channels models are shown in Fig. 3.17. The trained CNNmodels showed

macro-average Area Under Curve (AUC) of 0.99 for both data sets. The macro-average AUC

for healthy subjects and patients was calculated as 0.98 and 0.99 respectively. ROC AUCs for

wake, light, deep, andREMsleep stageswere calculated as 0.99, 0.96, 0.99, and 0.98 respectively

for healthy data set. The similar measures for patient’s data were 0.99, 0.98, 0.99, and 0.99 for

wake, light, deep, and REM stages respectively. Table 3.2 tabulates the per-class evaluation

metrics for bothmulti models. W, L, D, andR represents the wake, light, deep, andREM sleep

respectively. In terms of precision, recall, and F1 measures, mod_D1 has shown a weighted

average of 89%, whilemod_D2 is observed with 92%. It is interesting to note that the micro
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averages of above measures are observed unchanged even though the per-class values lie a range

between 74% ∼ 95%.

Table 3.2: per-class evaluation metrics for multi-channel models

Single-channel models

Fig. 3.18 shows the confusionmatrix for single-channelmodels of healthy subjects obtained

by replacing the input with the same EEG channel. In a nutshell, we can observe that EEG-O1

model shows the maximum predicting confidence in predicting deep sleep (88%) and wake

stage (80%) while EEG-O2 and EEG-C4models are having the highest confidence level in pre-

dicting light sleep stage (94%) and REM sleep stage (78%) respectively. * Note- bold numbers

indicate the maximum value of each column.

Similarly, Fig. 3.19 shows the corresponding confusion matrix for patients. Table 3.3 and

Table 3.4 show the corresponding per-class evaluation metrics for both data sets. As noted in

Table 3.3 micro averages of precision, recall and F1 measures for all single channel models lie

between 82% ∼ 86%. Correspondingly, Table 3.4 exhibits a range of (86% ∼ 88%) for the

models trained with patients for similar measures.

3.4.7 Overall Performances of ProposedModels

In Table 3.5, the overall performances of multi-channel models and single-channel models

are shown. As can be seen, the best overall performance is observed with the multi-channel

model for both data sets.

In contrast, the best overall performance (85.29%) for single-channel is given by the model

trained for EEG C4-A1 for the healthy data set while the EEG C3-A2 model shows the best
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Table 3.3: per-class evaluation metrics for single-channel models trained for healthy data set

Table 3.4: per-class evaluation metrics for single-channel models trained for patient data set

overall test accuracy (87.7%) for patient data set.

Table 3.5: Overall performances of proposed models
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Figure 3.3: Pre-processing and rearranging data

Figure 3.4: Training and test data
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Figure 3.5: Architecture of proposed method I

(a) Normalized Confusion Matrix (b) Per-class matric 

Figure 3.6: Evaluation matrices (a) Normalized ConfutationMatrix (b) Per-Class Metric
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Figure 3.7: Receiver operating curve (ROC) for proposedMethod I

Figure 3.8: Reshaped input corresponds to a deep sleep epoch
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Figure 3.9: Feature map corresponds to the max pool layer (L6) of left branch

Figure 3.10: Feature map corresponds to the max pool layer (L9) of right branch
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Figure 3.11: Feature map corresponds to the convolutional layer (L7) of left branch
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𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒

EEG C3−A2 EEG C4−A2 EEG O1−A2 EEG O2−A1 𝐸𝑂𝐺 𝐿𝑂𝐶 − 𝐴2 𝐸𝑂𝐺 𝑅𝑂𝐶 − 𝐴1

SoftMax Layer

Figure 3.13: Feature extraction section

Figure 3.14: Input of 1-D time series array in (1).
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Figure 3.16: Normalized confusion matrix for multi-channel models. (a). mod_D1 (model for healthy
subjects); (b). mod_D2 (model for patients).

Figure 3.17: Receiver operating characteristic curves for multi-channel models (a). mod_D1 (model for
healthy subjects) (b). mod_D2 (model for patients)
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Figure 3.18: Normalized confusion matrix for single-channel models for healthy data set (a). EEG-O1
model(b). EEG-O2 model (c). EEG-C4 model (d). EEG-C3 model.
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Figure 3.19: Normalized confusion matrix for single-channel models for Patient data set (a). EEG-C4
model(b). EEG-O2 model (c). EEG-O1 model (d). EEG-C3 model.
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3.5 Experiment III
In Experiment II, we consider 4 stage sleep classification. In order to improve the perfor-

mances of themodels proposed in Experiment I andExperiment II, we designed series of experi-

ments in Experiment III. In this chapter, we present the architecture of another automatic sleep

stage classification model with improved performances. This model is capable of performing 5

stage and 4 stage classification at once. This experiment is an extension of Experiment II, and

most of the experimental setups are identical to the procedures followed in Experiment II.

We detail the whole process of multi-channel CNN-GRU architecture, in this section. The

architecture is inspired fromanexisting study [39] and an extensionof theExperiment IImodel.

Even though theExperiment IImodel consisted of five branches, wenoticed that somebranches

does not contribute adequately for the classification process. Therefore the proposed deep

learning architecture inExperiment III consists of only threemain sections as shown inFig. 3.20.

As similar to the Experiment II the first block is dedicated to learning sleep related features from

raw PSG inputs. The second part consists of stacked bidirectional and unidirectional gated re-

current units (GRU) to learn the interconnections among extracted features within an epoch

(sequential patterns of extracted features in an epoch). In addition to themain blocks described

above, bypass CNN blocks with global pooling operations and convolutional layers with small

kernels were employed to extract fine details. As shown in the Fig. 3.20 the final section is di-

vided into two sections of fully connected layer to simultaneously perform 5-stage and 4-stage

classifications.

Similar to the previous experiments, we utilized 6 PSG channels including 4 EEG (C3-

A2, C4-A1, O1-A2, O2-A1) and 2 EOG (LOC-A2,ROC-A1) to train the newly proposed net-

work. The raw input can be represented as X = {x1, x2, ..., xi, ...xM }, where M denotes

the number of training samples, and each xi consists of time series data from different chan-

nels mentioned above. We denote 30 s of PSG signal segment by xi ∈ Rnc∗nT with its la-

bel yi ∈ Y , where nc denotes the number of channels, nT denotes time sampling points,

and Y = {W,N1, N2, N3, REM }. Subsequently, the proposed CNN-GRU classification
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model is defined by a function f̂ : xi → yi.

3.5.1 Feature learning

Each PSG channel consists of 3,000 time samples nT = 3000. xi, (i = 1 toM ) corre-

sponds to raw time series data from 6 PSG channels shown in Fig. 3.14. The first block (feature

learning) consists of three 1-D CNN branches attached to the concatenation as illustrated in

Fig. 3.20. The kernel size of the first convolutional layer in each CNN branch is selected as

defined in Table 3.7. The parameters were determined experimentally via trial and error.

The model starts with 6 inputs (each corresponds to a PSG channel), followed by a con-

catenation layer. The concatenation layer contacts all input arrays into a x̃i time series array as

described in equation (3.13). Subsequently, the reshaped 1-D time series array (3000, 6) is passed

to CNN branches termed as CNNθ1 , CNNθ2 , and CNNθ3 , where CNNθ denotes a function

that transforms raw PSG segment into a feature sequence parameterized by θ.

CNNθ1 starts with fairly larger convolutional kernels andCNNθ2 starts withmedium sized

convolution filters to perform different convolutional operations. CNNθ3 exhibits the smallest

starting kernel size. The outputs of eachCNN layers from each branch are then further reduced

via sub subsequent convolutional layers and pooling layers. Three feature maps are created at

the end of each convolutional branch. The concept behind the use of multiple CNN branches

is to construct a sequence of features, which can discriminate sleep stages from each other. In

other words, assorted kernels helps to handle the trade-off between temporal and frequency

information.

x̃i = xEEG
C3

i | |xEEGC4i | |xEEGO1i | |xEEGO2i | |xEOGLi | |xEOGRi (3.13)

hki = CNNθk (̃xi) , {k = 1, 2, 3} (3.14)
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Gi = h1i | |h2i | |h3i (3.15)

where, | | denotes the concatenation operation; x̃i denotes the ith input (after concatena-

tion operation); CNNθk denotes the CNN branch parameterized by θk; hik denotes the set of

features extracted from kth CNN branch for ith sample; and Gi denotes the combined feature

sequence.

