
Architecture and Algorithms for Robust

Reconfigurable Neuromorphic Systems

WILLIAMS YOHANNA YERIMA

A DISSERTATION

SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN COMPUTER SCIENCE AND ENGINEERING

Graduate Department of Computer and Information Systems

The University of Aizu

2024

COPYRIGHT BY WILLIAMS YOHANNA YERIMA

ALL RIGHTS RESERVED.

Declaration

I CONFIRM THAT THE RESEARCH CONTAINED IN THIS DISSERTATION UNLESS OTHERWISE SPECIFIED IS

MY ORIGINAL WORK. I FURTHER ATTEST THAT THIS DISSERTATION HAS NOT BEEN SUBMITTED FOR

ANY OTHER DEGREE AT ANY OTHER UNIVERSITY. I HAVE NOT INCORPORATED IN PART OR IN WHOLE

ANY DATA, FIGURES, GRAPHS, OR INFORMATION FROM OTHER INDIVIDUALS, RESEARCHERS, OR ONLINE

SOURCES, UNLESS PROPERLY ACKNOWLEDGED AND CITED.

Signed:

Date:

Contents

Chapter 1 INTRODUCTION 1

1.1 Evolution of Neuromorphic Computing systems 1
1.2 Robustness in Neuromorphic Systems: Problems and Motivation 5
1.3 Dissertation Contributions . 9
1.4 Dissertation Structure . 10

Chapter 2 FUNDAMENTALS OF NEUROMORPHIC SYSTEMS 12

2.1 Spiking Neural Networks . 13
2.1.1 Learning rules . 13

Supervised Learning . 14
Unsupervised Learning . 14
Reinforcement Learning . 15

2.2 Spiking Neural Network Models . 16
2.2.1 Hodgkin–Huxley Model . 18
2.2.2 Leaky Integrate and Fire Model . 19
2.2.3 Izhikevich Model . 19

2.3 Coding Schemes . 20
2.3.1 Rate coding . 20
2.3.2 Temporal coding . 20

Time-to-First-Spike . 21
Rank Order Coding . 21
Phase Coding . 22
Latency Coding . 23

2.4 Hardware Implementation . 23
2.4.1 Platforms . 23
2.4.2 Memory Technology . 24
2.4.3 Learning . 25

2.5 Chapter Summary . 26

Chapter 3 RELATED WORKS 27

3.1 Neuromorphic systems: State of art and Advancement 28

v

3.2 Neuromorphic systems: Robustness concerns 29
3.3 Existing Solutions To Areas of Neuromorphic Systems For Robustness 30

3.3.1 Fault Recovery In Neural Computation 30
3.3.2 Reliable Communication . 31
3.3.3 Reliable Memory Operation . 31
3.3.4 Reliable Application Mapping . 32

3.4 Chapter Summary . 34

Chapter 4 FAULT RECOVERY METHODS FOR NEURAL COMPUTA-
TIONS (SAP and TSM) 35

4.1 Introduction to Fault Recovery in Neural Networks 36
4.2 Impacts of Faults in Spiking Neural Networks 37

4.2.1 Fault Modelling . 38
4.3 The Proposed Fault Recovery Algorithms . 40

4.3.1 Stuck-at Augmented Pruning Algorithm (SAP) 40
Weak Point . 42

4.3.2 Target and Selection Method (TSM) 42
4.4 Evaluation . 44

4.4.1 Evaluation Methodology . 44
4.4.2 Evaluation Results . 44
4.4.3 Impacts of Faults in Spiking Neural Networks 44
4.4.4 Stuck-at Pruning (SAP) Algorithm . 46
4.4.5 Target and Selection Method . 48

MLP-MNIST . 48
CSNN-NMNIST . 52

4.5 Chapter Summary . 56

Chapter 5 FAULT-TOLERANT MAPPING ALGORITHM OF SNNs TO NEU-
ROMORPHIC SYSTEMS 57

5.1 Fault-tolerant Mapping Overview . 58
5.2 Migration-Based Mapping . 59
5.3 Migration-Based Mapping with the Proposed Ranking and Selection Mechanism 60

5.3.1 Selection Throughout The System Algorithm 62
Weak Point . 65

5.3.2 Selection Cluster by Cluster Algorithm 65
5.6 Evaluation . 67
5.7 Evaluation Methodology . 67
5.8 Evaluation Results . 68

5.8.1 Mapping without RSM . 68
5.8.2 Mapping with RSM . 72

Mapping efficiency . 72

vi

Time complexity . 78
Reliability analysis . 79

5.9 Chapter Summary . 86

Chapter 6 ROBUST MAPPING TO NEUROMORPHIC SYSTEMS 87

6.1 The Proposed Mapping Method (R-MaS3N) 88
6.1.1 Initial Mapping to Neuron Clusters . 89
6.1.2 Robust Mapping to Neuron Clusters 89

SNN Layer Partitioning (SLP) Algorithm 93
Neuron Partitioning (NP) Algorithm 96

6.3 Evaluation . 99
6.3.1 Evaluation Methodology . 99
6.3.2 Evaluation Results . 100

Mapping efficiency . 100
Mapping cost . 104
Neuron utilization behavior . 106
Time complexity . 108
Reliability Assessment: Mean Time To Failure (MTTF) 110

6.4 Chapter Summary . 113

Chapter 7 TOWARDS A ROBUST RECONFIGURABLE NEUROMORPHIC
ARCHITECTURE 114

7.1 System Architecture . 115
7.2 Neural Tile . 116

7.2.1 3D Multi-Cast Router . 116
7.2.2 Spiking Neuro Processing Core Architecture 117

Network Interface (NI) . 118
7.3 Evaluation methodology . 120
7.4 Evaluation results . 120
7.5 Conclusion . 121

Chapter 8 DISSERTATION SUMMARY AND FUTURE OUTLOOK 122

8.1 Contributions Summary . 122
8.2 Future outlook . 124

Major Journals . 125
Major Conference(s) . 125

vii

List of Figures

1.1 Computing power demand of machine learning algorithms on conven-

tional computing architectures over the past 4 decades expressed in

PETAFLOPS [1]. 2

1.2 Costs associated with training AI models have shown a significant in-

crease since 2011. An exponential rise of this magnitude is unsustain-

able [1]. 3

1.3 Comparison of the von Neumann architecture with the neuromorphic

architecture: (a) Von Neumann-based computing systems architecture,

(b) Neuromorphic computing systems architecture. 4

1.4 Example of neural computation in a simple connected neural network

with no faulty neuron. 6

1.5 Example of neural computation in a simple connected neural network

with a faulty neuron. 6

1.6 Illustrative examples of the mapping of a neural network application

to a neural circuit: (i) With sufficient redundancy elements, (ii) With

depleted redundancy elements following multiple failures. . . . 8

viii

1.7 Correlation between scaling factor and number of redundant neurons in

large-scale NoC-based neuromorphic systems. 8

2.1 STDP illustrating how spike timing influences synaptic weight change.

When the presynaptic spike precedes (follows) the postsynaptic spike

within a window of milliseconds, it leads to weight increase (decrease),

resulting in LTP or LTD, respectively. [2] 15

2.2 Neuron diagram essentially consists of three parts: dendrites, cell bod-

ies, and axons. [2] 16

2.3 A neuron analog implementation as described in [3] 17

2.4 A neuron digital implementation as described in [4] 17

2.5 Schematic illustration of neural coding: (a) Rate coding: Input intensity

is converted to firing rates, (b) Time to first spike coding: Information

is encoded based on the precise timing of the first spike generated by a

neuron with high-intensity input to a neuron firing first, (c) Phase cod-

ing: High- and medium-intensity input neurons spike almost at the same

time as neurons with low-intensity input that are not synchronized, (d)

Latency coding: Spike timing t1 and t2 encode information in neurons

with medium and least intensity input relative to neurons with the high-

est intensity. 22

4.1 MLP-MNIST Architecture. 39

4.2 CSNN-NMNIST Architecture. 39

ix

4.3 The impact of SA faults on accuracy in MLP for MNIST dataset. . . 45

4.4 The impact of SA faults on accuracy in CSNN for NMNIST dataset. . 45

4.5 Effect of the SAP method on the accuracy of MLP-MNIST with stuck-

at-1 fault. 47

4.6 Effect of the SAP method on the accuracy of MLP-MNIST with stuck-

at-0 fault. 47

4.7 Performance comparison of SAP (with 10% faulty neurons removed)

and TSM fault recovery methods on a SA-1 fault for MLP-MNIST. . 48

4.8 Performance comparison of SAP (with 50% faulty neurons removed)

and TSM fault recovery methods on a SA-1 fault for MLP-MNIST. . 49

4.9 Performance comparison of SAP (with 80% faulty neurons removed)

and TSM fault recovery methods on a SA-1 fault for MLP-MNIST. . 49

4.10 Performance comparison of SAP (with 10% faulty neurons removed)

and TSM fault recovery methods on a SA-0 fault for MLP-MNIST. . 50

4.11 Performance comparison of SAP (with 50% faulty neurons removed)

and TSM fault recovery methods on a SA-0 fault for MLP-MNIST. . 50

4.12 Performance comparison of SAP (with 80% faulty neurons removed)

and TSM fault recovery methods on a SA-0 fault for MLP-MNIST. . 51

4.13 Performance comparison of SAP (with 10% faulty neurons removed)

and TSM fault recovery methods on a SA-1 fault for CSNN-NMNIST. . 52

x

4.14 Performance comparison of SAP (with 50% faulty neurons removed)

and TSM fault recovery methods on a SA-1 fault for CSNN-NMNIST. . 53

4.15 Performance comparison of SAP (with 80% faulty neurons removed)

and TSM fault recovery methods on a SA-1 fault for CSNN-NMNIST. . 53

4.16 Performance comparison of SAP (with 10% faulty neurons removed)

and TSM fault recovery methods on a SA-0 fault for CSNN-NMNIST. . 54

4.17 Performance comparison of SAP (with 50% faulty neurons removed)

and TSM fault recovery methods on a SA-0 fault for CSNN-NMNIST. . 54

4.18 Performance comparison of SAP (with 80% faulty neurons removed)

and TSM fault recovery methods on a SA-0 fault for CSNN-NMNIST. . 55

5.1 An illustration of migration-based mapping on a 3× 3× 3 NoC-based

neuromorphic system. 60

5.2 An illustration of the migration-based mapping with the proposed RSM

on a 3×3×3 NoC-based neuromorphic system. 61

5.3 An illustration of post-remapping in a 3× 3× 1 NoC-based neuro-

morphic system where each cluster comprises 256 neurons: (a) Post-

remapping results following system-wide selection, (b) Post-remapping

results with a cluster-by-cluster selection approach within the system. . 63

5.4 Output mapping behavior without the proposed RSM at various fault

rates for a 4×4×4 NoC-based neuromorphic system with 256 neurons

per cluster. 69

xi

5.5 Output mapping behavior without the proposed RSM at various fault

rates for a 5×5×5 NoC-based neuromorphic system with 256 neurons

per cluster. 69

5.6 Output mapping behavior without the proposed RSM at various fault

rates for a 6×6×6 NoC-based neuromorphic system with 256 neurons

per cluster. 70

5.7 Output mapping behavior without the proposed RSM at various fault

rates for a 4×4×4 NoC-based neuromorphic system with 64 neurons

per cluster. 70

5.8 Output mapping behavior without the proposed RSM at various fault

rates for a 5×5×5 NoC-based neuromorphic system with 64 neurons

per cluster. 71

5.9 Output mapping behavior without the proposed RSM at various fault

rates for a 6×6×6 NoC-based neuromorphic system with 64 neurons

per cluster. 71

5.10 Output mapping behavior with the proposed RSM at various fault rates

for a 4×4×4 NoC-based neuromorphic system with 256 neurons per

cluster(FN with ranks different). 72

5.11 Output mapping behavior with the proposed RSM at various fault rates

for a 5×5×5 NoC-based neuromorphic system with 256 neurons per

cluster(FN with ranks different). 73

xii

5.12 Output mapping behavior with the proposed RSM at various fault rates

for a 6×6×6 NoC-based neuromorphic system with 256 neurons per

cluster(FN with ranks different). 73

5.13 Output mapping behavior with the proposed RSM at various fault rates

for a 4×4×4 NoC-based neuromorphic system with 256 neurons per

cluster(FN with ranks the same). 74

5.14 Output mapping behavior with the proposed RSM at various fault rates

for a 5×5×5 NoC-based neuromorphic system with 256 neurons per

cluster(FN with ranks the same). 74

5.15 Output mapping behavior with the proposed RSM at various fault rates

for a 6×6×6 NoC-based neuromorphic system with 256 neurons per

cluster(FN with ranks the same). 75

5.16 Output mapping behavior with the proposed RSM at various fault rates

for a 4× 4× 4 NoC-based neuromorphic system with 64 neurons per

cluster(FN with ranks different). 75

5.17 Output mapping behavior with the proposed RSM at various fault rates

for a 5× 5× 5 NoC-based neuromorphic system with 64 neurons per

cluster(FN with ranks different). 76

5.18 Output mapping behavior with the proposed RSM at various fault rates

for a 6× 6× 6 NoC-based neuromorphic system with 64 neurons per

cluster(FN with ranks different). 76

xiii

5.19 Output mapping behavior with the proposed RSM at various fault rates

for a 4× 4× 4 NoC-based neuromorphic system with 64 neurons per

cluster(FN with ranks the same). 77

5.20 Output mapping behavior with the proposed RSM at various fault rates

for a 5× 5× 5 NoC-based neuromorphic system with 64 neurons per

cluster(FN with ranks the same). 77

5.21 Output mapping behavior with the proposed RSM at various fault rates

for a 6× 6× 6 NoC-based neuromorphic system with 64 neurons per

cluster(FN with ranks the same). 78

5.22 Reliability Plot of RSM for a 4×4×4 NoC-based neuromorphic system

throughout the simulation duration. 82

5.23 Reliability Plot of RSM for a 5×5×5 NoC-based neuromorphic system

throughout the simulation duration. 82

5.24 Reliability Plot of RSM for a 6×6×6 NoC-based neuromorphic system

throughout the simulation duration. 83

5.25 Operational availability plot of RSM for a 4×4×4 NoC-based neuro-

morphic system throughout the simulation duration. 83

5.26 Operational availability plot of RSM for a 5×5×5 NoC-based neuro-

morphic system throughout the simulation duration. 84

5.27 Operational availability plot of RSM for a 6×6×6 NoC-based neuro-

morphic system throughout the simulation duration. 84

xiv

5.28 Distribution plot of TTF across three different 3D NoC-based neuro-

morphic system. 85

5.29 Distribution plot of MTTF across three different 3D NoC-based neuro-

morphic system sizes. 85

6.1 An illustration of the initial SNN mapping process on a 3×3×3 NoC-

based neuromorphic system: (a) Represents the neural network applica-

tion, while (b) showcases the neural network application mapped onto

the neuro cores of the 3D NoC-based neuromorphic system. Our map-

ping method, as introduced in [5], is employed for this mapping. It’s

noteworthy that certain clusters, specifically C11, C12, C14, C15, and C16

within NL1, contain faulty neurons. Consequently, the mapped neurons

in these clusters are fewer than the expected maximum capacity. . . 90

6.2 Descriptive overview of the mapping sequence executed on the 3D NoC-

based neuromorphic hardware, as detailed in Figure 6.1. The process

involves mapping neurons from each layer of the network application

to their corresponding layers within the neuromorphic system. . . 91

xv

6.3 An illustrative representation of the proposed solution within a 3×3×1

NoC-based neuromorphic system, addressing the mapping challenge

detailed in Figure 6.1. The sequence unfolds as follows: (a) Depicts

the unmapped neurons originating from L1 of the neural network appli-

cation after the initial mapping. (b) Illustrates the partitioning of these

unmapped neurons into two distinct groups: the most active and least

active partitions. (c) Demonstrates the subsequent remapping process

where partitioned, unmapped neurons from both the most active and

least active partitions are reassigned to neurons located within the less-

active regions of the respective layer in the 3D NoC-based neuromor-

phic system. (d) Offers a visual representation of the sequential steps

involved in the remapping process within NL1. 92

6.4 An illustration of an SNN layer divided into two distinct neuron par-

titions using the SLP algorithm: (a) The SNN application (b) Sample

layout of the characterized neurons (c) Layout of the clustered neurons. . 95

6.5 An illustrative representation of neurons in clusters within a 3× 3× 1

NoC-based neuromorphic system, divided into Chigh and Cless partitions

utilizing the NP algorithm. 97

6.6 Behavior of output neuron remapping across different fault rates within

a 3×3×3 NoC-based neuromorphic system for MLP_1794. . . . 101

xvi

6.7 Behavior of output neuron remapping across different fault rates within

a 3×3×3 NoC-based neuromorphic system for MLP_2794. . . . 102

6.8 Behavior of output neuron remapping across different fault rates within

a 4×4×4 NoC-based neuromorphic system for MLP_4794. . . . 102

6.9 Behavior of output neuron remapping across different fault rates within

a 4×4×4 NoC-based neuromorphic system for MLP_8794. . . . 103

6.10 Behavior of output neuron remapping across different fault rates within

a 5×5×5 NoC-based neuromorphic system for MLP_9794. . . . 103

6.11 Behavior of output neuron remapping across different fault rates within

a 5×5×5 NoC-based neuromorphic system for MLP_18794. . . 104

6.12 Plot illustrating applications mapping cost for a 3× 3× 3 NoC-based

neuromorphic system under various fault rates. 105

6.13 Plot illustrating applications mapping cost for a 4× 4× 4 NoC-based

neuromorphic system under various fault rates. 105

6.14 Plot illustrating applications mapping cost for a 5× 5× 5 NoC-based

neuromorphic system under various fault rates. 106

6.15 Plot illustrating neuron utilization across various stages of the mapping

method for a 3×3×3 3D NoC-based neuromorphic system. . . . 107

6.16 Plot illustrating neuron utilization across various stages of the mapping

method for a 4×4×4 3D NoC-based neuromorphic system. . . . 107

xvii

6.17 Plot illustrating neuron utilization across various stages of the mapping

method for a 5×5×5 3D NoC-based neuromorphic system. . . . 108

6.18 The mean time to failure (MTTF) of R-MaS3N when MLP1794 and

MLP2794 applications are mapped onto a 3× 3× 3 NoC-based neuro-

morphic system. 112

6.19 The mean time to failure (MTTF) of R-MaS3N when MLP4794 and

MLP8794 applications are mapped onto a 3× 3× 3 NoC-based neuro-

morphic system. 112

6.20 The mean time to failure (MTTF) of R-MaS3N when MLP9794 and

MLP18794 applications are mapped onto a 3× 3× 3 NoC-based neu-

romorphic system. 113

7.1 High-level view of the neuromorphic architecture. 115

7.2 High level view of the 3D multicast router [6]. 117

7.3 High-level view of the spiking neuro processing core [6]. . . . 118

7.4 A block diagram of the network interface supporting the MigSpike +

RSM mapping method. 119

7.5 A block diagram of the network interface supporting the R-MaS3N

mapping method. 119

7.6 Hardware physical design layout of the proposed robust reconfigurable

neuromorphic system for a 2× 2 NoC size: (a) Layout (b) Schematic

layout comprising 256 neuron logic cells and 65K synapses for the crossbar. 121

xviii

List of Tables

5.1 Configuration for the evaluation. 68

5.2 Execution time of RSM for faulty neuron selection in 3D NoCs. . . 79

6.1 Configuration used for evaluating R-MaS3N. 100

6.2 Applications used for evaluating R-MaS3N 100

6.3 R-MaS3N remapping time in the 3D-NoC-based neuromorphic system

for different SNN applications. 109

7.1 Hardware complexity of the proposed robust reconfigurable system. . 121

xix

List of Abbreviations

SNN Spiking Neural Network

NoC Network-on-Chip

MTTF Mean Time To Failure

IFR Initial Mapping Failure Rate

RFR Remap Failure Rate

GA Genetic Algorithm

MLP Multi-Layer Perceptron

CPU Central Processing Unit

GPU Graphics Processing Unit

FPGA Field-Programmable Gate Array

AI Artificial Intelligence

ML Machine Learning

NP Neuron Partitioning

SLP SNN Layer Partitioning

HPC High-Performance Computing

SC Spiking Counts

xx

FCS Frequency of Consecutive Spike Counts

NC Number of Negative Connection

PC Number of Positive Connection

UM Unmapped Neurons

FN Faulty Neurons

UABR Unmapped Application Neurons Before Repairs

UAAR Unmapped Application Neurons After Repairs

UNNS Utilized Neurons of Neuromorphic System

3D Three-Dimensional

2D Two-Dimensional

NN Neural Network

UI User Interface

MLP Multilayer Perceptron

LIF Leaky Integrate and Fire

NC Neural Circuit

RSM Ranking and Selection Mechanism

FPGA Field-Programmable Gate Array

RAM Random Access Memory

ASIC Application-Specific Integrated Circuit

SNPC Spiking neuro-processing core

NI Network interface

xxi

SAP Stuck-at Augmented Pruning

TSM Target and Selection Method

FT Fault-Tolerant

AER Address-Event-Representation

xxii

TO MY LATE PARENTS, LATE GUARDIAN, AND MY FAMILY

xxiii

Acknowledgment

F Irst and foremost, I would like to thank my supervisor Prof. Abderazak Ben Abdallah.

Throughout this research journey, his guidance, expertise, patience, and unwavering sup-

port have been invaluable. This work has been shaped by his encouraging and insightful feed-

back. Also, I wish to extend my sincere thanks to my co-referees, Prof. Nakasato Naohito,

Yuichi, Prof. Okuyama Yuichi, Prof. Daisuke Suzuki, and Prof. Dang Nam Khanh, who have

been instrumental in improving the quality of my thesis through their constructive criticism and

valuable suggestions.

For their generous financial support, I am particularly grateful to the Fukushima Global Rotary

Club, through the Rotary Yoneyama Foundation. As a result of their sponsorship, this research

has been made possible. It is truly an honor that they believe in what I’m doing. It is impossible

to ignore the significant role played by my club counselors, Mr. Chintaka, Mr. Odera, and Ms.

Mieko Suzuki. As well as serving as mentors for club and rotary activities, they treated me as

if they were my parents here in Japan. Their support, encouragement, and understanding have

greatly contributed to my academic success in Japan.

As well, I would like to express my gratitude to Dr. Wang for taking the time to review my

articles before their submission to Dr. Jiang Wang for his immeasurable contributions and as-

sistance throughout my program. I would also like to thank my colleagues Maatar and Dr.

Liang for providing me with stimulating discussions and advice that have enhanced my under-

standing and helped develop a conducive research environment.

I extend heartfelt thanks to the late Mr. D.D. Sani and his family, who warmly embraced me

into their lives. My siblings and fiancée, Anna Jonah, have been pillars of unwavering support

and understanding, constantly motivating me with their love and belief throughout this journey.

xxiv

Thesis advisor: Professor Abderazek Ben Abdallah Williams Yohanna Yerima

Architecture and Algorithms for Robust Reconfigurable
Neuromorphic Systems

ABSTRACT

NEuromorphic computing is gaining momentum as a revolutionary technology for advanc-

ing artificial intelligence (AI). By drawing inspiration from the operations of the human

brain, neuromorphic computing aims to create computing systems mirroring the brain’s com-

putational structure and architecture. These computing systems hold the promise of processing

information with greater efficiency and accuracy than traditional computing systems. In con-

trast to conventional computing systems that employ artificial neural networks (ANNs), where

information flows sequentially through network layers, neuromorphic systems implement spik-

ing neural networks (SNNs). This enables asynchronous and event-driven computation aligning

with the temporal dynamics of biological neurons and synapses. Additionally, it is noteworthy

that SNNs demonstrate inherent fault-tolerant properties providing neuromorphic systems with

a degree of resilience against errors. Nevertheless, as the number of faults increases, their per-

formance begins to degrade. In light of these concerns and to guarantee precise output results,

the implementation of fault recovery algorithms becomes imperative.

Furthermore, given the growing adoption of neuromorphic systems in critical applications, re-

siliency and robustness have emerged as paramount concerns. While prevailing research pri-

marily focuses on enhancing performance, the optimal utilization of neuromorphic systems

in the future necessitates incorporating robust computing capabilities for seamless application

execution. Effectively executing SNN applications on neuromorphic hardware requires the

mapping of neurons and synapses onto the hardware architecture. Mapping to neuromorphic

hardware remains a non-trivial task. Furthermore, neural circuits are prone to faults caused

by variability in the manufacturing flow, process variations, and manufacturing defects which

xxv

Thesis advisor: Professor Abderazek Ben Abdallah Williams Yohanna Yerima

adds complexity. Strategies employing redundancies and large search spaces for mapping come

with substantial resource and computational overheads when dealing with scalable neuromor-

phic systems. It’s also essential to know that redundancy is finite. Consequently, it is imperative

to find the most efficient approach for mapping SNN applications onto neuromorphic hardware.

