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Abstract

The emergence of big data, sourced from diverse channels ranging from government
records to sensor networks, offers unprecedented opportunities for optimizing urban
operations and enhancing citizen well-being within Smart Cities. By utilizing sensors
and connected devices to collect and analyze data, Smart Cities optimize operations,
manage resources, and improve the quality of life for residents. As urban environments
continue to generate vast volumes of data, analyzing the data can help yield descriptive
and predictive models crucial for developing data-driven Smart City applications. The
evolution of Deep Learning (DL), championed by pioneers such as Geoffrey Hinton,
highlights the transition of data from raw information to insightful knowledge, driving
growth and innovation.

In the context of Smart Cities, big data systems efficiently store, process, and mine
data to enhance various city services and facilitate decision-making. Understanding the
different data types—structured, unstructured, and semi-structured—is essential for se-
lecting appropriate mining techniques, as it directly impacts the accuracy, effectiveness,
and quality of insights. Proper selection and processing of data types enable the devel-
opment of precise algorithms, driving innovation and improving Artificial Intelligence
(AI) applications to enhance smart societies.

This thesis explores four models for structured and unstructured data mining in the
context of smart societies. The first model aims to discover periodic patterns within
structured data, offering actionable insights across transportation, marketing, customer
services, and air pollution control domains. The second model employs transfer learn-
ing techniques for medical image classification, addressing data scarcity in healthcare.
Subsequent models delve into multimodal analysis, integrating textual and image data
for improved diagnostic accuracy in medical image analysis. Leveraging advanced AI
techniques, including prompt engineering, these models enhance computational effi-
ciency and deepen our understanding of clinical data. Lastly, the fourth model makes
use of a self-supervised learning approach for mining medical text data, enhancing the
quality of healthcare services within smart societies. The research in this thesis is orga-
nized as follows.

Chapter 2 focuses on developing an algorithm to uncover significant patterns in
various datasets within smart cities, such as transportation, pollution, and consumer be-
havior. This algorithm aims to identify recurring behaviors within itemsets, providing
valuable insights for decision-making processes across different domains. The algo-
rithm is designed for structured temporal databases, ensuring versatility in data analysis.
The primary objective of this chapter is to streamline the process of extracting mean-
ingful periodic patterns efficiently while minimizing computational resources and time
consumption. By introducing a novel algorithm for frequent pattern mining, our re-
search addresses the fundamental challenge of effectively mining periodic data in struc-
tured databases, optimizing cost-effectiveness. Experimental results on six structured
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datasets demonstrate that the proposed algorithm is more computationally efficient and
scalable than state-of-the-art algorithms.

In Chapter 3, our research centers on data mining within healthcare datasets, mainly
focusing on medical image datasets. Integrating healthcare data into Smart Cities is es-
sential for driving citizen well-being and sustainable development by optimizing health-
care delivery in evolving urban ecosystems. The COVID-19 pandemic has emphasized
the critical importance of leveraging data-driven solutions to address emerging health
threats. In Smart Cities, medical image classification is crucial as the demand for ef-
ficient and accurate diagnostic tools increases with urban expansion and aging popula-
tions. Medical imaging, including X-rays, MRIs, and CT scans, is pivotal in the early
detection, diagnosis, and treatment planning of various medical conditions.

Given these considerations, our research focuses on developing deep-learning mod-
els for medical image classification. This chapter presents two models for medical
image classification:

1. A transfer learning model that classifies diseases from medical images. This
model employs transfer learning techniques using the large multimodal pre-trained
model PubMedCLIP on multiple medical image datasets covering various body
regions.

2. A multimodal transfer learning model that incorporates medical text prompts
alongside medical images. Our experiments show that integrating textual and im-
age features allows this model to outperform state-of-the-art models, even with
limited training data.

In Chapter 4, we delve into the analysis of semi-structured healthcare data, partic-
ularly within Smart Cities. Electronic Health Records (EHRs) are diverse information
repositories, including free-text clinical notes, drug information, and health indices.
Despite the richness of insights within these records, extracting meaningful information
presents challenges, especially regarding domain specificity. Our research introduces a
novel self-supervised method for improved feature extraction. By leveraging tags such
as outcomes, diagnosis codes, and categories in EHR data, our deep learning model
adapts to the specific characteristics of each dataset. Experimental results show that
when a sufficient number of tags are provided, the performance of similarity matching
significantly improves.



Chapter 1

Introduction

1.1 Overview

1.1.1 Big Data Analytics and Smart Society
The world is witnessing rapid urbanization, with the urban population projected

to reach 4,774 million by 2025, constituting 58.3% of the global population. As high-
lighted in the ’World Cities Report 2022’, this growth is expected to continue at a rate of
0.46% annually from 2020 to 2025 and 0.4% from 2030 to 2035 [2]. As cities expand,
their urban environments become increasingly crowded, leading to significant trans-
formations in economic and social landscapes. This rapid urbanization brings about
both modernization and new challenges in city management. Issues such as increasing
traffic congestion, resource planning on a large scale, air pollution, and delayed health-
care services have emerged as critical concerns. Concurrently, cities are generating vast
amounts of data through their dynamic environments. Technological advancements
have enabled the collection of massive urban datasets containing valuable insights into
city dynamics, offering opportunities for improved management and urban policy de-
velopment. In recent years, growing research has focused on developing Smart City
services and applications that enhance livability and efficiency [3–5]. Data analytics
and machine learning play crucial roles in this endeavor, offering algorithms and mod-
els for data association, classification, and analysis. These tools enable the extraction of
valuable insights for citizens and decision-makers alike. In this thesis, we explore using
data analysis to design and develop data-driven smart city services, aiming to address
the complex challenges of urbanization and enhance the quality of life in cities.

1.1.2 Data Mining and Knowledge Discovery
Knowledge Discovery in Databases (KDD) is a complex process to uncover valu-

able insights within existing data. Fayyad et al.’s research [1] provides a comprehensive
explanation of the KDD process, shedding light on various approaches within the mul-
tidisciplinary field of Knowledge Discovery. This research enhances our understanding
of the different methodologies employed in KDD and how they complement each other.
In the evolving landscape of the smart society, characterized by the proliferation of IoT
devices and the advent of Industry 4.0, the volume and diversity of digital data have
surged exponentially. This surge necessitates efficient and effective data processing
to distill potentially valuable insights and knowledge, facilitating informed decision-
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making. The relentless innovation in information technology has triggered an explosion
in the generation, accessibility, and storage of structured and unstructured data sourced
from diverse platforms such as corporate databases, online transaction processing sys-
tems (OLTP), web platforms, social networks, and the IoT ecosystem.

Consequently, there has been a concurrent evolution in algorithms and technologies
for Big Data analytics [6, 7], which is imperative for dealing with the continuous pro-
liferation and distribution of data across networked computing nodes. Despite these
advancements, only a fraction of stored data undergoes comprehensive analysis using
modern technologies and methodologies. Hence, a pressing need arises to identify suit-
able data mining methodologies for effectively harnessing specific datasets. Knowledge
discovery in databases (KDD) or data mining entails identifying previously unknown
or hidden structured and unstructured data. This data is then interpreted to derive prac-
tical insights and knowledge, forming a robust knowledge base conducive to sound
decision-making. Various KDD tools exhibit distinct strengths and weaknesses, ne-
cessitating a methodological approach that aligns with the nature of the data and the
specific objectives. Extracting meaningful insights is contingent upon understanding
the data’s characteristics, often requiring interpretation of identified patterns or depen-
dencies. The heterogeneity and unstructured nature of generated data pose challenges to
conventional knowledge discovery approaches, which conventionally handle structured
data from singular sources. In the subsequent subsection, we delve into the distinctions
between structured and unstructured data, which are pivotal to understanding the data
mining landscape in the context of our thesis.

1.1.3 Structured Data and Unstructured Data

Structured Data

Structured data refers to information organized in a specific format, typically rows
and columns, facilitating processing and analysis by computer systems. This data type
adheres to a clear structure defined by a schema or data model. Examples include
numerical data, dates, and strings in relational databases like SQL. Structured data is
efficiently indexed and queried, making it ideal for applications ranging from business
intelligence to data analytics [8, 9]. The well-defined organization of structured data
enhances accessibility and manageability. It simplifies data storage, retrieval, and anal-
ysis, catering to users with varying technical expertise. Stable and reliable analytics
workflows are possible due to the standardized nature of structured data, enabling busi-
nesses to derive insights and make informed decisions effectively. However, structured
data only represents about 20% of enterprise data, offering a limited view of business
functions. Relying solely on structured data overlooks potential insights that could be
derived from unstructured data. Therefore, it is crucial to acknowledge the limitations
of structured data and explore the benefits of integrating unstructured data into the data
analysis strategy.

Unstructured Data

Unstructured data encompasses information without a predefined data model or
schema. This qualitative data includes various formats such as text, video, audio, im-
ages, and social media posts. Unlike structured data, which is easily searchable and
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1.2. DEFINITION

analyzable in databases, unstructured data presents challenges in processing and re-
search due to its lack of organization. However, unstructured data offers inherent ad-
vantages that can unlock new possibilities across various disciplines [10,11]. It captures
real-world nuances and complexities often absent in structured datasets. For instance,
analyzing human sentiment, behavior, and interactions in their natural forms becomes
possible through unstructured data, which includes text, audio, video, and images. Deep
learning engineers can explore diverse data sources without being constrained by pre-
defined formats, contributing to innovation by providing deep learning models with a
broader and deeper understanding of the world. In a smart society, with the increasing
affordability of data storage and processing technologies, handling vast amounts of un-
structured data is becoming more feasible, paving the way for innovative applications
and insights.

This thesis explores various data analysis techniques to extract insights from societal
data. Specifically, for structured data analysis, the focus is on developing an algorithm
to identify stable periodic-frequent patterns in temporal databases. This algorithm ap-
plies to real-world smart society datasets like transportation, air pollution monitoring,
and market basket analysis. This research model for structured data will be presented
in Chapter 2 of this thesis.

In unstructured data, attention is directed towards unimodal and multimodal models
tailored for analyzing medical image data. By proposing novel unimodal and multi-
modal deep learning models, insightful feature information can be extracted from med-
ical images and text for classification tasks. These models and their applications will be
discussed in Chapter 3 of this thesis.

Additionally, a self-supervised learning approach is proposed for analyzing medical
textual data from the semi-structured data of EHRs. This approach aims to extract sim-
ilarity features from patient records to facilitate the identification of patient similarities,
thereby aiding in the diagnostic process. This research will be presented in Chapter 4
of this thesis.

1.2 Definition
This section outlines the fundamental concepts and terminology used in this study,

including frequent pattern mining, transfer learning, multimodal learning, and similarity
matching.

1.2.1 Frequent Pattern Mining
Frequent Pattern Mining (FPM) [12] also known as Association Rule Mining, is an

analytical process used to discover frequent patterns, associations, or causal relation-
ships within datasets found in various types of databases, such as relational or transac-
tional databases. Given a set of transactions, the goal of this process is to identify rules
that can predict the occurrence of specific items or item sets based on the presence of
other items within the transactions. To better understand FPM, some key concepts will
be introduced as follows:

• Transaction: Consider a set X = {x1, x2, . . . , xm} consisting of m items, and
let T = {t1, t2, . . . , tn} be a collection of n subsets of these items, known as
transactions. Each transaction in T represents a subset of items from X .
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• Frequent itemset: Given a set of items X = {x1, x2, . . . , xm} and a set of trans-
action T = {t1, t2, . . . , tn}, a subset of X , denoted as S, is called a frequent
itemset if it appears in a proportion of transactions in T that exceeds a predefined
threshold, known as Support.

• Support: The support of an itemset Y , represented as support(Y ), refers to the
count of transactions in T that include the itemset Y .

• minSup: Refers to the minimum transaction that a pattern must cover. This is
the threshold defined by user.

Table 1.1: Transactions database

Tid Items
T1 bread, butter, jam, milk
T2 beer, salmon
T3 bread, milk, butter
T4 bread, milk, salmon
T5 coke, salmon

For example, consider the following transaction database containing five transac-
tions depicted in Table1.1. Given a minSup of three transactions, frequent itemsets are
”bread, milk”, ”bread”, ”milk”, ”salmon”.

1.2.2 Transfer Learning
In traditional machine learning, the training data and testing data mostly have the

same data distribution. Whereas, Transfer Learning (TL) is a machine learning ap-
proach that enhances a learner’s performance in a new domain by leveraging knowl-
edge which was learned in a related source domain. It addresses situations where there
is a scarcity of target training data, which may be due to data rarity, high collection and
labeling costs, or data inaccessibility. In transfer learning, information from a source
domain with ample data is used to enhance the performance of the learner in the target
domain, even when the feature spaces and data distributions between the two domains
differ. This approach is particularly beneficial as big data repositories become more
prevalent, allowing for the utilization of existing datasets related to, but not identical to,
the target domain of interest.

A domain D is composed of two key components: a feature space X and a prob-
ability distribution over the features P (X). In simpler terms, D = {X,P (X)}, X
represents a set of instances, denoted as X = {x |xi ∈ X, i = 1, . . . , n}.

Given a task T , it consists of a label space Y and a predictive function f(·), repre-
sented as Y = {Y, f(·)} . The predictive function f(·) is not explicitly defined but is
intended to be derived from the sample data.

Given these definitions, in some machine learning models, a source domain data
DS is defined as {(xS1, yS1), ..., (xSn, ySn)}, where xSi represents the ith example in
DS; ySi is its corresponding class label. Similarly, target domain data DT is denoted as
{(xT1, yT1), ..., (xTn, yTn)}. Source tasks are denoted as TS and target tasks are denoted
as TT , with corresponding predictive functions fS(·) and fT (·).
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1.2. DEFINITION

Transfer learning aims to improve the function fT (·) by leveraging information from
the source domain DS and task TS , where DS ̸= DT or TS ̸= TT . This process can
involve single or multiple source domains. It can be seen that, if DS ̸= DT , it means
that the probability distributions P (X) or the feature spaces X of the source and target
domains are different.

Heterogeneous transfer learning arises when the feature spaces X are different
(XS ̸= XT ), while homogeneous transfer learning applies when the feature spaces
are the same (XS = XT ).

1.2.3 Multimodal Learning
The term ”Multimodal learning”, in the context of ML, is a type of DL that uses a

combination of various modalities of data commonly encountered in real-world appli-
cations. An example of multimodal data is the medical image and its relevant medical
text note, where medical images are characterized by pixel intensities and annotation
tags, while medical text notes are typically represented as feature vectors [13].

Integration of these varied data types may improve the accuracy and reliability of
predictive models, as different data types capture various aspects of a patient’s health
status. Through the utilization of multiple modalities, multimodal models afford a more
comprehensive and holistic comprehension of patient health, thereby facilitating more
informed clinical decision-making and ultimately improving patient outcomes.

For instance, integrating radiology scans with medical records has led to significant
advancements in tasks related to image understanding, including tumor segmentation
in brain scans [14] and analysis of skin images [15]. Similarly, the fusion of medi-
cal images and medical records has demonstrated promise, as evidenced by predictive
analyses utilizing radiology images alongside clinical records [16, 17]. Notably, these
multimodal approaches have surpassed traditional machine learning models, highlight-
ing their potential in precision medicine.

However, the development and optimization of multimodal models for healthcare
applications present challenges owing to the heterogeneity and complexity of electronic
health record (EHR) data. Essential steps such as data preprocessing, feature selection,
and model optimization are pivotal yet demanding. Moreover, ensuring interpretability
is imperative, particularly in healthcare contexts, as clinicians necessitate insights into
the rationale behind model predictions to make well-informed decisions.

1.2.4 Similarity Matching
Healthcare data generates a vast amount of information across different modalities.

Consequently, big data tools, such as patient matching systems, are essential for fa-
cilitating analytics. These tools help reduce costs and improve the efficiency of the
healthcare system.

Patient similarity analytics involves investigating the distance between patients based
on various components of their data. Clustering patients by identifying similarities in
their characteristics facilitate efficient computational analyses. These characteristics in-
clude information about diseases, hospitalizations, medical imaging, and other clinical
data that evaluate medical evidence related to human behavior. One example demon-
strating the utility of patient similarity analytics is in the fields of diabetes [18, 19] and
cancer [20] research. In these studies, patient similarity metrics are determined using
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a Euclidean vector representation. Predictor variables, including laboratory test results
and vital signs, establish a similarity metric across multiple patients. The calculation of
this metric can be facilitated using a dot product, often referred to as ”cosine similarity.”
The patient similarity metric is defined as follows:

PSM(P1, P2) =
P1 · P2

∥P1∥ · ∥P2∥
=

n∑

i=1

P1i × P2i

√
n∑

i=1

P 2
1i ×

√
n∑

i=1

P 2
2i

. (1.1)

where P1i and P2i denote the predictor variable vectors for two distinct patients. Also,
the dot product (·) calculates the cosine of the angle between the vectors, while ∥ · ∥
denotes the Euclidean vector magnitude. Because the metric of patient similarity relies
on the cosine of an angle, it is normalized to fall within the range of -1 and 1. For
example, two predictor variable vectors that point in precisely opposite directions would
have a 180-degree angle between them, resulting in a similarity score of -1 between the
patients. Conversely, vectors that overlap perfectly would form an angle of 0 degrees
between them, leading to a patient similarity score of 1.

1.3 Scope and Motivation of The Study
This study is motivated by the imperative to extract insights from big data to en-

hance smart city management and facilitate ease and comfort in urban living. The era
of big data presents a challenge in efficiently extracting valuable knowledge from abun-
dant structured data, which necessitates the development of expressive query languages
and optimization techniques. Our research in pattern mining focuses on discovering
meaningful insights from structured data while optimizing computational resources for
large-scale datasets.

In addition, data integration challenges, particularly in medical health data, hinder
the effectiveness of machine learning (ML) or deep learning (DL) models. Our focus
is on analyzing unstructured medical data using advanced models to develop domain-
adapted transfer learning and multimodal learning. These models leverage medical
images and related textual information to improve accuracy and performance.

The presence of semi-structured data, such as electronic health records (EHRs),
further motivates our research. We aim to extract useful information for diagnosis by
leveraging both structured and unstructured data components.

Figure 1.1 illustrates the different types of datasets used in this study. Fig.1.1(a)
shows structured data, which includes tabular data where information is organized in
a predefined format, making it easier to analyze and query. Fig.1.1(b) depicts unstruc-
tured medical image data, comprising medical images that are not organized in a pre-
defined manner, thereby posing challenges for analysis and interpretation. Fig.1.1(c)
presents semi-structured data from Electronic Health Records (EHRs), which includes
both structured table records and unstructured medical text notes, combining organized
and free-form information. These examples highlight the diversity of data types we
work with, each posing unique challenges and opportunities for analysis.

Fig.1.2shows the placement of our research in the Knowledge Discovery Database
(KDD) framework, highlighting how our work integrates into this process. Our re-
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1.3. SCOPE AND MOTIVATION OF THE STUDY

(a) Structured Dataset

(b) Unstructured Medical Images

(c) Semi-structured EHR Data

Figure 1.1: Illustration of the different types of dataset have been used this study

search is driven by the need to address challenges in mining insights from various data
modalities, including structured, unstructured, and semi-structured data. The overarch-
ing goal of this dissertation is to propose optimization methods for mining insightful
patterns and predictive models. To achieve this goal, we focus on the development and
utilization of the following key components:

• Pattern Mining Algorithm (SPP-ECLAT): The proposed SPP-ECLAT algo-
rithm is designed to discover stable periodic-frequent patterns within large colum-
nar temporal databases. By efficiently extracting these patterns, the algorithm
identifies recurring behaviors and trends in smart city datasets, such as trans-
portation, air pollution monitoring, and market basket analysis. Its ability to op-
erate efficiently in real-world scenarios enhances the decision-making process for
smart city services while optimizing computational resources and time.
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Figure 1.2: Our Research Context in the Knowledge Discovery Database (KDD) Pro-
cess ( [1])

• Transfer Learning Method: Utilizing a pre-trained Large Multimodal Model
(LMM), our transfer learning method addresses the challenge of limited training
data in medical image analysis. The pre-trained LMM, trained on large medical
image datasets, enhances classification accuracy across multiple medical modal-
ities. This approach improves diagnostic capabilities and reduces the need for
extensive data labeling and collection, making it particularly valuable in resource-
constrained healthcare settings.

• Multimodal Model Learning: The proposed multimodal model integrates med-
ical images and textual data to enhance medical diagnosis performance. By lever-
aging the complementary information from these modalities, the model achieves
higher accuracy and robustness in predicting disease outcomes. This integration
enables a holistic understanding of patient conditions, leading to more informed
clinical decision-making and personalized treatment strategies.

• Self-supervised Learning Method for Patient Similarity: Our self-supervised
learning method employs self-supervised learning with tags to improve the per-
formance of patient similarity matching. By exploring feature embedding and
fusion techniques, this method refines the understanding of patient similarity and
enhances the accuracy of clinical decision support systems. It enables healthcare
professionals to identify relevant patient cohorts more effectively, facilitating per-
sonalized treatment plans and improving patient outcomes.