As explained in previous experiments, 1-D CNN filters with smaller kernels likely to be

distinguishing signal patterns with abrupt changes while convolutional filters with larger ker-

nels are good at identifying frequency information [39]. A combination of the three branches

can obtain a detailed time–frequency representation at the second concatenation layer. All

branches are designed such that the output dimension of each branch is identical. In all the

CNNblocks, the convolutionoperation starts by convolving the input signalwith a pre-defined

number of filters with stride as shown in Fig. 3.20. From the perspective of the kernel size, the

amount of information extracted from larger convolutional filters are lower when compared

that from the smaller filters. Furthermore, the smaller filter exhibits better weight sharing and

slow reduction in input dimension. Based on those factors, a few number of filters and long

strides are employed for larger kernels. Conversely, more filters were dedicated smaller kernels

and the stride sizes were set to smaller values since the small convolutional filters collects very

fine details in the interested receptive field. All the subsequent convolutional layers of theCNN

branches were set as nearly identical. The number of filters is increased gradually in each con-

secutive layer of each branch, as shown in Fig. 3.20. In this configuration, we expected that

most of the sleep related information, including k-complexes, sleep spindles, saw-tooth waves,

and low amplitude mixed frequency waves are fully extracted. The feature maps formed at the

end of each convolutional layer can be represented as in equation (3.15), where hki denotes the

reduced feature map from each CNN block.
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Table 3.7: Model specifications

Layer type Kernal size Number of filters Strides Output dimension (samples)

CNNθ1

Convolutional 16 8 4 750,8
Convolutional 3 12 2 374,12
Convolutional 3 16 2 186,16
Max-pooling 4 2 92,16

CNNθ2

Convolutional 8 12 2 1500,12
Convolutional 3 16 2 749,16
Max-pooling 4 2 373,16
Convolutional 3 24 2 186,24
Max-pooling 4 2 92,24

CNNθ3

Convolutional 4 12 2 1500,12
Convolutional 3 16 2 749,16
Max-pooling 4 2 373,16
Convolutional 3 24 2 186,24
Max-pooling 4 2 92,24

3.5.2 Sequence learning

The temporal interconnections of extracted features are expected to learn in the sequence

learning section. We employedonebidirectionalGRUlayer and twounidirectionalGRUalong

with a fully connected layer to reformulate the information extracted from the feature extrac-

tor for better classification performances. Based on the AASM manual, sequence trends of

wave shapes are considered to determine the sleep stage. For example, a major body movement

followed by a slow eye movement and low amplitude mixed frequency without non arousal

associated k-complex defines the end of an N2 sleep. The Recurrent Neural Network (RNN)

is used to learn the types of sequential trends of the extracted spatial information. Some stud-

ies [123][124] indicated that deep RNN architectures such as LSTM and GRU build-up pro-

gressively higher level representations of sequence data. The output of an LSTM hidden layer

can be fed as the input to subsequent LSTM hidden layer to enhance the performance of the

network[125].

We assume that feature sequenceGi contains N number of feature vectors g tni after concate-

nation operation, and thus the feature sequenceGi can be redefined asGTi as follows:

GTi = {g t1i , g
t2
i , ..., g

tn
i , ...gi

tN } (3.16)
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where, g tni denotes a concatenated feature vector that corresponds to the tn time step at for the

ith example. It is important to note that the tn denotes time step at the second concatenation

layer. The concatenated feature vector sequenceGTi is then passed to theGRUblock, as shown

in Fig. 3.20. The output of the feature sequence learning sectionAigru is defined as follows:

Aigru = GRUδ(GTi ) (3.17)

where,GRUδ is a function that converts the feature vector sequence to a vectorusing stacked

GRU blocks parameterized by δ. We set the return sequence as “False” for the final GRU layer

to obtain a single vectorAigru for the input sequenceGTi , which later passed to a fully-connected

layer FCα parameterized by α to form a vectorOigru_block .

Oigru_block = FCα(Aigru) (3.18)

3.5.3 Complete model

As shown in Fig. 3.20 we used extra stacked CNN block CNNβ (parameterized by β) con-

taining small kernels followed by a global max pooling layer to form a feature vector directly

extracted from the input. Additionally, we employed a shortcut CNN block CNNγ parame-

terized by γ followed by an average pooling layer to map the extracted features into a vector

Oiavg_block. Finally, all sections were concatenated to form Oi shown in (3.21) and passed to

the fully connected layers to perform classification. In themodel designing we employed afore-

mentioned global pooling layers to vigorously summarize the extracted features from raw input

[126].The global average pooling layer makes the model more robust to spatial translations in

the data in extracted features and works as a regularizer [127].

Oiouter_block = CNNβ(x̃i) (3.19)
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Figure 3.20: Architecture of CNN-GRUmodel.

Oiavg_block = CNNγ(GTi ) (3.20)

Oi = Oigru_block | |O
i
outer_block | |O

i
avg_block (3.21)

In the classification section, a pair of fully connected layers are employed separately for the

4-stage case and 5-stage case. For the 4-stage and 5-stage cases, soft-max layers are utilized to

obtain probability vectors corresponding to each sleep stage. For all convolutional layers in the

feature extraction section, we employed linear activations, and a rectified linear unit (ReLU)

activation is applied subsequently to each convolutional layer in both CNNγ and CNNβ . In

the study, raw PSG data was used to implement the model without any further prepossessing.
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We randomly selected 14 subjects that were set as the test data set, and 170 subjects were chosen

to train the network, as shown in Fig. 3.21.

Figure 3.21: Number of epochs in each sleep stage.(a). training epochs; (b)test epochs

3.5.4 Multi-phase training

Similar to the previous experiments, we employed several training sessions to effectively

train our network using back propagation. Essentially, we trained our network section by sec-

tion using an Adam optimizer to minimize the loss using mini-batch gradient descent.

Firstly, we trained the feature extractors CNNθk , {k = 1, 2, 3}. The model is trained after

setting all parameters for CNNθ1 branch followed by fully connected layer with a soft-max ac-

tivation. The soft-max layer consists of five units to calculate the probability for 5-stage sleep.

The min-batch size is set to 128, and the training data is shuffled in each batch iteration for

better convergence and to prevent learning of insignificant features native to individual sub-

jects. After obtaining the learned parameters θ1, the soft-max layer is discarded and CNNθ2 is

attached to the network. The outputs of each branch were concatenated and passed to a new

fully connected network followed by a soft-max layer as in the previous training phase. The first

branch is then frozen for training, and the network is retrained for the new block. The same

training procedure is followed for CNNθ3 . At the end of three training steps, we obtained all

the parameters for a feature learning section θk, {k = 1, 2, 3}. In all training phases, model

check points are set for validation loss, and the model weights and architecture are saved after

each successful mini-batch update. The training is stopped when the validation loss begins to

stop improving over mini-batch updates. We conducted a series of experiments with different
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CNN architectures and several CNN branches for the best performance.

Secondly, the soft-max layer is detached from the model, and the feature sequence learn-

ing part (GRUδ and FCα) and the outer CNNblock CNNβ are attached as shown in Fig. 3.20.

Subsequently, the outputs of FCα, CNNγ, andCNNβwere concatenated. The pre-trained net-

work blocks CNNθk , {k = 1, 2, 3}were then frozen for learning and the networkwas retrained

with Adam optimizer using the same configuration following the same procedure in previous

training session.

In the final training, two fully connected networks are attached (each consists of 128 units

with ReLU activation) blocks as shown in Fig. 3.20. The model was then trained as a multi-

input multi-output convolution neural network. In this phase, all pre-trained parts of the net-

work were set to training disable mode before continuing training with the same optimizer.

After obtaining the optimal model, we only trained the fully connoted blocks with a low learn-

ing rate to tune the model further. In the final tune up, we used l2 regularization that adds

“squared magnitude” of the coefficients as penalty term to the loss function. Specifically, l2

regularization is applied before ReLU activation layers in fully connected layer. The results

indicated that without using regularization, the model tends to over-fit for unnecessary infor-

mation presented in the data as noise and high frequency components. Slight performance

improvements in the final model is observed with this regularization. After experiments, we

observed that (l2 = 0.0001)works optimal for our model.

