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Abstract

Generating a description of an image is called image captioning. Image caption-
ing is challenging because it involves understanding the main objects, their attributes
and their relationships in an image. It also generates syntactically and semantically
meaningful descriptions of the images in natural language. A typical image captioning
pipeline comprises an image encoder and a language decoder. Convolutional neural
networks (CNNs) are widely used as encoders, while long short-term memory (LSTM)
networks are used as decoders. Various LSTMs and CNNs are used to generate mean-
ingful and accurate captions. Traditional image captioning techniques have limitations
in generating semantically meaningful and superior captions. With the appearance of
transformer-based techniques, more and more large-scale models received better per-
formance with higher computational resource requirements.

In this research, we focus on keeping the balance between performance and cost of
image captioning, which can meet the needs of real-world mobile applications. This
dissertation summarises our research in image captioning and proposes novel encoder-
decoder models and a size-adjustable convolutional module (SACM) for feature dimen-
sion reduction for real-time image captioning.

In Chapter 3, we first introduced a novel end-to-end image captioning model archi-
tecture that combines a Darknet-based feature extractor with an LSTM-based caption
generator. Unlike existing models that rely on pre-trained CNNs as intermediaries, the
end-to-end image captioning model utilizes carefully designed feature extractors and
caption generators to enhance caption quality. Our model allows a direct path from raw
images to generated captions, simplifying the process. Empirical research supports the
model’s outstanding performance, and its low parameter requirements and efficiency
make it well-suited for various practical applications. This chapter proved the effective-
ness of convolutional-layer feature dimension reduction in image captioning.

Continuously, Chapter 4 focuses on striking a harmonious balance between per-
formance and computational cost based on the Darknet-based model. We propose in-
corporating a size-adjustable convolutional module (SACM) as an intermediary step
before decoding these features into coherent sentences. SACM is a size-adjustable con-
volutional module that consists of several convolutional layers for feature extraction
and a few additional convolutional layers for dimension reduction. Increasing and de-
creasing the convolutional layers for dimension reduction can maintain the balance of
performance and cost. The SACM can reduce feature dimension directly for sending
to LSTM for caption generation. The SACM performs as a pipeline connecting the en-
coder and decoder to reduce feature dimensions, saving time and computational costs.
After passing through SACM, the dimension-reduced feature maps go through LSTM
to generate captions for the provided images.

The experimental results demonstrate the effectiveness of our approach. With the
appropriately configured SACM, our model achieves remarkable performance on stan-



dard image captioning benchmarks. Leveraging a pre-trained object detection model
and the size-adjustable convolutional module, our method demonstrates outstanding re-
sults on benchmark datasets while reducing the computational overhead substantially
compared to existing approaches.

Lastly, in Chapter 5, we introduced a novel image captioning model that combines
a vision transformer and LSTM, emphasizing its unique approach and real-time ap-
plicability while providing insights into its performance compared to established vision
models. This approach represents an innovative departure from existing methods, which
typically involve encoding and decoding stages. Importantly, this research marks the
first utilization of the vision transformer method in image caption generation. Further-
more, we applied the convolutional layer for feature dimension reduction to emphasize
the practicality of real-time image caption generation.

xiv



Chapter 1

Introduction

1.1 Image Captioning

Images are familiar in our daily lives, whether on the internet, in the news, or adver-

tisements. Unlike pictures in articles and TV programs, most photos don’t come with

captions. While many people can easily understand images without captions, visually

impaired individuals may need assistance comprehending them. Machine learning tools

can help solve this issue by automatically interpreting photos, videos, and other media.

However, machines must first understand its semantics and context to provide a

textual description of an image. For a long time, the goal of artificial intelligence (AI)

has been to enable machines to see, understand, and describe the images around us [5].

Social media platforms like Facebook and Twitter can generate image descriptions that

provide details such as the location, attire, and activities of the individuals in the image

[6].

Image captioning is a complex problem in Artificial Intelligence that connects com-

puter vision with natural language processing. It involves the understanding and de-

scription of the image’s semantics, including the main objects, their attributes, poses,

and interactions. Moreover, it requires inferring the underlying semantic meanings to

generate captions [7, 8].

In the public image captioning dataset, Flickr 8K [1], several pictures with captions
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(a) A small, pale bird bends
down to examine a crumb.

(b) Three women dressed up
in green and shamrocks.

(c) A man in red swim trunks
jumps onto a bodyboard.

Figure 1.1: Examples of a few images with sample captions from the Flickr 8K dataset
[1].

are provided, as shown in Figure 1.1. ”A small, pale bird bends down to examine a

crumb.”, ”Three women dressed up in green and shamrocks.” and ”A man in red swim

trunks jumps onto a bodyboard.” correspond to the images in Figure 1.1a, 1.1b and

1.1c, respectively. Image captioning can be used for various applications, including

human-robot interaction, text-based image retrieval, and other similar tasks.

Image captioning is a crucial area of research involving automatically generating

captions for images. This process requires both image understanding and language

description generation. Image understanding is a fundamental problem of Computer

Vision (CV), while language description generation is a part of Natural Language Pro-

cessing (NLP) [9]. A typical image captioning framework comprises an image encoder

that learns features from the image and a language decoder that generates captions for

the image.

1.1.1 Image Understanding

Computer Vision (CV) refers to the ability of machines to perceive and compre-

hend items in an image. It encompasses various techniques to extract the necessary

information from images. Much research is conducted in CV research, particularly in

visual recognition and understanding. Visual recognition involves the identification,

localization, and classification of objects present in an image.

Visual understanding requires object recognition and extracting the complete detail

of the individual object and its associated relationship. The image captioning model

2



1.1. IMAGE CAPTIONING

(a) An image of multiple objects: Car,
Trunk and Aeroplane.

(b) An image of different items in the of-
fice: Person, Book, Cup, Cellphone, Chair,
and Keyboard.

Figure 1.2: Image understanding

should correctly recognize multiple objects and their position relationship. Figure 1.2

shows a few examples of image understanding. Figure 1.2a has three main entities:

car, trunk and aeroplane, and Figure 1.2b contains different items in the office or cafe,

including person, book, cup, cellphone, chair and keyboard.

Feature extraction is a crucial aspect in object detection tasks. An object can possess

multiple features rather than just one attribute. For instance, popular choices include

colours, contour lines, and geometric lines or edges (gradient of pixel intensities) [10].

There are two types of feature-extracting methods: hand-crafted and learned meth-

ods. Hand-crafted methods include Local Binary Pattern (LBP) [11], Histogram of

Oriented Gradients (HOG) [12], scale-invariant Feature Transform (SIFT) [13], and a

combination of them. These techniques extract features from input data, but real-world

image data is complex, redundant, and highly variable. Objects can appear differently

from image to image, making hand-crafted features less robust and more computation-

ally intensive. Therefore, extracting hand-crafted features from large and complex sets

of images is not feasible.

In deep learning-based techniques, feature extraction methods are automatically

learned. Convolutional Neural Networks (CNNs) are deep neural network architectures

designed for working on images, videos, sound spectrograms in speech processing,

character sequences in text, and so on [14,15]. Compared to hand-crafted features-based

techniques, CNNs have made tasks much easier by automating the feature extraction

process. With good accuracy levels, these networks can distinguish visual categories.

3



These advancements are now widely used in face detection and recognition, personal

photo search, perception in robotics, self-driving cars, and other related fields [16].

Convolutional neural networks comprise one or more convolutional layers, followed

by one or more fully connected layers. This architecture divides the lower layer into

small regions known as receptive fields. Each receptive field is then mapped with the

neurons of the upper layers to extract features. Below are some of the most popular

CNN architectures:

LeCun Yann developed the first CNN architecture to identify handwritten digits

provided by the U.S. Postal Service, LeNet, in the 1990s [14]. Alex Krizhevsky, Ilya

Sutskever and Geoff Hinton developed AlexNet in 2012. Unlike the LeNet, AlexNet

is more profound and extensive, with eight layers [17]. Szegedy et al. expanded

GoogLeNet by adding an inception module to help reduce the number of parameters

in the network [18]. Karen Simonyan and Andrew Zisserman grew the VGGNet with

16 convolutional layers and three fully connected layers [2]. The depth of the network

is the main component for better performance. Instead of the 11⇥ 11, 7⇥ 7 and 5⇥ 5

convolutions in AlexNet, the VGGNet performs 3 ⇥ 3 convolutions and 2 ⇥ 2 pooling

from the beginning to the end.

Pooling is used to preserve more task-related information, compact representations,

and robustness to noise and clutter [19]. They alleviate the problem of over-fitting.

Then, an activation function produces a non-linear decision boundary from linear com-

binations of the weighted input [20]. Several pooling functions, such as max pool-

ing [21], average pooling [22], and k-max pooling [15], are commonly used at the

pooling stage.

He et al. developed ResNet [23], which features unique skip connections and heavy

use of batch normalization. This network is also missing fully connected layers at

the end of the network. In DenseNet, each layer connects with every other layer in the

model in a feed-forward manner [24]. Therefore, L layers of DenseNet have L(L+1)/2

direct connections. As a result, the feature map of all preceding layers is input to the

current layer, and its feature maps are used as inputs to all subsequent layers.

4



1.1. IMAGE CAPTIONING

1.1.2 Natural Language Processing

Generating text from an NLP standpoint involves a series of steps. The first step is

content selection, where we identify the key elements of the input. The next step is text

planning, where we organize the content. Finally, we move on to surface realization,

which involves verbalizing the content. This requires tokenization, which means choos-

ing the appropriate words, generating referential expressions using applicable pronouns,

and combining related information through aggregation [25].

Recurrent Neural Network (RNN) [26] and Long Short-Term Memory (LSTM) [27]

are two popular deep learning-based language models that have shown outstanding

performances in many natural language processing tasks, including image caption-

ing [28–32]. In image captioning, image features extracted from a CNN encoder are

given as input to RNN or LSTM for decoding. The decoder predicts the probability of

each word given the previous comments.

LSTM networks are a type of RNN that has special units in addition to standard

units. LSTM units can actively maintain self-connecting loops involving an additional

memory output. Thus, they can retain information in memory for long periods. Sim-

ilarly, the Gated Recurrent Unit (GRU) used fewer gates to control the flow of infor-

mation and remove the separate memory cells [33]. Furthermore, Bi-directional LSTM

(Bi-LSTM) [34] computes information in both forward and backward directions. They

combine the information using two hidden states and can preserve both past and future

contexts.

CNNs can learn the internal hierarchical structure of the sentences, and they are

faster in processing than LSTMs. Therefore, convolutional architectures have recently

been used in other sequence-to-sequence tasks, such as conditional image generation

[35] and machine translation [36–38].

Since the attention appeared, it has remarkably improved over encoder decoder-

based NLP tasks [39–41]. Attention mechanisms such as soft attention [32] and hard

attention [32] have also been used in image captioning methods [32, 42, 43]. In these

methods, attention mechanisms can dynamically focus on the relevant parts of the image

5



(a) Caption 1: Dog.
Caption 2: Black dog on the
grass.

(b) Caption 1: Book.
Caption 2: Book holding in
hand.

(c) Caption 1: Car.
Caption 2: Tilted car.

Figure 1.3: Semantic Understanding

while the output sequences are being produced.

1.2 Main Research Challenge in Image Captioning

Deep Learning-based techniques, specifically CNNs, have contributed substantially

to image understanding. However, correct and precise recognition of objects in an im-

age is one of the crucial requirements of image understanding. Despite comprehensive

research in this area, accurate and precise recognition of multiple things is still a chal-

lenging problem [44].

Most existing image captioning models, including deep learning-based techniques,

only focus on the factual description of an image. During feature learning, these meth-

ods compress the entire scene into a fixed vector representation. As a result, they often

lose the information on relevant objects in the set [31, 32].

Image captioning is still challenging because it requires understanding the objects

and attributes and inferring the underlying semantic information [45]. Figure 1.3 shows

several examples of semantic knowledge. ”Black dog on the grass” is semantically more

meaningful than only ”Dog” in Figure 1.3a. Similarly, ”Book holding in hand” and

”Tilted car” are semantically correct and meaningful for Figure 1.3b and Figure 1.3c,

respectively. The context of the relationship between objects of an image plays a sig-

nificant role in semantic understanding. A suitable context estimation can reduce the

semantic gap between visual appearance and appropriate textual description of the im-

age [46].
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1.3. STRUCTURE OF THESIS

Figure 1.4: Structure of Thesis

Existing image captioning techniques use human-annotated authentic images for

training and texting, which involve an expansive and time-consuming process. More-

over, much content, including images, is generated automatically, e.g., for news, illus-

tration, artwork, promotion, human-computer interaction, and augmented reality. There

is a need to use these generated or synthetic images for training and texting image cap-

tioning methods. There is also a need to create captions for the given photos.

1.3 Structure of Thesis

The thesis is mainly divided into seven chapters. The first chapter is the Intro-

duction, which provides preliminary information on image captioning and its related

research, image understanding, and natural language processing. Chapter 2 includes a

literature review of image captioning and a relative preliminary knowledge introduc-

tion. Chapters 3, 4, and 5 are novel contributions to this thesis. Each of these chapters

contains an introduction and detailed experiments. Finally, I conclude this dissertation
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in Chapter 6.

1.4 Motivations

Given the overview and the research challenges of Sections 1.1 and 1.2, we have the

following aims and objectives in this thesis:

• To train a model for high-quality image caption generation, which incorporates

correct and relevant object information.

• Reducing the feature dimension to meet the limitation of computational resources

for real-time generation.

• To select more valuable features of images for generating descriptions with cor-

rect segmentation information.

Two main motivations that inspired us and will be reflected in this dissertation.

Motivation #1: It is essential to design an image captioning model that is accu-

rate and affordable (reduces trainable parameters) in the mobile-level computa-

tional device.

If we take a brief look at the literature review of image captioning and state-of-the-

art practices in the deep learning-based image captioning task, we can realize that:

• Scaling up the SOTA image captioning model architecture will give superior im-

age captioning performance, provided we have a proportional amount of training

data and powerful hardware to train on them.

• Image captioning through feature extractors pre-trained for object recognition can

produce highly accurate neural networks. However, such large-scale models are

expensive procedures and can take days to train, even with a moderate amount of

GPUs.

• As we aim to design a mobile device-oriented model for blind people, how to

maintain performance and speed is one of the most crucial issues. Thus, our fi-

nal goal is to design a mobile-device-oriented image captioning model that can
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1.5. MAIN CONTRIBUTIONS

achieve performance comparable to the SOTA model practices while keeping

computational and time costs in the training and testing phases.

Motivation #2: Although CV and NLP received high performance for several

years, their combination’s performance for image captioning is still sparse and has

plenty of improvement opportunities. As a result, we aim to contribute a complete

framework for image captioning with the help of the CNN feature extractor. We

also shed light on several practical and potential research issues and opportunities

for image captioning.

The first image captioning model appeared in the literature titled Show and Tell:

A Neural Image Caption Generator [31] for automatic image caption generation. The

paper introduces an end-to-end neural network model that uses a CNN for image fea-

ture extraction and then feeds these features into an RNN to generate natural language

descriptions associated with the images. Later, many image captioning models were

proposed for the image captioning task and received SOTA performance.

This dissertation is approached to continue and overcome the sparsity of practice

in image captioning tasks by implementing a complete framework based on the SOTA

practices.