Such an approach would have significant implications for application performance and relia-

bility. In this dissertation, we propose architectures and algorithms to facilitate robust neural

computations and application mapping onto reconfigurable neuromorphic systems.

First, we conduct experiments and analyses to determine the effects of faults on neural com-

putations. These faults may arise from internal and external interference, noise in synaptic

transmission, and fluctuations in post-synaptic potentials within a neural model. After under-

standing how these faults affect the outcomes of neural computations, we develop algorithms to

recover these computations from the impact of these faults. Secondly, to ensure reliable com-

putation outcomes in application execution, we propose a mapping algorithm that explicitly

leverages redundancy through a novel selection mechanism for fault tolerance. This mechanism

ensures successful mapping even in situations where redundancies are outnumbered. Thirdly,

we present "R-MaS3N," an approach for robustly mapping SNN applications onto scalable

neuromorphic systems with a novel fault-tolerant mechanism. The novel fault-tolerant mech-

anism, inspired by the neural reuse theory observed in the human brain significantly reduces

mapping computational and resource requirements. Notably, it also addresses the challenge of

finite resource availability.

Lastly, we provide a comprehensive evaluation of the proposed fault-tolerant mapping algo-

rithms within the context of scalable 3D NoC-based neuromorphic systems and a hardware

complexity analysis of the proposed robust reconfigurable neuromorphic chip.

xxvi

Thesis advisor: Professor Abderazek Ben Abdallah Williams Yohanna Yerima

「ロバスト再構成可能なニューロモーフィックシ
ステムのためのアーキテクチャとアルゴリズム」

要旨

　ニューロモーフィック・コンピューティングは、人工知能（AI）を進化させる

画期的な技術として勢いを増している。ニューロモーフィック・コンピューティン

グは、人間の脳の動作からインスピレーションを得ることで、脳の計算構造とアー

キテクチャを反映したコンピューティング・システムを構築することを目指す。こ

れらのコンピューティング・システムは、従来のコンピューティング・システムよ

りも高い効率と精度で情報を処理することが期待されている。人工ニューラルネッ

トワーク（ANN）を採用した従来のコンピューティング・システムでは、情報が

ネットワーク層を通して順次流れるのに対し、ニューロモーフィック・システムで

は、スパイキング・ニューラル・ネットワーク（SNN）が実装されている。これに

より、生物学的ニューロンとシナプスの時間的ダイナミクスに沿った、非同期かつ

イベント駆動型の計算が可能になる。さらに、SNNが固有の故障耐性を発揮するこ

とで、ニューロモーフィック・システムにエラーに対するある程度の回復力を与え

ていることも注目に値する。とはいえ、故障の数が増えるにつれて、その性能は低

下し始める。これらの懸念に鑑み、また正確な出力結果を保証するためには、故障

回復アルゴリズムの実装が必須となる。

　さらに、重要なアプリケーションにおけるニューロモーフィック・システムの採

用が増加していることから、回復力と堅牢性が最も重要な懸念事項として浮上して

いる。一般的な研究は主に性能の向上に焦点を当てているが、将来的にニューロ

モーフィック・システムを最適に活用するためには、シームレスなアプリケーショ

ン実行のための堅牢なコンピューティング機能を組み込む必要がある。ニューロ

モーフィック・ハードウェア上でSNNアプリケーションを効果的に実行するには、

xxvii

Thesis advisor: Professor Abderazek Ben Abdallah Williams Yohanna Yerima

ニューロンとシナプスをハードウェア・アーキテクチャにマッピングする必要があ

る。ニューロモルフィック・ハードウェアへのマッピングは、依然として非自明な

課題である。さらに、神経回路は、製造フローのばらつき、プロセスのばらつき、

製造上の欠陥によって欠陥が発生しやすく、これらにより複雑さを増している。ス

ケーラブルなニューロモルフィック・システムを扱う場合、マッピングに冗長性

と大きな探索空間を採用する戦略は、かなりのリソースと計算オーバーヘッドを

伴う。また、冗長性は有限であることも考慮すべき点だ。したがって、SNNアプリ

ケーションをニューロモーフィック・ハードウェアにマッピングするための最も効

率的なアプローチを見つけることが不可欠である。このようなアプローチは、アプ

リケーションの性能と信頼性に大きな影響を与えるだろう。本論文では、再構成可

能なニューロモルフィック・システム上へのロバストなニューラル計算とアプリ

ケーション・マッピングを容易にするアーキテクチャとアルゴリズムを提案する。

　まず、神経計算における欠陥の影響を明らかにするための実験と分析を行う。こ

れらの欠陥は、内部干渉や外部干渉、シナプス伝達のノイズ、神経モデル内のシナ

プス後電位のゆらぎなどから生じる可能性がある。これらの障害が神経計算の結果

にどのような影響を与えるかを理解した後、これらの障害の影響からこれらの計算

を回復するアルゴリズムを開発する。第二に、アプリケーションの実行において信

頼性の高い計算結果を保証するために、故障耐性のための新しい選択メカニズムを

通じて冗長性を明示的に活用するマッピングアルゴリズムを提案する。このメカニ

ズムにより、冗長性が劣る状況でもマッピングを成功させることができる。第三

に、SNNアプリケーションをスケーラブルなニューロモルフィック・システムに頑

健にマッピングするための新しいアプローチである「R-MaS3N」を紹介する。この

方法は、人間の脳で観察された神経再利用理論に着想を得ており、マッピングに必

要な計算量とリソースを大幅に削減する。特筆すべきは、リソースの有限性という

課題にも対処していることである。

　最後に、本稿はスケーラブルな3D NoCベースのニューロモルフィック・システム

の文脈における、提案する耐障害性マッピング・アルゴリズムの包括的な評価と、

提案するロバストなリコンフィギュラブル・ニューロモルフィック・チップのハー

ドウェア複雑性解析を提供する。

xxviii

1
INTRODUCTION

1.1 EVOLUTION OF NEUROMORPHIC COMPUTING SYSTEMS

IN recent years, the rapid advancement of artificial intelligence (AI) driven by artificial neu-

ral networks (ANNs) has given rise to unprecedented demands for computing hardware.

However, traditional computing architectures based on the von Neumann model struggle to

meet these extraordinary demands as they face the limitations of Moore’s Law. While not all

data-intensive computing applications require deep learning algorithms, we must consider AI

applications like the Internet of Things (IoT), bio-medical systems, and autonomous vehicles

where computational efficiency is paramount. Recent surveys reveal that the ever-growing need

for computing power is outpacing the progress achieved through Moore’s Law scaling as de-

picted in Figure 1.1 and 1.2. This computing power challenge predominantly stems from the

1

separation of data storage and processing in conventional computing systems as described in

Figure 1.1. Such architectures force processors to expend a significant portion of their time

and energy on data transfers. Given these trends, it’s increasingly unlikely that conventional

hardware can adequately address these demands over the long term. This is especially evident

when observing the growth in the cost of training required for AI models illustrated in Figure

1.2.

Figure 1.1: Computing power demand of machine learning algorithms on conventional com-
puting architectures over the past 4 decades expressed in PETAFLOPS [1].

However, a hopeful solution lies in adopting principles from biology. Recent explorations

within the research community have highlighted a system that not only achieves remarkable

energy efficiency but also offers advanced functionality: the human brain [1]. Drawing inspi-

ration from the brain allows approaching information processing differently from the approach

in conventional systems. Unlike in conventional systems, the brain co-locates memory and

processing within a single compartment, encoding information through signals and harnessing

massive parallelism [7]. This arrangement alleviates the constant need to access main memory

as seen in conventional systems thereby reducing significant energy consumption [8]. Neuro-

morphic computing is a rapidly evolving engineering field that emulates the brain’s computing

2

1.1. EVOLUTION OF NEUROMORPHIC COMPUTING SYSTEMS

Figure 1.2: Costs associated with training AI models have shown a significant increase since
2011. An exponential rise of this magnitude is unsustainable [1].

functionality to develop neuromorphic systems. Our definition of neuromorphic systems is

computers inspired by the brain’s neuronal functions and composed of synapses and neurons.

While conventional computing systems consist of separate units for processing and memory,

in a neuromorphic system, both processing and memory are contained in a single compartment

controlled by a neural network as described in Figure 1.3b. Instead of explicit instructions as

in conventional computing systems, neuromorphic systems define applications based on the

neural network’s structure and parameters [8]. The term "neuromorphic" was coined by an

American scientist in the late 1980s at the California Institute of Technology and is sometimes

referred to as mixed analog and digital implementation [9]. This innovative technology revolu-

tionizes the design and implementation of machine learning algorithms.

Recent strides in neuromorphic computing have led to the development of machine learning

algorithms that are not only more efficient but also more powerful than ever before. These algo-

rithms when implemented on neuromorphic systems exhibit the ability to rapidly and accurately

process vast amounts of data enabling more complex analysis and fast decision-making. Typ-

ically, spiking neural networks (SNNs) are employed on neuromorphic systems despite their

poor performance in terms of accuracy compared to ANNs [10]. This is due to their unique

biological plausibility [11]. Unlike other types of artificial neural networks such as convolu-

3

Figure 1.3: Comparison of the von Neumann architecture with the neuromorphic architecture:
(a) Von Neumann-based computing systems architecture, (b) Neuromorphic computing sys-
tems architecture.

tional neural networks (CNNs) and recurrent neural networks (RNNs), spiking neural networks

attempt to replicate key aspects of neural behavior observed in real biological systems such as

synaptic plasticity [12], sparse activity [13], temporal dynamics [14], and asynchronous pro-

cessing [15]. SNNs, unlike traditional artificial neural networks, consider timing as part of their

operation [15]. Thus, they can be implemented on neuromorphic hardware to fit the temporal

dynamics of spiking synapses and neurons to operate event-driven.

Spiking neuron models such as the integrate-and-fire or Hodgkin-Huxley model describe mem-

brane potential and spike generation differently. In the integrate and fire model (LIF), output

spikes are fired when accumulated membrane potentials from other interconnected neurons

reach a threshold. A complex and biologically plausible model like the Hodgkin-Huxley neu-

ron model approximates specific aspects of biological neurons like ion channels [16]. The

Izhikevich model combines the biological plausibility of Hodgkin-Huxley dynamics with the

computational efficiency of the integrate-and-fire neurons. Using the Izhikevich model, thou-

sands of spiking neurons can be simulated in real-time. It’s worth noting that the selection of

the spiking neural model’s implementation plays a significant role in exploring the neuronal

capabilities of a neuromorphic system. The Hodgkin-Huxley and Izhikevich models provide

the neuromorphic system with a remarkable resemblance to the biological brain in software

simulation [16]. However, their hardware implementation is complex due to the numerous pa-

rameters inherent in these models. This complexity often poses challenges. Consequently, the

Integrate-and-Fire (IF) model emerges as a preferred choice due to its simplified structure.

4

1.2. ROBUSTNESS IN NEUROMORPHIC SYSTEMS: PROBLEMS AND MOTIVATION

1.2 ROBUSTNESS IN NEUROMORPHIC SYSTEMS: PROBLEMS AND MOTIVATION

The neuromorphic system excels at performing machine learning and some non-machine

learning functions [7]. Beyond Moore’s Law, it holds tremendous potential for computing [17].

While neuromorphic systems offer a promising future in computing, robustness and resiliency

against faults leading to computational and operational errors are crucial, particularly for criti-

cal applications requiring safety, reliability, and dependability [18]. The accumulation of faults

resulting from the independent failure or malfunction of a neuron at any point within a large-

scale spiking neural network gives rise to reliability concerns [19] regarding computation re-

sults. These malfunctions or failures occur due to external interference, random actions by

other components (i.e., neurons), and the potential impact of noise on neurons [20].

Figure 1.4 (i) illustrates a post-synaptic neuron N4 receiving spikes from three presynaptic neu-

rons. In the absence of any faulty presynaptic neurons, the output of neuron N4 results in a 1

spike as shown in Figure 1.4 (ii). However, in Figure 1.5 (iii), where neuron N3 is identified as

faulty, it is unable to generate an output spike. Consequently, neuron N4 is also incapable of

firing an output spike resulting in an output spike value of 0 as shown in Figure 1.5 (iv).

Recent neurobiological and computational studies have demonstrated that neurons can tolerate

minimal faults and are resilient to noisy inputs [21]. However, this resilience is not univer-

sally applicable to all neural network applications. While SNNs exhibit resilience to faults,

recent experiments in [19] have shown that their performance deteriorates with an increasing

number of faults. To address these concerns, fault recovery algorithms must be developed to

recover the performance of these applications from the effects of an even higher fault rate.

These algorithms aim to identify, isolate, and rectify faults within the network thereby ensuring

performance and reliability recovery.

5

Figure 1.4: Example of neural computation in a simple connected neural network with no faulty
neuron.

Figure 1.5: Example of neural computation in a simple connected neural network with a faulty
neuron.

6

1.2. ROBUSTNESS IN NEUROMORPHIC SYSTEMS: PROBLEMS AND MOTIVATION

Furthermore, To execute applications on neuromorphic systems, it is essential to map them

to the system. However, reliability issues may arise due to various factors including the inher-

ent complexity of the hardware, the potential for faults within the system, and the challenges

of scaling both hardware and application sizes.

To address these reliability issues, fault-tolerant mapping techniques are commonly employed.

These techniques include fault detection, redundancy, and dynamic reconfiguration, often us-

ing methods such as genetic algorithms, integer linear programming, and min-max optimiza-

tion [21] [22]. It’s important to note that scalability in neuromorphic systems specifically NoC-

based (Network-on-Chip) systems comes with its challenges. The extended time required by

genetic fault-tolerant approaches to find the optimal solution leads to significantly lengthy re-

pair times. The approach of periodically adding redundancies to integrated chips to achieve

fault tolerance is not a sustainable solution in the long term. Moreover, the number of redun-

dant neurons could be exceeded by the number of faulty neurons resulting in the need to drop

some neurons. As shown in Figure 1.6, the redundancy element could deplete over time when

multiple faults occur during run-time. Another notable challenge illustrated in Figure 1.7 is

that as NoC sizes increase, the required redundancies for repairs also increase exponentially.

While techniques such as fault detection, redundancy, and reconfiguration contribute to relia-

bility recovery, their effectiveness may be limited within a short time frame, often accompanied

by high computational and resource costs. It is more efficient to re-purpose existing neurons in

the neuromorphic system, thus ensuring enhanced reliability at minimal cost and with reduced

repair time. To the best of our knowledge, existing fault-tolerant approaches never considered

re-purposing some existing neurons for fault tolerance during mapping. It’s worth mentioning

that this dissertation does not encompass thermal and energy analyses; our primary focus is on

ensuring the robustness and reliability of the neuromorphic system.

7

Figure 1.6: Illustrative examples of the mapping of a neural network application to a neural
circuit: (i) With sufficient redundancy elements, (ii) With depleted redundancy elements fol-
lowing multiple failures.

Figure 1.7: Correlation between scaling factor and number of redundant neurons in large-scale
NoC-based neuromorphic systems.

8

1.3. DISSERTATION CONTRIBUTIONS

1.3 DISSERTATION CONTRIBUTIONS

In this dissertation, we contribute to the field of reliable neuromorphic computing by pre-

senting architectures and algorithms designed to enhance the robustness of neuromorphic sys-

tems. Our contribution begins with an in-depth analysis of the impact of faults on neural

computation performance. To recover neuromorphic computing applications from the impact

of faults, we propose novel fault recovery algorithms. Furthermore, we address the complex

task of mapping applications onto neuromorphic systems, a challenge exacerbated by poten-

tial faults including high-rate capable of compromising neural computation reliability. Build-

ing upon our prior work in migration-based mapping, we introduce an advanced fault-tolerant

mapping algorithm and architecture with a novel ranking and selection mechanism. This ad-

dition aims to ensure the continued effectiveness of the mapping process even in the presence

of high-rate faults. Lastly, we recognize the inherent drawbacks associated with existing fault-

tolerant mechanisms particularly concerning resource costs and finite bottleneck issues when

striving for a balance between system efficiency and reliability during the mapping of applica-

tions onto neuromorphic systems. In response, we present a novel mapping approach featuring

a unique fault-tolerance mechanism inspired by the theory of neural reuse. This innovative

strategy seeks to overcome the limitations of traditional methods, offering a more sustainable

and efficient solution for system mapping within the realm of neuromorphic computing.

The main contributions of this dissertation are as follows:

• A stuck-at augmented pruning (SAP) method for recovery from the impact of fault in

SNNs during neural computation.

• A target and selection method (TSM) for improved fault recovery in SNNs during neural

computation that identifies and removes faulty neurons during neural computation.

• A ranking and selection mechanism (RSM) for fault-tolerant neuron mapping. The use

of this mechanism solves the problem of repairing many defective neurons while having

fewer spares.

• A cluster-by-cluster-based ranking and selection method to solve the issue of defective

9

neurons not being selected for fault-tolerant neuron mapping in neuromorphic hardware.

In this approach, all clusters with at least one defective neuron are selected for repair.

• A robust mapping scheme (R-MaS3N) featuring an innovative fault-tolerant mechanism

designed for mapping SNNs onto 3D-NoC-based neuromorphic systems. The novel

fault-tolerant mechanism effectively overcomes limitations in resources and computa-

tional costs associated with traditional redundancy-based fault-tolerant methods.

• A heuristic-based method for partitioning neurons in the layer of an SNN application.

This approach offers an optimal balance between performance and reliability.

• A partitioning technique that clusters neurons within the layers of the neuromorphic sys-

tem. This approach ensures that underutilized neurons are first leveraged and prioritized

for fault tolerance and neuron utilization recovery before most utilized.

1.4 DISSERTATION STRUCTURE

The rest of this dissertation is organized as follows:

• In Chapter 2, we discuss the fundamental components of a neuromorphic system.

• In Chapter 3, we provide an in-depth exploration of the concept of neuromorphic com-

puting and the progress achieved thus far. We also examine related works dedicated to

enhancing robustness in a neuromorphic system focusing on three crucial domains: fault

recovery in neural computation, reliable communication, reliable memory operation, and

application mapping.

• In Chapter 4 we introduce algorithms to recover SNNs applications performance from

faults in their neural computations.

• In Chapter 5, we present a fault-tolerant SNN algorithm tailored for mapping onto 3D

NoC-based neuromorphic systems using the proposed RSM.

10

1.4. DISSERTATION STRUCTURE

• In Chapter 6, we also present R-MaS3N, a robust mapping method for mapping SNNs

onto 3D NoC-based neuromorphic systems.

• In Chapter 7, we present an implementation of the proposed algorithms and schemes to

achieve a robust reconfigurable neuromorphic chip including hardware evaluation and

sample layout design.

• Finally, in Chapter 8, we conclude this dissertation with a comprehensive summary of

our contributions and a road map for future research.

11

2
FUNDAMENTALS OF NEUROMORPHIC

SYSTEMS

NEuromorphic systems emulate the neural computations observed in biological brains,

showcasing impressive learning capabilities and adaptability. Drawing inspiration from

the architecture and logical structure of the human brain has paved the way for the develop-

ment of biological neural networks extensively applied in realms such as machine learning and

artificial intelligence. The shift from biological neural network models to neuromorphic com-

puting systems necessitates the design of architectures that mimic their logical structure and

computational processes. This chapter discusses biological neural network models, exploring

the governing learning rules and information processing coding schemes. It concludes by ex-

amining how these computing models with their specific learning rules and coding schemes are

used to design and develop neuromorphic systems.

12

2.1. SPIKING NEURAL NETWORKS

2.1 SPIKING NEURAL NETWORKS

Biological and artificial neural networks (ANNs) are composed of neurons connected by

synapses where neurons serve as the fundamental processing units. Regarding their compu-

tational paradigm, ANNs can be categorized into three generations [23]. The first generation

encompasses McCulloch-Pitts neurons, often referred to as perceptrons. A multilayer percep-

tron has a single hidden layer and can efficiently compute various boolean functions. In the

second generation, neurons incorporate activation functions like sigmoid functions. Conse-

quently, second-generation neural networks have analog inputs and outputs making them more

realistic than their first-generation counterparts. Both generational models significantly differ

from biological neural networks in terms of functionality.

Brain neurons communicate through discrete pulses known as spikes, typically firing at fre-

quencies lower than 100MHz. This implies that only a window of 20 or 30 ms is required to

calculate the current firing rate [24]. Experimental evidence suggests visual processing tasks

can be accomplished in as little as 20 ms [25] [26]. As such, it appears unlikely that firing rate

serves as the principal coding mechanism for biological neurons instead, timing appears to play

a crucial role [27]. These insights led to the development of third-generation neural networks

which employ spiking neurons as their basis. Unlike the previous generations, spiking neu-

rons are inspired by the neuron dynamics in artificial neural networks observed in biology [28]

however, spiking neurons communicate using spikes and encode information both spatially and

temporally which explains the brain’s energy efficiency [29].

2.1.1 LEARNING RULES

Learning rules in SNNs are crucial for enabling these networks to perform complex tasks

and adapt to changing environments. These rules govern how synaptic weights between neu-

rons are adjusted based on input data and the network’s responses. Similar to conventional

ANNs, SNNs have three major categories of learning: unsupervised learning, supervised learn-

ing, and reinforcement learning.

13

SUPERVISED LEARNING

SNNs use supervised learning to optimize the network parameters based on the network’s

current output spike pattern and the desired output spike pattern [16] [30]. Based on the net-

work task, the desired output spike pattern represents a specific value. As an example, in clas-

sification tasks, desired output spike patterns encode class labels while in regression tasks, they

encode real values [16]. Many supervised learning methods in SNNs have their foundations

rooted in the concept of back-propagation which is widely used in traditional ANNs for train-

ing. However, there are some differences when applying back-propagation to SNNs due to their

spiking nature and temporal dynamics. An early application of spike-based back-propagation

in multilayer SNNs is pikeProp [31]. Furthermore, the Tempotron [32] has demonstrated its

effectiveness in binary classification tasks drawing parallels with the perceptron concept.

UNSUPERVISED LEARNING

An unsupervised learning approach to SNNs relies on correlations between neural activities

to adjust network parameters without relying on class labels [30]. Input spike patterns that are

represented using unsupervised learning can be used for clustering and classification tasks.

Biology’s most fundamental unsupervised learning rule is spike-timing-dependent plasticity

(STDP) as Hebb described it, neurons that fire together wire together [2].

The Hebbian learning rule can be expressed mathematically using equations:

∆wi j =
N

∑
k=1

 A+e−
∆t
τ+ , if ∆t > 0

A−e−
∆t
τ− , if ∆t ≤ 0

(2.1)

where ∆wi j represents the change in synaptic weight between lets say neurons i and j,

A+ and A− are constants for potentiation and depression, ∆t is used to represent the change

in time (t j− tk), , and τ+ and τ− are time constants. As illustrated in Figure 2.1, the STDP

process leads to synaptic potentiation (LTP) when the pre-synaptic neuron fires just before the

post-synaptic neuron (ti < t j), and depression (LTD) when the pre-synaptic neuron fires just

after the post-synaptic neuron (ti > t j). In unsupervised learning, STDP enables neuromorphic

14

2.1. SPIKING NEURAL NETWORKS

Figure 2.1: STDP illustrating how spike timing influences synaptic weight change. When the
presynaptic spike precedes (follows) the postsynaptic spike within a window of milliseconds,
it leads to weight increase (decrease), resulting in LTP or LTD, respectively. [2]

systems to adapt synaptic connections based on input spike patterns capturing temporal rela-

tionships and efficiently representing data within neural networks. This biologically inspired

mechanism plays a crucial role in various neuromorphic computing applications including pat-

tern recognition and sensory data processing.

REINFORCEMENT LEARNING

Reinforcement learning is another learning paradigm applicable to SNNs. In reinforcement

learning (RL), the parameters of an SNN are altered based on external feedback based on

the predictions generated by the network [30]. Reward-modulated STDP is one of the well-

known approaches used in RL with SNNs to provide an end-to-end learning approach to train

two different SNN-based sub-controllers [33]. A reinforcement learning approach for SNNs

has been developed recently using policy gradients. To this end, the SNN receives feedback

concerning the chosen outputs which then facilitates the adjustment of its parameters [2].

15

2.2 SPIKING NEURAL NETWORK MODELS

Figure 2.2 shows the basic structure of a neuron in the human brain. Each neuron has a

dendrite as a terminal for incoming signals. Figure 2.3 and 2.4 illustrates two distinct design

implementations of a neuron. In the analog design as shown in Figure 2.3, spikes on the ’axon’

wire undergo integration via the capacitance of the ’dendrite’ wire. The resultant voltage is

subsequently compared to a predefined threshold utilizing a comparator, which triggers a spike

generation when the voltage surpasses this threshold. Conversely, the digital design described

in Figure 2.4 is characterized by a counter. This counter registers increments each time an

incoming spike triggers a ’1’ state within the bit cell.

