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Abstract

Sleep is crucial for both physical and psychological well-being. However, an in-
creasing number of modern individuals are affected by sleep disorders, which have
become a widespread societal issue. Insomnia, sleep apnea, and restless leg syndrome
are common sleep disorders that can lead to difficulty falling asleep, maintaining sleep,
or achieving restorative deep sleep. sleep stage classification is used as an aid in the di-
agnosis and treatment of sleep disorders, while polysomnography is considered the gold
standard for sleep stage classification that assesses sleep by simultaneously monitoring
multiple physiological signals, like electrooculogram (EOG) and electroencephalogram
(EEG). Traditionally, sleep stage classification has relied on labor-intensive manual
scoring or limited-channel polysomnography. Namely, sleep stage classification his-
torically relies on the subjective judgment of sleep experts. Therefore, different sleep
experts may have slight variations in their interpretation of the same data, leading to
some degree of subjectivity in sleep stage classification.

To mitigate subjectivity and improve consistency in sleep stage classification, auto-
matic sleep stage classification algorithms have been developed that objectively analyze
bioelectric signals and classify sleep stages, thereby reducing subjectivity in manual
scoring by sleep experts. However, these bioelectric signals are non-Euclidean graph-
structured data. Due to their exceptional processing of graph-structured data, graph
neural networks (GNNs) are widely used for automatic sleep stage classification, yield-
ing significant results.

However, there are two major deficiencies of existing GNN-based methods for sleep
stage classification using single-channel EEG data. First, although GNNs are powerful
tools for analyzing graph-structured data, they typically rely on a static adjacency ma-
trix that may not fully capture the spatial information and relationships between each
EEG channel (electrode). Second, the importance of spatiotemporal relationships in
classifying sleep stages based on EEG data is overlooked. EEG signals are not only
spatially distributed across electrodes, but also vary over time as individuals transition
through different sleep stages. In our first work, we propose a combination of a dynamic
and static spatiotemporal graph convolutional network (ST-GCN) with inter-temporal
attention blocks based on EEG to overcome two shortcomings. Specifically, we lever-
age spatial graph convolutions and temporal convolutions to effectively model EEG
data. To capture the enriched global context and topology, we use a combination of dy-
namic and static ST-GCN. We also use temporal convolutions with dilation to expand
the temporal receptive field and effectively capture long-range temporal dependencies
in EEG signals, which is critical for accurate sleep stage classification. Notably, we
introduce attention blocks for the first time in the field of sleep stage classification. The
intertemporal attention blocks allow us to model the relationships between different
EEG channels, thereby capturing long-range dependencies that help the model under-
stand how EEG signals at different time points influence each other, which is essential



for accurate classification. Our proposed model for sleep stage classification based
on EEG data demonstrates better performance compared to some other state-of-the-art
models.

Despite the fact that our proposed single-channel EEG-based model has provided
better classification accuracy, the complementary nature of multimodal electrophysi-
ological signal characteristics is overlooked. The existing multi-stream sleep staging
network relies predominantly on EOG and EEG signals as its primary inputs, adeptly
amalgamating the extracted multimodal features cleverly merged to improve perfor-
mance. Moreover, according to our observation, few researchers have focused on the
motor information of electrophysiological signals in the context of sleep stage classifi-
cation. This motor information can provide valuable information about sleep stages and
improve the accuracy of sleep stage classification. In addition, the problems of overpa-
rameterization and suboptimal classification accuracy are common challenges in classi-
fication tasks based on Deep Learning, especially when applied to complex tasks such
as sleep stage classification. To address the above challenges, in our second proposed
work, we develop an efficient graph-based multi-stream model called 4s-SleepGCN
that merges EEG, EOG, and the corresponding motion information into a unified multi-
stream network framework for sleep stage classification. In our proposal, the EEG
signal, EOG signal, and corresponding motion information are each fed separately into
the single-stream model. In each single-stream model, the positional relationship of the
modal sequences within a recording is first considered by position embedding. Position
embedding can help our proposed models better capture the sequential dependencies
and temporal context in different signals, thereby improving the feature representation
for sleep stage classification. Building upon this foundation we use graph convolution
to capture spatial features and employ temporal convolution at multiple scales to cap-
ture temporal dynamics and extract more discriminative contextual temporal features.
Finally, the prediction of sleep stage classification is calculated by the weighted sum-
mation method of the four softmax scores. Our proposed 4s-SleepGCN demonstrates
exceptional performance in sleep stage classification when compared to existing state-
of-the-art methods. Moreover, our single-stream model is notably lightweight and de-
mands fewer parameters. It can be proved that our proposed single-stream baseline can
be introduced as a strong and powerful baseline for sleep stage classification. Therefore,
the two models we have presented stand as effective tools that can assist sleep experts
in assessing sleep quality and diagnosing sleep-related disorders.

xv



Chapter 1

Introduction

Sleep is a fascinating field of research with implications for a wide range of disci-

plines, from neuroscience to psychology and beyond. It is well known that good sleep

is essential for cognitive function, memory consolidation, emotional regulation, and

overall health. To understand and analyze sleep patterns, researchers and clinicians em-

ploy a specialized field known as sleep medicine, which relies on various techniques

to monitor and classify the different sleep stages that individuals undergo during the

night. One of the key challenges in sleep medicine is accurately classifying these sleep

stages, commonly referred to as the sleep stage classification problem. The sleep stage

classification problem involves the complex task of categorizing different sleep stages

based on recorded data from a variety of sources, including electroencephalography

(EEG) to measure brain wave activity, electrooculography (EOG) to monitor eye move-

ments, electromyography (EMG) to assess muscle tone, and additional physiological

signals such as heart rate and respiratory rate. These sleep stages typically include

wakefulness, rapid eye movement sleep (REM), and several non-rapid eye movement

(NREM) stages, each characterized by unique patterns of physiological activity. To

truly comprehend the profound impact of sleep on our lives and address sleep-related

issues effectively, it is imperative that these sleep stages need to be accurately classified

and analyzed. This necessity underpins the significance of the sleep stage classification

problem.

1



1. Understanding Sleep Patterns: Sleep is not a uniform state; rather, it comprises

a continuum of stages that transition throughout the night. Accurate sleep stage

classification provides essential insights into the temporal organization of sleep,

including the duration and sequencing of each stage. This understanding is foun-

dational for assessing sleep quality and identifying abnormalities.

2. Diagnosing Sleep Disorders: Sleep disorders affect millions of individuals world-

wide, ranging from common conditions like insomnia and sleep apnea to more

rare disorders such as narcolepsy. Accurate classification of sleep stages is cru-

cial for diagnosing these disorders, as each often exhibits distinct deviations from

normal sleep patterns. For example, obstructive sleep apnea is characterized by

recurrent interruptions in breathing during sleep, predominantly occurring during

specific stages, notably REM sleep.

3. Personalized Treatment Plans: The diverse nature of sleep disorders and the

variations in individual sleep architecture demand personalized treatment ap-

proaches. By precisely classifying sleep stages, clinicians can tailor interventions

to address specific issues that arise during particular stages of the sleep cycle.

This personalized approach enhances treatment efficacy and patient outcomes.

4. Health and Well-Being: Quality sleep is vital for physical and mental health.

Accurate sleep stage classification helps researchers and healthcare professionals

explore the intricate relationships between sleep patterns and various health out-

comes. This knowledge can inform strategies for improving overall well-being

and reducing the risk of chronic health conditions associated with sleep distur-

bances.

In view of these critical reasons, the need for precise sleep stage classification cannot

be overstated. It forms the cornerstone of advancements in sleep medicine and allows

for better diagnosis, treatment, and research in the quest for healthier, more restorative

sleep for individuals worldwide. The realm of sleep stage classification has witnessed

significant advancements in recent years, driven by the convergence of technology, data
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1.1. SLEEP STAGE CLASSIFICATION UTILIZING BIOELECTRICAL SIGNALS: MOTIVATION

analytics, and a growing awareness of the importance of sleep in our daily lives. Histor-

ically, sleep stage classification relies heavily on traditional polysomnography (PSG),

which includes a combination of EEG, EOG, EMG, and other physiological signals.

This approach lays the foundation for sleep research and diagnosis. It provides valu-

able insight into the different characteristics of each sleep stage and serves as a bench-

mark for subsequent methods. Manual scoring of sleep stages by trained experts has

been the gold standard for many years. However, this approach is labor-intensive, time-

consuming, and subject to inter-scorer variability. Studies have explored the limitations

of manual scoring, highlighting the need for more automated and consistent methods.

In recent years, machine learning and deep learning techniques have been increasingly

used to classify sleep stages. These approaches leverage large datasets to train algo-

rithms that can automatically classify sleep stages with a high degree of accuracy. Con-

volutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid ar-

chitectures have shown promise in improving classification performance. In addition,

graph neural networks (GNNs) have been successfully applied to the processing of non-

Euclidean data such as EEG and EOG. Despite the progress made, challenges persist in

sleep stage classification. Variability in sleep patterns across individuals, the need for

powerful models, and the development of reliable monitoring methods are among the

ongoing research areas.

1.1 Sleep Stage Classification Utilizing Bioelectrical Sig-

nals: Motivation

Sleep stage classification utilizing bioelectrical signals is a significant area of re-

search within the fields of sleep medicine, neuroscience, and biomedical engineering.

This problem involves the analysis and interpretation of various physiological signals,

primarily EEG and EOG, to determine the different stages of sleep a person is in. There

are three main motivations that inspired us and are reflected in this dissertation as fol-

lows:
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• Motivations #1: The physiological signals are non-Euclidean data, which

means that the traditional methods for analyzing Euclidean data, like im-

ages and structured tabular data, are not directly applicable to physiological

signals.

EEG or EOG data are characterized by their temporal and spatial complexity.

These signals are recorded over time from multiple electrodes placed at various

locations on the scalp (EEG) or around the eyes (EOG), resulting in multivariate

time-series data with inherent spatial relationships. The interconnections among

electrodes are irregular, forming a graph structure rather than a regular grid. The

non-Euclidean nature of EEG and EOG data presents challenges when applying

traditional machine learning methods that assume grid-like structures, such as

regular images. Graph-based approaches, such as graph convolutional networks

(GCNs) [1–3], are particularly well-suited for dealing with non-Euclidean data.

Thus, our goal is to use a GCN framework that can achieve state-of-the-art per-

formance in sleep stage classification utilizing bioelectrical signals such as EEG

and EOG data.

• Motivations #2: Enhancing sleep staging efficiency to improve the diagnosis

of sleep disorder.

As mentioned earlier, sleep disorders, which affect a significant portion of the

global population, have far-reaching implications for health, productivity, and

overall well-being. Achieving an accurate and efficient sleep stage classifica-

tion model is essential for diagnosing these disorders and providing appropriate

treatment. While traditional manual methods of sleep stage classification have

been considered the gold standard, advancements in technology and computa-

tional methods offer the potential for more objective, reliable, and scalable ap-

proaches. Our objective is to explore and refine automated techniques of sleep

stage classification using deep learning and signal processing algorithms. By

enhancing the accuracy of sleep stage classification and mitigating the inherent

subjectivity in manual scoring, this endeavor can contribute to the optimization of
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1.2. RESEARCH GOALS

diagnosis and treatment of sleep disorders, ultimately improving the sleep quality

of individuals and long-term health outcomes.

• Motivations #3: Different modalities of physiological signals have different

contributions to sleep stage classification with distinct impacts on different

sleep stages.

To achieve a more accurate classification of sleep stages, analysis of multiple bio-

electrical signals is usually required rather than relying solely on a single signal.

Sleep is a complex physiological phenomenon with various sleep stages that in-

volve distinct changes in brain activity, eye movements, muscle tone, and more.

These changes are best captured and understood by considering a combination of

different signals. Physiological signals such as EEG and EOG offer insights into

distinct aspects of sleep-related phenomena, each of which has a unique influ-

ence on different sleep stages. By comprehensively exploring the individual and

collective contributions of these signal modalities to sleep stages classification,

we can shed light on their specific impacts on the delineation of wakefulness,

REM sleep, and NREM stages. In order to enhance the accuracy and depth of

sleep stage classification methods, we delve into the nuanced interactions be-

tween these signals and sleep stages. Consequently, this approach to combining

multi-stream biological signal features can advance our understanding of sleep

architecture and its implications for health and well-being.

1.2 Research Goals

The foremost goal of this study is to advance the state-of-the-art in sleep stage clas-

sification. We aim to develop and evaluate novel deep learning-based models that can

provide a more accurate and reliable classification of sleep stages. This includes ex-

ploring innovative feature extraction techniques and model architectures. In addition

to traditional polysomnography, our study explores the potential of multimodals, in-

cluding motion information from EEG and EOG. We aim to assess the feasibility and
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accuracy of utilizing multimodal for sleep stage classification, with the goal of enabling

more accessible and cost-effective monitoring solutions.

1.3 Dissertation Outline

The dissertation is primarily divided into six chapters: Introduction, Related works,

A signal-channel EEG-based approach: An attention-guided spatiotemporal graph

convolutional network for sleep stage classification, A multimodal physiological

signals-based approach: 4s-SleepGCN, and conclusion and future work. The disser-

tation outline is depicted in Figure 1.1.

Figure 1.1: The outline of the dissertation.

Chapter 1 serves as the introductory section of this dissertation, with the primary

goal of establishing the research background and elucidating its significance. In addi-
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1.3. DISSERTATION OUTLINE

tion, we briefly introduce the main results obtained so far in the literature. Finally, the

main motivations and contributions are presented.

In Chapter 2 of Fundamental Knowledge, we introduce the concept of sleep and

provide a brief overview of its effects on health and well-being. Moving forward, this

chapter proceeds to outline prevalent sleep disorders, offering a comprehensive under-

standing of their characteristics and manifestations. Additionally, we expound upon the

repercussions of these sleep disorders on individuals’ lives. Furthermore, we provide an

introduction to PSG as a comprehensive technique for monitoring sleep and its various

physiological parameters. We then provide an overview of sleep stage scoring manuals

and standardized criteria based on PSG data. In addition, we outline the unique charac-

teristics associated with each sleep stage according to the latest standardized criteria.

Chapter 3 provides an overview of pertinent studies and techniques employed in

this work. In the first two sections of this chapter, we delve into the historical evolution

of GCNs and Spatial-Temporal Graph Convolutional Networks (ST-GCN) and describe

the basics of the two models, shedding light on their respective advancements and mile-

stones. Also, we highlight important work or studies that led to and contributed to the

development of GCNs and ST-GCN and explore a wide range of applications where

the two frameworks have been successfully applied, with specific examples (e.g., sleep

stage classification, traffic prediction, climate analysis). Third, we provide an overview

of attention mechanisms and their significance in enhancing the capabilities of machine

learning models. Recent advances and applications in the area of attention mechanisms

are presented in this section of attention mechanisms. Finally, we not only introduce

the concept of multimodal fusion and its importance in combining information from

different modalities to improve understanding and performance but also show the role

of multimodal fusion in various applications.

In Chapter 4, a novel model for sleep stage classification using single-channel EEG

data is proposed. The proposed model is based on the architecture of the ST-GCN,

which can effectively capture the global context-enriched topology and employs tem-

poral convolution with dilation to enlarge the temporal receptive field. Moreover, to
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the best of our knowledge, this is the first time that an intertemporal attentional block

has been integrated into a sleep stage classification network. The introduction of the

attention blocks models the relationship between different EEG channels to capture

long-range dependencies for sleep stage classification, thereby improving the ability of

our proposed sleep stage classification model.

Chapter 5 underscores the significance of employing multimodal physiological sig-

nals in sleep stage classification. In Chapter 4, a novel graph-based multi-stream fu-

sion model called 4s-SleepGCN for automatic sleep stage classification is presented.

This proposal can better utilize the classification performance by embedding the posi-

tional relationship of the modal sequence. In addition, the EEG data, EOG data, and

corresponding motion information are fused into a unified multi-stream network frame-

work to improve the proposed model’s ability to differentiate between different sleep

stages. Our newly proposed 4s-SleepGCN model introduces the incorporation of EEG

and EOG motion information, marking a pioneering step in sleep stage classification.

This innovation represents a significant advance in the field of sleep stage classification

research.

In Chapter 6 of our dissertation, we highlight primarily the contributions made

throughout the research journey. In particular, we summarize the main findings, in-

novations, and insights that emerged from this work. In addition, this chapter provides

a critical reflection on the significance and implications of the study’s findings, method-

ology, and overall approach. Moreover, the chapter focuses on a thorough discussion

of our proposed sleep stage classification model, including its strengths and limitations,

while also outlining a roadmap for future research plans to improve and refine the per-

formance of the sleep stage classification model. This chapter is pivotal in terms of

demonstrating the long-term impact and potential continuation of the research beyond

the current study.
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1.4. THESIS OBJECTIVES AND CONTRIBUTIONS

1.4 Thesis Objectives and Contributions

The dissertation is a report on my three years of research on GCN architecture

and framework design for the sleep stage classification task. To efficiently categorize

distinct sleep stages, we present two GCN-based approaches within this study: (1) a

single-channel EEG-based approach and (2) a multimodal physiological signals-based

approach. Chapters 3 and 4 present our two proposed novel approaches and experi-

mental results. First, as reported in Chapter 3, we propose a combination of dynamic

and static ST-GCN, augmented by inter-temporal attention blocks. This proposal is for-

mulated with the aim of automating sleep stage classification using single-channel EEG

data. Second, in Chapter 4, considering the complementary potential of PSG signals, we

introduce a highly efficient graph-based multi-stream model termed 4s-SleepGCN. This

innovative model fuses features extracted from EEG, EOG, and the corresponding mo-

tion information to improve the precision of sleep stage classification. The dissertation

is approached with the goal of leveraging the GCN framework to process non-Euclidean

data, such as physiological signals. The overall goal is to achieve a level of performance

in sleep stage classification that surpasses that of its state-of-the-art counterparts. The

main contributions to our proposed approaches can be summarized as follows:

1. Our proposed single-channel EEG-based approach (An Attention-guided Spa-

tiotemporal Graph Convolutional Network for Sleep Stage Classification).

• In previous work, sleep stage classification is achieved by complex model-

ing. In contrast, our proposed method is to leverage spatial graph convolu-

tions along with interleaving temporal convolutions to achieve spatiotempo-

ral modeling, which can be simpler yet more efficient.

• The inter-temporal attention blocks are introduced to achieve an automatic

sleep stage classification, which can withdraw the most informative infor-

mation across space and time, further proving that capturing spatiotemporal

relation plays an important role in sleep stage classification.

• The proposed model significantly outperforms state-of-the-art methods on
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the sleep-EDF and the subgroup III of the ISRUC-SLEEP dataset. Our pro-

posed method achieves better performance with 91.0% and 87.4% accuracy,

both outperforming the state-of-the-art methods (86.4% and 82.1%).

2. Our proposed multi-modal physiological signals-based approach (4s-SleepGCN:

Four-Stream Graph Convolutional Networks for Sleep Stage Classification).

• To the best of our knowledge, we are the first to utilize a multi-stream fu-

sion strategy to facilitate the fusion of EEG signals, EOG signals, and the

corresponding motion stream, which significantly outperforms the state-of-

the-art methods on two benchmark datasets for sleep stage classification.

Furthermore, the motion modality is shown to be a beneficial addition to

sleep staging.