1.5 Main Contributions

This dissertation reports my three-year research on Keeping the Balance Between

Performance and Computational Cost for Image Captioning. Chapter 2 summarises

the literature review of image captioning. Chapters 3, 4 and 5 present our novel re-

search works and experimental results. Chapter 3 first introduced our novel end-to-end

image captioning model based on reduced feature maps for image captioning. Chap-

ter 4 proposed a Darknet-based model with a Size-Adjusted Convolutional Module for

feature dimension reduction to balance the performance and computational costs of

image captioning. Chapter 5 introduced a Vision Transformer-Based image caption-

ing model. Furthermore, considering the analysis of large-scale feature maps requires

9



much more computational cost, we proposed a model with feature dimension reduc-

tion. Finally, Chapter 6 includes several supplementary experiments that can guide us

to both promising directions and directions to avoid. Our contributions to each chapter

are summarized below:

1.5.1 Chapter 2

This chapter proposes a literature review of existing image captioning methods,

including template-based image captioning, retrieval-based image captioning and deep

learning-based caption generation. In addition, we introduced the related preliminary

knowledge for our proposed methods, such as encoder-decoder architecture, VGGNet,

Darknet, Vision Transformer and LSTM.

1.5.2 Chapter 3

Following the previous research, this chapter introduced a novel encoder-decoder

model for image captioning tasks. The summary of contributions of this chapter is as

follows:

• This chapter proposed a novel end-to-end image captioning model architecture

that combines a Darknet-based feature extractor with an LSTM-based caption

generator. Unlike existing models that rely on pre-trained CNNs as intermedi-

aries, our model allows for a direct path from raw images to generated captions,

simplifying the overall process.

• By training the entire model jointly, we ensured a closer alignment between the

image feature extractor and the caption generator, resulting in image features bet-

ter suited for the caption generation task. This approach enhances the quality and

accuracy of the generated captions.

• Our model is designed with a low parameter configuration, making it highly suit-

able for resource-constrained environments. Given its reduced computational and
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prediction time overhead, its efficiency is particularly advantageous for caption

generation on mobile devices.

• Extensive empirical research and theoretical analysis were conducted on the Flickr

8K dataset, substantiating the effectiveness and efficiency of our proposed model.

Furthermore, we conducted a comprehensive performance evaluation, comparing

our model with baseline approaches and existing methods, highlighting its com-

petitive advantages.

1.5.3 Chapter 4

The Darknet-based image captioning model in Chapter 2 achieved comparable per-

formance by end-to-end training and feature dimension reduction. It proves the con-

volutional layer does work on keeping performance and cost balance by reducing the

feature dimension. One simple question we try to address in Chapter 3 is: what size of

reduced feature dimension fits our proposed model better?

The chapter thus performs research on this question through the following contribu-

tions.

• To address this challenge, the chapter introduces an innovative strategy—leveraging

a deep learning model pre-trained for object detection to encode input images.

This approach efficiently extracts features representing various objects within the

image, streamlining the generating of captions. In addition, we reduced feature

dimension by convolutional layer for losing less image information.

• Another critical innovation is integrating a size-adjustable convolutional module

(SACM) before decoding image features into coherent sentences. SACM pro-

vides flexibility and adaptability in handling different types of images and im-

proves the overall captioning performance.
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1.5.4 Chapter 5

It is too difficult for blind people to live in this world to live much more comfortably.

Helping them see the world more clearly is an exciting and vital task. Image caption-

ing is a machine learning task of automatically generating a descriptive statement for

the given image by combining image and natural language processing. The existing

approaches divided the whole processing into encoding and decoding. This paper pro-

posed a new idea captioning model based on a vision transformer and LSTM, which

was compared with some other backbone vision models, such as VGGNet, YOLO, and

so on. As we want to use it for real-time generation, the proposed and existing mod-

els are compared on both the BLEU score and training and testing time. Moreover,

this is the first time the vision transformer method has been used on an image caption

generation task.

Chapters 3 and 4 prove that the convolutional layer helps reduce feature dimension

based on our proposed architecture. Chapter 5 proposed a more efficient and practical

object recognition model, Vision Transformer, as the encoder and the convolutional

dimension reduction module enhance the performance.

The contribution of Chapter 5 can be summarized as follows.

• The text highlights the significant challenges faced by blind individuals in nav-

igating the world and underscores the importance of developing technologies to

help them better understand their surroundings. It emphasizes the importance

of image captioning as a machine-learning task that can bridge the gap between

visual information and natural language processing.

• The paper introduces a new image captioning model that combines the power

of a vision transformer and LSTM. This approach represents an innovative de-

parture from existing methods, which typically involve encoding and decoding

stages. Importantly, this research marks the first utilization of the vision trans-

former method in image caption generation.

• The study evaluates the proposed model against backbone vision models like VG-
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GNet and YOLO. Furthermore, it emphasizes the practicality of real-time image

caption generation and, as a result, assesses the proposed and existing models in

terms of BLEU scores and training/testing time. This holistic evaluation aims

to determine the model’s effectiveness for real-world applications, particularly

in providing visually impaired individuals with immediate, contextually relevant

information about their surroundings.

In contrast, the image captioning model proposed in each chapter is the successor

of the previous chapter with several incremental improvements, such as better metrics

and computational efficiency.
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Chapter 2

Literature Review and Preliminary

Knowledge

This chapter proposes a literature review of existing image captioning methods,

including template-based image captioning, retrieval-based image captioning and deep

learning-based caption generation. In addition, we introduced the related preliminary

knowledge for our proposed methods, such as encoder-decoder architecture, VGGNet,

Darknet, Vision Transformer and LSTM.

2.1 Literature Review

Image captioning is a popular research area of Artificial Intelligence (AI) that deals

with image understanding and a language description for that image. Image under-

standing needs to detect and recognize objects. It also needs to understand scene type

and location, object properties and their interactions. Generating well-formed sentences

requires a syntactic and semantic understanding of the language [31].

Template-based approaches have fixed templates with several blank slots to generate

captions. In these methods, different objects, attributes, and actions are detected first,

and then the blank spaces in the templates are filled. For example, Farhadi et al. [47]

use a triplet of scene elements to fill the template slots for generating image captions.

Li et al. extract the phrases related to detected objects, attributes and their relationships
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2.1. LITERATURE REVIEW

for this purpose [48]. Kulkarni et al. proposed a Conditional Random Field (CRF) to

infer the objects, attributes, and prepositions before filling in the gaps [49]. Template-

based methods can generate grammatically correct captions. However, templates are

predefined and cannot generate variable-length captions. Moreover, parsing-based lan-

guage models were introduced in image captioning [50–54], which are more powerful

than fixed template-based methods. Therefore, this chapter does not focus on these

template-based methods.

Captions can be retrieved from visual space and multimodal space. In retrieval-

based approaches, captions are retrieved from a set of existing captions. Retrieval-based

methods first find visually similar images with their captions from the training dataset.

These captions are called candidate captions. The captions for the query image are

selected from these captions poll [55–58]. These methods produce general and syntac-

tically correct captions. However, they cannot generate image-specific and semantically

correct captions.

In deep machine learning-based techniques, features are learned automatically from

training data, and they can handle a large and diverse set of images and videos. For

example, CNNs are widely used for feature learning, and a classifier such as softmax is

used for classification. RNN generally follows CNN to generate captions.

Novel captions can be generated from both visual space and multimodal space. A

general approach of this category is to analyze the visual content of the image first

and then generate image captions from the visual content using a language model

[32, 43, 59, 60]. These methods can generate new captions for each semantically more

accurate image than previous approaches. Most novel caption generation methods

use deep machine learning-based techniques. Thus, deep learning-based novel image

caption-generating methods are our main focus in this chapter.

Figure 2.1 shows an overall taxonomy of deep learning-based image captioning

methods. The figure illustrates the comparisons of different categories of image cap-

tioning methods. Deep learning-based methods mostly use visual space and multiple

space-based methods. Most public datasets, such as Flickr and MSCOCO datasets, have
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2.1. LITERATURE REVIEW

the corresponding captions as text. In the visual space-based methods, the image fea-

tures and the corresponding captions are independently input to the language decoder.

In contrast, a multimodal space-based model learns a shared multimode space from the

images and the corresponding caption text. This multimodal representation is then in-

put to the language decoder. Deep learning-based image captioning methods can also

be categorised by learning techniques: supervised learning, reinforcement learning and

unsupervised learning.

Generally speaking, captions are generated for a whole scene in the image. How-

ever, captions can also be generated for different regions of an image (Dense cap-

tioning). Image captioning methods can use either simple encoder-decoder architec-

ture or compositional architecture. Most of such methods use LSTM as a language

model. However, many methods use other language models such as CNN, RNN and

transformer-based decoders.

Deep learning-based image captioning methods can generate captions from visual

and multimodal spaces. Public image captioning datasets have the corresponding cap-

tions as text. In the visual space-based methods, the image features and the correspond-

ing captions are independently passed to the language decoder. In contrast, a shared

multimodal space is learned from the images and the corresponding caption text in a

multimodal space case. This multimodal representation is then passed to the language

decoder.

2.1.1 Multimodal Space-Based Methods

Initially, Kiros et al. proposed an image captioning model with a CNN for extracting

image features [59]. It used a multimodal space that jointly represents image and text for

multimodal representation learning and image caption generation. It also introduces the

multimodal neural language models such as the Modality-Biased Log-Bilinear Model

(MLBL-B) and the Factored 3-way Log-Bilinear Model (MLBL-F) of reference [61]

followed by AlexNet [17]. Unlike most previous approaches, this method does not

rely on additional templates, structures, or constraints. Instead, it depends on the high-
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level image features and word representations learned from deep neural networks and

multimodal neural language models. The neural language models have limitations in

handling a large amount of data and are inefficient in working with long-term memory

[62].

Kiros et al. extended their work by learning a joint image sentence embedding

where LSTM is used for sentence encoding and a new neural language model called the

structure-content neural language model (SC-NLM) is used for image captions genera-

tions [63]. The SC-NLM has an advantage over existing methods in that it can extricate

the structure of the sentence to its content produced by the encoder. It also helps them

to achieve significant improvements in generating realistic image captions.

Karpathy et al. proposed a deep, multimodal model, embedding image and natural

language data for bidirectional images and sentence retrieval tasks [64]. The previous

multimodal-based methods use a common embedding space that directly maps images

and sentences. However, this method works at a finer level and embeds fragments of

images and fragments of sentences. This method breaks down the images into several

objects and sentences into dependency tree relations (DTR) [65] and reasons about their

latent, inter-modal alignment. It shows that the method achieves significant improve-

ments in the retrieval task compared to the previous methods.

However, this method has a few limitations as well. Regarding modelling, the de-

pendency tree can model relations easily, but they are not always appropriate. For ex-

ample, a single visual entity might be described by a single complex phrase that can be

split into multiple sentence fragments. The phrase ”black and white dog” can be formed

into two relations conjunct (CONJ, white and black) and adjectival modifier (AMOD,

white and dog).

Mao et al. proposed a multimodal Recurrent Neural Network (m-RNN) method for

generating novel image captions [66]. This method has two sub-networks: a deep CNN

for images and a deep RNN for sentences. These sub-networks interact with each other

in a multimodal layer to form the whole m-RNN model. Both images and fragments

of sentences are given as input in this method. It calculates the probability distribution
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2.1. LITERATURE REVIEW

to generate the next word of captions. This model has five more layers: Two-word

embedding layers, a recurrent layer, a multimodal layer and a softmax layer.

In addition, Kiros et al. proposed a method built on a Log-Bilinear model and used

AlexNet to extract visual features. This multimodal recurrent neural network method

is closely related to the method of Kiros et al. The authors use a fixed-length context,

whereas, in this method, the temporal context is stored in a recurrent architecture, which

allows an arbitrary context length. The two word-embedding layers use one hot vector

to generate a dense word representation. It encodes both the syntactic and semantic

meanings of the words. The semantically relevant words can be found by calculating

the Euclidean distance between two dense word vectors in embedding layers.

Most sentence-image multimodal methods [59, 64, 67, 68] use pre-computed word

embedding layers and learn them from the training data. This helps them to generate

better image captions than the previous methods. Many image captioning methods

[63,64,69] are built on recurrent neural networks at the contemporary time steps. They

use a recurrent layer for storing visual information. However, m-RNN uses both image

representations and sentence fragments to generate captions. It utilizes the capacity of

the current layer more efficiently, which helps to achieve a better performance using a

relatively small dimensional recurrent layer.

Chen et al. proposed another multimodal space-based image captioning method.

The method can generate novel captions from images and restore visual features from

the description. It also can describe a bidirectional mapping between images and their

captions. Many existing methods [56, 64, 68] use joint embedding to generate image

captions. However, they do not use reverse projection that can generate visual features

from captions. On the other hand, this method dynamically updates the visual repre-

sentations of the image from the generated word. It has an additional recurrent visual

hidden layer with RNN that makes reverse projection.

19



2.1.2 Visual Space-Based Methods

As shown in Figure 2.1, deep learning-based image captioning can be categorized

into supervised learning, unsupervised learning and reinforcement learning in terms of

the type of learning. Training data come with a desired output called label in supervised

learning. On the contrary, unsupervised learning deals with unlabeled data. Reinforce-

ment learning is another machine learning approach where an agent aims to discover

data and/or labels through exploration and a reward signal.

Supervised Learning

Supervised learning-based networks have successfully been used for many years in

image classification [2,17,18,23], object detection [70–72] and attribution learning [73].

This process makes researchers interested in using them in automatic image captioning

[5, 31, 66, 74].

Dense captioning [75] proposes a fully convolutional localization network architec-

ture composed of a convolutional network, a dense localization layer, and an LSTM [27]

language model. The dense localization layer processes an image with a single, efficient

forward pass, implicitly predicting regions of interest in the image. It requires no exter-

nal region proposals, unlike Fast R-CNN or a full network of Faster R-CNN [72]. The

working principle of the localization layer is related to the work of Faster R-CNN.

However, Johnson et al. use a differential, spatial soft attention mechanism [76,

77] and bilinear interpolation [77] instead of an ROI pooling mechanism [70]. This

modification helps the method to backpropagate through the network and smoothly

select the active regions. It uses the Visual Genome dataset for the experiments in

generating region-level image captions.

Region-based descriptions are objective and detailed. The region-based method is

known as dense captioning. However, there are some challenges in dense captioning.

As regions are dense, one object may have multiple overlapping regions of interest.

Moreover, it is challenging to recognize each target region for all the visual concepts.

The neural network-based image captioning methods work in just a simple end-to-
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end manner. These methods are similar to the encoder-decoder framework-based neural

machine translation [78]. In such networks, global image features are extracted from

the hidden activations of CNNs and fed into an LSTM to generate a sequence of words.

To obtain a comprehensive understanding of objects and relationships in the im-

ages and generate fluent sentences to match the visual information, the encoder-decoder

models often adopted the framework of CNN plus RNN. The CNN extracts the scene

type to detect the objects and their relationships. After that, a language model uses

the output of CNN to convert them into words, combined phrases that produce image

captions. A simple image captioning model configuration is shown in the upper part of

Figure 2.2.

Vinyan et al. proposed a Neural Image Caption Generator (NIC) method [31]. The

method uses a CNN for image representations and an LSTM for captions generation.