Figure 2.2: Neuron diagram essentially consists of three parts: dendrites, cell bodies, and
axons. [2]

To emulate the generation of spikes with different levels of bio-plausibility and computa-

tional efficiency, a variety of spiking neuron models have been proposed. The Hodgkin-Huxley

model [34] initially proposed by Hodgkin and Huxley mimics the computational and informa-

tion propagation in axons [35]. However, for applications involving intensive computational

processes, the Hodgkin-Huxley model is less suitable for implementation due to the signifi-

cant computational overhead it incurs. For computational efficiency with low computational

overhead, the Leaky Integrate-and-Fire (LIF) model [36] was proposed. However, the neurons

in the LIF model do not accurately emulate the biological plausibility of neurons in biology.

16

2.2. SPIKING NEURAL NETWORK MODELS

Figure 2.3: A neuron analog implementation as described in [3]

Figure 2.4: A neuron digital implementation as described in [4]

17

To have a computationally efficient and biologically plausible neuron model, the Izhikevich

model [37] was proposed. To better formalize these models, we provide a brief discussion

about them.

2.2.1 HODGKIN–HUXLEY MODEL

As one of the earliest computational neuron models, the Hodgkin-Huxley model computes

the neuronal membrane potential using four differential equations [38]. A neuron’s ionic flow

dynamics is captured by these four differential equations.

The membrane potential (V) adheres to the equation:

Cm
dV
dt

= Iinjected− INa− IK− Ileak (2.2)

Here, Cm represents membrane capacitance, dV
dt denotes the rate of potential change, and

Iinjected, INa, IK, and Ileak signify injected current, sodium ion current, potassium ion current,

and leak current, respectively.

The sodium ion current (INa) is formulated as:

INa = gNam3h(ENa−V) (2.3)

Similarly, the potassium ion current (IK) is determined by:

IK = gKn4(EK−V) (2.4)

The leak current (Ileak), representing passive ion flow, can be expressed as:

Ileak = gleak(Eleak−V) (2.5)

These equations collectively form the foundation of the Hodgkin-Huxley model, providing

a comprehensive framework to understand and analyze the neuronal membrane’s electrical

dynamics. Known for its ability to simulate neural activity, the model captures neuronal spikes

with the highest accuracy and the parameters correspond to physiological parameters [38]. In

18

2.2. SPIKING NEURAL NETWORK MODELS

spite of this, Hodgkin-Huxley models are however, computationally expensive.

2.2.2 LEAKY INTEGRATE AND FIRE MODEL

In this model, a neuron’s membrane potential is characterized by resistance and capacitance,

similar to an RC circuit [39]. The differential equation below describes the membrane potential

of an LIF neuron at time t (v(t)):

τ
dv(t)

dt
=−(v(t)− vr)+RI(t) (2.6)

Here, v(t) denotes the membrane potential of the neuron at time t, and vr represents its

resting potential. τ represents the neuron’s time constant, and R represents its resistance. I(t) is

the input current the neuron receives through the synapses.

2.2.3 IZHIKEVICH MODEL

The Izhikevich model, a popular spiking neuron model, is described by a pair of differential

equations [37]. The membrane potential (v) dynamics are given by:

dv
dt

= 0.04v2 +5v+140−u+ I (2.7)

The recovery variable (u) dynamics are described by the equation:

du
dt

= a(bv−u) (2.8)

Here, a and b are parameters that govern the recovery variable’s behavior, and I represents the

input current. The Izhikevich model is known for its versatility in capturing a variety of spiking

patterns in neurons.

Using u as feedback, a neuron is unable to spike again after generating a spike, as u provides

negative feedback to v. When a neuron’s potential crosses a threshold value (c), it generates

a spike. Each spike resets v to resting potential and increments u by d. Parameters a and b

19

represent the time scale in which u observes variations in v. These equations enable spiking

behaviors by cortical neurons to be simulated by varying the values for the parameters a, b, c,

and d.

2.3 CODING SCHEMES

Real-world data and signals are inherently analog and continuous. To enable information

processing in SNNs, it is essential to encode these real-world data into spike trains. Yet, an

unresolved question pertains to determining the optimal method for encoding this data, whether

through rate encoding or temporal encoding. In the following subsections, we will discuss some

established neural coding methods in neuroscience.

2.3.1 RATE CODING

There are numerous coding schemes used in neural network models with rate coding being

the most popular. In this scheme, each input intensity is treated as a firing rate and converted

into a Poisson spike train corresponding to its firing rate [40]. The firing rate refers to the spike

count over a brief period and such spike counts typically carry limited information. An input

neuron fires more frequently if the input intensity is high as shown in Figure 2.5a.

2.3.2 TEMPORAL CODING

Unlike rate coding, temporal coding encodes information by analyzing the precise timing of

spikes. This approach finds biological support in various types of biological neurons [39]. The

first application of this coding scheme in SNN-based supervised learning was demonstrated

in [41]. Below, we will discuss some of the most commonly used coding schemes based on

temporal spikes.

20

2.3. CODING SCHEMES

TIME-TO-FIRST-SPIKE

By using first spikes, time-to-first spike encodes information for fast responses within a few

milliseconds such as tactile stimuli. As shown in Figure 2.5b, in time to first spike coding,

the larger the input pixel intensity, the more information it contains and the sooner it emits

a spike [40]. To convert input pixels into first-spike patterns, the authors in [42] proposed

an exponential-decaying dynamic threshold. In the computational framework, an exponential

function is employed to calculate the threshold Pth, denoted as

Pth(t) = θ0 exp
(
− t

τth

)
, (2.9)

where θ0 is a threshold constant, typically set to 1, and τth represents the time constant. In

this encoding scheme, input pixels are transformed into precise timing information particularly

the timing of the first spikes. The exact timing of these input spikes plays a pivotal role during

the decoding phase determining the amount of information conveyed to the post-synaptic neu-

rons [40]. The input spikes serve to excite the synapse, generating synaptic input as the sum of

post-synaptic potentials (PSPs) according to the equation:

z j(t) = ∑
i

PSPi j(t) = ws(t)∑
i

wi jsi(t) (2.10)

Here, z j(t) signifies the synaptic input received by the postsynaptic neuron j, PSPi j(t) rep-

resents the post-synaptic potentials originating from input neuron i, si(t) denotes the input spike

train emitted by the presynaptic neuron i, and wi j signifies the synaptic weight. Furthermore,

ws(t) corresponds to the spike weight at time t, characterized by an exponential decay function

(i.e., ws(t) = exp
(
− t

τs

)
).

RANK ORDER CODING

Ranking-order coding encodes information in the order of spikes emitted by neurons in a

population. In this scheme, each neuron fires once after a stimulus is presented [39]. This

coding scheme has gained attention in neuroscience for its potential to capture fine temporal

21

Figure 2.5: Schematic illustration of neural coding: (a) Rate coding: Input intensity is con-
verted to firing rates, (b) Time to first spike coding: Information is encoded based on the precise
timing of the first spike generated by a neuron with high-intensity input to a neuron firing first,
(c) Phase coding: High- and medium-intensity input neurons spike almost at the same time as
neurons with low-intensity input that are not synchronized, (d) Latency coding: Spike timing t1
and t2 encode information in neurons with medium and least intensity input relative to neurons
with the highest intensity.

details in sensory information. It’s particularly relevant in scenarios where the exact timing of

events is critical for accurate perception and response. For example, in tasks such as speech

recognition or object identification, the precise order of neural responses can convey essential

information that might be missed in traditional rate coding schemes.

PHASE CODING

In this encoding scheme, neurons spike at different phases about the reference oscillation

[39]. Using a binary representation, the authors in [43] came up with a phase coding scheme

using the bit "1" which signifies a spike. Each bit in the representation is weighted differently

to add phase information to the spikes. Also, the largest pixel intensity determines the number

of phases. As shown in Figure 2.5c, the number of phases is 8 and varies periodically with time

following the formula:

ws(t) = 2−(1+mod(t−1,8)) (2.11)

22

2.4. HARDWARE IMPLEMENTATION

This expression reflects the relative importance of each bit within the binary representa-

tion. Based on Equation 2.11, the synaptic input is produced by decoding the weighted spikes.

Typically, larger pixels produce more significant spikes and transmit more information.

LATENCY CODING

Latency coding represents a fundamental aspect of neural information processing that heav-

ily depends on the precise timing of spikes within neuronal networks as shown in Figure 2.5d.

In this coding scheme, the temporal aspect of neural activity takes center stage and plays a

pivotal role in determining whether a synapse undergoes Long-Term Potentiation (LTP) or

Long-Term Depression (LTD) [39] thus mirroring the concept of STDP.

2.4 HARDWARE IMPLEMENTATION

In hardware, neuromorphic systems are implemented by developing specialized architec-

tures that closely emulate the learning, memory, and computational processes of biological

brains. Our discussion in this section will focus on how neuromorphic hardware systems im-

plement sub-components such as learning, memory, and platform.

2.4.1 PLATFORMS

Neuromorphic computing offers a promising avenue for mimicking and harnessing the ca-

pabilities of the human brain in electronic systems. For hardware implementation, two primary

platforms are widely adopted: ASICs (Application-Specific Integrated Circuits) and FPGAs

(Field-Programmable Gate Arrays). ASIC integrated circuits are known for their efficiency

and performance in specialized neuromorphic applications. They offer fixed functionality,

making them ideal for power-efficient, real-time, and large-scale neuromorphic simulations.

An application that effectively harnesses ASICs is the deployment of SNN for real-time object

recognition in autonomous vehicles. The inherent aforementioned characteristics of ASICs are

crucial for rapid decision-making in dynamic environments. Neuromorphic devices such as

23

Intel’s Loihi chip [44] and IBM’s TrueNorth chip [45] are both renowned for their prowess in

efficient and real-time processing utilizing ASIC platforms.

On the other hand, FPGAs are versatile, programmable hardware platforms, widely known for

their flexibility and suitability for rapid prototyping for research and experimentation. While

FPGAs may have slightly lower power efficiency, they allow adaptation to various neural net-

work architectures and algorithms. For instance, the BrainScaleS [46] system developed by

Heidelberg University represents an embodiment of the utility of FPGAs in cutting-edge re-

search. Similarly, the SpiNNaker platform [47] originating from the University of Manchester

showcases the power of FPGAs in facilitating large-scale neuromorphic simulations.

2.4.2 MEMORY TECHNOLOGY

Memory technologies play a pivotal role in the development of neuromorphic systems es-

pecially when dealing with SNNs. Many prominent neuromorphic systems have traditionally

relied on circuits based on commercial CMOS technology [48]. However, in recent years sev-

eral efforts have been made to advance neuromorphic systems by harnessing emerging memory

and device technologies. These cutting-edge technologies find primary applications in synaptic

and learning models within the domain of neuromorphic engineering [48].

Notably, research in nano-scale materials has unveiled the potential for new devices to emu-

late real synapses particularly their ability to retain state information within artificial neural

networks [49]. This breakthrough opens avenues for overcoming traditional CMOS memory

limitations. Several emerging memory devices have emerged as promising alternatives. Among

these technologies, Resistive Random-Access Memories (R-RAMs) [50] have gained promi-

nence. R-RAMs leverage resistance-switching phenomena providing distinct advantages over

memory based on CMOS technology [49] [51]. Typically, R-RAM devices consist of two ter-

minals: a top electrode and a bottom electrode, separated by a thin film. Voltage application

between the electrodes enables gradual switching between high-conductive and high-resistive

states, allowing the storage of corresponding conductance values.

In addition to R-RAM, other emerging memory technologies such as Spin Transfer Torque

Magnetic Random Access Memory (STT-MRAM), ferroelectric devices, and phase-change

24

2.4. HARDWARE IMPLEMENTATION

materials offer unique methods for storing memory states as resistance, each exhibiting its own

set of distinctive behaviors [52]. These innovations mark a significant stride in enhancing the

capabilities of neuromorphic systems, enabling them to more closely replicate the intricate pro-

cesses of biological synapses and fostering advancements in artificial intelligence and cognitive

computing.

2.4.3 LEARNING

Learning in neuromorphic systems can be implemented through two distinct approaches:

off-chip learning and on-chip learning. Off-chip learning involves utilizing external computing

resources often traditional digital computers to train neural networks for a target application for

the neuromorphic hardware. This approach allows for training spiking neural networks with

supervised training algorithms like BP-based learning algorithms and their variants on datasets.

The resulting neural network configuration and parameters post-training are mapped to the neu-

romorphic chip for the desired intended task. Another approach to off-chip learning is through

ANN-SNN conversion demonstrated in [53], [54], and [55]. This conversion process enables

the utilization of pre-trained deep learning models while preserving much of the knowledge

learned during the off-chip training.

Conversely, on-chip learning integrates the learning process directly within the neuromorphic

hardware utilizing analog and digital circuits to update synaptic weights. Demonstrated in [5],

this approach mimics the real-time learning capabilities of biological brains and offers low-

latency and energy-efficient learning. One of the prominent on-chip learning algorithms is

STDP which is a biologically inspired learning rule that adjusts synaptic weights based on the

precise timing of spikes between connected neurons. When a pre-synaptic neuron consistently

fires before a post-synaptic neuron, the synapse between them strengthens, and vice versa. This

real-time adaptation ability of STDP makes it an ideal choice for on-chip learning because it

enables immediate responses to changing data patterns minimizing latency.

Using supervised learning algorithms for on-chip learning can have significant disadvantages.

This is because supervised learning algorithms typically involve iterative computations, back-

25

propagating, and error adjustment which can be computationally intensive and energy-consuming.

These characteristics make supervised learning algorithms less suitable for on-chip learning as

they can introduce high latency, increase power consumption, and limit the real-time adaptabil-

ity in a neuromorphic system.

2.5 CHAPTER SUMMARY

In this chapter, we discussed the fundamentals of neuromorphic systems particularly SNNs,

their computational models, and coding schemes used to process information. Additionally, we

explored three pivotal modules for developing a neuromorphic system in hardware. The next

chapter will discuss advancements in neuromorphic systems and the inherent challenges of

robustness. Additionally, the chapter will also discuss how previous researchers have addressed

the robustness issue within neuromorphic systems.

26

3
RELATED WORKS

IN addition to their primary functions, neuromorphic systems must consistently perform

across real-world scenarios adapting to unpredictable sensor data, sustaining functional-

ity in adverse conditions, and accommodating hardware variations. Achieving robustness is

paramount to unlocking the full potential of neuromorphic systems in critical applications like

autonomous driving, space exploration, and biomedical. This chapter explores the development

and advancement of neuromorphic systems, the challenges to their reliability, and the necessity

for robustness with a focus on neural computation, communication, memory operations, and

application mapping.

27

3.1 NEUROMORPHIC SYSTEMS: STATE OF ART AND ADVANCEMENT

Early theoretical work by Frank Rosenblatt between the 1950s and 1960s on the perceptron

led to the concept of neural networks. A lack of computing power, however, hindered practical

implementation. As computational capabilities advanced between the 1980s and 1990s, neural

networks attracted renewed attention. Researchers developed more complex neural network

models including backpropagation algorithms for training multi-layer perceptrons. It was these

developments that laid the foundation for modern deep learning. Neuromorphic engineering

took shape after Carver Mead began developing silicon neurons based on analog VLSI (Large-

scale integration) that closely resembled their biological counterparts [4] [56].

Advancements in hardware development such as specialized neuromorphic chips, vision sen-

sors, and learning algorithms have advanced neuromorphic computing into the realm of real-

time data processing. To achieve this, the development of spiking neural network models with

adaptable features is imperative offering the ability to configure network connectivity, parame-

ters, and even constituent element models such as neurons and synapses.

One pioneering approach in this direction is the SpiNNaker2 project [47] which employs a mul-

ticore computer system designed to simulate the behavior of up to a billion neurons in real time.

This system integrates 57,600 custom VLSI chips connected through a dedicated global asyn-

chronous communication infrastructure based on the AER communication protocol [57] [58].

This infrastructure is optimized for handling large volumes of small packets, such as those rep-

resenting neuron spikes, in real-time. Another development is IBM’s ’TrueNorth’ ASIC [59]

which represents a departure from traditional von Neumann architectures. TrueNorth’s elec-

tronic circuits utilize transistors as digital gates but operate asynchronously and communicate

through event-driven methods. This innovative design comprises 4,096 cores of spiking neural

networks integrated into a single CMOS chip.

In contrast to SpiNNaker and TrueNorth, the NeuroGrid system [60] follows the original vision

of neuromorphic engineering [59] [60]. It leverages analog/digital mixed-signal sub-threshold

circuits to model continuous-time neural processing elements. NeuroGrid shares the objective

of implementing large-scale neural models and emulating their real-time function distinguish-

ing itself by embracing this unique approach.

28

3.2. NEUROMORPHIC SYSTEMS: ROBUSTNESS CONCERNS

The concept of reconfigurability within these systems represents an exciting intersection of

neuroscience-inspired computing and adaptability. Designed to replicate the adaptability ob-

served in biological brains, the capability to reconfigure these systems in response to changing

environmental conditions endows them with unique attributes notably adaptability and scala-

bility making them versatile for a broad spectrum of applications. In our prior research, we

introduce the NASH system [5], a cutting-edge 3D NoC-based neuromorphic system com-

prising multiple tiles. Each tile features a spiking neuro-processing core (SNPC) housing 256

leaky integrate and fire (LIF) neurons, an SRAM-based synapse memory and 64k crossbar, a

network interface (NI), and a 3D fault-tolerant (FT) router with TSV. The NI is equipped with

an encoder and decoder responsible for interpreting spike data exchanges between sending and

receiving cores. Within the neuromorphic system, the NI earlier supports a layer-to-layer map-

ping method proposed in previous work [22] and most recently in [6] and [19], migration-based

methods. Furthermore, for inter-core communication, the 3D router employs K-means-based

multicast routing algorithms as proposed in [22].

3.2 NEUROMORPHIC SYSTEMS: ROBUSTNESS CONCERNS

In later years, neuromorphic chips have been used for applications such as real-time ob-

ject recognition, speech processing, and autonomous robotics. They consume significantly

less power than traditional computing systems making them ideal for edge computing and IoT

devices [3]. As VLSI [4] [61] technology advances, reliability concerns arise. As a result,

finding solutions to enhance the reliability and robustness of these systems is essential. More-

over, neural networks in neuromorphic systems are susceptible to environmental factors such

as noise and variability [62]. Also, neural circuits may develop hardware defects due to vari-

ations in manufacturing processes and flow [63]. As neuromorphic systems find applications

in fields like autonomous vehicles and medical devices, ensuring their reliable and consistent

performance, particularly in challenging environments, becomes crucial. Techniques for ensur-

ing and improving the robustness of neuromorphic systems such as fault-tolerant and recovery

algorithms, fault-tolerant and recovery mechanisms, and robust training methodologies are ac-

tively being researched.

29

3.3 EXISTING SOLUTIONS TO AREAS OF NEUROMORPHIC SYSTEMS FOR ROBUSTNESS

Numerous efforts are underway to improve neuromorphic computing systems’ robustness,

particularly in critical areas such as neural computation, communication, memory operation,

and application mapping as the demand for resilient systems grows. In addition to address-

ing these challenges, existing solutions provide a solid foundation for the evolution of fault-

tolerant, recovery, and detection algorithms. The ensuing discussion offers an overview of the

advancements in these critical areas aimed at ensuring the robustness of neuromorphic systems.

3.3.1 FAULT RECOVERY IN NEURAL COMPUTATION

A neural network often referred to as an ANN is a computational system designed for in-

formation processing and computation. However, like any other computational system, neural

computations are susceptible to errors. Factors such as process variations, thermal issues, and

leakages can lead to computational inaccuracies [64]. Consequently, these inaccuracies may re-

sult in output data lacking reliability, accuracy, or data integrity [64]. To tackle this challenge,

researchers have put forward several strategies. In the works of [65] and [66], the authors pro-

posed a method to mitigate and recover from these errors by introducing explicit redundancy

in both neurons and synapses. This dissertation partially adopts this approach as an initial

solution for achieving fault-tolerant neural network execution on neuromorphic systems. An-

other approach, as presented by [64] involves segregating neural network components based

on their functionalities. These components are trained separately each with distinct objectives

not only to handle errors but also to enhance overall performance and generalization. Another

method for managing errors in neural computation is through network application training and

retraining with diversified parameters, as discussed by [67] and [68]. However, it’s important

to note that this approach can be time-consuming and expensive especially when dealing with

hardware implementations

30

3.3. EXISTING SOLUTIONS TO AREAS OF NEUROMORPHIC SYSTEMS FOR ROBUSTNESS

3.3.2 RELIABLE COMMUNICATION

Effective communication is a fundamental aspect of computing systems playing a pivotal

role in the seamless exchange of data and information between various components and de-

vices. In neuromorphic systems, accurate and reliable data transmission is critical for the

proper functioning of the hardware and software layers. However, the reliability of these

data transmissions is often challenged by various factors including hardware limitation [69],

defective hardware components [69] [70], power surges [70], and in many cases electrical in-

terference leading to memory errors. In this context, data transmission errors can be detected

and corrected by Error Correction Codes (ECCs) and Detection Codes (DCs) as reported in [6]

and [65]. As a result, data communications within a system can be trusted to be accurate. De-

spite its benefits, the idea introduces redundancy during data computation. A key characteristic

of effective communication is the timely delivery of data. As timing violations introduce la-

tency during communication, they are detrimental to SNNs’ performance [5] [22]. As a result

of this challenge, the work in [22] suggested implementing alternate links in 3D NoC-based

systems to provide continuous spike transfer within cores in the case of a failure of a communi-

cation link. Based on ILP and PSO algorithms, the authors in [71] proposed the use of another

spare router in the case of router failure. By using this method, extra routers can be replaced

with lower communication overheads. While this approach is generally applicable to 2D NoC

systems, it does not extend to 3D systems. Therefore, 3D NoC-based systems are not subject

to the lower communication costs achieved by 2D NoC-based systems.

3.3.3 RELIABLE MEMORY OPERATION

Memory operations are the backbone of modern computing systems playing a pivotal role in

the storage and retrieval of data. The efficiency and reliability of these operations are essential

for the overall performance of a computing system. In-memory neuromorphic computations

remain susceptible to data retention faults as highlighted by the authors in [67]. To address these

faults, efforts have been made to enhance the thermal stability of memory [67]. However, this

approach comes at the cost of increased energy consumption for writing data across the entire

31

memory. An alternative strategy involves the use of error correction and detection mechanisms

such as Hamming distances, parity bits, and cyclic redundancy which are widely employed

[68]. Nevertheless, it’s important to note that these techniques introduce a significant overhead

in memory cells. Memory operations are also susceptible to soft errors [72] [73] [74] which are

often transient and they occur due to fluctuations in expected power optimizations. To address

these faults like in high-performance computing (HPC) systems, they typically employ various

error correction mechanisms such as parity and checksum bit addition [72]. However, these

mechanisms also increase the memory area overhead and energy consumption. In essence,

addressing memory faults often involves a trade-off between energy consumption and area

overhead.

3.3.4 RELIABLE APPLICATION MAPPING

The complex routing architecture inherent in neuromorphic systems adds complexity to the

task of mapping applications onto such hardware. Despite these inherent challenges, numerous

strategies have been proposed to achieve optimal system performance while also considering

the trade-offs between hardware performance and reliability post-mapping. However, the pro-

cess of mapping applications such as SNNs onto neuromorphic hardware remains a non-trivial

endeavor. Generally, the process of mapping an application such as SNNs to neuromorphic

hardware involves two key steps: partitioning neurons into clusters based on hardware con-

straints and subsequently assigning these clusters to specific hardware processors. Several

mapping strategies including Espine [75], Neumap [76], SpineMap [77], PACMAN [77], and

PSOPART [78] employ variations of these two-step procedures. Within these approaches,

heuristic algorithms and particle swarm optimization (PSO) techniques are commonly em-

ployed for optimization.

For instance, in PSOPART, neurons find direct placements on hardware cores through PSO,

while PACMAN assigns neurons to SpiNNaker cores following a first-come, first-served prin-

ciple. In Neumap, Espine, and SpineMap, neuron partitioning precedes the mapping process.

Nevertheless, despite the effectiveness of these existing methods, they are not without limita-

tions, particularly when facing the challenges of scaling both hardware and application sizes.

32

3.4. CHAPTER SUMMARY

These limitations primarily arise from two factors: firstly, the potential for individual neurons

within an application to independently fail due to various internal and external factors; and

secondly, as application sizes scale up, the number of neurons susceptible to failure corre-

spondingly increases [62]. Consequently, these mapping techniques entail a trade-off between

reliability and resilience on one hand and performance metrics such as power consumption,

spike latency, on-chip network congestion, and throughput on the other.