After we obtained our main CNN-GRU model (Mbase) with all channels, we performed

some additional experiments with different combinations of channels. Essentially, six addi-

tional configurations are tested with the same architecture. A transfer learning technique is

used to train models for different combinations of input channels. First, we test the feasibil-

ity of adapting the model with a single channel configuration. To achieve four single channel

models (Mc3 ,Mc4 ,Mo1 ,Mo2), the same EEG channel signal was assigned for each input in

the main model. Subsequently, the model was retrained with a lower learning rate with Adam

optimizer (0.0008). Secondly, themodel is tested for the other three channel configurations. In

this experiment, two models was trained using only three electrodes chosen from left and right
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regions of the head (Mleft ,Mright). Each electrode is replaced with its counter side channel to

obtain a 3-channel configuration. For example, EOG-left, C3, and O1 were replaced by their

counter side electrodes, EOG-right, C4, andO2, to obtainMright . In all the experiments, train-

ing is disabled for feature extraction section. Weights of the other parts of the network are then

updated in the retraining process for different channel configurations. When adapting the base

model for different configurations, it is expected that the global pooling operations (global max

and global average) in CNNβ and CNNγ were re-adjusted for each channel configuration.

Figure 3.22: Accuracy comparison of 4-stage and 5-stage cases for each subject.

3.5.5 Experimental setup

Prior to finalizing the model architecture, we perform a series of experiments to verify the

optimal configuration in CNN blocks and RNN blocks by varying possible hyper parameters.

Specifically, for the feature extraction section we commence with 5 CNN branches with differ-

ent configurations e.g., varying filter parameters, pooling layers, and activation functions, and

test several architectures by varying the number of branches until the optimal performance is

observed. In the subsequent training phases, we change the configuration of the RNN block,

and several bypass blocks are also used based on the learning curves and overall performance.

Additionally , we use several values for the learning rate and regularization factor ranging from

10−2 − 10−4 and 10−2 − 10−5, respectively.

3.5.6 Results

In the following sub-sections, we clarify the outcomes of the proposed approach III and

discuss the significance of the result using the performance measurements described above. In
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order to evaluate the proposed CNN-GRUmodel, we divided our experiments into three sec-

tions as described below.

1. Sleep stage classification (5-stage, 4-stage) usingmulti-channelmodelMbase and generate

performance metrics

2. Sleep stage classification (5-stage, 4-stage) using single channel models (Mc3 ,Mc4 ,Mo1 ,

Mo2) and generate performance metrics for each channel to compare the performance

channel wise

3. Sleep stage classification (5-stage, 4-stage) using right and left channels and generate per-

formance metrics to compare the effect of left and right regions on the head

Base model: Experiment I

In this section, we illustrate the detailed results of the base modelMbase. Fig. 3.22 shows

the overall accuracy of the base model for individual subjects for both classification scenarios.

Evidently, in majority of the cases, the 4-stage classification exhibits higher accuracy when com-

pared to the 5-stage case. The average accuracy for the 5-stage case is computed as 89.66%with

a 95% confidence interval (CI) of (87.17 – 92.15%). In 4-stage case, the accuracy is reported

as 94.21% with a 95% CI of (92.65 – 95.76 %). The maximum accuracy for the 5-stage case

is 95.81% and that for the worst case is 81.92%. Conversely, the maximum accuracy for the

4-stage case was 98.57% while that for the worst case was 89.29% of confidence.

Fig. 3.23 shows the IQR plots for per-class performance achieved by the base model with

multiple channels. These plots show how well the classifier generalizes across patients. Nar-

rower ranges indicate good performance. It is important to note that subjects with noN3 (deep

sleep) presented in sleep are omitted when plotting the box plot for N3. Based on the box plot

in Fig. 3.23, it is observed that all themeasures forN3 (deep sleep) exhibit larger variationswhen

compared to other sleep stages. The lowest observation for any measurement is also observed

for N3 stage except for precision. Furthermore, N2 stage exhibits the second large variation for
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Figure 3.23: per-class interquartile range (IQR) plots for precision, recall, and F1 score for 5-stage and
4-stage classifications obtained via the proposedmethod for all subjects, (center line: median; box limits:
upper and lower quartiles; whiskers: 1.5 × IQR; ×: mean) (a). Precision values (b). Recall (c). F1-score.

any measure in the 5-stage case. The two observations box plots are fairly condensed for other

stages.

Figure 3.24: Receiver operating characteristic (ROC curve) forMbase (a) 5-stage classification (b). 4-stage
classification.

To evaluate the usefulness of the proposed approach, ROC curves are plotted for both cases

as shown in Fig. 3.24. In each case, per-class ROC is plotted by considering the rest as negative

class. In Fig. 3.24, per-class area under curve (ROC-AUC) and averaged (macro averaged and

micro averaged) ROC are also indicated for both cases. the predicted classes contribute equally
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for the overall macro-avg ROC-AUC case. In the micro-avg ROC-AUC case, the contribution

from each class is aggregated to compute the final average value. Sleep stage classification corre-

sponds to an imbalanced classification problem, therefore micro ROC-AUC is preferable. As

shown in Fig. 3.24 (a), all the per-class ROC-AUC are > 0.96 with the exception of theN1 sleep

stage, while ROC-AUCs are > 0.98 for both micro and macro averaged values calculated for

5-stage classification. With respect to the 4-stage case in Fig. 3.24 (b), ROC-AUCs are always

> 0.98 for all per-class and averaged values. The observation confirms that the classifier is a good

choice for both staging cases although N1 exhibits a comparatively moderate performance for

the 5-stage case.

Figure 3.25: Hypnogram for the 5-stage case (a). manually scored by a sleep expert(b). automatically
scored by the proposed multi-channel model.

Figure 3.26: Hypnogram for the 4-stage case (a). manually scored by a sleep expert (b). automatically
scored by the proposed multi-channel model.
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Fig. 3.25(a) and Fig. 3.25(b) demonstrate the hypnograms constructed for the 5-stage case

for both true scored sleep stages and predicted sleep stages for subject ‘S2’.Fig. 3.26 illustrates

the hypnograms graphed for the 4-stage case for the same subject.

Fig. 3.27 shows the normalized confusionmatrix for themulti-channelmodel for both clas-

sification scenarios considering all subjects. The numbers in dark blue denote the normalized

values of correctly classified sleep epochs. Based on the Fig. 3.27(a), the lowest classification

confidence is observed for N1 and N3 stages. Conversely, deep sleep (N3) exhibits the lowest

performance for the 4-stage scenario.

Figure 3.27: Confusion matrix obtained for test subjects (a). 5-stage classification (b). 4-stage classifica-
tion.

Experiment II and III

In this section, we illustrate the detailed results of experiments II and III.

Fig. 3.28 shows a comparison of overall accuracies and Cohen’s kappa coefficient (κ) for

all the models. The minimum κ value and overall accuracy are observed from the models cor-

responding to occipital area channels. Specifically, Mleft and Mright (three-channel models)

exhibit the highest κ and overall values besides the base model.

Fig. 3.29 shows the radar charts of performance measures tabulated in Table 3.8.

Fig. 3.29(a) shows the evaluation matrix for the multi-channel models including the base

model as radar charts. As shown in Fig. 3.29(a), the base model yields a more balanced perfor-
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Figure 3.28: Overall accuracy and Cohen’s kappa coefficient comparison for all experiments.

Table 3.8: per-class evaluation metrics for proposed classification models

C3 C4 O1 O2 EOGR, C4, O2 EOGL, C3, O1 all
PR RE F1 PR RE F1 PR RE F1 PR RE F1 PR RE F1 PR RE F1 PR RE F1

5-
sta

ge

W 0.82 0.82 0.82 0.81 0.82 0.82 0.74 0.81 0.77 0.76 0.86 0.81 0.91 0.76 0.83 0.72 0.92 0.81 0.9 0.92 0.91
N1 0.6 0.65 0.62 0.53 0.6 0.56 0.48 0.44 0.46 0.59 0.4 0.47 0.66 0.53 0.59 0.63 0.6 0.61 0.77 0.83 0.8
N2 0.89 0.87 0.88 0.89 0.84 0.86 0.85 0.83 0.84 0.84 0.88 0.86 0.88 0.91 0.89 0.88 0.93 0.9 0.95 0.92 0.93
N3 0.68 0.77 0.72 0.76 0.7 0.73 0.87 0.46 0.61 0.68 0.68 0.68 0.65 0.82 0.72 0.88 0.64 0.74 0.83 0.85 0.84
REM 0.78 0.75 0.76 0.72 0.76 0.74 0.49 0.6 0.54 0.56 0.62 0.59 0.7 0.88 0.78 0.9 0.65 0.75 0.89 0.9 0.89

4-
sta

ge

Wake 0.83 0.81 0.82 0.79 0.84 0.82 0.76 0.78 0.77 0.75 0.87 0.8 0.93 0.75 0.83 0.72 0.91 0.81 0.91 0.93 0.92
Light 0.91 0.93 0.92 0.91 0.9 0.91 0.85 0.88 0.87 0.86 0.92 0.89 0.93 0.91 0.92 0.92 0.95 0.93 0.96 0.96 0.96
Deep 0.68 0.76 0.72 0.7 0.76 0.72 0.87 0.49 0.63 0.68 0.68 0.68 0.68 0.79 0.73 0.85 0.66 0.75 0.82 0.83 0.83
REM 0.79 0.7 0.74 0.75 0.73 0.74 0.55 0.5 0.52 0.64 0.38 0.47 0.72 0.87 0.79 0.93 0.63 0.75 0.9 0.89 0.89

mancewhen compared to three-channelmodelswhile the left and right electrodes exhibit nearly

identical performance. However, the right side electrodes exhibit more balanced performance

in terms of the aforementioned performance measures.