This special CNN uses a novel method for batch normalization, and the output of the

last hidden layer of CNN is used as an input to the LSTM decoder. This LSTM can

keep track of the objects that have been described using text. NIC is trained based on

maximum likelihood estimation.

In generating image captions, image information is included in the initial state of an

LSTM. The next words are generated based on the current time step and the previous

hidden state. This process continues until it gets to the end token of the sentence. Since

image information is fed only at the beginning of the process, it may face vanishing

gradient problems. The role of words generated at the beginning is also weakening.

Therefore, LSTM still faces challenges in generating long-length sentences [79, 80].

Jia et al. proposed an extension of LSTM called guided LSTM (gLSTM) [81]. This

gLSTM can generate long sentences. This architecture adds global semantic informa-

tion to each gate and cell state of LSTM. It also considers different length normalization

strategies to control the length of captions. Semantic information is extracted in differ-

ent ways. First, it uses a cross-modal retrieval task to retrieve image captions, and then

semantic information is extracted from them. The semantic-based information can also

be extracted using a multimodal embedding space.
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Mao et al. proposed a special text generation method for images [82]. This method

can generate a description for a specific object or region that is called referring ex-

pression [83–89]. This expression can then infer the object or region being described.

Therefore, the generated description or expression is quite unambiguous. This method

uses a new dataset called ReferIt [89] based on the popular MSCOCO dataset to address

the referring expression.

Previous CNN-RNN-based image captioning methods use unidirectional LSTM,

which is relatively shallow in depth. The next word is predicted based on visual and

previous textual contexts in unidirectional language generation techniques. Unidirec-

tional LSTM cannot generate contextually well-formed captions. Moreover, recent ob-

ject detection and classification methods [2, 17] show that deep, hierarchical methods

are better at learning than shallower ones.

Wang et al. proposed a deep bidirectional LSTM-based method for image cap-

tioning [6]. This method is capable of generating contextually and semantically rich

image captions. The proposed architecture consists of a CNN and two separate LSTM

networks. It can utilize past and future context information to learn long-term visual

language interactions.

Compositional architecture-based methods comprise several independent functional

building blocks. First, a CNN extracts the semantic concepts from the image. Then, a

language model generates a set of candidate captions. These candidate captions are re-

ranked in the generation using a deep multimodal similarity model. A common block

diagram of compositional network-based image captioning methods is shown in the

lower part of Figure 2.2. A typical method of this category maintains the following

steps:

• A CNN extracts image features.

• Visual concepts are obtained from visual features.

• Multiple captions are generated using the previously received information by a

language model.
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• The generated captions are re-ranked using a deep multimodal similarity model

to select high-quality image captions.

Fang et al. introduced generation-based image captioning [90]. It uses visual de-

tectors, a language model, and a multimodal similarity model to train the model on an

image captioning dataset. Image captions can contain nouns, verbs, and adjectives. A

vocabulary is formed using the 1,000 most common words from the training captions.

The system works with the image sub-regions instead of the full image. CNNs are used

for extracting features for the sub-regions of an image. The features of sub-regions are

mapped with the vocabulary words likely to be contained in the image captions.

Multiple instance learning [91] is used to train the model for learning discriminative

visual signatures of each word. A maximum entropy [92] language model generates

image captions from these words. A linear weighting of sentence features ranks gener-

ated captions. Minimum Error Rate Training [93] is used to learn these weights. The

similarity between image and sentence can be easily measured using a common vector

representation. A deep multimodal similarity model maps images and sentence frag-

ments with the common vector representation. It achieves a significant improvement in

choosing high-quality image captions.

The object detection model based on a faster R-CNN [70] with ResNet-101 was

used to extract salient objects as regional visual features to generate image captions

[42,70]. This model’s final output performed non-maximum suppression for each object

class using an intersection over union (IoU) threshold. All regions would be selected if

any class-detection probability exceeded a confidence threshold. After that, the mean-

pooled convolutional features were considered as features input into LSTM to generate

captions. Indeed, it is not likely for LSTM to receive the complete information from all

the predicted anchor boxes. For example, the pot, the cooker, and other similar items in

a given image might show the same meaning of cooking.

The attention mechanism is an approach to decide whether to attend to visual or

non-visual information at each step of the decoder part [94]. With the development

of the attention mechanism, a two-level attention network was implemented based on
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Table 2.1: Literature summary of image captioning. T-B, R-B, and E&D denote
template-based, retrieval-based, and encoder-decoder methods.

Method Main Property Presented Papers

T-B Fixed templates with several
blanks are used to generate
captions.

[47–49]

R-B The model finds a similar
image from the training set,
and then its corresponding
caption is selected as a re-
sult.

[55–58]

E&D

CNN+RNN Introduced two-step ap-
proaches for image caption-
ing of presenting images
by CNNs and analyzing the
presentation by RNNs.

[31, 32, 43, 59, 60]

CNN+RNN+
Attention

Applied attention mecha-
nism allows the model to fo-
cus on different regions at
each step.

[94, 95]

CNN+RNN+
Reinforcement
Learning

The reinforcement model
learns to optimize a reward
function based on human
evaluations.

[42]

Transformer-
Based

Applied the transformer
architecture, originally
designed for machine trans-
lation, for image captioning.

[96]

Pretrained
Vision-
Language
Model

Demonstrated the effective-
ness of pre-trained mod-
els on large-scale vision-
language datasets.

[97–99]
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attributes and the attention mechanism [95]. With the attention mechanism and the

multi-head architecture, transformers have been used in natural language processing

and computer vision processes. A dual-level collaborative transformer for image cap-

tioning was developed in 2021. This model integrated regions and grids’ appearance

and geometry features with intra-level fusion based on comprehensive relation attention

and dual-way self-attention [96]. Such grid features from transformer-based networks

performed much better than previous results.

More and more large-scale models are designed for tasks related to computer vision,

natural language processing, etc. The effectiveness of pre-trained large-scale models

on image captioning has been proved in [97–99]. Large-scale models, however, of-

ten require a longer computation time and more memory. When the computational

resources are limited, it is necessary to develop lightweight models for realizing the en-

coders and/or decoders in image captioning. The summarized literature review of deep

learning-based methods is shown in Table 2.1.

Unsupervised Learning

Unsupervised learning methods received good performance on machine translation.

In the unsupervised machine translation methods [4, 26, 27], the source language and

target language are mapped into a common latent space so that the sentences of the

same semantic meanings in different languages can be well aligned, and the following

translation can thus be performed. Unsupervised image captioning is similar in spirit

to unsupervised machine translation. Unsupervised image captioning relies on a set of

images, a set of sentences, and an existing visual concept detector.

The Functional Magnetic Resonance Imaging (FMRI) technique [100] introduced

an unsupervised learning model to generate captions using human brain activity through

a robust regression scheme. This method converts FMRI data into text features and uses

LSTM to generate captions. They make text features and compare them with brain data.

Lastly, they use text feature information with unlabeled data images.

Laina et al. proposed a method to align images and text in a shared latent represen-
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2.1. LITERATURE REVIEW

tation structured through visual concepts [101]. This method is minimally supervised

because it requires a standard, pre-trained image recognition model to obtain initial

noisy correspondences between the image and the text domain. The translation from

image features to text is learned from weakly paired images and text using a loss robust

to noisy assignments and a conditional adversarial component.

Zhou et al. research the relationship between sentences and images to generate bet-

ter captions. They proposed the TSGAN method [102], which means triple sequence

generative adversarial nets. The image encoder uses CNN to encode images to differ-

ent regions for extracting visual concepts. The triple cell proposed in this paper has

an image generator, sentence generator and discriminator. The image generator gen-

erates image regions for different words. The sentence generator guides the generated

captions, and the discriminator helps to improve captions by checking relevancy.

Feng et al. proposed a novel method to train an image captioning model unsuper-

vised without using any paired image-sentence data [103]. They presented three training

objectives, which encourage that 1) the generated captions are indistinguishable from

sentences in the corpus, 2) the image captioning model conveys the object information

in the image, and 3) the image and sentence features are aligned in the common latent

space and perform bi-directional reconstructions from each other.

Unsupervised learning is a good choice for training with large-scale datasets. How-

ever, the unsupervised image captioning task is more challenging because images and

sentences reside in two modalities with significantly different characteristics. The lan-

guage source must contain sufficient visual concepts overlapping with the image do-

main to generate the initial assignments.

Reinforcement Learning

A reinforcement learning approach is designed by many parameters such as agent,

state, action, reward function, policy and value. The agent chooses an action, receives

reward values and moves to a new state. The policies are defined by actions and the val-

ues by reward function. The agent attempts to select the action with the expectation of
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having a maximum long-term reward. It needs continuous state and action information

to guarantee a reward function.

Traditional reinforcement learning approaches face several limitations, such as the

lack of guarantees of a reward function and uncertain state-action information. Policy

gradient methods [104] are a type of reinforcement learning that can choose a specific

policy for a specific action using gradient descent and optimization techniques. The

policy can incorporate domain knowledge for the action that guarantees convergence.

Thus, policy gradient methods require fewer parameters than reward function-based

approaches.

Reinforcement learning-based image captioning methods sample the next token

from the model based on the rewards they receive in each state. Policy gradient methods

in reinforcement learning can optimize the gradient to predict the cumulative long-term

rewards. Therefore, it can solve the non-differentiable problem of evaluation metrics.

In 2017, Ren et al. introduced a novel reinforcement learning-based image cap-

tioning method [105]. The architecture of this method has two networks that jointly

compute the next best word at each time step. The ”policy network” works as local

guidance and helps to predict the next word based on the current state. ”The value

network” works as global guidance and evaluates the reward value, considering all the

possible extensions of the current state. This mechanism can adjust the networks in

predicting the correct words. Therefore, it can generate good captions similar to ground

truth captions at the end. It used an actor-critic reinforcement learning model [106] to

train the whole network. Visual semantic embedding [107, 108] is used to compute the

reward value in predicting the correct words. It also helps to measure the similarity be-

tween images and sentences, which can evaluate the correctness of generated captions.

Rennie et al. proposed another reinforcement learning-based image captioning

method [109]. The method utilizes the test-time inference algorithm to normalize the

reward rather than estimating the reward signal and normalization in training time. The

test-time decoding is highly effective for generating quality image captions.

Zhang et al. proposed an actor-critic reinforcement learning-based image caption-
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2.2. PRELIMINARY KNOWLEDGE

ing method [110]. The method can directly optimize non-differentiable problems of

the existing evaluation metrics. The architecture of the actor-critic method consists of

a policy network (actor) and a value network (critic). The actor treats the job as a se-

quential decision problem and can predict the next token of the sequence. The network

will receive a task-specific reward in each state of the sequence. The job of the critic is

to predict the reward. If it can predict the expected reward, the actor will continue to

sample outputs according to its probability distribution.

In this section, we have reviewed deep learning-based image captioning methods.

We have given a taxonomy of image captioning techniques, shown the major groups’

generic block diagram, and highlighted their pros and cons. Although deep learning-

based image captioning methods have achieved remarkable progress in recent years, a

robust image captioning method that can generate high-quality captions for nearly all

images is yet to be achieved. With the advent of novel deep-learning network architec-

tures, automatic image captioning will remain an active research area for some time.

However, the increasing parameters make it difficult to meet real-time applications’

need to receive immediate, contextually relevant information.

2.2 Preliminary Knowledge

2.2.1 Encoder–Decoder Architecture for Image Captioning

To obtain a comprehensive understanding of objects and relationships in the images

and generate fluent sentences to match the visual information, encoder-decoder models

often adopted the framework of CNN plus RNN image captioning model configuration

shown in Figure 4.1. Not only are they flexible, but they are also effective. Generally,

global features are extracted from input images by a CNN model and then fed into an

RNN model for sequence generation by transferring the image into a full grammatically

and stylistically correct sentence. In some applications, a CNN was used for image rep-

resentation, while an LSTM was used for caption generation. For example, the NIC

(neural image caption generator) [31] and NIC V2 [111] followed such a framework.
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The output of the last hidden layer of CNN was used as input for the LSTM-based

decoder. In image captioning, image information was included in the initial state of

LSTM. The NIC models show that improving results by directly maximizing the prob-

ability of the correct translation given an input sentence in an end-to-end fashion is

possible. The end-to-end models use an RNN, which encodes the variable length input

into a fixed dimensional vector. They then use the decoded vector to generate it into

the desired output sentence. Therefore, it is natural to use the same approach to image

captioning rather than inputting a sentence to translate it into a description.

2.2.2 VGGNet

The quality of image captioning mostly depends on the performance of extracting

image features. Handcrafted (HC) features are task-specific because most real data

are complex and have different semantic interpretations. Therefore, many human and

material resources and a significant amount of time were spent on the feature extraction

from a large dataset. Using traditional feature-extraction methods in image captioning

tasks often involving large data sets is impractical. DL can learn from training data

and automatically extract useful features so that even a large and complicated set of

images and videos can be handled promptly nowadays. CNNs have been widely used

for feature extraction, although they were originally built for classification or object

detection tasks.

In image captioning, RNNs generally follow CNNs for caption generation [31].

GoogLeNet [18] had been used as a deep image processing network in some image cap-

tioning models. Moreover, VGGNet [2] and ResNet [4] have also been used as image

feature extractors in some image caption systems [112]. VGGNet was invented by the

Visual Geometry Group from the University of Oxford, which beat GoogLeNet and won

the localization task in the ImageNet Large Scale Recognition Challenge (ILSVRC)

2014.

In the original VGGNet, there are three fully connected layers in front of the softmax

layer for outputting classes of objects. It has 16 convolutional layers and is appealing

30



2.2. PRELIMINARY KNOWLEDGE

because of its uniform architecture. Using two layers of the 3 × 3 filter, VGGNet could

cover 5 × 5 areas. By using three layers of the 3 ⇥ 3 filter, it can cover 7 × 7 effective

areas. Therefore, large-size filters such as 11 × 11 in AlexNet [17] and 7 × 7 in ZFNet

[?] are unnecessary. VGGNet is the community’s most preferred choice for extracting

image features. The weight configuration of the VGGNet is publicly available and has

been used as a baseline in many other applications.

Table 2.2 suggests that ResNet performs best among the four CNNs, including

AlexNet, VGGNet, ResNet, and Inception-X Net, based on the accuracy of both Top-

1 and Top-5. Although ResNet also has fewer parameters than VGGNet, VGGNet

remains the most popular image feature extractor in applications and has the second-

highest result in Table 2.2 [4].

Table 2.2: Comparisons among four CNN architectures [4]. #Multiply-adds and
#Params denote the number of operations and the output of each neuron or node.

CONVOLUTIONAL NEURAL NETWORKS ARCHITECTURES

Architecture # Param # Multiply-Adds Top-1 Accuracy Top-5 Accuracy Year

Alexnet 61M 724M 57.1 80.2 2012

VGG 138M 15.5B 70.5 91.2 2013

Inception-V1 7M 1.43B 69.8 89.3 2013

Resnet-50 25.5M 3.9B 75.2 93 2015

Darknet-53 62M 65.86B 77.2 93.8 2018

ViT 86M 33.03B 88.6 97.9 2020

In the original VGGNet, the input image is resized into 224 × 224 × 3 and sent to

the network until the first connected layer. Similar to the VGGNet used as the image

presenter in previous vision tasks, the last fully connected layer and softmax layer was

removed in our implementation so that the feature size became 4096 as input to the

decoder. After that, the feature vectors were sent to the decoder directly. For the results

presented in this paper, the weights of the VGG encoder were fine-tuned during the

decoder training to let the predicted captions be near the ground-truth captions.
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2.2.3 Darknet

VGGNet performs better on image classification in which there are fewer items.