In conclusion, we aim to tackle the complexities of mining insights from diverse data
modalities in smart city management domains. By developing novel algorithms and
leveraging advanced machine learning techniques, our research seeks to enhance the
efficiency, accuracy, and effectiveness of data analysis processes. Through the pro-
posed optimization methods, we aspire to contribute to the advancement of smart city
management and healthcare systems, ultimately improving the quality of life for urban
residents and patients alike.
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1.4. DISSERTATION OUTLINE

1.4 Dissertation Outline
The dissertation outlined herein comprises several key components, as depicted in

Figure 1.3. It delineates the structure across five chapters:

• Chapter 1: Provides an overview of the research, introducing the background on
big data analytics and smart cities. It defines key concepts related to the disserta-
tion’s title, spanning four chapters, and outlines the research scope. Additionally,
it discusses the challenges and opportunities of data analysis techniques in struc-
tured, unstructured, and semi-structured data types within the big data era for
smart cities, along with insights on future work.

• Chapter 2: Presents a study focused on developing algorithms for mining signif-
icant patterns, specifically stable periodic-frequent patterns, applicable to various
structured datasets. This chapter offers valuable insights into decision-making
processes across different domains. Understanding existing solutions that provide
optimal performance and memory reduction in pattern mining from big structured
data is essential.

• Chapter 3: Concentrates on data analysis within healthcare datasets, particu-
larly employing a deep learning approach for unstructured healthcare data. Two
models are proposed in this chapter. Firstly, a transfer learning model utilizing a
pre-trained model for medical image classification tasks is discussed, showcasing
its ability to perform well across multiple medical image modalities and address-
ing limitations in training data. Secondly, a multimodal transfer learning model
is introduced, incorporating medical images and related text inputs. The study
also explores the efficacy of prompt techniques to guide the model for improved
learning, addressing challenges posed by limited training data.

• Chapter 4: Introduces a method for patient similarity using semi-structured data,
specifically Electronic Health Record (EHR) data in healthcare. Different em-
bedding models and a self-supervised learning method are employed for better
feature extraction. By leveraging various tags such as outcomes, diagnosis codes,
and categories in EHR data, the deep learning model adapts to the specific char-
acteristics of the given dataset.

• Chapter 5: Concludes the dissertation by providing an overall evaluation across
three data types (structured, unstructured, and semi-structured data), highlighting
the contributions and limitations of the methods presented. It also offers exciting
insights into potential future research directions, hinting at the transformative
impact our work could have in the near future.

9



Figure 1.3: Illustration outlining the structure of the dissertation
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Chapter 2

Pattern Mining with Structured Data

2.1 Introduction

Database systems play a crucial role in storing the big data generated by real-world
applications. Depending on the layout used for storing the data, one can broadly classify
the databases into two types: row databases and columnar databases1. Row databases
are primarily based on ACID2 properties and organize the data as records by keeping
the data associated with a record next to each other in a storage device. The popular
row databases include MySQL [21] and Postgres [22]. In contrast, columnar databases
are based on BASE 3 properties and organize data into fields and store all of the data
associated with a field next to each other in a storage device. The popular colum-
nar databases include BigQuery [23], HBase [24], and Snowflake [25]. Both row and
columnar databases have their respective advantages and disadvantages. Henceforth,
no universally accepted best data layout exists for any given application. Selecting the
right database layout is subjective to user and/or application requirements.

Extracting meaningful information from the data is a crucial task of data mining.
Frequent pattern mining (FPM) [12, 26–31] is a renowned data mining technique that
aims to discover all frequently occurring patterns in the data. Numerous algorithms
have been presented in the literature to discover frequent patterns effectively. One can
broadly classify these approaches into the following three types: (i) candidate-generate-
and-test algorithms (e.g., Apriori [27] and Partitioning [32]), (ii) pattern-growth algo-
rithms (e.g., FP-Growth [33], HMine [34], and [35]), and (iii) vertical format algo-
rithms (e.g. ECLAT [36] and CHARM [37]). The candidate-generate-and-test and
pattern-growth approaches can find frequent patterns only in row databases, while ver-
tical format approaches can find frequent patterns in both row and columnar databases.
Henceforth, researchers are putting forth efforts to develop efficient vertical format al-
gorithms. This study also develops an efficient vertical format algorithm to discover a
class of frequent patterns, called stable periodic-frequent patterns, in columnar temporal
databases.

A temporal database represents a temporally ordered set of transactions. Crucial
information that can empower the domain experts to gain competitive advantage lies
hidden in this data. Tanbeer et al. [38] described the model of periodic-frequent pattern
to discover regularities in a temporal database. This model involves discovering all pat-

1Columnar and row databases are referred as vertical and horizontal databases, respectively
2ACID is an acronym for Atomicity, Consistency, Isolation, and Duration
3BASE is an acronym for Basically Available, Soft state, and Eventually consistent
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terns in a database that satisfy the user-specified minimum support (minSup) and maxi-
mum periodicity (maxPer) constraints. The minSup controls the minimum number of
transactions in which a pattern must appear in the database. The maxPer controls the
maximum time interval within which an pattern must reappear. A classic application
of periodic-frequent pattern mining is market-basket analytics. It involves identifying
the patterns that the customers regularly purchase in a supermarket. An example of a
periodic-frequent pattern is as follows:

{Cheese,Wine} [support = 20%, periodicity = 5 hour].

The above pattern provides information that 20% of the customers have purchased the
products ‘Cheese’ and ‘Wine’ at least once every 5 hours. Therefore, supermarket
managers may find this information beneficial for inventory management and product
placement.

In the literature, the periodic-frequent pattern model was extended to discover fuzzy
periodic-frequent pattern [39], rare periodic-frequent pattern [40], partial periodic pat-
tern [41, 42], and high utility periodic-frequent pattern [43]. However, the successful
real-world adoption of this model has been affected by the following obstacle: “Since
maxPer controls the maximum inter-arrival time of an pattern in a database, the ba-
sic model of periodic-frequent pattern considers any pattern uninteresting if anyone
of its inter-arrival time is more than the user-specified maxPer value [44, 45]. In
other words, the strict restriction that all periods of a pattern must be within the user-
specified maxPer constraint often prunes all of those interesting patterns that have
exhibited stable (or partial) periodic behavior in a database.”

When confronted with this problem in real-world applications, researchers intro-
duced the model of stable periodic-frequent pattern [46] to find all of those interest-
ing pattern that have exhibited stable periodic behavior in columnar database. This
model provides a function to find interesting patterns that have a stable periodic behav-
ior. A pattern-growth algorithm, called Stable Periodic-frequent Pattern-growth (SPP-
growth), was described to find stable-periodic patterns in temporal databases. Unfortu-
nately, this algorithm can discover the interesting patterns in row (temporal) databases
only. Therefore, whenever we give a columnar temporal database as an input to the
SPP-growth algorithm, it has to be converted into a row temporal database to get inter-
esting patterns. As a result, the above algorithms will take longer to run and use more
memory because of this conversion overhead. With this motivation, this study proposes
a generic algorithm to find stable periodic-frequent pattern in both row and columnar
temporal databases effectively. To the best of our knowledge, this is the first algorithm
that focuses on finding stable periodic-frequent pattern in columnar temporal database.
It should be noted that existing algorithms find the patterns only in row databases.

Discovering stable periodic-frequent pattern in columnar databases is significant
and challenging because of some reasons as follows:

1. The importance of discovering frequent pattern in columnar databases was first
discussed in the work of Zaki et al. [47], where the depth-first-search algorithm,
named Equivalent Class Transformation (ECLAT), was proposed to extract fre-
quent pattern in a columnar database. However, the ECLAT algorithm cannot be
directly applied to find stable periodic-frequent pattern in a columnar temporal
database. The reason is ECLAT algorithm completely disregards the temporal
occurrence information of an pattern in the data.
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2. Reducing search space (itemset lattice) is a challenging task in pattern mining.
The process of recursively mining the constructed tree increases the memory and
runtime requirements of the SPP-growth algorithm.

3. One can transform a columnar temporal database into a row database and then
apply those available algorithms to extract stable periodic-frequent pattern. How-
ever, we should avoid such a transformation process due to its high computational
cost.

Against this backdrop, we have extended the functionality of ECLAT [47] to mine
stable periodic-frequent patterns by introducing a new algorithm called Stable Periodic
frequent Pattern-Equivalent Class Transformation (SPP-ECLAT) in columnar temporal
database. This study extends the related work by extensively understanding the current
literature, presenting the complexity analysis of our algorithm, and performing in-depth
experiments studying the memory, runtime, and scalability of the mining algorithms.
In this thesis, we show that SPP-ECLAT outperformsStable Periodic frequent Pattern-
growth (SPP-growth) [46] on both synthetic and real-world databases by a very large
margin.

The key contributions of this study are summarized as follows:

1. An efficient and novel SPP-ECLAT algorithm is proposed to ensure that the
discovered Stable Periodic-frequent Patterns (SPPs) not only satisfy the user-
specified minimum support and maximum periodicity thresholds but are stable
patterns based on the user-specified maximum lability threshold in any big colum-
nar temporal databases.

2. In SPP-ECLAT, the observed Lability information is stored in a unique, compact
list-based data structure called SPP-List. The newly introduced maximum lability
measure considers the periodic behavior of an pattern as stable when the lability
value is low. On the other hand, if the value is high, it means the patterns are
unstable. So stable pattern can be found using this measure, given a limit on the
maximum lability.

3. On six synthetic and real-world databases, we compare the performance of the
proposed SPP-ECLAT algorithm against that of the current state-of-the-art SPP-
Growth algorithm. This indicates that the SPP-ECLAT algorithm outperforms
the SPP-Growth algorithm with respect to runtime requirements and memory
consumption. Furthermore, the scalability of the SPP-ECLAT algorithm is also
shown to demonstrate the efficacy and productivity of the proposed algorithm
on big columnar databases relative to those of the state-of-the-art SPP-Growth
algorithm.

2.2 Related Work

In this section, we will review the previous work related to frequent pattern mining,
periodic-frequent pattern mining, and stable periodic-frequent pattern mining.
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2.2.1 Frequent Pattern Mining

Argawal et al. [26] introduced frequent pattern mining to find interesting relation-
ships among different data items. An algorithm, called Apriori [12], was also intro-
duced to discover all frequent patterns in a row (transactional) database. This algorithm
works in a breadth-first manner that uses frequent k-itemsets to form candidate (k+1)-
itemsets, from which frequent (k+1)-itemsets are obtained. Many extensions of Apriori
have been proposed in the literature [32] [48]. Essentially, they have the same general
structure, with some additional techniques to optimize certain steps within the algo-
rithm. Though Apriori can find all wanted frequent pattern, it has to scan the database
several times to generate a complete set of pattern. Thus, it is a very time-consuming
process. Beside Apriori algorithm, Argawal et al. [49] proposed two other algorithms
called AprioriTid and AprioriHybrid. The AprioriTid algorithm reduces the processing
time of the support counting procedure by replacing every transaction in the database
with a set of candidate itemsets that appears in that transaction. This is done repeatedly
at every iteration k. It is demonstrated in [27] that although AprioriTid is much faster
in the later iterations, it performs slower than Apriori in early iterations. Therefore, the
AprioriHybrid algorithm has been proposed [49], which combines Apriori and Apri-
oriTid. Basically, the hybrid algorithm uses Apriori for the initial iterations and then
switches to AprioriTid. Even though the AprioriTID algorithm have utilized a vertical
database representation, this algorithm is based on the breadth-first search technique.

The first algorithm to generate all frequent patterns in a depth-first search manner,
called Eclat, is proposed by Zaki [50]. Eclat is a vertical database layout algorithm.
This algorithm utilizes the TID-list data structure for the mining task. Eclat applies
the depth-first approach to find frequent pattern and scan the database only two times.
In the first round, it scans the entire database to find all frequent items. In the second
round, the TID-list of the frequent items is generated. The Eclat algorithm uses common
(k − 1)-prefixes to organize frequent k-itemsets into disjoint equivalence classes. Then
the candidate (k+1) itemsets can be found by joining two frequent k-itemsets from the
same classes. The main advantage of utilizing TID-list is that, only by intersecting the
TID-lists of the two subsets, the support of a candidate pattern is simply computed. A
simple check on the received TID-list can tell whether the new pattern is frequent.

The frequent pattern-growth (FP-growth) algorithm proposed by Han et al. [28] is
a tree-based algorithm to discover frequent pattern in a database. This algorithm uses
the divide-and-conquer method. In this algorithm, frequent pattern are mined from the
fp-tree, and there is no need for a candidate frequent pattern. In the first step, a list of
frequent patterns is generated and sorted in their descending support order. This list is
represented as a node structure, containing the item name, support count, and a pointer
to a node in the tree that has the same prefix. These nodes then are used to create
an fp-tree. The paths from the root to leaf nodes are arranged in the decreasing order
of their support. Frequent pattern are extracted from the fp-tree starting from the leaf
nodes. To mine frequent pattern(s) each prefix path subtree is processed recursively.
The only differences between Eclat and FP-growth are the process to count the support
of every candidate pattern and how they represent the database. In fact, it is difficult to
say which algorithm performs better. Over two decades, many other FPM algorithms
have been proposed, mainly by extending the Apriori, Eclat, and FP-growth algorithms
to find a frequent pattern. However, frequent pattern mining algorithms are inapplicable
to identify pattern that appear in a temporal database regularly.
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Besides, many studies focus on finding new kinds of pattern and rules present in
a large amount of data. This is especially important with the emergence of Big data.
Over nearly 30 past years, various pattern have been identified, namely sequential and
time-series pattern [51] [52] [53], high utility pattern [54] [55] [56], structural pattern
[57] [58], temporal (periodic) pattern [59] [60] [61] [62].

2.2.2 Periodic-frequent Pattern Mining

The target of periodic frequent pattern mining is to identify how regularly the pattern
occur in a temporal database. In Tanbeer et al. [38], the problem of mining periodic
frequent pattern was first introduced and correspondingly a model called PF-growth
was proposed to tackle this problem. Compared to the classic FPM which only employs
the minSup constraint, Periodic-frequent Pattern Mining (PFPM) includes one more
parameter called maxPer. This algorithm performs in two steps. First, it represents
the database by a periodic-frequent tree (PF-tree), and items in a PF-tree are arranged
in the descending item support order. Second, the algorithm mines the PF-tree by using
FP-growth mining technique to find all periodic-frequent pattern.

Amphawan et al. [63] proposed an efficient algorithm called Mining Top-K Periodic-
frequent pattern (MTKPP), which is based on a depth-first search and a vertical database
representation. This algorithm mines periodic-frequent pattern without using the minSup
constraint and provides a list-based data structure called the top-K list to maintain the
set of k regular pattern with the highest support. MTKPP algorithm uses this top-K list
during the mining process to generate candidate pattern. Uday et al. [64] introduced
an efficient model that extended multiple minSup’s and multiple maxPer’s to dis-
cover periodic-frequent pattern consisting of both frequent and rare items. This model
used two different constraints to identify useful pattern, namely minimum item support
and maximum item periodicity. Each pattern satisfies different minSup and maxPer
values based on the available items in the pattern. That study also proposed a pattern-
growth algorithm using a novel and efficient tree-based data structure, named a multi-
constraint periodic-frequent tree, to find the complete set of frequent and rare items.

Amphawan et al. [63] proposed a novel technique called approximate periodicity
to reduce the calculation time requirements of mining periodic-frequent pattern. This
algorithm splits the transactional timeline into intervals with different maxPer values.
The interval information is stored only when there exists a pattern in that interval. The
authors also proposed a tree structure, called Interval Transaction-ids List tree (ITL-
tree). The goal of this technique is to maintain the occurrence information in a highly
compact manner by using interval transaction-ids list instead of tid-list. Then the ap-
proximate periodicity of each pattern can be found. To generate all periodic-frequent
patterns, a pattern growth mining technique is also used by a bottom-up traversal of
the ITL-tree based on minSup and maxPer constraints. An interesting novel measure
was proposed by Uday et al. [65] to extract periodic-frequent pattern in a transacti-
nonal database, which is called periodic-ratio. The authors defined that some pattern
which appear almost periodically in the database can be considered interesting pattern.
Therefore, a periodic interestingness of a frequent pattern is calculated as the ratio of
its periodic occurrences in a database. A pattern can be defined as a potential pattern
if its support is greater than minSup and its periodic interestingness is greater than the
user-specified minimum periodic-ratio. Then an extended periodic-frequent tree was
built based on these potential pattern. Also a pattern-growth algorithm was proposed
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to find the complete set of periodic-frequent pattern. Ravi et al. [66] have described
an algorithm named PF- ECLAT, to efficiently discover periodic-frequent patterns in
a columnar temporal databases. Some other variations of the above models were also
proposed [67] [68] [69] to find periodic-frequent pattern. However, all these algorithms
have a drawback that, if only one of the periods of a pattern exceeds maxPer, this
pattern is discarded. Kiran et al. [59] proposed a model called partial PFP mining that
relaxes the maximum periodicity constraint by considering that a pattern X is (partial)
periodic if its periodic-frequency is no less than a user-specified threshold. However,
this algorithm cannot be applied to find stable-periodic-frequent pattern. The reason is
that it measures the periodicity of a pattern by counting the number of times where the
periods of a pattern are less than maxPer without considering how much these periods
deviate from maxPer.

To overcome the drawback of periodic frequent pattern mining, Philippe et a. [46]
proposed a model to find stable periodic-frequent pattern in a transactional database.

2.2.3 Stable Periodic-frequent Pattern Mining

Philippe et al. [46] introduced a concept called lability, which is the cumulative
sum of the difference between each period length and maxPer constraint. A novel
parameter, called maximum lability (maxLa), was also used to assess the stability of a
periodic behavior of a pattern in a database. An algorithm named SPP-growth to mine
stable periodic-frequent pattern was presented with two steps. First, the database is
represented as a stable periodic-frequent tree (SPP-tree), and then the algorithm mines
the SPP-tree to find all stable periodic-frequent pattern. Ruimeng et al. [70] discussed
a model to find stable periodic-frequent pattern in an uncertain database. The authors
proposed a Stable Periodic-Frequent Pattern Mining (SPFPM) algorithm on an uncer-
tain database by considering both the frequency and periodicity of pattern. That is, an
pattern X in an uncertain transaction database is considered a stable periodic frequent
pattern if the support count and stability value of pattern X meet the minimum support
threshold (minSup) and the stability threshold (maxLa). Phillipe et al. [71] proposed
a model using the concept of top-K mining to generate stable periodic-frequent pattern.
This study introduced an algorithm that, rather than using a minSup threshold, the user
can directly specify parameter k, where k represents the number of pattern that the user
wants to find. The output of the algorithm is the top-K most frequent pattern that have a
stable periodic behavior. To the best of our knowledge, up to now, there have been only
three above references related to the study of finding a Stable Periodic-Frequent pattern
in row databases.

Because all of the above algorithms find the patterns in row databases, whenever
we give a columnar temporal database as an input to the above algorithms, it has to be
converted into a row temporal database to get interesting patterns. As a result, the above
algorithms will take longer to run and use more memory because of this conversion
overhead. In contrast, the algorithm proposed in our work is different in that it deals
specifically with columnar databases.
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2.3. MODEL OF SPP

Table 2.1: Row database

ts items ts items
1 b,c,d,e 7 d,e,f
2 a,b,c 8 b,c,d
3 a,b,c,d 9 a,b,c,d
4 e,f 10 a,b,c
5 a,c,d 11 a,c,e
6 a,b,c 12 b,c,d

Table 2.2: Columnar database

items items
ts a b c d e f ts a b c d e f
1 0 1 1 1 1 0 7 0 0 0 1 1 1
2 1 1 1 0 0 0 8 0 1 1 1 0 0
3 1 1 1 1 0 0 9 1 1 1 1 0 0
4 0 0 0 0 1 1 10 1 1 1 0 0 0
5 1 0 1 1 0 0 11 1 0 1 0 1 0
6 1 1 1 0 0 0 12 0 1 1 1 0 0

Table 2.3: Item’s dictionary with their timestamp list

item TS-list
a 2,3,5,6,9,10,11
b 1,2,3,6,8,9,10,12
c 1,2,3,5,6,8,9,10,11,12
d 1,3,5,7,8,9,12
e 1,4,7,11
f 4,7

2.3 Model of SPP

Let O = {o1, o2, · · · , on}, n ≥ 1, be a set of objects (or items). Let Y ⊆ O be
an patterns (or a pattern). Let ta = (ts, X), a ≥ 1, be a transaction, where ts ∈ R+

represents the timestamp and X is an patterns. Let TDB = {t1, · · · , td}, d ≥ 1 be
a temporal database representing an ordered set of transactions such that ta.ts ≤ tb.ts,
where 1 ≤ a < b ≤ d. Let TSY = {tsYi , · · · , tsYj }, i, j ∈ [1, d], denote a set of
timestamps containing Y in TDB.