In Fig. 3.29(b), the highest F1 measure for both classification scenarios is observed for C4

channel. AlthoughC4 exhibits comparatively better performances, both central lobe electrodes

exhibit nearly identical performances in terms of precision, recall, and F1-score. As shown in

Fig. 3.29(b)O2 andO1polygons are the lowest inmajority of the radar charts, and this indicates

poor performance in-terms of all themeasures discussed above. Furthermore, central electrodes

exhibit more balanced performance over each sleep stage.

In this chapter, we compare the results of all phases. The aim of this study was to imple-
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Figure 3.29: Comparison of evaluation metrics for all models for two classification scenarios (a). Multi-
channel models (b). Single-channel models.

ment automatic sleep stage scoring for 5-stage and 4-stage classification. In Experiment I we

implemented 5 stage classification system by using a deep neural network. Since Experiment

I and Experiment III are focused on 5-stage classification we compare the basic performances

metrics. Fig. 3.30 shows the improvement of performance metrics. On the accuracy point of

view there is a 6% of improvement compared to Experiment I. Other performance metrics also

show significant improvement compared to Experiment I. Especially, in Experiment III, the

architecture consists of CNN and RNN layers which improve the classification performance.

3.6 Results comparison of Experiment I, Experiment

II, and Experiment III
In Experiment II and III we implemented 4 stage classification system. Fig. 3.31 shows the

improvement of performance metrics. There is a 2% accuracy improvement in between Exper-

iment II and Experiment III . Furthermore, there is a improvement in other metrics compared

to Experiment II. In the AUC-ROC point of view, there is significant improvement in light

sleep stage due to the arrangements in Experiment III.

However, the accuracy of single channelmodels are slightly better in Experiment IImodels.

Fig. 3.32
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Figure 3.30: Result comparison Experiment I and Experiment III (5-stage case)

Figure 3.31: Result comparison Experiment II and Experiment III (4-stage case)

Figure 3.32: Accuracy comparison Experiment II and Experiment III (4-stage case, single)
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4
Obstructive Sleep Apnea Syndrome

Detection Based on Fused Time-Frequency

Spectral Images

4.1 Materials andMethods
As described in Chapter 2, Obstructive Sleep Apnea (OSA) is a common chronic sleep dis-

order that disrupts breathing during sleep. On the other hand, apnea is associated with many

othermedical complications, such as hypertension, coronary heart disease, and depression. The

golden standard for diagnosing and treating OSA involves nocturnal polysomnography (PSG)
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study. As the detailed PSG study requires special equipment, specialized human intervention,

dedicated analyzing skills, the availability of OSA diagnosis in public health sectors are not sat-

isfactory. As the traditional PSG uses lot of body sensors, it not comfortable have a good good

sleepwith all the sensors attached to the body. Therefore, a simpler and low costOSAdetection

method is required to automate the polysomnography procedure and reduce the discomfort.

ECG signals have been studied in many researches to replace the PSG based OSA detection.

Most of such proposed approaches rely on feature engineering, which calls for advanced expert

knowledge and experience. In this study, a novel fused-image-based technique is proposed us-

ing only a single-lead ECG signal. A CNN is used to extract features automatically from the

spectral images created with one-minute ECG segments. The proposed network comprises 37

layers Fig.(4.3), which comprise with residual blocks, dense layer, dropout layer, and a soft-max

layer.

In this phase of the study, novel methodology for OSA detection is proposed and im-

plemented using fused spectral images created by combining Short-Time Fourier Transform

(STFT) and continuous wavelet transform (CWT) representations (see subsection 4.1.3). A

deep CNN model is employed to perform feature extraction and classification of apneic and

non-apneic ECG segments using those fused image representation as inputs. further more the

proposed method does not utilize any QRS-based features or other features manually derived

manually in performing the classification. Instead of using a limited number of features ex-

tracted from the QRS complex or other EDR signals, more detailed and complex features de-

rived from a combination of spectral images are used to detect the presence or absence of apneic

events.

4.1.1 Dataset

To evaluate the proposed methodology, a popular and widely used dataset provided by

PhysioNet is used (Apnea-ECG database provided byDr. Thomas Penzel at Philips University

[128, 129] ). The dataset comprises single-lead ECG signal from 70 subjects. The recordings

are in two groups (a released set and a withheld set), each with 35 subjects (see Fig. 4.1). The
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training dataset has further divided into three groups based (a01 through a20, b01 through b05,

and c01 through c10). Test set (withheld set) is numbered from x01 to x35. Apnea annotations

are made by human experts based on simultaneously recorded respiration and related signals.

Eight recordings (a01 through a04, b01, and c01 through c03) have additional signals (Resp C

and Resp A, chest and abdominal respiratory effort signals obtained using inductance plethys-

mography; RespN, oronasal airflowmeasured using nasal thermistors; and SpO2, oxygen satu-

ration). However, only ECG signal is considered in this study as themain purpose of this study

is to use ECG signals to classify the OSA events.

The ECG signals were recorded at a sampling rate of 100 Hz and with 16-bit resolution.

Each ECG signal lasted 420–600 min with a mean of 492 ± 32min. Non-overlapping one-

minute ECG segments were annotated as either ‘OSA’ or ‘Normal’, but no distinction was

made between cases of hypopnea or apnea. The PhysioNetApnea-ECGdatabase includes both

male and female subjects aged from 27 to 63 years with a mean of 43.8 ± 10.8 years. The body

weights of the subjects range from 53 to 135 kgwith amean of 86.3±22.2 kg (see Fig. 4.2). The

sleep recordings were obtained from 25 male and 7 female volunteers, including both healthy

and OSA subjects [130, 131] (see Fig. 4.2).

4.1.2 Method

The Time Frequency Representation (TFR) of a signal is utilized to analyze the informa-

tion contain in various types of signals, including physiological, acoustic signal, and geophysical

signals. specially, TFRs are employed to identify complex and high-dimensional non stationary

properties of a signal. STFTandCWTare twoof themostwidelyutilized visual representations

which play an important role in analyzing non stationary signals. In particular, the fluctuation

of the frequencies, amplitudes over time, and morphological variations in ECG signals can be

better represented using STFT and CWT instead of FT (see Eqs 4.1 and 4.3) as it focuses on

both time domain and frequency domain attributes. Normally theTFRof a signal is illustrated

as a colored image (heat map) in a spectrogram or a scalogram (see Fig.4.6). Usually, the visual

representation of the STFT is called spectrogram, and the scalogram is the visual representation
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Figure 4.2: Additional information about the subjects in the PhysioNet Apnea dataset

of CWT [132].

STFT is used to construct the TFR of the physiological signals as a spectrogramwith a con-

stant time–frequency resolution (see Section 2, Eq 4.1). A constant sliding window along the

time axis is employed to create a two-dimensional (2D) representation of the signal at this fixed

resolution [130, 133, 134]. As a result of using a constant window, all the frequency informa-

tion is analyzed at the same time–frequency resolution.

However the STFT based signal processing is simple, efficient, and robust method in solv-

ing many research problems associated with many kinds of signals. As mentioned earlier, the

performance of STFT analysis is heavily dependent on the analysis window and it needs lot

of book keeping to optimized the hyper parameters. Despite of the negative points aforemen-

tioned, STFT is a widely used primary tool for decades within speech and radar processing

research communities. Customarily, the selection of window sizes and overlapping length is

arbitrary and depend on the experience, and this is why the STFT based analisis is criticized as

a heuristic method [135].