• In each single-stream model, we utilize the position embedding method

along with spatial-temporal convolutions to model spatial-temporal relation-

ships effectively and classify sleep stages.

• We propose a lightweight, single-stream solid baseline that is more potent

than most previous methods. We hope that the solid baseline will be helpful

for the study of automatic sleep stage classification.

• On the Sleep-EDF-39 and Sleep-EDF-153 datasets, our proposed model

named 4s-SleepGCN outperforms both single-stream and two-stream mod-

els. The experimental results underscore the importance of multiple infor-

mation. Our proposed model addresses the current deficiencies of multi-

modal learning in sleep staging, paving the way for multi-modal learning in

sleep stage classification.

In this work, we develop and rigorously evaluate a set of novel GCN-based mod-

els tailored for sleep stage classification. These models exhibit state-of-the-art perfor-

mance, surpassing existing methodologies in accuracy and robustness. Our comprehen-

sive analysis demonstrates the potential for a more reliable and precise classification

of sleep stages. To assess the generalizability of our models, we conducted extensive
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1.4. THESIS OBJECTIVES AND CONTRIBUTIONS

validation across diverse datasets. Our findings showcase the adaptability of our ap-

proaches to different data sources, further underscoring their practicality. The results

collectively underscore the contributions of this study to the ever-evolving landscape of

sleep science and technology. By advancing the accuracy and practicality of sleep stage

classification, we aim to catalyze further progress in understanding the critical role of

sleep in human health and to provide valuable tools for clinicians and researchers alike.
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Chapter 2

Fundamental Knowledge

2.1 What is Sleep?

Sleep is a naturally recurring state of rest that is essential for the proper functioning

and well-being of living organisms, including humans [4,5]. It is a fundamental physio-

logical process that allows the body and mind to rest, recharge, and rejuvenate [6]. The

one activity we spend most of our life doing is sleep. The average person spends about

26 years sleeping in their life which equates to 9,490 days or 227,760 hours. Thereby

underscoring the pivotal importance of achieving restful and sufficient slumber as an

integral constituent of a holistic and healthful way of life. During sleep, the body un-

dergoes a variety of regenerative processes, including tissue repair, muscle growth, and

memory consolidation [7]. These processes are essential for physical and cognitive

health. For example, good-quality sleep not only regulates metabolism and contributes

to cardiovascular health, but also promotes mental clarity, concentration, and the con-

solidation of memories, as shown in Figure 2.1.

In addition, sleep plays a central role in emotional well-being and stress reduction.

It provides the brain with the opportunity to process information, improve cognitive

function, and regulate emotions. Studies have consistently shown that people who con-

sistently get enough high-quality sleep tend to experience better mental health and re-

silience [8,9]. In addition to its immediate benefits, sleep also has a profound impact on
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2.2. SLEEP DISORDERS

Figure 2.1: The relationship between good-quality sleep and the quality of life.

long-term health and longevity. Numerous studies have established a strong association

between sufficient sleep and longer life expectancy [10–12].

In summary, sleep is not just a passive state of rest, but a dynamic and essential pro-

cess that contributes to a robust and satisfying life. Healthy sleep habits can effectively

enhance general well-being, cognitive abilities, and emotional stability, equipping in-

dividuals with the capacity to lead more dynamic and fruitful lifestyles. However, it is

important to acknowledge that sleep disorders can significantly undermine these advan-

tages. Therefore, prioritizing and nurturing healthy sleep habits is crucial for overall

health and longevity.

2.2 Sleep Disorders

In today’s rapidly evolving global environment, characterized by intense social com-

petition, escalating work-related pressures, and an increasingly aging demographic, the

prevalence and impact of sleep disorders have emerged as significant public health con-

cerns [13–15]. Sleep disorders encompass a spectrum of conditions that impede an

individual’s ability to achieve adequate and restorative sleep. Primarily, these disor-
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ders manifest in forms such as insomnia, circadian rhythm disturbances, and obstruc-

tive sleep apnea syndrome [16, 17]. Simultaneously, sleep disorders have escalated in

prevalence among adults. Numerous unfavorable factors may exert a dual influence,

contributing to the emergence of sleep disorders while also being intensified by them,

such as the consumption of substances like caffeine, nicotine, and alcohol [18], sleep

habits [19], and comorbid diseases [20]. According to the American Sleep Associa-

tion (ASA), roughly 50 to 70 million adults in the United States of America experience

sleep disorders [21]. In addition, sleep apnea is estimated to affect a significant portion

of the population, with prevalence rates ranging from 2% to 4% among adults and 1%

to 3% among children [22–24]. As outlined in the newly published third edition of

the International Classification of Sleep Disorders (ICSD) [25], sleep disorders can be

classified into seven major categories. These are respectively insomnia disorders, sleep-

related breathing disorders, central disorders of hypersomnolence, circadian rhythm

sleep-wake disorders, sleep-related movement disorders, parasomnias, and other sleep

disorders, as shown in Figure 2.2. Here’s a concise overview of these sleep disorders as

follow:

• Insomnia stands as a common sleep disorder, distinguished by challenges in

falling asleep, staying asleep, or experiencing non-restorative sleep, even in the

presence of suitable conditions and surroundings for slumber. As a result, people

experience daytime impairment due to insomnia, as evidenced by fatigue, height-

ened irritability, diminished focus, and a general decrease in overall well-being.

• Sleep-related breathing disorders are a group of conditions that involve dis-

ruptions in a person’s breathing patterns during sleep, which can lead to various

health problems, such as reduced oxygen intake, fragmented sleep, and daytime

sleepiness. In particular, Obstructive Sleep Apnea (OSA) and Central Sleep Ap-

nea (CSA) are two prominent and distinct examples of sleep-related breathing

disorders.

• Central Disorders of Hypersomnolence (CDH) represents a grouping of sleep
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2.2. SLEEP DISORDERS

Figure 2.2: The classification of sleep disorders based on the third edition of ICSD.

disorders marked by excessive daytime sleepiness, even when sufficient sleep is

obtained during the night. These disorders are generally caused by dysfunction

in the central nervous system’s regulation of wakefulness and sleep. Therein,

Narcolepsy is one of the most well-known CDHs.

• Circadian rhythm sleep-wake disorders also known as circadian rhythm sleep

disorders, are a group of sleep disorders characterized by disruptions in the natu-

ral timing of sleep and wakefulness that result in difficulty falling asleep, staying

awake, or maintaining a regular sleep schedule that affects the timing of sleep.

• Sleep-related Movement Disorders (SRMDs) are conditions in which a person

experiences involuntary movements during sleep, disrupting the sleep cycle and

leading to sleep disturbances. The movements that occur can vary in intensity and

type and often lead to daytime fatigue and impaired overall functioning. More-

over, the most common SRMDs are Restless Legs Syndrome (RLS) and Periodic

Limb Movement Disorder (PLMD).
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• Parasomnia serves as a category of sleep disorders in which people experience

abnormal movements, behaviors, emotions, perceptions, and dreams during dif-

ferent stages of sleep. Parasomnias are classified primarily by the sleep stages

in which they occur into non-rapid eye movement-related parasomnias, rapid eye

movement-related parasomnias, and others.

As we know, sleep disorders profoundly impact an individual’s well-being, affect-

ing not only their physical health but also their mental and emotional state. Proper

diagnosis, comprehensive comprehension, and effective treatment are crucial to ad-

dressing these sleep disorders and improving the quality of life for individuals grap-

pling with their effects. Hence, sleep staging plays a pivotal role in the realm of sleep

disorder diagnosis and management. It can provide essential information that assists

healthcare professionals in formulating accurate diagnoses and personalized treatment

strategies. This is particularly important given the varied incidences and characteristics

of sleep disorders across different sleep stages. To visually illustrate the relationship

between sleep disorders and different sleep stages, we present a selection of common

sleep disorders categorized by their incidence during different sleep stages in Table 2.1.

Therein, these common sleep disorders include insomnia [26], sleep apnea [27], nar-

colepsy [28], sleepwalking [29], night terrors [30], Rapid eye movement sleep behavior

disorder (RBD) [31]. Sleep disorders exhibit diverse manifestations across the different

stages of sleep, each of which is characterized by unique physiological and neurological

attributes. Consequently, the nature and characteristics of sleep disorders can signifi-

cantly vary, contingent upon the specific sleep stage impacted.

In summary, sleep stage classification offers a detailed and objective assessment of

a person’s sleep architecture. By examining the distribution of sleep stages through-

out the night, sleep specialists can make well-informed judgments regarding diagnosis,

treatment, and overall sleep management. This approach significantly enhances our

ability to address sleep-related disorders and foster healthier sleep patterns, thereby im-

proving individual well-being. Consequently, the practice of monitoring and analyzing

sleep stages in accordance with the various sleep stages observed throughout the night
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2.2. SLEEP DISORDERS

Ta
bl

e
2.

1:
Th

e
re

la
tio

ns
hi

p
be

tw
ee

n
sl

ee
p

di
so

rd
er

s
an

d
di

ff
er

en
ts

le
ep

st
ag

es
.

D
iso

rd
er

St
at

e
of

oc
cu

rr
en

ce
Es

se
nt

ia
lF

ea
tu

re
s

In
so

m
ni

a
In

so
m

ni
a

ca
n

im
pa

ct
al

ls
le

ep
st

ag
es

an
d

of
te

n
be

co
m

e
m

or
e

pr
on

ou
nc

ed
du

rin
g

th
e

lig
ht

sl
ee

p
st

ag
es

(N
1

an
d
N

2
st

ag
es

).

D
iffi

cu
lty

fa
lli

ng
as

le
ep

;
St

ay
in

g
as

le
ep

;
W

ak
in

g
up

to
o

ea
rly

.

Sl
ee

p
A

pn
ea

Sl
ee

p
ap

ne
a

is
of

te
n

m
or

e
pr

on
ou

nc
ed

du
rin

g
th

e
de

ep
er

sl
ee

p
st

ag
es

(N
3

an
d

R
EM

st
ag

es
).

In
te

rr
up

tio
ns

in
br

ea
th

in
g;

Fr
eq

ue
nt

aw
ak

en
in

gs
.

N
ar

co
le

ps
y

N
ar

co
le

ps
y

in
vo

lv
es

ra
pi

d
tra

ns
iti

on
s

be
tw

ee
n

w
ak

ef
ul

ne
ss

an
d

R
EM

st
ag

e.

D
ay

tim
e

sl
ee

pi
ne

ss
;

Sl
ee

p
at

ta
ck

s;
D

is
ru

pt
io

ns
in

R
EM

st
ag

e.

Sl
ee

pw
al

ki
ng

Sl
ee

pw
al

ki
ng

ty
pi

ca
lly

oc
cu

rs
du

rin
g

th
e
N

3

st
ag

e.
W

al
ki

ng
or

co
m

pl
ex

be
ha

vi
or

s
du

rin
g

sl
ee

p.

N
ig

ht
Te

rr
or

s
N

ig
ht

Te
rr

or
s

oc
cu

rt
he

N
R

EM
st

ag
e

(th
e

tra
ns

iti
on

fr
om

th
e
N

3
st

ag
e

to
th

e
N

2
st

ag
e)

.
In

te
ns

e
fe

ar
an

d
pa

ni
c.

R
B

D
R

B
D

oc
cu

rs
du

rin
g

R
EM

st
ag

e.
Lo

ss
of

m
us

cl
e

at
on

ia
.

1
R

B
D

is
an

ab
br

ev
ia

tio
n

fo
rR

EM
sl

ee
p

be
ha

vi
or

di
so

rd
er

.
2

N
R

EM
an

d
R

EM
ar

e
th

e
ab

br
ev

ia
tio

ns
fo

rN
on

-r
ap

id
Ey

e
M

ov
em

en
ta

nd
R

ap
id

Ey
e

M
ov

em
en

t,
re

sp
ec

tiv
el

y.

17



is of great significance.

2.3 Sleep Staging

Sleep staging, also known as sleep classification or sleep scoring, is a pivotal com-

ponent of sleep science that provides a profound insight into the intricate phases that

our minds and bodies undergo during slumber. Within the realm of sleep staging, sleep

is classified into distinct stages according to characteristic patterns of brain activity, eye

movement, muscle tone, and other physiological parameters. Numerous studies [32–35]

have consistently established that sleep stage scoring stands as the gold standard for the

comprehensive analysis of human sleep. In order to obtain an accurate sleep staging

score, the recognition of different sleep stages relies on various physiological measure-

ments obtained from a polysomnography (PSG) sleep study. As a result, the analysis of

PSG data is considered a representative criterion for sleep stage scoring [36].

2.3.1 Polysomnography (PSG)

Polysomnography (PSG) [37], a cornerstone diagnostic modality in sleep medicine,

is employed for the in-depth analysis of physiological parameters during sleep. PSG

functions by recording a spectrum of bodily functions through sensors attached to vari-

ous body parts as an individual sleeps or attempts to sleep. It encompasses the measure-

ment of brain activity (via electroencephalography, EEG), eye movements (electroocu-

lography, EOG), muscle activity (electromyography, EMG), cardiac rhythm (electro-

cardiography, ECG), as well as respiratory effort, airflow, and blood oxygen satura-

tion. This comprehensive approach allows for a detailed understanding of sleep patterns

and anomalies, thereby facilitating accurate diagnoses and effective treatment plans for

sleep-related disorders. The origins of the contemporary PSG can be attributed to the

pioneering work of Caton on 4th August 1875 [38]. Caton’s research unveiled brain

wave activity in the mammalians, marking a crucial advancement in the field. As time

continued to pass, the concept of recording the electrical activity of human beings grad-
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2.3. SLEEP STAGING

ually come to light and became recognizable to the general public, with its origins

tracing back to the late 19th and early 20th centuries. The German psychiatrist Hans

Berger [39] discovered the EEG in the 1920s, marking a significant milestone in the

understanding of brain activity. Berger’s contributions have had a substantial impact on

the application of EEG in the fields of medicine and science. The development of PSG

into a comprehensive tool for monitoring sleep-related physiological activities is a pro-

cess that requires time and progress across various domains. In the mid-20th century,

technological advancements, with the advent of innovations such as amplifiers, record-

ing equipment, and signal processing techniques, play a pivotal role in the refinement

of PSG techniques. With the continuous improvement of these technologies, the capa-

bility to simultaneously record multiple physiological signals (i.e., EOG, EMG, ECG)

becomes feasible. Accordingly, PSG has evolved from a research tool to a clinical diag-

nostic tool. Namely, sleep specialists can glean valuable insights into an array of distinct

sleep disorders by analyzing the intricate interactions among various physiological pa-

rameters during sleep [37, 40]. Especially in the diagnosis of sleep disorders like sleep

apnoea, due to the fact that PSG can accurately monitor and analyze irregularities in

breathing and oxygen levels. In summary, with the advancement of digital technology

and data analysis techniques, PSG has become more accessible and standardized. This

allowed the general public to become more aware of the importance of sleep monitoring

and sleep disorders.

As illustrated in Figure 2.3, PSG involves the use of attached electrodes and vari-

ous sensors placed on different parts of the body to record and monitor a wide range

of physiological parameters during sleep [41]. Therein, a total of six EEG electrodes

are employed for the collection of EEG recordings (C3, C4, M1, M2, REF, and GND,

respectively). Furthermore, the EOG is utilized to capture eye movements, while the

EMG of the chin is employed to monitor facial muscle tone. Additionally, the PSG

recordings contain a one-channel ECG and an EMG recording obtained from the tibialis

anterior muscle. The effort sensors are used to monitor the thorax and abdominal res-

piratory expansions. Moreover, respiratory events could be assessed using a nasal can-

19



Figure 2.3: PSG recordings consist of electrodes placed on the head, face, chest,
hand, and legs, including the EEG, EOG, chin EMG, airflow, ECG, pulse oxime-
try, respiratory effort (thoracic/abdominal), snore microphone, and body position
sensor.

nula functioning as a pressure sensor, while occurrences of snoring could be captured

through a microphone positioned adjacent to the larynx. Capillary oxygen saturation is

monitored using light-sensitive finger-pulse oximetry. These sensors work together to

provide a comprehensive picture of an individual’s sleep patterns and physiological re-

sponses during the night. The consecutive 30-s epochs of PSG data collected from PSG

sensors are then analyzed by experienced sleep physicians for achieving manual sleep

stage classification. As we know, sleep staging involves categorizing sleep into differ-

ent stages based on the patterns of EEG, EMG, EOG, and other physiological signals.

The various physiological signals used in sleep research are broken down as follows:

• EEG: EEG is a technique designed to capture the electrical activity in the brain.

This method entails the placement of electrodes on the scalp, which then recog-
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2.3. SLEEP STAGING

nize and measure the brain’s electrical signals. In the context of sleep studies,

EEG is frequently employed to monitor and analyze brain wave patterns, facil-

itating the identification of distinct sleep stages, including the REM sleep stage

and various NREM stages.

• EMG: EMG is a method designed to measure the electrical activity produced

by muscles. Surface electrodes or fine wire electrodes are placed on the skin

directly above the targeted muscles. In the context of sleep studies, EMG serves

to monitor muscle tone, particularly in regions like the chin and leg muscles.

By doing so, it aids in the differentiation of various sleep stages and facilitates

the identification of conditions such as sleep disorders and movements occurring

during sleep.

• EOG: EOG is a technique utilized to monitor the electrical activity resulting from

eye movements. Electrodes are commonly positioned around the eyes to effec-

tively monitor the motion of the eyeballs. EOG plays a crucial role in identifying

the REM stage during sleep, as it is a distinct hallmark of REM sleep.

• Other physiological signals (i.e., ECG): ECG records the electrical activity of

the heart. Electrodes are placed on the chest and limbs to capture the heart’s

electrical signals. In sleep studies, ECG can provide information about changes

in heart rate and rhythm during different sleep stages and can help identify sleep-

related cardiac issues.

Among these PSG recordings, EEG stands out as a cost-effective and typically non-

invasive method for monitoring and recording electrical brain activity during sleep.

Additionally, EMGs and EOGs have been widely employed as crucial indicators for

detecting the REM sleep stage [42]. As far as we know, the gold standard for sleep

stage classification is overnight PSG. Therefore, correct sleep stage scoring is a key

ingredient in this sleep analysis.
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2.3.2 Scoring of Sleep Stages

According to the biological signals of overnight PSG recordings [43], human ex-

perts reach a manual scoring of sleep stages. At an early stage, the Rechtschaffen and

Kales (R&K) criteria [44] for scoring of sleep stages is a widely acknowledged and stan-

dardized approach utilized to classify sleep stages, relying on PSG data. This system

was formulated during the 1960s by renowned sleep researchers William C. Dement,

Allan Rechtschaffen, and Anthony Kales. The R&K system involves the visual anal-

ysis and scoring of various physiological signals recorded during a sleep study. These

signals include EEG, EOG, EMG, and other physiological signals. The trained sleep

technicians or specialists use specific criteria to determine the sleep stage an individ-

ual is in at various points throughout the night. The R&K criteria divide sleep into six

sleep stages, including the wakefulness (W ) stage, the NREM sleep stage, and the REM

sleep stage. In this context, the NREM category is further subdivided into four sleep

stages: S1, S2, S3, and S4, respectively. The R&K criteria have been widely used for

several decades and provide a standardized way to report sleep stages in research and

clinical settings. However, the R&K criteria have several limitations, such as subjectiv-

ity in visual scoring and potential variability in interpretation between different scorers.