The image captioning tasks require the system to be capable of the prediction of mul-

tiple items and the background at the same time. Based on such considerations, Faster

R-CNN was used as the backbone in the image captioning model [42]. The R-CNN

model first used region proposal methods to generate potential bounding boxes and then

applied a classifier to these predicted boxes. Finally, post-processing was used to re-

fine the bounding boxes, eliminate duplicate detection, and re-score the boxes based on

other objects in the scene. Such complex pipelines would be slow and hard to optimize

because each component must be processed separately.

YOLO [113,114] framed object detection as a single regression problem from image

pixels to bounding box coordinates and class probabilities. With the whole processing

setting as a single network, it can be processed end-to-end directly on detection perfor-

mance so that YOLO can learn the representations of objects well. YOLO evolved from

YOLOv1 [113] to YOLOv8 [114] and has consistently focused on balancing speed and

accuracy, aiming to deliver real-time performance without sacrificing the quality of the

detection results.

The original YOLO model was designed with a single convolutional model to pre-

dict object locations and classes and enable real-time processing directly. However, the

speed-oriented YOLOv1 cannot outperform the accuracy level for dealing with small

objects or objects with overlapping bounding boxes.

The later designed YOLO models successfully addressed these limitations while

maintaining real-time detection. For instance, YOLOv2 (YOLO9000) [115] with Darknet-

19 introduced anchor boxes and pass-through layers to improve the localization of ob-

jects, resulting in higher accuracy. In addition, YOLOv3 with Darknet-53 enhanced the

performance by employing a multi-scale feature extraction architecture for better object

detection across various scales. With the development of backbones, YOLO models can

maintain a faster speed and better performance simultaneously.

Models like YOLOv4 and YOLOv5 introduced innovations, such as new network
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backbones, improved data augmentation techniques, and optimized training strategies.

These developments led to significant gains in accuracy without drastically affecting the

models’ real-time performance [116]. Darknet-53 is therefore applied as a backbone

of the encoder in our model so that captioning could focus on more points like the

background and some small-scale details.

2.2.4 Transformer

The Transformer architecture, introduced in the seminal paper ”Attention Is All You

Need” [38] by Vaswani et al. in 2017, is a monumental milestone in natural language

processing (NLP). This revolutionary neural network architecture redefined the way se-

quences of data, such as text, are processed and modelled. Although initially conceived

for NLP tasks, the Transformer’s versatility quickly transcended its original domain and

found application in various other fields, marking a paradigm shift in the design of deep

learning models.

The Transformer architecture leverages a mechanism known as self-attention. This

innovation allows the model to weigh the importance of different elements in a sequence

when making predictions, enabling it to effectively capture long-range dependencies

and contextual information. Unlike traditional recurrent neural networks (RNNs) and

convolutional neural networks (CNNs), Transformers process entire sequences in par-

allel, rendering them highly efficient and amenable to parallel computing. This archi-

tectural leap improved the performance of existing NLP tasks and paved the way for

developing more capable and scalable models.

The significance of the Transformer extends beyond its application in natural lan-

guage understanding and generation. Its attention mechanism has become a cornerstone

in various fields, including computer vision, where it inspired the creation of the Vision

Transformer (ViT) discussed earlier. Transformers have also found utility in speech

recognition, recommendation systems, and scientific applications like protein folding

prediction.
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2.2.5 Vision Transformer

Based on the Transformer mentioned previously, the CV field has witnessed a paradigm

shift with the introduction of the Vision Transformer (ViT) architecture. ViT represents

a novel approach to processing visual information, departing from the conventional

Convolutional Neural Networks (CNNs) that have long dominated the computer vision

landscape. First proposed by Google Brain in 2020, ViT has rapidly gained traction and

garnered widespread attention due to its remarkable performance and versatility.

At its core, ViT reimagines the treatment of images by treating them as sequences

of fixed-size, non-overlapping patches. This departure from the grid-based processing

of pixels in CNNs opens up new possibilities for capturing long-range dependencies

and contextual information within images. ViT leverages self-attention mechanisms,

initially popularized in natural language processing, to model intricate relationships

between these patches. This self-attention mechanism endows ViT with the ability

to understand global image context, making it particularly adept at handling complex

scenes and large-scale images.

The advantages offered by ViT are manifold. It excels at tasks such as image classi-

fication, object detection, semantic segmentation, and more. Its remarkable scalability

enables ViT to generalize effectively across various datasets and tasks without necessi-

tating extensive architectural modifications. Moreover, ViT simplifies network design,

reducing engineering complexity while maintaining competitive performance. Addi-

tionally, ViT has paved the way for intriguing prospects in transfer learning, fostering

knowledge transfer between diverse domains.

2.2.6 LSTM

It is difficult for conventional RNNs to access long-range context because the back-

propagated errors either inflate or decay over time due to the so-called vanishing gra-

dient problem [117]. LSTM overcomes this problem and allows itself to model the

self-learned context information. LSTM has a similar control flow to an RNN. It pro-

cesses data, passing on information as it propagates forward. The differences are the
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operations within the LSTM’s cells. The updating of the hidden layer of LSTM is re-

placed by purpose-built memory cells. LSTM generates captions by making one word

at a time, using a context vector, and considering the previously received hidden states

and predicted words [112].

The LSTM model consists of a cell state and several gates. The cell state is a

transport highway that transfers relative information down the sequence chain, like the

memory. The cell state can carry relevant information throughout the processing of

the sequence. Therefore, information from the earlier time steps can make its way to

later time steps by reducing the short-term memory effect. As the cell state changes,

information is added or removed to the cell state via gates. The gates decide which

information is allowed in the cell state. The gates can learn what information should be

kept or forgotten by training.
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Chapter 3

End-to-end Image Captioning Based

on Reduced Feature Maps of Deep

Learners Pre-trained for Object

Detection

Most existing models use the pre-trained CNNs as the encoder and train a natu-

ral language model for caption generation. Although some current models perform

well with more complex architecture and larger parameter sizes, the pre-trained im-

age feature is not the perfect fit for the caption generator. In addition, the increasingly

tricky model architecture requires a higher cost of computational resources and pre-

dicting time. This chapter proposed an end-to-end model for image captioning. The

architecture consists of a Darknet-based feature extractor and an LSTM-based caption

generator. The whole model is trained on the entire set of training data together so that

the extracted feature is more fitting to our caption generator. The backbone model is

built with VGGNet as the encoder and LSTM as the decoder. The low parameter re-

quirement of our model makes it very suitable in low computational environments and

mobile device-oriented prediction. Extensive empirical study and theoretical analysis

on Flickr 8K substantiate the effectiveness and efficiency of our proposed model. The
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3.1. INTRODUCTION

performance of our proposed method is compared with the backbone and some other

existing methods.

3.1 Introduction

Based on the success of image and natural language processing, image captioning is

a multimodal task, including visual and natural language processing. The research aims

to summarize the classes of objects and background and their position relationship to

generate the caption. For example, a successful model can say something like ‘a couple

stands close at the water stage’ based on the image of Figure 3.1. The image recog-

nition model can easily predict the ”girl”, ”ocean”, ”stage”, ”horse”, ”snowboarders”,

”hill”, ”dog”, ”backyard”, ”people”, and the ”water stage”, but measuring their position

relationship is still difficult.

By analysing the ground truth of the public datasets of this task, it is not difficult

to know that the outputs include objects’ names, backgrounds, and positional relation-

ships. So, the application requires the recognition of important objects, backgrounds,

and the relationship among them in the image. In [5,66], a multimodal recurrent neural

network (m-RNN) method was proposed to explore the relationships between vision

and text information and generate sentences to describe the content of a given image,

where only the parameters of the m-RNN model were updated. In [118,119], a caption

generation system was designed by using the most common words as the semantic at-

tributes, in which both the global image feature and the semantic attribute vectors were

used as input to an RNN.

Because of the two combined processes, hybrid systems with a deep network for

image processing and another deep network for language processing are often applied.

Similarly, the model in reference [31] uses a deep convolutional neural network (CNN)

and a recurrent neural network (RNN) as encoder and decoder, respectively. Such as the

GoogLeNet [18], which performed best in the ImageNet Large Scale Recognition Chal-

lenge (ILSVRC) 2014 classification competition, is used as the deep image processing
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(a) A young girl is lying in
the sand while ocean water
is surrounding her.

(b) Two people stand by the
water.

(c) A girl and her horse stand
by a fire.

(d) Snowboarders sitting in
the snow while skiers take
the hill.

(e) A man with a shaved
head is kissing another man
on the cheek.

(f) A black dog in the back-
yard.

Figure 3.1: Some example images of Flickr8K dataset [1]. The reference captions are
under the image.
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network in existing image captioning models. In addition, the VGGNet [2] is also used

as the image feature extractor in the existing image caption systems. Compared to the

VGGNet, YOLO [113] performs much better in multiple objects’ detection. YOLO, or

You Only Look Once, is an object detection algorithm much different from the region-

based algorithms seen above. In YOLO, a single convolutional network predicts the

bounding boxes and the class probabilities for these boxes.

The primary purpose of this chapter is to investigate the potential of the object de-

tection model for image captioning. Suppose we adopt the model as the encoder, that

is, use the predicted annotations of the model as the inputs of an RNN-based decoder.

In that case, we may not fully use the information provided by the hidden layers (often

called the feature maps). On the other hand, if we feed the outputs of one of the hidden

layers (i.e. one of the feature maps) directly to the decoder, the number of inputs for the

decoder may become too large, and the cost both for training and testing of the decoder

part can become prohibitive. In this paper, we propose using a reduced feature map,

provided by a model pre-trained for object detection, as the input of the decoder. This

way, we expect to use more information for captioning while keeping the budget for

training and inference to an acceptable value.

3.2 Outline

We arrange this chapter in the following order.

• Section 3.3: An overview of the proposed architecture.

• Section 3.4: Detailed discussion on the image captioning model.

• Section 3.5: Detailed discussion about the dataset and experiments settings.

• Section 3.6: Discussion on results and comparison to state-of-the-art image cap-

tioning models.

• Section 4.9: Conclusion and possible future works.
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3.3 Proposed Architecture

Image captioning has become a popular research topic in artificial intelligence (AI),

including image understanding and natural language generation. According to the lit-

erature review of Chapter 2, most existing image caption models follow the encoder-

decoder architecture. Based on this, the image captioning task is related to the image

and natural language processing models. With machine learning and deep learning de-

velopment, research on image processing has been improving rapidly. Visual models

can solve more and more CV tasks. At the same time, Natural language pretraining has

revolutionized the whole NLP research community.

However, most existing SOTA technologies are usually too heavy and expensive to

be implemented in devices or systems with weak computing resources. This is why

we still need relatively lightweight models for realizing the encoder and decoder in the

image captioning system.

Unlike most existing image caption methods in which pre-trained encoders were

often used, the method proposed in this chapter uses an end-to-end approach by simul-

taneously training both the encoder and decoder. The literature review shows that the

VGGNet and ResNet were most commonly used as encoders. Among them, VGGNet

was the second-place winner of the 2014 ILSVRC image classification competition,

and ResNet was the first-place winner in 2015.

The challenges of image captioning include the comprehensive understanding of

objects and relationships in the images and the generation of fluent sentences to match

the visual semantics. According to previous research, it is easy to know that the encoder

and decoder architecture is the most used one in recent research.

As shown in Figure 3.2 is the flow chart of the training processing. The model con-

sists of the encoder and decoder parts, similar to most existing models. The encoder

part extracts image features, and the decoder part is designed to generate text descrip-

tions by analyzing the features. Unlike most existing models, which train the two parts

separately, the model proposed in this paper is end-to-end. In other words, the param-

eters of the two-part update automatically together in our model to find what kind of
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3.3. PROPOSED ARCHITECTURE

Figure 3.2: Flowchart of the whole training process. The encoder extracts image fea-
tures, while the decoder generates text descriptions by analysing the features. The esti-
mated vector will be compared with the ground truth for loss measurement.
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features are more important for this task. After passing through the encoder and de-

coder, a meaningful text describing the image will be generated. This text vector will

be compared with the reference vector during training to get the loss. Then, the encoder

and decoder parameters will be optimized together based on the loss. Besides this, the

vector will be transferred into the sequence of related words during the testing process.

So far, the VGG is one of the most popular models used as an encoder of the image

captioning architecture. In this chapter, Darknet-53 is applied as a feature extractor in

the image captioning task and receives better results.

Apart from this, the proposed method is end-to-end, which means the training pro-

cess is for training both the encoder and decoder simultaneously based on the ¡data,

ground truth¿ pairs instead of fixing the encoder and training the decoder only. In other

words, providing ground truth information for the encoder is unnecessary. What’s more,

the reduced feature map is used in our proposed method. As we know, the feature map

is generally more informative than the encoder output. However, the cost of training

and prediction is proportional to the size of the feature map. A reduced feature map can

reduce the training and reference cost and preserve the performance.

3.4 Design for Image Captioning

In the original VGGNet, there are three fully connected layers in front of the softmax

layer for outputting classes of objects. To have the end-to-end implementation and

fewer features, the last fully connected layer and softmax layer were removed so that

the feature size becomes 4096 as input of the decoder part. We used the VGG as the

baseline in this paper to compare the performance with our proposed model.

The encoder by the VGG model used in this paper is shown in Figure 3.3. Given

images are resized into 224 × 224 × 3 and sent into the network until the first connected

layer. After that, the feature vectors are transmitted directly into the decoder part.

Previous research made image caption generation a reality, but measuring and pre-

senting the position relationship among items is still challenging. The Darknet53, de-
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3.4. DESIGN FOR IMAGE CAPTIONING

Figure 3.3: Encoder by VGG. Image is input into the model and feature-extracted by
the VGG network without the last fully connected and softmax layers. The image is
finetuned from [2].

signed as the backbone of image recognition, is applied as our proposed network’s

backbone. Then, the residual blocks are kept in the network to help analyze the feature

maps. At last, convolutional layers are introduced to contract the feature map for losing

information about the given images as little as possible. After the convolutional lay-

ers, the reduced feature maps are sent into the decoder part to generate captions of the

provided images. The encoder by Darknet-53 used in this paper is shown in Figure 3.4.

LSTM was used as a decoder part of this system. During the pre-processing, the cap-

tions will be filled with the “< unk >” for marking unknown words, the “< start >”

to mark the start of a new sentence, and the “< end >” for ending the sentence. After

that, a dictionary containing both words and their corresponding IDs will be set. The

dictionary will be composed of the different words of the whole dataset. After that, the

caption will be embedded into a matrix with their corresponding IDs.

As shown in Figure 3.5, there are 2,550 different words in the Flickr 8k dataset [1]

used in this paper, so the dimension of d is 2,550. The feature maps and embedded

caption will be input into the LSTM network during training. The LSTM.Out in the
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Fi
gu

re
3.