While existing mapping strategies for neuromorphic hardware have been explored to some ex-

tent, there remains a notable gap in the development of fault-tolerant mapping techniques tai-

lored specifically for such hardware. In the quest to enhance fault tolerance within these map-

ping strategies, researchers have commonly integrated mechanisms like redundancy, dynamic

reconfiguration, and fault detection [79]. These fault-tolerant mechanisms have often been

complemented by conventional optimization approaches such as genetic algorithms [64], min-

max optimization [64], quadratic programming [77] [80], and integer linear programming [77]

to craft resilient mapping techniques. For example, in [81], researchers introduced a fault-

tolerant mapping strategy for a memristor-based crossbar leveraging integer linear program-

ming and hierarchical clustering to elevate mapping rates and reduce hardware costs.

Nevertheless, this method comes at the expense of increased computational and execution

times and is confined to 2D neuromorphic hardware. Another noteworthy approach, presented

in [82], revolves around fault-tolerant mapping achieved through pruning. This technique,

while proficient in mapping applications to the hardware, introduces intricacies into the map-

ping process and the potential for compatibility challenges. Additionally, the authors in [79]

proposed a runtime mapping scheme with a lifetime constraint. This scheme dynamically allo-

cates incoming applications to multi-core systems and employs a borrowing strategy to manage

many core resources across various scales. However, its primary focus lies in considering the

aging components of the hardware, overlooking the intricacies of the neural circuit.

33

3.4 CHAPTER SUMMARY

In this chapter, we outline the historical milestones that have shaped the evolution of neu-

romorphic systems. We discuss the reliability concerns inherent in neuromorphic systems,

exploring previous efforts aimed at ensuring their robustness. Building upon this foundational

understanding, the subsequent chapters will introduce our contributions to the ongoing efforts

dedicated to achieving and ensuring the robustness of neuromorphic systems.

34

4
FAULT RECOVERY METHODS FOR NEURAL

COMPUTATIONS (SAP AND TSM)

REcovery from fault in neural computation is crucial, especially in computational neuro-

science and the context of neuromorphic systems. While exploring SNNs and simulating

their neural processes, we discovered vulnerabilities to faults that can result in errors that must

be addressed. To address these challenges, the adoption of fault recovery algorithms becomes

imperative. In this chapter, our approach begins with an exploration of fault tolerance in neural

networks, delving into the impact of faults on neural network accuracy. Through conduct-

ing fault injection experiments on trained SNN models, we measure the impact on classifica-

tion or prediction accuracy following the introduction of faults. Subsequently, we introduce

our proposed algorithms designed to ensure the reliability of output results in neural compu-

tations, especially after recovering from faults. These algorithms strategically employ fault

detection and recovery strategies to mitigate the potential influence of faults that could com-

35

promise the accuracy of neural networks. By exploring fault-tolerant and recovery algorithms

in neural computation within neuromorphic systems, our goal is to underscore their pivotal role

in achieving dependable results.

4.1 INTRODUCTION TO FAULT RECOVERY IN NEURAL NETWORKS

Recovery from faults in neural networks is essential, especially in applications requir-

ing reliable computation output such as autonomous vehicles, space exploration systems, and

biomedical devices. In the context of neural networks, faults typically refer to the failure of in-

dividual neurons or synaptic connections. To address these issues, fault recovery mechanisms

and techniques are specifically crafted and implemented. These mechanisms aim not only to

recover a network from faults but also to guarantee that the network can persistently function

correctly, even in the presence of such failures.

Mathematically, we can illustrate a basic feed-forward neural network with multiple layers

having neurons interconnected together as follows:

ai = f

(
n

∑
j=1

wi j · x j +bi

)
(4.1)

Where:

ai represents the output of neuron i.

f denotes the activation function of the neuron.

wi j signifies the weight of the connection between neuron i and neuron j.

x j is the output of neuron j in the previous layer.

bi stands for the bias of neuron i.

Moreover, in a feed-forward neural network represented by Equation 4.1, a fault can manifest

in several ways. Let’s consider a fault in the weight of a connection wi j between two neurons

i and j. This fault can be quantified as the difference between the output of neuron i with the

original weight wi j and the output with the faulty weight w f ault
i j . We can represent this fault as

36

4.2. IMPACTS OF FAULTS IN SPIKING NEURAL NETWORKS

follows:

∆ai = f

(
n

∑
j=1

wi j · x j +bi

)
− f

(
n

∑
j=1

w f ault
i j · x j +b f ault

i

)
(4.2)

Where:

∆ai represents the change in the output of neuron i due to the weight fault.

f is the activation function of the neuron.

wi j is the original weight between neurons i and j.

w f ault
i j is the faulty weight between neurons i and j.

x j is the output of neuron j in the previous layer.

bi is the bias of neuron i.

Fault recovery as defined by Equation 4.3 is a critical aspect aimed at maintaining the network’s

functionality and ensuring consistent outputs even when faults are present. In the context of a

feed-forward network described by Equation 4.1, with a fault characterized by Equation 4.2,

the tolerance to such faults is expressed as follows:

∥ f

(
n

∑
j=1

wi j · x j +bi

)
− f

(
n

∑
j=1

w f ault
i j · x j +b f ault

i

)
∥ ≤ ε,∀X ∈ T (4.3)

Here, ε represents a small tolerance value for any given input data X from the training set T .

4.2 IMPACTS OF FAULTS IN SPIKING NEURAL NETWORKS

Neurobiological studies suggest that the human brain can tolerate only a limited number

of errors during computation [21]. Computational studies indicate that neural networks exhibit

resilience to noisy inputs further highlighting their ability to gracefully degrade when imple-

mented at the physical level. However, it’s essential to note that without proper design con-

siderations, neural networks have minimal tolerance for intrinsic faults [21] [83] [84]. Recent

experiments have demonstrated their vulnerability to hardware fault injections particularly fol-

37

lowing training [85]. To propose a fault recovery method, a comprehensive understanding of the

impact of these faults on SNNs is imperative. We proposed to randomly introduce hardware-

level faults into post-trained SNN models which include Multi-Layer Perceptron (MLP) and

Convolutional Spiking Neural Network (CSNN) models and observe the performance of the

faulty models in classification tasks like digit recognition. The architectures of these models

are described in Figures 4.1 and 4.2. Our design for these SNN architectures draws inspiration

from the work in [86].

4.2.1 FAULT MODELLING

In the context of this research, a foundational assumption has been made regarding the

output layer of a system or application, asserting that faults cannot occur at this layer. This

assumption is grounded in the understanding that if a fault were to manifest at the output layer,

it would render the entire output non-existent, thereby diminishing the predictability and utility

of the system. However, it is acknowledged that faults are not restricted to specific layers; they

can potentially occur at any location within the system. In our fault modelling, in particular,

we focus on ’stuck-at’ (SA) faults, which are a common occurrence following the fabrication

of circuits [87]. Our assumption concerning the ’stuck-at’ fault is predicated on two scenarios:

when it arises, either a neuron becomes incapable of generating the requisite output essential

for computation (SA-0), or it persistently produces an output even in the absence of an input

responsible for triggering the output (SA-1), effectively becoming ’stuck’ in a particular state.

This assumption harmonizes seamlessly with the nature of our system, which consists of neu-

rons organized into clusters responsible for accumulation computation. In this architecture,

each neuron plays a role in contributing to the final output. Therefore, the SA fault manifests as

a disruption in the coordinated functioning of these neurons, potentially impacting the overall

computation process. In our SA-0 fault models, we model to simulate a situation where a neu-

ron’s output becomes zero when the weight associated with that neuron is closest to a specified

minimum weight threshold. For the SA-1 fault model, we emulated a condition where a neuron

output becomes one continuously when the weight associated with the neuron approaches or

reaches the maximum allowable value.

38

4.2. IMPACTS OF FAULTS IN SPIKING NEURAL NETWORKS

Figure 4.1: MLP-MNIST Architecture.

Figure 4.2: CSNN-NMNIST Architecture.

39

4.3 THE PROPOSED FAULT RECOVERY ALGORITHMS

4.3.1 STUCK-AT AUGMENTED PRUNING ALGORITHM (SAP)

To recover an SNN application from the impact of faults, in this research, we considered

removing faulty neurons in the faulty application. However, authors in [88] suggest retraining

the neural network to consider the positions of the defects when dealing with stuck-at-fault

in neural networks. According to [89], the authors suggest rearranging the crossbar rows and

columns but system complexity may arise as a result of these methods. Pruning is a technique

widely used to compress, simplify, and speed up the inference of neural networks [88] [90]

through the removal of unwanted connections or neurons. Given the degradation in neural

network performance observed in the aftermath of fault injection experiments (refer to Fig-

ures 4.3 and 4.4 in section 4.4.4), we introduced SAP, an augmented pruning fault recovery

strategy. It is important to note that this strategy differs from conventional pruning methodolo-

gies by incorporating additional criteria to guide the identification of faulty neurons targeted

for removal. In the SAP approach, we suggest a paradigm shift from the conventional practice

of solely removing synaptic connections, proposing instead the elimination of entire neurons.

We introduced the term ’lopping’ to describe this process which specifically entails removing

neurons based on their normalized value as defined by Equation 4.4. The decision criteria for

’lopping’ involve whether the normalized value surpasses a minimum weight threshold (Kmn)

for stuck-at-0 or equals a maximum weight threshold (Kmx) for stuck-at-1, as dictated by Equa-

tion 4.5. Using neuron synapse weight values, SAP calculates each neuron’s maximum and

minimum weight threshold. Algorithm 4.3.1 formalizes the SAP method.

||Xw||=
i=n

∑
i=0
|Xi| (4.4)

Kmn = f loor(Xw ∗ p),Kmx = ceil(Xw ∗ p) (4.5)

where X is a neuron, |Xi| is a single synaptic connection value of the neuron, and ||Xw|| is the

normalized value for all its synaptic connections of the neuron.

40

4.3. THE PROPOSED FAULT RECOVERY ALGORITHMS

Algorithm 4.3.1 Stuck-at Augmented Pruning (SAP) Algorithm
1: Input

2: SN Pre-trained weights

3: P Lopping percentage

4: Output

5: X̂ Matrix graph of neurons

6: for n← 1 to n−1 layers in SN model do

7: // Add stuck-at-fault;

8: for neuron i = 1,2, . . . do

9: // Normalize (Nwr) i using Eqn. 4.1;

10: // Determine Kmn and Kmx using Eqn. 4.2;

11: if Nwr = Kmn or Nwr ≥ Kmx then

12: // Lop i with P percentage;

13: end if

14: end for

15: end for

16: X̂ = Lopped model(i, n)

17: Return: Lopped model

41

WEAK POINT

To determine whether a neuron is faulty, SAP calculates a weight threshold for each neu-

ron. Furthermore, the method removes faulty neurons by percentage. Furthermore, application

models experience a significant decline in performance when a larger number of neurons pre-

sumed to be faulty are removed as evidenced by the outcomes presented in Figures 4.3 and

4.4 of Section 4.4.4. Additionally, the computational step involved in determining the weight

threshold introduces added complexity to the overall strategy.

4.3.2 TARGET AND SELECTION METHOD (TSM)

In light of the substantial drawbacks associated with SAP, we propose an alternative ap-

proach known as the target selection method (TSM). TSM eliminates all faulty neurons simul-

taneously guided by predetermined minimum and maximum threshold values. This stands in

contrast to SAP which removes neurons based on a dynamic weight threshold and percentage

criterion that can change over time. An additional advantage of TSM is its capability to accu-

rately detect faults in SA fault models involving non-positive weighted neurons. In contrast,

SAP is unable to identify faults in such neurons. We describe the TSM fault recovery algo-

rithm in detail in Algorithm 4.3.2. Notably, TSM diverges from SAP by using the output state

or weight rather than individual synaptic weights to identify faulty neurons.

42

4.3. THE PROPOSED FAULT RECOVERY ALGORITHMS

Algorithm 4.3.2 Target and Selection Method (TSM) Algorithm
Sk : Pre-trained weights

2: Wmn : Minimum set weight

Wmx : Maximum set weight

4: X̂ : Matrix graph of neurons

for k← 1 to k−1 layers in Sk model do

6: Identification phase:

for neuron a = 1,2, do

8: // Retrieve the weight of each neuron (Wa);

if Wa = 0 or Wa >Wmx then

10: // Mark the neuron as faulty (a f);

end if

12: Removal phase:

for neuron a f = 1,2, do

14: // Wa← 0 of a f

end for

16: end for

X̂ = Fault-free model (a, k)

18: Return: Fault-free model

Return: Faulty neurons and their indexes

43

4.4 EVALUATION

This section presents the results of our experiment on fault recovery in SNN applications

using the proposed SAP and TSM methods. In our evaluation, we follow a three-stage approach

namely; model training, fault introduction and recovery, and, model evaluation.

4.4.1 EVALUATION METHODOLOGY

First, we trained the proposed SNN architectures described in Figures 4.1 and 4.2 using

the snntorch [86] platform with MNIST and NMNIST datasets. The MLP model was trained

with the MNIST dataset and is identified as MLP-MNIST, while the CSNN model was trained

with the NMNIST dataset and is identified as CSNN-NMNIST. We evaluate the trained model

to determine its baseline accuracy. We then randomly inserted SA-1 and SA-0 faults on the

post-trained models at 20%, 30%, and 40% fault rates.

First, we assessed the impact of faults in MLP-MNIST and CSNN-NMNIST SA fault mod-

els. Following this, we applied the SAP method and evaluated its performance on first, the

MLP-MNIST. Subsequently, we implemented the TSM method for fault recovery in the MLP-

MNIST and CSNN-NMNIST SA fault models and examined its effectiveness. When evaluating

the TSM method, we used the same fault models for evaluating SAP as we did in [62]. In this

way, the results of the SAP evaluation can be compared with the results of the TSM evaluation.

4.4.2 EVALUATION RESULTS

4.4.3 IMPACTS OF FAULTS IN SPIKING NEURAL NETWORKS

Figures 4.3 and 4.4 illustrate the impact of SA-0 and SA-1 faults on the classification ac-

curacy of our proposed MLP and CSNN models respectively. In the case of MLP-MNIST, as

shown in Figure 4.3, the baseline accuracy without any faults is 95.10%. When faults are in-

troduced at rates of 20%, 30%, and 40%, the model’s accuracy experiences only a slight drop.

This can be attributed in part to the inherent fault resilience found in SNNs. However, when

SA-1 faults are introduced, the accuracy decreases significantly with an increasing fault rate.

Conversely, for SA-0 faults, the accuracy drop is not as pronounced compared to the baseline

accuracy.

44

4.4. EVALUATION

Figure 4.3: The impact of SA faults on accuracy in MLP for MNIST dataset.

Figure 4.4: The impact of SA faults on accuracy in CSNN for NMNIST dataset.

45

On the other hand, for the CSNN-NMNIST as shown in Figure 4.4, the baseline accuracy with

no faults is 82.03%. However, the introduction of an SA-0 fault results in a different behavior

compared to MLP-MNIST. In this case, SA-0 faults have a critical impact while SA-1 faults

exhibit behavior similar to SA-0 faults in MLP-MNIST. When the fault rate reaches 40%, the

accuracy of CSNN-NMNIST drops to less than 30%. Therefore, it becomes imperative to target

and select the faulty neurons to recover the classification accuracy of CSNN-NMNIST.

4.4.4 STUCK-AT PRUNING (SAP) ALGORITHM

Our experimental results aimed at recovering SNN using the SAP method in the presence

of stuck-at faults are presented in Figures 4.5 and 4.6. The original model’s accuracy when no

faults are introduced is 95.31%. However, when SA-1 faults are introduced at rates of 20%,

30%, and 40%, as shown in Figure 4.5, the accuracy experiences reductions to 92.19% (with

20% and 30% faults) and 84% respectively. Similarly, for SA-0 faults, the SNN accuracy drops

to 90.7%, 93.75%, and 92.19% as described in Figure 4.6. By applying the SAP technique

and removing 80% of the faulty neurons, As shown in Figure 4.5, the accuracy of the SNN

recovers to 93.75% for all three fault rates. This demonstrates that by selectively targeting and

eliminating the faulty neurons, it is possible to recover the accuracy loss caused by SA faults up

to 1.56% (with 20% and 30% faults) and 9.75% (with 40% fault) when using an 80% lopping

rate. In comparison to the pre-fault state, all three fault rates show a 1.56% loss in accuracy.

A similar trend is observed for the SA-0 fault, as shown in Figure 4.6. The SNN accu-

racy decreases to 90.8%, 93.75%, and 92.19% at 20%, 30%, and 40% fault rates respectively.

Utilizing the SAP method and removing 80% of the faulty neurons, the accuracy recovers to

93.75% (for 20% fault) and remains at 93.75% (for 30% fault) and 92.19% (for 40% fault).

This reveals that by specifically targeting and removing the faulty neurons, the accuracy loss

due to SA faults can be recuperated by up to 2.95% (with 20% fault) and 1.56% (with 40%

fault) with an 80% lopping rate. In comparison to the pre-fault state, the accuracy loss for the

SNN with 20% and 30% faults is 1.56% while it increases to 3.12% when the fault rate is 40%.

Therefore, the SAP method adeptly restores the performance of an SNN application affected

46

4.4. EVALUATION

Figure 4.5: Effect of the SAP method on the accuracy of MLP-MNIST with stuck-at-1 fault.

Figure 4.6: Effect of the SAP method on the accuracy of MLP-MNIST with stuck-at-0 fault.

47

Figure 4.7: Performance comparison of SAP (with 10% faulty neurons removed) and TSM
fault recovery methods on a SA-1 fault for MLP-MNIST.

by SA faults even in instances involving higher fault rates.

4.4.5 TARGET AND SELECTION METHOD

MLP-MNIST

Figures 4.7 - 4.12 provide a comparative analysis of fault recovery methods (SAP and TSM)

for an SA fault in the MLP-MNIST model. The baseline accuracy for the fault-free MLP-

MNIST (0% fault rate) stands at 95.10%. When an SA-1 fault is introduced at a 40% fault rate,

as shown in Figures 4.7 - 4.9, the model’s classification accuracy drops to 84%. Employing the

SAP method for fault recovery, with the removal of 10% of faulty neurons (SAP10) as illustrated

in Figure 4.7, the classification accuracy is restored to 93% at the 40% fault rate. Furthermore,

even with 50% and 80% of faulty neurons removed (SAP50 and SAP80) as shown in Figures 4.8

and 4.9, the classification accuracy remains stable at 93% resulting in a loss of only 2.10%. In

contrast, utilizing TSM enhances classification accuracy recovery to 95% regardless of the fault

rate. This represents a marginal 0.10% accuracy loss when compared to the baseline accuracy.

Similarly, in the case of the SA-0 fault in the MLP-MNIST model, the classification ac-

48

4.4. EVALUATION

Figure 4.8: Performance comparison of SAP (with 50% faulty neurons removed) and TSM
fault recovery methods on a SA-1 fault for MLP-MNIST.

Figure 4.9: Performance comparison of SAP (with 80% faulty neurons removed) and TSM
fault recovery methods on a SA-1 fault for MLP-MNIST.

49

Figure 4.10: Performance comparison of SAP (with 10% faulty neurons removed) and TSM
fault recovery methods on a SA-0 fault for MLP-MNIST.

Figure 4.11: Performance comparison of SAP (with 50% faulty neurons removed) and TSM
fault recovery methods on a SA-0 fault for MLP-MNIST.

50

4.4. EVALUATION

Figure 4.12: Performance comparison of SAP (with 80% faulty neurons removed) and TSM
fault recovery methods on a SA-0 fault for MLP-MNIST.

curacy drops from 95.10% to 92% at a 40% fault rate. Leveraging the SAP method for fault

recovery, with the removal of 10% (SAP10) and 50% (SAP50) of faulty neurons as shown in

Figures 4.10 and 4.11, the accuracy is restored to 93% at the 40% fault rate. However, when

80% of faulty neurons are removed (SAP80) as shown in Figure 4.12, the accuracy regresses and

stabilizes at 92% under the same 40% fault rate. This results in no net increase in classification

accuracy recovery. In contrast, employing TSM leads to an improvement in accuracy to 95%,

albeit with a marginal 0.10% accuracy loss compared to the baseline accuracy.

51

CSNN-NMNIST

Figures 4.13 - 4.18 provide a comparison of the fault recovery performance between the

SAP and TSM methods on an SA fault CSNN-NMNIST model. The CSNN-NMNIST model

initially exhibits a baseline accuracy of 82.03%. In the case of SA-1 fault as shown in Fig-

ures 4.13-4.15, the classification accuracy slightly drops to 79% when subjected to a 40% fault

rate. Employing the SAP method for fault recovery specifically by removing 10% of faulty

neurons (SAP10), as shown in Figure 4.13 results in an identical accuracy to the one observed

under SA-1 fault condition. Furthermore, even with the removal of 50% and 80% of faulty

neurons (SAP50 and SAP80) as shown in Figures 4.14 and 4.15, the classification accuracy still

remains 79%. More so, when using TSM for recovery, the accuracy is 79.10% on average irre-

spective of the fault rate. In this scenario, both the SAP and TSM methods perform comparably

with each demonstrating a 3.03% accuracy loss compared to the baseline accuracy.

Figure 4.13: Performance comparison of SAP (with 10% faulty neurons removed) and TSM
fault recovery methods on a SA-1 fault for CSNN-NMNIST.

Similarly, for SA-0 fault within the CSNN-NMNIST model, the SA fault model exhibits a

classification accuracy of 26% at a 40% fault rate. Applying the SAP method for fault recovery

52

4.4. EVALUATION

Figure 4.14: Performance comparison of SAP (with 50% faulty neurons removed) and TSM
fault recovery methods on a SA-1 fault for CSNN-NMNIST.

Figure 4.15: Performance comparison of SAP (with 80% faulty neurons removed) and TSM
fault recovery methods on a SA-1 fault for CSNN-NMNIST.

53

Figure 4.16: Performance comparison of SAP (with 10% faulty neurons removed) and TSM
fault recovery methods on a SA-0 fault for CSNN-NMNIST.

Figure 4.17: Performance comparison of SAP (with 50% faulty neurons removed) and TSM
fault recovery methods on a SA-0 fault for CSNN-NMNIST.

54

4.4. EVALUATION

Figure 4.18: Performance comparison of SAP (with 80% faulty neurons removed) and TSM
fault recovery methods on a SA-0 fault for CSNN-NMNIST.

and removing 10% (SAP10), 50% (SAP50), and 80% (SAP80) of faulty neurons as shown in

Figures 4.16,4.17, and4.18 leads to accuracy recoveries of 58%, 68%, and 71% respectively

at a 40% fault rate. This trend highlights that the SAP method’s effectiveness in restoring

accuracy improves as more faulty neurons are removed. Nevertheless, it’s important to note

that even with the improved accuracy using SAP, these results still represent accuracy losses of

23%, 14%, and 11% when compared to the baseline accuracy. In contrast, the TSM method

achieves an accuracy recovery of 80% on average across different fault rates. This demonstrates

a notably lower accuracy loss of 2.31% in comparison to the baseline accuracy.

55

4.5 CHAPTER SUMMARY

In this chapter, we discussed fault recovery in neural networks. Furthermore, we explore the

impact of faults on neural network applications specifically SNNs. Following an understanding

of these impacts, we present algorithms for fault recovery in neural computations needed in

neuromorphic systems. Ultimately, these algorithms contribute to the advancement of depend-

able results by recovering accuracy after hardware faults occur in neural computations. We

assumed 40% as the highest fault fault rate in our experiments because the maximum permis-

sible fault rate in even in a system-on-chip (SoC) or any device is contingent upon the specific

application and the criticality of the system. In safety-critical domains like aerospace, medical

devices, or automotive applications, stringent standards demand exceptionally low fault rates

to safeguard users and ensure optimal system performance. Conversely, in applications where

safety concerns are less critical, the acceptable fault rate may be higher. However, even in these

scenarios, the tolerable fault rate remains subject to the specific requirements and expectations

of users. In essence, the fault rate considerations are tailored to align with the criticality of

the system and the potential consequences of failures. The next chapter will present a fault-

tolerant mapping architecture and algorithm of neuromorphic applications to 3D-NoC-based

neuromorphic systems.

56

5
FAULT-TOLERANT MAPPING ALGORITHM

OF SNNS TO NEUROMORPHIC SYSTEMS

IT remains a challenge with non-trivial solutions to map SNN applications onto neuromor-

phic hardware. The mapping technique used can have a significant impact on the system’s

overall performance. However, this task is increasingly challenging once the neural circuits

of neuromorphic systems suffer from potential faults, including high-rate faults that can dis-

rupt the process and compromise neural computation reliability. In this chapter, we introduce

a fault-tolerant mapping algorithm and architecture, extending our earlier work on migration-

based mapping for recovery to tackle this challenge. We aim to not only improve mapping

reliability and robustness but also ensure its efficacy in the face of high-rate faults. Through

57

these advancements, our objective is to make meaningful contributions to the development of

dependable and resilient neuromorphic computing systems.