Additionally, as our understanding of sleep physiology and technology advances, more

detailed information on sleep stages becomes desirable. In order to address these lim-

itations, the American Academy of Sleep Medicine (AASM) [45] periodically updates

the sleep staging guidelines to incorporate new scientific knowledge and advancements

in the field of sleep medicine based on the R&K criteria. These updates ensure that

the guidelines remain accurate, relevant, and reflective of the latest understanding of

sleep physiology and disorders. While the R&K system may not be as commonly used

today, it remains an important historical reference in the field of sleep medicine. Re-

searchers and clinicians who study the history of sleep staging and sleep research often

refer to the R&K system to understand the evolution of sleep stage classification. In

contrast, the AASM staging manual provides a more detailed and specific set of criteria

for scoring sleep stages. In addition, the AASM manual also offers a more comprehen-
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2.3. SLEEP STAGING

sive framework for sleep staging in clinical practice and research, which has become

the contemporary standard for scoring sleep stages. According to the AASM manual,

sleep experts use consecutive 30-s epochs of PSG data to classify five stages. These are

wakefulness, rapid eye movement (also referred to as stage R), and three NREMs, N1,

N2, and N3. Based on the R&K criteria or the AASM manual, sleep stages are shown

in Figure 2.4. As we know, different sleep periods are characterized by distinct phys-

iological and neurological patterns. Therefore, Sleep experts often use various metrics

and characteristics of different sleep stages to assess sleep quality and create a scoring

of sleep stages.

Figure 2.4: Terminology used by R&K and AASM for sleep stage classification. In
R&K criteria, the sleep stages are classified into W (wakefulness), S1, S2, S3, S4,
and R (rapid eye movement). In the AASM manual, S3 and S4 stages are merged
into a single stage N3.

2.3.3 Sleep Stages and Their Characteristics

Sleep is divided into five sleep stages, each with its own unique features and func-

tions. As of our last knowledge update in September 2021, the AASM sleep staging

manual includes the following five sleep stages:

1. Wakefulness: Similar to the R&K criteria, this stage corresponds to periods when

23



the individual is awake and alert. When people are awake and alert, brain activity

is characterized by beta waves, which are fast and desynchronized. Muscle ac-

tivity is present, and eye movements are rapid. During wakefulness, people are

conscious and aware of their surroundings.

2. NREM sleep stage:

• N1 stage: N1 denotes the transition stage between wakefulness and sleep.

Similar to the S1 stage of the R&K criteria. It’s a very light sleep stage, and

people can be easily awakened during this phase. It often lasts only a few

minutes. During this stage, eye movements are slow, and muscle activity

decreases.

• N2 stage: N2 signifies the onset of true sleep, which is a deeper sleep than

N1 and is characterized by a decrease in heart rate and body temperature.

Similar to the S2 stage of the R&K criteria, this stage is characterized by a

decrease in muscle activity and conscious awareness. Moreover, brain wave

activity consists of short bursts of electrical activity. Sleep spindles and K-

complexes, which are sudden spikes in brain wave activity, are common in

this stage.

• N3 stage: N3 is also known as slow-wave sleep (SWS) or deep sleep, which

is the deepest stage of sleep. One of the significant changes introduced by

the AASM manual in their updated sleep staging guidelines is the consoli-

dation of the two deep sleep stages, S3 and S4 from the R&K criteria, into a

single stage called N3. It’s characterized by slow brain waves (delta waves)

and is considered the most restorative stage. Tissue repair and growth oc-

cur during this period, and it’s often difficult to awaken someone from this

stage.

3. REM sleep stage: Similar to the REM stage in the R&K criteria, it is character-

ized by rapid eye movements, increased brain activity, and vivid dreams. Physio-

logically, REM sleep resembles wakefulness. Brain activity produces rapid and
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2.3. SLEEP STAGING

desynchronized beta waves. Eyes move rapidly in various directions, and this

is when vivid dreaming occurs. Muscles are mostly paralyzed to prevent acting

out dreams (atonia). REM sleep is crucial for emotional processing, memory

consolidation, and cognitive functions.

Throughout the night, a typical sleep cycle consists of multiple cycles through these

different stages, progressing from N1 to N2 to N3 and then back to N2 before entering

REM sleep. Each cycle lasts around 90 minutes, with REM sleep becoming longer

and more prominent in the latter cycles. This cycling between sleep stages is essen-

tial for overall sleep quality and restoration. Hence, Sleep experts use the characteris-

tics of these different sleep periods, including the proportions of each stage, to assess

sleep quality, diagnose sleep disorders, and make recommendations for improving sleep

habits. However, clinical sleep scoring necessitates the meticulous visual examination

of overnight PSG data by a skilled human expert in alignment with established crite-

ria. Consequently, the manual classification of sleep stages demands substantial labor,

consumes a significant amount of time, is intricate in nature, and carries the poten-

tial for errors [46]. Therefore, achieving a reliable and high-precision methodology

for automatic sleep stage classification, utilizing bioelectrical signals, holds significant

prominence within the domain of sleep research.
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Chapter 3

Related Works

3.1 Deep Learning on Graph

With the increasing prominence of deep learning, the recent successes achieved

through neural networks have boosted research in the domains of pattern recognition

and data mining. Deep learning techniques present better performance than the state-

of-the-art algorithms in many domains, including image classification [47–49], video

processing [50–52], speech recognition [53–55], and natural language understanding

[56–58]. Various end-to-end deep learning paradigms, like CNNs [59], RNNs [60],

and autoencoders [61], have taken over the traditional approach of manual feature en-

gineering. The success of deep learning in extracting latent representations from Eu-

clidean data has proven that it can perform complex tasks with minimal human inter-

vention [62, 63]. In particular, CNN can efficiently achieve image analysis by automat-

ically learning and extracting features from images. Therein, this type of image data

is specially processed by CNN and has a fixed spatial structure, which belongs to the

two-dimensional grid data. However, not all significant real-world data is presented in

the form of visual signals or two-dimensional or three-dimensional information. These

kinds of data are collectively known as graph data. Graphs are pervasive in the real

world, manifesting in various domains and scenarios. Examples of graph data include

social networks [64], knowledge graphs [65], protein-protein interaction networks [66],

26



3.1. DEEP LEARNING ON GRAPH

Figure 3.1: Left: image in Euclidean space. Right: graph in non-Euclidean space.

and so on. In computer science and mathematics, a graph is a data structure that con-

sists of two sets, i.e., node (or vertex) set and edge set. The nodes represent entities in a

graph, whereas edges represent relationships between those entities. Graphs are used to

model relationships between various entities. As shown in Figure 3.1, localized convo-

lutional filters and pooling operators are not easy to define. It hiders the transformation

of CNN from the Euclidean domain to the non-Euclidean domain.

Traditional CNN-based methods are limited in their ability to effectively process

graph data [67]. In order to effectively process and analyze such graph data, graph learn-

ing [68] has been introduced to extract intricate relationships from graph-structured data

by leveraging essential and relevant relations among vertices within the graph. For ex-

ample, the detecting information cascades are used to track the spread trajectory of ru-

mors in social networks. Some researchers [69] analyze the co-occurrence phenomenon

with different timestamps to achieve human mobility pattern prediction in traffic net-

works. Thus, a massive amount of the existing studies show that extracting complex

patterns by exploiting deep learning from graph data has been found very useful in var-

ious fields, such as pattern recognition and image processing. As deep learning tech-

niques can encode and represent graph data into vectors, how to utilize deep learning

techniques to extract patterns from complex graphs has attracted considerable attention.

Deep learning on graphs can be divided into three categories: semi-supervised, un-
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Figure 3.2: The categorization of deep learning-based methods on graphs.

supervised, and recent advancements. GNNs [70] is a key component of deep learning

techniques specifically recognized as a powerful technique for graph analysis, which

falls under the umbrella of graph learning in the context of deep learning. GNN is also

an effective framework for processing data that can be represented as graphs [71]. In

the work proposed by Wu et al. [72], it has been proved that some state-of-the-art GNN

models are successfully applied in various fields. GNNs are classified into five groups:

convolutional aggregator [3], attention aggregator [73], gate updater [74, 75], skip con-

nection [76], and hierarchical graph [77], with GCNs being only a small subset in this

broader context. GCN falls under the category of convolutional aggregators, as shown

in Figure 3.2. In addition, GCNs are proposed to extend CNNs to graphs, allowing for

the effective modeling of relationships and dependencies within graph data. Therefore,

GCNs and subsequent variants have become the mainstream models used for learning

graph representations and achieving excellent performance.

3.2 Graph Convolutional Network

GCNs [2] are a type of multilayer neural network architecture designed to process

and analyze graph-structured data. GCNs function directly on a graph and generate
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3.2. GRAPH CONVOLUTIONAL NETWORK

embedding vectors of nodes according to the properties of their neighborhoods. The

existing graph convolutional network model can be divided into two taxonomies, as

shown in Figure 3.3. First taxonomy is contingent on the type of convolutions, GCNs

can be categorized into two main models: spectral-based models and spatial-based mod-

els. Another classification can be based on the practical applications in which GCNs

are employed. From this, it is evident that GCNS have applied in a wide range of tasks

and applications. In the GCN framework, each part can be introduced as follows:

• Input Data: The graph is represented by an adjacency matrix, which captures the

relationships between nodes, and a feature matrix, which contains feature vectors

for each node.

• Convolutional Operation: GCNs use a localized convolutional operation similar

to CNNs. However, in GCNs, this operation is adapted to work on the graph

structure. It involves aggregating and transforming information from neighboring

nodes.

• Message Passing: Nodes in the graph gather and exchange information with

their neighbors. This information exchange is called message passing. Each node

aggregates information from its neighbors’ features and updates its own feature

representation.

• Layer Stacking: GCNs are typically composed of multiple layers. Each layer

refines the node representations by incorporating information from increasingly

distant nodes in the graph.

• Activation Function: After each layer, an activation function (often using ReLU)

is applied to the updated node features.

• Output: Depending on the task, the final layer’s node features can be used for

various purposes, such as node classification, link prediction, or graph classifica-

tion.
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Figure 3.3: An overview of graph convolutional networks. Left: based on the types
of convolutions. Right: based on the application domains.

We briefly review the development of GCNs. In 2013, it was widely recognized

that Bruna et al. [78] were among the first to introduce spectral-based GCN. Defferrard

et al. [79] uses K-polynomial filters to improve the computational complexity. In ad-

dition, the Chebyshev polynomial [80] is employed to future reduce the computational

complexity. Thereafter, a simplified GCN model [2] is proposed for semi-supervised

classification and to achieve better predictive performance on a number of datasets.

However, the spectral graph convolution relies on the specific eigenfunctions of the

Laplacian matrix. It remains challenging to transfer the spectral-based graph convo-

lutional network models learned on one graph to another graph with different eigen-

functions. Hence,spatial-based models might be favored. For example, Gao et al. [81]

propose the learnable GCN model to handle more irregular structures. In [82], the

topology adaptive graph convolutional network is adaptive to the graph topology as the

filter scans the graph.

On the other hand, GCNs can be also categorized according to their application

domains. Yao et al. [83] present a novel architecture combining GCN and long short-

term memory (LSTM) for image captioning. In [84], authors use graph convolution

to process input graphs for generating images from scene graphs. Moreover, in our
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3.2. GRAPH CONVOLUTIONAL NETWORK

work [85], we develop a lightweight yet efficient neural network built upon GCN for

action recognition based on skeleton data extracted from action clips. Another skeleton-

based method is [86], where a generalized GCN is proposed for better recognition in

skeleton-based action recognition exploiting spatial and temporal dependencies among

human joints. To accomplish point cloud classification, Wang et al. [87] have introduced

a local spectral-based graph convolution method designed to achieve a specific objec-

tive. The [88] presents a novel graph-convolutional architecture named FeaStNet to find

correspondences between collections of 3D shapes on meshes. Generally speaking, text

classification is an important and classical problem in natural language processing. To

address this task, Many GCN-based models have been proposed, to name a few, the

Text GCN [89] is proposed for text classification and its performance surpasses that of

many methods. Furthermore, Lin et al. [90] design a text classification model named

BertGCN utilizing the advantages of GCN and bidirectional encoder representations

from transformers (Bidirectional Encoder Representations from Transformers (BERT))

to achieve state-of-the-art performances on a wide range of text classification datasets.

GCNs have been applied in the relation extraction between words [91] and event ex-

traction [92]. GCNs have found applications in various scientific domains, such as the

physical dynamics [93], chemical stability prediction of a compound [94], and protein

interface prediction [66, 95, 96]. In particular, the GCNs are applied directly to clas-

sify sleep stages. In the context of EEG data, as brain regions exist in a non-Euclidean

space, a graph is the most suitable data structure for representing brain connections.

For the EOG data, we create a graph representation that captures relationships between

EOG channels. Therein, each electrode channel in the EOG data can be represented as

a node in the graph. The edges represent relationships between nodes, namely func-

tional connectivity. As a consequence, our proposed second work [97], 4s-SleepGCN,

employs EEG and EOG signals for sleep stage classification based on GCN. In sum-

mary, GCNs have gained popularity for their ability to capture both local and global

information from graph data, making them useful for a wide range of tasks in fields like

social network analysis, sleep stage classification, recommendation systems, molecular
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chemistry, and more.

In spite of the fact that GCNs are a powerful tool for processing graph-structured

data. However, spatiotemporal data often involves complex interactions between spatial

and temporal dimensions, which may not be adequately captured by traditional GCNs.

Hence, the ST-GCN, as one of the most advanced extensions of GCN-based models,

can introduce spatiotemporal convolutional layers to incorporate both spatial and tem-

poral information by leveraging the neighborhood relationships between nodes and the

sequential dependencies across time steps.

3.3 Spatiotemporal Graph Convolutional Network

In recent years, there has been a growing interest in leveraging deep learning tech-

niques to effectively model spatiotemporal data. ST-GCN [98] represents a cutting-edge

class of deep learning models designed to process spatio-temporal data in complex sys-

tems. ST-GCN leverages graph convolutional operations to capture both spatial and

temporal dependencies in data sequences. It allows the modeling of dynamic interac-

tions among entities in a dataset, making it suitable for a wide range of applications. For

instance, in the field of computer vision, action recognition, and human pose estimation.

This section reviews the key contributions and advancements in the field of ST-GCN,

providing a comprehensive understanding of their capabilities and applications.

3.3.1 Fundamentals of ST-GCN

ST-GCN fundamentally expands upon the principles of GCNs to accommodate spa-

tiotemporal data. ST-GCN is built on the foundation of graph theory and deep learning,

enabling the modeling of data structured as graphs. To put it differently, the core of

ST-GCN lies in the fundamental idea of representing data as a graph [99]. A graph

consists of nodes (vertices) and edges (connections) that define the relationships be-

tween nodes. This representation is particularly suitable for data with intrinsic spatial

connections, such as urban road networks [100] or social networks [101]. In ST-GCN,
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nodes represent individual entities within the data, which may be locations, sensors,

or even individuals in a social network. In addition, edges represent relationships or

interactions between nodes. These relationships can be directed or undirected. There-

fore, the spatial dependencies can be captured by considering neighboring nodes in the

graph structure. Moreover, since each graph corresponds to a different time step in

the sequence, ST-GCN operates on the temporal sequence of the graph for capturing

temporal dependencies.

ST-GCN is a combination of the temporal convolutional network (TCN) [102] and

GCN [103]. TCN conducts convolutional operations on data in the temporal dimen-

sion, while GCN performs convolutional operations on data in the spatial dimension.

Spatial convolutional layers are applied to each graph in the sequence. These layers

compute feature representations by considering the relationships between nodes in the

same graph, capturing spatial dependencies within each frame. In spatial convolution,

the model performs convolutions on each graph (representing one frame or snapshot in

the temporal sequence). It considers the local neighborhood of each node in the graph,

along with their features, to compute new feature representations. This process captures

spatial dependencies within a single frame. The spatial convolutional operation can be

represented as:

Ys = $

0

@
PX

i=1

X

j2P(i)

Ws · Vi · Vj

1

A (3.1)

where Ys denote the output feature map. P is the number of nodes in the graph. P(i)

represents the neighborhood of the node. Ws are learnable spatial convolutional filters.

Vi and Vj denote node features. The activation function $ commonly uses ReLU.

TCN specializes in modeling sequential data, particularly time-series data. It is

designed to capture long-range temporal dependencies efficiently. TCN uses a series

of 1D causal convolutions [104], which are dilated to capture different temporal res-

olutions. Dilated convolutions [105] allow TCN to model temporal dependencies at

various scales and effectively handle long-range dependencies. Temporal convolutional
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layers are applied across the sequence of graphs. These layers capture how features

change over time, modeling temporal dependencies, which can be represented as:

Yt = $ (Wt ⇤Xt) (3.2)

Therein, Yt is the output feature map. Wt and Xt denote learnable temporal convolu-

tional filters and the sequence of spatial feature maps over time, respectively. Therefore,

by combining spatial and temporal convolutions, ST-GCN effectively captures both spa-

tial and temporal dependencies in spatio-temporal data, making it well-suited for tasks

such as action recognition and human pose estimation in videos.

3.3.2 Applications of ST-GCN

ST-GCN has a wide range of applications across various domains due to its ability

to capture both spatial and temporal dependencies in data. Some key applications of

ST-GCN are presented as follows:

1. Action Recognition

In the skeleton-based human action recognition domain, the methods based on

ST-GCN have had great success recently. Yan et al. [98] propose an ST-GCN-

based method to model the skeleton data and this method improves the accuracy

of action recognition to a new level. In [106], an improved ST-GCN model is pro-

posed to well capture the intrinsic high-order correlations among skeleton joints.

Moreover, Li et al. introduce an actional-structural graph convolutional network

(AS-GCN) [107], which contains actional-structural graph convolution and tem-

poral convolution, to capture richer dependencies. Shi et al. [108] take advantage

of the relationship between joints and bones for action recognition. In addition,

more variants of ST-GCN are proposed [85, 109–111], which typically introduce

incremental modules to enhance the expressiveness and network capacity.

2. Human Pose Estimation
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ST-GCN can estimate the 2D or 3D poses of human bodies over time, enabling

applications in animation, sports coaching, and healthcare for monitoring pa-

tient movements. For example, a method [112] based on an improved ST-GCN

model is proposed for human pose estimation. In [113], the authors use hand

pose sequences as input and estimate 3D hand joint locations using ST-GCN.

Furthermore, Sofianos et al. [114] present a novel space-time-separable graph

convolutional network (STS-GCN) to better learn the fully trainable joint and

time interactions for pose forecasting. Above that, Liu et al. [115] use tempo-

ral convolutional and graph attention blocks to capture varying spatiotemporal

sequences for achieving real-time 3D human pose estimation in video. Overall,

ST-GCN provides an effective framework for human pose estimation by consid-

ering both spatial and temporal information, making it robust in scenarios where

poses change dynamically over time.

3. Healthcare

In healthcare, ST-GCN can be used for gait analysis, assessing the quality of

movement in rehabilitation exercises, sleep stage classification, and monitoring

patient activity for fall detection or eldercare. For instance, Keskes et al. [116]

develop an effective fall detection system that offers good results using ST-GCN.