In contrast to STFT, the CWT’s wavelet window is scaled and shifted during the transfor-

mation. This provides long timewindows for low-frequency regions and shorter timewindows

for high-frequency regions. Due to the scaled and shifted window, the wavelet transform is ca-

pable of comprehending the time and frequency information simultaneously providing amulti

81



resolution representation of the signal in both low- and high-frequency regions. The mathe-

matical formula for calculating the wavelet coefficients is given in equation 4.3. As described in

this equation, a basis function, i.e., the mother waveletψ(t), and its scaled and dilated versions

are used to decompose the time-domain signal. Due to the advancements emerged in CWT

analysis, the abrupt changes transpired in the signal is grasped so that the TFR can be used for

more complex analysis. However, the use of a window introduces a compromise between time

localization and frequency localization in both TFR’s.

In this study, we conducted experiments comparing four types of spectral images: scalo-

gram images, spectrogram images, images based on smoothed pseudo Wigner–Ville distribu-

tion (WVD) [136, 137], and fused images (a hybrid version of CWT and STFT images, (see

Fig.4.6 and Fig.4.7)), to identify apneic events. However, it should be noted that the Wigner–

Ville distribution method has cross-term issues when used with non-stationary signals [138].

Similar to the CWT and STFT WVD can also provide quantitative information of the signal

energy distribution in time-frequency domain.

The proposed apnea-detection method is based on deep learning, using a fusion (combi-

nation) of two spectral images (scalogram and spectrogram images) for one-minute ECG seg-

ments. Firstly, each one-dimensional ECG segment in the time domain is converted intomore-

detailed images format (scalogram, spectrogram,Wigner–Ville distribution, and fused image).

the images are then passed to the CNN to perform automatic image feature extraction and clas-

sification.

As explained in the Introduction section, the idea behind combining the twoTFRs is to in-

crease and enrich the discriminative feature in newly formed images. As Apnea-ECG database

provides one-minute-based annotations, the proposed methodology also utilizes one-minute

ECG fragments to identify apneic and non-apneic episodes. Even though there are plenty of

good reasons for employing TFR or fused TFR in solving various research problems, exper-

tise knowledge is expressly required to extract and analyze specific features from such repre-

sentations. In other words, it is not realistic to accomplish tasks such as selection, analysis, or

identification of specific patterns or features in a TFRmanually as TFRs contain very fine and
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complex details. Therefore, the best option to analyze such a complex spectral image is em-

ploying the deep learning techniques since many deep learning techniques such as CNN can

perform this task intelligently and automatically.

In this work, a residual learning approach is employed to perform OSA detection, which

is schematically illustrated in Fig. 4.3. Generally, a plain CNN is obtained with a number of

stacked layers of linear and nonlinear processing units. These layers allows the network to learn

complex, detailed and fine representations at different levels of abstraction [139]. A typical

residual network differs from a plain CNN due to its “skip” connections, as exemplified in

Fig. 4.3. In a residual network, the activations from the earlier layer are reuseduntil the posterior

layer learns the weights. The skip connections are very important whenmitigating the gradient

vanishing and degradation, which are commonly seen complications in large plain networks. In

general, a residual network can be easily trained to learn a residual mapping with fewer stacked

layers than a plain network, with substantially good performance in image classification [140–

142].

4.1.3 Preprocessing and image creation

Signal noise and baseline drift

Generally, it is common that a raw ECG signal is corrupted by various types of noises which

implants unwanted information into the signal. Unwanted presence of noise can be generated

from any external or internal source including power lines, conductors near to the device, RF

transmitters, motors running near to the device which draws inrush currents. Electromagnetic

interference (EMI) is the noise caused by other conductors or cables placed near to the device.

Radio Frequency Interference (RFI) is also an external source of noise caused by radiating sig-

nals fromwireless communication systems. On the other hand, the noise can be generated from

the device itself. As an example, a presence of a noise can be observed due to a faulty compo-

nents or loose connections. Further, a loose connection of leads also can generate an unwanted

presence of noise. Another possible source of noise is environmental issues such as mechanical
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Figure 4.3: Proposed 2D-CNNnetwork forOSA event detection. “Conv(k,s,f)” denotes a convolutional
layer where k, s, and f are the kernel size, stride size, and number of filters, respectively. “Max(p,s)”
denotes a max-pooling layer where p and s are the pool size and stride size, respectively. The values for
the filter sizes “f” in the four residual blocks are 32, 64, 96, and 128.

vibrations and fluctuations in temperature. The internal noise of electronic components can be

generated due to the changes of the temperature. The fundamental physical properties of the

electronic components can fluctuate naturally on temperature variations. This noise is called

thermal noise (Johnson noise). It is unrealistic to eliminate all the noise sources completely,

even though noise removing hardware filters are used in the data acquisition. Therefore, in

some cases, artifact removal is crucial to get the desired information from the signal. On the
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other hand, presence of noise in the TFR image may cause imprecise estimation of characteris-

tic points and features [143].

Besides the artifact aforementioned, temporal drifts may also presented in the ECG signal

which are not related to the desired information. Similar to the signal noise case, many internal

and external sources might induce time varying temporal drifts. The effect of such drifts can be

reduced using baseline correction. Usually the baseline drift is generated due to the background

fluctuations appears as slow but wide ranging ups and downs. Therefore it can be considered

sort of low-frequency noise. There aremanymethods to perform baseline correction including

using least squares method, computational geometry, Fourier analysis, Wavelet analysis, and

neural networks. In many signal processing applications, wavelet methods are widely applied

[144].

Therefore, signal denoising was performed using three of MATLAB’s built in functions:

“wavedec,” “waverec,” and “cmddenoise” [136]. First, the raw segments were transformed (one-

minute fragments) into wavelet coefficients using “wavedec,” with the “sym8” wavelet used to

perform the baseline correction. After then, the “cmddenoise” function was employed to per-

form interval-dependent thresholding to the baseline-corrected signal. Fig. 4.4 shows part of

a raw ECG segment and its prepossessed waveform before being transformed into its image

format. The denoised dataset was then converted into four TFR image datasets as illustrated

schematically in Fig. 4.5.

Image creation

A spectrogram dataset was created to evaluate the performance of the proposed model in

Fig 4.3. MATLAB’s builtin function “spectrogram” was employed with a “blackman” window to

generate spectrogram images. While creating the spectrogram images, the window size was set

to 64 (640 ms), and the overlap was set to 60 samples (600 ms) [137]. The definition of win-

dow function ω (n) is given in Eq 4.2. MATLAB’s “cwt” was employed to create the scalogram

images using the “Morse” analytic wavelet. The scalogram image was formed using the squared

modulus of the CWT coefficients as a function of time and frequency, where the frequency is
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Figure 4.4: Preprocessing ECG segments. (a) Part of an original ECG segment. (b) The denoised and
amplitude scaled version.

plotted on a logarithmic scale. The height and width of the created scalogram images represent

the frequency and time, with the red/green/blue (RGB) colors representing the absolute values

of the CWTmapped into a (three-dimensional) color map.

In this study, the “Morse” wavelet was used as the mother wavelet for the CWT of the ECG

segments, given that it had already been used successfully in many research applications [109,

145, 146]. We saved both sets of images, generated with “cwt” and “spectrogram,” using the “gcf”

command. Fig. 4.6 shows both TFR images created for normal and apneic ECG segments.

For comparison purposes, we also usedMATLAB to prepare a TFR involving a smoothed

pseudoWigner–Ville distribution, with time and frequency windows used for the smoothing.

XSTFT [m, n] =
L−1∑
k = 0

x [k]ω [k −m] e−j2πnk/L, (4.1)

ω (n) = 0.42 − 0.5cos
(
2πn
L − 1

)
+ 0.08cos

(
4πn
L − 1

)
, (4.2)

where L is the window length, x[k] is the input ECG signal, m is the time (discrete), n is the

frequency (discrete) and ω is the window function. The log values of XSTFT [m, n] are used to

create the RGB color image (the spectrogram image) [133].
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Figure 4.5: Image dataset creation

Wx (s, τ) =
1
√
s

∫ +∞

−∞
x (t)ψ∗

( t − τ
s

)
dt, (4.3)

whereWx (s, τ) is the wavelet coefficient, x(t) is the ECG signal,ψ(t) is the basis function

(mother wavelet) conjugate, s is the scale, and τ is the time parameter.

Before creating the full dataset of spectral images, we experimented several window sizes,

overlap lengths, window types, and other parameters, using a small amount of randomly se-

lected data tomake sure that appropriate and comprehensible images were generated. Here the

images were inspected visually and tested using the proposed CNN (The CNN is trained using

small part of the dataset).