5:
D

ec
od

er
by

LS
TM

.W
ith

th
e

th
re

sh
ol

d
of

vo
ca

b
se

tti
ng

as
5,

th
er

e
ar

e
2,

55
0

w
or

ds
in

th
e

Fl
ic

kr
8K

da
ta

se
tv

oc
ab

ul
ar

y.
Th

e
fe

at
ur

e
m

ap
s

an
d

em
be

dd
ed

ca
pt

io
n

w
ill

be
in

pu
ti

nt
o

th
e

LS
TM

ne
tw

or
k

du
rin

g
tra

in
in

g.
Th

e
LS

TM
.o

ut
m

ea
ns

th
e

ou
tp

ut
of

th
e

de
co

de
rp

ar
t.

45



picture corresponds to the output of the LSTM part. The vocab size determines the d.

It will be used to get the loss with the embedded caption.

During the prediction, there should be a loop formed by the sequence length. The

decoder part will predict the first matrix based on the feature map from the encoder to

create a tensor of size [1, 2550] and a hidden state. The decoder will input the hidden

state in the next cycle step to extend the word tensor. The final tensor contains all the

probability of words in the vocab list. After that, the words with the highest probability

will be chosen. At last, the loop will be stopped automatically once the ”< end >”

outputs.

3.5 Dataset and Experiments Settings

In the experiments, the similarity between predicted captions and ground truth and

the training testing time was compared for our application.

Several well-known datasets are commonly used for image captioning experiments.

All the datasets for image captioning consist of an image file and a text file that maps

each image to one or more captions. Each caption is a sentence of words. Common

Objects in Context (COCO) dataset [120] contains about 120 thousand images with

five descriptions per image. There are also some smaller datasets, such as Flickr 8k

dataset [1] with 8 thousand images, and the Flickr 30k dataset [121] with 30 thousand

described images with five sentences for every image.

The dataset used in the experiments is the Flickr 8k, whose 8,000 images are in

the ”.jpg” format. There is also a text file with 40,000 captions in which five captions

are provided for each image. The captions are set based on the diversity of human

language. The 8,000 images are divided into three subsets: a training set with 6,000

images, a validation set with 1,000 images, and a testing set with the last 1,000 images.

Word embedding is one of the most popular representations of document vocabulary

in the natural language processes. It can capture the context of a word in a document,

semantic and syntactic similarity, relation with other words, etc. In other words, it is
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3.5. DATASET AND EXPERIMENTS SETTINGS

used for extracting the features of the original sequences as the encoder. Similarly, the

image feature extraction can be seen as image embedding. As the following part of the

encoder is the natural language model, embedding size is used to set the input size of

the LSTM part instead of feature size. Referring to the previous post, the hidden layer

extracts high dimensional features for the words in the dataset.

In the end-to-end model by VGGNet and LSTM, input images are resized into 224

× 224 × 3. The features are then extracted from the fully connected layer of VGG-

19. The extracted 1*4096 features are directly sent to LSTM with the 512 hidden

dimensionality. The learning rate was 10�4 for training this model.

In the end-to-end model by YOLO and LSTM, input images are resized into 416

× 416 × 3. The features generated from the last convolutional layer of YOLO form a

52 × 52 × 128 vector. Through the newly added convolutional layers, the features are

mapped into 8 × 8 × 64 so that the features from VGGNet and YOLO have the same

size. The learning rate is initially 10�4. Other related hyperparameters are as shown in

Table 3.1.

Table 3.1: Hyper Parameters Used in the Simulations

Model learning epochs batch embedding hidden
algorithm size size size

VGG-LSTM Adam 200 1 4096 512
YOLO-LSTM Adam 200 1 4096 512

The BLEU (Bilingual Evaluation Understudy) [122] score is commonly used for

performance evaluation of natural language-related work. BLEU measures the close-

ness of translation by finding legitimate differences in the chosen words and their order

between human translation and machine translation. Calculating BLEU involves count-

ing the overlap of individual n-grams and obtaining a score by calculating the proportion

of n-grams that are exact matches. With different n-grams settings, there are four BLEU

scores from BLEU-1 to BLEU-4. The higher these scores are, the better the evaluated

models’ performance.

The BLEU-1 to BLEU-4 denotes unigram, bigram, trigram, and 4-gram, respec-
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tively. The unigram (1-gram) is the degree of overlap of a single word. The bigram

(2-gram) calculates the degree of overlap of two consecutive words. The trigram (3-

gram) is the degree of overlap of three consecutive words. And the 4-gram (4-gram) is

the degree of overlap of four successive words.

BLEU = BP ⇥ exp(
X

(1/n)⇥ log(P n)) (3.1)

The Eq. 3.1 is the measurement method of BLEU, and BP is the factor used to pe-

nalize overly long or short-generated captions. The Brevity Penalty (BP) in the BLEU

score is calculated to penalize the system’s translation if it generates shorter transla-

tions than the reference translations. The calculation involves comparing the length of

the system’s translation (c) to the length of the closest reference translation (r). The

formula of BP is shown as Eq. 3.2, where e is the base of the natural logarithm.

BP =

8
>><

>>:

1, if c > r

e(1�r/c), if c  r

(3.2)

Pn (Precision at n-grams) is the N-gram precision, representing the ratio of the

number of n-grams in the generated caption to those in the reference caption. An n-

gram is a contiguous sequence of n items (or words) from a given sample of text or

speech. The n in n-gram represents the number of items in the sequence. By comparing

n-gram matches between each candidate translation to the reference translations, BLEU

tells whether the machine translation model is good. In our experiment, we set matches

from one to four, commonly used in natural language model evaluation, to calculate the

model performance.
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3.6. RESULT ANALYSIS WITH SOTA

Figure 3.6: Some typical examples on the Flickr8k dataset. Humans generate the Ref
sentences, and the other sentences are by the models of VGG and YOLO. The numbers
after the predicted captions are the BLEU-4 scores.

3.6 Result Analysis with SOTA

Performance was compared among the two models and other state-of-the-art models

on the Flickr8K dataset. Table 3.2 shows the BLEU-1 to BLEU-4 scores and testing

times of different models on this dataset. The table shows that the models received

higher scores from 1-gram to 4-gram than others.

As we can see from the table, the YOLO-LSTM architecture performs better than

the VGG-LSTM model. Our YOLO-LSTM model performs 6.1% better in the BLEU-

1, so we know that the YOLO-LSTM performs better predicting a single word. It

means that the YOLO-LSTM is good at detecting the class of objects and background.

What’s more, the BLEU-4 result of our YOLO-LSTM model is 9.2% better than the

VGG-LSTM model. Figure 3.6 is some typical examples on the Flickr8K dataset. By

comparing the captions of results from the VGG-LSTM and YOLO-LSTM, it could be

found that the YOLO-LSTM model shows much better results on recognition of both

main objects and the background in the image of larger size, such as the water and street.

In addition, we can find that the YOLO-LSTM model is much better at measuring the

relationship among the words. In other words, the YOLO-LSTM performs better on the

positional relationship measurement among the objects and background.

The testing time of the VGG-LSTM and YOLO-LSTM models on NVIDIA GeForce

RTX 3090 are shown in Table 3.2. We can see that the YOLO-LSTM model used a
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Table 3.2: BLEU Score and Testing Time by Different Models on Flickr8k Dataset
(BLEU scores and testing time are all in average.)

Model 1-gram 2-gram 3-gram 4-gram Testing time

Neural Talk2 [5] 57.9 38.3 24.5 16.0 –
ATT-SVM + LSTM [119] 73 53 38 26 –

Multi-label CNN + Att-GRU [123] 72.9 53.4 41.2 30.7 –
AC-YOLO [124] 66.9 46.0 32.5 22.6 –

DLCT [96] 82.4 67.4 52.8 40.6 –

VGGNet (pre-trained) + LSTM 74.2 58.1 42.8 21.7 0.23s
VGGNet + LSTM (End-to-end) 79.8 63.3 46.6 34.2 0.23s

YOLO + LSTM (Ours) 82.3 67.1 49.6 43.9 0.13s

shorter time to test 1,000 images. According to the table, the testing time of YOLO-

LSTM is 40% less than the VGG-LSTM for 1,000 images. As the original goal is to set

a system for helping blind people see what is in front of them and live more comfort-

ably in this world, the speed and accuracy of detection and the humanity of the natural

language should be kept at a significant level. Based on the application of our system,

the YOLO-LSTM model is a much better fit in the system to see and say what is in the

image.

3.7 Conclusion

Based on some previous research, an image captioning model is proposed in this

paper. The implemented model is tested and compared with the VGG-LSTM model

on the Flickr 8k dataset. This paper proves that the YOLO-LSTM model fits the image

captioning task. The result analysis shows that the YOLO-LSTM model performs much

better than the VGG-LSTM and other existing models in a shorter prediction time.

For the BLEU-1 score, the YOLO-LSTM received a 6.1% better performance; for the

BLEU-4 score, the YOLO-LSTM received a 9.25% better performance. And for the

predicting time, the YOLO-LSTM model is 40% faster than the VGG-LSTM model.

Based on the research and experimental results, it is easy to say that the YOLO-LSTM
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3.7. CONCLUSION

is a much better fit for applying the system to help blind people see the world with both

accuracy and speed level.

In the future, we will continue exploring the issues discovered in this work. This

chapter proved the effectiveness of reduced feature dimension, what size of reduced

feature dimension can keep the performance with least computational cost is our contin-

uous research point. Also, we endeavour to figure out a reasonable solution to building

a model essentially generalizable to the complex real world.
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Chapter 4

Maintain a Better Balance Between

Performance and Cost for Image

Captioning by a Size-Adjustable

Convolutional Module

Image captioning is a challenging AI problem that connects computer vision and

natural language processing. Many deep learning (DL) models have been proposed in

the literature for solving this problem. So far, the primary concern of image captioning

has been increasing the accuracy of generating human-style sentences for describing

given images. As a result, state-of-the-art (SOTA) models are often too expensive to

be implemented in computationally weak devices. In contrast, the primary concern of

this paper is to maintain a balance between performance and cost. For this purpose,

this chapter proposes using a DL model pre-trained for object detection to encode the

given image so that features of various objects can be extracted simultaneously. We

also propose adding a size-adjustable convolutional module (SACM) before decoding

the features into sentences.

The experimental results show that the model with the adequately adjusted SACM

could reach a BLEU-1 score of 82.3, a BLEU-4 score of 43.9 on the Flickr 8K dataset,
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4.1. INTRODUCTION

and a BLEU-1 score of 83.1 and a BLEU-4 score of 44.3 on the MS COCO dataset.

With the SACM, the number of parameters is decreased to 108M, about 1/4 of the

original YOLOv3-LSTM model with 430M parameters. Specifically, compared with

mPLUG with 510M parameters, one of the SOTA methods, the proposed method can

achieve almost identical BLEU-4 scores, but the number of parameters is 78% less than

the mPLUG.

4.1 Introduction

There are a massive number of images appearing from different sources such as the

internet, news, and advertisements. Unlike pictures in articles and TV programs, most

images appear without captions in these sources. While most people have no difficulty

understanding images without captions, visually impaired ones could face problems.

Machine learning tools would help solve such problems by automatically interpreting

images, videos, and other media.

Image captioning is a challenging AI problem that connects computer vision and

natural language processing [112]. Many deep-learning (DL) models have been pro-

posed for solving problems in both computer vision and natural language processing.

The encoder-and-decoder architectures have been widely used for machine translation,

transforming a sentence from one language to the target language. Such ideas have

been applied to train a model with an image as input to generate captions based on a

dictionary created from the given captions of the images by maximizing the probability

of the correct words of the target sentence.

Besides natural language processing, image captions require object detection, recog-

nition, location, properties, and interactions. Furthermore, generating human-style sen-

tences requires a syntactic and semantic understanding of the language [31]. How-

ever, most proposed methods have not directly solved these problems in image caption-

ing [112].

So far, the primary concern of image captioning has focused on increasing the ac-
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curacy of generating human-style sentences for describing given images. As a result,

state-of-the-art (SOTA) models are often too expensive to be implemented in computa-

tionally weak devices.

In contrast, the primary concern of this paper is to maintain a balance between per-

formance and cost. For this purpose, we propose using a DL model pre-trained for

object detection to encode the given image so that features of various objects can be ex-

tracted simultaneously. The Darknet, the model initially designed for object detection,

has been used as the backbone to extract features of multiple objects in the image. We

also propose adding a size-adjustable convolutional module (SACM) before decoding

the features into sentences. The translated features from SACM have been used as input

to a decoder implemented by long short-term memory (LSTM). The end-to-end image

captioning system with Darknet, SACM, and LSTM is further trained simultaneously.

After training, the system can automatically present an image and generate a descriptive

caption in plain English.

The experimental results show that the system with a properly adjusted SACM could

reach a BLEU-1 score of 82.3 and a BLEU-4 score of 43.9 on the Flickr 8K dataset,

and a BLEU-1 score of 83.1 and a BLEU-4 score of 44.3 on the MS COCO dataset.

The performance of our model with SACM is better than most of the existing models

and comparable with that of the SOTA models. Our model size is much smaller than

most SOTA models. With our proposed SACM, the number of parameters decreased to

108 M, about 1/4 of the original YOLOv3-LSTM model with 430 M parameters. At the

same time, the proposed method can achieve almost identical BLEU-4 scores compared

to the mPLUG, one of the SOTA methods, with a 78% smaller parameter size.

4.2 Outline

We arrange this chapter in the following order.

• Section 4.3: An overview of the proposed architecture.

• Section 4.4: Detailed discussion on the size-adjustable convolutional module.
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4.3. PROPOSED NETWORK ARCHITECTURE

• Section 4.5: Detailed discussion about the datasets and experiment settings.

• Section 4.6: Empirical analysis.

• Section 3.6: Discussion on results and comparison to state-of-the-art image cap-

tioning models.

• Section 4.9:Conclusion and possible future works.

4.3 Proposed Network Architecture

Captions can be generated from visual space and multimodal space, respectively, by

novel image captioning methods. A general approach is to analyze the visual content of

the image first and then generate image captions via the analysis of the visual content

with a natural language model [32, 43, 59, 60]. Such methods can specifically gener-

ate captions with different lengths, styles, and relationships for each image. Therefore,

these generated captions are semantically more accurate than previous methods. Most

novel methods generate captions by analyzing information from visual space or multi-

modal space through DL.

Encoder–decoder approaches might be divided into convolutional neural networks

(CNN), recurrent neural networks (RNNs), and transformer-based models. The CNN-

RNN models use a CNN to encode images into vectorial representations. The vectors

are adopted into an RNN-based decoder to analyze and provide a descriptive caption for

the input image. For example, a special CNN used a novel method for batch normaliza-

tion, while the output of the last hidden layer of CNN was used as an input to the LSTM

decoder [31]. This LSTM decoder could keep track of the objects that had already been

described using text. The CNN-RNN models are often trained in maximizing likelihood

estimation.

To obtain a comprehensive understanding of objects and relationships in the images

and generate fluent sentences to match the visual information, the encoder–decoder

models often adopted the framework of CNN plus RNN image captioning model con-
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figuration shown in Figure 4.1. Not only are they flexible, but they are also effective.

Generally, global features are extracted from input images by a CNN model and then

fed into an RNN model for sequence generation by transferring the image into a full

grammatically and stylistically correct sentence. In some applications, a CNN was

used for image representation, while an LSTM was used for caption generation. For

example, the NIC (neural image caption generator) [31] and NIC V2 [111] followed

such a framework. The output of the last hidden layer of CNN was used as input for the

LSTM-based decoder.