In [117], The researchers employ the ST-GCN model to predict the probability of

a person falling or not falling. Moreover, the ST-GCN-based approach introduced

by Lu et al. [118] is designed to learn and capture the left ventricular (LV) motion

patterns, illustrating the adaptability of ST-GCN in medical imaging applications.

In the domain of sleep stage classification, our initial work [119] employs a com-

bination of dynamic and static ST-GCN with inter-temporal attention blocks to

achieve state-of-the-art performance. Zhao et al. [120] utilize GCN and TCN to

extract spatial features and transition rules between sleep stages. In the Internet

of Medical Things (IoMT), ST-GCN can monitor patient activity and behavior,

ensuring patients are following prescribed routines and identifying irregularities

or distress signals [121]. Therefore, in healthcare, ST-GCN’s ability to analyze
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spatio-temporal data can contribute to early diagnosis, effective rehabilitation,

and improved patient care.

In summary, the versatility of ST-GCN highlights its capacity to capture intricate

spatio-temporal patterns and dependencies. This makes it a valuable tool for compre-

hending and analyzing complex data across various domains and applications. Simul-

taneously, an increasing number of individuals are placing their attention on the per-

formance of these networks. In order to enhance the network’s performance in various

tasks, an attention mechanism is introduced in the neural network.

3.4 Attention Mechanism

Attention is a complex cognitive function that plays an indispensable role in human

behavior and perception [122,123]. Humans selectively focus their attention on specific

information when and where it is required. Meanwhile, they ignore some perceivable

information. This is a mechanism for humans to expeditiously extract valuable data

from vast information within limited cognitive resources. The attention mechanism

greatly improves the efficiency and accuracy of perceptual information processing.

The attention mechanism [124] is a technique for diverting attention to the most im-

portant regions while filtering out extraneous or inconsequential areas. In deep learning,

the attention mechanism is a key component, particularly in the field of natural language

processing (NLP) and computer vision, that allows these models to focus on specific

parts of the input data when making predictions or decisions. In the human visual sys-

tem, attention [125] is used as an aid to efficiently analyze and understand complex

scenarios. Inspired by the idea of attention, the attention mechanism is introduced to

improve performance in the field of computer vision. Within a visual processing system,

an attention mechanism can be considered as a dynamic selection procedure, wherein

features are adaptively assigned weights based on the significance of the input. The

actual starting point of the attention mechanism is developed for sequence-to-sequence

tasks and quickly becomes popular for a variety of visual tasks, such as image classifica-
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tion [126], object detection [127], semantic segmentation [128], face recognition [129],

super resolution [130], sleep stage classification [119], medical image processing [131],

and multi-modal task [132].

Figure 3.4: Brief summary of key developments in attention in computer vision,
which have loosely occurred in four phases. A representative method in each phase
is RAM [132], STN [132], SENet [124], and Non-Local Network [133], respectively.

The history of attention-based deep learning models in computer vision can be

coarsely divided into four phases, as shown in Figure 3.4. The initial phase commences

with the introduction of the recurrent attention model (RAM) [133], a groundbreaking

endeavor that integrated deep neural networks with attention mechanisms. At the start

of the second phase, the spatial transformer network (STN) [134] is proposed to select

important regions in the input using the spatial transformer. The third stage was in-

augurated by the squeeze-and-excitation network (SENet) [126], which introduced an

innovative channel-attention network capable of implicitly and adaptively forecasting

potential key features. The final phase marks the advent of the self-attention era, which

can be initially proposed in [135] and swiftly brings about substantial advancements

in the NLP. The attention-based models show the huge potential in various tasks. It is

evident that attention-based models hold the promise to supplant convolutional neural

networks and emerge as a more robust and versatile architectural paradigm in the realm
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of computer vision. There are two main types commonly used in convolutional neural

networks: spatial attention and channel attention.

Figure 3.5: Developmental context of spatial attention methods.

1. Spatial Attention

Spatial attention can be seen as an adaptive spatial region selection mechanism:

where to pay attention. As illustrated in Figure 3.5, RAM [133], STN [134],

gather-excite network (GENet) [136], and Non-Local [135] serve as exemplary

instances of various spatial attention methodologies. It is well known that CNNs

have huge computational costs, especially for large inputs. In order to concen-

trate limited computing resources on important regions, RAM incorporates RNNs

[137] and reinforcement learning [138] to instruct the network on where to focus

its attention. RAM represents a pioneering effort in employing RNNs for visual

attention and paves the way for subsequent RNN-based techniques, as evidenced

by the subsequent works [139, 140]. Moreover, the attribute of translation equiv-

ariance renders CNNs well-suited for handling image data. Nevertheless, CNNs

do not possess rotational invariance, scaling invariance, and warping invariance.

To achieve these attributes while making CNNs focus on important regions, STN
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3.4. ATTENTION MECHANISM

is proposed to enable the network to focus on discriminative regions by using an

explicit procedure and grant deep neural networks the ability to achieve transfor-

mation invariance. For GENet, the long-range spatial contextual information can

be extracted through the incorporation of a recalibration function in the spatial

domain. The architecture of GENet integrates both part-gathering and excita-

tion operations. The proposed gather-excite module captures important features

while simultaneously suppressing less relevant information. Self-attention has

been successfully applied in the field of NLP and is employed as a spatial at-

tention mechanism to capture global information features. CNNs have a limited

receptive field because the convolutional operations are localized. To address

this problem, the self-attention is introduced in computer vision [135]. Nonethe-

less, the self-attention mechanism is afflicted with various shortcomings, with its

quadratic computational complexity being a notable constraint on its practicality.

In response to these challenges, several variants (i.e., CCNet [141], A2Net [142],

and SAN [143]) have been introduced to mitigate these issues. In addition, the vi-

sion transformer architecture [144] is used in image processing, which is capable

of producing results equal to those of modern convolutional neural networks.

In summary, spatial attention mechanisms in deep learning enable models to fo-

cus on specific regions or parts of input data, improving their ability to process

complex information and make more accurate predictions. These mechanisms

have become integral components of various state-of-the-art deep learning archi-

tectures and have been crucial in advancing the performance of models in a wide

range of tasks.

2. Channel Attention

In deep neural networks, different channels in different feature maps usually rep-

resent different objects [145]. The weight of each channel can be adaptively re-

calibrated through channel attention, akin to a process of selecting objects or fea-

tures, consequently determining where to allocate attention. Hence, SENet [126]

represents a pioneering advancement in the realm of channel attention. Therein,
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Figure 3.6: The Schema of the SE Block. GAP and FC denote global average
pooling and fully connected layer, respectively.

a SE block in SENet serves the crucial functions of collecting global information,

capturing inter-channel relationships, and enhancing the network’s representation

capabilities. SE blocks (see Figure 3.6) contain a squeeze module and an excita-

tion module. The squeeze module aggregates global spatial information through

global average pooling. Meanwhile, the excitation module captures inter-channel

relationships and generates an attention vector through the utilization of fully con-

nected (FC) layers and non-linear functions. Subsequently, each channel within

the input feature is scaled by multiplying it by the corresponding element from the

attention vector, effectively building interdependencies between channels. While

the SE block is widely used, it solely re-evaluates the importance of each channel
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3.4. ATTENTION MECHANISM

by modeling channel relationships, neglecting positional information. However,

positional information is critical for generating spatially selective attention maps.

To address this problem, the coordinate attention (CA) block is introduced as a

novel attention block based on the SE block that takes into account not only the

relationship between channels but also the positional information in the feature

space.

Figure 3.7: The Schematic of the CA Block. X Avg Pool and Y Avg Pool refer to 1D
horizontal global pooling and 1D vertical global pooling, respectively.

Coordinated attention encodes channel relationships and long-range dependen-

cies with precise positional information. The specific operations are divided into

coordinate information embedding and CA generation, as shown in Figure 3.7.

Coordinate information embedding aggregates features along two spatial direc-

tions separately, yielding a pair of directionally aware feature maps. Addition-

ally, it enables attention modules to capture long-range dependencies along one

spatial direction while preserving precise positional information along the other

spatial direction. This assists the network in more accurately localizing the re-

gions of interest. In the CA generation, not only does it make full use of the cap-

tured positional information, accurately capturing the regions of interest, but it

also effectively extracts inter-channel relationships. Therefore, CA blocks can be

incorporated into various neural network architectures to improve performance
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by effectively capturing global context information. This is especially true for

classification tasks such as sleep stage classification, where understanding the

relationships between different temporal coordinates or channels is critical.

Attention mechanisms are powerful tools for modeling relationships within a single

modality or data source, as they enable models to focus on specific parts or elements

within that modality, which can help capture important patterns or dependencies. How-

ever, when dealing with multiple modalities or data sources, such as text, images, audio,

or other types of data, it becomes necessary to model the relationships and interactions

between these modalities. To overcome this limitation, multimodal fusion is proposed,

enabling the integration of data from diverse sources to deduce valuable information

that may not be attainable through the use of a single source.

3.5 Multimodal Fusion

Multimodal [146]refers to the integration or interaction of multiple sensory modal-

ities or data sources. In the context of data analysis, machine learning, and artificial

intelligence, multimodal data or systems involve the combination of information from

different sources or modes. These modalities can include various types of sensory input

or data types, such as text, images, video, sensor data, environmental data, biometric

data, and geospatial data. Multimodal data analysis involves the processing, integra-

tion, and interpretation of information from these different modalities to gain a more

comprehensive understanding of a given task or problem. For example, in sleep stage

classification, a multimodal system [97] might use data from different PSG signals to

accurately classify sleep stages. Therefore, multimodal fusion can enhance the robust-

ness, accuracy, and richness of information processing in various applications, allowing

systems to better mimic human perception and understanding.

Multimodal fusion [147] refers to the process of integrating information or data

from multiple sensory modalities or sources to create a unified representation or under-

standing of a given phenomenon, event, or problem. The goal of multimodal fusion is
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3.5. MULTIMODAL FUSION

to combine the strengths of different modalities to enhance overall system performance

and enable more comprehensive analysis. Multimodal fusion can occur at different

stages of data processing, leading to three common approaches: early fusion, interme-

diate fusion, and late fusion [148], as shown in Figure 3.8.

3.5.1 Fusion Structure

3.5.1.1 Early Fusion

Early fusion in multimodal fusion is a technique where information from different

modalities or data sources is combined at the input level before being processed by a

single model. This approach creates a joint representation of the data from multiple

sources, allowing the model to learn interactions and dependencies between modalities

from the very beginning of the processing pipeline. Poria et al. [149] propose an early

fusion method that involves concatenation of multimodal features. However, the early

fusion of multimodal data may not fully harness the complementarity of the modali-

ties and could result in exceedingly large input vectors that might include redundant

information. To address this problem, autoencoders [150] in deep learning are used

for dimensionality reduction and feature learning. Moreover, in [151], the authors use

some convolutional, training, and pooling fusion methods to solve the other challenge

in early fusion, namely time synchrony between different data sources.

3.5.1.2 Late Fusion

Late fusion, also known as late integration or late combination, is a multimodal

fusion technique where the information from different modalities or data sources is

processed independently and then combined at a later stage. During the fusion stage, a

variety of techniques are employed to fuse the outputs from the modality-specific mod-

els, ultimately producing a final multimodal prediction. For example, weighted sum-

mation [152] is applied to assign weights to the output of each modality and compute

a weighted sum. These weights can either be learned from the data through training or

set manually based on prior domain knowledge. The second common technique is con-
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3.5. MULTIMODAL FUSION

catenation [153] which concatenates the outputs from different modalities into a single

feature vector and then feeds it into a fusion layer or model. Furthermore, the predic-

tions from modalities are combined using voting mechanisms (e.g., majority voting) or

consensus algorithms [147]. Recently, attention mechanisms [140, 154] have been in-

troduced to dynamically weigh the contributions of different modalities based on their

relevance to the task. When input modalities exhibit substantial uncorrelation, consider-

able disparity in dimensionality, or distinct sampling rates, Implementing a late-fusion

approach in multimodal learning problems is often more favored. In contrast, an inter-

mediate fusion approach provides greater flexibility.

3.5.1.3 Intermediate Fusion

Intermediate fusion is a technique in multimodal deep learning where data from

different modalities are first transformed into high-dimensional feature representations

and then fused at an intermediate layer within a neural network model. The Inputs

are scaled, shifted, and skewed by alternating linear and nonlinear operations at each

layer to generate a new representation of the original data. In multimodal fusion, when

raw data from various modalities are converted into high-dimensional feature repre-

sentations, these feature representations are fused into a single hidden layer, allowing

the model to learn a joint multimodal representation. During this processing, 2D con-

volution, 3D convolution, or FC layer is used for learning high-dimensional feature

representations. After the individual modalities have been processed, the representa-

tions from these modalities are combined using a fusion layer, also known as a shared

representation layer. This fusion layer is responsible for integrating the modalities into

a joint or shared representation space. Finally, the fusion layer produces a unified, joint

multimodal representation that captures the interactions and relationships between the

modalities. The study [155] shows that intermediate fusion can be especially useful

when there are complex interactions between data sources and additional processing is

needed to align the data.

In summary, the choice of fusion approach depends on the specific application, the
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nature of the data sources, and the desired trade-offs between computational complexity,

information integration, and flexibility. Different fusion methods may be more suitable

for different tasks and scenarios.

3.5.2 Applications of Multimodal Fusion

Multimodal fusion has a wide range of applications across various domains where

information from multiple sources or modalities needs to be combined to make more

informed decisions or improve the overall understanding of a complex phenomenon.

Deep multimodal learning started to garner significant attention within the research

community after the pioneering work of [156]. The initial endeavor in deep multimodal

fusion primarily focused on only two modalities: images and text. As time has pro-

gressed, an increasing number of researchers have directed their efforts toward leverag-

ing multimodal data for human activity recognition (HAR). Multimodal fusion in HAR

combines multimedia data such as audio, video, depth, and skeletal motion information

to create a holistic view of human activities. Multimodal deep learning approaches have

been used to solve a wide array of problems related to human activity, such as skeleton-

based action recognition [157], speech and gesture recognition [158], facial emotion

recognition [159], and face recognition [160].

In addition, with the undeniable success of deep learning in medical applications,

the multimodal fusion of information from different modalities to improve medical di-

agnosis, treatment, and health management has attracted great interest in medicine.

Combining data from different sensors, imaging modalities, patient records, and other

sources can lead to a more comprehensive and accurate understanding of a patient’s

condition. In disease diagnosis, multimodal fusion combines data from various med-

ical tests and diagnostic tools, such as blood tests, medical imaging (e.g., magnetic

resonance imaging (MRI), computerized tomography (CT) scans, X-rays), and patient

history. For example, combining information from multiple imaging modalities (MRI

and positron emission tomography (PET) scans) can improve the accuracy of tumor de-

tection and staging [161]. Moreover, the structured data from EHRs are integrated with
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unstructured clinical notes and reports to improve patient risk prediction and outcome

analysis [162]. Multimodal fusion aids in extracting valuable insights from heteroge-

neous healthcare data. Also, multimodal fusion combines NLP techniques with medi-

cal imaging or genomic data [163] to enhance diagnostic accuracy and support clinical

decision-making, thereby extracting meaningful information from clinical narratives,

radiology reports, and medical literature. In sleep stage classification, multimodal fu-

sion is used for PSG analysis, namely, fusion of PSG signals to accurately classify sleep

stages and detect sleep disorders, e.g., our proposed 4s-SleepGCN [97]. As the medi-

cal community increasingly embraces diagnosis aided by artificial intelligence, we can

anticipate significant advances in the field through multimodal fusion techniques.

To this point, our investigation highlights the related techniques and methodologies

in our proposed work. These techniques serve as our inspiration and benchmark for

innovation. Furthermore, we draw insights from related techniques that can enhance

the effectiveness of our approach. We explore how techniques can be integrated to

create a more holistic and innovative solution.
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Chapter 4

An Attention-guided Spatiotemporal

Graph Convolutional Network for

Sleep Stage Classification

In this chapter, we propose a single-channel EEG-based approach to achieve sleep

stage classification. Sleep stage classification has been widely used as an approach

in sleep diagnoses at sleep clinics. GNN-based methods have been extensively ap-

plied for automatic sleep stage classifications with significant results. However, the

existing GNN-based methods rely on a static adjacency matrix to capture the features

of the different EEG channels, which cannot grasp the information of each electrode.

Meanwhile, these methods ignore the importance of spatiotemporal relations in clas-

sifying sleep stages. In this work, we propose a combination of dynamic and static

ST-GCN with inter-temporal attention blocks to overcome two shortcomings. The pro-

posed method consists of a GCN with a CNN that takes into account the intra-frame

dependency of each electrode in the brain region to extract spatial and temporal fea-

tures separately. In addition, the attention block was used to capture the long-range de-

pendencies between the different electrodes in the brain region, which helps the model

classify the dynamics of each sleep stage more accurately. In our experiments, we used

the Sleep-EDF-39 and the subgroup III of the ISRUC-SLEEP dataset to compare with
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the most current methods. The results show that our method performs better in accu-

racy from 4.6% to 5.3%, in kappa from 0.06 to 0.07, and in macro-F score from 4.9%

to 5.7%. The proposed method has the potential to be an effective tool for improving

sleep disorders.

4.1 Introduction

In recent years, the intersection of neural networks and biomedical engineering has

seen groundbreaking advances, paving the way for innovative applications in numerous

health-related fields. One of these promising applications is in the realm of sleep re-

search, particularly in sleep stage classification. Sleep is an indispensable physiological

phenomenon for human beings that serves to prevent physical and mental illness and

improve mood [164]. Accurate classification of these stages is essential for diagnosing

and understanding sleep disorders and improving overall sleep quality.

The traditional approach to classifying sleep stages relies heavily on the EEG. The

EEG is an inexpensive and generally non-invasive test for monitoring and recording

electrical activity during sleep. In addition, EMGs and EOGs have been used as two

important switches for detecting the REM sleep stage [165]. Up to now, the conven-

tional visual scoring method is still the most acceptable approach, namely that human

experts need to combine other biological signals (such as EEG, EOG, and EMG) to

achieve manual sleep stage classification [166]. Manual sleep stage classification, an

integral component of sleep analysis, is considered a tedious task [167]. Although qual-

itative sleep scoring is indispensable, it is beset by limitations, chiefly the variability in

interpretations attributable to the differing experiences of experts. This can lead to in-

consistencies in scoring outcomes, undermining the reliability of the results. Moreover,

manual visual inspection of an entire night’s EEG data is an extremely time-consuming

task. Considering these challenges, automatic sleep stage classification with rapid and

high accuracy based on EEG signals is of great research interest.

Looking back on the past decades, various methods in the relevant studies on sleep
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stage classification have been proposed. According to study [164], sleep stage research

has far-reaching implications for biomedical practice. In the early days, researchers

used hand-engineered feature-based methods to extract features in the time and fre-

quency domains for sleep stage analysis. For example, Tsinalis et al. [168] made the

precision of sleep stage classification up to 78.9% via the extracted features in the

time-frequency domains. Lee et al. [169] developed an automatic sleep stage clas-

sification system with a mean percentage agreement of 75.52% for diagnosing OSA,

using single-channel frontal EEG to classify wake, light sleep, deep sleep, and REM

sleep. In order to achieve sleep stage classification, some machine learning-based

methods [170, 171] have been introduced in sleep stage classifications, e.g., Support

Vector Machine (SVM) [172] and Random Forest (RF) [173]. However, these meth-

ods have some limitations, such as the need to observe each PSG epoch for extracting

features with prior knowledge. For the time being, more studies are focusing on deep

learning-based methods. Owing to the availability of high-quality datasets of EEG sig-

nals, deep learning-based methods are widely used to extract features from EEG signals

for sleep stage classification. In our opinion, the latest deep learning-based methods for

sleep stage classification can be split into two categories: non-GCN-based methods and

GCN-based methods.