After confirming the most appropriate parameters for image generation, the scalogram,

spectrogram, and pseudoWigner–Ville distribution image datasets were constructed and saved

in the computer for further analysis. After constructing the different types of TFRdatasets, the

fused image dataset was prepared using the scalogram and spectrogram images as illustrated in

Fig. 4.7. Fused were created by integrating gray-scale values of the scalogram and its matching

spectrogram into three layers of an RGB image. To blend the CWT and STFT representations
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Figure 4.6: One-minute ECG segments transformed into (128, 128, 3) RGB images. (a) Scalogram image
of a normal ECG segment. (b) Spectrogram image of the normal segment. (c) Scalogram image of an
apnea ECG segment. (d) Spectrogram image of the apnea segment.

into one image, the gray-scale values of the scalogram image were employed as the “red” com-

ponent of the new image (the red layer of the image), and the “green” component was formed

using the corresponding gray-scale values of the spectrogram. The “blue” layer was created by

the addition of the gray-scale values of the scalogram and spectrogram. In this way, the three

red, green and blue layers of the fused image accommodated picture elements from both scalo-

gram and spectrogram representations. As shown in Fig. 4.7, themodified image (fused image)

is therefore a hybrid version of the CWTand STFT images which containsmore discriminative

information than the original forms of its TFRs. In other words, each pixel or point represents

the spectral presence of the ECG wave derived from both Time-Frequency representations.
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Figure 4.7: Fusing the scalogram and spectrogram for an apnea ECG segment. (a) Gray-scaled scalogram
and spectrogram images. (b) RGB components of the modified image, whereW is the gray scaled values
of scalogram, and S is the gray scaled values of spectrogram (c) Fused image. (d) Fused image of a normal
ECG segment. (e) Fused image of an apnea ECG segment.

4.1.4 Proposed model

Theproposed architecture towhich the images are fed, is shown inFig. 4.3. TheCNNcom-

prises four residual blocks sharing the same architecture but with different hyper parameters. It

has 37 layers, including the convolutional, max-pooling, dense, rectified linear unit (ReLU) lay-

ers and other layers. More specifically, there are 13 convolutional layers and four max-pooling

layers. The model starts with 32 convolutional filters (3×3) followed by a (ReLU) activation

layer. The output generate by the first convolutional layer is passed to a series of residual blocks,

as shown in Fig. 4.3. Each residual block is formed with two consecutive convolutional layers

and a skip connection through a 1×1 convolutional layer to make sure that the dimensionality

is restored. Each residual block is followed by an addition layer, a ReLU activation layer and a

2×2pooling layerwith a stride size of 2 to summarize the featuremap generatedby each residual

89



block. The number of filters (“f” in Fig. 4.3) used in all convolutional layers in the same residual

block is kept unchanged. The max-pooled output of each residual block is then passed to the

next residual block consecutively. The number of filters (“f” ) in a residual block is successively

increased as (32, 64, 96, and 128). The max-pooled output of the last residual block is passed

to a 0.1 dropout layer to prevent the CNNmodel being over-fitted. Adding a dropout layer is

one of a recognized technique where some nodes are dropped out randomly during training.

This is a very effective method in regularizing the model which limits the over-fitting, and also

it reduce the generalization error in a DNNmodel.

Finally, the flattened output of the dropout layer is send to a Fully Connected (FC) layer

with 256 units followed by “ReLU” activation layer. The classification layer is a soft-max layer,

where the output of the network is normalized to a probability of yk, as specified by Eq 4.4. The

FC layer with 256 units followed by “ReLU” activation works as the classifier for the features

derived from the deep stacked residual blocks as illustrated in themodel architecture in Fig.4.3.

yk =
exp {ak}∑K
j=1 exp

{
aj
} , k = 1, 2, (4.4)

where ak is the activation (a linear weighted sum of the hidden nodes) of the kth neuron in the

soft-max layer, and yk is the probability of the individual class.

4.1.5 Implementation of model training

The proposed CNN dodel was implemented and trained using the MATLAB R2020a

deep-learning toolbox [147]. The training of the model is done with graphics processing unit

support (NVIDIAGEFORCEGTX1070) using 10-fold cross validationmethod [148]. 20,000

“normal” ECG segments and 13,062 “OSA” ECG segments were selected to train the proposed

network. The images (D) were randomly split into 10 equal subsets {f1, f2, f3, ...fk, ..., f10} of

images. Then one image subset was chosen as the test dataset and the remainder of the dataset

was used to train the CNNmodel, resulting 10 models (see Fig. 4.8).

After splitting the test and training datasets per each fold, random oversampling was em-
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Figure 4.8: Schematic diagram of the training procedure for the proposed 2D-CNNmodel with 10-fold
cross validation.

ployed to balance the dataset and prevent the model from being overfitted. More specifically,

for each fold, the training set comprised with 18,000 normal one-minute ECG segments. To

balance the dataset, apnea images were randomly copied (the minority class) so that the total

number of OSA images was also 18,000. Then, all the training images, including the randomly

oversampled images, were subjected to fold-wise image augmentation using

• random rotation (–8 to +8 degrees)
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• random horizontal translation (–30 to +30 pixels)

• vertical translation (–10 to +10 pixels)

• random shearing (–5 to +5 degrees)

• random horizontal flipping

It should be noted that, small-scale augmentation was performed for the training images

since the spectral images are usually consistent and steady compared with normal images. In

other images taken by a camera, are attributed with large rotations, various scales, vivid colors,

and special effects are presented compared to the spectral images created by computer. There-

fore, the images were slightly to keep the consistency of the TFR images. The training proce-

dure followed in this study is demonstrated in Fig. 4.8. When training each fold, themini-batch

sizewas set to 128, and the eachCNNmodelwas evaluated in every 256 iterations both to ensure

that themodel is converging and to visualize the training process (see Fig. 4.12) during training.

A back-propagation algorithm was used to train the whole model by optimizing the cross-

entropy error Ece between the predicted values and the actual ground truth values, as specified

in Eq 4.5, using the “Adam” optimizer with an initial learning rate of 0.001, as suggested in

[114][115]. Further, each fold was run for up to 48 epochs, until the training loss between

consecutive batch updates ceased to improve. After training models for every fold (10 folds),

the best model was chosen for evaluation, based on its validation accuracy.

Ece = −
∑
n

K∑
k=1

tn,k log yn,k, (4.5)

where yn,k is the actual output of node k, n is the number of examples in the mini-batch, and

tn,k{0, 1} are the target outputs [149].
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4.1.6 Evaluation metrics for binary class scenario

Overall accuracy, per-class recall (RE), per-class precision (PR), per-class specificity (SP), and

per-class F1 score (F1) as defined in Eqs (4.6), (4.7), (4.8), (4.9), and (4.10), respectively [150]

were utilized to evaluate the proposed model. As illustrated in theMethod section, the average

result of the 10 folds for each performance metric was calculated in order to evaluate the final

performance of the proposed CNNmodel.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.6)

RE (also known as the probability of detection, true positive rate, or sensitivity) reflects the

correctly predicted proportion of all positive samples.

RE =
TP

TP + FN
(4.7)

PR (also known as the positive predictive value) reflects the proportion of positive predic-

tions that are actually correct.

PR =
TP

TP + FP
(4.8)

SP (also known as true negative rate) reflects the proportion of negatives that are correctly

detected.

SP =
TN

TN + FP
(4.9)

The F1 score denotes the harmonic mean of PR and RE, which considers both metrics to

give an optimal measure for analyzing model performance.

F1 = 2 ·
precision ∗ recall
precision+ recall

(4.10)

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false neg-
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atives, respectively.

4.2 Results
In thiswork, an fused image-basedmethod forOSAdetection is presentedusingoneminute

ECG segments. To analyze the effectiveness of the proposedCNNmodel, other previousworks

were compared. However, all subjects were employed in training the network in the 10-fold

cross-validation procedure. Therefore, only per-segment OSA-detection performance is com-

pared. Further it should be noted that the test dataset is completely isolated from the train-

ing image dataset before performing random oversampling. The test image dataset is not aug-

mented .

Figure 4.9: Distributions of validation accuracy for TFR images and fused images over 10 folds.

Figs 4.9 and 4.10 show the validation accuracies for each fold during the 10-fold cross vali-

dation and the confusionmatrices, respectively. Fig. 4.11 shows interquartile range (IQR) plots

for performance metrics calculated across all folds.

Table 4.1 demonstrates the overall macro average of few performance metrics for the pro-

posed CNNmodel trained with 10-fold cross validation technique. The Table 4.1 clearly shows

that the performance measures are very similar for all image types other than theWigner–Ville

94



Figure 4.10: Confusion matrices for per-segment apnea detection, with classwise PR and RE shown
in the bottom and right-hand boxes, respectively: (a) Wigner–Ville distribution images, (b) Scalogram
images, (c) Spectrogram images, and (d) Fused images.