5.1 FAULT-TOLERANT MAPPING OVERVIEW

Mapping synapses and neurons onto the hardware’s cores and circuits is essential for en-

abling applications to run on neuromorphic hardware. Over the past two decades, numerous

studies have introduced mainly performance-driven mapping techniques aiming to translate the

brain’s operational principles into digital hardware [91]. These techniques primarily focus on

minimizing energy consumption and reducing latency [91]. The authors in [5] and [22] propose

layer-to-layer mapping to capitalize on the routing algorithm and the 3D mesh topology of the

hardware. However, as neurons can fail independently and at any time, the increase in system

size raises the probability of more faults in the system, which may impact the performance of

the application. To tackle this challenge, our work in [19] introduced migration methods that

integrate spare neurons into each cluster of a neuromorphic system using techniques like max-

flow min-cut flow, and genetic algorithms. This approach is proposed with considerations from

two distinct perspectives. From the first perspective, the approach aims to replicate the redun-

dant elements present in the neural dynamics of the brain. From the second perspective, the

strategic inclusion of spare neurons within each cluster is geared towards preserving the perfor-

mance of the mapping method with a specific focus on communication costs. By incorporating

spare neurons into the system, our objective is to guarantee the mapping of all required neurons

for executing an application thereby mitigating any potential impact on the application’s per-

formance. This strategy establishes a fault-tolerant framework during neuron mapping. While

this approach offers several advantages, it does not remap when the number of faulty neurons

surpasses the number of spare neurons. Possible solutions include retraining the system with

fewer neurons or migrating the entire system to another chip or hardware [92]. These solutions

would be effective although they have limitations. Re-training in a hardware-based system can

be a time-consuming process, especially for larger applications. Additionally, the cost of mi-

grating to a new chip is often high and may require multiple reconfigurations.

In light of the drawbacks associated with the approaches proposed by the authors in [92] and

58

5.2. MIGRATION-BASED MAPPING

the limitations of alternative methods, we investigated the possibility of selectively dropping

specific neurons during the mapping process. Our methodology involves integrating a ranking

and selection (RSM) mechanism, strategically designed to identify and exclude neurons based

on their contribution levels. Improving our migration-based mapping strategy, we introduced a

novel Ranking and Selection Mechanism (RSM). This mechanism selectively identifies faulty

neurons based on their contribution levels whether across the entire system or within a specific

neural circuit. In the upcoming subsections, we will provide detailed insights into how the

RSM mechanism contributes to the refinement of the overall mapping approach as part of our

migration-based mapping.

5.2 MIGRATION-BASED MAPPING

A 3D NoC-based neuromorphic system is employed to implement the migration-based

mapping approach we proposed in [6] and [19]. In contrast to conventional mapping meth-

ods which rely on clustering and partitioning, the migration-based approach also known as the

MigSpike approach enables the transfer of tasks from faulty neurons to spare ones within the

system. When dealing with faulty neurons, the initial focus is on repairing neurons within a

cluster at the node level. If the available spare neurons within a cluster are insufficient for these

repairs, the tasks of the faulty neurons are then migrated to other spare neurons across the en-

tire system at the system level. Figure 5.1 illustrates the operational principle of the MigSpike

method in a system denoted as S having three layers each composed of nine nodes. Within each

of these nodes, there are E = 256 neurons along with spare neurons. In this mapping example,

there are 5 spare neurons allocated per node providing each node with the capacity to correct

up to 5 faulty neurons. Additionally, certain nodes do not possess any faulty neurons making

their spare neurons accessible for system repairs. As shown in Figure 5.1a, both layers L12

and L13 have 10 faulty neurons each but only 5 of them are corrected within their respective

nodes due to the limited availability of spare neurons. Consequently, the tasks associated with

the remaining 5 faulty neurons are migrated to the neighboring node, L15, which has available

spare neurons. This mapping is performed using the genetic algorithm (GA) remapping method

59

Figure 5.1: An illustration of migration-based mapping on a 3×3×3 NoC-based neuromorphic
system.

introduced in [6]. As for layer L11, 5 faulty neurons are successfully corrected within the node

while 10 remains faulty. In this case, L14 has 4 spare neurons following node-level repairs

and would receive 4 faulty neurons from L11, while 1 faulty neuron is migrated to L17. With

spare neurons in neighboring nodes and throughout the layer exhausted, the remaining 5 uncor-

rected faulty neurons in L11 are subsequently migrated to L23. A similar process is applied to

nodes L19, L21, and L22. Figure 5.1b illustrates a situation in which a shortage of spare neurons

causes system-level repairs to encounter difficulties after node-level repairs. L2, for instance,

has 135 spare neurons available for repairs, whereas 237 faulty neurons exist. When such sce-

narios arise, it becomes evident that migration-based mapping cannot perform the necessary

remapping.

5.3 MIGRATION-BASED MAPPING WITH THE PROPOSED RANKING AND SELECTION MECH-
ANISM

Our primary concern lies in ensuring neuron mapping is successful even when the number

of faulty neurons (k) exceeds the available spare neurons (R). Building upon the principles

60

5.3. MIGRATION-BASED MAPPING WITH THE PROPOSED RANKING AND SELECTION
MECHANISM

of the SAP method introduced earlier, we apply a logical adaptation of the concept involving

the selective exclusion of neurons within the neuromorphic system during the mapping pro-

cess using the migration-based mapping technique. Figure 5.2 demonstrates how our proposed

mechanism operates during fault-tolerant mapping. The nodes L13, L15, L17, L19, L34, and L37

can migrate the tasks of 5, 3, 2, 5, and 4 neurons respectively to other nodes within or outside

their clusters by selectively dropping faulty neurons before mapping.

Figure 5.2: An illustration of the migration-based mapping with the proposed RSM on a 3×
3×3 NoC-based neuromorphic system.

In the initial implementation of our migration-based mapping approach presented in [6]

and [19], the repair process is applied uniformly to all neurons irrespective of their contribu-

tions to a process in the system. In scenarios where the number of spare neurons falls short

resulting in an outnumbered situation, the mapping process fails subsequently impacting appli-

cation performance and system reliability. To address this issue and enhance system stability

and reliability, we suggest the removal of the least contributing faulty neurons while retain-

ing the most contributing ones for mapping. Selection procedures are crucial for ensuring the

optimal choice from a given set of candidates is selected [93]. To address our challenge, we

introduced the proposed RSM which systematically assesses and selects faulty neurons based

on their individual contribution levels. With the RSM mechanism, neurons with the highest

contributions receive top rank while those with lower contributions are ranked lower. Subse-

quently, only the highest-ranked neurons are chosen for the remapping process.

A neuron’s contribution level (Cl) is determined by its weight value (Wv), as outlined in Equa-

61

tion 5.1. With Equation 5.2, we compute the average contribution level for all neurons. Accord-

ing to Equation 5.3, each neuron is categorized as either low-ranked (LR) or high-ranked (HR)

according to its average contribution level (ACl). For neurons with distinct ranks, we select a

sum of ’k’ and the maximum fault rate (max f rate + k) number of HR neurons. 1−max f rate

neurons are selected when all neurons share the same rank.

Cli =Wv (5.1)

ACl =
i=p

∑
i=0

(Cl)/p (5.2)

Rk =

HR, If Cl > ACl

LR If Cl < ACl

(5.3)

Here, Wv represents a neuron’s total weight value, Cl signifies its contribution level, Rk

denotes the neuron’s rank, ACl represents the average contribution level, and p the total number

of neurons.

5.3.1 SELECTION THROUGHOUT THE SYSTEM ALGORITHM

Using Algorithm 5.3.3, the first approach in the RSM mechanism is to select faulty neu-

rons that contribute significantly across the entire system during a computation process. The

primary objective is to prioritize the removal of the least contributing neurons while selecting

those with the highest presumed contribution for mapping. This approach aims to efficiently

conserve spare neurons for subsequent remapping, ultimately enhancing the effectiveness and

robustness of the mapping process. To illustrate the operation of the RSM mechanism using

Algorithm 5.3.3, we will use Figure 5.3. The figure demonstrates scenarios where in a 3D

NoC-based neuromorphic system, cluster faulty neurons have different ranks or the same rank.

In Figure 5.3a, the system is composed of 9 clusters each containing 256 neurons with 3 re-

served as spares. This results in a total of 2304 neurons (256×9) out of which 2213 are actively

62

5.3. MIGRATION-BASED MAPPING WITH THE PROPOSED RANKING AND SELECTION
MECHANISM

mapped leaving 27 neurons (3×9) as spares. Unfortunately, we observe that 64 neurons have

become faulty. During the ranking phase, a classification based on contribution levels is ap-

plied to these faulty neurons resulting in 43 categorized as HR (High Rank) and 21 as LR (Low

Rank). Despite the presence of spare neurons, their numbers fall short of what is required for

the remapping process. In the subsequent selection phase, let’s assume a fixed max f rate and k of

40%. Initially, 32 HR neurons are selected. However, this number exceeds the available spare

capacity. Consequently, the algorithm initiates a re-ranking and re-selection process among

the previously chosen 32 neurons. Following this process, the number of selected HR neurons

reduces to 26 satisfying the mapping condition (k < R). These 26 HR neurons are distributed

across clusters C11, C14, C15, and C17 which initially node-level repairs was performed. Nev-

ertheless, some selected neurons in C14, C15, and C17 remain unmapped and are subsequently

remapped to clusters C12, C13, C16, C18, and C19.

Figure 5.3: An illustration of post-remapping in a 3×3×1 NoC-based neuromorphic system
where each cluster comprises 256 neurons: (a) Post-remapping results following system-wide
selection, (b) Post-remapping results with a cluster-by-cluster selection approach within the
system.

63

Algorithm 5.3.3 Ranking and Selection Method (RSM): Throughout the system
1: Fn :Faulty neurons

2: k :Fault rate

3: Max f rate

4: HR : Higher ranked neurons

5: for faulty neurons Fn in system S do

6: Ranking phase:

7: // Calculate the contribution level Cl (Eqn. 5.2)

8: // Rank (Rk) Fn into HR and LR based on Cl (Eqn. 5.3)

9: Selection phase:

10: if Fn have different Rk values then

11: // Select HR× (Max f rate + k) neurons

12: else

13: // Rk of all Fn is the same

14: // Select Fn× (1−Max f rate)

15: end if

16: end for

17: Return: HR =0

64

5.3. MIGRATION-BASED MAPPING WITH THE PROPOSED RANKING AND SELECTION
MECHANISM

WEAK POINT

With Algorithm 5.3.3, faulty neurons are randomly selected throughout the system by the

RSM mechanism. Consequently, some higher-ranked neurons in specific clusters may remain

unselected for repairs because only a percentage of higher-ranked neurons are chosen. The

random selection throughout an entire system can lead to variations in the choice of faulty

neurons potentially excluding those with more significant contributions. While this approach

efficiently selects spare neurons for further remapping, optimizing it is necessary to ensure the

selection of highly contributing faulty neurons across all clusters regardless of their location

within the neuromorphic system.

5.3.2 SELECTION CLUSTER BY CLUSTER ALGORITHM

With the drawback of using the selection approach in Algorithm 5.3.3 apparent, we rec-

ognized the need for a more efficient and robust selection strategy. This realization led us to

introduce the cluster-by-cluster selection approach formalized in Algorithm 5.3.4. One of its

significant advantages is ensuring that at a minimum, clusters containing faulty neurons have at

least one neuron selected for repairs. This selection not only enhances the system’s fault toler-

ance but also ensures a more efficient and balanced selection process especially when dealing

with randomly scattered faulty neurons throughout the system. Additionally, this strategic shift

allows us to prioritize the selection of highly contributing faulty neurons within clusters for

repairs ultimately improving the overall fault tolerance and efficiency of the neuromorphic sys-

tem.

Figure 5.3b illustrates the operation of the RSM mechanism using Algorithm 5.3.4. In this sce-

nario, let’s consider a situation where all neurons are ranked equally during the ranking phase.

During the subsequent selection phase, the algorithm ensures that at least one faulty HR neuron

is selected from each cluster in the system that contains faulty neurons. Following the selection

process, clusters containing selected faulty HR neurons perform node-level repairs. However,

clusters C13, C15, and C19 encounter a shortage of resources to repair all the selected neurons.

Consequently, the remaining selected and unmapped neurons within clusters C13, C15, and C19

undergo remapping to neighboring clusters C16 and C18 for system-level repair.

65

Algorithm 5.3.4 Ranking and Selection (RSM): Cluster by cluster
Fn : Faulty neurons

k : Fault rate

3: Max f rate

HR : Higher ranked neurons

for cluster C = 1,2, . . . ,N in system S do

6: Ranking phase:

if Fn > 1 then

// Group all faulty neurons Fn

9: // Get their contribution levels Cl (Eqn.5.2)

// Rank (Rk) all Fn (Eqn.5.3) into HR and LR

Selection phase:

12: if Fn have different Rk(s) then

// Select HR× (Max f rate + k)

else

15: if Rk of all Fn is the same then

// Select Fn× (1−Max f rate)

end if

18: end if

end if

if Fn = 1 then

21: // Select Fn

Return:Fn

end if

24: end for

Return:HR

66

5.6. EVALUATION

5.6 EVALUATION

In this section, we present the results of two distinct experiments each designed to assess

the efficacy of the fault-tolerant mapping strategy within 3D NoC-based neuromorphic systems

of different sizes. Initially, we conducted fault-tolerant mapping without the application of the

RSM. Subsequently, we repeated the mapping procedure, this time incorporating the RSM.

Additionally, we conducted a comprehensive Monte Carlo reliability analysis to evaluate the

efficiency and effectiveness of the proposed RSM.

5.7 EVALUATION METHODOLOGY

For the initial experiment, we utilized an SNN application with the configuration specified

in Table 6.1 to assess fault-tolerant mapping. This experiment comprised two distinct phases:

first, we performed mapping using the GA-based migration method from [6] and [19] without

integrating the RSM. Subsequently, we repeated the mapping process, this time incorporating

the RSM mechanism. We evaluated these mappings across 3D NoC-based neuromorphic sys-

tem configurations ranging from 4×4×4 to 6×6×6, featuring 64 and 256 neurons per cluster

while maintaining a fault rate of k > 20% as outlined in Table 6.1. Our main objective was to

assess the impact of integrating the RSM on mapping efficiency, particularly when there are in-

sufficient spare neurons. The configuration details for the evaluation are provided in Table 6.1.

The total number of neurons T is computed using Equation 5.4 for W system network sizes

with N neurons per cluster, and I represents the utilized neurons calculated with Equation 5.5.

Additionally, for the experiments, we set the maximum fault rate at 20% (for k < R) and 40%

(for k > R).

T = N×W (5.4)

I = T ×U (5.5)

By comparing the results of mapping with and without the RSM mechanism, we aimed to il-

lustrate any behavioral differences and the advantages of utilizing the RSM in the mapping

67

process. To evaluate the RSM’s effectiveness in terms of robustness, we conducted a compre-

hensive reliability analysis assessment.

Table 5.1: Configuration for the evaluation.

Parameter Value
Neurons per node (N) 64 and 256

Nodes (W) 4×4×4, 5×5×5 and 6×6×6
Spare neurons (R) (%) 20

Fault rates (k)(%) 5, 15, 20, 25, 30, 35, and 40
Max. fault rate (%) 40

Utilization rate (U) (%) 60
SNN layers 4

SNN 784:0.4∗(N×W):0.4∗(N×W):10
Realizations 100

Duration (Monte Carlo) (yrs) 5
∗For mapping, the configuration 784:0.4∗(N×W):0.4∗(N×W):10 is used for mapping on
different 3D NoC-based neuromorphic system sizes. For example an SNN configuration for
N=64 and W=5×5×5 is 784:3200:3200:10.

5.8 EVALUATION RESULTS

5.8.1 MAPPING WITHOUT RSM

We assessed the mapping efficiency of the fault-tolerant mapping method for the SNN

application using the configuration specified in Table 6.1 across various sizes of 3D NoC-

based neuromorphic systems: 4×4×4, 5×5×5, and 6×6×6, each with 64 and 256 neurons

per node. This assessment was specifically carried out for k exceeding R. As illustrated from

Figure 5.4 - 5.9, when we set R at 20% and kept k below or equal to 20%, we observed that the

number of unmapped neurons remained consistently at zero. However, when k exceeded 20%,

the mapping method encountered challenges across all three network sizes. In these cases,

the method failed to successfully remap neurons, and the available pool of spare neurons was

depleted settling at zero.

68

5.8. EVALUATION RESULTS

Figure 5.4: Output mapping behavior without the proposed RSM at various fault rates for a
4×4×4 NoC-based neuromorphic system with 256 neurons per cluster.

Figure 5.5: Output mapping behavior without the proposed RSM at various fault rates for a
5×5×5 NoC-based neuromorphic system with 256 neurons per cluster.

69

Figure 5.6: Output mapping behavior without the proposed RSM at various fault rates for a
6×6×6 NoC-based neuromorphic system with 256 neurons per cluster.

Figure 5.7: Output mapping behavior without the proposed RSM at various fault rates for a
4×4×4 NoC-based neuromorphic system with 64 neurons per cluster.

70

5.8. EVALUATION RESULTS

Figure 5.8: Output mapping behavior without the proposed RSM at various fault rates for a
5×5×5 NoC-based neuromorphic system with 64 neurons per cluster.

Figure 5.9: Output mapping behavior without the proposed RSM at various fault rates for a
6×6×6 NoC-based neuromorphic system with 64 neurons per cluster.

71

5.8.2 MAPPING WITH RSM

MAPPING EFFICIENCY

In this assessment, we specifically addressed the scenario where k surpasses R. Figures 5.10

to 5.21 show the mapping efficiency evaluation for neuromorphic systems with 256 and 64

neurons per cluster, respectively. As observed in Figures 5.10 to 5.15, when the neuromorphic

system size includes 256 neurons per cluster, there are no remaining unmapped faulty neurons,

regardless of variations in their ranks due to contribution levels. This noteworthy accomplish-

ment is attributed to the RSM’s capability to prioritize a significant number of higher-ranked

neurons for remapping. A similar trend is seen in Figures 5.16 to 5.21, where various neuro-

morphic system sizes with 64 neurons per cluster exhibit comparable results.

Figure 5.10: Output mapping behavior with the proposed RSM at various fault rates for a 4×
4×4 NoC-based neuromorphic system with 256 neurons per cluster(FN with ranks different).

72

5.8. EVALUATION RESULTS

Figure 5.11: Output mapping behavior with the proposed RSM at various fault rates for a 5×
5×5 NoC-based neuromorphic system with 256 neurons per cluster(FN with ranks different).

Figure 5.12: Output mapping behavior with the proposed RSM at various fault rates for a 6×
6×6 NoC-based neuromorphic system with 256 neurons per cluster(FN with ranks different).

73

Figure 5.13: Output mapping behavior with the proposed RSM at various fault rates for a
4× 4× 4 NoC-based neuromorphic system with 256 neurons per cluster(FN with ranks the
same).

Figure 5.14: Output mapping behavior with the proposed RSM at various fault rates for a
5× 5× 5 NoC-based neuromorphic system with 256 neurons per cluster(FN with ranks the
same).

74

5.8. EVALUATION RESULTS

Figure 5.15: Output mapping behavior with the proposed RSM at various fault rates for a
6× 6× 6 NoC-based neuromorphic system with 256 neurons per cluster(FN with ranks the
same).

Figure 5.16: Output mapping behavior with the proposed RSM at various fault rates for a
4×4×4 NoC-based neuromorphic system with 64 neurons per cluster(FN with ranks different).

75

Figure 5.17: Output mapping behavior with the proposed RSM at various fault rates for a
5×5×5 NoC-based neuromorphic system with 64 neurons per cluster(FN with ranks different).

Figure 5.18: Output mapping behavior with the proposed RSM at various fault rates for a
6×6×6 NoC-based neuromorphic system with 64 neurons per cluster(FN with ranks different).

76

5.8. EVALUATION RESULTS

Figure 5.19: Output mapping behavior with the proposed RSM at various fault rates for a
4×4×4 NoC-based neuromorphic system with 64 neurons per cluster(FN with ranks the same).

Figure 5.20: Output mapping behavior with the proposed RSM at various fault rates for a
5×5×5 NoC-based neuromorphic system with 64 neurons per cluster(FN with ranks the same).

77

Figure 5.21: Output mapping behavior with the proposed RSM at various fault rates for a
6×6×6 NoC-based neuromorphic system with 64 neurons per cluster(FN with ranks the same).

TIME COMPLEXITY

Table 6.3 presents the results of our evaluation regarding the execution time of the RSM

across different 3D network sizes. The RSM offers two distinct approaches for ranking and

selecting neurons: one that operates throughout the entire system and another that operates

on a cluster-by-cluster basis. In the case of ranking and selecting neurons throughout the en-

tire system, the method demonstrates linear time complexity denoted as O(n). This efficiency

arises from the algorithm’s singular loop which scales linearly with the input size. A notable

advantage of this strategy is its concurrent ranking and selection of all faulty neurons contribut-

ing to its high efficiency. Conversely, the cluster-by-cluster selection introduces a complexity

of O(n logn). This complexity emerges from the algorithm’s iteration over the cluster size.

Consequently, this method may exhibit reduced scalability when applied to very large NoC

configurations leading to potential execution time challenges.

78

5.8. EVALUATION RESULTS

Table 5.2: Execution time of RSM for faulty neuron selection in 3D NoCs.

NoC size RSM selection type
Throughout the system Cluster by cluster

4×4×4 21.34 ms 11.16 ms/cluster
5×5×5 40.03 ms 21.41 ms/cluster
6×6×6 67.81 ms 34.07 ms/cluster
* The execution time only takes into account the CT for

R&S of faulty neurons.
* CT: Computation time, R&S: Ranking and selection.
* System configuration: N=256, k=40%.

RELIABILITY ANALYSIS

Reliability analysis is a critical process in assessing a system’s capability to fulfill its desig-

nated function under specific conditions throughout a defined duration. This systematic evalu-

ation aims to enhance the quality of products, processes, and systems by thoroughly examining

key aspects of system performance, including reliability, availability, maintainability, and time

to failure. Effectively conducting this analysis often involves making certain assumptions to

accurately model an ideal system. These assumptions play a crucial role in establishing a theo-

retical framework that represents an idealized version of the system. Such a framework serves

as a benchmark for evaluating the actual system’s performance, facilitating the identification of

areas for improvement. In the specific context of evaluating the reliability of the RSM (Relia-

bility, Operational Availability, and Time to Failure) mechanism, two distinct assumptions are

considered:

• Assumption 1: Neurons can fail independently.

This assumption is represented using conditional probability. Let P(Fi) be the probability

of neuron i failing, and P(Fi ∩ Fj) be the probability of both neurons i and j failing

simultaneously. The assumption implies that P(Fi∩Fj) = P(Fi) ·P(Fj) for all i ̸= j.

• Assumption 2: The failure rate of higher-ranked neuron selection varies depending on

the fault rate in the system.

Let Ri be the failure rate of higher-ranked neuron selection per year when neuron i has

79

failed. This implies a conditional probability P(Ri|Fi) that depends on the failure of

neuron i.

Since our assumptions were based on a probabilistic approach, a probabilistic approach

using Monte Carlo reliability simulations supported by the Goldsim simulator [94] [95] [96]

is employed. The Monte Carlo method involves running multiple simulations with random

inputs to estimate probabilities. In this context, let N be the number of times the model runs

(realizations). The reliability of the system can be estimated as the fraction of successful runs.

Mathematically, the reliability R is expressed as:

R =
Number of successful runs

N
(5.6)

Tunable parameters include the number of times the model runs (N) and the simulation duration

(T) are adjustable, providing flexibility for different experiments while the reliability R is a

function of both N and T . To run the Monte Carlo simulation in the Goldsim simulator, our

primary parameter is the failure rate when selecting higher-ranked neurons. The failure rate λ

over time t can be expressed in Equation 5.7.

λ =
k1

I× t
(5.7)

SHR = HR× (k+Max f rate) (5.8)

k1 = HR−SHR (5.9)

k1 represents the new count of faulty neurons calculated using Equation 5.9 and I represents

the number of neurons utilized by a given application computed using Equation 5.5. Max f rate

is defined as the maximum fault rate outlined earlier in Table 6.1, HR is defined as the number

of higher-ranked neurons, and SHR is defined as the number of selected higher-ranked neurons

computed from Equation 5.8. These equations collectively facilitate a comprehensive analysis

of the RSM’s performance in the context of neuron selection.

Figures 5.22 to 5.24 offer a comprehensive overview of the reliability of the RSM under various

scenarios with a 40% fault rate. Notably, in the case of a 4× 4× 4 NoC-based neuromorphic

80

5.8. EVALUATION RESULTS

system as shown in Figure 5.22, during the fault-tolerant mapping of SNN applications, the

RSM mechanism demonstrates an average reliability of 77% over 100 realizations throughout

the simulation period. With an upscale to larger system sizes such as the 6×6×6 configuration

illustrated in Figure 5.24, the average reliability experiences a slight decrease to 43%. The oper-

ational availability of the RSM stands as a vital metric, representing the probability of the RSM

performing its designated function at any given moment. Figures 5.25 to 5.27 illustrate the

operational availability of the RSM mechanism during the mapping of SNN applications using

the fault-tolerant mapping method with 40% of neurons in a neuromorphic system gone faulty.