In image captioning, image information was included in the initial state of LSTM.

The end-to-end models use an RNN, which encodes the variable length input into a

fixed dimensional vector. They then use the decoded vector to generate it into the

desired output sentence. Therefore, it is natural to use the same approach to image

captioning rather than inputting a sentence to translate it into a description.

Figure 4.1: Architecture of CNN plus RNN model. The CNN encoder extracts image
features, while the RNN decoder generates text descriptions by analyzing the features.

Compared with the transformer-based model, traditional CNNs have much fewer

parameters. Faster R-CNN with ResNet101 was used as a feature extractor to generate

image captions [42]. It proved the effectiveness of the object detection model as the

encoder for the image captioning tasks. Most existing object detection methods, like

DMP [125], R-CNN [71], and Faster R-CNN [70], made good use of classifiers for

performing detection. To detect an object, these systems take a classifier for that object

and evaluate it at various locations and scales in a test image.

Unlike two-stage models, YOLOv2 used Darknet-19 [115] as a feature extractor.

YOLOv3 uses the Darknet-53 [126] network as a backbone with 53 convolutional lay-

ers. The experimental results proved that Darknet-53 was better than SOTA for hav-

ing fewer floating point operations and more speed while maintaining similar accu-
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racy [126]. Darknet-53 is better than ResNet-101 and 1.5 times faster than ResNet-101

as well. Darknet-53 has a similar performance to ResNet-152 but is two times faster.

Darknet-53 also achieved the highest measured floating point operations per second.

This means the network structure could better utilize the GPU and be more efficient

and faster. Because ResNets have too many layers with less efficiency, Darknet-53 is

selected as the backbone of our proposed image captioning system.

LSTM is used as the decoder in our proposed model. During the pre-processing,

the captions will be filled with the ”unk” for marking unknown words, the ”start”

for marking the start of a new sentence, and the ”end” for indicating the end of the

ground truth sentences. The one-hot encoding method is used in the experiment for

training and predicting our implementation. A dictionary containing both words and

their corresponding IDs will be set. With these processes, a dictionary of size D sum-

marises all the different words corresponding to IDs in the dataset. The LSTM model

is trained to predict each word of the target sentence after presenting the image and

preceding words. During the decoding processing, the output of the LSTM at time t�1

is fed to the LSTM at time t. The unrolled version transforms all the recurrent con-

nections into feed-forward connections, specifically if I is denoted as the input image.

S = (S0, ..., SN) is set as the target sentence with N+1 words. The unrolling procedure

is as follows:

x�1 = encoder(I),m�1 = None (4.1)

(st,mt) = LSTM(xt�1,mt�1), t = 0, 1, ..., N

st = Linear(st) (4.2)

j0 = argmaxsjt , j = 1, 2, ..., D (4.3)

St = sj0t (4.4)

xt = We(St), t = 0, 1, ..., N (4.5)

The encoded features, x�1, of image I are only input into LSTM at time t = �1.

m�1 is set as none to inform LSTM about the boundary. From t = 0 to t = N , st is
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the vector of the linear likelihood at time t of all words in the collected dictionary of

size D. mt is the memory at time t. At t = 0, s0 and m0 are generated by LSTM with

the encoded features and the boundary as input. From t = 1, st and mt are received

with the information at the last step. The index j0 of the word that received the highest

probability in st is indicated with the argmax function. Finally, the predicted word at

time t, St, is output from the dictionary. After prediction at time t, the predicted word

is embedded by the word-embedding function We [127]. Word embeddings represent

a word’s semantics by efficiently encoding semantic information that might be relevant

to the task at hand. From t = 0, the embedded vector xt will be input into the LSTM

with the memory at time t together. With such N words, the sentence S = (S0, ..., SN)

is generated.

While accuracy is important in image captioning, speed should also be considered,

especially for mobile device-based real-time applications. By maintaining accuracy and

achieving more stability with the reduced feature dimension, the processing time will

be expected to decrease. For an image caption generator, the parameter size is related

to the parameters of both the encoder and the decoder. The parameter size of an LSTM

model can be calculated as follows:

P S = 4⇥ (input size+ hidden size)⇥ hidden size

+4⇥ hidden size⇥ hidden size⇥ (num layers� 1)

+output size⇥ (hidden size+ 1)

(4.6)

where input size is the size of the input vector, hidden size is the number of LSTM

units in the hidden state, num layers is the number of LSTM layers, and output size

is the size of the output vector at each time step. The factor 4 in the equation comes

from the fact that LSTM has four gates, including an input gate, a forget gate, an output

gate, and a cell gate.

From Equation (4.6), the number of parameters in an LSTM model depends on its

input, hidden, and output sizes. If the input size is halved while the other data sizes

remain the same, the weight matrix from the input layer to the hidden layer will have
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half as many rows with the same number of columns that define the hidden size. This

will result in the weight matrix with half as many elements by reducing the parameter

size by approximately 1/4 of the original size. Therefore, the parameter size of an

LSTM model would be reduced by about one-fourth of its original size if its input size

were halved.

P C = (C W ⇥ CH ⇥ CI + 1)⇥ CO (4.7)

P A = 3⇥ E S2 ⇥N H (4.8)

Eq. 4.7 and 4.8 are the parameter size calculations of the convolutional layer and

self-attention layer. In Eq. 4.7, P C denotes the parameter size of the convolutional

layer. C W and C H denote convolutional kernel width and height, respectively. C I

and C O are input and output channels. P A is the parameter size of the attention layer

in Eq.4.8. E S and N H correspond to the embedding size and number of heads in the

attention layer.

In a self-attention layer, each position is required to calculate its attention with all

other positions, which results in a relatively more significant number of parameters.

This allows the self-attention layer to model global relationships and is suitable for

handling long-range dependencies within sequences.

Conversely, only a local receptive field is considered in a convolutional layer, typi-

cally leading to fewer parameters. The size of the convolutional kernel determines the

local patterns or features that can be captured. This makes convolutional layers suitable

for capturing local structures and features within the input data. Suppose we can use

the convolutional layer with a small-size kernel to help focus on the more critical infor-

mation and remove other details. In that case, the parameter size will not increase so

much. In this way, we can reduce the input of the decoder part to reduce the parameter

size of the whole model.
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4.4 Size-Adjustable Convolutional Module (SACM)

The final features from Darknet-53 are input to SACM for further feature extraction

and dimension reduction without losing important information. The original Darknet-

53 uses a residual network to generate residual blocks of different sizes. For corre-

sponding blocks of various sizes, several convolutional layers and upsampling processes

are designed to analyze the features of items in different sizes and to jump link with

the residual blocks inside Darknet-53 to alleviate the gradient disappearance problem

brought about by increasing depth in deep neural networks.

The following convolutional layers focus on detecting and localizing targets. These

convolutional layers convert the feature maps into predicted feature maps at different

scales to obtain information indicating the presence or absence of targets in a given

region and the location and class of targets. The feature pyramid network (FPN) is

applied to YOLOv3 to fuse the features at different levels. The upsampling layer can

upsample the low-resolution feature map to the same size as the high-resolution feature

map. This way, the semantic information from the shallower layers can be fused with

the detailed information from the deeper layers by the upsampling operation. YOLOv3

designed this part for faster object detection, and we retained this part for global and

local features.

Generally speaking, a larger feature map can provide richer spatial contextual in-

formation, and the model can better understand the relationship between the target and

its surroundings. Nevertheless, for a mobile-device-oriented model, real-time detection

is another important goal. According to Equation 4.6, the decode (i.e., the LSTM) has

fewer parameters if the feature map is smaller. In other words, the smaller the feature

map is, the lower the cost of predicting time and computational sources.

One of the primary considerations in this paper is to keep the performance while re-

ducing the computation costs with a smaller-size feature map. For this purpose, we pro-

pose to insert a SACM between the encoder and the decoder. SACM is a size-adjustable

convolutional module that consists of several convolutional layers for feature extraction

and a few additional convolutional layers for dimension reduction. Increasing and de-
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4.4. SIZE-ADJUSTABLE CONVOLUTIONAL MODULE (SACM)

creasing the convolutional layers for dimension reduction can maintain the balance of

performance and cost. The structure of the Darknet-SACM-LSTM model is shown in

Figure 4.2.

Convolutional layers with a 2 ⇥ 2 convolution kernel are applied in SACM for di-

mension reduction. Incorporating the convolutional layers is a way to form the original

feature through 2 ⇥ 2 filters or 1 ⇥ 1 with non-linearity injection. With the 2 ⇥ 2 con-

volution kernel, each output pixel of the layer is affected by only one pixel in a 2 ⇥ 2

region of the input image after the convolution operation. Firstly, the parameter size

will not increase so much with the small-size convolution kernel. For example, when a

2⇥2 convolutional stack with Ci input channels and Co output channels is set, the stack

is parameterized by 22 ⇥ Ci ⇥ Co = 4Ci ⇥ Co weights. A convolutional layer with a

1⇥1 convolution kernel is equivalent to a cross-channel parametric pooling layer [128].

When the output channel is smaller than the input channel, the convolutional layer can

also be used for dimension reduction. Being compared to the pooling layer, the 1 ⇥ 1

convolutional layer is a way to reduce the dimension without affecting the receptive

fields of the convolutional layers. For the balance between the final output size and the

performance, experiments of SACM with different convolutional layers with 2 ⇥ 2 or

1⇥ 1 kernels are set in the simulations. The settings of SACM are shown in Table 4.1.

In addition, the parameters of all the size-adjusting layers do not increase so much.

With the settings in the table, the module with three layers has the largest number of

parameters, 1.05M. In other words, the parameter size of the whole structure decreases

to nearly 1/8 of the original size after introducing these extra 1.05M parameters.

After processing by the first five convolutional layers, the size of the feature maps

becomes 52⇥52⇥128. The following adjustable convolutional layers can reduce feature

dimension directly for sending to LSTM for caption generation. The SACM performs

as a pipeline connecting the encoder and decoder to reduce feature dimensions, saving

time and computational costs. After passing through SACM, the dimension-reduced

feature maps go through to LSTM to generate captions for the provided images.

In this chapter, experiments were conducted to measure the relationship between
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the feature size and balance of performance and speed. The final feature size, denoted

as Sf , undergoes a reduction from half (1/2) of the original size (Sf = 256⇥ 26⇥ 26)

to a much smaller size of 1/32 of the original (Sf = 64 ⇥ 13 ⇥ 13). This reduction is

achieved by applying 2⇥2 and 1⇥1 convolutional layers. Our experiments also trained

the SACM with the encoder and the decoder together.

With the trainable convolutional encoder of Darknet-53, the training process can

be conducted by simultaneously training the encoder, SACM, and decoder with the

data, ground truth pairs without fixing the encoder. Therefore, the proposed model’s

Darknet-53, SACM, and LSTM parameters are updated to find the features more useful

for learning. The training processing is shown in Figure 4.3.

Since different people may give other descriptions of the same image, in a general

image captioning dataset, each image usually has multiple captions corresponding to it.

The Flickr 8K and MS COCO dataset contains five different ground truth captions for

each image. Multiple annotations can provide more information and diversity to help

the model learn different description styles, have different lexical usages, and learn dif-

ferent semantic expressions. Such a multi-labelling approach helps the model to better

adapt to additional input images and generate diverse and higher-quality descriptions

during testing. During training, each caption is set with the image, which it describes

as a pair of input and ground truth. In other words, every image is input to the model

five times with different captions. For example, the training set of the Flickr 8K dataset

contains 6,000 images, so there are 30,000 pairs of input and ground truth in the training

set.

Word2Index is the word-embedding structure used in this paper to map captions to

vectors. At first, the structure collects all the unique words in the dataset to set a vocab-

ulary. Equation 4.6 mentions that the vocabulary scale influences the parameter size.

Large-scale vocabulary will increase storage and computational costs. Moreover, it is

difficult for the model to obtain enough information from rare words that appear only

once or twice and will also affect the model’s prediction of high-frequency words. So,

we set thresholds in our experiments at 5 to avoid the effect of rare words on the train-
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ing effect of the model. Then, the structure maps each word to its unique corresponding

index, which is set from 0, to construct the vocabulary for the dataset. The vector of

size (sequence length, index) can map the ground truth into a vector. The value of the

corresponding index of the target word is 1, and the others are 0. In addition, the words

not in the vocabulary will be instead of < unk >.

During the prediction process of image captioning, the model generates a prob-

ability distribution at each time step. The word with the highest probability in the

distribution is selected as the current output. The prediction continues until the termi-

nation marker is encountered or the maximum generation length is reached. Finally, the

generated words are combined to form the final prediction result. Unlike the training

process, the model selects only one best sentence as the final rendered image caption.

To evaluate the model’s performance, the evaluation metrics calculate the similarity be-

tween the generated subtitles and each ground truth to derive a composite score, thereby

mitigating the effect of subjectivity on the evaluation results.

4.5 Dataset and Experiment Setting

The Flickr 8K dataset and MS COCO dataset were used in the experiments. Flickr

8K [56] is a popular dataset with 8000 images collected from Flickr. The training data

comprises 6,000 images, while the test and evaluation data comprise 1,000 images sep-

arately. Each image in the dataset has five reference captions annotated by humans.

The MS COCO dataset is extensive for image recognition, segmentation, and caption-

ing. The dataset has more than 300,000 images and more than 2 million instances with

80 object categories and five captions per image. Many image captioning methods have

been tested on these two datasets. To compare our model’s performance on the MS

COCO dataset with other results, the fixed training data used 118,287 images, while the

evaluation and testing sets included 5,000 images, respectively.

The end-to-end VGG-LSTM model was used as a baseline to compare performance

and speed with the end-to-end Darknet-LSTM model. In the VGG-LSTM experiment,
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4.5. DATASET AND EXPERIMENT SETTING

a pre-trained VGGNet-19 model is used as a feature extractor. To fit the pre-trained

model, input images are transformed into 224 ⇥ 224 ⇥ 3. As an end-to-end model,

the model is fine-tuned for Flickr 8K and MS COCO datasets. The Adam optimizer

was used with a base learning rate of 10�5 for both datasets’ models. The dimension of

feature maps is 4096, while the dimension of hidden layers of LSTM is 512 in the VGG-

LSTM model. The VGG-LSTM model is trained by minimizing the cross-entropy loss.

The Adam optimizer with the same learning rate was applied to the end-to-end Darknet-

LSTM model. The input of the original Darknet feature extractor is required to be

416 ⇥ 416 ⇥ 3. The batch size is 1 for Flickr 8K and 50 for MS COCO datasets. The

maximum epoch was set to 30. The model with the highest BLEU scores on evaluation

data was used for testing. In addition, we also set experiments with the original Darknet

as an encoder to compare the performance with our proposed model.

All experiments were run on a computer environment under Ubuntu 20.04, AMD

Ryzen 9-3900X CPU with 32GB RAM, and GTX 3090 GPU with 24G memory. Py-

torch was used for the deep learning framework. Following the previous research, the

rule of captions with at most 20 words was set for both datasets. The specific vocab-

ulary of words was built by particularly removing words that occurred fewer than five

times. A vocabulary of 2550 words was created for Flickr 8K, while a vocabulary of

10,321 words was built for MS COCO.