1. Non-GCN-based Methods

More studies are solving the task of sleep stage classification based on RNNs and

CNNs. RNNs are commonly used to model the temporal dynamics of EEG sig-

nals [174]. In the SeqSleepNet [175], a hierarchical RNN is used to model the

sleep stage and achieve accuracy up to 87.1%. In RNN, there are two kinds

of the most representative structures, LSTM [137] and Gated Recurrent Unit

(GRU) [176]. For example, IITnet [177] is proposed to automatically score sleep

stages via bi-directional long short-term memory (BiLSTM). However, the prob-

lem of gradient disappearance or explosion occurs during RNN training, which

makes it difficult to train a deep RNN model. Compared to RNNs, CNNs have

high performance in parallel computing. To extract local and global features,
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Tsinalis et al. [178] proposed an automatic classification approach for sleep stage

scoring based on single-channel EEG. Phan et al. [179] used a simple yet effi-

cient CNN to extract sleep features from EEG signals. In addition, SleepEEG-

Net [180] employs deep CNNs as the backbone network for sleep stage classifi-

cation, achieving an accuracy of 84.26 %. Chanbon et al. [181] introduce an end-

to-end deep learning approach for sleep stage classification using multivariate

and multimodal EEG signals. Furthermore, there are some works that combine

CNN with RNN to simultaneously extract spatial and temporal features for sleep

stage classification, e.g., DeepSleepNet [182] and TinySleepNet [183]. However,

EEGs are non-Euclidean data, which naturally results in CNNs and RNNs being

limited in feature extractions. Furthermore, their development potential is further

hindered by the enormous parameter overhead.

2. GCN-based Methods

The GCN [2] is an advanced neural network structure for processing graph-

structured data. Since EEG channels are structured data with temporal relations,

each channel can be considered as a node in the graph. For this reason, GCN-

based methods have been proven to be more powerful in processing EEGs. The

joint analysis of EEG and eye-tracking recordings is raised by Zhang et al. [184],

whose strategy is to introduce GCN to fuse features. However, EEG channel

signals include the temporal dynamic information of brain activity and the func-

tional dependence between brain regions. To remedy the deficiency of the tradi-

tional spatiotemporal prediction model, the ST-GCN [98] is proposed to model

spatiotemporal relations and to learn the dynamic EEG for the task of sleep stage

classification. For example, GraphSleepNet [185] is proposed to utilize brain spa-

tial features and transition information among sleep stages to achieve more spe-

cific performance. However, the dependence on non-adjacent electrodes placed

in different brain regions is often overlooked. Since then, Jia et al. [186] pro-

pose a multi-view spatial-temporal graph convolutional network (MSTGCN) to

extract the most relevant spatial and temporal information with superior perfor-
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mance. They introduce spatiotemporal attention to extract temporal and spatial

information, respectively. However, this method makes it ineffective to capture

the spatiotemporal dependencies on separated attention.

4.1.1 Issues

After summarizing the previous works, there are three shortcomings that need to be

solved:

1. Topological connections of electrodes in context are not well captured;

2. These previous methods force GCNs to aggregate features in different channels

with the same topology, which limits the upper bound of model performance;

3. Attention weights are not sufficient to summarize long-range spatiotemporal char-

acteristics.

4.1.2 Purpose

In order to address the aforementioned challenges, we propose a combination of

dynamic and static ST-GCN with inter-temporal attention blocks for automatic sleep

stage classification based on EEG.

4.1.3 Outline

The rest of this chapter is organized as follows: In Section 4.2, we present a series

of preparatory works for our study. In Section 4.3, we briefly describe the proposed

network framework, including the dynamic and static ST-GCN and the inter-temporal

attention block. The dataset used, the experiments, and the experimental results are

presented in Section 4.4. Finally, we conclude this work in Section 4.5.
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4.2 Preliminaries

A sleep stage network is described as an undirected graph G = (V,E), where

V = {V1, V2, · · · , Vn} is the collection of N nodes representing electrodes in the brain,

and the edge set E represents the connection between nodes captured by an adjacency

matrix A 2 N ⇥ N . A is a matrix composed of 0 and 1 , where 1 represents that the

corresponding electrodes are connected, and 0 otherwise. Graph G is made up of a 30-

second EEG signal sequence St. The sleep feature matrix is the input of G. We define

the raw signal sequence as S = {S1, S2, · · · , Sm} 2 Rm⇥Q⇥T , where m denotes the

number of samples, Q means the number of electrodes, and T is the time series length

of each sample Si 2 S (i 2 {1, 2, · · · ,m}). Inspired by Hyvräinen’s work [187], we

can extract the features of differential entropy (DE) on different frequency bands and

define them on each sample feature matrix. Therefore, we can obtain a feature matrix

at each sample i, denoting the Fde features of the nodes N .

Xi =
�
x
i

1, x
i

2, · · · , xi

N

�T 2 RN⇥Fde (4.1)

Therein, xi

n
2 RFde (n 2 {1, 2, · · · , N}) denotes the Fde features of electrode node

n at sample i. The objective of our study is to establish a mapping relationship between

sleep signals and sleep stages using a spatiotemporal neural graph network. The issue

of the sleep stage is described as follows:

C = (X1, X1+d, · · · , X1+kd) 2 RN⇥Fde⇥Tn (4.2)

The given Equation (4.2) can identify the current sleep stage S. Therein, C denotes

the temporal context of X1+kd, S denotes the sleep stage class label defined by X1+kd,

Tn indicates the length of sleep stage networks, d denotes the temporal context coeffi-

cient, and k is the number of intercepted time segments in a continuous EEG signal.
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In this section, we introduce the components of our proposed network of sleep stage

classification in detail.

4.3.1 Network Architecture

Figure 4.1 illustrates our network architecture. Inspired by ST-GCN [98], we con-

struct the network of sleep stage classification by nine serial connected ST-GCN mod-

ules that can extract more detailed feature information. The ST-GCN module contains

a sequential execution of a GCN block and a TCN block. The TCN block is a one-

dimensional CNN used for sequence modeling tasks. The GCN block and the TCN

block in GCN aggregate features along the spatial dimension and the temporal dimen-

sion, respectively. Each ST-GCN module is followed by an attention block (ATT). The

function of the ATT block allows the network architecture to pay more attention to im-

portant features of the sleep stage, thus better capturing spatiotemporal relations. As far

as we know, this is the first attempt to introduce attention enhancement and spatiotem-

poral separated feature extraction together for sleep stage classification using EEGs.

Each module is presented separately in the following subsections.

4.3.2 Graph Convolutional Network Module

In our work, we construct a spatiotemporal graph with the electrodes in the brain

as graph nodes and natural connections in different brain region electrodes and time as

graph edges. In sleep stage classification tasks, it is important that we model the spatial

dependencies in the sleep staging network. GCN is able to effectively extract key point

information from the spatiotemporal graph. To capture the dependency created by the

topological structures of the electrodes in the context, the layer-wise update rule of

GCNs may be implemented to features at time T on sleep inputs defined by features X

and the graph structure Ã, as follows:
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Output

Input

GCN Block TCN Block
(CNN)

ST-GCN Module

ATT Block ST-GCN Module

Figure 4.1: The proposed network architecture for sleep stage classification. The
network consists of nine ST-GCN modules, each followed by an attention (ATT)
block. Each ST-GCN module contains a GCN block followed by a TCN block. The
numbers of output channels for ST-GCN modules are 66, 66, 66, 132, 132, 132,
264, 264, 264.

X
l+1
T

= �

⇣
D̃

� 1
2 ÃD̃

� 1
2X

(l)
T
µ
(l)
⌘

(4.3)

Therein, D̃ is the diagonal degree matrix of Ã, and the sleep graph with self-

loops Ã = A+ I consists of an adjacency matrix A and an identity matrix I . This

allows Ã to preserve the identity features. The � (·) is an activation function and the

µ denotes the weight matrix. Moreover, D̃� 1
2 ÃD̃

� 1
2 can be conceived as an approxi-

mate spatial mean feature aggregation from the immediate neighborhood followed by

an activated linear layer.

In static methods, Ã is defined manually or set as a trainable parameter. The topol-

ogy is predefined according to the structure and is fixed in both the training and testing

phases. Notably, these methods have some limitations, such as the need for prior knowl-

edge and the inability to construct dynamic graph topologies. To overcome these limi-

tations, the model is usually required to be generated adaptively depending on the input

sample. Therefore, a dynamic ST-GCN [185] is proposed that defines a non-negative

function to represent the connection relationship between electrode nodes Ni and Nj
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based on the input feature matrix. From this effect, the dynamic adjacency matrix is

more powerful since it can be dynamically adapted during the training process and has

a stronger generalization ability compared to static methods due to the dynamic topolo-

gies. Although the use of dynamic topologies leads to good performance, the original

structural information is often discarded. Therefore, we propose a combination of dy-

namic and static GCN that incorporates contextual features of all brain regions to learn

correlations between arbitrary pairs of points.

In the static branch, we use the physical graph Gp from the physical connections

of the electrode structure and the parameterized mask Gm is used to pay attention to

the physical graph Gp. The static topology information of the electrode structure is

extracted in the static branch, which has been shown to be useful for the final prediction.

The output of the static branch can be shown as follows:

Outputstatic = � (Gp +Gm)X
(l)
T
µ
(l) (4.4)

In the dynamic branch, the predicted dynamic graph Gd is used as input. The output

of the dynamic branch extracts the global context-enriched topology of the electrode

structure. We represent the output of the dynamic branch as:

Outputdynamic = GdX
(l)
T
µ
(l)

0
(4.5)

Therein, the learnable kernel µ(l)
0

is not shared between the static and dynamic

branches. Moreover, we fuse static and context-enriched topology features extracted

by the static and dynamic branches using a weighted summation method. It can be

expressed as:

Output = (1� �)Outputdynamic + �Outputstatic (4.6)

where � goes from 0 to 1, which is a balance between the output of the static and

dynamic branches.
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4.3.3 Multi-scale CNN Module

Temporal modeling is essential to sleep stage classification as well. Many stud-

ies [188–190] show that RNNs achieve great performance in temporal modeling tasks.

However, the main shortcomings of RNNs are time, cost, and its inability to retain

long-term memory. Namely, RNNs cannot perform massively parallel processings

like CNNs. TCN [191], as a temporal variant of CNN, has promising performance

in time series forecasting. Since sleep stage classification is time-dependent, TCN is

used to capture dependencies between sleep stages for achieving sleep stage classifi-

cation. Multi-scale convolutional neural networks can adaptively fuse multi-scale tem-

poral features extracted by different scale convolution kernels. Thus, they can better

model temporal topological features.

Input
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Figure 4.2: Multi-scale convolutional neural network architecture.

In order to achieve temporal modeling, many previous studies [85, 106, 108] have

used temporal convolutions with a fixed kernel size kt ⇥ 1 throughout the architec-

ture. As a natural extension to the multi-scale spatial aggregation, we used multi-scale

learning to improve vanilla temporal convolutional layers, as shown in Figure 4.2. To

reduce the computational costs incurred by the extra branches, we introduce the idea

of a bottleneck design [192], set the kernel size to 3 ⇥ 1, and employ different dilation
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factors [193] instead of larger kernels for larger receptive fields to construct a multi-

scale time-series layer. Specifically, seven temporal convolution branches are arranged

in parallel. Each branch uses a bottleneck structure (i.e., 1 ⇥ 1 convolution) to reduce

the number of feature channels and the calculation amount, thus accelerating the train-

ing speed and model inference. Moreover, as the input passes forward, the functions of

distinct branches diverge, which can be divided into the following four types.

• Multi-scale temporal feature extraction: In the four temporal convolution branches,

each branch consists of 3 ⇥ 1 temporal convolutions. Each 3 ⇥ 1 temporal con-

volution uses different dilations to obtain multi-scale temporal receptive fields.

• Feature processing within the current frame: This second type only has a temporal

convolution with the kernel size 1 ⇥ 1 to concentrate features within a single

frame.

• Emphasizing the most salient information within the consecutive frames: The

third type is to be followed by a 3 ⇥ 1 max-pooling layer to draw the most im-

portant features.

• Gradient preservation: To preserve gradients during back-propagation, we add a

residual path in the final type.

Finally, we use residual connections [194] to facilitate training.

4.3.4 Inter-Temporal Attention

Most existing approaches [98, 108, 109] use graph convolution to extract spatial

relations at each time step and 1D convolutional layers to model temporal dynam-

ics. However, these methods make it difficult to obtain the direct information flow

across spacetime, and complex regional joint spatiotemporal dependencies are not cap-

tured. In other words, the factorized modeling cannot capture the long-range features

with precise temporal information. In recent years, attention mechanisms have found
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wide application in various classification tasks, which have made remarkable achieve-

ments [73, 195, 196]. The essence of attention mechanisms is to select the relatively

critical information from the input. In our work, we consider the spatiotemporal rela-

tion of the EEG data and the stability of the learned representations for different sleep

stage sequences. For example, in sleep stages R and N1, the topological features of

adjacent electrodes are similar, as shown in Figure 4.3(a) and Figure 4.3(c). To extract

strongly distinctive features, there is a need for long-range dependencies in time and

precise temporal information in space. In the spatial dimension, the shorter the path

length, the more efficient the information transfer between the two electrodes. We pass

the relevant features of the distant (informative) electrode to the target electrodes with

much higher weights. An example is given in Figure 4.3(b). The feature weights of

electrode F3 are passed to electrodes O1 or O2, which can pay attention to important

features of distant electrodes in classifying similar sleep stages and better achieve sleep

stage classification. Moreover, each electrode is expressed by a time series. In the tem-

poral dimension, there are similarities among neighboring sleep stages, and we attend

to important time steps of each electrode. Therefore, inter-temporal attention is intro-

duced to capture the spatial and temporal correlations in the sleep stage classification

network.

The classification tasks introduce attention mechanisms to improve the classification

effects, which are mainly implemented by a multi-layer perception (MLP), such as the

SENet structure [126]. These modules are usually executed independently for each

channel or spatial dimension, while other dimensions are globally averaged into a single

unit. Since there is a strong link between spatial and temporal information based on

GCN in sleep stage classification. It is clear that features separated from frames and

electrodes are sub-optimal for weighting the importance of electrodes in different sleep

stages, owing to the fact that the spatiotemporal relations are ignored.

We separately consider that the frame and electrode are sub-optimal for weight-

ing the importance of the electrode structure in the sleep stage classification. As an

application of coordinate attention [197] for sleep stage classification, we propose an
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inter-temporal attention to enhance the model’s ability to extract informative features.

It not only identifies the most informative points in certain frames from the whole in-

put sequence, it can also help the network of sleep stage classification to capture richer

features. Figure 4.4 is the overview diagram of the inter-temporal attention block. We

present the details of an attention block in detail.

• We used a sequence of EEG signals as input, a sequence of EEG signals consists

of T number of frames. Each frame consisted of sleep information with dimen-

sion C⇥V , where V is the number of electrodes and C is the number of channels.

The input features (Finput) were passed through temporal pooling (Gt) and spa-

tial pooling (Gs), respectively. After the operation of pooling, we aggregated the

information in the frame- and electrode- dimensions, yielding two sets of fea-

ture maps with temporal- and spatial-aware characteristics, the electrode features

(GtFinput), and the frame features (GsFinput).

• We used the concatenation (�) operation to obtain the pooled feature vectors

(Fcompact), and used the FC layer to obtain the compact information. The activa-

tion function Swish (⌘) [198] is utilized in this FC layer.

• We used two relatively independent FC layers to recover the electrode features

and the frame features into the same shape as the input separately. Then, the

sigmoid activation function (⌧ ) is applied to the updated tensor. Hence, we can

obtain two sets of attention scores, which are from the frame dimensions and the

electrode dimensions, respectively. We used the attention scores to reweight the

raw feature maps in frame- and electrode- dimensions. Namely, T(Fcompact) and

S(Fcompact) denote the transfer matrix of the frame and electrode, respectively. In

two independent FC layers, we multiplied the obtained attention scores for frame

dimensions and electrode dimensions by the channel-wise outer-product (⌦).

• An element-wise product (�) was performed, resulting in output feature maps

(Foutput). The results of the multiplication could be considered as the attention

scores for each electrode in the whole sleep cycle.
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The inter-temporal attention module can be explained concisely and intuitively with

the following two equations:

Fcompact = ⌘ (MLP · (GtFinput �GsFinput)) (4.7)

Foutput = Finput � (⌧ (T (Fcompact)⌦ S (Fcompact))) (4.8)

To extract the most noteworthy information from the EEG signal sequence, we per-

form the max pooling operation under the frame- and electrode- dimensions, respec-

tively. The max pooling plays a similar role as the attention mechanism, the maximum

weight of the two dimensions can be selected by this operation. Then, the two groups

of the obtained feature maps are concatenated, as shown in Figure 4.5(a). We use the

fully connected layer to squeeze the dimensions of the concatenated feature map. Thus,

we obtain a continuous feature mapping for our subsequent extraction of the different

dimensions of feature attention. After the split operation, two sets of attention scores for

the frame dimension and the electrode dimension can be obtained, respectively. What

we need is a relationship of attention across time and space, the attention scores of

frames and electrodes are multiplied by a channel-wise outer-product, as shown in Fig-

ure 4.5(b). Moreover, the result can be seen as the attention scores for each electrode in

the whole EEG signal sequence. The attention score is a trainable inter-temporal sig-

nal. The joint spatiotemporal attention weight can be seen as the interaction of temporal

attention weight and spatial attention weight, and we aggregate the temporal attention

branch on the left and the spatial attention branch on the right, as shown in Figure 4.5(c).

Finally, we assign the generated spatiotemporal attention weights to the feature maps

to obtain the attention responses across space and time. The most informative frames

and electrodes can be more accurately located using the attention block, which helps

the model to better complete sleep stage classification. As far as we know, this is the

first time that inter-temporal attention blocks are introduced for automatic sleep stage

classification.
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4.4 Results

In this section, we evaluate the performance of the proposed method using two pub-

licly available datasets. A detailed description of the ISRUC-SLEEP dataset, the Sleep-

EDF-39 dataset, and the experimental setups can be given in the first two subsections.

Then, we report the results of our proposed model compared to the other state-of-the-art

models on the same dataset.

4.4.1 Dataset and Experimental Settings

To evaluate the performance of our method, we use the two publicly available

datasets in this study: Sleep-EDF-39 dataset [199, 200] and ISRUC-SLEEP dataset

[201], which are the most widely used open-source datasets for state-of-the-art meth-

ods of sleep stage classification.