In the case of a 4×4×4 NoC-based neuromorphic system, as shown in Figure 5.25, the RSM

maintains an average operational availability of 88.2% throughout the simulation, considering

100 realizations. However, for the larger 6× 6× 6 NoC-based neuromorphic system shown

in Figure 5.27, the operational availability experiences a reduction to 67.8%. For time-related

metrics, we consider the TTF and the MTTF of RSM. TTF represents the duration between the

initiation of RSM and its eventual failure, while MTTF signifies the average TTF of RSM. In

Figure 5.28, the 4× 4× 4 NoC-based neuromorphic system demonstrates an impressive TTF

of 75.46 years. Additionally, Figure 5.29 reveals that the MTTF for the same system config-

uration is 16.8 years. This prolonged operational period is attributed to the selective repair of

a limited number of higher-ranked neurons. However, in the case of a 6× 6× 6 NoC-based

neuromorphic system, as observed after 100 realizations, both TTF and MTTF exhibit a slight

reduction. These time-related metrics collectively offer valuable insights into the reliability and

operational characteristics of the RSM, providing a nuanced understanding of its performance

across varying conditions and 3D NoC-based neuromorphic system sizes.

81

Figure 5.22: Reliability Plot of RSM for a 4×4×4 NoC-based neuromorphic system through-
out the simulation duration.

Figure 5.23: Reliability Plot of RSM for a 5×5×5 NoC-based neuromorphic system through-
out the simulation duration.

82

5.8. EVALUATION RESULTS

Figure 5.24: Reliability Plot of RSM for a 6×6×6 NoC-based neuromorphic system through-
out the simulation duration.

Figure 5.25: Operational availability plot of RSM for a 4× 4× 4 NoC-based neuromorphic
system throughout the simulation duration.

83

Figure 5.26: Operational availability plot of RSM for a 5× 5× 5 NoC-based neuromorphic
system throughout the simulation duration.

Figure 5.27: Operational availability plot of RSM for a 6× 6× 6 NoC-based neuromorphic
system throughout the simulation duration.

84

5.8. EVALUATION RESULTS

Figure 5.28: Distribution plot of TTF across three different 3D NoC-based neuromorphic sys-
tem.

Figure 5.29: Distribution plot of MTTF across three different 3D NoC-based neuromorphic
system sizes.

85

5.9 CHAPTER SUMMARY

In this chapter, we introduced a fault-tolerant mapping architecture and algorithm integrated

with a novel ranking and selection mechanism. The objective of this integration is to ensure

continuous mapping even in the presence of high-level faults while minimizing associated cost

implications. We conducted a comprehensive evaluation of the fault-tolerant mapping method

both before and after its integration with the novel selection mechanism and assessed its effi-

ciency. It is important to acknowledge that the fault-tolerant method relies on added redundan-

cies for recovery presenting certain challenges and drawbacks. The next chapter will present

a novel neuromorphic applications mapping approach featuring a novel fault-tolerant mecha-

nism, specifically designed to address challenges associated with the utilization of redundancy

as a fault-tolerant mechanism.

86

6
ROBUST MAPPING TO NEUROMORPHIC

SYSTEMS

THe mapping of SNN applications onto neuromorphic systems poses a complex challenge,

particularly when attempting to strike a balance between system efficiency and reliabil-

ity. In our previous efforts to address reliability concerns within neuromorphic systems, we

proposed a fault-tolerant mapping approach centered on redundancy implementation and in-

tegrated a ranking and selection mechanism. The primary objective was to attain thorough

system recovery to overcome the challenge of performance degradation and diminished sys-

tem reliability particularly in the presence of high-level faults all while carefully managing

cost considerations. However, limitations became evident using redundant elements as fault-

tolerant mechanisms including significant resource costs and the potential depletion of those

(redundant) resources over time. Moreover, alternative fault-tolerant mechanisms such as dy-

namic resource reconfiguration and periodic redundancy introduction proved to be impractical.

This chapter introduces a mapping approach with a novel fault-tolerance mechanism, inspired

by the theory of neural reuse. The objective is to address the constraints and drawbacks as-

sociated with the utilization of additional redundancies, as well as those related to alternative

87

fault-tolerant mechanisms discussed earlier. By repurposing existing neurons within the sys-

tem, we demonstrate the adaptability of this brain-inspired approach by effectively reutilizing

neurons in specific regions, mitigating errors stemming from faulty neurons. The novel map-

ping approach provides scalability advantages allowing the scaling of the size of a NoC-based

neuromorphic system without necessitating a corresponding increase in fault-tolerant neurons.

By removing the constraints of finite fault-tolerant resources, our mapping approach paves the

way for a more sustainable, cost-effective, and efficient method of application mapping within

the realm of neuromorphic computing.

6.1 THE PROPOSED MAPPING METHOD (R-MAS3N)

The authors in [97] have illustrated the concept of re-purposing existing components to en-

hance performance. They introduced a novel approach for reusing convolution layers without

introducing new ones. While their primary objective was performance enhancement, our focus

lies in improving system reliability through fault tolerance. In our proposed methodology, the

mapping process initiates with the initial mapping of neurons from an SNN model to clusters

within a 3D NoC-based neuromorphic system. Once this mapping process is completed, a sub-

set of neurons in the 3D NoC-based neuromorphic system is intentionally designated as faulty

to simulate faults in the system. To achieve fault tolerance and improve system reliability, our

new mapping approach known as R-MaS3N employs a two-step process. Initially, unmapped

layer neurons are categorized into two partitions based on their spiking patterns: the most active

and the least active. In the subsequent step, neurons within the 3D NoC-based neuromorphic

system are organized into high and less-active regions. Within the less active region, neurons

are further sorted based on their spiking activities. The partitioning process ensures that only

neurons in the less active region of the 3D NoC-based neuromorphic system are employed for

mapping to achieve fault tolerance and enhance reliability. In R-MaS3N, high-activity neurons

are constrained from being mapped to high-spiking neurons to avoid the potential overloading

of high-spiking neurons ensuring a balanced and efficient distribution of neural activity. One

key aspect of the R-MaS3N lies in its efficient reuse of existing neurons which significantly

88

6.1. THE PROPOSED MAPPING METHOD (R-MAS3N)

reduces resource wastage. The following subsections will provide a comprehensive descrip-

tion of both the initial mapping and fault-tolerant mapping steps of R-MaS3N. Subsequently,

a detailed design explanation of two critical procedures in the remapping phase of R-MaS3N

will be presented. It is essential to note that the terms "clustering" and "partitioning" are used

interchangeably in this context.

6.1.1 INITIAL MAPPING TO NEURON CLUSTERS

In the initial mapping of neurons to clusters, R-MaS3N follows a systematic layer-to-layer

process, as outlined in our previous work [5]. This mapping procedure entails the sequential

allocation of application neurons to clusters within each layer of the 3D NoC-based neuromor-

phic system. Starting with an initial cluster, application neurons are mapped progressively until

all neurons within that cluster are efficiently utilized. The process then seamlessly transitions

to the next cluster within the same layer iterating until all clusters containing available neurons

in the specific layer have been successfully mapped with application neurons. This structured

methodology enables the mapping of the neural network application illustrated in Figure 6.1a,

onto the 3D NoC-based neuromorphic system presented in Figure 6.1b. The detailed illustra-

tion of the mapping sequence is depicted in Figure 6.2.

From Figure 6.1b, each cluster in the 3D NoC-based neuromorphic system contains four

neurons. In NL1 of the 3D NoC-based neuromorphic system, there are a total of 36 neurons

distributed with 1, 3, 2, 4, 3, and 3 faulty neurons in clusters C11, C12, C13, C14, C15, and

C16, respectively. Similarly, L1 of the neural network application comprises 36 neurons. After

the initial mapping, 16 application neurons remain unmapped. The lack of availability of all

required application neurons on the hardware may result in reduced reliability or even the

inability to perform desired tasks due to degraded or incomplete functionality.

6.1.2 ROBUST MAPPING TO NEURON CLUSTERS

Figure 6.3 illustrates how R-MAS3N tackles the challenge presented in Figure6.1 that leads

to degraded system performance and reduced system reliability using the novel fault-tolerant

89

Figure
6.1:

A
n

illustration
of

the
initialSN

N
m

apping
process

on
a

3×
3×

3
N

oC
-based

neurom
orphic

system
:

(a)
R

epresents
the

neuralnetw
ork

application,w
hile

(b)
show

cases
the

neuralnetw
ork

application
m

apped
onto

the
neuro

cores
of

the
3D

N
oC

-based
neurom

orphic
system

.O
urm

apping
m

ethod,as
introduced

in
[5],is

em
ployed

forthis
m

apping.It’s
notew

orthy
thatcertain

clusters,
specifically

C
11 ,C

12 ,C
14 ,C

15 ,and
C

16
w

ithin
N

L
1 ,contain

faulty
neurons.

C
onsequently,the

m
apped

neurons
in

these
clusters

are
few

erthan
the

expected
m

axim
um

capacity.

90

6.1. THE PROPOSED MAPPING METHOD (R-MAS3N)

Figure 6.2: Descriptive overview of the mapping sequence executed on the 3D NoC-based
neuromorphic hardware, as detailed in Figure 6.1. The process involves mapping neurons from
each layer of the network application to their corresponding layers within the neuromorphic
system.

mechanism. Building upon the initial mapping shown in Figure6.1b, there are a total of 16

unmapped neurons from L1 of the neural network application. Based on their spiking behavior,

these neurons are categorized into two partitions: the most active and the least active. Subse-

quently, as detailed in Figure6.3b, 10 neurons are assigned to the most active partition, while 6

neurons are allocated to the least active partition.

In the subsequent step, all the neurons already mapped in NL1 of the 3D NoC-based neuromor-

phic system are divided into high and less-active regions. As shown in Figure 6.3c, clusters

C15, C18, and C19 are classified within the less-active region. Within these clusters, neurons are

further sorted into underutilized and highly utilized ones through rank sorting. Following the

sorting process, C18 and C19 have 2 and 3 underutilized neurons respectively while clusters C15,

C18, and C19 contain 1, 2, and 1 highly utilized neurons respectively. Given that our primary

objective is to achieve fault tolerance, R-MAS3N first allocates 10 neurons from the most ac-

tive partition to underutilized neurons within clusters C18 and C19. Similarly, 6 neurons from

the least active partition are mapped to the highly utilized neurons in clusters C15, C18, and C19.

91

Figure
6.3:A

n
illustrative

representation
ofthe

proposed
solution

w
ithin

a
3×

3×
1

N
oC

-based
neurom

orphic
system

,addressing
the

m
apping

challenge
detailed

in
Figure

6.1.
T

he
sequence

unfolds
as

follow
s:

(a)
D

epicts
the

unm
apped

neurons
originating

from
L

1
ofthe

neuralnetw
ork

application
afterthe

initialm
apping.(b)Illustrates

the
partitioning

ofthese
unm

apped
neurons

into
tw

o
distinct

groups:
the

m
ostactive

and
leastactive

partitions.(c)D
em

onstrates
the

subsequentrem
apping

process
w

here
partitioned,unm

apped
neurons

from
both

the
m

ostactive
and

leastactive
partitions

are
reassigned

to
neurons

located
w

ithin
the

less-active
regions

of
the

respective
layerin

the
3D

N
oC

-based
neurom

orphic
system

.
(d)O

ffers
a

visualrepresentation
ofthe

sequentialsteps
involved

in
the

rem
apping

process
w

ithin
N

L
1 .

92

6.1. THE PROPOSED MAPPING METHOD (R-MAS3N)

SNN LAYER PARTITIONING (SLP) ALGORITHM

The fault-tolerant process in the R-MaS3N commences the remapping process following

the initial mapping which leaves certain application neurons unmapped due to faults in the 3D

NoC-based neuromorphic system. The initial step in the remapping process involves the parti-

tioning of the application model neurons into two distinct groups based on their firing patterns.

This process is formalized in Algorithm 6.1.5. To determine these partitions, we utilize metrics

such as spike counts (Sc) and consecutive spike frequency (Fcs).

For the partitioning process, we calculate the average spike count (AvgSc) and the average fre-

quency of consecutive spike counts (Avg fcs) across all neurons within the system as defined by

Equations 6.1 and 6.2. Neurons having spike counts and consecutive spike frequencies above

the respective averages are grouped as the most active neurons (Cmost) partition per Equation

6.3. Conversely, neurons with spike counts and consecutive spike frequencies below or equal

to the averages are grouped as the least active neurons (Cleast) partition based on Equation 6.4.

AvgSc
=

1
m ∑Sc(ni) ∀ni ∈ N (6.1)

Avg fcs
=

1
m ∑Fcs(ni) ∀ni ∈ N (6.2)

Cmost = {ni ∈ N | Sc(ni)> AvgSc
and Fcs(ni)> Avg fcs

} (6.3)

Cleast = {ni ∈ N | Sc(ni)≤ AvgSc
or Fcs(ni)≤ AvgSc

} (6.4)

When addressing the mapping challenge presented in Figure 6.1, neurons within the Cmost

partition are mapped initially to underutilized neurons and subsequently to the most utilized

neurons from the Cless partition within the 3D NoC-based neuromorphic system. The same

mapping strategy applies to unmapped application neurons within the Cleast partition. It’s im-

portant to note that while there are similarities, the SNN layer partitioning problem differs

from the classical graph partitioning problem [77] [78] [80]. The classical graph partitioning

problem aims to divide a graph into subsets to optimize objectives such as minimizing edge

connections between partitions and achieving balanced partition sizes. However, both prob-

lems share the commonality of dividing elements be it neurons or graph nodes into groups

93

based on specific criteria. How the SNN layer neuron partitioning method partitions unmapped

application neurons is illustrated in Figure 6.4. To partition neurons of layer 2 from Figure 6.4a

into Cmost and Cleast partitions, assuming these neurons have Fcs values of 7, 6, 10, 11, 4, and

5, and Sc values of 200, 300, 1500, 100, 1000, and 700, respectively. The Avg fcs calculated

using Equation 6.1 is 7 and the AvgSc computed using Equation 6.2 is 633 for all the neurons.

Based on these results, the neurons are partitioned into two distinct partitions, Cmost and Cleast

following the criteria outlined in Equations 6.3 and 6.4. Specifically, neurons X4, X5, X7, X8,

and X9 are placed in the Cleast partition, while neuron X6 is assigned to the Cmost partition. The

resulting partitions are shown in Figure 6.4c.

94

6.1. THE PROPOSED MAPPING METHOD (R-MAS3N)

Fi
gu

re
6.

4:
A

n
ill

us
tr

at
io

n
of

an
SN

N
la

ye
r

di
vi

de
d

in
to

tw
o

di
st

in
ct

ne
ur

on
pa

rt
iti

on
s

us
in

g
th

e
SL

P
al

go
ri

th
m

:
(a

)
T

he
SN

N
ap

pl
ic

at
io

n
(b

)S
am

pl
e

la
yo

ut
of

th
e

ch
ar

ac
te

ri
ze

d
ne

ur
on

s
(c

)L
ay

ou
to

ft
he

cl
us

te
re

d
ne

ur
on

s.

95

Algorithm 6.1.5 SNN Layer Partitioning Algorithm
1: procedure LAYER PARTITIONING(N) /* Input: Set of neurons N */

2: Calculate AvgSc and Avg fcs

3: Initialize empty sets Cmost and Cleast

4: for ni ∈ N do

5: if Sc(ni)> AvgSc and Fcs(ni)> Avg fcs
then

6: Move ni to Cmost

7: else

8: Move ni to Cleast

9: end if

10: end for

11: Return: Cmost, Cleast /* Output: Neurons in Cmost and Cleast regions */

12: end procedure

NEURON PARTITIONING (NP) ALGORITHM

After partitioning the neurons in the layer(s) of the SNN application, the next step in the

fault-tolerant process of the R-MaS3N involves clustering neurons on the 3D NoC-based neu-

romorphic hardware into high-active and less-active regions. Algorithm 6.1.6 formalizes this

step. To classify neurons as highly active (ni ∈ Chigh) region, two conditions must be met:

they must have a higher number of positive synaptic connections (PC) than negative synaptic

connections (NC), and their Sc must exceed the AvgSc
. We assume that these parameters are

derived from the configuration of the 3D NoC-based neuromorphic hardware. The criteria for

clustering neurons into either Chigh or Cless regions are as follows: A neuron belongs to the

highly active region (ni ∈Chigh) if both Equations 6.5 and 6.6 hold true:

PC(ni)> NC(ni) (6.5)

Sc(ni)> AvgSc
(6.6)

96

6.1. THE PROPOSED MAPPING METHOD (R-MAS3N)

Neurons that do not meet these criteria are classified in the less active (ni ∈Cless) region. Once

the partitioning is complete, the next step is to identify underutilized and most utilized neurons

within the Cless region by performing rank-order sorting using Algorithm 6.1.7. This sorting

primarily considers the spike count (Sc) as the main criterion. First, the Sc is calculated for

each neuron ni ∈Cless region. Then, a rank score (RS) is assigned to each neuron based on its

Sc. The rank score is determined by ranking Sc in ascending order and assigning lower scores

to neurons with fewer Sc. Neurons are sorted based on their rank scores in ascending order

with those having the lowest rank scores (indicating fewer Sc) placed at the top of the sorted

list. Neurons in the first half of the sorted list are termed "underutilized," while neurons in the

second half are termed "most utilized". How the neuron partitioning method works is illustrated

Figure 6.5: An illustrative representation of neurons in clusters within a 3× 3× 1 NoC-based
neuromorphic system, divided into Chigh and Cless partitions utilizing the NP algorithm.

in Fig. 6.5. It is assumed that neurons within each cluster exhibit distinct Sc values, PC counts,

and NC counts, derived from the neuromorphic system configuration. The AvgSc is calculated

as 369 using Equation 6.1. To partition neurons into the Chigh and Cless regions, Equations 6.5

and 6.6 are employed. Evidently, neurons in C1 to C4, C6 clusters, and neuron X9 in cluster

C5 have Sc values surpassing the computed AvgSc and exhibit a higher count of PC than NC.

Consequently, these neurons are designated to the Chigh partition. In contrast, neurons in C7,

C8, C9 clusters, and neuron X10 in cluster C5 showcase more NC than PC and Sc values below

the calculated AvgSc. Therefore, these neurons are allocated to the Cless partition.

97

Algorithm 6.1.6 Neuronal Partitioning
1: procedure NEURON PARTITIONING(Mn) /* Input: Set of mapped neurons Mn */

2: Calculate AvgSc
for all neurons ni ∈Mn.

3: Initialize empty sets Chigh and Cless.

4: for each neuron ni ∈Mn do

5: Calculate PC, NC, and Sc.

6: if PC > NC and Sc > AvgSc
then

7: Move ni to Chigh.

8: else

9: Move ni to Cless.

10: end if

11: end for

12: Return Chigh, Cless /* Output: Neurons in Chigh and Cless regions */

13: end procedure

Algorithm 6.1.7 Rank-Based Sorting
1: procedure RANKSORT(Cless) /* Input: Set of neurons Cless */

2: Initialize an empty list rankedList

3: for ni ∈Cless do

4: Calculate the rank score R(ni) based on Sc

5: Append (ni,R(ni)) to rankedList

6: end for

7: Sort rankedList in ascending order of rank scores

8: Return rankedList /* Output: Sorted list of neurons and their rank scores */

9:

10: end procedure

98

6.3. EVALUATION

6.3 EVALUATION

In this section, we present the results of our evaluation of R-MaS3N providing insights

into its effectiveness, efficiency, and reliability. The evaluation encompasses SNN application

mapping experiments to a 3D NoC-based neuromorphic system, an assessment of our mapping

strategy’s performance in the presence of randomly introduced faulty cluster neurons, and an

analysis of the method’s reliability across different NoC sizes. These evaluations collectively

demonstrate R-MaS3N’s robustness and its ability to handle fault scenarios within 3D NoC-

based neuromorphic systems.

6.3.1 EVALUATION METHODOLOGY

In the initial phase of our evaluation, we proposed a set of SNN applications each prefixed

with ’MLP’ followed by a number (e.g., MLP1794), denoting the total number of neurons as

detailed in Table 6.2. In Table 6.2, columns 2 and 3, provide insights into the topology and

neuron counts for these applications. We then map these proposed applications introducing

random neuron faults at rates of 10%, 20%, 30%, and 40% per layer within the 3D NoC-based

neuromorphic system. This mapping was executed across various NoC sizes ranging from

3× 3× 3 to 5× 5× 5 as specified in Table 6.1. The determination of the system size is con-

tingent upon the size of the application. Additionally, we intend to assess the effectiveness of

our proposed method in larger systems where we have identified a higher probability of faults

occurring. Unlike our previous methodologies in [19] and [62] where fault insertion is applied

uniformly to the entire 3D NoC-based neuromorphic system, the novel approach here ensures

an even distribution of faults across individual layers. In the subsequent phase of our evalua-

tion, we assessed the efficiency of R-MaS3N’s output neuron mapping and neuron utilization

behaviors across various fault rates. This assessment encompassed NoC sizes ranging from

3× 3× 3 to 5× 5× 5 within the 3D NoC-based neuromorphic system having neuron cluster

sizes of 128 and 256 neurons as outlined in Table 6.1. Furthermore, we assessed the com-

putational cost incurred by the R-MaS3N mapping strategy in terms of execution time. This

evaluation spanned critical stages of the mapping process, including the initial mapping, the

99

introduction of neuron faults, fault detection, and the subsequent remapping of previously un-

mapped neurons. We also analyzed the time complexity associated with the neuron remapping

phase within R-MaS3N. This is to enable a fair comparison of remapping times against our

prior fault-tolerant mapping methodologies. To underscore the enhanced reliability offered by

R-MaS3N in mitigating faults within a 3D NoC-based neuromorphic system, even in the pres-

ence of faults, we conducted a thorough reliability analysis. In this comprehensive assessment,

our focal point was the Mean Time To Failure (MTTF), which represents the average duration

until system failure, particularly under the specified fault rates detailed in Table 6.1.

Table 6.1: Configuration used for evaluating R-MaS3N.

Parameter Value
Neurons per cluster 128 and 256

NoC sizes 3×3×3, 4×4×4 and 5×5×5
Fault rates (%) 10, 20, 30, and 40

Table 6.2: Applications used for evaluating R-MaS3N

App. Topology Neurons App. ID

MLP
784_1000_10 1,794 MLP_1794
784_2000_10 2,794 MLP_2794

784_2000_2000_10 4,794 MLP_4794
784_4000_4000_10 8,794 MLP_8794

784_3000_3000_3000_10 9,794 MLP_9794
784_6000_6000_6000_10 18,794 MLP_18794

∗All the applications are feedforward connections.
∗The total number of neurons for any topology is the sum
of all neurons from the input layer to the last layer in the
topology.

6.3.2 EVALUATION RESULTS

MAPPING EFFICIENCY

In the evaluation of R-MaS3N’s mapping efficiency as demonstrated in Figures 6.6 - 6.11, it

becomes evident that with an increasing rate of designated faulty neurons, there is a correspond-

100

6.3. EVALUATION

ing rise in the count of unmapped application neurons before any repair actions (UA_BR). This

trend persists as long as the fault rate continues to escalate. However, following the remapping

process, which targets underutilized and most utilized neurons within a designated region of the

3D NoC-based neuromorphic system (UN_NS) during the fault-tolerant phase of R-MaS3N,

the count of unmapped application neurons after repairs (UA_AR) reaches zero. This outcome

holds for all the SNN applications proposed in Table 6.2.

Figure 6.6: Behavior of output neuron remapping across different fault rates within a 3×3×3
NoC-based neuromorphic system for MLP_1794.

101

Figure 6.7: Behavior of output neuron remapping across different fault rates within a 3×3×3
NoC-based neuromorphic system for MLP_2794.

Figure 6.8: Behavior of output neuron remapping across different fault rates within a 4×4×4
NoC-based neuromorphic system for MLP_4794.

102

6.3. EVALUATION

Figure 6.9: Behavior of output neuron remapping across different fault rates within a 4×4×4
NoC-based neuromorphic system for MLP_8794.

Figure 6.10: Behavior of output neuron remapping across different fault rates within a 5×5×5
NoC-based neuromorphic system for MLP_9794.

103

Figure 6.11: Behavior of output neuron remapping across different fault rates within a 5×5×5
NoC-based neuromorphic system for MLP_18794.