Example 1. Assume that we have a set of items I = {a, b, c, d, e, f}. Table 2.1 shows
a row temporal database constituting of these items. Without loss of generality, this
database can be viewed as a columnar temporal database as shown in Table 2.2. In
Table 2.3, we show the dictionary storing the items and their temporal occurrence in-
formation in the database. The set of items ‘b’ and ‘c’, i.e., {b, c} is a patterns. This
patterns will be represented as ‘bc’ for brevity. This patterns is denoted as 2-patterns
because it contains two items. The occurrences of patterns ‘bc’ are at the timestamps of
1, 2, 3, 6, 8, 9, 10, and 12. Therefore, we have a list of timestamps containing ‘bc’,
i.e., TSbc = {1, 2, 3, 6, 8, 9, 10, 12}.
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Definition 1. (The support of Y .) The support of Y , denoted as sup(Y ), represents
the number of transactions containing Y in TDB. That is, sup(Y ) = |TSY |.

Example 2. The support of ‘bc’, i.e., sup(bc) = |TSbc| = 8.

Definition 2. (Frequent patterns Y .) The patterns Y is a frequent patterns if sup(Y ) ≥
minSup, where minSup is a minimum support value specified by user.

Example 3. If minSup = 5, then bc is said to be a frequent patterns because sup(bc) ≥
minSup.

Definition 3. (Periodicity of Y .) Let tsYm and tsXn , j ≤ m < n ≤ k, denote two
consecutive timestamps in TSY . The time difference between tsYn and tsYm is given by a
period of Y , denoted by pYz . That is, pYz = tsYn −tsYm. Denoted P Y = (pY1 , p

Y
2 , · · · , pYn )

the set of all periods for patterns Y . The periodicity of Y , denoted by per(Y ) =
maximum(pY1 , p

Y
2 , · · · , pYn ).

Example 4. All periods of the patterns ‘bc’ are : pbc1 = 1 (= 1 − tsinitial), pbc2 = 1 (=
2 − 1), pbc3 = 1 (= 3 − 2), pbc4 = 3 (= 6 − 3), pbc5 = 2 (= 8 − 6), pbc6 = 1 (=
9 − 8), pbc7 = 1 (= 10 − 9), pbc8 = 2 (= 12 − 10), and pbc9 = 0 (= tsfinal − 12),
where first transaction time stamp is denoted by tsinitial = 0 and the last transaction’s
time stamp is denoted by, tsfinal = |TDB| = 12. The periodicity of bc, i.e., per(bc) =
maximum(1, 1, 1, 3, 2, 1, 1, 2, 0) = 3.

Definition 4. (Periodic-frequent patterns Y .) The frequent patterns Y be considered
as periodic-frequent patterns if per(Y ) ≤ maxPer, here maxPer is maximum peri-
odicity value which is specified by user.

Example 5. Let the user-specified maxPer = 3, in this case the frequent patterns ‘bc’
is called as a periodic-frequent patterns as per(bc) ≤ maxPer.

Definition 5. (Lability of an patterns). Let tsYi+1 and tsYi , i ∈ [0, sup(Y )], be two
consecutive time stamps where Y occurs in TDB. We call i-th lability of Y denoted by
la(Y, i) = max(0, la(Y, i− 1)+ pYi −maxPer), where la(Y,−1) = 0. For simplicity,
the following short form is used

la(Y, i) = max(0, la(Y, i− 1) + tsYi+1 − tsYi −maxPer)

The following is a list of periods which represent the lability of an patterns Y : la(Y ) =
{la(Y, 0), la(Y, 1), · · · , la(Y, sup(Y ))}, and |la(Y )| = |per(Y )| = sup(Y ) + 1.

Example 6. Consider an item a. If maxPer=2, then the lability of a are: la(a, 0) =
max(0, la(p,−1) + pp0 −maxPer) = max(0, 0 + 2− 2) = 0, la(a, 1) = max(0, 0 +
1 − 2) = 0, la(a, 2) = max(0, 0 + 2 − 2) = 0, la(a, 3) = max(0, 0 + 1 − 2) = 0,
la(a, 4) = max(0, 0 + 3 − 2) = 1, and la(a, 5) = max(0, 1 + 1 − 2) = 0. Therefore,
the sequence of labilities of a in the database, i.e., la(a) = {0, 0, 0, 0, 1, 0}.

Based on Definition 5, the periodic patterns can be considered as stable (lability
is zero) if all its periods are less than or equal to maxPer. The lability of a period
of a patterns will increase when a period of a patterns larger than maxPer, and these
exceeding values are accumulated using the measure of lability. The value of lability
will be reduced when periods of a patterns no more than maxPer. Therefore, according
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to the periodic characteristic of a patterns, its lability will vary over time, and each value
exceeding maxPer is accumulated. A periodic behavior is considered stable when
lability value is low while a high value means an unstable one. So stable patterns can
be found using this measure given a limit on the maximum lability.

Definition 6. (Stable periodic-frequent patterns). For a patterns Y , denote la(Y)
the set of all i-th lability. The stability of the patterns is defined by maxLa(Y) =
max(la(Y)). patterns Y is a SPP if sup(Y ) ≥ minSup and maxla(Y ) ≤ maxLa.

Example 7. Given the above example, if the user specified minSup=4, maxPer=2,
and maxLa = 1, the complete set of SPPs are a: (7,1), b: (8,1), c: (10,0), d: (7,1), bc:
(8,1),bca: (5,1), cd: (6,1), ca: (7,1), where each SPP Y is annotated with Y : (sup(Y),
maxLa(Y)).

Be noted that if maxLa = 0, SPPs are the traditional PFPs. Therefore, the PFPs is a
special case of SPPs.

Definition 7. (Problem definition). Given a temporal database (TDB) with minimum
support (minSup), maximum periodicity (maxPer), and maximum lability (maxLa)
constraints, our objective is to discover the complete set of stable periodic-frequent
patterns having support higher or equal to minSup and lability lower or equal to
maxLa constraints.

2.4 The Proposed Algorithm: SPP-ECLAT
The patterns lattice represents the search space of stable periodic-frequent patterns

mining. The size of this lattice is 2n − 1, where n represents the total number of items
in a database. Using the downward closure property (see Property 1) and the depth-
first search technique, the proposed SPP-ECLAT searches this huge lattice and finds the
complete set of SPPs. Briefly, the SPP-ECLAT algorithm involves the following two
steps: (i) find the stable periodic items (or 1-patternss) from a database (Section 2.4)
and (ii) discover the complete set of stable periodic k-patternss, k > 1, by recursively
mining the previously generated stable periodic patternss (Section 2.4). We now explain
each of these steps in detail.

Property 1. If A is a stable periodic-frequent patterns, then ∀A ⊂ B and A ̸= ∅, A is
also a stable periodic-frequent patterns.

Mining 1-stable periodic-frequent patterns
The proposed algorithm can find stable periodic-frequent patternss in both row and

columnar databases. The proposed algorithm achieves this ability by transforming a
row and columnar database into a unified data structure constituting of candidate items
and transaction identifiers. This data structure is called SPP-list.

Denote SPP -list = (Y, TS-list(Y )) a dictionary with the temporal occurrence
information of a patterns in a TDB; TSl is a temporary variable of list type to store the
timestamp of the final occurrence of a patterns; la and ML are temporary variable of
list type to store the lability and the Maximum Lability of a patterns; last is a term for
the final timestamp; support is a temporary varibale of list type to store the support of
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a patterns. This part focuses on discovering 1-patterns by SPP-list. The detailed steps
are shown in Algorithm 1, which works on a row database shown in Table 2.1. Let
minSup = 5 and maxPer = 2 and maxLa = 1.

The 1-patterns are first generated by reading the whole database transactions at once.
Then, the row database is converted to the columnar database. After reading the 1st

transaction, “1 : b, c, d, e”, with tscur = 1 inserts the items b, c, d and e, in the
SPP-list. We have the timestamps of these items is 1 (= tscur). Similarly, ML and
TSl contents were updated to 0 and 1, respectively (lines 7 and 8 in Algorithm 1).
Fig. 2.1(a) shows the generated SPP-list from the 1st transaction. After reading the
2nd one, “2 : a, b, c”, with tscur = 2 inserts the new items p into the SPP-list by adding
2 (= tscur) in their TS-list. At the same instant, the ML and TSl contents were updated
to 0 and 2, respectively. Besides 2 (= tscur) was added to the TS-list of existing items
q with ML and TSl contents were updated to 0 and 2, respectively (lines 10 and 13
in Algorithm 1). The SPP-list which is generated after reading the 2nd one is shown
in Fig. 2.1(b). After reading the 3rd one, “3 : a, b, c, d”, updates the TS-list, ML and
TSl values of a, b, c, and d in the SPP-list. Fig. 2.1(c) shows the SPP-list which
is generated after reading the 3b,c,d,a one. After reading the 4th one, “4 : e, f” with
tscur = 4, inserts the new items e and f into the SPP-list by adding 4 (= tscur) in their
TS-list. Simultaneously, the ML and TSl values as 2 and 4. Fig. 2.1(d) shows the
SPP-list which is generated after reading the 4th. We repeat the whole process for the
remaining transactions. Fig. 2.1(e) depicts the final SPP-list which is generated after
scanning the whole database. The patterns e and f are pruned (using the Property 1)
from the SPP-list as its support value is no more than the minSup value and ML value
is greater than maxLa (lines 15 to 20 in Algorithm 1). The complete list of patterns
available in the SPP-list are considered as 1-stable periodic-frequent patterns. Those
patterns are sorted in descending order in terms of their support values. Fig. 2.1(f)
shows the final SPP-list.

Finding all interesting patterns from SPP-List

The detailed procedure for finding stable periodic-frequent patterns is shown in Al-
gorithm 2. Given the newly generated SPP-list, the procedure of this algorithm is car-
ried out as follows. Initially we choose the patterns b, as this is the initial patterns in the
SPP-list (line 2 in Algorithm 2). Fig. 2.2(a) shows a record of its support and lability.
Since b is a stable periodic-frequent patterns, we move to its child node bc . TS-list of bc
is generated by performing intersection of TS-lists of b and c, i.e., TSbc = TSb ∩ TSc

(lines 2 and 3 in Algorithm 2). This support and lability of bc are recorded, as shown
in Fig. 2.2(b). We check whether bc is a stable periodic-frequent patterns or unstable
periodic frequent patterns (line 4 in Algorithm 2). Since bc is stable periodic-frequent
patterns we move it to its child node bcd. Next, TS-list will be generated by performing
the intersection of TS-lists of bc and d, i.e., TSbcd = TSbc ∩ TSd. Fig. 2.2(c)shows a
record of support and lability of bcd. Then bcd is identified as an unstable periodic-
frequent patterns because a lability of bcd is greater than maxLa, the patterns bcd will
be remove from the stable periodic-frequent patterns list as shown in Fig. 2.2(c). We
repeat the process to find all stable periodic-frequent patterns for remaining nodes in
the tree. Fig. 2.2(d) shows the final list of generated stable periodic-frequent patterns.
Since we can reduces the search space and the computational cost effectively our pro-
posed approach is efficient.
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Figure 2.1: SPP-list generation process. (a) content of the list after reading the 1st

transaction, (b) after reading the 2nd one, (c) after reading the 3rd one, (d) after reading
the 4th one, (e) Final content after reading the whole database, and (f) The complete list
of 1-stable periodic-frequent patterns

2.5 Experiments

This section evaluates the performance of the SPP-ECLAT against the state-of-the-
art SPP-growth [46] algorithm. Through experiment results, we will show that the SPP-
ECLAT algorithm is more efficient in memory consumption and runtime than SPP-
growth. The scalability of the SPP-ECLAT algorithm is also shown to demonstrate
the superior efficacy and productivity over the SPP-Growth algorithm on big columnar
temporal databases. The implementations of these two algorithms are available at PAMI
[72]. Note that the metric for runtime is seconds and memory is bytes throughout the
experimentation.

2.5.1 Experimental Setup
The algorithms, SPP-growth and SPP-ECLAT, were developed in Python 3.7 and

executed on a Gigabyte R282-z94 rack server machine containing two AMD EPIC
7542 CPUs and 600 GB RAM. The operating system of this machine is Ubuntu Server
OS 20.04. The experiments have been conducted on various real-world databases in-
cluding T10I4D100K, Retail, T20I6D100K, BMS-WebView-1, BMS-WebView-2 and
Mushrooms. The characteristics of these databases are shown in the Table 3.5. The
T10I4D100K and T20I6D100K synthetic databases are generated according to the
properties of market basket data. The procedure of constructing these databases is de-
scribed in [73]. These spare databases have been widely employed to evaluate var-
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Figure 2.2: The complete process of discovering stable periodic-frequent patterns using
SPP-ECLAT algorithm

ious pattern-mining algorithms in the literature. The BMS-WebView-1 and BMS-
WebView-2 are a real-world sparse databases containing clickstream data from e-commerce
sites. Each transaction is a viewing session consisting of all the viewed product detail
pages where each product detail view is an item. These databases contain very long
transactions and they were used in KDD CUP 2000 competition [74] . The Retail
is a real-world sparse database consisting of basket databases in a retail supermarket
store. The Retail database is provided by Brijs et al. [75]. The Mushrooms is a real-
world dense database containing different species of gilled mushrooms prepared from
the UCI mushrooms dataset. All of the above databases have been downloaded from
SPMF repository [76].

Table 2.4: Statistics of the databases

S.No Database Type Nature Sparsity
Transaction

Length
Database Size

1 T10I4D100K Synthetic Sparse 0.988 1 100,000
2 Retail Real Sparse 0.999 2 88,162
3 T20I6D100K Synthetic Sparse 0.978 2 199,844
4 BMS-WebView-1 Real Sparse 0.995 1 59,602
5 BMS-WebView-2 Real Sparse 0.999 2 77,512
6 Mushroom Real Dense 0.993 23 8,124
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Algorithm 1 StablePeriodicFrequentItems(Temporal database (TDB), minimum sup-
port (minSup), maximum periodicity (maxPer), maximum Lability(maxLa):
1: Definition: SPP -list = (Y, TS-list(Y )) is a dictionary with the temporal occurrence information of a patterns in a TDB;

TSl is a temporary variable of list type to store the timestamp of the final occurrence of a patterns; la and ML are temporary
variable of list type to store the lability and the Maximum Lability of a patterns; last is a term for the final timestamp; support
is a temporary varibale of list type to store the support of a patterns.

2: Initate tscur = 0
3: for each transaction tcur ∈ TDB do
4: Set tscur = tcur.ts;
5: for each item j ∈ tcur.Y do
6: if j does not exit in SPP-list then
7: SPP-list is updated by inserting j and corresponding timestamp value
8: la[j] = max(0, tscur −maxPer). Set ML[j] = la[j]
9: else

10: Add j’s timestamp in the SPP-list.
11: la[j] = max(0, la[j] + tscur − TSl[j]−maxPer)
12: ML[j] = max(la[j],ML[j])
13: Update TSl[j] = tscur .
14: end if
15: end for
16: last = tscur
17: end for
18: for each item j in SPP-list do
19: la[j] = max(0, la[j] + last− TSl[j]−maxPer)
20: ML[j] = max(la[j],ML[j])
21: s[j] = length(TS-list[j])
22: if s[j] < minSup and ML[j] > maxla then
23: Prune j from SPP-list
24: end if
25: end for
26: After the pruning the final list of patterns available in the SPP-list is sorted in ascending order or descending order of the

corresponding patterns’s support. Initiate pi as Null. Call SPP-ECLAT(SPP-List, pi).

Algorithm 2 SPP-ECLAT(SPP-List, pi)
1: for each item j in SPP-List do
2: Set Y = j ∪ pi and TSY = TSj ∩ TSpi;
3: Calculate support and lability of X;
4: if sup(TSY ) ≥ minSup and la(TSY ) ≤ maxla then
5: Add j to pi and Y is considered as stable periodic-frequent patterns;
6: SPP -ECLAT (SPP-list[j+1:], pi);
7: end if
8: end for

2.5.2 Experiment-1: Varying minSup and maxLa

In this experiment, we study the impact of minSup and maxLa constraints on
the number of patterns generated, the runtime requirements of SPP-Growth and SPP-
ECLAT algorithms, and the memory consumed by SPP-Growth and SPP-ECLAT algo-
rithms. Please note that the maxPer constraint has been fixed at a particular value for
each database throughout this experimentation.

First, we have shown the number of SPPs generated by SPP-Growth and SPP-
ECLAT algorithms in Figure 2.3 by varying the value of maxLa. In detail, Figure
2.3(a) to Figure 2.3(c), shows the number of SPPs generated by both the algorithms
in the T10I4D100K database, respectively, for different minSup and maxPer values.
From Figure 2.3(d) to Figure 2.3(f), shows the number of SPPs generated by both the
algorithms in the Retail database, respectively, for different minSup and maxPer val-
ues. From Figure 2.3(g) to Figure 2.3(i), shows the number of SPPs generated by both
the algorithms in the T20I6D100K database, respectively, for different minSup and
maxPer values. From Figure 2.3(j) to Figure 2.3(l), shows the number of SPPs gener-
ated by both the algorithms in the BMS-WebView1 database, respectively, for different
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minSup and maxPer values. From Figure 2.3(m) to Figure 2.3(o), shows the number
of SPPs generated by both the algorithms in the BM-WebView-2 database, respectively,
for different minSup and maxPer values. From Figure 2.3(p) to Figure 2.3(r), shows
the number of SPPs generated by both the algorithms in the Mushrooms database, re-
spectively, for different minSup and maxPer values. It is to be noted that both al-
gorithms will generate an equal number of patterns. Therefore, both the curves were
overlapped throughout the figures. The following two observations can be drawn from
these figures: (i) The minSup constraint has negative effect on the generation of SPPs.
That is, increase in minSup decreases the number of SPPs, and vice-versa. It is because
many patterns fail to satisfy the increased minSup value. (ii) The maxLa constraint
has positive effect on the generation of SPPs in the T10I4D100k, T20I6D100k, Retai,
and BMS-WebView1 sparse database. That is, increase in maxLa increases the num-
ber of SPPs, and vice-versa. It is because higher maxLa values facilitate the patterns to
have their inter-arrival times further away from the user-specified maxPer value. (iii)
In the dense Mushrooms database, the maxLa constraint does not affect the generation
of SPPs. It is because, in a dense database, the mined periodic-frequent patterns are the
ones that appear regularly in the database, i.e. having a stable behavior.

Next, we have shown the runtime requirements of SPP-Growth and SPP-ECLAT
algorithms in Figure 2.4 by varying the value of maxLa. In detail, Figure 2.4 (a) to Fig-
ure 2.4(c), shows the runtime requirements of both the algorithms in the T10I4D100K
database, respectively, for different minSup and maxPer values. Figure 2.4 presents
the performance comparison of the two algorithms in three cases, minSup = 0.5% and
maxPer = 0.4% (Figure 2.4(a)), minSup = 0.8% and maxPer = 0.4% (Figure 2.4(b)),
minSup = 1% and maxPer = 0.4% (Figure 2.4(c)). The results in these three cases all
show that SPP-ECLAT is faster than SPP-Growth.

From Figure 2.4(d) to Figure 2.4(f), shows the runtime requirements of both the
algorithms in the Retail database, respectively, for different minSup and maxPer val-
ues. Figure 2.4 presents the performance comparison of the two algorithms in three
cases, minSup = 0.8% and maxPer = 2% (Figure 2.4(d)), minSup = 0.9% and maxPer
= 2% (Figure 2.4(e)), minSup = 1% and maxPer = 2% (Figure 2.4(f)). The results in
these three cases all show that, in general, SPP-ECLAT is faster than SPP-Growth.

From Figure 2.4(g) to Figure 2.4(i), shows the runtime requirements of both the al-
gorithms in the T20I6D100K database, respectively, for different minSup and maxPer
values. The runtime analysis is given in Figure 2.4 shows the performance of the two
algorithms in three cases, minSup = 3% and maxPer = 4% (Figure 2.4(g)), minSup =
5% and maxPer = 4% (Figure 2.4(h)), minSup = 7% and maxPer = 4% (Figure 2.4(i)).
The results in these three cases all show that SPP-ECLAT is faster than SPP-Growth.

From Figure 2.4(j) to Figure 2.4(l), shows the runtime requirements of both the
algorithms in the BMS-WebView1 database, respectively, for different minSup and
maxPer values. Figure 2.4 depicts the performance comparison of the two algorithms
in three cases, minSup = 0.5% and maxPer = 5% (Figure 2.4(j)), minSup = 0.8% and
maxPer = 5% (Figure 2.4(k)), minSup = 1% and maxPer = 5% (Figure 2.4(l)). The
results in these three cases all show that SPP-ECLAT is faster than SPP-Growth.