4.4.1.1 Sleep-EDF-39 dataset

The Sleep-EDF-39 dataset records the EEG of 20 healthy Caucasian male and fe-

male subjects (ages 28.7 ± 2.9) without medication, and each EEG is sampled at 100

HZ from Fpz–Cz and Pz–Oz electrode locations. The EEG recording is manually clas-

sified into eight patterns (Wake, S1, S2, S3, S4, REM, movement, and unknown) ac-

cording to the scoring rules of R&K [44]. In our experiment, we combine the S3 and S4

stages into one stage N3 according to the AASM manual [45]. As the EEG is recorded

over a long period of time, the stages movement and unknown are recorded at the be-

ginning and end of each recording, when the subjects are awake. Therefore, movements

(and unknown) are not used for sleep stage classification. Consequently, we obtain a

dataset with five classes, including W (Wake), N1 (S1), N2 (S2), N3 (S3 + S4) and R

(REM). We use the 30-min EEG before and after the sleep period as experimental data.
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4.4.1.2 ISRUC-SLEEP Dataset

The ISRUC-SLEEP dataset from the Portuguese Foundation for Science and Tech-

nology (PFST) has three subgroups, with each subgroup recording the EEGs of 100 par-

ticipants, 8 participants, and 10 participants, respectively. In order to compare healthy

subjects with patients suffering from sleep disorders, we used the subgroup III as the

experimental dataset in our study; the EEG recordings of nine healthy male subjects

and one healthy female subject aged between 30 and 58 years. Moreover, each EEG

recording contained six EEG channels (i.e., C3–A2, C4–A1, F3–A2, F4–A1, O1–A2, and

O2–A1) and is sampled at 200 Hz. The EEG recordings were visually scored by a hu-

man expert. According to the AASM manual [2], there were five classes in this dataset,

including W (Wake), N1, N2, N3, and R (REM). Table 4.1 shows the number of sleep

stages in two different datasets.

Table 4.1: Details of the number of sleep stages in the subgroup III of the ISRUC-
SLEEP dataset and Sleep-EDF-39 dataset.

Dataset W N1 N2 N3 R Total
Sleep-EDF-39 7927 2804 17,799 5703 7717 41,950

ISRUC-SLEEP 1817 1248 2678 2035 1111 8889

4.4.2 Experimental Settings

In our experiment, we respectively use the 20-fold cross-validation and 10-fold

cross-validation to evaluate our method. In each iteration of our methodology, we adopt

a leave-one-out approach. The recordings from one subject are designated as the test

set, while the recordings from all other subjects are compiled to form the training set.

This strategy allows for thorough evaluation and ensures that the model is tested against

diverse data sets, contributing to a robust and generalizable system. We implement our

model with PyTorch 1.7.1, CUDA 11.4, and Anaconda 4.10.3. The detailed hyperpa-

rameters of our experiment are listed in Table 4.2.
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Table 4.2: The hyperparameters of our experiment.

Hyperparameters Value
Optimizer Adam
Batch size 64

Number of training epochs 120

Learning rate Initial learning rate is 0.001 and is decayed
by 10 at the 30th, 60th, and 90th epoch.

Dropout probability 0.2
Layer number of ST-GCN 9

Reduction ratio 4
Numbers of output channel for ST-GCN 66, 66, 66, 132, 132, 132, 264, 264, 264

4.4.3 The Performance of Sleep Stage Classification

In our study, we use some metrics to evaluate the proposed model [202–204], e.g.,

the macro-precision, macro-recall, macro-F score, and Cohen’s Kappa coefficient. The

macro-precision (Pmacro), macro-recall (Rmacro), macro-F score (MF1), and Cohen’s

Kappa coefficient () are calculated as follows:

ACC =
1

K

KX

i=1

✓
TP + TN

TP + FP + FN + TN

◆

i

(4.9)

Pmacro =
1

K

KX

i=1

✓
TP

TP + FP

◆

i

(4.10)

Rmacro =
1

K

KX

i=1

✓
TP

TP + FN

◆

i

(4.11)

MF1 =
1

K

KX

i=1

✓
2⇥ TP

2⇥ TP + FN + FP

◆

i

(4.12)

 =
ACC � pe

1� pe
(4.13)

Therein, TP , FP , and FN , respectively, stand for the true positives, false positives,

and false negatives of class i. In our experiment, n represents the number of subjects.

In Equation (4.13), ACC is the accuracy of our model, and pe denotes the hypothetical
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probability of chance agreement.

Table 4.3: The confusion matrix of our proposed method on the Sleep-EDF-39 dataset.

Predicted Stage
W N1 N2 N3 R Total

Actual stage

W 7371 214 94 147 101 7927
N1 53 2496 201 44 10 2804
N2 480 552 16,019 187 561 17,799
N3 147 93 249 5123 91 5703
R 21 103 15 410 7168 7717

Total 8072 3458 16,578 5911 7931 41,950

Table 4.4: The confusion matrix of our proposed method on the subgroup III of the
ISRUC-SLEEP dataset.

Predicted Stage
W N1 N2 N3 R Total

Actual stage

W 1682 83 37 7 8 1817
N1 94 878 183 6 87 1248
N2 19 179 2297 158 25 2678
N3 4 3 122 1905 1 2035
R 8 59 37 3 1004 1111

Total 1807 1202 2676 2079 1125 8889

Macro-averaged performance obtained with the sleep-EDF-39 dataset and the sub-

group III of the ISRUC-SLEEP dataset is shown in Tables 4.3 and 4.4. From Table 4.3,

we can calculate that the macro-precision, macro-recall, and macro-F score are 87.4%,

90.9%, and 89.0%, respectively. From the Table 4.4, the macro-precision, macro-recall,

and macro-F score are 86.6%, 86.5%, and 86.5%, respectively. In two different datasets,

we obtain an accuracy of 91.0 % and 87.4 %, respectively. Cohen’s kappa coefficients

are 0.88 and 0.84, which is considered ideal as it outperforms the standard of 0.8 [203].

To validate the effect of introducing the ATT blocks, we use a 20-fold cross-validation

on the Sleep-EDF-39 dataset and a 10-fold cross-validation on the subgroup III of the

ISRUC-SLEEP dataset. The results of the comparisons are described in Figure 4.6. Fig-

ure 4.6 presents that the model with the ATT blocks performed better than the model

without the ATT blocks in terms of overall accuracy and F1-score for each sleep stage.

The performance has been significantly improved.
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4.4.4 Comparisons with State-of-the-Art Models

To verify the superiority of our proposed model, we compare it with state-of-the-art

models on the Sleep-EDF-39 dataset and the subgroup III of the ISRUC-SLEEP dataset.

We use the same experimental settings to train all models. Compared to other baseline

methods, our model outperforms significantly better than the state-of-the-art methods,

as can be seen in Tables 4.5 and 4.6. First, we consider previous works that utilize RNN

and CNN to extract spatial or temporal features for sleep stage classification. These

non-GCN-based methods use grid data as input to high accuracy. However, EEGs, as

non-Euclidean data, can be well processed by powerful GCNs. Therefore, we use two

datasets to evaluate the performance of existing GCN-based methods and perform a

comparative analysis.

As shown in Tables 4.5 and 4.6, our proposed method presents the best overall

performance compared to the state-of-the-art methods. The proposed method achieves

the best accuracy (91.0% and 87.4%), the macro-F score (89.0% and 86.5%), and Kappa

(0.88 and 0,84) on two datasets. For the subgroup III of the ISRUC-SLEEP dataset, the

proposed method provides the highest accuracy for each sleep stage. For the Sleep-

EDF-39 dataset, our method achieves the highest accuracy for each sleep stage except

for N3 stage (sub-optimal). For N1 stage, Tables 4.5 and 4.6 show that the classification

effect for N1 stage on the two datasets is not as ideal as for the other sleep stages. It can

be explained by two reasons. First, a number of samples in N1 stage belong to the sleep

transition period [205], thus the N1 stage is misclassified into other stages. Second, the

N1 stage occupies a small proportion of the dataset. In particular, in the Sleep-EDF-39

dataset, the proportion of N1 stage is only 6.7%.

4.5 Discussion

Sleep disorders are highly prevalent in the world. Especially in the United States,

nearly 25% of adults suffer from sleep disorders [208]. Sleep disorders not only affect

the quality of life, but also lead to health problems, such as heart disease and stroke.
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4.5. DISCUSSION

For people with sleep disorders to obtain adequate sleep, they may require the help of

an appropriate method for sleep stage classification. In this work, we use a combination

of dynamic and static ST-GCN with inter-temporal attention blocks to automatically

classify sleep stages. We first consider that the distribution of brain electrodes is char-

acteristic of non-Euclidean data. After the addition of ATT blocks, the sleep stage

classification network achieves better performance. This confirms that spatial and tem-

poral correlations play an important role in the sleep stage classification. The obtained

results suggest that our method is promising in detecting new abnormalities in sleep

and continuously improving our understanding of sleep mechanisms.The NREM stages

are divided into three sleep stages (N1, N2, and N3) and are associated with the depth

of sleep. Research shows that the stage N3 may affect the ability to learn new infor-

mation and memory retention [209]. In simple terms, N3 is the deepest sleep stage,

which has the strongest repair function. Tafaro et al. [210] report a positive relationship

between sleep quality and survival in centenarians. From our experiment, the proposed

method shows excellent performance in classifying the stage N3 compared with stages

N1 and N2. Therefore, accurate detection of the stage N3 provides an aid to long-term

care, health and welfare services for the elderly. A study [211] shows that patients with

REMOSA in REM sleep had a significantly more collapsed airway and better ventila-

tory control stability compared with NREM sleep. Moreover, as it is suggested that the

increased proportion of N3 stage may reveal a lower severity of OSA [212], our method

can be used as an ancillary treatment.

There are several challenges in the broader context of sleep stage classification.

Firstly, accurately detecting stage N1 is challenging since it is a transitional phase be-

tween wakefulness and sleep. The system should be improved for the diagnosis of sleep

fragmentation, such as obstructive sleep apnea. Secondly, the dataset quality is often

compromised due to human errors. Given that sleep scoring is typically done by ex-

perts, it’s common for similar sleep stages to be mislabeled. Consequently, a significant

issue for many sleep stage classification networks is utilizing high-quality datasets for

training. In response to these challenges, future developments aim to create a sleep
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stage system that emulates more human-like performance, thereby enhancing accuracy

and reliability in sleep stage classification.
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Chapter 5

4s-SleepGCN: Four-Stream Graph

Convolutional Networks for Sleep

Stage Classification

In this chapter, we present a multimodal physiological signals-based approach for

sleep stage classification. Sleep stage classification serves as a critical basis for as-

sessing sleep quality and diagnosing sleep disorders in clinical practice. Most existing

methods rely solely on a single channel for sleep stage classification, thereby neglecting

the complementary nature of multimodal electrophysiological signal characteristics. In

contrast, the current multi-stream sleep staging network primarily utilizes EOG and

EEG signals as inputs and efficiently fuses the extracted multimodal features. How-

ever, the importance of motion information in electrophysiological signals is rarely in-

vestigated, which could improve classification performance. Moreover, recent sleep

staging models have been plagued by issues of overparameterization and suboptimal

classification accuracy. Moreover, EOG and EEG are non-Euclidean graph-structured

data that can be effectively handled by graph convolutional networks. To address the

aforementioned issues, we propose an efficient graph-based multi-stream model named

4s-SleepGCN, which combines biological signal features to classify sleep stages. In

each single-stream model, the positional relationship of the modal sequences is incor-
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porated into the proposed model to enhance the feature representation for sleep stage

classification. On this basis, graph convolutions are utilized to capture spatial features,

while multi-scale temporal convolutions are employed to model temporal dynamics and

extract more discriminative contextual temporal features. The EEG signal, EOG sig-

nal, and corresponding motion information are separately fed into the single-stream

model comprising our 4s-SleepGCN. Experimental results show that the proposed 4s-

SleepGCN achieves the highest accuracy compared to state-of-the-art methods in both

the Sleep-EDF-39 dataset (92.3%) and the Sleep-EDF-153 dataset (85.5%). Addition-

ally, we conduct numerous experiments on two representative datasets that demonstrate

the validity of the motion modalities in sleep stage classification. Also, the proposed

single-stream network shows higher accuracy (89.2% and 89.8%) in classification while

requiring 33% fewer parameters. Our proposed 4s-SleepGCN model serves as a pow-

erful tool to assist sleep experts in assessing sleep quality and diagnosing sleep-related

diseases.

5.1 Introduction

Cognitive computing [213], a multifaceted field that combines computer science,

cognitive science, and neuroscience, aims to replicate human cognitive processes and

develop intelligent systems. This field has a significant application in the analysis

and interpretation of sleep patterns. Quality sleep is essential for productive daily life

and overall health [214]. However, sleep disorders [215] can drastically reduce sleep

quality, leading to various health complications. In particular, these disorders impair

physical performance during the day and cognitive functions, such as attention, learn-

ing, and memory in the long term [216]. Sleep monitoring systems that incorporate

sleep stage scoring, are of crucial importance in sleep medicine. They provide key in-

sights into individual sleep patterns and are essential for the diagnosis and treatment

of sleep disorders. Since PSG is the most important test for the diagnosis of sleep

disorders through continuous monitoring to understand the patient’s condition, many
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5.1. INTRODUCTION

researchers [23,217–219] are utilizing sleep monitoring systems based on PSG signals.

These systems provide an objective assessment of sleep quality and are of great impor-

tance for the prevention and diagnosis of sleep disorders. Thus, PSG signals can play

a crucial role in this area of sleep monitoring systems enabled by cognitive computing

technologies.

Traditionally, sleep stages are determined by human experts who analyze biological

signals recorded during the nocturnal PSG. The AASM has established detailed guide-

lines for this process that apply to both manual and automated classification methods.

However, manual classification of sleep stages is a labor-intensive, time-consuming,

and error-prone process, as recent studies have emphasized [46]. In contrast, automatic

sleep stage classification has been shown to be a robust alternative, demonstrating both

reliability and high accuracy. This method significantly improves the efficiency and

accuracy of sleep disorder diagnosis. Its increasing effectiveness and practicality are

attracting great interest in the field of sleep research.

Over the last decade, there has been a significant increase in the development of

automatic sleep stage classification methods, making the concept of automated sleep

scoring more feasible. Various techniques have been employed to capture the distinct

patterns of brain wave activity characteristic of different sleep stages, enhancing the ac-

curacy of sleep stage classification. For instance, some earlier conventional approaches

[168] utilized hand-engineered features from the time, frequency, and time-frequency

domains for this purpose. Additionally, methods based on machine learning [172, 173]

have shown impressive performance in identifying sleep stages. Nonetheless, these

methods primarily rely on hand-crafted features, meaning that the effectiveness and ef-

ficiency of the classification largely depend on the quality of feature engineering and the

researchers’ depth of understanding of the data. As time has progressed, deep learning

techniques have increasingly become the norm in the field of sleep stage classifica-

tion. Each sleep stage is marked by distinct brain wave activity patterns, which are

reflected in the shape of EEG time waveforms used for sleep staging. Further, indica-

tions of different sleep stages can be detected in other types of signals, such as ECG or
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EMG, which are often recorded simultaneously to enhance the accuracy of sleep stage

classification. These advancements in deep learning have paved the way for meth-

ods that classify sleep stages based on single-modality data, as well as those utilizing

combined multimodal information. Consequently, the most recent deep learning-based

methods for sleep stage classification can be categorized into two primary frameworks:

the single-channel EEG-based method and the multi-modal physiological signals-based

method. These approaches represent a significant leap forward in the field, offering a

more sophisticated and nuanced analysis of sleep stages.

5.1.1 Single-channel EEG-based Methods

Given the growing trend in the application of deep learning, recent studies have been

focusing on the task of sleep stage classification on EGG signals to achieve outstanding

performance, which can be roughly divided into three main approaches, namely RNNs,

CNNs, and GCNs. RNNs [220] are considered to be able to model the long-term con-

textual dependencies of temporal sequences in EEG signals. More recently, specific

RNN-based methods [221, 222] that learn sequential features from EEG signals have

achieved success in automatic sleep staging. In addition, the LSTM, a representative

structure of RNN, has demonstrated great effectiveness and is utilized in IITnet [177]

to learn the transition rules among sleep stages. However, due to the long-term de-

pendence of the data on RNNs, the problem of gradient disappearance or explosion

is extremely prone to occur, leading to instability in training the model. In contrast,

CNNs have better parallelizability and have the ability to directly extract sleep stage

transition features from texture images encoded from sleep stage sequences. The CNN-

based method proposed by Tsinalis et al. [178] demonstrates the ability to reliably score

sleep stages using a single-channel EEG signal. Sors et al. [223] employ CNNs to

extract appropriate features directly from raw EEG. Fang et al. [224] design a novel

adaptive-boosting-based dual-stream network framework to extract different modalities

features of single-channel EEG signals for sleep staging. In addition, a novel CNN

framework based on single-channel EEG signals, called SleepEEGNet [180], has been
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5.1. INTRODUCTION

proposed for sleep stage evaluation using extracted time-invariant features. However,

most CNN-based methods struggle to capture temporal dependencies from EEG sig-

nals. To address this issue, several integrated systems (i.e., DeepSleepNet [182] and

TinySleepNet [183]) have been proposed, which combine CNN and RNN to simultane-

ously extract features in the spatial and temporal domains, resulting in accurate models

for sleep stage discrimination. Considering that EEG electrodes are distributed in a non-

Euclidean space, CNNs and RNNs are limited in that the grid data are used as model

input and the connection between spatial correlations between electrodes is ignored.

GCNs [2] have been shown to be powerful in modeling the topological relationship of

EEG electrodes. In this regard, the ST-GCN [98], as one of the most advanced exten-

sions of GCN-based models, has exhibited outstanding performance in sleep stage clas-

sification. A quintessential example should be cited that the GraphSleepNet [185] uti-

lizes spatial graph convolutions in conjunction with interleaving temporal convolutions

to effectively capture the transition rules among different sleep stages. Furthermore,

Jia et al. [186] have developed a novel deep graph neural network named MSTGCN

to extract time-varying spatial and temporal features from multi-channel brain signals,

using the spatial topological information between brain regions to distinguish different

sleep stages. However, these methods overlook the significance of spatiotemporal rela-

tions in sleep staging. To address this limitation, Li et al. [119] propose a combination

of dynamic and static STGCN, incorporating inter-temporal attention blocks. This ap-

proach effectively captures long-range dependencies among different EEG signals and

achieves superior performance in sleep stage classification. Despite achieving better

performance, single-channel EEG-based methods are frequently limited by the fact that

a single fixed physiological signal is suboptimal for distinguishing specific sleep stages.