The cross-entropy loss was measured throughout the whole training process. If the

dictionary is of size D, the equation of the cross-entropy loss between the predicted

word and the target word at time t is as follows:

Losst = �
DX

j=1

Tt,j log(st,j) (4.9)

and the average loss of the sequence of length N is as follows:

Loss =
1

N

NX

t=1

Losst (4.10)

where Tt is the ground truth of the given word at time t. Tt,j indicates the probability
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of the j-th word in the dictionary at the current time step. For example, if the target

word at time t is the 7th word in the dictionary, Tt,7 is 1, and others are 0. st,j denotes

the probability of the model predicting the j-th word at time t. The average loss Loss

of the predicted sequence length N is calculated with the average function. The N is

the same as the target sequence during the training process, while the N will be fixed

in the prediction process. The measured losses in the experiments are the average of all

cross-entropy losses between the prediction and the target captions.

Some evaluation metrics from machine translation were used in evaluations, includ-

ing BLEU [122], METEOR [129], ROUGE [130], and CIDEr [131]. BLEU is used to

analyze the co-occurrence of n-grams between the predicted captions and ground truth.

The n-gram is often used to reflect the precision of the generated captions [122]. It

compares a text segment with a set of references to compute a score correlating with a

human’s quality judgement. The semantic propositional image caption evaluation ME-

TEOR is calculated based on the weighted harmonic average of single-word recall and

precision [129], which can offset the shortcomings of BLEU. It also adds a word-net-

based measurement to address issues of synonym matching. ROUGE [130] compares

the generated word sequence and word pairs with reference descriptions. There are

several different ROUGEs, such as ROUGE-L and ROUGE-N. The most widely used

ROUGE-L, in which the longest identical fragment in the generated and ground-truth

sentences is defined as the longest common sub-sequence, is selected as one of the

evaluation metrics in the experiments. CIDEr [131] is an automatic caption evaluation

metric based on consensus. It treats the sentence as a document and uses TF-IDF to cal-

culate the weight of words. The consistency of the generated caption with the reference

caption is measured by the cosine distance between the TF-IDF vector representations

of two sentences.
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4.6. EXPERIMENTAL ANALYSIS

4.6 Experimental Analysis

4.6.1 Experimental Results on Flickr 8K

VGGNet is used as an encoder of the baseline model in this paper. After removing

the classifier, softmax, and last fully connected layer, the size of the feature maps is

4096. The changes of both loss values and BLEU scores from 1-gram to 4-gram on both

training data (left) and evaluation data (right) are shown in Figure 4.4a and Figure 4.4b.

Each figure’s horizontal (x) axis represents the number of learning epochs. The left

vertical (y) axis represents the loss values, while the right vertical axis shows the values

of BLEU scores. Although the training loss dropped throughout the training process,

the evaluation loss slightly increased after 20 learning epochs. As expected, the BLEU

scores were lower on the evaluation data than those obtained on the training data.

Because of the limited memory in our computer environment, the experiments on

SACM feature selection are set from 1/2 (Sf = 256 ⇥ 26 ⇥ 26) of the original size to

1/32 (Sf = 64⇥ 13⇥ 13) of the original size. The training and predicting time cost of

SACM with different feature sizes are shown in Table 4.2. For performance comparison,

BLEU-1 and BLEU-4 scores and the cross-entropy loss by SACM on the testing set are

also given in Table 4.2. The results suggest that SACM with Sf = 128⇥13⇥13 features

received the highest BLEU scores with a similar prediction speed to the baseline model

of VGG-LSTM.

The results show that the model with the highest BLEU-1 score of 82.3% used

Sf = 128 ⇥ 13 ⇥ 13 features. Its BLEU-4 score is 0.439, the same as the model using

Sf = 256⇥ 26⇥ 26 features but higher than others. On testing 1000 images, the model

with Sf = 128 ⇥ 13 ⇥ 13 features used 3.9 min ran 15 min faster than the model with

Sf = 256⇥ 26⇥ 26 features but 1 min slower than the model using Sf = 64⇥ 13⇥ 13

features. The baseline model could neither match the performance of the implemented

models nor run faster than the model using Sf = 64⇥ 13⇥ 13 features.

By comparing charts in Figure 4.4, it could be seen that SACM with Sf = 64⇥13⇥

13 reached a training loss of 1.7 lower than the training loss of 2.1 by VGG16-LSTM.
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However, SACM could lead to overfitting on small data sets such as Flickr 8K. Using

the evaluation loss to decide on the final learned model for solving the problems with

fewer samples would be important. On Flickr 8K, all the models reached their highest

BLEU-4 scores around the 20th training epoch.

4.6.2 Experimental Results on MS COCO

The training and evaluation results of the baseline encoder VGGNet on the MS

COCO dataset were given in Figure 4.5a and Figure 4.5b. It can be seen that both the

training loss and the evaluation loss were decreasing from the first epoch until the end.

The loss values and BLEU scores changed more in the first 20 epochs. Unlike the Flickr

8K results, the best SACMs of different feature sizes on the MS COCO dataset were all

received on the 30th epoch. That is, no overfitting appeared on the MS COCO dataset.

Because the dictionary size for the MS COCO dataset is nearly five times larger than

the Flickr 8K dataset, only the models using fewer features were tested. We also added

the performance and time cost of Darknet-LSTM to the table for comparison.

The changes in the loss and BLEU scores on Darknet-SACMs with features of Sf =

128 ⇥ 13 ⇥ 13 on both the training and evaluation sets for MS COCO are shown in

Figure 4.5c and Figure 4.5d. For performance comparison, the performance of different

SACMs on the MS COCO dataset is shown in Table 4.3. The B@1, B@4 and No.

are the BLEU-1 and BLEU-4 scores and the epoch number of the model that received

the best BLEU-4 score on the evaluation data. Similar results were obtained on MS

COCO. SACM with features of Sf = 128 ⇥ 13 ⇥ 13 outperformed on both BLEU-1

and BLEU-4 scores. Its BLEU-4 score is 0.443, which is higher than the others. The

baseline model had the lowest BLUE scores. As for the running time, the time rose

from 14.5 min to 31.2 min when the final feature size increased from Sf = 64⇥13⇥13

to Sf = 256⇥ 13⇥ 13 in SACM.

The changes in the loss and BLEU scores on Darknet-SACMs with features of

Sf = 128 ⇥ 13 ⇥ 13 on both the training and evaluation sets for MS COCO are

shown in Figure 4.5c and Figure 4.5d. It is interesting to see that although the learned
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4.7. RESULT COMPARISON WITH SOTA

Darknet-SACMs had higher loss values on both the training and the evaluation set than

the learned VGG-LSTM, the learned Darknet-SACMs were able to have higher BLEU

scores. This indicates that the lower entropy-loss values might not necessarily lead to

better captions.

4.7 Result Comparison with SOTA

The experiments in this paper proved the effectiveness of our proposed model and

succeeded in dimension optimization. The encoder of the best model is set with Darknet

as the backbone, and its output feature is 128 ⇥ 13⇥ 13. To showcase our superiority,

we compare state-of-the-art results on both the Flickr and MS COCO datasets in Ta-

bles 4.4 and 4.5, respectively. The best scores for each metric are highlighted in bold,

and we also include the number of parameters used for prediction to compare prediction

speeds.

As we can see from the table, our model shows competitive performance. Specifi-

cally, it outperforms the original CNN+RNN-based methods, indicating that our critical

designs are effective for image captioning tasks. In addition, our model’s performance

is better than many large-scale models. This suggests that further research on the en-

coder–decoder architecture could inspire new efforts in this area.
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Table 4.4: Comparisons of our proposed Darknet-LSTM with SACM and some SOTA
methods on Flickr 8K dataset. B@1, B@4, M, R, C, and P denote BLEU@1, BLEU@4,
METEOR, ROUGE-L, CIDEr, and the model sizes.

Method B@1 B@4 M R C P

Neuraltalk2 [5] 57.9 16.0 - - - 31 M

D-CNN [132] 49.5 20.1 42.5 - - -

VGG16-LSTM [133] 62.6 28.7 - - - 138 M

Hard-attention [32] 66.0 31.4 24.8 50.3 68.9 149 M

Neural Baby Talk [134] 66.4 32.6 26.2 52.5 84.5 37.7 M

m-RNN [135] 66.9 32.8 25.5 51.1 75.8 180 M

SCST [109] 67.5 33.8 25.8 51.6 76.0 -

Vis-to-Lang [95] 72.9 30.7 27.9 - 54.3 157 M

ResNet with Attention [136] 55.6 33.5 - - - -

AoANet [137] 67.4 33.5 26.7 52.7 84.7 115 M

CNN-Bi-GRU [138] 65.6 39.4 - - - -

Darknet-LSTM (ours) 82.3 43.9 27.3 65.1 104.7 97.7 M

CATANIC [139] 78.8 46.7 - 63.8 136.5 300 M

Hybrid attention-based CNN-Bi-GRU [139] proposed a hybridized attention-based

deep neural network (DNN) model. The model consists of an Inception-v3 convolu-

tional neural network (CNN) encoder to extract image features, a visual attention mech-

anism to capture significant features, and a bidirectional gated recurrent unit (Bi-GRU)

with an attention decoder to generate the image captions. CATANIC [139] applied the

AoANet with DenseNet169 as the encoder to extract the initial features of the images

and the modified transformer model as the decoder to transform the image feature vector

into an image caption.
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4.7. RESULT COMPARISON WITH SOTA

Table 4.5: Comparisons among our proposed Darknet-LSTM with SACM and some
SOTA methods on MS COCO dataset. B@1, B@4, M, R, C, and P denote BLEU@1,
BLEU@4, METEOR, ROUGE-L, CIDEr, and the model sizes.

Method B@1 B@4 M R C P

Hard Attention [32] 71.7 25.0 23.04 - - 149 M

Adaptive Attention [94] 74.2 33.2 26.6 - 108.5 -

Actor–Critic Sequence [110] 77.8 33.7 26.4 55.4 110.2 -

Convolutional Image Captioning [140] 71.1 28.7 24.4 52.2 175 189.3 M

CNN Language Model [141] 72.6 30.3 24.6 - 96.1 -

SCST [109] 78.1 35.2 27.0 56.3 114.7 -

Up-Down [42] 80.2 36.9 27.6 57.1 117.9 108 M

GCN-LSTM [142] 77.4 37.1 28.1 57.2 117.1 -

SGAE [143] 81.0 38.5 28.2 58.6 123.8 -

AoANet (ResNeXt-101 Grid) [137] 81.0 39.4 29.1 58.9 126.9 115 M

X-Transformer [144] 81.9 40.3 29.6 59.5 131.1 11 B

RSTNet [145] 82.1 40.0 29.6 59.5 131.9 54 M/70 M

GET [146] 81.6 39.7 29.4 59.1 130.3 110 M

DLCT [96] 82.4 40.6 29.8 58.8 133.3 -

PureT [147] 82.8 41.4 30.1 60.4 136.0 -

ExpansionNet V2 [148] 83.3 42.1 30.4 60.8 138.5 129.6 M

BLIP-2 ViT-G OPT [149] - 42.4 - - 144.5 2700 M

Darknet-LSTM (ours) 83.1 44.3 32.8 65.7 148.0 108.2 M

OFA [150] - 44.9 32.5 - 154.9 -

mPLUG [151] - 46.5 32.0 - 155.1 510 M

Our model outperforms most previous models on the Flickr 8K dataset across all

metrics in single and ensemble configurations. Our model outperforms other models by

BLEU-1 and ROUGE-L. However, the CATANIC model has a slightly higher score in

BLEU-4 and CIDER-D despite having a parameter size almost twice as large as ours,
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with differences of only 0.03 and 0.3, respectively.

More and more large-scale models are appearing and performing better and better.

ExpansionNet V2 [148] applied block static expansion, which distributes and processes

the input over a heterogeneous and arbitrarily big collection of sequences characterized

by a different length compared to the input one. OFA [150] follows the previous re-

search to adopt the encoder–decoder framework as the unified architecture. Both the

encoder and the decoder are stacks of transformer layers. A transformer-based en-

coder layer consists of a self-attention and a feed-forward network (FFN). In contrast,

a transformer-based decoder layer has a cross-attention network more than the encoder

for building the connection between the decoder and the encoder output representa-

tions. The mPLUG [151] introduces a new asymmetric vision-language architecture

with novel cross-modal skip-connections; it consists of N skip-connected fusion blocks

to address two fundamental problems of information asymmetry and computation ef-

ficiency in cross-modal alignment. This model adapts the connected attention layer to

each S asymmetric co-attention layer.

Our model achieved better results than the previous ExpansionNet V2 on the MSCOCO

dataset, with improvements of 1.1 BLEU-4, 2.4 METEOR, 4.9 ROUGE-L, and 10.0

CIDEr-D. Compared to other models, our proposed model outperformed them by 0.3

METEOR and 0.57 ROUGE-L. However, our model was less efficient with the OFA

and mPLUG on BLEU-4 and CIDER scores. Despite this, our experiments have shown

that the performance of approaches can be improved with larger datasets. Additionally,

our best model could speed up predictions with a smaller size than attention-based and

transformer-based large-scale models.

Ref. [32] introduced an attention-based image captioning model focusing on gen-

erating informative captions while considering computational efficiency to balance the

performance and the cost. The method received a 71.8 BLEU-1 score and a 25.0 BLEU-

4 score on the MS COCO dataset. In [94], the authors presented an adaptive attention

mechanism that learns to attend to image regions for caption generation selectively, and

this method received a 74.8 BLEU-1 score and 33.6 BLEU-4 score. The method pro-
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4.8. QUALITATIVE ANALYSIS

posed in [110] was an actor–critic framework for training image captioning models.

It tried to establish a balance via a trade-off between computational cost and caption-

ing performance and received a 33.7 BLEU-4 score. Ref. [141] explored the use of

language convolutional neural networks (CNNs) for image captioning, discussed the

trade-off between computational cost and captioning performance, and received a 72.6

BLEU-1 score and 30.3 BLEU-4 score. Ref. [140] introduced a convolutional approach

to image captioning that focused on reducing the computational cost while maintain-

ing competitive performance. With the help of linear units, this model received a 71.1

BLEU-1 score and a 28.7 BLEU-4 score.

With several convolutional layers, our model performs better than most existing

CNN+RNN models and transformer-based models and receives comparable results to

those of the SOTA models with much smaller model sizes than the SOTA models.

4.8 Qualitative Analysis

Figure 4.6 shows prediction examples by our models with encoders with different

output sizes on the Flickr 8K validation set, which shows reasonable prediction results.

The wrong parts of a caption are marked. The GT caption is one of the five targets

for evaluating the predicted sentence in the dataset. Compared with the ground truth

captions, our best model with the encoded feature of size Sf = 128 ⇥ 13 ⇥ 13 has

obvious advantages in recognizing objects and some relative details. This advantage

may come from the suitable feature with less loss of important information for the

decoder.