MAPPING COST

The evaluation of R-MaS3N mapping cost focused on measuring the time required for key

stages during the mapping process of SNN applications onto a 3D NoC-based neuromorphic

system. This evaluation considered NoC sizes ranging from 3× 3× 3 to 5× 5× 5. The key

stages encompass initial mapping, repeated initial mapping after introducing faults into some

neurons, and subsequent remapping of the unmapped neurons. We quantified the computa-

tional effort involved in the robust mapping of SNN application neurons to clusters within the

3D NoC-based neuromorphic system. As shown in Figures 6.12 - 6.14, the R-MaS3N compu-

tational cost consistently remained below 10 seconds even when dealing with the mapping of a

large-scale SNN such as MLP18794 onto a 5×5×5 NoC-based neuromorphic system with 40%

of its neurons designated as faulty. This analysis demonstrates the efficiency of R-MaS3N in

managing computational costs across various stages of the mapping process.

104

6.3. EVALUATION

Figure 6.12: Plot illustrating applications mapping cost for a 3× 3× 3 NoC-based neuromor-
phic system under various fault rates.

Figure 6.13: Plot illustrating applications mapping cost for a 4× 4× 4 NoC-based neuromor-
phic system under various fault rates.

105

Figure 6.14: Plot illustrating applications mapping cost for a 5× 5× 5 NoC-based neuromor-
phic system under various fault rates.

NEURON UTILIZATION BEHAVIOR

Another crucial aspect of analyzing SNN applications mapped with R-MaS3N is to evaluate

whether neuron utilization can be effectively restored in the presence of faults impacting the

neuromorphic system during computations. Figures 6.15 - 6.17 depict the utilization dynam-

ics before, during, and after the introduction of faults. Initially, without faults after the initial

mapping (IM), the 3D NoC-based neuromorphic system attains optimal utilization of appli-

cation neurons. However, as the number of faulty neurons increases (F_10−F_40), neuron

utilization experiences a gradual decline. Encouragingly, the system regains its full operational

capacity after remapping (AR). This analysis sheds light on the adaptability and resilience of

the system, showcasing its ability to recover optimal neuron utilization even in the presence of

faults.

106

6.3. EVALUATION

Figure 6.15: Plot illustrating neuron utilization across various stages of the mapping method
for a 3×3×3 3D NoC-based neuromorphic system.

Figure 6.16: Plot illustrating neuron utilization across various stages of the mapping method
for a 4×4×4 3D NoC-based neuromorphic system.

107

Figure 6.17: Plot illustrating neuron utilization across various stages of the mapping method
for a 5×5×5 3D NoC-based neuromorphic system.

TIME COMPLEXITY

For the time complexity analysis, the SLP algorithm in Algorithm takes a set of unmapped

layer neurons, denoted as N, as input and categorizes them into two partitions: Cmost and Cleast.

The SLP algorithm operates in linear time as it iterates over each neuron ni ∈ N and performs

averaging and comparisons to determine the appropriate partition placement for each neuron.

Consequently, the time complexity of the SLP algorithm is O(N), where N represents the num-

ber of neurons. Next, we consider the NP algorithm in Algorithm which partitions the set

of mapped neurons, denoted as Mn, within the 3D NoC-based neuromorphic system. Similar

to the SLP algorithm, the NP algorithm exhibits linear time complexity. It involves iterating

through each neuron ni ∈Mn, where each iteration includes calculations to determine each neu-

ron’s connectivity and activity pattern. Thus, the time complexity for this process is O(Mn),

where Mn represents the number of mapped neurons. The efficiency of the partitioning process

is evident in its linear time complexity, making it suitable for handling a large set of neurons.

To assess the time complexity of remapping unmapped layer neurons (N) to existing neurons

layer by layer, we observe that it incurs a time complexity of O(N2). Consequently, the overall

108

6.3. EVALUATION

execution time (Et) for neuron remapping is determined by combining the SLP and NP algo-

rithms’ time complexities and the layer-to-layer remapping process. This relationship can be

expressed mathematically as shown in Equation 6.7.

When determining the execution time for remapping or repairing unmapped application neu-

rons in a neuromorphic system, the time needed to remap these neurons to existing ones is

considered. Table 6.3 provides an evaluation of the remapping time for the R-MaS3N remap-

ping step, considering the SNN applications outlined in Table 6.2 with 40% of the neurons

in a neuromorphic system gone faulty. For the 3D-NoC-based neuromorphic system with the

largest NoC size (5× 5× 5), the remapping process completes in under 10 seconds. A sig-

nificant comparison arises with the GA-based remapping method used for the 3D-NoC-based

neuromorphic system with the smallest NoC size (4×4×4), as discussed in [19]. In this com-

parison, the R-MaS3N remapping algorithm exhibits a remarkable 71× reduction in remapping

time, showcasing its scalability and efficiency in handling larger NoC sizes.

Emt = O(N)+O(Mn)+O(N2) (6.7)

Table 6.3: R-MaS3N remapping time in the 3D-NoC-
based neuromorphic system for different SNN appli-
cations.

Network size SNN Configuration Time (s)

3×3×3
784_1000_10 0.06
784_2000_10 0.18

4×4×4
784_2000_2000_10 0.58
784_4000_4000_10 1.97

5×5×5
784_3000_3000_3000_10 2.54
784_6000_6000_6000_10 9.60

∗The mapping time takes into account the time:

• To perform layer partitioning of unmapped neu-
rons in the layer(s) of an SNN application.

• To perform neuron partitioning of neurons of the
neuromorphic system.

• To perform neuron remapping for the highest
fault rate.

109

RELIABILITY ASSESSMENT: MEAN TIME TO FAILURE (MTTF)

The Mean Time To Failure (MTTF) is a crucial metric representing the expected duration

until a system fails. In the case of a k-fault-tolerant system capable of withstanding up to

k faults, the MTTF computation involves the failure rates of individual components and the

inherent fault-tolerant structure of the system. Let MT T Fs denote the MTTF for the entire

system and considering the reciprocal of the overall system failure rate, MT T Fs is defined by

the equation:

MT T Fs =
1
λs

(6.8)

where λs is the overall failure rate of the k-fault-tolerant system. The overall failure rate is

the sum of the failure rates of the individual components taking into account the fault tolerance.

Assuming that the failures are independent, we can express λs as:

λs =
k

∑
i=1

λi (6.9)

Here, λi is the failure rate of the i-th component. Therefore, the MTTF for a k-fault-tolerant

system is the reciprocal of λs:

MT T Fs =
1

∑
k
i=1 λi

(6.10)

Equation 6.10 therefore provides the mean time to failure for the entire system considering the

fault-tolerant structure. Incorporating time duration (t), the equation becomes:

MT T Fs(t) =
1

∑
k
i=1 λi

(6.11)

The expression Equation 6.11 therefore represents the mean time to failure of the k-fault-

tolerant system over a specified time duration t. However, R-MaS3N has two distinct failure

rates: the initial mapping failure rate (IFR) and the remap failure rate (RFR). If the remapping

process encounters failure, the RFR is set to 1, as expressed in Equation 6.12.

110

6.3. EVALUATION

RFR =

1, if U > 2×MCless

0 otherwise
(6.12)

Here, U signifies the count of unmapped application neurons, and MCless denotes the number

of mapped neurons within the Cless region of the 3D NoC-based neuromorphic system. Given

that our mapping method adheres to the specified constraints during mapping, it can effectively

handle faults while remaining operational. The Mean Time To Failure (MTTF) for a k fault-

tolerant system from Equation 6.11 and as in [19] for the R-MaS3N is described by Equation

6.13:

MTTFRS =

 1

λ ·
(

k
p

)
 · t (6.13)

In Equation 6.13 above, λ represents the initial mapping failure rate per neuron (in failures

per hour), k denotes the number of neurons to be mapped, p signifies the number of available

neurons for remapping, and t represents the time unit.

Figures 6.18 - 6.20 illustrate the Mean Time to Failure (MTTF) of R-MaS3N in mapping

the SNN applications outlined in Table 2 onto a 3D-NoC-based neuromorphic system with

varying NoC sizes. With 40% of neurons of a neuromorphic system gone faulty, R-MaS3N

achieves MTTF values of 50.73 years, 35.36 years, and 26.54 years for NoC sizes of 3×3×3,

4×4×4, and 5×5×5, respectively. Notably, the MTTF of R-MaS3N for the 5×5×5 NoC

configuration at a 40% fault rate surpasses the MTTF of the previous method at a 20% fault

rate for a 4× 4× 4 NoC size by 16%. This significant improvement highlights the enhanced

reliability of R-MaS3N compared to our previous fault-tolerant mapping approach.

111

Figure 6.18: The mean time to failure (MTTF) of R-MaS3N when MLP1794 and MLP2794 ap-
plications are mapped onto a 3×3×3 NoC-based neuromorphic system.

Figure 6.19: The mean time to failure (MTTF) of R-MaS3N when MLP4794 and MLP8794 ap-
plications are mapped onto a 3×3×3 NoC-based neuromorphic system.

112

6.4. CHAPTER SUMMARY

Figure 6.20: The mean time to failure (MTTF) of R-MaS3N when MLP9794 and MLP18794
applications are mapped onto a 3×3×3 NoC-based neuromorphic system.

6.4 CHAPTER SUMMARY

In this chapter, we introduced a novel mapping approach, R-MaS3N designed to map SNNs

onto a 3D-NoC-based neuromorphic system and remap if there exist faulty components in the

hardware by re-purposing existing neurons to achieve fault tolerance. Our evaluation involved

assessing its performance under various scenarios including situations where a portion of clus-

ter neurons was randomly designated as faulty. We conducted a thorough analysis of our map-

ping method’s reliability highlighting its significantly improved reliability compared to our

previous fault-tolerant mapping algorithm. The next chapter presents the implementation of

the proposed algorithms and architectures focusing on enhancing robustness in the realization

of a reconfigurable neuromorphic architecture.

113

7
TOWARDS A ROBUST RECONFIGURABLE

NEUROMORPHIC ARCHITECTURE

THis chapter details the implementation of the proposed algorithms and schemes aimed

at enhancing robustness in the realization of a reconfigurable neuromorphic architecture.

The neuromorphic chip is structured as an interconnection of neural tiles through a NoC in-

terconnect. Each neural tile consists of two primary components: the processing unit and the

information communication unit. Focusing on robustness within the processing unit, we pro-

vide a comprehensive description of this unit, highlighting a key area that supports our proposed

robust methodologies. Additionally, we introduce a sample layout for a 2×2 NoC-based neu-

romorphic system, currently supporting the migration-based mapping method with the novel

RSM mechanism.

114

7.1. SYSTEM ARCHITECTURE

7.1 SYSTEM ARCHITECTURE

A high-level view of the robust neuromorphic architecture can be seen in Figure 7.1 having

three layers. It is based on several layers of 2D spiking neural tiles building upon our earlier

3D-NoC design in [5]. In these interconnected stacked layers, each neural tile employs an array

of spiked neurons to process incoming spikes. In a broader system, these 2D neural tiles are

often arranged in a hierarchical and scalable manner enabling the implementation of large-scale

complex AI applications.

Figure 7.1: High-level view of the neuromorphic architecture.

External data is input into the system through a host PC. Since the system employs a 3D-

mesh topology with each neural tile equipped with a node (i.e. processing core) and a 3D

router as shown in Figure 7.1 that facilitates communication in six directions and a processing

core, communication is managed by a 3D-mesh NoC while computation is executed by a node

having a processing core controller overseeing all operational processes.

115

7.2 NEURAL TILE

There are two main components of the neural tile: a spiking neural processing core (SNPC)

and a multicast 3D router. In SNNs, each spiking neuron typically corresponds to a single

SNPC and inter-neuron connectivity is established by transmitting spikes (packets) over the

on-chip interconnection. The 3D router, through its routing mechanism, facilitates effective

communication among the spiking neurons in the SNPC, enabling the exchange of neural infor-

mation. Interaction between the SNPC and multicast 3D router is instrumental in the function-

ing of neural tiles, playing a crucial role in the transmission of packets for neural computations.

7.2.1 3D MULTI-CAST ROUTER

The 3D FT-router shown in Figure 7.2, utilizes the K-means multicast routing (KMCR)

algorithm for spike distribution [22]. To address congestion, a variant called shortest path

k-means clustering routing (SP-KMCR) has been implemented [22]. Introducing fault toler-

ance, the fault-tolerant shortest path k-means clustering routing (FTSP-KMCR) ensures reli-

able spike data delivery even in the presence of route faults. For fault handling in input buffers

and crossbars during packet forwarding, the router integrates a random-access buffer (RAB)

and a Bypass-on-demand link [5] [22]. With seven input and output ports, four designated

for intra-layer connections, the router’s routing process involves buffer writing (BW), routing

calculation (RC), switch allocation (SA), and crossbar traversal (CT) [5] [19] [22] [6].

116

7.2. NEURAL TILE

Figure 7.2: High level view of the 3D multicast router [6].

7.2.2 SPIKING NEURO PROCESSING CORE ARCHITECTURE

Figure 7.3 shows the SNPC high level view with crucial components including the LIF ar-

ray, synapse memory, synaptic crossbar, network interface (NI), control unit, and STDP learn-

ing module. The LIF array computes a neuron’s membrane voltage by accumulating synapse

values with a leak value for synaptic decay. Output spikes are fired if the accumulated value

surpasses a voltage threshold; otherwise, no spike is generated. The synaptic crossbar, using a

crossbar architecture, represents synaptic connections with 1-bit values, and weights are stored

in synapse memory. Presynaptic spikes reach the SNPC and postsynaptic spikes are identi-

fied based on synapses [5]. Weights from synapse memory are transmitted to the LIF neuron

for accumulation. For learning, the STDP module updates synaptic weights via trace-based

STDP learning using 16 presynaptic spikes grouped by their arrival time relative to a postsy-

naptic spike [5] [22]. During learning, presynaptic spikes arriving before the postsynaptic spike

are incremented, while those arriving afterward are decremented. The control unit manages

SNPC operations through six states: "idle," "download," "accumulation," "leak," "threshold,"

and "STDP." In the "idle" state, the SNPC awaits presynaptic spikes; upon arrival, the "down-

117

load" state initiates download spikes. Subsequently, the "accumulation" state weights and sends

spikes to LIF neurons. The "leak" state allows membrane potential leakage, followed by a com-

parison against a threshold in the "threshold" state. If the threshold is exceeded, an output spike

is fired. The "STDP" state activates the learning module. Learning occurs if conditions are met,

prompting a reset to the idle state; otherwise, the SNPC returns to "idle.

Figure 7.3: High-level view of the spiking neuro processing core [6].

NETWORK INTERFACE (NI)

The NI is a crucial component of the SNPC, incorporating the mapping method. Further-

more, the NI supports both single and burst transaction modes for the efficient reading and

writing of weight memory and neuron parameters [6]. Additionally, the NI facilitates commu-

nication between neurons using the on-chip network framework, employing an encoder and de-

coder. On the algorithm side, the NI aligns with the mapping method specified in [5] and [22].

This integration is extended with the introduction of two fault-tolerant mapping methods il-

lustrated in Figure 7.4 and Figure 7.5. These methods are carefully designed considering the

routing mechanism within the router while preserving the mapping methodology proposed in

our previous works. The system in [6] and [19] supports the MigSpike mapping method, lever-

118

7.2. NEURAL TILE

Figure 7.4: A block diagram of the network interface supporting the MigSpike + RSM mapping
method.

Figure 7.5: A block diagram of the network interface supporting the R-MaS3N mapping
method.

119

aging enhanced migration methods and hardware mechanisms for fault-tolerant task migration.

When a fault occurs in a neuron, MigSpike migrates the task to a spare neuron by creating

chains of migrations within a cluster or across the entire system. Despite its effectiveness,

MigSpike has drawbacks, prompting the introduction of the RSM mechanism in the NI ash

shown in Figure 7.4. RSM ensures efficient task migration from faulty neurons to spares, albeit

relying on redundant finite elements. To address this limitation, R-MaS3N was later proposed

and introduced into the NI as shown in Figure 7.5, eliminating the finite resource bottleneck

associated with MigSpike and enhancing the efficiency of task mapping.

7.3 EVALUATION METHODOLOGY

The hardware implementation involved designing the proposed system using Verilog-HDL.

Functional simulation was carried out through ModelSim, Synopsys Design Compiler facil-

itated synthesis, and Cadence Innovus was employed for layout design, utilizing the Open-

RAM [5] and NANGATE 45nm [19] library. The FreePDK3D [6] played a crucial role in

incorporating vertical Through-Silicon-Vias.

7.4 EVALUATION RESULTS

Table 7.1 presents the hardware complexity of the proposed robust reconfigurable archi-

tecture, featuring a network interface currently supporting the MigSpike mapping method in-

tegrated with RSM. As indicated in Table 7.1, the NI incorporating the mapping technique

occupies 15.36% of the tile area and consumes 7% of the proposed system’s power. Figure 7.6

illustrates a sample layout for a 2×2 NoC-based SNN layer with mapping framework support.

Each cluster within the layout comprises 256 spike inputs in AER format, and the crossbar is

implemented using a 256-bank 8-bit dual-port SRAM through OpenRAM. The clock frequency

employed in the design layout is 142MHz. We have kept this value consistent with our previ-

ous assumption in [5] that all 256 neurons in the spiking core spike at an identical rate. This

assumption leads to a scenario where 256 synaptic operations can occur within a single clock

120

7.5. CONCLUSION

cycle.

Table 7.1: Hardware complexity of the proposed robust reconfigurable system.

Module Parameters
Total area (µ m2) Power (mW)

Network interface (EN & DE) 15,445 0.93
Neuron cores(s) 64,576 10.64
3D NoC router 16,786 1.27

∗EN: Encoder, DE: Decoder

Figure 7.6: Hardware physical design layout of the proposed robust reconfigurable neuromor-
phic system for a 2×2 NoC size: (a) Layout (b) Schematic layout comprising 256 neuron logic
cells and 65K synapses for the crossbar.

7.5 CONCLUSION

In conclusion, this chapter provides an overview of the architecture, hardware design, and

assessment of the proposed robust reconfigurable 3D-NoC-based neuromorphic system. The

system capitalizes on fault-tolerant mapping methods inspired by the fault-tolerant techniques

found in the human brain. These methods enhance the efficiency of application mapping, en-

abling effective adaptation to system-wide faults thereby ensuring robust performance even in

the presence of significant faults in the system.

121

8
DISSERTATION SUMMARY AND FUTURE

OUTLOOK

8.1 CONTRIBUTIONS SUMMARY

NEuromorphic systems have demonstrated exceptional performance across various do-

mains. However, ensuring their fault tolerance and ability to recover from errors has

been a significant area of interest. Furthermore, neglecting the reliability concerns can result

in a range of consequences from unreliable neural computation outputs to system-wide failures

thereby posing significant challenges to their practical deployment. To address these concerns,

we have developed neuromorphic algorithms serving two key purposes:

1. Recovery from fault impact in neural computation:

Our first set of algorithms is dedicated to identifying, isolating, and recovering from

faults after neural computation processes. Taking inspiration from the brain’s remark-

able adaptability and recovery capabilities, our proposed methods explore innovative

techniques for fault recovery in spiking neural networks. The first method shares com-

mon goals with established concepts like neuron dropout; however, it distinguishes itself

122

8.1. CONTRIBUTIONS SUMMARY

by adopting a pruning-based approach within an augmented framework. This novel ap-

proach selectively identifies and removes only faulty neurons to facilitate fault recovery.

However, this initial method proved computationally intensive and the classification ac-

curacy of a faulty model after recovery declines as a result of removing multiple faulty

neurons some of which were erroneously identified as faulty. To address these draw-

backs, we introduced a target and selection method that ensures only genuinely faulty

neurons are chosen for removal. This method achieves nearly pre-fault-level classifica-

tion accuracy after recovery in faulty models.

2. Fault-tolerant mapping of neural applications to neuromorphic systems:

Mapping applications onto neuromorphic hardware in neuromorphic computing remains

a challenging task with non-trivial solutions especially when neural circuits within neu-

romorphic systems may suffer from potential faults including high-rate faults. Our sec-

ond set of algorithms focuses on ensuring fault-tolerant mapping of neural applications

onto neuromorphic hardware. Building on our prior work of migration-based mapping

for fault recovery, we incorporate a novel ranking and selection mechanism during the

mapping process to dynamically select faulty neurons. This method ensures the over-

all mapping process is effective even in the presence of high-rate faults. Furthermore,

this enhancement has increased the MTTF of the migration-based mapping on different

NoC sizes by an average of 43%. However, this method relies on redundancies a con-

cept inspired by the robust and fault-tolerant nature of the human brain. It is essential

to acknowledge that when translated into a physical system implementation, these re-

dundancies become a finite resource. Furthermore, as neuromorphic systems continue

to scale to meet growing demands for edge applications, fault tolerance using redundan-

cies necessitates a growing number of redundancies. Furthermore, if redundant resources

are exhausted due to simultaneous fault occurrences, reliability could potentially drop to

zero. To address these challenges, we’ve proposed a robust mapping scheme that relies

on reusing existing neurons based on neural reuse theory for fault tolerance. This ap-

proach not only significantly reduces fault repair or recovery time (71× less compared to

the previous mapping) but also provides better MTTF than the previous mapping method.

123

8.2 FUTURE OUTLOOK

This dissertation makes significant contributions that can extend across various facets of so-

ciety. In the realm of neural computations, particularly in applications such as autonomous ve-

hicles and medical devices, the development of fault recovery methods is indispensable. Given

the potential serious consequences of errors in these domains, ensuring the resilience of neural

computations is paramount. Moreover, the application of fault-tolerant methods emerges as a

critical factor in guaranteeing stability and reliability in the context of industrial automation,

especially within complex manufacturing environments. As edge computing continues to gain

prevalence, the imperative for fault-tolerant methods intensifies, particularly in scenarios with

constrained computational resources. The emphasis on robustness in these settings underscores

the dissertation’s relevance and practical implications in addressing the evolving landscape of

technological applications. While this dissertation has made significant strides in develop-

ing algorithms for robust and reliable neuromorphic computing, several promising avenues for

further research and development can be explored. One noteworthy area of future research

involves the establishment of standardized benchmarks tailored specifically to assess the ro-

bustness and reliability of neuromorphic computing systems. These benchmarks would enable

researchers to rigorously evaluate the effectiveness of fault-tolerant algorithms across diverse

hardware and software configurations. Furthermore, to enhance the credibility and compara-

bility of proposed fault-tolerant algorithms, future work can focus on quantitative evaluations.

This involves assessing the algorithms’ performance against established benchmarks and met-

rics, providing valuable insights into their efficacy in mitigating faults. A critical aspect yet

to be explored is the energy efficiency of fault-tolerant mechanisms in neuromorphic systems.

Investigating the energy overhead associated with fault detection, isolation, and recovery can

inform designers about trade-offs between robustness and energy consumption, paving the way

for more sustainable implementations.

124

List of Publications

MAJOR JOURNALS

1. W. Y. Yerima, O. M. Ikechukwu, K. N. Dang and A. Ben Abdallah, "Fault-Tolerant

Spiking Neural Network Mapping Algorithm and Architecture to 3D-NoC-Based Neu-

romorphic Systems," in IEEE Access, vol. 11, pp. 52429-52443, 2023, doi: 10.1109/AC-

CESS.2023.3278802.

2. W. Y. Yerima, K. N. Dang and A. B. Abdallah, "R-MaS3N: Robust Mapping of Spiking

Neural Networks to 3D-NoC-Based Neuromorphic Systems for Enhanced Reliability,"

in IEEE Access, vol. 11, pp. 94664-94678, 2023, doi: 10.1109/ACCESS.2023.3311031.

MAJOR CONFERENCE(S)

1. W. Y. Yerima, K. N. Dang and A. B. Abdallah, "Fault Recovery in Spiking Neural

Networks Through Target and Selection of Faulty Neurons for 3D Spiking Neuromorphic

Processors," IEEE 6th International Conference on Knowledge Innovation and Invention

(ICKII), Sapporo, Japan, 2023, pp. 136-141, doi: 10.1109/ICKII58656.2023.10332575.

125

Bibliography

[1] A. Mehonic and A. J. Kenyon, “Brain-inspired computing needs a master plan,”
Nature, vol. 604, no. 7905, pp. 255–260, apr 2022. [Online]. Available: https:
//doi.org/10.1038%2Fs41586-021-04362-w

[2] Z. Yi, J. Lian, Q. Liu, H. Zhu, D. Liang, and J. Liu, “Learning rules in spiking neural
networks: A survey,” Neurocomputing, vol. 531, pp. 163–179, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231223001662

[3] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M. Bussat,
R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-
analog-digital multichip system for large-scale neural simulations,” Proceedings of the
IEEE, vol. 102, no. 5, pp. 699–716, 2014.

[4] N. Upadhyay, S. Joshi, and J. J. Yang, “Synaptic electronics and neuromorphic comput-
ing,” Science China Information Sciences, vol. 59, 06 2016.