5.1.2 Multi-modal Physiological Signals-based Methods

The multi-modal fusion strategy aims to integrate diverse media types, capturing

complementary information and thereby enhancing the performance and robustness

of learning [225, 226]. Sleep staging is a complex dynamic process, where different
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5.1. INTRODUCTION

sleep stages are classified based on physiological signals that exhibit varying frequen-

cies and amplitudes at different time periods. Table 5.1 shows representative EEG and

EOG characteristics during different sleep stages, based on information from existing

studies [227, 228]. In the N2 and N3 stages, the EOG waves exhibit a similar pattern,

whereas EEG, as an unimodal physiological signal, provides valuable and specific char-

acteristic information, enabling better classification. In contrast, when classifying the

REM and N1 stages, the EEG signal, which lacks some key features, may lead to mis-

classification. Therefore, the effective identification of different sleep stages requires

the integration of different physiological signals. In order to harness the complemen-

tary potential of PSG signals, researchers have turned to utilizing multi-modal signals

to enhance sleep staging models. For instance, a variation of CNN [229] demonstrates

that using multi-channel data achieves better performance compared to single-channel

data. Dong et al. [170] apply a combination of DNN and RNN to extract salient features

from EEG and EOG signals. Additionally, Andreotti et al. [230] highlight the advan-

tages of incorporating multi-modal PSG signals for sleep stage classification. And the

SeqSleepNet [175] achieves an overall classification accuracy of 87.1% based on multi-

channel signals by relying solely on a hierarchical RNN. In a similar vein, Chambon

et al. [181] use a spatiotemporal CNN model to capture modality-specific informa-

tion from all multivariate and multi-modal PSG signals. Phan et al. [179] employ a

multi-task CNN combining joint classification and prediction framework to identify

sleep stages. These methods primarily focus on extracting the features from different

PSG signals individually and combining them by concatenation. However, this is not

sufficient to model complex relationships between multimodal signals. As a result, re-

cent works have emerged that fully fuse multimodal feature information to showcase

the distinct contributions of each modality in identifying specific sleep stages, such as

SalientSleepNet [231] and SleepPrintNet [232]. Moreover, Jia et al. [233] design a

squeeze-and-excitation network to model the heterogeneity between different modali-

ties. In the latest research, MMASleepNet [234] introduces an effective feature fusion

module to capture the relationships among different modalities. MaskSleepNet [235]
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effectively combines CNN with an attention mechanism to capture feature information

from different PSG signals, leading to a classification accuracy of up to 85.0% on the

Sleep-EDF-153 dataset. However, these methods fail to consider coherent features of

the PSG signals, such as the speed at which different PSG signals change from frame to

frame. Essentially, comprehensive spatial-temporal dependencies may be ineffectively

captured.

5.1.3 Issues

After a thorough review of previous studies, we have identified three main limita-

tions that need to be addressed.

1. The majority of existing multichannel-based methods only consider the captured

features from the EEG and EOG signals and ignore the signal motion stream,

which is not able to obtain more comprehensive features;

2. Current multistream models for sleep staging are typically overparameterized to

extract discriminative features from signal sequences, resulting in high model

complexity and limiting the development of multichannel-based sleep staging;

3. In current GCN-based approaches to sleep staging, there is a lack of adequate

exploration of the semantic information of signal sequences and long-range spa-

tiotemporal dependencies are not well captured.

5.1.4 Purpose

To address the aforementioned limitations, we propose a novel graph-based multi-

stream fusion model called 4s-SleepGCN for automatic sleep staging. Our proposed

model simultaneously fuses the features of EEG signals, EOG signals, EEG motion,

and EOG motion within a unified GCN framework. Our proposed model provides

a better balance between performance and parameter scale than some state-of-the-art

models, achieving the highest overall performance on two standard datasets.
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5.2. METHODOLOGY

5.1.5 Outline

The remainder of this chapter is organized as follows: Section 5.2 elaborates on

the proposed 4s-SleepGCN and explains its components in detail. Next, the dataset

used and the experimental settings are described in Section 5.3. Meanwhile, Section

5.3 verifies the effectiveness and advantages of the proposed model using two publicly

available datasets. In Section 5.4, we discuss our proposed approach formally.

5.2 Methodology

In this section, we propose a multi-stream framework to fuse the spatial information

of two different PSG signals (i.e., EEGs and EOGs) and the motion information of

their sequences to obtain a powerful sleep staging model. Accordingly, in this section,

we present the architecture and components of our proposed network in detail. The

proposed network consists of four functional modules: encoder, position embedding,

graph convolutional network module, and temporal modeling module. Finally, a multi-

stream feature extraction strategy is introduced to promote the sleep stage classification

task.

5.2.1 Network Architecture

Inspired by the success of the two-stream framework and graph convolution [109],

we design a graph-based multi-stream network to classify sleep stages from different

perspectives. In Figure 5.1(a), the PSG data is preprocessed to obtain EEG sequence,

EOG sequence, EEG motion, and EOG motion information. Subsequently, the four

data are respectively fed into the SleepGCN network to obtain the softmax scores. As

described in [236], the weighted average method has been successfully applied in the

field of fusing classification results and can further improve the classification results.

Therefore, The prediction of sleep stage classification is calculated by the weighted

summation method of the four softmax scores. Figure 5.1(b) illustrates the architecture

of the SleepGCN. Among them, the input signal sequence is composed of T frames,
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5.2. METHODOLOGY

and the sleep information contained in each frame is composed of the number of elec-

trodes (N ) and the number of channels (C0) with dimensions C0 ⇥ N , which can be

represented as an input tensor with the shape of C0 ⇥ T ⇥ N , where C0 is equal to

3. Then we use two fully connected layers to encode the position to a dimension of

64 (C1) and then merge it with the position of the same dimension to obtain the new

input for 128. The GCN module is adopted to capture long-range spatial dependen-

cies. In order to mitigate the prevalent issue of over-smoothing encountered in most

GCN-based models, which has been documented in previous studies [237], we employ

ReLU activation functions for each GCN block of our proposed model. By applying

activation functions after each GCN block, our classification network can effectively

capture complex patterns in the PSG graph data and preserve the expressive power of

the node representations, enhancing the model’s ability to perform accurate sleep graph

classification. The temporal modeling module uses different dilation convolutions to

effectively aggregate contextual information. The Global Average Pooling (GAP) layer

is introduced to aggregate spatio-temporal features and pool feature maps of distinct

samples to a similar size of 1 ⇥ 1 ⇥ 512. Finally, the softmax layer is used to obtain

probabilities for the sleep stage. Each module is presented separately in the following

subsections.

5.2.2 Encoder

Since sleep staging based on PSG data can be formulated as a graph modeling prob-

lem, the raw PSG sequence of sleep staging can be represented as an undirected graph

G = (V,E) with N electrodes and T frames, including a node set V = {V1, V2, · · · , VN}

of electrodes N and E is the edge set representing the connection between the elec-

trodes captured by an adjacency matrix A 2 {0, 1}N⇥N . A denotes the relationship

between the electrodes, where initially Ai,j = 1 if there is a functional connection be-

tween electrodes i and j, and 0 otherwise. The PSG signal sequence can provide the

coordinates of each electrode in graph convolutional networks, which can be described

as X 2 RT⇥N⇥C . Therein, N denotes the total number of electrodes in a frame, T is
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the number of frames in the raw signal sequence, and C represents the coordinates of

all electrodes in the entire frame sequence. We denote all electrode features as a feature

set X , which can be represented as a matrix:

X =
�
Xn,t 2 RC0 |n 2 N ; t 2 T

 
(5.1)

where the electrode of type n = {1, 2, · · ·N} at time t = {1, 2, · · ·T} generates the

dimensional feature vector Xn,t. Our goal is to employ the encoder including two FC

layers to encode the original position information into a high-dimensional space, which

can be described as follows:

X
0
= ReLU (g (ReLU (g̃ ·X + k1) + k2)) 2 RC1 (5.2)

where g 2 RC⇥C1 and g̃ 2 RC1⇥C1 denotes weight matrices. k1 and k2 are the

bias vectors. We use the ReLU function as the activation function. In this work, the

higher order information by encoding instead of the original position is used as input to

improve the ability of personalized expression.

5.2.3 Position Embedding

Position embedding is a widely employed technique for capturing location infor-

mation within sequences. It has shown successful applications across various domains,

with particular effectiveness in natural language processing. Since EEGs and EOGs

are time-series data, the sequential relationship between frames affects the meaning of

the entire signal. Considering only the coordinate information of the electrodes and

the graph structure of the biosignals, it is difficult for the model to capture the se-

quential relationships between different time steps in the signal, which may result in

suboptimal classification performance. Therefore, the absence of the position relation-

ships of sequences could weaken the classification ability of sleep stage models. To

address this issue, position embedding is applied in our model to incorporate positional

information in the model input, which can better capture the sequential relationships
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between different time steps in the sleep signals, leading to improved sleep stage clas-

sification performance. Inspired by the previous works [238, 239], two one-hot vectors

are applied to characterize the position relations of electrodes and frames. In frame

sequences T = {T1, T2, · · · , Tw}, the w
th frame Tw is denoted by a one-point vector,

where the w
th dimension is set to one and the others are zero. As for the same op-

eration of the frame sequences, we proceed to obtain a one-hot vector as Tw for the

electrode sequences. Similar to the encoding of the inputs according to Equation 5.1,

the embedding representation in the electrode and frame sequences can be expressed as

N
0
w
2 RC1 and T

0
w
2 RC1 , respectively. Subsequently, the embedding vectors in the

frame- and electrode- dimensions are fused and concatenated with the original features

X
0. Finally, the output feature maps X 00 2 R2C1⇥N⇥T can be obtained by the concate-

nation operation _, as given in Equation 5.2. Notably, we use the original position as

the residual embedding to make the position encoding information explicitly.

X
00 =

⇣
N

0

w
+ T

0

w

⌘
_
X

0 (5.3)

5.2.4 Graph Convolutional Network Module

Indeed, capturing long-range dependencies of PSG sequence data is crucial for sleep

stage classification. Inspired by the idea of semantics-guided neural network [238] and

non-local block [135], we adopt the GCN module (see Fig. 5.2) to extract correlations

between electrodes, thereby capturing rich features of sleep stages from PSG data to

achieve sleep staging. More specifically, the similarity between the electrodes in the

feature space is used to construct the sleep graph. The long-range weight can be mod-

eled by the pairwise similarity between every two electrodes a
th and b

th in the same

frame T , which is defined as follows:

f (a, b) = '

⇣
X

00

a

⌘T

�

⇣
X

00

b

⌘
(5.4)

where ' and � represent two transformations of the original features. Since the
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Figure 5.2: The architecture of the GCN module. The input feature map is used
as the input signal with dimension T ⇥ N ⇥ C, where T , N , and C are the num-
ber of frames, electrodes, and channels, respectively. We set the reduction rate �

to 8 in our work to extract compact representations. ⌦ denotes matrix multiplica-
tion operation, � denotes the elementwise summation, and � denotes element-wise
multiplication.

long-range transformed feature f (a, b) characterizes only the long-range spatiotempo-

ral relationship of the electrode pair, we use the following form to define the relationship

between shared bias on the channel dimension:

B (a, b) = �

⇣
↵

⇣
TP

⇣
X

00

a

⌘⌘
� �

⇣
TP

⇣
X

00

b

⌘⌘⌘
(5.5)

therein, the function of temporal pooling TP is to aggregate temporal features,

whereas in our work we use mean pooling. The � 2 RT⇥C/8, ↵ 2 RC⇥C/8 and

� 2 RC⇥C/8 are three linear embedding functions implemented by the 1 ⇥ 1 convo-

lutional layer. The distances along the channel dimension B (· · · ) 2 RN⇥N⇥T uses

the nonlinear transformations to model the topological relationship on the channels.

Furthermore, we use the bias for attention score calculation to update the weighting

information. We update the weights using an overall attention score that is the sum of

the two component weights, thus the updated weights can be formulated as follows:
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5.2. METHODOLOGY

OutputG = X
00 � (� (f (a, b) + B (a, b))) (5.6)

where � is the element-wise multiplication. � is the softmax activation function.

X
00 and OutputG denote input and output feature maps.

5.2.5 Temporal Modeling Module

The duration of the different sleep stages varies. Therefore, temporal modeling is

also essential for sleep staging. Current methods [107, 240] still use temporal convolu-

tions with a single fixed scale to perform temporal modeling. The feature information

obtained from distant frames is very limited, and the long-range temporal dependence

is not well captured, which affects the accuracy of sleep stages. It is not optimal to

use temporal convolutions with a fixed kernel size to deal with the problem of sleep

staging. Consequently, the multi-scale temporal features extracted by convolution ker-

nels with different scales are fused to better model the temporal topological features.

The difference from the previous method is that we use four parallel temporal convo-

lution branches to achieve temporal modeling, as shown in Fig. 5.3. In each branch,

we introduce a bottleneck architecture [192] that uses 1 ⇥ 1 convolution to reduce the

computational cost and thus speed up the training and model inference. In addition,

the first three branches of the model utilize temporal convolutions with a kernel size of

1⇥3, employing different dilations [193] to analyze short-term and long-term temporal

dependencies, thus obtaining multi-scale temporal receptive fields. In the final branch,

a 3⇥ 1 max-pooling layer is utilized to extract the most important features. Finally, we

use a concatenation strategy to fuse the features. In conclusion, the temporal modeling

module is proposed to extract richer temporal features from the physiological signal se-

quences, which can be used to capture the temporal dependencies between sleep stages

and distinguish the different duration dynamics.
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Figure 5.3: The architecture of temporal modeling module. In order to lower the
computational costs due to the extra branches, we fix kernel sizes at 1⇥3 and use
different dilation rates for larger receptive fields. Meanwhile, the 3⇥1 max-pooling
layer is used to capture the most salient feature.

5.2.6 Multi-stream Fusion

In this work, we utilize multi-stream fusion strategies to model the first-order in-

formation (EEG and EOG) and the corresponding motion information for sleep stage

classification. In the Sleep-EDF dataset, the sequence of electrode motion information

can be obtained by calculating the difference of the same electrode between two con-

secutive frames, typically in terms of the differences in the coordinates of EEG and

EOG electrodes. The position of the electrode of the human brain can be defined as

Vg,t {g 2 N, t 2 T}, where N and T denote the number of electrodes and the number

of frames of the signal sequences, respectively. The g represents the electrode in the

frame t. As for the motion information, the position difference of the same electrode

in two consecutive frames can be calculated to obtain a sequence of electrode motion

information, namely the displacement information. This displacement information can

then be used as an additional input feature to help the model learn dynamic features.

The sequence of electrode motion information M for electrode g in frame t is obtained

by subtracting the position of the electrode in the next frame t + 1 from its position in
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5.3. EXPERIMENTAL RESULTS

the current frame t, which can be expressed as follows:

M = Vg,t+1 � Vg,t
(5.7)

Therein, Vg,t+1 is the position of the electrode g in frame t + 1. M is a vector

representing the motion of the electrode between the two frames. Finally, the EEG,

EOG, and corresponding motion information are fed into four streams and fused to

classify different sleep stages.

5.3 Experimental Results

In this section, the effectiveness of the proposed approach is evaluated using two

publicly available datasets. The first subsection provides a comprehensive description

of the Sleep-EDF-39 and Sleep-EDF-153 datasets, along with the experimental setups

employed in this study. Subsequently, the metrics utilized to evaluate the performance

of the sleep stage model are explained. Finally, we present the performance results of

our proposed model and discuss its effectiveness in comparison to other state-of-the-art

models.

5.3.1 Dataset and Experimental Settings

5.3.1.1 Sleep-EDF-39 and Sleep-EDF-153 Datasets

The Sleep-EDF-39 and Sleep-EDF-153 datasets are two versions of the Sleep-EDF

dataset [200]. The Sleep-EDF-153 dataset is an expanded version of the Sleep-EDF-39

dataset. The two publicly available datasets are commonly utilized in sleep staging re-

search and are sourced from the PhysioBank. The participants are enrolled in the Sleep

Cassette (SC) and Sleep Telemetry (ST) studies. In our experiment, we adopt the PSG

sleep recordings from SC. They record the PSGs of healthy Caucasians without any

sleep-related medications. Each subject records PSG recordings during two subsequent
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day-night periods, which include two scalp-EEG, horizontal EOG, chin EMG, and event

markers. Therein, EEG is sampled from Fpz–Cz and Pz–Oz electrde locations. In our

experiments, the Fpz–Cz EEG is used as the input EEG signal. All EEG and EOG are

acquired at a sampling rate of 100 Hz. The sleep-EDF-39 dataset contains data files

for 20 male and female subjects (age 28.7 ± 2.9). The number of participants in the

Sleep-EDF-153 data set is 78, ranging in age from 25 to 101 years. Consistent with

some baseline approaches [182, 231], the Sleep-EDF-39 and Sleep-EDF-153 datasets

in our experiment contain 41950 and 195479 sleep epochs, respectively, as shown in

Table 5.2. Moreover, in two datasets, each 30-s recording is manually classified into

eight stages (wake, S1, S2, S3, S4, REM , movement, and unknown) according to the

R&K standard [1]. In the latest AASM manual [2], movement and unknown stages are

excluded and the S3 and S4 stages are combined into one signal stage N3. Therefore,

sleep stages in the datasets consist of W (Wake), N1 (S1), N2 (S2), N3 (S3 + S4) and R

(REM ).

Table 5.2: Details of the number of sleep stages in the sleep-EDF-39 and sleep-EDF-
153 datasets.

Dataset W N1 N2 N3 R Total

Sleep-EDF-39 7927 2804 17799 5703 7717 41950
Sleep-EDF-153 65951 21522 69132 13039 25835 195479

5.3.1.2 Experimental Setting

In our experiment, the proposed model is implemented on the Pytorch platform with

an RTX 3060 GPU card. The network is trained with a batch size of 64. The Adam

optimizer as an optimization strategy is used to train the model for 120 epochs. The

learning rate is set to 10�3 and is decayed by 10 at the 30th, 60th, and 90th epochs,

respectively. In our work, we set the weights of the EEG stream, the EOG stream, and

the corresponding motion stream to 0.6, 0.6, 0.4, and 0.4 for weighted fusion like other

multi-stream GCN methods. To improve the generalization performance and reliability
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of our proposed model and reduce the risk of overfitting, we implement dropout and

label smoothing [241] during the training process. Specifically, in our experimental

setup, we set the dropout rate to 0.2 and employ label smoothing for better-calibrated

classification networks with a smoothing factor of 0.1. In addition, we use K-fold cross-

validation to evaluate the performance of our sleep staging model. We follow a rigor-

ous evaluation methodology, using a 20-fold cross-validation scheme with K set at 20

to ensure a fair comparison with baseline models. For this purpose, subjects in the

sleep-EDF-39 and sleep-EDF-153 datasets are divided into 20 groups. Accordingly,

experimental results for 20-fold cross-validation are obtained. Eventually, we calculate

the average of the results of all 20 test samples as the final experimental results of our

model, which provide reliable performance metrics for assessing the performance of the

network. Moreover, we use the TensorBoard to monitor the training progress to evalu-

ate the performance of our proposed model on two public datasets. As shown in Figure

5.4, we observe that the training loss gradually decreases and stabilizes over iterations.

This trend indicates that our model is effectively learning patterns and features from the

training data.

5.3.2 Evaluation Metrics

To provide a comprehensive evaluation of the performance of the sleep staging

model, we introduce several metrics including accuracy, macro-precision, macro-recall,

macro-averaged F1 score, and Cohen’s kappa coefficient. The overall accuracy (ACC),

macro-precision (Pmacro), macro-recall (Rmacro), macro-averaged F1 score (MF1), and

Cohen’s kappa coefficient () are defined as follows:

ACC =
1

K

KX

i=1

✓
TP + TN

TP + FP + FN + TN

◆

i

(5.8)

Pmacro =
1

K

KX

i=1

✓
TP

TP + FP

◆

i

(5.9)
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Rmacro =
1

K

KX

i=1

✓
TP

TP + FN

◆

i

(5.10)

MF1 =
1

K

KX

i=1

✓
2⇥ TP

2⇥ TP + FN + FP

◆

i

(5.11)

 =
ACC � pe

1� pe
(5.12)

where TP , FP , FN , and TN stand for the true positives, false positives, false nega-

tives, and true negatives, respectively. K represents the total number of epochs used in

the cross-validation, which is defined as 20 in this work. pe denotes the hypothetical

probability of chance agreement.