Figure 4.11: IQR plots of PR, RE, and F1 for apnea detection obtained across all folds. The center line
indicates the median, the box limits indicate the upper and lower quartiles, the whiskers indicate 1.5
× IQR, and × indicates the mean. The images are Wigner–Ville distribution images (wg), scalogram
images (sc), spectrogram images (sp), or fused images (fu).

distribution images.

When considering the validation accuracy for all folds, as shown in Fig. 4.9, there is no great

variation between the 10 folds. This observation indicate that the proposed CNN model can

be generalized.

As shown in Fig. 4.11, the rest of the performancemetrics, including the F1 score, also show

very small variation across the folds. Although the means of the performance metrics show

nearly identical for scalogram and spectrogram images (cwt and STFT cases), the performance

metrics show slightly higher variability across the folds for scalogram images. The overall ac-
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Table 4.1: Overall performance in per-segment apnea detection TFR images and fused images

accuracy % PR% RE% SP % F1 %
Wigner distribution 82.9 76.6 81.9 83.7 79.2
Scalogram images 90.5 85.8 91.0 90.2 88.3
Spectrogram images 90.5 85.6 91.3 90.0 88.4
Fused images 92.4 89.0 92.3 92.6 90.6

Figure 4.12: Accuracy-loss graph of the proposed CNN (for the lowest-performing model).

curacy and F1 scores for per-segment OSA detection with scalogram images were calculated as

90.5% and 88.3%, respectively. The same measures for the spectrogram images are 90.5% and

88.4%. However, the proposed CNN model showed the highest performance for the fused

images, achieving 92.4% overall accuracy and a 90.6% F1 score. The variability of all measures

for the fused images is slightly high compared to corresponding scalogram and spectrogram im-

ages. The lowest performance is observed for theWigner–Ville distribution images for all in all

performance metrics , with the greatest variation in across the folds.

Fig. 4.12 shows an accuracy loss profile for the weakest classifier of fused images. The learn-

ing curves confirm that the parameters selected for image creation and theCNNare appropriate

for discriminating between OSA and normal ECG segments.
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Figure 4.13: Overall 10-fold cross-validation results for per-segment apnea detection withWigner–Ville
distribution, scalogram, spectrogram, and fused images. Black lines indicate the corresponding 95%
confidence interval.

4.2.1 Robustness evaluation

The PhysioNet Apnea-ECG database is a relatively small dataset, with 70 subjects where

withheld dataset and the training dataset containing 35 recordings each. Therefore, using a sin-

gle withheld dataset for validation might be unfair, given that this work focuses on training a

deep-learning model. To train such a CNN,more data is required compared to other machine-

learning methods. As pointed out in the method section, 10-fold cross validation is employed

to test the robustness of the proposed CNNwith the entire dataset (70 recordings), which was

randomly divided into 10 subsets, as shown in Fig. 4.8. Fig. 4.13 shows the average accuracy and

F1 score for per-segment OSA detection, with their 95% confidence intervals (CIs) calculated

for 10 cross-validation steps. According to Fig. 4.13, the proposed CNN model shows quite

consistent performance for all image types (excluding the Wigner–Ville distribution) in terms

of validation accuracy and F1 score with a small 95% CI. The model obtained Overall accu-
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racies of 90.5 ± 0.3%, 90.5 ± 0.3%, and 92.4 ± 0.5% for per-segment OSA detection using

scalogram, spectrogram, and fused images, respectively. Similarly, the F1 scores were recorded

as 88.3 ± 0.3%, 88.4 ± 0.3%, and 90.6 ± 0.6%, for the scalogram, spectrogram, and fused

cases, respectively. However, the pseudoWigner–Ville images, showd significantly low perfor-

mance (accuracy= 82.99 ± 3.49% and F1 score= 79.19 ± 7.31%) because the Wigner–Ville

distribution method has cross-term issues.

4.2.2 Comparison with existing methods

Since the PhysioNet Apnea-ECG database has been available for some time, many auto-

matic OSA-detection methods can be seen in the literature. Here, we compare our proposed

method with those that also employed the PhysioNet Apnea-ECG database. However per-

recording detection performance is not compared as this CNN is trained using 10-fold cross

validation after aggregating the entire dataset.

Table 4.2 summarizes the overall performance of the proposed CNN method relative to

other works, with respect to per-segment OSA detection. As shown in the table, the proposed

CNN model has achieved the best performance in terms of overall accuracy, sensitivity, and

specificity. In particular, ourmethod can be comparedwith that ofTaoWangs et al. work [151].

Their model has showed an overall accuracy, sensitivity, and specificity of 87.3%, 85.1 %, and

88.7%, respectively for the withheld dataset, whereas the proposed method has shown an av-

erage accuracy, sensitivity, and specificity of 92.4%, 92.3%, and 92.6%, respectively. This a

significant performance improvement compared to the other works with the same dataset. On

the other hand, in the sense of the robustness evaluation, this study has improved the overall ac-

curacy by≈ 6%, with a smaller CI (≈ ±0.45%) (for 10-fold cross validation) than their±1.5%

evaluated using 7-fold cross validation for the full dataset.

Additionally, the proposedCNNmodel has the best detection confidence, as demonstrated

in Table 4.2 for all performance metrics comparing the works [60, 75, 81, 82] whereas the same

dataset was employed. Similar to this study Singh et al. [111] has proposed an image-based

OSA-detection method that used a CNN model based on AlexNet. This model has shown a
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validating accuracy of 86.2% , a sensitivity of 90%, and a specificity of 83.8% using scalogram

images (227, 227, 3). Although their model has good sensitivity compared to this study, the

proposed model has obtained much better performance in the senses of validation accuracy

and specificity. Their classification model is a plain DNNmodel with 5 CNN layers compared

with the proposed better-performing classification model containing four residual blocks.

In addition to the aforementioned methods, other recent works [65, 75, 84, 85] have also

performedwell for this dataset, however the proposed approach has shown better performance

metrics since the proposed classifier adopts recent advances in deep learning which enables the

most appropriate features to be extracted automatically to perform the classification. In these

other works, specific features are pulled out using the EDR or ECG signals, forcing the model

to depend on manually extracted features. However, it should be emphasis that deep learning

models need balanced datasets for optimal performance, unlike other classical machine learn-

ing models. Another possible negative point of the proposed methodology is that it requires

conversion of the time-domain signal into two separate TFRs in order to be used in the model

to perform its predictions.

The proposed CNNmodel performs comparatively well since it is trained using the whole

dataset with 10-fold cross validation procedure. This technique avoids the model being over-

fitting for set of data and provides greater sample variation in the model training. In addition,

the apnea images are randomly over sampled and subjected to image augmentation, which help

to mitigate the class imbalance and improve the number of examples by creating modified ver-

sions of the images, (all the image types including fused images are subjected to this data over-

sampling and augmenting). The augmented training dataset helps to create skillful models and

improves unreliability of the model for unseen ECG segments. Most importantly, the fused

images used in this work provide a nice blend of discriminative features where both CWT and

STFT features are hybridized in an RGB image.

In contrast to other methods, note that the proposed CNNmodel classifies OSA ECG seg-

ments without separating the QRS complexes in ECG signals. This is quite a significant fea-

ture compared to other works which provides a robustness for detecting OSA. Moreover, the
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CNNmodel can be adapted to detect apneic episodes using arbitrarily long ECG segments (e.g.,

10 s or 20 s) because RGB images can be generated for any length ECG-segment and resized to

(128, 128, 3) in order to be used in the model.

The purpose of this work is to implement a robust automatic OSA-detection classifier

based on fused spectral images of TFRsbased on TFRs. The proposed CNN model detects

OSA episodes using images corresponding to one-minute ECG segments with TFRs includ-

ing Wigner–Ville distribution, scalogram, spectrogram, or fused-image formats. The results

shown for accuracy and other performance metrics clearly demonstrate that proposed model

not only picks apneic episodes automatically but also outperforms previous works in the sense

of automatic OSA classification. The proposed classification model achieved an overall accu-

racy of 92.4% for fused spectral images generated from scalogram and spectrogram images.