From Figure 2.4(m) to Figure 2.4(o), shows the runtime requirements of both the
algorithms in the BMS-WebView2 database, respectively, for different minSup and
maxPer values. Figure 2.4 shows the performance comparison of the two algorithms
in three cases, minSup = 0.06% and maxPer = 5% (Figure 2.4(m)), minSup = 0.08% and
maxPer = 0.5% (Figure 2.4(o)), minSup = 0.1% and maxPer = 0.5% (Figure 2.4(l)). The
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results in these three cases show that SPP-ECLAT is faster than SPP-Growth; however,
the difference in runtime comparison between the two algorithms is small, it is only
around 0.3 seconds on average .

From Figure 2.4(p) to Figure 2.4(r), shows the analysis for the runtime requirements
of both the algorithms in the Mushrooms database, respectively, for different minSup
and maxPer values. Figure 2.4 presents the performance comparison of the two al-
gorithms in three cases, minSup = 6% and maxPer = 3% (Figure 2.4(m)), minSup =
7% and maxPer = 3% (Figure 2.4(n)), minSup = 8% and maxPer = 3% (Figure 2.4(o)).
The results in these three cases all show that SPP-Growth requires more time than SPP-
ECLAT.

It can be observed that the SPP-ECLAT runs faster than the SPP-Growth algorithm.
The good performance of SPP-ECLAT is a result of the effectiveness of periodic calcu-
lation and pruning techniques. The following are some noteworthy findings that can be
derived from this figure: (i) If we increase the maxLa value, then subsequently, both
algorithms’ runtime requirements increase. The primary reason for this observation is
that both the algorithms will discover many SPPs in any database if the maxLa value
continues to increase. (ii) SPP-ECLAT generates SPPs much faster than SPP-Growth
under any given maxLa in BMS-WebView-1, Retail, T10I4D100K, and T20I6D100K,
and Mushrooms databases. More importantly, we can also observe that at high maxLa
values, SPP-ECLAT algorithm generates the SPPs much faster than SPP-Growth al-
gorithm. The reason is that SPP-ECLAT uses the downward closure property and the
depth-first search technique, so the SPPs are generated by simply performing intersec-
tion of SPP-list. The process is repeated to find all SPPs. (iii)With the BMS-WebView-
2 dataset, which contains long transactions and many distinct items, the SPP-ECLAT al-
gorithm takes more time than the SPP-Growth algorithm. It is because the SPP-ECLAT
algorithm is based on the downward closure property and the depth-first search tech-
nique, so it does not require scanning the database each time; but to generate all SPPs,
it has to perform the intersection of the SPP-list. So the long SPP-list requires more
time to repeat the intersection process.

Finally, we have shown the memory consumption details of SPP-Growth and SPP-
ECLAT algorithms in Figure 2.5 by varying the value of maxLa. In detail, Figure
2.5(a) to Figure 2.5(c), shows the memory consumption of both the algorithms in the
T10I4D100K database, respectively, for different minSup and maxPer values. Figure
2.5(a) depicts the comparison of the two algorithms in three cases, minSup = 0.5% and
maxPer = 0.4% (Figure 2.5(a)), minSup = 0.8% and maxPer = 0.4% (Figure 2.5(b)),
minSup = 1% and maxPer = 0.4% (Figure 2.5(c)). The results all show that SPP-ECLAT
consumes less memory than SPP-Growth in all cases. When maxLa is 0.1%, SPP-
ECLAT consumes less memory than SPP-Growth by 26 MB on average. As maxLa
is increased, the performance gap becomes bigger (up to 62 MB). From Figure 2.5(d)
to Figure 2.5(f), shows the memory consumption of both the algorithms in the Retail
database, respectively, for different minSup and maxPer values. Figure 2.5 depicts
the performance of the two algorithms in three cases, minSup = 0.8% and maxPer =
2% (Figure 2.5(d)), minSup = 0.9% and maxPer = 2% (Figure 2.5(e)), minSup = 1%
and maxPer = 2% (Figure 2.5(f)). The results all show that SPP-ECLAT performs
consistently and consumes less memory than SPP-Growth by 145 MB on average.

From Figure 2.5(g) to Figure 2.5(i), shows the memory consumption of both the al-
gorithms in the T20I6D100K database, respectively, for different minSup and maxPer
values. Figure 2.5 presents the performance comparison of the two algorithms in three
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cases, minSup = 3% and maxPer = 4% (Figure 2.5(g)), minSup = 3.5% and maxPer
= 4% (Figure 2.5(h)), minSup = 4% and maxPer = 4% (Figure 2.5(i)). In these cases,
SPP-ECLAT consumes less memory than SPP-Growth by around 130MB on average.

From Figure 2.5(j) to Figure 2.5(l), shows the memory consumption of both the
algorithms in the BMS-WebView1 database, respectively, for different minSup and
maxPer values. Figure 2.5 shows the performance comparison of the two algorithms
in three cases, minSup = 0.5% and maxPer = 5% (Figure 2.5(j)), minSup = 0.8% and
maxPer = 5% (Figure 2.5(k)), minSup = 1% and maxPer = 5% (Figure 2.5(l)). The gain
of SPP-ECLAT in terms of memory here is about 4MB on average.

From Figure 2.5(m) to Figure 2.5(o), shows the memory consumption of both the
algorithms in the BMS-WebView2 database, respectively, for different minSup and
maxPer values. Figure 2.5 shows the performance comparison of the two algorithms
in three cases, minSup = 0.6% and maxPer = 5% (Figure 2.5(m)), minSup = 0.8% and
maxPer = 5% (Figure 2.5(n)), minSup = 1% and maxPer = 0.5% (Figure 2.5(o)). The
results show that the memory consumption of SPP-ECLAT is around 18MB less than
SPP-Growth.

From Figure 2.5(p) to Figure 2.5(r), shows the memory consumption of both the
algorithms in the Mushroom database, respectively, for different minSup and maxPer
values. Figure 2.5 presents the performance of the two algorithms in three cases, min-
Sup = 6% and maxPer = 3% (Figure 2.5(m)), minSup = 7% and maxPer = 3% (Figure
2.5(n)), minSup = 8% and maxPer = 3% (Figure 2.5(o)). In these cases, SPP-ECLAT
consumes less than 58MB on average.

It can be observed that the SPP-ECLAT consumes less memory than the SPP-
Growth algorithm. The following are some noteworthy findings that can be derived
from this figure: (i) If we increase the maxLa value, then subsequently, both algo-
rithms’ memory consumption increase. The primary reason for this observation is that
both the algorithms will discover many SPPs in any database if the maxLa value contin-
ues to increase. (ii) SPP-ECLAT generates SPPs using a SPP-list structure, which helps
reduce the search space on every database. (iii) With the BMS-WebView-2 dataset, the
processing time of the proposed algorithm is comparable to the SPP-Growth algorithm;
however, it is interesting to note that the SPP-ECLAT algorithm requires much less
memory than the SPP-Growth algorithm.

2.5.3 Experiment-2: Varying minSup and maxPer

In the previous experiment, we have evaluated the performance of the SPP-Growth
and SPP-ECLAT algorithms by varying minSup and maxLa values. In this experi-
ment, we study the impact of minSup and maxLa constraints on the number of patterns
generated, the runtime requirements of SPP-Growth and SPP-ECLAT algorithms, and
the memory consumed by SPP-Growth and SPP-ECLAT algorithms. Please note that
the maxLa constraint has been fixed at a particular value for each database throughout
this experimentation. First, the number of SPPs generated by SPP-Growth and SPP-
ECLAT algorithms is shown in Figure 2.6 by varying the value of maxPer. In detail,
Figure 2.6(a) to Figure 2.6(c), shows the number of SPPs generated by the two al-
gorithms in the T10I4D100K database, respectively, for different minSup and maxLa
values. From Figure 2.6(d) to Figure 2.6(f), shows the number of SPPs generated by the
two algorithms in the Retail database, respectively, for different minSup and maxLa
values. From Figure 2.6(g) to Figure 2.6(i), shows the number of SPPs generated by
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the two algorithms in the T20I6D100K database, respectively, for different minSup
and maxLa values. From Figure 2.6(j) to Figure 2.6(l), shows the number of SPPs
generated by the two algorithms in the BMS-WebView-1 database, respectively,for dif-
ferent minSup and maxLa values. From Figure 2.6(m) to Figure 2.6(o), shows the
number of SPPs generated by the two algorithms in the BMS-WebView-2 database,
respectively,for different minSup and maxLa values. From Figure 2.6(p) to Figure
2.6(r), shows the number of SPPs generated by the two algorithms in the Mushrooms
database respectively,for different minSup and maxLa values. It is to be noted that
both algorithms will generate an equal number of patterns. Therefore, both the curves
were overlapped throughout the figures. The following two observations can be drawn
from these figures: (i) The maxPer constraint has positive effect on the generation of
SPPs. That is, increase in maxPer increases the number of SPPs, and vice-versa. It is
because, if we increase the value of the maxPer, then most of the non-periodic patterns
have become periodic with an increase in the maximum inter-arrival time duration. (ii)
The minSup constraint has negative effect on the generation of SPPs. That is, increase
in minSup decreases the number of SPPs, and vice-versa. It is because many patterns
fail to satisfy the increased minSup value.

Next, the runtime requirements of SPP-Growth and SPP-ECLAT algorithms is shown
in Figure 2.7 by varying the value of maxPer. In detail, Figure 2.7(a) to Figure 2.7(c),
shows the runtime requirements of the two algorithms in the T10I4D100K database,
respectively, for different minSup and maxLa values. Figure 2.7 presents the perfor-
mance comparison of the two algorithms in three cases, minSup = 0.5% and maxLa =
0.4% (Figure 2.7(a)), minSup = 0.8% and maxLa = 0.4% (Figure 2.7(b)), minSup =
1% and maxLa = 0.4% (Figure 2.4(c)). The results in these three cases all show that
SPP-Growth requires more time than SPP-ECLAT. From Figure 2.7(d) to Figure 2.7(f),
shows the runtime requirements of the two algorithms in the Retail database, respec-
tively, for different minSup and maxLa values.Figure 2.7 presents the performance
comparison of the two algorithms in three cases, minSup = 0.5% and maxLa = 2%
(Figure 2.7(d)), minSup = 0.8% and maxLa = 2% (Figure 2.7(e)), minSup = 1% and
maxLa = 2% (Figure 2.4(f)). The results in these three cases all show that SPP-Growth
requires more time than SPP-ECLAT. From Figure 2.7(g) to Figure 2.7(i), shows the
runtime requirements of the two algorithms in the T20I6D100K database, respectively,
for different minSup and maxLa values.Figure 2.7 presents the performance compari-
son of the two algorithms in three cases, minSup = 3% and maxLa = 2% (Figure 2.7(g)),
minSup = 3.5% and maxLa = 2% (Figure 2.7(h)), minSup = 4% and maxLa = 4% (Fig-
ure 2.4(i)). The results in these three cases all show that SPP-Growth requires more
time than SPP-ECLAT.

From Figure 2.7(j) to Figure 2.7 (l), shows the runtime requirements of the two
algorithms in the BMS-WebView-1 database, respectively,for different minSup and
maxLa values. Figure 2.7 presents the performance comparison of the two algorithms
in three cases, minSup = 0.5% and maxLa = 2% (Figure 2.7(j)), minSup = 0.8% and
maxLa = 2% (Figure 2.7(k)), minSup = 1% and maxLa = 2% (Figure 2.4(l)). The results
in these three cases all show that SPP-Growth requires more time than SPP-ECLAT.

From Figure 2.7(m) to Figure 2.7(o), shows the runtime requirements of the two
algorithms in the BMS-WebView-2 database, respectively,for different minSup and
maxLa values. Figure 2.7 presents the performance comparison of the two algorithms
in three cases, minSup = 0.6% and maxLa = 2% (Figure 2.7(m)), minSup = 0.8% and
maxLa = 2% (Figure 2.7(n)), minSup = 1% and maxLa = 2% (Figure 2.4(o)). The re-

27



sults in these three cases all show that SPP-Growth requires less time than SPP-ECLAT.
From Figure 2.7(q) to Figure 2.7(r), shows the runtime requirements of the two

algorithms in the Mushrooms database respectively,for different minSup and maxLa
values. Figure 2.7 presents the performance comparison of the two algorithms in three
cases, minSup = 6% and maxLa = 3% (Figure 2.7(p)), minSup = 7% and maxLa = 3%
(Figure 2.7(q)), minSup = 8% and maxLa = 3% (Figure 2.4(r)). The results in these
three cases show that SPP-Growth requires more time than SPP-ECLAT.

It can be observed that the SPP-ECLAT runs faster than the SPP-Growth algorithm
in most case. The good performance of SPP-ECLAT is a result of the effectiveness
of periodic calculation and pruning techniques. The following are some noteworthy
findings that can be derived from this figure: (i) If we increase the maxPer value, then
subsequently, both algorithms’ runtime requirements increase. The primary reason for
this observation is that both the algorithms will discover many SPPs in any database if
the maxPer value continues to increase. (ii) SPP-ECLAT generates SPPs much faster
than SPP-Growth under any given maxPer in BMS-WebView-1, Retail, T10I4D100K,
T20I6D100K, and Mushrooms databases. More importantly, we can also observe that at
high maxPer values, SPP-ECLAT algorithm generates the SPPs much faster than SPP-
Growth algorithm. The reason is SPP-ECLAT using the downward closure property
and the depth-first search technique, so the SPPs are generated by simply peforming
intersection of SPP-list. The process is repeated to find all SPPs. (iii) With the BMS-
WebView-2 dataset, which contains long transactions and many distinct items, SPP-
ECLAT algorithm takes more time than SPP-Growth algorithm. It is because SPP-
ECLAT algorithm is based on the downward closure property and the depth-first search
technique, so it doesn’t require scanning the database each time, but generating all SPPs
it has to perform the intersection of the SPP-list. So the long SPP-List requires more
time to repeat the intersection process.

Finally, we have shown the memory consumption details of SPP-Growth and SPP-
ECLAT algorithms in Figure 2.8 by varying the value of maxPer. In detail, Figure
2.8(a) to Figure 2.8(c), shows the memory consumption of both the algorithms in the
T10I4D100K database, respectively, for different minSup and maxLa values. Figure
2.8 presents the performance of the two algorithms in three cases, minSup = 0.5% and
maxLa = 0.4% (Figure 2.8(a)), minSup = 0.8% and maxLa = 0.4% (Figure 2.8(b)), min-
Sup = 1% and maxLa = 0.4% (Figure 2.8(c)). The results all show that SPP-ECLAT
consumes less memory than SPP-Growth. In detail, the average memory consump-
tion difference between the two algorithms is around 120MB. The more maxLa value
increase, the more significant the difference memory consumption between the two al-
gorithms, from 80MB (when maxLa value is 0.1%) to 170MB (when maxLa value is
0.4%).

From Figure 2.8(d) to Figure 2.8(f), shows the memory consumption of both the
algorithms in the Retail database, respectively, for different minSup and maxLa val-
ues. Figure 2.8 presents the performance of the two algorithms in three cases, minSup
= 0.5% and maxLa = 2% (Figure 2.8(d)), minSup = 0.8% and maxLa = 2% (Figure
2.8(e)), minSup = 1% and maxLa = 2% (Figure 2.8(f)). The results all show that SPP-
ECLAT consumes less memory than SPP-Growth. The magnitude of the difference in
memory consumption is around 70MB.

From Figure 2.8(g) to Figure 2.8(i), shows the memory consumption of both the al-
gorithms in the T20I6D100K database, respectively, for different minSup and maxLa
values. Figure 2.8 presents the performance of the two algorithms in three cases, min-
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Sup = 3% and maxLa = 2% (Figure 2.8(g)), minSup = 3.5% and maxLa = 2% (Figure
2.8(h)), minSup = 4% and maxLa = 2% (Figure 2.8(i)). in these cases, SPP-ECLAT
consumes less memory than SPP-Growth by 140MB on average.

From Figure 2.8(j) to Figure 2.8(l), shows the memory consumption of both the
algorithms in the BMS-WebView-1 database, respectively, for different minSup and
maxLa values. Figure 2.8 presents the performance of the two algorithms in three
cases, minSup = 0.5% and maxLa = 2% (Figure 2.8(j)), minSup = 0.8% and maxLa =
2% (Figure 2.8(k)), minSup = 1% and maxLa = 2% (Figure 2.8(l)). The results show
that SPP-ECLAT consumes less memory than SPP-Growth, around 8MB on average.

From Figure 2.8(m) to Figure 2.8(o), shows the memory consumption of both the
algorithms in the BMS-WebView-2 database, respectively, for different minSup and
maxLa values. Figure 2.8 presents the performance of the two algorithms in three
cases, minSup = 0.6% and maxLa = 2% (Figure 2.8(m)), minSup = 0.8% and maxLa =
2% (Figure 2.8(n)), minSup = 1% and maxLa = 2% (Figure 2.8(o)). The results all show
that SPP-ECLAT consumes less memory than SPP-Growth. In detail, the difference in
memory consumption when maxLa = 2% is around 9MB, and when maxLa is increasing
up to 4%, the difference in memory consumption of the two algorithms is around 10MB

From Figure 2.8(p) to Figure 2.8(r), shows the memory consumption of both the
algorithms in the Mushrooms database, respectively, for different minSup and maxLa
values.Figure 2.8 presents the performance of the two algorithms in three cases, minSup
= 6% and maxLa = 3% (Figure 2.8(p)), minSup = 7% and maxLa = 3% (Figure 2.5(q)),
minSup = 8% and maxLa = 3% (Figure 2.5(r)). In these cases, SPP-ECLAT consumes
less than 56MB on average.

It can be observed that the SPP-ECLAT consumes relatively less memory than the
SPP-Growth algorithm. The following are some noteworthy findings that can be de-
rived from this figure: (i) If we increase the maxPer value, then subsequently, both
algorithms’ memory consumption increase. The primary reason for this observation
is that both the algorithms will discover many SPPs in any database if the maxPer
value continues to increase. (ii) SPP-ECLAT generates SPPs using a SPP-list structure,
which helps reduce the search space on every database. (iii) It should highlight that
in BMS-WebView-2 dataset. The processing time of the proposed algorithm for this
dataset is comparable to the SPP-Growth algorithm; however, it is interesting to note
that SPP-ECLAT algorithm requires much less memory in the memory consumption
test than the SPP-Growth algorithm.

2.5.4 Experiment-3: Scalability Analysis

In this experiment, we have used the Kosarak database, a sparse real-world database,
to perform the scalability operation. The scalability operation depends on the number
of items and the number of records (e.g., transactions). Therefore, to analyze the com-
plexity, we need to think about every operation an algorithm performs and how it is
affected by the number of items and records. Thus, the sparse dataset has been chosen
because when we divide the database into equal portions, each portion has a different
number of items, so we will see clearly how the algorithm is doing. This scalability
operation is utilized to discover the efficacy and productivity of the proposed algo-
rithm on big columnar temporal databases. Therefore, in this experiment we divide
the Kosarak database into five equal portions, each with 0.2 million transactions. We
evaluate the performance of both the SPP-Growth and SPP-ECLAT algorithms, where

29



the database size is varied from 200000 to 1000000 transactions. Figure 2.9 shows the
results in terms of the runtimes and memory consumption levels of both SPP-Growth
and SPP-ECLAT algorithms under different database sizes when maxLa = 0.04 (in
%), minSup = 0.01 (in %), and maxPer = 0.05 (in %). Some of the important ob-
servations that can be drawn from this figure are as follows. (i) If we keep increasing
the database size, then both algorithms’ runtimes and memory requirements will in-
crease almost linearly. (ii) SPP-ECLAT consumes less runtime and memory than the
SPP-Growth algorithm under any given database size.

2.6 Discussion

In this section, we have compared the time complexity analysis of both the algo-
rithms. Let us consider a columnar temporal database containing ‘p’ number of distinct
items and total number of transactions represented as ‘q’. Let us assume that all the
items in q are interesting, and every item is present in every transaction; i.e., the gener-
ated lists contain q entries each.

In the literature, SPP-Growth [46] is the only state-of-the-art algorithm that uses the
concept of SPP-list constructions to generate complete SPPs. The major contributions
of SPP-Growth and its complexities are as follows: First, the complete database is
scanned, and the items in each transaction are stored as a prefix-tree. In the worst
case, if every item is present in every transaction, then the time complexity for this
operation is O(p∗ q). Second, we construct the SPP-lists with a complexity of O(p∗ q).
After the initial prefix-tree construction, SPP-Growth recursively performs a depth-first
search to find all the interesting patterns. The number of possible patterns is n =
2p − 1. In real-world applications, the number of patterns considered depends on the
database’s characteristics and the algorithms’ parameters. If minSup, maxPer, or
maxLa are increased, fewer patterns may be considered due to applying the search
space pruning strategies. Finally, for each considered pattern Γ that extends an pattern
∆, SPP-Growth traverses the node-links of the SPP-list of ∆ to create the conditional
pattern base, SPP-list, and prefix-tree of Γ. This construction is done in linear time
as these structures of ∆ are traversed once. Therefore, the overall complexity of SPP-
Growth is O(p ∗ q) +O(p ∗ q ∗ n) = O(p ∗ q ∗ n).