[5] O. M. Ikechukwu, K. N. Dang, and A. B. Abdallah, “On the design of a fault-tolerant
scalable three dimensional noc-based digital neuromorphic system with on-chip learning,”
IEEE Access, vol. 9, pp. 64 331–64 345, 2021.

[6] A. Ben Abdallah and K. N. Dang, “Toward robust cognitive 3d brain-inspired
cross-paradigm system,” Frontiers in Neuroscience, vol. 15, 2021. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2021.690208

[7] C. Schuman, S. Kulkarni, M. Parsa, J. Mitchell, P. Date, and B. Kay, “Opportunities for
neuromorphic computing algorithms and applications,” Nature Computational Science,
vol. 2, pp. 10–19, 01 2022.

[8] Z. Li, W. Tang, B. Zhang, Y. Rui, and X. Miao, “Emerging memristive neurons for neuro-
morphic computing and sensing,” Science and Technology of Advanced Materials, vol. 24,
03 2023.

[9] Y. Chen, H. H. Li, C. Wu, C. Song, S. Li, C. Min, H.-P. Cheng, W. Wen,
and X. Liu, “Neuromorphic computing’s yesterday, today, and tomorrow – an
evolutional view,” Integration, vol. 61, pp. 49–61, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167926017304674

126

https://doi.org/10.1038%2Fs41586-021-04362-w
https://doi.org/10.1038%2Fs41586-021-04362-w
https://www.sciencedirect.com/science/article/pii/S0925231223001662
https://www.frontiersin.org/articles/10.3389/fnins.2021.690208
https://www.sciencedirect.com/science/article/pii/S0167926017304674

BIBLIOGRAPHY

[10] J. Kim, J. Koo, T. Kim, and J.-J. Kim, “Efficient synapse memory structure for
reconfigurable digital neuromorphic hardware,” Frontiers in Neuroscience, vol. 12, 2018.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/fnins.2018.00829

[11] P. T. Pfeiffer Michael, “Deep learning with spiking neurons: Opportunities
and challenges,” Frontiers in Neuroscience, vol. 12, 2018. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2018.00774

[12] W. Guo, M. E. Fouda, A. M. Eltawil, and K. N. Salama, “Neural coding in spiking
neural networks: A comparative study for robust neuromorphic systems,” Frontiers in
Neuroscience, vol. 15, 2021. [Online]. Available: https://www.frontiersin.org/articles/10.
3389/fnins.2021.638474

[13] K. Yamazaki, V.-K. Vo-Ho, D. Bulsara, and N. Le, “Spiking neural networks and their
applications: A review,” Brain Sciences, vol. 12, no. 7, 2022. [Online]. Available:
https://www.mdpi.com/2076-3425/12/7/863

[14] A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. P. Maguire, and T. McGinnity, “A
review of learning in biologically plausible spiking neural networks,” Neural Networks,
vol. 122, pp. 253–272, 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0893608019303181

[15] Y. Guo, X. Huang, and Z. Ma, “Direct learning-based deep spiking neural
networks: a review,” Frontiers in Neuroscience, vol. 17, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2023.1209795

[16] S. Dora and N. Kasabov, “Spiking neural networks for computational intelligence: An
overview,” Big Data and Cognitive Computing, vol. 5, no. 4, 2021. [Online]. Available:
https://www.mdpi.com/2504-2289/5/4/67

[17] C. D. Schuman, J. Parker Mitchell, J. T. Johnston, M. Parsa, B. Kay, P. Date, and R. M.
Patton, “Resilience and robustness of spiking neural networks for neuromorphic systems,”
in 2020 International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–10.

[18] K. Patel and C. Schuman, “Impact of noisy input on evolved spiking neural networks for
neuromorphic systems,” 04 2023, pp. 52–56.

[19] K. N. Dang, N. A. V. Doan, and A. B. Abdallah, “Migspike: A migration based algo-
rithms and architecture for scalable robust neuromorphic systems,” IEEE Transactions on
Emerging Topics in Computing, vol. 10, no. 2, pp. 602–617, 2022.

[20] J. Timcheck, J. Kadmon, K. Boahen, and S. Ganguli, “Optimal noise level for coding
with tightly balanced networks of spiking neurons in the presence of transmission delays,”
PLoS computational biology, vol. 18, p. e1010593, 10 2022.

[21] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural networks: A review,”
IEEE Access, vol. 5, pp. 17 322–17 341, 2017.

127

https://www.frontiersin.org/articles/10.3389/fnins.2018.00829
https://www.frontiersin.org/articles/10.3389/fnins.2018.00774
https://www.frontiersin.org/articles/10.3389/fnins.2021.638474
https://www.frontiersin.org/articles/10.3389/fnins.2021.638474
https://www.mdpi.com/2076-3425/12/7/863
https://www.sciencedirect.com/science/article/pii/S0893608019303181
https://www.sciencedirect.com/science/article/pii/S0893608019303181
https://www.frontiersin.org/articles/10.3389/fnins.2023.1209795
https://www.mdpi.com/2504-2289/5/4/67

BIBLIOGRAPHY

[22] T. H. Vu, O. M. Ikechukwu, and A. Ben Abdallah, “Fault-tolerant spike routing algorithm
and architecture for three dimensional noc-based neuromorphic systems,” IEEE Access,
vol. 7, pp. 90 436–90 452, 2019.

[23] M. Wolfgang, “Networks of spiking neurons: The third generation of neural network
models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608097000117

[24] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human visual system,”
Nature, vol. 381, pp. 520–2, 07 1996.

[25] E. T. Rolls and M. J. Tovee, “Processing speed in the cerebral cortex and the neurophys-
iology of visual masking,” Proceedings of the Royal Society B: Biological Sciences, vol.
257, no. 1348, pp. 9–15, Jan. 1994.

[26] W. Gerstner, “Time structure of the activity in neural network models.” Physical review.
E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, vol. 51 1, pp.
738–758, 1995. [Online]. Available: https://api.semanticscholar.org/CorpusID:45908006

[27] N. S.R., S. Kulkarni, A. V B, and B. Rajendran, “Building brain-inspired computing
systems: Examining the role of nanoscale devices,” IEEE Nanotechnology Magazine,
vol. 12, pp. 19–35, 09 2018.

[28] S. Ghosh-Dastidar and H. Adeli, “Third generation neural networks: Spiking neural net-
works,” in Advances in Computational Intelligence. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 167–178.

[29] Y. Kim, Y. Li, H. Park, Y. Venkatesha, and P. Panda, “Neural architecture search for
spiking neural networks,” 01 2022.

[30] H. Jang, O. Simeone, B. Gardner, and A. Gruning, “An introduction to probabilistic spik-
ing neural networks: Probabilistic models, learning rules, and applications,” IEEE Signal
Processing Magazine, vol. 36, no. 6, pp. 64–77, 2019.

[31] S. M. Bohte, J. N. Kok, and H. La Poutré, “Error-backpropagation in temporally encoded
networks of spiking neurons,” Neurocomputing, vol. 48, no. 1, pp. 17–37, 2002. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0925231201006580

[32] R. Gütig and H. Sompolinsky, “The tempotron: a neuron that learns spike-timing based
decisions,” Reviews in the neurosciences, vol. 16, pp. S27–S27, 01 2005.

[33] Z. Bing, I. Baumann, Z. Jiang, K. Huang, C. Cai, and A. Knoll, “Supervised
learning in snn via reward-modulated spike-timing-dependent plasticity for a target
reaching vehicle,” Frontiers in Neurorobotics, vol. 13, 2019. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00018

128

https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://api.semanticscholar.org/CorpusID:45908006
https://www.sciencedirect.com/science/article/pii/S0925231201006580
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00018

BIBLIOGRAPHY

[34] T. Wang, Y. Wang, J. Shen, L. Wang, and L. Cao, “Predicting spike features
of hodgkin-huxley-type neurons with simple artificial neural network,” Frontiers in
Computational Neuroscience, vol. 15, 2022. [Online]. Available: https://www.frontiersin.
org/articles/10.3389/fncom.2021.800875

[35] X. Fang, S. Duan, and L. Wang, “Memristive hodgkin-huxley spiking neuron model
for reproducing neuron behaviors,” Frontiers in Neuroscience, vol. 15, 2021. [Online].
Available: https://www.frontiersin.org/articles/10.3389/fnins.2021.730566

[36] M.-O. Gewaltig, Spiking Network Models and Theory: Overview. New York, NY:
Springer New York, 2022, pp. 109–118. [Online]. Available: https://doi.org/10.1007/
978-1-0716-1006-0_792

[37] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida,
“Deep learning in spiking neural networks,” Neural Networks, vol. 111, pp.
47–63, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0893608018303332

[38] M. Johnson and S. Chartier, “Spike neural models (part i): The hodgkin-huxley model,”
The Quantitative Methods for Psychology, vol. 13, pp. 105–119, 02 2017.

[39] C. Tan, M. Šarlija, and N. Kasabov, “Spiking neural networks: Background, recent devel-
opment and the neucube architecture,” Neural Processing Letters, vol. 52, 10 2020.

[40] W. Guo, M. E. Fouda, A. M. Eltawil, and K. N. Salama, “Neural coding in spiking
neural networks: A comparative study for robust neuromorphic systems,” Frontiers in
Neuroscience, vol. 15, 2021. [Online]. Available: https://www.frontiersin.org/articles/10.
3389/fnins.2021.638474

[41] S. Bohte, “The evidence for neural information processing with precise spike-times: A
survey,” Nat. Comput., vol. 3, 06 2004.

[42] S. Park, S. Kim, B. Na, and S. Yoon, “T2fsnn: Deep spiking neural networks with time-
to-first-spike coding,” in 2020 57th ACM/IEEE Design Automation Conference (DAC),
2020, pp. 1–6.

[43] J. Kim, H. Kim, S. Huh, J. Lee, and K. Choi, “Deep neural networks with
weighted spikes,” Neurocomputing, vol. 311, pp. 373–386, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231218306726

[44] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul,
J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A
neuromorphic manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp.
82–99, 2018.

129

https://www.frontiersin.org/articles/10.3389/fncom.2021.800875
https://www.frontiersin.org/articles/10.3389/fncom.2021.800875
https://www.frontiersin.org/articles/10.3389/fnins.2021.730566
https://doi.org/10.1007/978-1-0716-1006-0_792
https://doi.org/10.1007/978-1-0716-1006-0_792
https://www.sciencedirect.com/science/article/pii/S0893608018303332
https://www.sciencedirect.com/science/article/pii/S0893608018303332
https://www.frontiersin.org/articles/10.3389/fnins.2021.638474
https://www.frontiersin.org/articles/10.3389/fnins.2021.638474
https://www.sciencedirect.com/science/article/pii/S0925231218306726

BIBLIOGRAPHY

[45] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,
Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang,
R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “Truenorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp.
1537–1557, 2015.

[46] C. Pehle, S. Billaudelle, B. Cramer, J. Kaiser, K. Schreiber, Y. Stradmann, J. Weis,
A. Leibfried, E. Müller, and J. Schemmel, “The brainscales-2 accelerated neuromorphic
system with hybrid plasticity,” 2022.

[47] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, and A. D.
Brown, “Overview of the spinnaker system architecture,” IEEE Transactions on Comput-
ers, vol. 62, no. 12, pp. 2454–2467, 2013.

[48] S. Moradi and R. Manohar, “The impact of on-chip communication on memory tech-
nologies for neuromorphic systems,” Journal of Physics D: Applied Physics, vol. 52, 10
2018.

[49] G. Indiveri and S.-C. Liu, “Memory and information processing in neuromorphic sys-
tems,” Proceedings of the IEEE, vol. 103, no. 8, pp. 1379–1397, 2015.

[50] S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H.-S. P. Wong, “An electronic synapse device
based on metal oxide resistive switching memory for neuromorphic computation,” IEEE
Transactions on Electron Devices, vol. 58, no. 8, pp. 2729–2737, 2011.

[51] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for
passive nanocrossbar memories,” Nature materials, vol. 9, pp. 403–6, 05 2010.

[52] B. Rajendran and F. Alibart, “Neuromorphic computing based on emerging memory tech-
nologies,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 6,
no. 2, pp. 198–211, 2016.

[53] J. Ding, Z. Yu, Y. Tian, and T. Huang, “Optimal ann-snn conversion for fast and accurate
inference in deep spiking neural networks,” 2021.

[54] H. Gao, J. He, H. Wang, T. Wang, Z. Zhong, J. Yu, Y. Wang, M. Tian, and
C. Shi, “High-accuracy deep ann-to-snn conversion using quantization-aware training
framework and calcium-gated bipolar leaky integrate and fire neuron,” Frontiers in
Neuroscience, vol. 17, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.
3389/fnins.2023.1141701

[55] N.-D. Ho and I.-J. Chang, “TCL: an ANN-to-SNN conversion with trainable clipping
layers,” in 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, dec
2021. [Online]. Available: https://doi.org/10.1109%2Fdac18074.2021.9586266

130

https://www.frontiersin.org/articles/10.3389/fnins.2023.1141701
https://www.frontiersin.org/articles/10.3389/fnins.2023.1141701
https://doi.org/10.1109%2Fdac18074.2021.9586266

BIBLIOGRAPHY

[56] K. S. Ahmed and F. F. Shereif, “Neuromorphic computing between reality and future
needs,” in Neuromorphic Computing, P. Y. Yi and D. H. An, Eds. Rijeka: IntechOpen,
2023, ch. 5. [Online]. Available: https://doi.org/10.5772/intechopen.110097

[57] M. Mahowald, An Analog VLSI System for Stereoscopic Vision. USA: Kluwer Academic
Publishers, 1994.

[58] K. Boahen, “Point-to-point connectivity between neuromorphic chips using address
events,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Pro-
cessing, vol. 47, no. 5, pp. 416–434, 2000.

[59] P. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,
B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser,
R. Appuswamy, B. Taba, A. Amir, M. Flickner, W. P. Risk, R. Manohar, and D. S.
Modha, “A million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, pp. 668 – 673, 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:12706847

[60] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M. Bussat,
R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A mixed-
analog-digital multichip system for large-scale neural simulations,” Proceedings of the
IEEE, vol. 102, no. 5, pp. 699–716, 2014.

[61] V. N. Balaji, P. B. Srinivas, and M. K. Singh, “Neuromorphic advancements architecture
design and its implementations technique,” Materials Today: Proceedings, vol. 51, pp.
850–853, 2022, cMAE’21. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2214785321046587

[62] W. Y. Yerima, O. M. Ikechukwu, K. N. Dang, and A. Ben Abdallah, “Fault-tolerant spik-
ing neural network mapping algorithm and architecture to 3d-noc-based neuromorphic
systems,” IEEE Access, vol. 11, pp. 52 429–52 443, 2023.

[63] W. Y. Yerima, K. N. Dang, and A. B. Abdallah, “R-mas3n: Robust mapping of spiking
neural networks to 3d-noc-based neuromorphic systems for enhanced reliability,” IEEE
Access, pp. 1–1, 2023.

[64] V. Duddu, D. V. Rao, and V. Balas, “Towards enhancing fault tolerance in neural
networks,” in MobiQuitous 2020 - 17th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, ser. MobiQuitous ’20. New
York, NY, USA: Association for Computing Machinery, 2021, p. 59–68. [Online].
Available: https://doi.org/10.1145/3448891.3448936

[65] L.-C. Chu and B. Wah, “Fault tolerant neural networks with hybrid redundancy,” in 1990
IJCNN International Joint Conference on Neural Networks, 1990, pp. 639–649 vol.2.

[66] H. Takase, M. Masahiko, K. Hidehiko, and H. Terumine, “Enhancing both generalization
and fault tolerance of multilayer neural networks,” 09 2007, pp. 1429 – 1433.

131

https://doi.org/10.5772/intechopen.110097
https://api.semanticscholar.org/CorpusID:12706847
https://www.sciencedirect.com/science/article/pii/S2214785321046587
https://www.sciencedirect.com/science/article/pii/S2214785321046587
https://doi.org/10.1145/3448891.3448936

BIBLIOGRAPHY

[67] M. Rastogi, S. Lu, N. Islam, and A. Sengupta, “On the self-repair role of astrocytes
in stdp enabled unsupervised snns,” Frontiers in Neuroscience, vol. 14, 2021. [Online].
Available: https://www.frontiersin.org/articles/10.3389/fnins.2020.603796

[68] K. Rhazali, B. Lussier, W. Schön, and S. Geronimi, “Fault tolerant deep neural
networks for detection of unrecognizable situations,” IFAC-PapersOnLine, vol. 51,
no. 24, pp. 31–37, 2018, 10th IFAC Symposium on Fault Detection, Supervision
and Safety for Technical Processes SAFEPROCESS 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S240589631832216X

[69] V. Sridharan, N. DeBardeleben, S. Blanchard, K. Ferreira, J. Stearley, J. Shalf, and S. Gu-
rumurthi, “Memory errors in modern systems: The good, the bad, and the ugly,” ACM
SIGPLAN Notices, vol. 50, pp. 297–310, 05 2015.

[70] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors in large-scale pro-
duction data centers: Analysis and modeling of new trends from the field,” in 2015 45th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, 2015,
pp. 415–426.

[71] P. V. Bhanu, P. V. Kulkarni, and S. J, “Fault-tolerant network-on-chip design with flexible
spare core placement,” J. Emerg. Technol. Comput. Syst., vol. 15, no. 1, jan 2019.
[Online]. Available: https://doi.org/10.1145/3269983

[72] Y. Nong, H. Cai, P. Ye, L. Li, and F. Chen, “Evaluating and comparing memory
error vulnerability detectors,” Information and Software Technology, vol. 137, p.
106614, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950584921000896

[73] S. Mitra, P. Sanda, and N. Seifert, “Soft errors: Technology trends, system effects, and
protection techniques,” in 13th IEEE International On-Line Testing Symposium (IOLTS
2007), 2007, pp. 4–4.

[74] L. Xiong, Q. Tan, and J. Xu, “Effects of soft error to system reliability,” in 2011 IEEE
Workshops of International Conference on Advanced Information Networking and Appli-
cations, 2011, pp. 204–209.

[75] T. Titirsha, S. Song, A. Das, J. Krichmar, N. Dutt, N. Kandasamy, and F. Catthoor,
“Endurance-aware mapping of spiking neural networks to neuromorphic hardware,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 2, pp. 288–301, 2022.

[76] C. Xiao, Y. Wang, J. Chen, and L. Wang, “Topology-aware mapping of spiking neural
network to neuromorphic processor,” Electronics, vol. 11, no. 18, 2022. [Online].
Available: https://www.mdpi.com/2079-9292/11/18/2867

[77] A. Balaji, A. Das, Y. Wu, K. Huynh, F. G. Dell’Anna, G. Indiveri, J. L. Krichmar, N. D.
Dutt, S. Schaafsma, and F. Catthoor, “Mapping spiking neural networks to neuromorphic
hardware,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28,
no. 1, pp. 76–86, 2020.

132

https://www.frontiersin.org/articles/10.3389/fnins.2020.603796
https://www.sciencedirect.com/science/article/pii/S240589631832216X
https://doi.org/10.1145/3269983
https://www.sciencedirect.com/science/article/pii/S0950584921000896
https://www.sciencedirect.com/science/article/pii/S0950584921000896
https://www.mdpi.com/2079-9292/11/18/2867

BIBLIOGRAPHY

[78] O. Jin, Q. Xing, Y. Li, S. Deng, S. He, and G. Pan, “Mapping very large scale spiking
neuron network to neuromorphic hardware,” ser. ASPLOS 2023. New York, NY,
USA: Association for Computing Machinery, 2023, p. 419–432. [Online]. Available:
https://doi.org/10.1145/3582016.3582038

[79] L. Wang, P. Lv, L. Liu, J. Han, H.-F. Leung, X. Wang, S. Yin, S. Wei, and T. Mak, “A
lifetime reliability-constrained runtime mapping for throughput optimization in many-
core systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 9, pp. 1771–1784, 2019.

[80] A. Balaji, T. Marty, A. Das, and F. Catthoor, “Run-time mapping of spiking neural net-
works to neuromorphic hardware,” Journal of Signal Processing Systems, vol. 92, 11
2020.

[81] Q. Xu, S. Chen, H. Geng, B. Yuan, B. Yu, F. Wu, and Z. Huang, “Fault tolerance in
memristive crossbar-based neuromorphic computing systems,” Integr. VLSI J., vol. 70,
no. C, p. 70–79, jan 2020. [Online]. Available: https://doi.org/10.1016/j.vlsi.2019.09.008

[82] A. Gebregirogis and M. Tahoori, “Approximate learning and fault-tolerant mapping
for energy-efficient neuromorphic systems,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 26, no. 3, dec 2021. [Online]. Available: https://doi.org/10.1145/3436491

[83] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and A. C. Knoll, “A survey of robotics
control based on learning-inspired spiking neural networks,” Frontiers in Neurorobotics,
vol. 12, 2018. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnbot.
2018.00035

[84] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello, and
E. Beigne, “Spiking neural networks hardware implementations and challenges: A
survey,” J. Emerg. Technol. Comput. Syst., vol. 15, no. 2, apr 2019. [Online]. Available:
https://doi.org/10.1145/3304103

[85] E. Ledinauskas, J. Ruseckas, A. Juršėnas, and G. Buračas, “Training deep spiking neural
networks,” 2020.

[86] J. K. Eshraghian, M. Ward, E. O. Neftci, X. Wang, G. Lenz, G. Dwivedi, M. Bennamoun,
D. S. Jeong, and W. D. Lu, “Training spiking neural networks using lessons from deep
learning,” Proceedings of the IEEE, pp. 1–39, 2023.

[87] A. Siddique and K. A. Hoque, “Improving reliability of spiking neural networks through
fault aware threshold voltage optimization,” 2023.

[88] G. Yuan, Z. Liao, X. Ma, Y. Cai, Z. Kong, X. Shen, J. Fu, Z. Li, C. Zhang, H. Peng, N. Liu,
A. Ren, J. Wang, and Y. Wang, “Improving dnn fault tolerance using weight pruning
and differential crossbar mapping for reram-based edge ai,” in 2021 22nd International
Symposium on Quality Electronic Design (ISQED), 2021, pp. 135–141.

133

https://doi.org/10.1145/3582016.3582038
https://doi.org/10.1016/j.vlsi.2019.09.008
https://doi.org/10.1145/3436491
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00035
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00035
https://doi.org/10.1145/3304103

BIBLIOGRAPHY

[89] T. Horita, I. Takanami, and M. Mori, “Learning algorithms which make multilayer
neural networks multiple-weight-and-neuron-fault tolerant,” IEICE - Trans. Inf.
Syst., vol. E91-D, no. 4, p. 1168–1175, apr 2008. [Online]. Available: https:
//doi.org/10.1093/ietisy/e91-d.4.1168

[90] W. Guo, H. E. Yantır, M. E. Fouda, A. M. Eltawil, and K. N. Salama, “Towards efficient
neuromorphic hardware: Unsupervised adaptive neuron pruning,” Electronics, vol. 9,
no. 7, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/7/1059

[91] E. Rahiminejad, F. Azad, A. Parvizi-Fard, M. Amiri, and B. Linares-Barranco, “A neuro-
morphic cmos circuit with self-repairing capability,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 33, no. 5, pp. 2246–2258, 2022.

[92] J. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye, B. Rajendran, J. A.
Tierno, L. Chang, D. S. Modha, and D. J. Friedman, “A 45nm cmos neuromorphic chip
with a scalable architecture for learning in networks of spiking neurons,” in 2011 IEEE
Custom Integrated Circuits Conference (CICC), Sep. 2011, pp. 1–4.

[93] D. J. Eckman and S. G. Henderson, “Reusing search data in ranking and selection: What
could possibly go wrong?” ACM Trans. Model. Comput. Simul., vol. 28, no. 3, jul 2018.
[Online]. Available: https://doi.org/10.1145/3170503

[94] T. Zheng and N. Beier, “Increasing transparency and accessibility of a slurry consolidation
model in goldsim,” 10 2022.

[95] A. Komey, Q. Deng, G. Baecher, P. Zielinski, and T. Atkinson, “Systems reliability of
flow control in dam safety,” 07 2015.

[96] . H. Y.-S. Lee, Youn-Myoung, “A comparative study between goldsim and amber based
biosphere assessment models for an hlw repository.” Proceedings of the KNS autumn
meeting, (pp. 1CD-ROM). Korea, Republic of KNS, 07 2007.

[97] O. Köpüklü, M. Babaee, S. Hörmann, and G. Rigoll, “Convolutional neural networks with
layer reuse,” in 2019 IEEE International Conference on Image Processing (ICIP), 2019,
pp. 345–349.

134

https://doi.org/10.1093/ietisy/e91-d.4.1168
https://doi.org/10.1093/ietisy/e91-d.4.1168
https://www.mdpi.com/2079-9292/9/7/1059
https://doi.org/10.1145/3170503