Another important aspect of this study is that the ability of employing arbitrary long ECG-

segments since the ECG segments are converted image form before utilizing the classification

model. Moreover, there is no manual feature extraction is needed, which depends on the expe-

rience and specific domain knowledge in the relevant fields. Since the proposed model based

on a single-lead ECG channel, themodel can be implemented in wearable electronics or a smart

home-monitoring systems easily. Therefore, this methodology would be cheaper and more

convenient than having to use a conventional sleep-study lab environment in the sense of both

data collecting and analyzing the ECG signals. However, the proposed methodology has few

limitations. Since the the PhysioNet Apnea-ECG database has only two types of annotations

(apnea and normal), the proposed CNN model is not capable of classifying apnea sub types

(e.g., hypopnea). In future works, it is expected to extend the proposed model to label these

different types of apnea. In addition, proposed approach can be modified utilizing multiple

apnea datasets. Investigating different fusing techniques is also a good option to improve the

performance in the future works.
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5
Discussion

5.1 Sleep stage classification
The results of the experiments performed in three experiments confirmed that proposed

CNNmodels can perform automatic sleep stage classification at good performance for 30 s of

epochs. Weobserved that the performance of the proposedmodelsmay slightly vary in between

the subjects. However, most of our experiments were performed with PSG data from sleep

patients. Therefore, the models are likely to be performed well for sleep patients.

On the other hand, experiment II and experiment III models can be adapted for different

channel configuration depending on the channel availability. Especially, alternative configura-

tions of the models can be used to score sleep epochs, when PSG channels are not available or
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affected due to themovement of the subjects. The performance are comparatively lower in alter

native configurations like single channel model and three channel models.

However, the alternative models can be used as a computer assistance tool for sleep stage

scoring. Thesemodels are trainedwithoutmuchpre-processingwhichmake themodels robust.

Therefore, raw PSG data can be directly used in thesemodels. All themodels are vigorous since

the feature are automatically extractedwithout using hand engineered features. Themodel also

can be trained by other datasets with different data distribution since the features extraction

sections can be retrained.

5.2 OSAS detection
Themain aimof thiswork is to find a robust solution for automaticOSAdetectionmethod.

In this work, convolution neural network model based on residual network is presented for

detecting OSA in per segment basis employing fused spectral images created from different

time frequency representations. The proposed residual CNN can label OSA episodes using

either scalogram, spectrogram or Wigner-Ville based spectral images correspond to 1-minute

ECG fragments. The overall accuracy and other performance metrics demonstrated that the

proposed classificationmodel can accurately identify apneic cases with comparison to previous

studies works. The overall accuracy shown for fused images was 92.4%.

Thismodel can be adapted to used for arbitrary long ECG segments.this is possible because

the ECG segment is converted to RGB image before feeding to the prediction model. Besides

that, there is nomanual feature extraction involved in this approach, which is susceptible to the

experience and specific domain knowledge of the researcher. Since ourmodel is based on single

lead ECG channel, thismodel can be usedwithwearable electronics and smart devises as a home

monitoring system which saves a lot of time and money compared to expensive conventional

sleep study. However, our work still suffer from few limitations, since the PhysioNet Apnea-

ECG dataset has only two annotations (apnea and normal).
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6
Conclusion and future works

6.1 Main contributions
The main contributions of this thesis works are published in a refereed journal and inter-

national conferences. The publications that comprise this study within the scope of this disser-

tation are listed as follows:

1. Novel multi-channel 2D convolutional neural network approach for sleep stage classifica-

tion

2DCNNbased image classificationprincipleswere adapted for processingmulti-channel

1D PSG signals. A multi-branch approach is proposed to perform effective feature ex-

traction.
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2. Novel 1D CNN-RNN deep neural architectures based on multi resolution feature extrac-

tion approach for 4-stage classification

A 1D CNN-RNN model is proposed to perform automatic 4-stage classification. The

model can be adapted for multi-channel and single channel configurations. Combina-

tion of several CNN branches followed by RNN layers were used to perform the sleep

stage classification.

3. Novel 1D CNN-RNN deep neural architectures based on multi resolution feature extrac-

tion approach for 4-stage and 5-stage classification

A 1D CNN-RNNmodel is proposed to perform automatic sleep classification for both

4-stage and 5-stage classification. The model also can be adapted for multi-channel and

single channel configurations. Combinationof severalCNNbranches followedbyRNN

layers were used to perform the the feature extraction with an extra outer CNN layer.

4. Novel method for OSAS detection based on deep neural networks and fused Time-Frequency

representations of electrocardiogram signals

A novel fused-image-based technique that detects OSAS using only a single-lead ECG

signal was proposed. In the proposed approach, a CNN extracts Time-Frequency fea-

tures automatically from fused spectral images created with one-minute ECG segments.

In this study, three time–frequency representations, namely the scalogram, the spectro-

gram, and the Wigner–Ville distribution, were used to investigate the effectiveness of

the fused-image-based approach. We found that blending scalogram and spectrogram

images has the best performances as it has discriminative characteristics compared to its

normal form.

The presented main contributions were published in a refereed journal and two interna-

tional conferences. The publications that comprise the work carried out within the scope of

this dissertation are as follows:
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• Automatic Sleep Stage Classification Based on Convolutional Neural Networks ( Chap-

ter 2 andChapter 3). 2019 IEEE 1stGlobalConference onLife Sciences andTechnologies

(LifeTech), Osaka, Japan, 2019, pp. 275-276, doi: 10.1109/LifeTech.2019.8883961. [152].

• Sleep Stage Classification Based on EEG, EOG, and CNN-GRU Deep Learning Model

(Chapter 2 and Chapter 3). 2019 IEEE 10th International Conference on Awareness Sci-

ence andTechnology (iCAST),Morioka, Japan, 2019, pp. 1-7, doi: 10.1109/ICAwST.2019.8923359.[153].

• A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG

and a 2D convolutional neural network (Chapters Chapter 2 and Chapter 4). PLOS

One, 2021, https://doi.org/10.1371/journal.pone.0250618 [154].

6.2 Sleep stage classification
To address practical complications in manual sleep stage scoring, an accurate and generalized

automatic sleep stage scoring system is required. One of the main objective of this thesis is to

develop a computer assisting tool for sleep stage scoring. Mainly, three approaches are presented

to predict sleep stages for over night PSG recordings. Some models are trained with healthy

subjects and some are trained for subjects who has sleep disorders. All three proposed models

can be used with multiple electrodes configuration and two of them can be used with single

channel configurations. All the model has less parameters compared to the other methods.

Therefore these models can be easily implemented on small devices such as smart phones.

In order to improve the performance evenmore, I anticipate to conduct more experiments

with other data sets. It is expected to utilize time frequency analysis together with deep learning

to improve the performance furthermore. On the other hand, I expect to implement dedicated

models for single channel configuration. And also, there is a need for developing real time sleep

stage detection system for immediate clinical diagnosis.

107



6.3 OSAS detection
Themain aimof thiswork is to find a robust solution for automaticOSAdetectionmethod.

In this work, Convolution neural network model based on residual network is presented for

detecting OSA in per segment basis employing fused spectral images created from different

time frequency representations. The proposed residual CNN can label OSA episodes using

either scalogram, spectrogram or Wigner-Ville based spectral images correspond to 1-minute

ECG fragments. The overall accuracy and other performance metrics demonstrated that the

proposed classificationmodel can accurately identify apneic cases with comparison to previous

studies works. The overall test accuracy shown for the fused images was 92.4%.

Based on this analysis and the knowledge formed in this study, themodel can be adapted for

arbitrary lengths of ECGsegments as explained in the discussion section ofChapter 4. Similarly,

this kind of techniques can be adopted for other classification models where other types of

physiological signals are involved (i.e EEG EOG) as the fused spectral image can be generated

with any length of signal segment.

Most importantly, the fused image based approach removes the need of generatingmanual

feature extraction which is not realistic to use for large data sets. Basically, the main underlying

problems have been emphasized in the Chapter 4, especially the increasing need of accurate

sleep apneadetection technology. On the other hand, theproposedmethoddoes not rely on the

sleep-expert variability in visualOSAdetectionbased onPSG.This is a common limitation seen

in the conventional OSA detection based on PSG studies producing subjective and unreliable

results in detecting sleep related issues.

However, this work still needs future implementation to provide improved performance in

terms of detecting more apnea types as detailed in Chapter 4 since the PhysioNet Apnea-ECG

dataset provide only apneic and non apneic events. Therefore, our model can not perform

multi-type sleep apnea detection (i.e. hypopnea and apnea ), unfortunately. In future works,

I anticipate to improve the CNN model so that it can identify other types of apnea episodes.

Furthermore, the proposed approach can be improved using multiple apnea data sets. Inves-
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tigating new fusion algorithms also will be good option to improve the performances of the

proposed method.
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