We complete the generation of SPPs using the SPP-ECLAT with the help of two
algorithms. In Algorithm 1, we scan the complete database once to discover the one-
length SPPs by constructing an SPP-list data structure. In the worst case, if every item
is present in every transaction, then the time complexity for this operation is O(p ∗ q).
In the Algorithm 2, we need to merge the TS-list elements of the two current length
patterns to generate the higher length patterns. In the worst case, if every item is present
in every transaction as the length of the TS-list of every pattern becomes q, then the time
complexity for merging any of the two pattern’s TS-lists becomes O(q). This algorithm
utilizes the Depth-First Search (DFS) strategy on the pattern lattice. The number of
possible patterns is n = 2p − 1. Therefore, the time complexity for generating all the
possible interesting patterns is O(n ∗ q). The overall time complexity of SPP-ECLAT is
O(q + n ∗ q) = O(q ∗ n).

In real-world applications, the overall superiority of SPP-ECLAT ultimately de-
pends on the actual values of the given parameters, such as p, q, and n. Therefore,
we conducted rigorous experimentation on six real-world databases to demonstrate that
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SPP-ECLAT outperforms the state-of-the-art SPP-Growth algorithm.

2.7 Conclusions and Future Work
This study has proposed an efficient and novel algorithm, called Stable Periodic-

frequent Pattern – Equivalence Class Transformation(SPP-ECLAT), to discover stable
periodic-frequent patterns. The output patterns of the algorithm not only satisfy the
user-specified minimum support and maximum periodicity thresholds but also are stable
patterns based on the user-specified maximum lability threshold in any big columnar
temporal databases. The SPP-List structure of the SPP-ECLAT algorithm plays an im-
portant role in eliminating many patterns that are not considered to be candidate patterns
from the huge search space. An in-depth examination of the proposed SPP-ECLAT ap-
proach on six synthetic and real-world databases revealed that its memory consumption
and runtime are efficient and highly scalable relative to those of the state-of-the-art
SPP-Growth algorithm.

As for the future work, we will study the Lability concept over different types of
patterns. It is also interesting to work on discovering stable periodic-frequent patterns in
uncertain databases. Furthermore, we will focus on identifying SPPs in static temporal
data, and it would be important to investigate stable patterns in graphs, data streams,
and symbolic databases in the future.
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(a) T10I4D100K

(b) Retail

(c) T20I6D100K

(d) BMS-WebView-1

(e) BMS-WebView-2

(f) Mushrooms

Figure 2.3: Number of stable periodic-frequent patterns generated in various databases
by varying minSup and maxLa values
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(a) T10I4D100K

(b) Retail

(c) T20I6D100K

(d) BMS-WebView-1

(e) BMS-WebView-2

(f) Mushrooms

Figure 2.4: Runtime requirements of SPP-Growth and SPP-ECLAT algorithms at
different maxLa
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(a) T10I4D100K

(b) Retail

(c) T20I6D100K

(d) BMS-WebView-1

(e) BMS-WebView-2

(f) Mushrooms

Figure 2.5: Memory consumption of SPP-Growth and SPP-ECLAT algorithms at
different maxLa
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(a) T10I4D100K

(b) Retail

(c) T20I6D100K

(d) BMS-WebView-1

(e) BMS-WebView-2

(f) Mushrooms

Figure 2.6: Number of stable periodic-frequent patterns generated in various databases
by varying minSup and maxPer
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(a) T10I4D100K

(b) Retail

(c) T20I6D100K

(d) BMS-WebView-1

(e) BMS-WebView-2

(f) Mushrooms

Figure 2.7: Runtime requirements of SPP-Growth and SPP-ECLAT algorithms at
differnt maxPer
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(a) T10I4D100K

(b) Retail

(c) T20I6D100K

(d) BMS-WebView-1

(e) BMS-WebView-2

(f) Mushrooms

Figure 2.8: Memory consumption of SPP-Growth and SPP-ECLAT algorithms at
different maxPer
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Figure 2.9: Scalability of the SPP-Growth and SPP-ECLAT algorithms
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Chapter 3

A Deep Learning Approaches for
Unstructured Medical Data

In a smart society, analyzing vast amounts of data using AI techniques has become
instrumental in promoting health and well-being. By analyzing diverse data sources
such as real-time physiological data, healthcare facility records, and treatment informa-
tion, AI technologies enable early detection of illnesses, promote healthy living, and
optimize treatment strategies. Additionally, integrating robotics in healthcare and care-
giving helps alleviate the burden on medical professionals and enhances overall quality
of life.

Deep learning (DL) has emerged as a powerful tool in various domains, including
logistic supply chain management [77, 78] and smart manufacturing [79–81], due to
its ability to handle large and complex datasets with minimal human intervention. DL
plays a pivotal role in achieving higher service quality and improving patient outcomes
in healthcare systems.

In this chapter, my thesis focuses on developing DL models tailored to address
challenges associated with unstructured medical data, particularly medical images and
text notes. The primary objectives of our research are twofold:

1. Solving the Problem of Limited Labeled Data: Limited availability of labeled
data is a common challenge in the medical domain. Our DL models aim to
overcome this limitation by leveraging transfer learning and data augmentation
techniques to learn from smaller datasets effectively.

2. Improving Accuracy of Diagnosis and Image Analysis: By integrating multiple
medical data modalities, including medical images and text notes, our DL mod-
els aim to improve the accuracy of diagnosis and image analysis. By jointly
analyzing diverse data sources, we can extract more comprehensive insights and
enhance decision-making processes in healthcare settings.

3.1 Transfer Learning for Medical Image Classification

Transfer learning is a key solution to deal with the problem of data scarcity, where
the learning process leverages knowledge learned from similar tasks. In this study, we
employ PubMedCLIP as a pre-trained model for medical image classification tasks. We
evaluate multiple datasets from different body regions simultaneously. Moreover, we
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investigate varying amounts of training data to evaluate the effectiveness of PubMed-
CLIP in cases of limited training data.

3.1.1 Introduction
Deep learning has emerged as the method of choice for medical image classifica-

tion and segmentation, demonstrating exceptional performance across various medical
imaging pathways such as breast [82], lesion [83], and chest and lung [84,85]. However,
the effectiveness of deep learning models is often hindered by the limited availability
of annotated data and the imbalance in data categories, posing challenges for training.
Moreover, the scarcity of labeled medical images due to the intricate labeling process
by experienced experts exacerbates the problem of data scarcity.

Transfer learning has emerged as a key solution to address these limitations by lever-
aging knowledge from related tasks. While many studies in transfer learning for medi-
cal image classification utilize pre-trained models such as ResNet [86] or Inception [87]
on natural image datasets like ImageNet, the differences between ImageNet classifica-
tion and medical image classification pose significant challenges.

Recently, OpenAI introduced the Contrastive Language-Image Pre-training (CLIP)
model [88], demonstrating remarkable performance in various tasks, including im-
age classification, by leveraging text-image associations in a multimodal framework.
However, CLIP’s generalization to medical image classification is limited as it needs
domain-specific knowledge. To address this gap, Eslami et al. proposed PubMed-
CLIP [89], a fine-tuned version of CLIP trained on medical images and associated text
from PubMed articles. PubMedCLIP enhances CLIP’s performance in medical appli-
cations by incorporating domain-specific knowledge.

This study uses PubMedCLIP as a pre-trained model for transfer learning in med-
ical image classification tasks. Unlike previous studies focusing on single datasets,
we evaluate PubMedCLIP’s performance across multiple datasets representing different
body regions. Additionally, we investigate PubMedCLIP’s effectiveness under varying
amounts of training data to assess its robustness and scalability. This study contributes
to the advancement of medical image classification by introducing PubMedCLIP as a
powerful tool for transfer learning. We provide valuable insights into its potential ap-
plications in real-world healthcare settings by demonstrating PubMedCLIP’s efficacy
across diverse datasets and training data sizes. To the best of our knowledge, this is the
first study to employ PubMedCLIP for transfer learning in medical image classification,
paving the way for future research.

3.1.2 Transfer Learning Using PubmedCLIP
Machine learning is the process of learning using a model that supports different

types of data modalities. In recent years, there has been significant progress in research
on modalities of language and vision. Language (i.e., words, sentences. etc.) and
visual information (i.e., images, videos) could be jointly exploited to improve model
robustness. In medical images, more modalities can be defined such as X-ray, magnetic
magnetic resonance imaging (MRI), computerized tomography (CT), histopathologic
scan, and ultrasound images [90].

Besides, transfer learning has become an essential method for deep learning appli-
cations for medical images. Since the datasets in the medical field are small, that will
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lead to the overfitting problem for deep learning models. To deal with a small amount
of data, a model which is previously trained on big general datasets such as ImageNet
will be employed as the initial (pre-trained) model. Then medical datasets are used to
fine-tune either the feature extractor or some layers of the model so that this model can
adapt to medical datasets.

Training in original CLIP aims to find which text vectors are more similar to a given
image vector. This process is called contrastive learning. CLIP was trained on a large
real image dataset of over 400 million image-text pairs sampled from the internet with
nearly zero additional human annotation. However, CLIP’s limitation is that it does not
cover everything and needs to be adapted to specialized domains.

To adapt the CLIP model to a medical domain, the PubMedCLIP was proposed
in [89] by fine-tuning CLIP. This approach is helpful for the medical domain as the data
annotation requires expert knowledge and time. Specifically, the contrastive language-
supervision objective is used with image-text pairs of medical images from diverse
body regions. PubMedCLIP was trained on a big medical ROCO dataset [91]. During
training, the model encodes the image input and the text input independently with a
CLIP image encoder and CLIP text encoder. Both get their inputs and extract the feature
representation of their modality. After that, these feature vectors are adapted to have the
same size. Then the scaled pairwise cosine similarity of the two vectors are measured
and the loss function is calculated. Finally, the values of the weights are updated.

In this work, we studied transfer learning with pre- trained model PubMedClip on
the well-known medical datasets MedMnist [90]. Our model used PubMedClip as the
feature extractor of a medical image, and then the output vector was fed to two fully
connected layers for the classification task. Previous studies on transfer learning only
focus on a single type of disease, for example, the identification of eye disease [92],
or early detection of Alzheimer’s disease [93]. In this study, we focus on multiple
datasets of diverse diseases from MedMnist [90]. This is a large- scale MNIST-like
collection of standardized biomedical images. This collection includes various datasets
of 2D medical images with the corresponding classification labels. It covers primary
data modalities in biomedical images, such as CT, X-ray, MRI, histopathologic scan,
and ultrasound. In addition, we also evaluate the performance of our transfer learning
model in terms of the amount of training data on different datasets.

3.1.3 Proposed Framework

Our transfer learning model is designed to address the challenge of classification
across multiple medical image datasets, each representing different diseases. Leverag-
ing the power of transfer learning, our model extracts relevant features from input im-
ages across various datasets and utilizes this knowledge to make accurate predictions,
even when training data is limited. The flowchart of our model is shown in Fig.3.1

Input Layer: The model commences with an input layer, where medical images
from individual datasets are sequentially fed into the system. Each dataset is processed
separately, ensuring focused attention on the unique characteristics and features of the
images within that specific dataset. This sequential input mechanism allows the model
to effectively adapt to the nuances of each dataset during the training phase, enhancing
its ability to extract relevant features and make accurate predictions.

Feature Extraction with PubMedClip: The input images are processed through
a feature extraction layer utilizing PubMedClip. This sophisticated technique enables
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the extraction of discriminative features from medical images, crucial for subsequent
classification tasks.

Feature Vector: The output of the feature extraction layer is a compact and infor-
mative feature vector representing each input image. These feature vectors encapsulate
essential information about the image, learned through the feature extraction process.

Fully Connected Layers: The feature vectors are then passed through two fully
connected layers. These layers serve as the backbone of our classification model, lever-
aging the extracted features to learn complex relationships and patterns within the data.

Prediction: Finally, the model generates predictions based on the learned features,
classifying each input image into its respective disease category

Figure 3.1: Illustration of the Pre-Trained PubMedClip Model Employed for
Multi-Modality Medical Image Datasets

3.1.4 Experiments

A. Dataset Description

Our experiments utilize the MedMNIST datasets, curated explicitly for medical im-
age classification across various data scales and task complexities. These datasets offer
a diverse array of medical images, ranging from 100 to 100,000 samples, and encom-
pass various classification tasks, including binary/multi-class, ordinal regression, and
multi-label.

We selected five representative datasets from the MedMNIST collection, each fo-
cusing on distinct diseases and imaging modalities: PathMnist Dataset: consists of
100,000 histological image patches from colorectal cancer tissue, categorized into nine
tissue types for a multi-class classification task. PneumoniaMnist Dataset: Comprises
pediatric chest X-ray images for binary-class classification (pneumonia vs. normal)
BreastMnist Dataset: includes breast ultrasound images categorized into benign, ma-
lignant, and normal classes. BloodMnist Dataset: contains images of individual blood
cells classified into eight types for multi-class classification. OrganAMnist Dataset:
showcases CT images of 11 body organs from axial, coronal, and sagittal views for
multi-class classification.
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3.1. TRANSFER LEARNING FOR MEDICAL IMAGE CLASSIFICATION

Each dataset is methodically divided into train, validation, and test sets, facilitating
rigorous evaluation of model performance across different phases of development. The
characteristics of these datasets, including class distributions and imaging modalities,
are summarized in Table3.1 for reference.

Table 3.1: Statistics of the datasets

Dataset No of classes Train set Val set Test set
Path Mnist 9 89996 10004 7180

Pneumonia Mnist 2 4708 524 624
Breast Mnist 3 546 78 156
Blood Mnist 8 11959 1712 3421

OrganA Mnist 11 34581 6491 17778

B. Evaluation Strategy

The objective of this experiment is to evaluate the performance of our transfer learn-
ing model using PubMedCLIP and compare it with the performance of using the pre-
trained models CLIP and PubMedCLIP without additional training. The goal is to deter-
mine how well our transfer learning model generalizes across different medical imaging
datasets and to see if fine-tuning with domain-specific data enhances performance. To
evaluate the performance of our model across different datasets and varying amounts of
training data, we employ a systematic evaluation strategy:

Data Selection: We randomly select a subset of images from each dataset for train-
ing and testing purposes. This ensures representation from each class while maintaining
diversity within the datasets.

Training and Testing Split:
Training Data: We consider three different numbers of training samples per class:

50, 100, and 500 images. This variation allows us to observe the impact of training data
size on model performance.

Testing Data: We utilize the remaining images from each dataset for testing, ensur-
ing comprehensive evaluation across all classes.

Datasets and Class Distribution:
PathMnist (9 classes): 900 images for training, 7,180 images for testing. Pneumo-

niaMnist (2 classes): 200 images for training, 624 images for testing. BreastMnist (3
classes): 300 images for training, 156 images for testing. BloodMnist (8 classes): 800
images for training, 3,421 images for testing. OrganAMnist (11 classes): 1100 images
for training, 17,778 images for testing.

C. Evaluation Results

In this section, we conduct a series of experiments to validate the model on different
modalities of medical datasets. To evaluate the performance of our transfer learning
model, we compare the results with those of CLIP and PubMedCLIP. Figure 3.2 shows
bar charts of the models’ performance on five datasets. The results show that our trans-
fer learning model using pre-trained PubMedCLIP performs exceptionally well across
different data modalities and tasks (i.e., binary and multi-class classifications). Overall,
the model achieves an accuracy above 75% in all datasets. Meanwhile, CLIP shows
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Figure 3.2: Performance of the model on all datasets

Figure 3.3: Dependence of learning performance on the number of training samples
using PathMNIST dataset
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3.1. TRANSFER LEARNING FOR MEDICAL IMAGE CLASSIFICATION

Table 3.2: Performance Metrics

Class Precision Recall F1-score
Adipose 0.967 0.958 0.963
Background 0.987 0.909 0.946
Debris 0.439 0.502 0.469
Lymphocytes 0.962 0.907 0.934
Mucus 0.862 0.905 0.883
Smooth muscle 0.609 0.555 0.581
Normal colon mucosa 0.823 0.862 0.842
Cancer-associated stroma 0.450 0.441 0.445
Colorectal adenocarcinoma epithelial 0.728 0.874 0.795

the best performance on the Breast dataset with an accuracy of 62.82%, but its perfor-
mance is very low on other datasets. PubMedCLIP is similar to CLIP; even though
PubMedCLIP is a fine-tuned version of CLIP trained on the large ROCO dataset, it
only shows good performance on the Breast dataset (with an accuracy of 73.76%) and
on the Pneumonia dataset (with an accuracy of 43.42%), but performs poorly on the
other datasets.

Next, we examine in detail how our transfer learning model performs on each
dataset. The performance of our model varies across different datasets. For exam-
ple, the model’s accuracy attains 75.64% on the BreastMNIST dataset, 78.25% on the
OrganAMNIST dataset, 79.36% on the PathMNIST dataset, 80.32% on the BloodM-
NIST dataset, and 85.26% on the PneumoniaMNIST dataset. It can be observed that,
with the same number of sample images of each class fed into the training model, the
performance also depends on the number of classes in a dataset. The highest accuracy
values are observed on the PneumoniaMNIST dataset, which only contains two classes:
”normal” and ”pneumonia.” However, in the OrganAMNIST dataset, which contains
11 classes, the accuracy is nearly 6% lower than that of the PneumoniaMNIST dataset.

Furthermore, the results show that the test accuracy also varies across the modality
types of images. For example, the test accuracy on ultrasound images (BreastMNIST
dataset) and histopathologic scan images (PathMNIST and BloodMNIST datasets) ranges
from 75% to 80%. However, the test accuracy on X-ray images (PneumoniaMNIST
dataset) is more than 5% higher.

Next, we evaluate the performances with different amounts of training data for the
PathMNIST dataset, which includes nine classes. Figure3.3 shows three learning curves
representing 50 images, 100 images, and 500 images per class, respectively. Generally,
the accuracy increases when more samples are fed into the training model. For example,
doubling the size of data from 50 to 100 images per class increases the accuracy by 2%.
However, we need to scale the data five times (from 100 to 500 images) to attain the
same increase.

To see how the model works inside one dataset, we explored the confusion ma-
trix measurement (Fig.3.4 and its statistics (Table 3.2) of the multi-class PathMnist
dataset as an example. The dataset includes nine class labels namely adipose, back-
ground, debris,lymphocytes, mucus, smooth muscle, normal colon mucosa, cancer-
associated stroma, and colorectal adenocarcinoma epithelial. Note that the high val-
ues of Precision-Recall and F1- scores (close to 1) imply that the model performs well
in returning the actual label for each image class in the dataset. Table 3.2 indicates
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Figure 3.4: Confusion matrix on PathMnist dataset
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the model’s effectiveness in most classes, except debris, smooth muscle, and cancer-
associated stroma. This problem is because there is a large number of images being
misclassified among the three classes, as shown in Figure 4. For example, cancer-
associated stroma and debris symptom are often classified as smooth muscle symptom.
These findings show a limitation of the discrimination capability of the model on highly
similar classes.

3.1.5 Conclusions and Future Work
In this study, we explored transfer learning using the PubMedCLIP model as a pre-

trained model for image classification across multiple datasets of different modalities.
Our evaluation revealed that the PubMedCLIP model demonstrated strong perfor-

mance across various datasets. Notably, we found that even small amounts of labeled
data (e.g., 100 images per class) yielded promising results, offering potential cost sav-
ings in data labeling efforts. However, our in-depth analysis highlighted instances
where the model performed suboptimally, underscoring the need for further refinement.
Specifically, while feature extraction proved effective for most classes, challenges arose
in some instances, indicating the limitations of relying solely on this approach in the
medical domain. Moving forward, our future work will focus on enhancing the model
to address these challenges, potentially incorporating additional strategies to handle
limited data and diverse modalities better.

3.2 A Multimodal Transfer Learning for Medical Im-
age Classification

In machine learning for healthcare, medical image data often suffers from data
scarcity and expensive annotation processes. In this study, to develop a robust medical
image classification model, we propose a novel approach that leverages the multimodal
pre-trained PubMedCLIP model as a backbone. By integrating medical image and text
information and utilizing the power of LMM pre-trained models, our method provides
a promising solution to address the challenges posed by limited medical image data.

3.2.1 Introduction
Deep learning (DL) is a powerful technique that facilitates significant advancements

in medical image analysis [94–96]. However, training DL models can be challenging,
especially when faced with limited data in the medical domain.

To address the issue of data scarcity, transfer learning (TL) has been introduced [97].
TL involves transferring pre-trained knowledge from a source task to a similar task.
This approach not only reduces training time [98], but also proves beneficial when the
target task lacks training data [99, 100]. TL can be applied using two main approaches:
(i) utilizing a pre-trained network as a feature extractor and training a new classifier
using the extracted features [101, 102], or (ii) fine-tuning the pre-trained network to
suit the new task requirements [103].