5.3.3 Experiment Results

In this subsection, the effectiveness of the proposed model is evaluated using the

Sleep-EDF-39 and Sleep-EDF-153 datasets. In Fig. 5.5, the confusion matrices for the

predicted sleep stage of each dataset are visualized, showing agreement with the expert

results. Based on Equation 5.7 and the confusion matrices, the overall accuracy of our

model for the two datasets can be determined by calculation and is equal to 92.3% and

85.5%, respectively. For the Sleep-EDF-39 dataset, the macro-precision, macro-recall,

and macro-F score are 88.7%, 90.0%, and 89.1%, respectively. Similarly, from the sub-

figure(b) of Figure 5.5, we obtain the macro-precision, macro-recall, and macro-F score

of the Sleep-EDF-153 dataset as 81.9%, 80.4%, and 80.6%, respectively. Furthermore,

we use Cohen’s kappa coefficients to measure the degree of accuracy and reliability in

sleep stage classification. The Cohen’s kappa coefficients for Sleep-EDF-39 and Sleep-

EDF-153 are 0.89 and 0.80, respectively, indicating that the classification results have

high consistency with the actual distribution of sleep stages, being within the standard

of 0.8 ⇠ 1 [203].

Moreover, to investigate the effects of the classification accuracy of different sleep

stages from two publicly available datasets, the receiver operating characteristic (ROC)

95



Figure
5.5:V

isualization
ofthe

experim
entalconfusion

m
atrix

obtained
from

20-fold
validation.W

e
em

ploy
the

Sleep-ED
F-39

and
Sleep-

ED
F-153

datasetsto
obtain

tw
o

confusion
m

atrices.The
sub-figure(a)and

sub-figure(b)show
the

confusion
m

atrix
for

the
Sleep-ED

F-39
datasetand

the
Sleep-ED

F-153
dataset,respectively.

96



5.3. EXPERIMENTAL RESULTS

Fi
gu

re
5.

6:
Th

e
m

ea
n

R
O

C
cu

rv
e

an
d

AU
C

va
lu

es
fo

r
di

ffe
re

nt
sle

ep
st

ag
es

ba
se

d
on

20
-fo

ld
cr

os
s-

va
lid

at
io

n.
Th

e
R

O
C

m
ea

n
cu

rv
es

in
su

b-
fig

ur
e(

a)
an

d
su

b-
fig

ur
e(

b)
re

sp
ec

tiv
el

y
us

e
th

e
Sl

ee
p-

ED
F-

39
an

d
Sl

ee
p-

ED
F-

15
3

da
ta

se
ts

as
th

e
te

st
in

g
da

ta
se

ts
.T

he
AU

C
va

lu
es

fo
r

th
e

fiv
e

sle
ep

st
ag

es
ar

e
in

cl
ud

ed
in

th
e

le
ge

nd
.

97



mean curves of different sleep stages are obtained to show the effect of the proposed

sleep staging model on the final classification accuracy, as shown in Figure 5.6. As

expected, the ROC curves of all sleep stages, except for the N1 stage, converge towards

the upper-left corner of the graph. This convergence signifies that our model exhibits

high true positive rates (TPR) and low false positive rates (FPR). This trend further

demonstrates the excellent predictive performance of our model in accurately classify-

ing different sleep stages. Nevertheless, the area under curve (AUC) values for each

sleep stage (ranging from 0.8 to 0.96) on both datasets significantly exceed the value

of 0.75 in [242]. This substantial improvement in AUC values underscores the superior

performance of our model, which holds high clinical value. These results indicate that

our proposed model not only outperforms random classification but also demonstrates

a noteworthy ability to differentiate between positive and negative instances.

To further verify the advantage of the proposed multi-stream fusion strategy in sleep

stage classification, we test the performance using four data modalities: single-stream

model, which uses either the EEG or EOG stream independently; two-stream model,

which fuses the EEG and EOG modalities; four-stream model, which incorporates the

EEG stream, the EOG stream, the EEG motion stream, and the EOG motion stream.

Table 5.3 shows that the EOG modality performs slightly better than the EEG modality

in sleep staging. The superiority of the multi-stream method over the single-stream

method is evident. Compared to the two-stream model, we respectively obtain 0.8% and

1.1% improvement on two datasets with the fusion of all four streams. This suggests

that the fusion of the EEG stream, the EOG stream, and the corresponding motion

stream can yield better classification performance, thus becoming a better choice for

sleep stage classification.

5.3.4 Comparison with State-of-the-Art Models

To evaluate the effectiveness of our proposed method, we conduct a comparison be-

tween our proposed 4s-SleepGCN model and several baseline models using the Sleep-

EDF-39 and Sleep-EDF-153 datasets. The results of this comparison are presented in
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Table 5.3: Comparisons of the validation results with different input modalities on
Sleep-EDF-39 and Sleep-EDF-153 datasets.

Methods Acc. I (%) Acc. II (%)

1s-SleepGCN (only EEG) 89.2 82.1
1s-SleepGCN (only EOG) 89.8 82.8

2s-SleepGCN 91.5 84.4
4s-SleepGCN 92.3 85.5

1 2s-SleepGCN represents using the EEG and EOG modalities.
2 4s-SleepGCN represents using EEG stream, EOG stream, EEG motion

stream, and EOG motion stream.
3 Acc. I and Acc. II shows the overall accuracy for Sleep-EDF-39 and Sleep-

EDF-153 datasets, respectively.

Table 5.4. In comparison to other baseline methods, our method reaches state-of-the-art

accuracy of 92.3% and 85.5%, outperforming the baseline models by more than 1.3%

and 0.2% on two public datasets.

For some traditional machine learning-based methods, e.g., SVM and RF, the in-

ability to adequately extract various features often leads to poor results in sleep stage

classification. Deep learning methods have become a predominant approach for sleep

stage classification to achieve better performance, including those using only CNNs,

only GCNs, and a mixture of CNNs and RNNs. Despite the fact that these methods

perform reasonably well in the sleep stage classification, resulting in varying degrees

of drawbacks. For instance, it is difficult to adjust and optimize some mixed deep-

learning models with extensive parameters such as DeepSleepNet, SeqSleepNet, and

TinySleepNet. Moreover, there are also methods, e.g., ResnetLSTM and SleepEEG-

Net, that convert physiological signals into time-frequency images, which often leads

to partial information loss. This contrasts with the previous work, where our model

uses a multi-information flow fusion method to capture the distinctive complementary

features of the original data. Moreover, the motion information from EEG and EOG

aids in further enhancing the performance of sleep stage classification. Therefore, our

proposed 4s-SleepGCN achieves the highest accuracy compared with other baseline
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models.

On the Sleep-EDF-153 dataset, the classification performance of the W and N2

stages is the best among all sleep stages. Specifically, the F1 score of the W and N2

stages reaches 94.0% and 86.1%, respectively. Moreover, for this reason, the N1 stage

belongs to the sleep transition period [205], which can be mainly misclassified into N2

and REM stages. The classification effect for the N1 stage falls short of expectations

compared to the other sleep stages, but it still achieves an optimal result compared to

the other baseline methods. This is sufficient to illustrate that our model can effectively

classify sleep stages in a large sample dataset. Additionally, we can observe that the

F1 score of N3 and REM stages is worse than that of most baseline models. The poor

results attributed to the fact that N3 �N2 and REM �N2 are also misclassified pairs.

In classifying the N3 stage, an important factor contributing to its lower classification

performance is the small proportion of N3 stage instances within the Sleep-EDF-153

dataset, representing only 6.67% of the total. The limited number of N3 stage exam-

ples in the dataset poses a challenge for the classification model to effectively learn the

specific patterns and features associated with the N3 stage. Due to this scarcity, our

proposed model may not be sufficiently familiar with the minority class, resulting in

suboptimal generalization and a drop in performance in classifying the N3 stage. How-

ever, the precision of the N3 and REM stages reaches 84.8% and 84.0%, respectively.

Therefore, our proposed model can to a large extent reproduce the sleep scoring of

human experts and thus provide assistance in the diagnosis of sleep problems.

Besides, we show the comparative results in terms of accuracy and model com-

plexity (number of parameters) with some state-of-the-art methods to demonstrate the

superiority of our model. As can be seen in Table 5.5, the efficiency of our model has

improved compared to previous models for the Sleep-EDF-39 dataset. At first glance,

our proposed 4s-SleepGCN has a larger number of parameters than SalientSleepNet.

However, our method has adopted the four-stream network architecture, which con-

sists of four backbones. In comparison, the proposed single-stream model based on

the EEG or EOG modality achieves relatively great results with an accuracy of 89.2%
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Table 5.5: Comparison of model parameters on Sleep-EDF-39 dataset.

Methods Param.(M) Acc.(%)

SleepEEGNet [180] 2.1 84.3
TinySleepNet [183] 1.3 85.4

U-time [243] 1.1 78.2
SalientSleepNet [231] 0.9 87.5

1s-SleepGCN (only EEG) 0.6 89.2
1s-SleepGCN (only EOG) 0.6 89.8

2s-SleepGCN 1.2 91.5
4s-SleepGCN 2.5 92.3

1 The Acc. denotes the accuracy for Sleep-EDF-39 dataset.
2 2s-SleepGCN represents using the EEG and EOG modalities.
3 4s-SleepGCN represents using EEG stream, EOG stream, EEG mo-

tion stream, and EOG motion stream.

and 89.8%, respectively. Besides, the proposed single-stream model requires only

0.6 million parameters, which reduces the number of parameters by about 0.3 mil-

lion. This proves that our proposed single-stream solid baseline can be introduced as a

strong and powerful baseline for sleep stage classification. The proposed 2s-SleepGCN

and 4s-SleepGCN require about 0.3M+ and 1.6M+ more parameters compared to the

SalientSleepNet, while improving the accuracy by 4% and 4.8%, respectively. We con-

clude that the lightweight, single-stream solid baseline constructed in this study can

significantly reduce the number of model parameters while ensuring classification ac-

curacy. In addition, the two-stream and four-stream proposals show better performance

when more parameters are requested.

5.4 Discussion

Sleep disorders have indeed risen in striking proportion worldwide over the past 40

years [208,247,248]. Sleep stage classification plays a critical role in the diagnosis and

treatment of sleep disorders. Automated sleep stage scoring is expected to play a lead-

ing role in the diagnosis and treatment of sleep disorders in the future. In this work, a
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graph-based multi-stream fusion model named 4s-SleepGCN is proposed for sleep stage

classification. EEG, EOG, and the corresponding motion information are fused to en-

hance the understanding of brain activity and aid in the identification of different sleep

stages. This confirms that the motion modality holds significant potential for sleep stage

classification and contributes to improved accuracy and temporal understanding of sleep

stages. The proposed EEG or EOG single-stream method with a lightweight network

has demonstrated acceptable performance on benchmark datasets, making it a promis-

ing candidate for application in residential healthcare settings. In clinical medicine,

there is a need to accurately classify different sleep stages and provide reliable results

for specialists. The proposed multi-stream model holds the potential to assist doctors in

making accurate diagnostic and treatment decisions, thereby improving patients’ sleep

health outcomes.

The Sleep-EDF-39 dataset and Sleep-EDF-153 dataset utilize in our study comprise

practical data obtained from patients. It is important to note that these datasets are non-

independent and non-identically distributed, meaning there are significant variations

in the sample sizes across different sleep stages. Nevertheless, our proposed method

demonstrates robustness by achieving satisfactory classification results for each sleep

stage. This also underscores its effectiveness in handling the complexities inherent in

real-world patient data. In addition, our proposed multi-stream model demonstrates

remarkable classification performance, particularly in the N2 stage. Abnormalities ob-

served in N2 sleep features have been identified as potential indicators for various sleep

disorders such as sleep apnea and parasomnias. The accurate classification of the N2

stage by our model holds significant promise in the identification, diagnosis, and in-

tervention of sleep disorders, ultimately leading to enhanced sleep quality and overall

well-being. The exceptional classification performance of our multi-stream model, par-

ticularly in the N2 stage, highlights its potential as a valuable tool in sleep research,

clinical assessments, and interventions aimed at optimizing sleep architecture. Its robust

capabilities make it an asset in furthering our understanding of sleep-related phenom-

ena and facilitating effective interventions to address sleep disorders. By leveraging the
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strengths of our proposed model, researchers and clinicians can make significant strides

in the field of sleep medicine, ultimately improving the lives of individuals affected by

sleep-related issues. Furthermore, for the Sleep-EDF-153 and Sleep-EDF-39 datasets,

the ratio of the average training time per fold (approximately 4.17 and 1.36 hours, re-

spectively) is smaller than the ratio of the respective data sizes (195k and 42k). In other

words, the training time of our proposed model does not increase proportionally to the

increase in data size. Therefore, our model can effectively manage the processing of

larger datasets without significantly increasing the training time. This indicates that

the proposed model demonstrates a certain degree of scalability. Such scalability is

particularly valuable in real-world scenarios where the volume of data is substantial.
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Chapter 6

Conclusion and Future Work

In our first work, we propose a combination of dynamic and static ST-GCN with

inter-temporal attention blocks for automatic sleep stage classification based on EEG.

Spatial graph convolutions and temporal convolutions are used to model the EEG data.

We use a combination of dynamic and static ST-GCN to capture the global context-

enriched topology and employ temporal convolution with dilation to enlarge the tempo-

ral receptive field. Furthermore, to the best of our knowledge, we introduce the attention

blocks for the first time in the field of sleep stage classification to model the relationship

between different EEG channels, which can capture long-range dependencies for sleep

stage classification. The comparative results indicate that our method has powerful ca-

pability and expressiveness in sleep stage classification. Therefore, we believe that our

method could be a complementary tool to help scientists monitor the sleep status of

patients to initiate appropriate treatments. In the future, since our method is used for

sleep stage classification based on EEGs, we will apply it to a broader range of other

physiological signal classification tasks.

Moreover, in our second proposed work, we propose a novel multi-stream fusion

graph convolutional network called 4s-SleepGCN to efficiently classify different sleep

stages by combining multi-stream biological signal features. The positional relation-

ship of modal sequences is embedded into the sleep staging network to improve the

feature characterization capability, which can better leverage the task of sleep stage
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classification. Besides, the proposed 4s-SleepGCN model uses graph convolution and

temporal convolution to directly model spatial-temporal dependencies from the PSG

graph sequences. Graph convolution can effectively extract the long-range dependen-

cies between electrodes. Temporal convolution can learn richer temporal features and

aggregate multi-scale contextual information. Furthermore, we model EEG, EOG, and

the corresponding motion information in a unified multi-stream network framework

for the first time, demonstrating the validity of motion modality. Experiments on the

Sleep-EDF-39 and Sleep-EDF-153 datasets evaluate the feasibility and superiority of

our proposed model. Our proposed 4s-SleepGCN model achieves significantly bet-

ter accuracy on both of them than the current state-of-the-art model. In addition, the

proposed lightweight single-stream network with only 0.6 million model parameters

achieves higher accuracy and smaller network size compared to some baseline models,

which provides a new perspective in the field of sleep staging and thus can be used to

monitor and track sleep in a home environment. The proposed multi-stream model can

be used as a powerful tool to assist sleep experts in assessing sleep quality and diagnos-

ing sleep-related diseases. The flexibility and adaptability of our proposed model make

it suitable for various applications beyond sleep stage classification, such as medical

applications, healthcare monitoring, and sports analysis.

GCN is a type of neural network architecture used in various applications, includ-

ing sleep staging. Sleep staging is the process of classifying different stages of sleep

based on electroencephalogram (EEG) and other physiological signals. GCNs can be

applied to sleep staging by modeling the relationships between different EEG channels

or other signals in a more sophisticated way compared to traditional machine learning

approaches. The field of sleep staging is continually evolving, and there are several ar-

eas of future work that we are likely to focus on to improve the accuracy, efficiency, and

applicability of sleep staging techniques. Here are some potential directions for future

research:

1. In our work, EEG, EOG, and the corresponding motion information are fused for

sleep stage classification and our proposed approach significantly improves the
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5.4. DISCUSSION

accuracy and depth of sleep stage classification. In addition to EEG and EOG,

we can explore the integration of other physiological signals such as EMG, heart

rate variability (HRV), respiratory rate, and blood oxygen levels (SpO2). Com-

bining these signals can provide a more comprehensive view of a person’s sleep.

Future work may involve developing models that can effectively integrate and

analyze data from these various modalities to enhance the accuracy of sleep stage

classification.

2. Classifying sleep stages, especially the N1 stage, can remain challenging due

to its transitional nature between wakefulness and sleep, making correct recog-

nition a tricky task. In the future, we can use a method of combining clinical

validation and expert feedback. Collaborations between sleep experts and deep

learning researchers can lead to better-defined criteria for stage N1 classification.

Ongoing clinical validation studies can help refine algorithms and ensure their

accuracy in real-world settings. Improving the accuracy of Stage N1 detection

is important not only for understanding sleep dynamics but also for diagnosing

sleep disorders and providing targeted interventions. As technology advances and

our understanding of sleep physiology deepens, we can expect ongoing progress

in this area.

3. Sleep stage classification typically relies on the subjective interpretation and clas-

sification of physiological signals by experts. Nonetheless, different experts may

interpret the same data and arrive at varying conclusions. Namely, It is inevitable

that similar sleep stages may be incorrectly marked. Therefore, the question for

many sleep stage classification networks is how to use high-quality sleep stage

datasets for the training process. Implementing validation procedures and quality

control measures in sleep laboratories can help monitor and improve the con-

sistency of expert scoring. Regular audits and checks can identify and rectify

potential sources of variability. In addition, we will continue to explore this area

and leverage advanced technologies to develop a sleep stage classification sys-

tem that provides a more human-like performance classification model. This can
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not only assist experts by providing additional information and insight during the

scoring process. But also it can flag potential discrepancies for further review.

4. Existing sleep staging models are typically processed offline, analyzing and cap-

turing post-sleep data. However, for the timely detection and intervention of po-

tential sleep issues, real-time monitoring is crucial. Real-time monitoring systems

can analyze an individual’s sleep data and provide personalized sleep recommen-

dations. These recommendations may include adjustments to bedtime routines,

sleep environment, and lifestyle factors based on the user’s specific sleep pat-

terns and goals. Moreover, real-time monitoring can aid in the early detection

of sleep disorders. Algorithms can analyze continuous sleep data to identify

patterns indicative of conditions such as sleep apnea, insomnia, or restless leg

syndrome, enabling timely intervention and treatment. This is particularly signif-

icant for patients with sleep apnea, as real-time detection enables the adjustment

of ventilation pressure and treatment parameters, leading to optimized treatment

outcomes. Therefore, the future of real-time monitoring and feedback in sleep

staging involves leveraging technology to empower individuals to take an active

role in managing their sleep health. These advancements can lead to more per-

sonalized and effective sleep solutions, early detection of sleep disorders, and

improved overall well-being.
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