In the medical domain, TL has been widely employed in medical image classifi-
cation, addressing the limited availability of labeled medical image datasets. TL has
been shown to enhance the performance of DL models for tasks such as breast cancer
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classification [104, 105], lung nodule classification [106, 107], and brain tumor clas-
sification [108], while reducing the need for extensive labeled data during training.
However, despite its successes, applying TL to medical image classification remains
challenging. Medical images possess unique characteristics which make it non-trivial
to apply pre-trained models. Furthermore, previous studies on TL in medical image
classification have primarily focused on a specific case (or a single dataset), for exam-
ple digital pathology image analysis [109]. The transferability of pre-trained models
across different medical image datasets and tasks requires further investigation.

One highly promising pre-trained model for transfer learning is the Contrastive
Language-Image Pretraining (CLIP) model, introduced by OpenAI in 2021 [88]. CLIP
stands as a state-of-the-art model that establishes associations between images and text
through extensive training on a diverse collection of image-text pairs. However, it is
worth noting that while the CLIP approach performs admirably in general data do-
mains, it was initially trained on publicly available internet data. Consequently, it
lacks domain-specific knowledge, particularly in specialized fields like medicine. To
address this limitation, Eslami et al. introduced PubMedCLIP [89], a fine-tuned adap-
tation of CLIP tailored for the medical domain. Their study revealed that leveraging the
pre-trained PubMedCLIP features enhances visual question-answering (VQA) perfor-
mance, surpassing current state-of-the-art baseline models.

In this work, we propose a model that takes advantage of PubMedCLIP’s image
and text feature representations. The robust visual-language representations allow our
model to handle cases with limited training data. Experimental results demonstrate that
the proposed multimodal model achieves excellent results in classifying medical images
from different datasets. This paper is an extended version of our previous work [110].
Compared to [110], the main extensions are as follows. First, multiple prompts of
different complexities are considered. Interestingly, it is shown that a richer prompt
leads to much higher gains in classification accuracy. Second, a better feature fusion
method is employed to further improve the performance. Third, two more datasets are
used and more experiments are carried out, resulting in many insights into the behaviors
of the model and reference methods.

The remainder of this study is organized as follows. Section 3.2.2 presents related
work on transfer learning and multimodal learning models. Section 3.2.3 describes the
proposed approach and experimental setup. Extensive experimental results and discus-
sions are provided in Section 3.2.4. Finally, conclusions are given in Section 3.2.7

3.2.2 Related work

In this section, we review previous work related to TL in medical image classifica-
tion, including multimodal models and the applications of pre-trained models.

A. Transfer Learning in Medical Image Classification

Transfer learning has been employed in medical image classification to enhance
model performance, particularly when training data is limited. This approach enables
models to leverage knowledge of a pre-trained model learned on large datasets to im-
prove the performance on smaller, domain-specific datasets. This saves time and costs,
which is crucial in the medical imaging domain where datasets can be relatively small.
Previous work related to TL in medical image classification can be categorized as fol-
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lows. (i) Feature extraction: A common approach is to use a pre-trained model such
as VGG [111], MobileNet [112], DenseNet [113], or EfficientNet [114] as the feature
extractors and then train a classifier on top of the extracted features. This approach has
been shown to improve classification accuracy in various cases [115–117]. (ii) Fine-
tuning a pre-trained model: This approach involves adapting a pre-trained model specif-
ically for the medical image classification task. The parameters of a pre-trained model
are updated by training on the target dataset. Fine-tuning has proven to be effective in
medical image classification tasks, such as colonoscopy frame classification [118,119].
(iii) Multi-task learning: This approach involves training a model simultaneously on
multiple related tasks. In medical image classification, multi-task learning has been
used to improve the accuracy of models by leveraging the relationship between differ-
ent medical imaging tasks [120,121]. (iv) Domain adaptation: Domain adaptation in TL
involves adapting a model trained on a source domain to a target domain with different
distributions. In medical image classification, this approach has been used to address
the problem of data imbalance and improve model performance on specific target do-
mains [122]. TL has shown practicality in improving the performance of medical image
classification models. However, these techniques result in high computational costs as
discussed in [106, 123]. Besides, not all pre-trained models that have been trained on
large-scale natural image datasets perform optimally across all medical image modali-
ties. For instance, a review paper by Morid et al. [124] highlighted that Inception mod-
els were commonly utilized in analyzing X-rays, endoscopic images, and ultrasound
images, while GoogLeNet and AlexNet were frequently employed for MRI analysis.
On the other hand, VGGNet models were mostly used in studying skin lesions, fundus
images, and OCT (optical coherence tomography) data.

Table 3.3: Recent transfer learning studies on medical images

Reference Year Pre-trained
model

Image type Note

[125] 2020 MobileNet Path Unimodal (Image)
[126] 2021 MobileNet Breast Unimodal (Image)
[127] 2021 DenseNet Path Unimodal (Image)
[128] 2021 DenseNet Breast Unimodal (Image)
[129] 2021 EfficientNet Path Unimodal (Image)
[130] 2022 DenseNet Blood Unimodal (Image)
[131] 2022 EfficientNet Blood Unimodal (Image)

[117] 2022 PubMedCLIP

Various image types of
MedMNIST (Path;
Pneumonia; Blood;
Breast)

Unimodal (Image)

[132] 2023 EfficientNet Breast Unimodal (Image)

[110] 2023 PubMedCLIP Breast
Multimodal
(Image + text)
No Prompt engineering

This study - PubMedCLIP Path; Blood; Breast
Multimodal
(Image + text)
With Prompt engineering

Recently, more advanced pre-trained models have been investigated (see Table 3.3).
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In [127], Ohata et al. considered 18 different image encoders in transfer learning for
Path images. They showed that the best result of the experiment was provided by
the DenseNet. In the research of Jimenez et al. [128] on breast tumor classification,
DenseNet also demonstrated high accuracy in diagnosing benign and malignant tu-
mors when compared with different pre-trained models. Similarly, Sharma et al. [130]
employed DenseNet model with preprocessing techniques like normalization and data
augmentation for Blood images. Meanwhile, in the study of Shaban et al. [125], they
demonstrated that MobileNet exhibits superior performance, achieving the highest av-
erage accuracy compared to various classifiers on Path images. Also, Eroglu et al. [126]
found that the highest accuracy was obtained with MobileNet features for Breast im-
ages. Kallipolitis et al. [129] utilized transfer learning with various pre-trained models
on a dataset that is augmented by the Grad-CAM technique to highlight visual patterns
relevant to each class. The experimental results showed that EfficientNet outperformed
other models. In the study of Chola et al. [131], they employed EfficientNet as the
backbone for Blood images which are pre-processed by image processing. In a compar-
ison of different deep learning models for mamography breast images, Jafari et al. [132]
demonstrated that among the individual models, EfficientNet consistently outperformed
the others. Our study in [117] was the first to employ PubMedCLIP for medical image
classification on various image types of MedMNIST dataset. However, the that solution
is still unimodal, relying solely on image modality.

B. Multimodal Learning

In recent years, there has been increasing interest in using both text and image data
as input for medical image analysis. Combining these two modalities allows for cap-
turing both visual and semantic information, leading to improved accuracy and inter-
pretability of classification results. Several recent studies have utilized medical reports
to provide supervision information and learn multimodal representations by maximiz-
ing mutual information between the two input modalities [133–135]. Extracting la-
bels from reports using natural language processing (NLP) has also been explored as
a means to leverage information from the text [136, 137]. Transformer-based vision-
and-language models are used for learning multimodal representations from image and
associated reports, which outperform traditional CNN and RNN methods [138]. At-
tention mechanism have also been used to facilitate interactions between visual and
semantic information [139]. Recently, Contrastive Language-Image Pretraining (CLIP)
is an advanced pretrained model developed by OpenAI [88]. It applies contrastive learn-
ing with a huge dataset of 400 million image-text pairs obtained from the Internet. As
a result, CLIP could be employed to retrieve the best matched image given a text and
vice versa. One of the interesting advantages of CLIP is its ability to perform zero-shot
learning [88]. Also, the high performance of CLIP features enables many new excit-
ing applications, for example, pre-training model to address the challenge of limited
labeled data [140], art classification [141], and image captioning [142]. In the medical
domain, Eslami et al. [89] investigates the effectiveness of the pre-trained CLIP model
for visual question answering (VQA) task. To tailor the CLIP model for applications
in the medical field, the authors introduced the PubMedCLIP model by fine-tuning the
original CLIP model. This approach employs pairs of medical images and associated
text of various anatomical regions from the medical ROCO dataset [91].

In line with the new trend of using LMM in machine learning, our preliminary
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work [110] introduced the first multimodal transfer learning approach using PubMed-
CLIP, where text and image features are combined for classifying Breast images. In this
chapter’s study, we present an extended solution with a new fusion method and prompt
engineering. As a results, the proposed method can works with a small number of data
samples and have good performance over different datasets.

3.2.3 Methodology

A. The Proposed Multimodal Model

As mentioned, our method aims to utilize the powerful multimodal representations
of the PubMedCLIP. The method takes as input both an image and a description text.
First, the image and text are encoded using PubMedCLIP, which produces a vector rep-
resentation for each modality. These vector representations are then fed into a fusion
module to produce a combined feature vector, which is used to predict a similarity score.
Finally, the similarity scores are employed for classification. The proposed model con-

Figure 3.5: Overview of our model. We feed the original image and label templates
to the PubMedCLIP-text encoder and PubMedCLIP-Image encoder. Fusion technique
MFB is used to combine the two vectors. Finally, the softmax layer is added for classi-
fication the disease.

sists of three main stages: feature extraction, feature fusion, and class prediction. As
shown in Figure 4.2, in the first stage, the part of image feature extraction provides an
image feature vector v⃗i for the input image v. Similarly, the text feature extraction takes
as input a text description of image class qj and outputs a text feature vector q⃗j . For each
pair of (v⃗i, q⃗j), the feature fusion component produces a combined vector Z⃗vi,qj which
is used to compute the similarity score between the image and the text. We perform im-
age feature extraction with two options, PubMedCLIP-RN50 and PubMedCLIP-ViT32.
These two encoders are based on different technologies, namely CNN (PubMedCLIP-
RN50) and Vision Transformer (PubMedCLIP-ViT32). This helps to see behaviors of
CNN and Vision Transformer over different medical imaging modes in our study, in-
cluding microscopic imaging and ultrasound scan imaging.

In our approach to effectively utilize image labels for model training, we draw in-
spiration from the methodology described in Radford et al.’s paper [88]. This approach
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acknowledges the importance of connecting text prompts with image content, a tech-
nique that has demonstrated enhanced performance compared to using simple labels
alone [88]. In particular, it is shown that adding a simple word like ”image” into the
prompt can improve the performance. So, in this work, we consider a heuristic approach
that gradually increases the contextual information in the prompt templates. The words
we select for the prompts are commonly found in electrical health record (EHR), such
as medical, image, disease, illness, symptom, sign, patient [143]. For each dataset,
we have developed three distinct text prompt templates to guide the proposed model in
the task of medical image classification. In addition to these prompts, we also include
Prompt-0, which is simply the name of the label for each class. Specifically, the prompt
templates are as follows.

1. Prompt-0: ”{label}”

2. Prompt-1: ”This image shows {label} disease”.

3. Prompt-2: ”In this medical image, there are indications of {label}”.

4. Prompt-3: ”Based on this medical image, it appears that the patient may be ex-
hibiting signs or symptoms related to the {label} disease or illness”.

As can be seen, these prompts offer varying levels of information, allowing the
model to capture different aspects of the image. Specifically, Prompt-0 does not provide
any additional context about the image, while more information is increasingly added
to Prompt-1, Prompt-2, and Prompt-3. To facilitate this process, each dataset has a
dictionary with descriptions of all the diseases present. These descriptions are encoded
into text vectors, resulting in a set of text vectors specific to each dataset.

In the second stage, we combine the image and text features into a single feature
vector using the feature fusion block. A straightforward approach for combining fea-
ture vectors is to multiply them element-wise. However, this method has limitations
due to the simple combination of the two vectors. Various fusion techniques have been
developed to combine text and image feature vectors to maximize interactions. These
approaches usually rely on the idea of making bilinear pooling computationally fea-
sible. In this study, we employs the Multimodal Factorized Bilinear Pooling (MFB)
method [144] for multimodal feature fusion because of its simplicity, ease of imple-
mentation, and a high convergence rate. MFB [144] is a pooling method that com-
bines information from multiple modalities (e.g., image and text) by computing the
outer product of their feature vectors and then factorizing the resulting matrix using a
low-rank decomposition. This approach allows for efficient modeling of pairwise in-
teractions between different modalities while reducing the feature dimensionality after
pooling [145,146]. A comparison of MFB with other fusion methods will be discussed
in the next section. In the third stage, class prediction is done based on combined feature
vectors. Given a set of combined vectors {Z⃗vi,qj} for each pair of (v⃗i, q⃗j), we employed
a set of fully-connected layer blocks, each of which independently transforms Z⃗vi,qj to
a scalar. These output scalar values will form the similarity scores between the image v⃗i
and the text description q⃗j . The blocks are denoted as Similarity Score Extraction mod-
ules in Figure 3.5. Finally, a softmax layer normalizes the scores, yielding a probability
distribution indicating the likelihood of the input image belonging to a description from
the dictionary. The prediction is chosen by selecting the highest probability element
from the distribution.
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B. Datasets

To conduct this research, we use three different medical datasets with different
classes and imaging modes. The first is the Blood dataset, consisting of 17,092 mi-
croscopic peripheral blood cell images [104]. The images of this dataset are catego-
rized into eight classes: neutrophils, eosinophils, basophils, lymphocytes, monocytes,
immature granulocytes, erythroblasts, and platelets or thrombocytes. The second one
is the Path dataset, containing 100,000 images of human colorectal cancer and healthy
tissues [147]. The tissue images are organized into nine classes: adipose (ADI), back-
ground (BACK), debris (DEB), lymphocytes (LYM), cancer-associated stroma (STR),
colorectal adenocarcinoma epithelium (TUM), mucus (MUC), smooth muscle (MUS),
normal colon mucosa (NORM). The third is the Breast dataset containing 780 medical
images of breast cancer using ultrasound scans [148]. The Breast dataset is organized
into three classes: normal, benign, and malignant.

C. Reference Models and Implementation Details

In order to evaluate the improvements of the proposed multimodal model with re-
spect to previous multimodal and unimodal models, the following reference models are
employed for our experiments.

• The multimodal model of [110], which is the preliminary version of our work.
This model uses PubMedCLIP’s image and text encoders without prompt en-
gineering. Note that, in this model, we use only the Transformer-based encoder
(PubMedCLIP-ViT32) because, as shown in [110,117], it is always better than the
Resnet-based encoder. In the following, this model is denoted as PubMedCLIP-
Multi.

• The unimodal model of [117] that only uses the image modality of PubMedCLIP.
In the following, this model is denoted with two options PubMedCLIP-ViT32
and PubMedCLIP-RN50. Here, the image encoders of this unimodal model are
exactly the same as those of the multimodal models.

• Three unimodal models using a popular pretrained model, namely DenseNet, Mo-
bileNet, or EfficientNet. As mentioned above, recent studies (e.g. [126], [127],
[131]) just focus on a certain image type (e.g. Blood or Path), so their findings
on the best pretrained model vary. In our evaluation, these models will be com-
pared on the three datasets, using the same setting as the above unimodal and
multimodal models.

To clearly see the performance differences of the models, our experiments use the
same setup for all models. Especially, because we want to see the performances with
a small amount of training data, no techniques of data augmentation and preprocessing
are applied. The workflow of the unimodal models is shown in Figure 3.6, where the
feature vector provided by a pre-trained model is input into a fully-connected layer for
classification. For training of both multimodal and unimodal models, the learning rate
is set to 1 × 10−3, and the batch size is 16. All implementations are based on the
PyTorch framework [149]. To obtain stable results, we repeat all experiments ten times
and report the average scores over all experiment runs.
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Figure 3.6: Unimodal model of transfer learning for medical image classification.

3.2.4 Experiments
In this section, we shows the performance comparison between the proposed model

and the reference models on different datasets. We also perform extensive experiments
with different fusion techniques, prompt templates, and different numbers of training
samples.

A. Experimental Settings

A key focus of our research was to examine how our model performs under con-
ditions of limited training data. To achieve this, we gradually increase the number of
training samples of each class. Specifically, we start with small numbers of training
images per class, namely 10, 50, 100, and so on until eventually reaching 80% of the
dataset. The images not used for training in each case are set aside for testing. We
maintained the same setting for all evaluated models. The incremental increase in train-
ing data size enables us to explore the models’ learning behaviors as they have access to
more training samples. This provides valuable insights into the trade-off between train-
ing data volume and performance. Our experiments evaluate the model’s performance
using accuracy as the primary metric to assess its ability to distinguish between various
classes. The accuracy metric, represented by Equation 3.1, provides a comprehensive
measure of the overall correctness of the model’s predictions. The formula for accuracy
metric is represented as follows:

Accuracy =
TP + TN

TP + FN + TN + FP

(3.1)

where TP , TN , FP , FN denote respectively the true positive, true negative, false positive,
and false negative.

B. Experiment-1: Fusion Technique Comparison

In the proposed model, to fuse the text and image vectors for prediction, we em-
ployed the MFB fusion technique. To show the benefit of this fusion technique, we com-
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pared this technique to two other popular fusion techniques, namely Multimodal Com-
pact Bilinear Pooling(MCB) [150] and Multimodal Tucker Fusion (MUTAN) [151].
For simplicity, template Prompt-1 is used in this evaluation. In Figure 3.7, the perfor-
mances of the proposed model using one of two vision backbones, PubMedCLIP-RN50
and PubMedCLIP-ViT32, together with the three fusion techniques are shown for the
three datasets. For the Blood dataset, the results are shown in Figure 3.7(a), where
both PubMedCLIP-RN50 and PubMedCLIP-ViT32 with MFB exhibit increasing accu-
racy as the number of shots is increased. When the number of shots exceeds 100, the
curves reach high accuracy, around 90% for PubMedCLIP-ViT32 and around 85% for
PubMedCLIP-RN50. However, when employing the MCB and MUTAN fusion tech-
niques, the curves remain relatively flat, showing minimal improvement even when the
number of shots is high. Moreover, the accuracies achieved by MCB and Mutan fusion
techniques are significantly lower, approximately 70% for PubMedCLIP-ViT32 with
Mutan, 58% for PubMedCLIP-RN50 with Mutan, 66% for PubMedCLIP-ViT32 with
MCB, and 43% for PubMedCLIP-RN50 with MCB.

With the Path dataset in Figure 3.7(b), PubMedCLIP-ViT32 with MFB provides
the highest curve among all the combinations. When the number of shots exceeds
200, the accuracy surpasses 90%. Besides, the MCB fusion technique provides highly
unstable results. With the Breast dataset (Figure 3.7(c)), the behavior is similar to that
in the Blood dataset. The MFB fusion technique demonstrates favorable results for both
PubMedCLIP-RN50 and PubMedCLIP-ViT32, with increasing accuracy as the number
of shots increased. However, the other fusion techniques show much lower results;
the accuracy of Mutan with PubMedCLIP-ViT32 (PubMedCLIP-RN50) is consistently
around 78% (70%). The MCB fusion technique results in about only 65% for both
backbones. Among the three fusion techniques, MUTAN is only better than MFB at
very small number of shots (e.g. 10 shots in Path and Breast datasets).

In summary, based on the experiment results, the MFB fusion technique in gen-
eral shows the best performance across the Blood, Path, and Breast datasets, for both
PubMedCLIP-RN50 and PubMedCLIP-ViT32 backbones. In the following evalua-
tions, we will exclusively present the results obtained using the MFB fusion technique.

C. Experiment-2: Prompt Template Evaluation

In this part, our evaluation involves testing each prompt template’s performance as
the number of training samples is increased from 10 samples per class up to 80% of
the class. For simplicity, only PubMedCLIP-ViT32 is used the image encoder. The
results presented in Table 3.4 highlight the different performances of the prompt tem-
plates (i.e. Prompt-0, Prompt-1, Prompt-2, Prompt-3). Futhermore, the results consis-
tently demonstrate that Prompt-3 outperformed Prompt-0, Prompt-1 and Prompt-2 in all
datasets. Especially, on the Path dataset, the performance of Prompt-3 quickly jumps
to a high level after 500 shots. Meanwhile, on the Breast dataset, the performance of
Prompt-3 saturates after 100 shots.

Additionally, the visualization in Figure 3.8 confirms the Prompt-3’s consistent and
superior performance. The results show that the performance of Prompt-0 is the lowest.
More specifically, in Fig. 4, we can see that adding the words ”image” and ”disease”
in Prompt-1 can help improve the performance on Blood and Breast datasets when the
number of shots is high, and on Path dataset when the number of shots is medium (from
1500 shots to 5000 shots). Also, in general, Prompt-2 has better performance than
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(a) Blood dataset

(b) Path dataset

(c) Breast dataset

Figure 3.7: Fusion technique comparison
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(a) Blood dataset

(b) Path dataset

(c) Breast dataset

Figure 3.8: Prompt techniques comparison
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Prompt-1 at most numbers of shots. This observation emphasizes the pivotal role of
prompt engineering in the model’s performance. The success of Prompt-3 can be at-
tributed to its provision of richer contextual information, which better guides the model
in associating image content with the corresponding medical condition. In our future
work, we will further investigate the potential of leveraging more intricate and infor-
mative language constructs to enhance the performance of multimodal models in med-
ical image classification. In the upcoming evaluation experiments, we will exclusively
present results using Prompt-3 in the proposed model.

D. Experiment-3: Model Performance Accuracy

In this section, we compare the performances of the proposed model and reference
models on the three datasets. The experimental results are given in Table 3.5. The
performances of the models vary across the datasets. Here, we specifically explore the
performances when the number of training samples (shots) gradually increases.

For the 10-shot learning scenario, we trained the models using ten images per class
from each dataset and utilized the remaining images for testing. The results indicate
that the proposed model (PubMedCLIP-ViT32) achieves the highest or second-highest
accuracy across the three datasets. In the Path dataset, our model achieves the highest
accuracy score among the models. However, all models perform poorly in the Breast
dataset under the ten-shot learning setting.

Notably, PubMedCLIP-ViT32 exhibits superior performance compared to
PubMedCLIP-RN50. So, in the following, the proposed model that employs
PubMedCLIP-ViT32 is mostly referred to in the discussion.

For the 50-shot learning scenario, we increased the training data to 50 images per
class. The results show that as the number of training images increases, the overall ac-
curacy of the models improves. Our multimodal model achieves relatively high scores
across all three datasets, with accuracy exceeding 80%. Notably, DenseNet and Mo-
bileNet perform well on the Blood and Path datasets but poorly on the Breast dataset.

Moving on to the 100-shot learning scenario, we fed 100 images per class into the
models for training. The results indicate that our model’s accuracy increases slower
than MobileNet and DenseNet when transitioning from 50 to 100 training images per
class in the Blood and Path datasets. Specifically, MobileNet achieves an accuracy of
approximately 90% in the Blood and Path datasets, while DenseNet achieves a similar
accuracy in the Path dataset. Nevertheless, our model performs well across all three
datasets, with the accuracy surpassing 88%. Notably, in the Breast dataset, our model
achieves an accuracy of over 92%, whereas other models fall below 80%.

Further increasing the training data to 200 images per class, our model demonstrates
outstanding performance across all three datasets. It achieves an accuracy of 92.1% in
the Blood dataset, 90.3% in the Path dataset, and 92.8% in the Breast dataset, com-
parable to those of MobileNet. Compared to DenseNet, our model performs better by
approximately 3% in the Blood dataset, 14% in the Breast dataset, and slightly lower
by 0.2% in the Path dataset. When we increase the training data to 300 images per
class, our model excels across all the datasets. The dependence of model performances
on the number of training samples and datasets can be seen more clearly in Figure 3.9.
With the Blood dataset (Figure 3.9(a)), our model initially obtained the second-highest
accuracy at 200 shots, trailing behind MobileNet. However, from 300 shots onward,
the proposed model outperformed all other models. With the Path dataset, initially the
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(a) Blood dataset

(b) Path dataset

(c) Breast dataset

Figure 3.9: Performance of the models on each dataset
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proposed model again performs worse than MobileNet. However, at 500 shots, the re-
sult of MobileNet is lower than the proposed model. Especially with the Breast dataset
(Figure 3.9(c)), the proposed model consistently achieved the highest accuracy across
all numbers of shots. Meanwhile, all other models, including MobileNet, have much
lower performances on this dataset. It can be concluded that the proposed model can
consistently achieve good results across different datasets.

Regarding the multimodal model PubMedCLIP-Multi, its performances on Path and
Blood datasets are comparable to the unimodal PubMedCLIP-ViT32 (Figure 3.9(a) and
(b)); however, on Breast dataset, it is much better than PubMedLCIP-ViT32 and other
unimodal models (Figure 3.9(c)). Among the unimodal models, PubMedCLIP-ViT32
is, in general, the best one over all three datasets, except at some small numbers of
shots. Meanwhile, the performances of DenseNet, MobileNet, and EfficientNet vary
across the datasets. Moreover, the proposed model’s results are consistently highest
over a wide range of the number of shots. This shows the promising capabilities of both
multimodal and unimodal solutions based on PubMedCLIP, thanks to its very large
scale.

3.2.5 Ablation study
In this part, we investigate the contributions of the two new components of the

proposed model, including the new fusion and the new best prompt (i.e. Prompt-3). So,
the comparison includes the following cases:

• Case-1: No new components (i.e. our preliminary model in [110])

• Case-2: Using the new fusion only.

• Case-3: Using the new prompt only.

• Case-4: Using the new fusion and the new prompt (i.e. the proposed model)

Table 3.6: Ablation study’s settings and results

Case New
Fu-
sion

New
Prompt

Dataset

Blood Path Breast

Case-1 - - 0.941 0.919 0.898

Case-2 ✓ - 0.953 0.934 0.915

Case-3 - ✓ 0.945 0.923 0.911

Case-4 ✓ ✓ 0.965 0.937 0.928

Here, for simplicity, we also employ only PubMedCLIP-ViT32, which is the best
encoder for image modality. The accuracy results of the above four cases when training
data is 80% of a dataset are shown in Table.3.6. It can be seen that the gains by the new
fusion can only be up to 1.7%. Meanwhile, the gains by the new prompt are up to 1.3%
and lower than the gains by the new fusion. When both new fusion and new prompt are
used, the gains are 2.4%, 1.8%, and 3% on the Blood, Path, Breast datasets, respectively.
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These results mean that each new component can improve the performance, and when
they are combined, the joint improvement is higher than individual improvements. So,
the two new components are complementary to each other, and both are beneficial for
the high performance of the proposed model.

3.2.6 Discussions
The above results demonstrate the capabilities of the proposed model, which out-

performs reference models in two aspects:

• The superior performances are consistent across three different image types.
Whereas previous studies just focus on a certain type (e.g., either Blood, Path,
or Breast).

• The behavior is also consistent over a wide range of the number of shots. It
should be noted that existing studies mostly try to enlarge the amount of training
data (e.g. by various data augmentation techniques) to improve the performance.

The advantages of the proposed model can be attributed to the robustness (or gener-
alizability) of the large-scale and multimodal nature of the pre-trained PubMedCLIP
model, together with prompt engineering and feature fusion.

It should be noted that the image encoder in the proposed model is the same (i.e.,
unmodified) as those used in unimodal models (using either PubMedCLIP-RN50 or
PubMedCLIP-ViT32). However, thanks to the processing of both image input and text
input, the proposed multimodal model always outperforms the corresponding unimodal
model. This is an interesting benefit of large multimodal models like PubMedCLIP.

In addition, the experiments show that PubMedCLIP-ViT32 always performs bet-
ter than PubMedCLIP-RN50 in both unimodal and multimodal cases. On the Blood
dataset, the unimodal model using PubMedCLIP-ViT32 is only worse than the multi-
modal model using PubMedCLIP-ViT32, which is even better than all other unimodal
and multimodal models. This means the vision transformer technology is more effective
than CNN in this classification task.

Our results also emphasize the importance of text prompt engineering to enhance a
model’s performance. In our study, adding more medical context into the prompt tem-
plate helps the model understand more about the image that the model needs to classify.
The improved performance when incorporating such keywords into the prompt can be
attributed to the unique capabilities of the PubMedCLIP model, which is a fine-tuned
version of CLIP tailored for medical applications. PubMedCLIP has been trained with
a huge amount of images and associated text. A text prompt can be considered as a
context input into the multimodal model. It seems that when appropriate words are pro-
vided in the prompt, the context will be clearer to the model, and thus, the performance
at the output will be higher. So, it is important to empower the model with a richer
context rather than a simple label or short description.

Furthermore, our model’s robustness in image classification accuracy is fortified by
fusing feature vectors of image and text inputs. This fusion of image and text vectors,
coupled with an extensive text vector dictionary, equips our model to tackle a broad
spectrum of medical conditions, ensuring consistent high accuracy across diverse im-
age classification tasks. This multifaceted solution has been shown to be beneficial in
medical image classification, with limited training data and adaptability across various
datasets.
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3.2.7 Conclusions and Future Work
In this work, we have investigated the capability of transfer learning based on Pub-

MedCLIP for medical image classification. We proposed a multimodal model that har-
nesses text prompts and images to achieve high accuracy even with limited training
data, surpassing the performance of traditional transfer learning models. The advan-
tages of the proposed model could be attributed to the multimodal pre-trained back-
bones, prompt engineering, and feature fusion. Especially, the effective use of prompt
templates in our model highlights its potential for various image classification domains.
For future work, we will extend this approach by enhancing prompts through develop-
ing automated or context-aware prompts, which may improve the model’s performance
across diverse domains. Additionally, we will further evaluate the adaptability of the
proposed model to various medical subfields and exploring cross-domain applications.

3.3 Conclusion and Future Directions for Medical Im-
age Classification

This chapter presented two innovative studies to improve medical image classifi-
cation through advanced deep-learning approaches. The first study utilized the Pub-
MedCLIP model for transfer learning, demonstrating robust performance across vari-
ous datasets and highlighting the potential for significant cost savings in data labeling
despite certain feature extraction limitations requiring further refinement. The second
study introduced a multimodal model that integrates text prompts and images, achiev-
ing superior accuracy with limited training data by leveraging multimodal pre-trained
backbones, prompt engineering, and feature fusion. Both studies underscore the effec-
tiveness of advanced transfer learning and multimodal techniques in enhancing medical
image classification, and they lay the groundwork for future research focused on devel-
oping automated or context-aware prompts, improving model adaptability to different
medical subfields, and exploring cross-domain applications. In future works, our re-
search will continue to refine these models to enhance their robustness, scalability, and
applicability, thereby advancing the capabilities of medical image analysis within smart
societies.
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Table 3.4: Accuracy values for different prompts.

Dataset No. of shots Prompt-0 Prompt-1 Prompt-2 Prompt-3

Blood

10 0.714 0.715 0.718 0.739
50 0.849 0.852 0.852 0.861

100 0.896 0.887 0.895 0.905
150 0.905 0.887 0.907 0.909
200 0.916 0.919 0.918 0.921
250 0.919 0.923 0.920 0.927
300 0.924 0.926 0.928 0.928
350 0.928 0.931 0.929 0.930
400 0.927 0.928 0.929 0.933
500 0.934 0.936 0.931 0.939
600 0.937 0.936 0.937 0.944
700 0.936 0.937 0.939 0.946

1000 0.938 0.939 0.940 0.948
80% of data 0.941 0.953 0.959 0.965

Path

10 0.848 0.853 0.866 0.868
50 0.862 0.859 0.868 0.875

100 0.871 0.877 0.877 0.895
150 0.885 0.880 0.882 0.890
200 0.885 0.890 0.890 0.903
250 0.896 0.889 0.899 0.903
300 0.903 0.897 0.904 0.911
400 0.902 0.907 0.914 0.919
500 0.903 0.908 0.906 0.919
600 0.905 0.912 0.908 0.921
700 0.906 0.913 0.912 0.929

1000 0.914 0.917 0.913 0.930
80% of data 0.932 0.932 0.935 0.937

Breast

10 0.636 0.622 0.742 0.762
50 0.776 0.802 0.803 0.806

100 0.883 0.891 0.894 0.911
150 0.881 0.902 0.923 0.926
200 0.884 0.913 0.925 0.928

80% of data 0.904 0.913 0.925 0.928

63



Table 3.5: Model performance

Few shot Pre-trained model Blood dataset Path dataset Breast dataset

10-Shots

DenseNet 0.646 0.832 0.567
MobileNet 0.795 0.849 0.577

EfficientNet 0.603 0.774 0.694
PubMedCLIP-RN50 0.497 0.746 0.507
PubMedCLIP-ViT32 0.714 0.846 0.636
PubMedCLIP-Multi 0.723 0.847 0.643

Proposed-PubMedCLIP-RN50 0.691 0.761 0.634
Proposed-PubMedCLIP-ViT32 0.739 0.858 0.762

50-Shots

DenseNet 0.880 0.889 0.652
MobileNet 0.826 0.885 0.668

EfficientNet 0.761 0.865 0.675
PubMedCLIP-RN50 0.722 0.791 0.687
PubMedCLIP-ViT32 0.847 0.873 0.778
PubMedCLIP-Multi 0.852 0.872 0.785

Proposed-PubMedCLIP-RN50 0.787 0.847 0.737
Proposed-PubMedCLIP-ViT32 0.861 0.868 0.806

100-Shots

DenseNet 0.864 0.902 0.692
MobileNet 0.907 0.904 0.727

EfficientNet 0.804 0.869 0.681
PubMedCLIP-RN50 0.794 0.821 0.691
PubMedCLIP-ViT32 0.854 0.883 0.777
PubMedCLIP-Multi 0.887 0.878 0.877

Proposed-PubMedCLIP-RN50 0.841 0.862 0.890
Proposed-PubMedCLIP-ViT32 0.905 0.895 0.927

200-Shots

DenseNet 0.887 0.905 0.789
MobileNet 0.929 0.905 0.745

EfficientNet 0.833 0.888 0.696
PubMedCLIP-RN50 0.832 0.842 0.749
PubMedCLIP-ViT32 0.910 0.889 0.822
PubMedCLIP-Multi 0.911 0.892 0.891

Proposed-PubMedCLIP-RN50 0.853 0.871 0.883
Proposed-PubMedCLIP-ViT32 0.921 0.903 0.928

300-Shots

DenseNet 0.899 0.907 -
MobileNet 0.927 0.910 -

EfficientNet 0.837 0.895 -
PubMedCLIP-RN50 0.851 0.853 -
PubMedCLIP-ViT32 0.913 0.903 -
PubMedCLIP-Multi 0.919 0.902 -

Proposed-PubMedCLIP-RN50 0.865 0.888 -
Proposed-PubMedCLIP-ViT32 0.927 0.911 -

500-Shots

DenseNet 0.911 0.908 -
MobileNet 0.933 0.904 -

EfficientNet 0.853 0.892 -
PubMedCLIP-RN50 0.870 0.855 -
PubMedCLIP-ViT32 0.932 0.907 -
PubMedCLIP-Multi 0.924 0.911 -

Proposed-PubMedCLIP-RN50 0.884 0.891 -
Proposed-PubMedCLIP-ViT32 0.939 0.919 -

80% dataset

DenseNet 0.926 0.918 0.803
MobileNet 0.939 0.915 0.796

EfficientNet 0.873 0.912 0.825
PubMedCLIP-RN50 0.902 0.895 0.822
PubMedCLIP-ViT32 0.949 0.917 0.892
PubMedCLIP-Multi 0.938 0.919 0.90

Proposed-PubMedCLIP-RN50 0.921 0.918 0.892
Proposed-PubMedCLIP-ViT32 0.965 0.937 0.928
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Chapter 4

Patient Similarity Using
Semi-structured Data

This chapter introduces a novel approach utilizing self-supervised learning to an-
alyze electronic health records (EHRs) and determine patient similarity. Our method
incorporates structured and unstructured data from medical text notes, diagnoses, lab
results, demographics, and other sources within EHRs. The primary focus of this chap-
ter is to present a deep learning framework tailored for handling the complexities of
both structured and unstructured data inherent in EHRs. By leveraging advanced deep
learning techniques, we aim to extract meaningful insights from diverse data types,
enabling accurate assessment of patient similarity.

4.1 Introduction

4.1.1 EHR Data

EHRs is a digital repository of a patient’s health information, providing real-time
access to authorized users. EHR encompasses a wide range of medical data, including
laboratory test results, diagnoses, medications, radiology images, medical history, and
other clinical information [152]. While EHRs data are primarily intended to enhance
healthcare efficiency in operation management, many additional applications in clin-
ical informatics have been investigated. Specifically, patient data stored within EHR
systems has been utilized for various purposes, including healthcare concept identi-
fication [153], disease prediction [154], clinical decision support systems [155], and
beyond.

Figure 4.1 show an illustration of EHR data collected from various sources in struc-
tured and unstructured formats [156]. Structured data within EHRs typically includes
diagnostic codes (such as ICD-9 codes), vital signs, laboratory test results, demographic
information, and medication records. On the other hand, unstructured data encompasses
radiology reports, clinical notes, discharge summaries, and patient narratives. Unstruc-
tured data has a lot of useful information that offers a comprehensive history of a pa-
tient. In our research context, we leverage EHR data to develop and evaluate predictive
models capable of forecasting patient outcomes using a combination of structured and
unstructured data sources. We harness structured data to guide model training alongside
textual data extracted from EHRs.
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Figure 4.1: An illustration of EHR data of a patient from MIMIC-III Database

4.1.2 Motivations
In the era of big data mining, an abundance of Electronic Health Records (EHR) has

become readily available. The central challenge lies in harnessing this data for improved
patient care without increasing the burden on healthcare professionals. Patient similar-
ity matching is one of the key tasks to unlocking the potential of EHR data [157, 158].
Patient similarity seeks to quantify the resemblance between two patients by analyzing
their EHR records. The implications of achieving meaningful patient similarity are pro-
found. It can revolutionize various applications, from identifying similar patients for a
given case to comparing treatments within similar patient groups, ultimately leading to
enhanced patient outcomes and more efficient healthcare decision-making [157].

However, a significant hurdle in establishing patient similarity is a good representa-
tion of patient features extracted from healthcare professionals’ text notes, encompass-
ing contributions from doctors and nursing staff. The process involves using language
models to generate feature vectors for each patient. Current methods of patient similar-
ity can be classified into two groups, supervised and unsupervised [159]. In supervised
methods, the similarity labels are used to train a similarity prediction model [160,161].
However, the actual labeled data is very costly and usually not public. In unsuper-
vised methods, a special vector is extracted from each EHR and then used for similarity
matching between patients [158, 162]. As surveyed in [159], most of existing studies
are unsupervised learning.

In this study, we propose a self-supervised method for better feature extraction.
Specifically, we try to employ various tags or guides (e.g. outcomes, diagnosis codes,
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categories) to help a deep learning model adjust to the specific characteristics of the
given dataset. The experimental results show that when the number of tags is suffi-
ciently provided, the performance of similarity matching is significantly increased. We
also carry out an analysis of feature extraction at different layers of a deep learning
model. Our research comprehensively evaluates word embedding methods, incorporat-
ing both self-supervised and pretrained learning models.

4.2 Related Work

In the field of healthcare informatics, many studies are dedicated to understanding
patient similarity. These studies aim to mimic the clinical reasoning of doctors, au-
tomatically identify similar patients for a given index patient, and forecast diagnoses
based on comparisons with similar or dissimilar patients. Utilizing an appropriate
similarity measure facilitates various downstream applications, including personalized
medicine [20], medical diagnoses [163],tracking patient trajectories [164], and disease
prediction [165].

Numerous similarity learning methods have been proposed for analyzing healthcare
datasets [166–169]. These methods typically rely on handcrafted vector representations,
such as demographic or average numerical values, to derive similarity measures from
EHR data. While successful in mapping medical events to vector spaces, these methods
often face limitations due to the lack of comprehensive patient explanations provided
by doctors or medical specialists, such as diagnosis summaries and clinical notes.

Extracting meaning from free-text medical notes poses a significant challenge in
EHR research. Textual data captures a wide range of information, including symp-
toms, patient-reported outcomes, progress notes, differential diagnoses, illness trajec-
tory, and behavioral history. Clinical textual records play a crucial role in tracking pa-
tient progress and planning their care accordingly. Establishing patient similarity based
on their clinical text notes is essential for identifying patients with similar diagnoses.

Because labels of patient similarity need experienced professionals, they are rare
and usually are not made public [158]. In [160,161], some supervised learning methods
are proposed to find similar patients of different diseases, where convolutional neural
networks are employed to obtain a feature vector for each patient. Here, patients of the
same labeled class (disease) are considered similar (positive) while patients of different
classes are considered disimilar (negative). So the task in these studies is in fact a kind
of classification task. It should be noted that, in practice, patients of the same disease
may have very different EHRs and outcomes (e.g. dead or discharged) [170].

In unsupervised methods, feature vectors are extracted from patients’ EHRs in var-
ious manners, usually with the help of some pretrained deep learning models. Then the
similarity between two patients is computed as the cosine similarity score of the two
corresponding feature vectors. In [158], different pretrained BERT variants are em-
ployed to extract features. It is found that the SciBERT model is the only one that is
better than the original BERT model. In [162], a wide variety of medical events (e.g.
prescriptions, microbiology, laboratory, output, etc.) are extracted to build large feature
sets. Also, complex representation structures can be heuristically generated from EHRs.
For example, in [171] [159], an EHR is converted to a tree representation with branches
and nodes. However, the final feature representation strongly depends on the travers-
ing path across the branches of a tree. Our proposed method can be considered as an
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self-supervised method. Specifically, we try to exploit various tags or guides which are
available in a datasets to help deep learning models adapt to the characteristics of the
given datasets. Though such training may not provide high accuracy (which actually
is not our goal), the learned features are expected to be better than those of an original
pre-trained model.

4.3 Overview of Methodology
Measuring patient similarity involves the transformation of diverse Electronic

Health Records (EHRs) data into standardized formats for the purpose of calculating
the proximity between pairs of patients. Clinical narratives offer a succinct depiction
of a patient’s condition upon admission to the Intensive Care Unit (ICU), providing
valuable insights for caregivers. However, these narratives often contain excessive in-
formation, including redundant structured data and contributions from various sources,
which can pose challenges when attempting to model them for prognosis or embedding.

Machine learning and Natural Language Processing (NLP) have demonstrated re-
markable capabilities in learning from data, regardless of its complexity. These tech-
nologies have the potential to yield meaningful outputs from even the messiest datasets.

4.3.1 Methodological Flowchart
This research involved a series of stages, comprised of three primary phases as

depicted in Figure 4.2. The study workflow can be summarized in the following steps:

Figure 4.2: Study framework, (a) Data preprocessing; (b) Embedding model: (α)
Word2Vec embeddings, (β) Doc2Vec embedding, (γ) BERT-based with twelve encoder
layers; (c) Patient similarity calculation and MSE calculation

1. This step encompasses two tasks. Firstly, it involves data sampling and selection
from a substantial MIMIC-III notes dataset. Secondly, data cleaning is performed
through the Natural language toolkit (NLTK).
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2. Utilization of Various Embedding Models: In this phase, a variety of embedding
models are employed to train different tags and generate corresponding feature
vectors.

3. Similarity Calculation and Mean Squared Error (MSE) Computation: This step
involves the calculation of similarity metrics and the subsequent computation of
the Mean Squared Error (MSE) in comparison to the Gold standard.

4.3.2 Dataset
For this study, we chose real medical text as the litmus test for evaluating our ap-

proach and models to real-life healthcare data. The source of our textual narratives
was the Medical Information Mart for Intensive Care-III (MIMIC-III) [172], a publicly
accessible multiparameter monitoring system deployed in intensive care units over 11
years. This extensive repository features a wealth of structured medical data, encom-
passing physiological information and unstructured textual notes contributed by various
healthcare professionals.

To focus our study, we needed to find a specific medical condition that offered an
ample dataset and a noteworthy mortality rate, which was crucial for training our model
with diverse tags. Consequently, we selected ”Pneumonia” as our primary disease of in-
terest, which yielded 1405 cases with a mortality rate of 23%. These patients generated
59,727 notes, collectively authored by physicians, nurses, radiologists, and nutritionists.

Each sequence of notes was associated with a binary label indicating patient out-
comes, wherein notes from discharged patients were assigned class ”0,” while those
from patients who experienced in-hospital deterioration were designated as class ”1.”
Additionally, each sequence of notes was associated with an ICD9-CODE label ex-
tracted from DIAGNOSES-ICD, and the SEQ-NUM was recorded to facilitate the cal-
culation of Gold standard similarity.

In the dataset for pneumonia, we identified a total of 53 unique ICD9-CODEs, which
were further categorized into 11 distinct categories as listed in the ICD9-CODE list
[173]. All of these exploratory data analyses were conducted using Python libraries.

In this phase, we perform text data cleaning by adhering to fundamental Natural
Language Processing (NLP) guidelines, leveraging the capabilities of the Natural Lan-
guage Toolkit (NLTK). To ensure uniformity, we standardize all text to lowercase and
employ regular expressions to eliminate punctuation, excessive white space, line breaks,
and non-alphanumeric characters. Furthermore, we incorporate a stop-word dictionary
to eliminate irrelevant elements from the text.

4.4 Feature Extraction with Self-supervised Learning
In this study, we consider a range of methods, spanning from traditional techniques

to cutting-edge NLP model. For our self-supervised approach, we employed Doc2Vec
models and state-of-the-art BERT model.

4.4.1 Doc2Vec Model
Doc2Vec [174] model, as opposed to the Word2Vec model, is used to create a vec-

torized representation of a group of words taken collectively as a single unit. While the
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Doc2Vec model original is unsupervised, it can be used in a supervised context when
combined with labeled data. For example, we can use Doc2Vec embeddings as features
in a supervised machine learning model (e.g., a classification model) to perform spe-
cific tasks like document classification, sentiment analysis, or topic modeling. In this
case, the Doc2Vec model is used for feature extraction, but the overall approach is self-
supervised because it involves labels (more exactly tags) in a dataset. In our study, we
employed a variety of tags, including Binary label tags (0-1), Category tags (comprising
11 distinct categories), and ICD9-Code tags (encompassing 53 distinct codes). Then,
the Doc2Vec model was used to create embeddings that capture the inherent semantics
of the text data while simultaneously considering these diverse tags. This integration
allowed us to generate embeddings that encapsulate the multifaceted relationships be-
tween the text content and associated tags.

4.4.2 Bert-based Model

BERT [175], which stands for Bidirectional Encoder Representations from Trans-
formers (BERT), is a state-of-the-art natural language processing model known for its
contextual understanding of language. BERT embedding creates different vectors for a
word used in different contexts. It utilizes a transformer encoder to represent a word in
a higher-dimensional space, capturing relations between distant words more efficiently
than traditional bidirectional encoders. A text representation by BERT depends on tok-
enization, which involves breaking the text into individual words or subword units and
adding special tokens for BERT’s input format.

In our study, we explore feature extraction from text notes using BERT-based mod-
els, akin to our earlier approach with the Doc2Vec model, that is self-superved learning
with a diverse range of labels or tags and subsequently extract feature vectors from the
text data.

1. Binary classification: In the initial approach, we harnessed the capabilities of a
BERT-based model to address the binary classification task. To train the model,
we use the two distinct labels, 0 and 1 (dead or alive).

2. Multi-label classification with ICD9-codes: this multi-label classification is
trained with a diverse set of ICD9-Codes containing up to 53 unique codes. These
codes span a comprehensive spectrum of medical diagnoses and conditions, re-
flecting the intricacies of healthcare data.

3. Multi-label classification with Categories: In this case, a diverse set of 11 dis-
tinct categories of disease is employed.

Feature Extraction from Different Layers: Following each training phase, we extract
feature vectors from different layers within the fine-tuned BERT model. Specifically,
from the second layer, the sixth layer and the final layer. This feature extraction process
captures text representations at various depths within the model, each layer offering a
unique perspective on the underlying text data. These rich, context-aware representa-
tions enhance patient similarity analyses and provide valuable insights into the layers.
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4.5. EXPERIMENTS

Table 4.1: Hyperparameters and Characteristics

Hyper-parameters Characteristics

Optimizer AdamW

Batch Size 32

Dropout 0.1

Loss CrossEntropyLoss

Learning Rate 2e-5

Max Length 512

Epochs 30

4.4.3 Word2Vec Model
Using Word2Vec [176] to extract features can be considered as an unsupervised

method, and this approach is used as a baseline in our evaluation. Word2vector is
a neural network-based model designed to learn distributed representations of words,
typically in large corpora of text, without needing labeled data or explicit supervision.
Word2Vec employs two main algorithms for learning word embeddings: Continuous
Bag of Words (CBOW) and Skip-gram. For our study, we used (CBOW) approach; the
model is trained to predict a target word (the center word) based on the surrounding
context words within a fixed-size window. The surrounding context words are used
as input to predict the target word, but no explicit labels or annotations are used for
training. The model learns by adjusting word embeddings to make it more accurate at
predicting the target word from its context [176].

4.5 Experiments
This section details the methodologies employed in constructing the Gold standard,

which is used as reference for predicted similarity values [159, 171]. Subsequently, we
provide an overview of the evaluation criteria.

4.5.1 Evaluation Metrics

A. Gold Standard Similarity

As in [159, 171], the final diagnosis codes are used to compare two patients, tak-
ing into account the diagnosis code’s priority within each patient’s EHR. To determine
the similarity between two patients, A and B, we employ the formulation, defined by
Pokharel et al. [171], as follows

Sim(A,B) =

N∑

i=1

min(fai · wi, fbi · wi)

avg

(
N∑

i=1

(fai · wi),
N∑

i=1

(fbi · wi)

)
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In the equation, the terms (fai · wi) and (fbi · wi) represent the weighted values of
diagnosis i with priority p expressed as an ICD9 disease code for patients A and B,
respectively.

B. Metric for Assessing Patient Similarity

To assess the performance of various feature embedding sets, we employ the Mean
Squared Error (MSE) metric [177, 178]. MSE quantifies the prediction error, which is
essentially the difference between the gold-standard similarity values and the predicted
values. These predicted values are determined by calculating the cosine similarity of
patient pairs based on the feature vectors obtained from distinct embedding models and
different layers.

MSE = 1
n

∑n
i=1(actuali − predicti)

2

In the MSE equation, n represents the total number of patients in the dataset, and
∑

denotes the summation notation. This comparison helps us assess the model’s ability to
predict patient similarities accurately.

4.5.2 Experimental Results
In analyzing our experimental results, we set out to address two fundamental ques-

tions:

1. Can self-supervised learning with tags improve the performance of similarity
matching compared to directly using pre-trained models?

2. Do features from different layers have different impact on patient similarity?

The results, presented in Table 4.2, illuminate the findings from our extensive exper-
iments. We begin by examining the performance of the pretrained Word2Vec, which
produced a relatively high MSE value of 0.7385. This result suggests that the features
extracted by this model fail to differentiate between patients adequately.

With the fine-tuned Doc2Vec model by self-supervision, which was trained in three
cases (2 tags, 11 tags, and 53 tags), we observe lower MSE values compared to
Word2Vec. However, the MSE values for the different tag sets (2 tags, 11 tags, and
53 tags) are 0.2094, 0.2669, and 0.2239, respectively. That means the variation in tag
counts does not significantly impact the model’s performance.

Interestingly, the pretrained BERT model results in the highest MSE value, even
higher than that of Word2Vec. With fine-tuned BERT models, the results reveal distinct
trend with respect to the number of tags. For the model trained with two tags, MSE
values are 0.5640 for layer 2, 0.5652 for layer 6, and 0.5768 for the last layer. While
these values are lower than those obtained from the pretrained Word2Vec and BERT
models, they are still higher than those from the fine-tuned Doc2Vec model.

The situation changes when the model is trained with 11 tags. For this case, when
extracting feature vectors from layer 2, the MSE is 0.0395, and 0.0953 for layer 6, which
are much lower than previous cases. This outcome indicates that the model trained with
broader category labels, reflecting diverse patient diseases rather than just binary life
status, is more effective in representing text notes. Additionally, feature vectors from
the earlier layers outperform the last layer, which is primarily designed for classification
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Table 4.2: MSE of similarity matching using different feature embeddings

Model No. of tags Layer MSE

Word2Vec - - 0.7385

Doc2Vec

2 tags - 0.2094

11 tags - 0.2669

53 tags - 0.2239

Pre-trained BERT - - 0.7533

BERT-based (fine-tunning)

2 tags

Layer 2 0.5640

Layer 6 0.5652

Last layer 0.5768

11 tags

Layer 2 0.0395

Layer 6 0.0953

Last layer 0.2793

53 tags

Layer 2 0.0457

Layer 6 0.0975

Last layer 0.1211

purposes. The first and middle layer feature vectors effectively capture the patient’s text
notes within category-specific contexts. In case of training with 53 tags (ICD9-code
tags), we find results that are comparable to the case of 11 tags. MSE values are 0.04569
for the second layer, 0.09754 for the sixth layer, and 0.121 for the last layer. The
outcome suggests that when the model is trained with more granular tags encompassing
multiple ICD9 codes, the feature vectors extracted from the first and middle layers are
similar in effectiveness to those obtained from models trained with fewer tags. However,
the feature vectors from the last layer of the 53-tag model outperform those from the 11-
tag model in representing patient features. Figure 4.3 illustrates the variance in MSE
values resulting from feature extraction by the BERT-based fine-tuning model across
different tag and layer extraction scenarios. The visualization in Figure 4.3 reveals
interesting trends in MSE values depending on the number of tags used during model
training and the choice of layers for feature extraction. When training the model with
only 2 tags (binary classification), the MSE values remain relatively consistent across
different layers. Minimal variation is observed in the MSE values when extracting
features from layer 2, layer 6, or the last layer. In contrast, a notable trend emerges
when the model is trained with 11 tags. The MSE values are lowest when extracting
features from layer 2, indicating better performance at capturing features relevant to the
classification task. However, the MSE values increase when extracting features from
layer 6, and they reach their highest values when extracting from the last layer. This
observation suggests that deeper layers capture more complex features but may also
introduce more noise into the feature representation. Similar trends are observed when
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Figure 4.3: MSE Variation with Tags and Layers for Feature Extraction by BERT fine-
tuning model

Table 4.3: BERT Fine-Tuning Accuracy in different training tags

Fine-tuned BERT model Accuracy

2-tag 0.851

11-tag 0.7548

53-tag 0.71

training the model with 53 tags. Once again, feature extraction from layer 2 yields
the lowest MSE values, followed by increasing MSE values for extraction from layer
6 and the last layer. Notably, when training with 53 tags, the average MSE values are
lower compared to training with 11 tags, indicating improved performance with a larger
number of tags.

The observation of BERT (and Word2Vec) underscores the characteristics of feature
vectors extracted from pre-trained BERT model. This model is inherently generic and
contain rich contextual information, making it suitable for various natural language
understanding tasks. However, it is important to note that these feature vectors do not
carry task-specific information. They have not been fine-tuned or adapted to a particular
task or dataset. As a result, their generality and lack of task-specific information may
limit their effectiveness for patient similarity computation.

In table 4.3, we present the accuracy of models trained with varying numbers of tags
during two-tag training, 11-tag training, and 53-tag training, all using the same hyper-
parameters as shown in Table 4.1. The results show that the 2-tag training achieved the
highest validation accuracy, reaching 85.1%. Conversely, the 11-tag training and 53-tag
training yielded lower accuracy values, at 75.48% and 71%, respectively. Despite the
2-tag training showing superior accuracy, our feature extraction analysis reveals a dif-
ferent story. The 2-tag fine-tuned model performed less satisfactorily when comparing
the feature vectors obtained from three different layers of these trained models for pa-
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tient similarity computation. The observed discrepancy in feature vector performance
can be attributed to the nature of how the BERT model are fine-tuned. Models trained
with a more extensive set of tags allow the model to capture richer information and nu-
ances within the text notes of patients. Consequently, the feature vectors derived from
these models serve as superior representations for patient text notes in the context of
similarity computation.

From the above discussion, the key findings can be summarized as follows.

1. All cases of self-supervised learning with tags improve significantly the perfor-
mance of similarity matching compared to using pretrained models (Word2Vec
and BERT).

2. When the number of tags is sufficient (i.e. 11 tags or 53 tags), fine-tuned BERT
models provide the best performance.

3. The fine-tuned Doc2Vec model has good performance, however its dependence
on tag sets is not strong.

4. Early layers provide better feature vectors than the final layer.

5. Pretrained complex BERT model is even worse than the pretrained simple
Word2Vec model.

4.6 Conclusion and Future Work
In this study, we have presented a new method for patient similarity using self-

supervised learning. It was shown that self-supervised learning with tags improve sig-
nificantly the performance of similarity matching compared to using pretrained models.
Also, when the number of tags is sufficient, fine-tuned BERT models provide the best
matching performance. Our findings underscore the importance of carefully selecting
the model architecture and the specific layer from which feature vectors are derived.
These considerations are crucial in achieving accurate and context-aware patient sim-
ilarity assessments, particularly when working with clinical text data. Additionally,
our results illuminate the substantial influence of tag label granularity on model per-
formance, further underscoring the need for thoughtful model training. Our research
endeavors are poised to expand as we look to the future. One avenue of exploration
involves extending our analysis to encompass a broader spectrum of feature embedding
models, allowing us to gain deeper insights into their efficacy and applicability to pa-
tient similarity tasks. Moreover, we are committed to enhancing patient similarity com-
putation by integrating advanced techniques like frequent pattern mining and machine
learning methodologies. By pushing the boundaries of feature embedding and fusion
techniques, we aim to refine our understanding of patient similarity and contribute to
more accurate and insightful clinical decision support systems.
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Chapter 5

Conclusion

5.1 Concluding Remarks

Throughout this thesis, we have undertaken a comprehensive exploration of ma-
chine learning (ML) and deep learning (DL) approaches for mining both structured and
unstructured data within the framework of smart societies. By proposing and analyzing
various ML and DL algorithms and models, our aim has been to contribute to develop-
ing AI applications that enhance the quality of life for citizens in smart cities.

In Chapter 2, we introduced the SPP-ECLAT algorithm, specifically designed to
mine stable periodic-frequent patterns efficiently in large structured datasets. Our al-
gorithm prioritizes the extraction of meaningful patterns while minimizing the search
space. Through rigorous experimentation with real-world and synthetic datasets, we
have demonstrated the superior performance of the SPP-ECLAT algorithm, particularly
in terms of runtime efficiency and memory usage, compared to existing methods. The
findings from our research hold significant implications for the advancement of AI ap-
plications in smart society contexts. By deriving valuable insights from vast amounts
of data quickly, our work contributes to developing innovative solutions to enhance
various aspects of urban life. For example, we aim to provide real-time feedback to
improve recognition accuracy and processing speed and to address complex real-world
challenges through advancements in machine learning techniques.

In Chapter 3, we proposed an unimodal and multimodal transfer learning model for
classifying medical images, especially in cases with limited training data. Our research
contributes to diagnostic efforts based on medical images, supporting the work of med-
ical professionals by providing high-accuracy classifications. This work performance
helps to reduce the burden on medical teams. It facilitates more accurate diagnoses,
which is crucial in a smart society where the rapid processing of vast amounts of infor-
mation is essential. Additionally, our model minimizes the need for expert involvement
in initial data labeling, addressing challenges such as medical workforce shortages ex-
perienced during events like the COVID-19 pandemic.

Finally, in Chapter 4, we presented a deep self-learning method for semi-structured
data, focusing on Electronic Health Records (EHRs). EHRs contain vital information,
including structured data such as patient demographics and medical history, and un-
structured data from free-text notes. Our model utilizes this comprehensive dataset to
identify patients with similar health profiles, providing doctors with valuable second
opinions and contributing to quick and effective diagnoses. Furthermore, our research
supports the efficient delivery of medical services in rapidly growing urban populations,
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contributing to the establishment of a healthier future for our nation.

5.2 Future Work
Moving forward, the findings and insights garnered from each chapter of this thesis

pave the way for several promising avenues of future research.
For frequent pattern mining, future research will delve deeper into the lability con-

cept across different types of itemsets, exploring its implications and applications in
various domains. Additionally, there is an intriguing opportunity to investigate the dis-
covery of stable periodic-frequent itemsets in uncertain databases, a challenging yet
promising area for pattern mining research. Moreover, the focus will extend to identi-
fying Stable Periodic-frequent Patterns (SPPs) in static temporal data, further exploring
stable itemsets in graphs, data streams, and symbolic databases, and offering insights
into temporal and dynamic patterns across diverse datasets.

Regarding deep learning for medical images, future work entails enhancing uni-
modal and multimodal transfer learning models for medical image classification. While
the PubMedCLIP pre-trained model exhibited promising performance across multiple
datasets of different modalities, addressing limitations related to working with limited
data and diversifying modalities within the medical domain is imperative. Future en-
hancements will involve refining the model architecture to effectively leverage features
extracted from limited data and exploring novel techniques to enhance model robustness
and generalizability. Additionally, the scope will expand to encompass other medical
images and explore the potential of leveraging multimodal data across various imag-
ing modalities and image classes, offering comprehensive solutions for medical image
analysis tasks.

As for patient similarity, future research will focus on advancing similarity com-
putation using self-supervised learning techniques. Building upon the insights gained
from the presented method, future endeavors will extend the analysis to encompass a
broader spectrum of feature embedding models, enabling deeper insights into their ef-
ficacy and applicability to patient similarity tasks. Moreover, efforts will be directed
towards integrating advanced techniques such as frequent pattern mining and machine
learning methodologies to enhance the accuracy and context-awareness of patient sim-
ilarity assessments.

Furthermore, in our future research, comprehensive exploration of smart city data
and utilization of large multimodal models (LMM) present promising avenues. These
models amalgamate diverse data types, thereby enriching information for each field. In-
troducing novel techniques such as prompt engineering holds the potential for enhanc-
ing the performance of large models, guiding them effectively in specialized tasks. Ul-
timately, these advancements aim to facilitate the efficient management of smart cities,
thereby enhancing the well-being of urban residents.
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