4.9 Conclusions and Future Works

The detection of object classes and positions and their relationships should be con-

sidered in solving image captioning tasks. Therefore, the Darknet for object detection

is the backbone of our proposed image captioning model. SACM, the size-adjustable

convolutional module, is designed for feature extraction and dimension reduction in
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4.9. CONCLUSIONS AND FUTURE WORKS

this paper. With the SACM, convolutional layers are applied for feature dimension re-

duction while losing less critical information on global and local features. With feature

dimension reduction, the parameters of the whole model are smaller. With the convo-

lutional layers, the feature size is reduced while expanding the depth of the network for

receiving high-level semantic and contextual information. Faster implementation and

better performance could be achieved simultaneously in our end-to-end image caption-

ing system with a pre-trained Darknet, SACM, and LSTM.

The end-to-end neural network system proposed in this paper, Darknet-SACM-

LSTM, is trained to maximize the likelihood of the correct words in the final sentence

describing the given image. After training, our proposed systems can automatically

generate a descriptive caption in plain English for a given image. Experiments on the

Flickr 8K and MS COCO datasets show the robustness of our Darknet-SACM-LSTM

system in terms of speed and several metrics of BLEU scores, METEOR, ROUGE, and

CIDEr. By using one or more convolutional layers, SACM could reduce the number

of features, speed up the predicting process, and maintain the performance of sentence

quality measured by using both the cross-entropy loss and BLEU score.

The experimental results also indicate that neither the best training loss nor the best

evaluating loss could let the learned systems with the highest metrics engage in image

captioning. By modifying the cross-entropy loss function, it would be necessary to ex-

plicitly consider the relationships between items and their positions in the images. The

modified loss functions might help the image captioning system to achieve better met-

rics. Meanwhile, all the parameters in our proposed Darknet-SACM-LSTM are train-

able. It would be interesting to know which parts should be adaptive and which parts

could be fixed. Even a faster system could be implemented by fixing some parameters

besides the feature reductions.
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Chapter 5

Performance and Cost Balancing

Image Captioning with Vision

Transformer

By analysis of results in Chapter 3 and 4, the SACM module is practical in maintain-

ing a balance between performance and cost. Although the parameter size of Darknet

is much larger than VGGNet, our model still received good performance with shorter

GPU machine time and similar time spent on the CPU machine. It proves that a large-

scale model can also be used as an encoder of real-time image captioning. This chapter

proposed a new image captioning model based on a vision transformer, which received

comparable performance in image recognition. As we want to use it for real-time gen-

eration, the proposed and existing models are compared on both the BLEU score and

training and testing time. Moreover, this is the first time the vision transformer method

has been used on an image caption generation task.

5.1 Introduction

Image captioning is a task to generate a descriptive sentence for a given image. It

connects computer vision and language processing by extracting visual information and

interpreting it in human language. The encoder-decoder architecture remains dominant
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5.1. INTRODUCTION

Figure 5.1: Overview of the encoder-decoder model for image captioning. The encoder
extracts image features, while the decoder generates text descriptions by analyzing the
features.

in current state-of-the-art (SOTA) models [152–161]. The encoder is responsible for

encoding visual features. At the same time, the sentence decoder learns to generate the

sequential sentence word-by-word, as shown in Figure 5.1.

Both the encoder and decoder contribute to the quality of generated captions. Con-

volutional neural networks (CNNs) are still the most prevalent in computer vision. To

analyse the gap between visual processing and language processing, most existing ar-

chitectures of image captioning follow the encoder-decoder architecture with CNN-

RNN pipeline for image encoding and text generation [31, 32, 42, 142, 162].

For a long time, CNNs have been the preferred option for image-processing tasks.

They excel at learning from vast amounts of image data and have achieved impressive

results in tasks such as image classification, segmentation, and object detection. In vi-

sion, attention is applied in conjunction with convolutional networks or used to replace

specific components of convolutional networks while keeping their overall structure in

place. Vision Transformer (ViT) [3] attains excellent results compared to state-of-the-

art convolutional networks, requiring substantially fewer computational resources.

The ViT model achieved excellent results and approached or surpassed the SOTA

on multiple image recognition benchmarks. ViT employs self-attention mechanisms

to capture global relationships in input images, providing more effective modelling of

long-range dependencies and global structural information than the traditional CNN

encoder. ViT offers benefits in scenarios where global dependencies and contextual

understanding are critical. In the image captioning task, the global information and

contextual relationships are essential for measuring relationships among items in the

image. The pre-trained ViT model can also perform comparably to CNNs with a large-

scale dataset such as ImageNet21k.
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Previous research has proved the object detection model can be used as an encoder

for image captioning. Our research aims to propose a comparable image captioning

model that can generate an accurate depiction, including item classes and position re-

lationships. The ViT model, which divides images into several patches and encodes

patches with their position embedding information, can be a good choice for the en-

coder of the image captioning model.

However, suppose we adopt the original model as the encoder and input the pre-

dicted results to the decoder directly. The feature map with global information and

contextual relationships provided by the hidden layers might be lost in that case. If

we feed the outputs of the hidden layers to the decoder, the large input size will cause

a layer cost of time and computational resources. In this chapter, we would like to

find an excellent way to keep the cost of computational resources and the predicting

time, whether to use feature maps directly extracted from a tiny version or reduced by

convolutional layers.

Building upon previous research, we introduce a fine-tuned model, which combines

a Vision Transformer as an encoder with an LSTM network serving as a decoder, with a

particular emphasis on image captioning. Our motivation lies in leveraging this model

for wearable devices to assist visually impaired individuals in perceiving their surround-

ings. However, we face a challenge in striking a balance between quality and speed,

given the unique requirements of our application. Consequently, this paper delves into

comparing the performance of feature maps with varying scales to address this chal-

lenge.

5.2 Outline

We arrange this chapter in the following order.

• Section 5.3: An overview of the proposed method.

• Section 5.4: Detailed discussion about the dataset and experiment settings.

• Section 5.5: Discussion on results and comparison to SOTA models.
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5.3. PROPOSED METHOD

Table 5.1: Different Versions of ViT model and its Feature Size

Model Feature Size

Tiny-224 [batch size, 198, 192]
Small-224 [batch size, 198, 384]
Base-224 [batch size, 198, 768]
Base-384 [batch size, 578, 768]

• Section 5.6: Conclusion and possible future work.

5.3 Proposed Method

The Vision Transformer (ViT) model detects objects using an encoder with layer

norm, multi-head attention, dropout, and an MLP block, as shown in Figure 5.2. For

feeding images to the Transformer encoder, each image is split into a sequence of fixed-

size, non-overlapping patches, which are then linearly embedded. A [CLS] token is

added to represent an entire image, which can be used for classification. This process is

similar to the caption-generating process, which is also input with a sequence of image

representation and a [CLS] token. This is also one of the main reasons we chose ViT

as the encoder of our model.

The original Vision Transformer was pre-trained using a resolution of 224 ⇥ 224.

During fine-tuning, it is beneficial to use a higher resolution (384 ⇥ 384) than pre-

training []. To fine-tune at higher resolution, the authors perform 2D interpolating the

pre-trained position embeddings according to their location in the original image.

Facebook AI proposed four variants available: tiny, small, base-224 and base-384

versions. As the Vision Transformer expects each image to be of the exact resolution,

one can use the corresponding image processor to resize and normalize images for the

model. The patch and image resolutions used during pre-training or fine-tuning are

reflected in the name of each checkpoint. These models are all pre-trained with the

Imagenet-21k dataset. The four version models and the corresponding feature map size

are shown in Table 5.1.

According to the table, the feature sizes of base-224 and base-384 versions are still
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5.3. PROPOSED METHOD

Figure 5.3: Overview of the proposed model. To balance the performance and cost, we
apply convolutional layers for feature map dimension reduction while maintaining the
global information and the relationships between different regions.

substantial for the LSTM model. Generally speaking, a larger feature map provides

richer spatial contextual information, and the model better understands the relationship

between the target and its surroundings. However, real-time detection is crucial for a

mobile-oriented model, so keeping the performance while reducing computation costs

with a smaller feature map is essential. In this chapter, we compared the performance

and cost of image captioning models with the previous three ViT models as an encoder.

As mentioned before, the number of parameters in an LSTM model depends on

its input, hidden, and output sizes. If the input size is halved while the other data

sizes remain the same, the weight matrix from the input layer to the hidden layer will

have half as many rows with the same number of columns that define the hidden size.

With limited computational resources, the massive size of parameters will cause out-of-

memory.

In addition, while accuracy is vital in image captioning, speed should also be con-

sidered, especially for mobile real-time applications. To find the optimum model, we

fine-tuned the model with large feature maps by inserting convolutional layers for fea-

ture dimension reduction to maintain the balance of performance and cost of the two

base versions of ViT encoder, as shown in Figure 5.3. By maintaining accuracy and

achieving more stability with the reduced feature dimension, we expect the processing

time to decrease.

To compare the performance of different encoders, we keep using the single-layer

Long Short-Term Memory (LSTM) network as a sequence generation decoder in our
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model for image captioning. The LSTM takes image features as input to generate cap-

tions. The forget, input and output gates help process sequential data and learn long-

range dependencies. The LSTM is composed of a hidden state and three gate units:

forget, input, and output gate. The forget gate determines which previous hidden-state

information to retain, the input gate decides which new input information to incorpo-

rate, and the output gate controls how the current input generates a new hidden state.

As mentioned, we use pre-trained Vision Transformer models to extract image fea-

tures, represented as vectors, and feed the dimension-reduced feature map into the

LSTM as input sequences. Like previous research, we use cross-entropy loss and opti-

mize with Adam. We randomly sample data, compare generated sequences with ground

truth, and compute loss. We also use learning rate decay to enhance training stability.

During the decoding phase, we use a sampling strategy to generate image captions

by sampling words from the output distribution at each time step. The word with the

highest probability is chosen as the prediction for diverse and creative caption gener-

ation at each time step. During training, we tuned the hyperparameters, setting the

LSTM’s hidden dimension to 512 and using the Adam optimizer with an initial learn-

ing rate of 0.001 to optimize performance in the image captioning task.

5.4 Dataset and Experiment Settings

The main goal of an image captioning model is to achieve less distance between

the predicted sentence and the GT. We utilized the Flickr 8K dataset [56] sourced from

Flickr. The dataset encompasses 8,000 samples, with five human-annotated captions

for each image. We employed a standard division into training, validation, and test-

ing subsets, comprising 6,000 images for training and 1,000 for validation and testing,

respectively.

Unlike the Darknet we used in Chapter 4, the ViT model pays more attention to

global contextual understanding. We applied the pre-trained ViT as an encoder of our

model to maintain such global information.
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5.4. DATASET AND EXPERIMENT SETTINGS

We set several experiments with the three ViT versions as encoders in the exper-

iment to compare the performance and computational cost. For the goal of real-time

detection, we measured the prediction time on both GPU and CPU machines.

We applied corresponding pre-processes to meet the different requirements of dif-

ferent encoders. We also embedded labels to transform textual captions into numerical

representations. Our model is based on the Vision Transformer and Long Short-Term

Memory network.

LSTMs are well-suited for sequential data processing and essential for generating

fluent and contextually relevant sentences. Their recurrent nature allows them to capture

dependencies and relationships within textual data, which is crucial for formulating

coherent captions that accurately describe the visual content.

The combination of ViT and LSTM offers a synergistic approach. The ViT con-

tributes strong visual feature extraction capabilities, enabling the model to comprehend

images effectively. The LSTM, in turn, refines these features by sequentially generating

captions, ensuring that the generated text aligns with the visual context and syntactic

structure. To gauge the effectiveness of our model, we compare its performance against

VGG16-LSTM using appropriate statistical tests.

All experiments were conducted within a computer environment running Ubuntu

20.04. The hardware configuration included an AMD Ryzen 9-3900X CPU with 32GB

of RAM and a GTX 3090 GPU boasting 24GB of memory. Pytorch served as the chosen

deep learning framework. Adhering to prior research practices, a maximum caption

length of 20 words was enforced for both datasets. A carefully curated vocabulary

was constructed by excluding words occurring fewer than five times. Various machine

translation metrics, namely BLEU, METEOR, ROUGE, and CIDEr, were employed for

evaluation.

BLEU assesses the degree of n-gram overlap between generated captions and ground

truth references. The METEOR evaluation metric gauges semantic propositional im-

age caption quality by computing a weighted harmonic mean of single-word recall

and precision. ROUGE, encompassing various variants like ROUGE-L and ROUGE-
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N, evaluates the match between generated word sequences and reference descriptions.

Our experiments primarily employ ROUGE-L, which defines the longest common sub-

sequence as the longest identical fragment within generated and ground-truth sentences.

CIDEr, a consensus-based automatic caption evaluation metric, treats sentences as doc-

uments and employs TF-IDF to assign word weights.

5.5 Empirical Analysis

Firstly, we provide a table with the performance of the three related version models

and the predicting time on CPU and GPU, as shown in Table 5.2.

For comparison, we also calculated the number of operators of our proposed models

shown in Table 5.3.

We provide a detailed overview of the quantitative evaluation metrics used to as-

sess our model’s performance, as shown in Table 5.4. These metrics include BLEU,

METEOR, ROUGE, and CIDEr. They measure how well our model captures visual

understanding, generalization, and human-like captioning.
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5.5. EMPIRICAL ANALYSIS
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5.5. EMPIRICAL ANALYSIS

Table 5.4: Comparisons of our proposed ViT-LSTM with convolutional feature reduc-
tion and some SOTA methods on Flickr 8K dataset. B@1, B@4, M, R, C, and P denote
BLEU@1, BLEU@4, METEOR, ROUGE-L, CIDEr, and the model sizes.

Method B@1 B@4 M R C P

Neuraltalk2 [5] 57.9 16.0 - - - 31 M

D-CNN [132] 49.5 20.1 42.5 - - -

VGG16-LSTM [133] 62.6 28.7 - - - 138 M

Hard-attention [32] 66.0 31.4 24.8 50.3 68.9 149 M

Neural Baby Talk [134] 66.4 32.6 26.2 52.5 84.5 37.7 M

m-RNN [135] 66.9 32.8 25.5 51.1 75.8 180 M

SCST [109] 67.5 33.8 25.8 51.6 76.0 -

Vis-to-Lang [95] 72.9 30.7 27.9 - 54.3 157 M

ResNet with Attention [136] 55.6 33.5 - - - -

AoANet [137] 67.4 33.5 26.7 52.7 84.7 115 M

CNN-Bi-GRU [138] 65.6 39.4 - - - -

ViT-LSTM-8192 (ours) 82.9 42.6 28.4 63.1 103.0 105M

ViT-LSTM-4096 (ours) 81.7 42.2 26.9 63.2 101.6 95M

CATANIC [139] 78.8 46.7 - 63.8 136.5 300 M

We explore the influence of different feature dimension settings on the model’s per-

formance. We investigate the effects of varying feature dimensions as 4,096 (the same

as the baseline model) and 8192 (2 times larger than the baseline model) on the model’s

performance.

In addition, we also discuss the practical implications of our model’s performance,

particularly in the context of wearable device-oriented models. For this purpose, we

compare the parameter size of our model with other SOAT models.

As we can see from the table, our model shows competitive performance. Specifi-

cally, it outperforms the original CNN+RNN-based methods, indicating that our critical

designs are effective for image captioning tasks. In addition, our model’s performance
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is also better than many models with larger scale. This suggests that further research on

the encoder–decoder architecture could inspire new efforts in this area.

Our model outperforms most of the previous models on the Flickr 8K dataset across

all metrics in both single and ensemble configurations. Our model outperforms other

models by BLEU-1 and METEOR. This is mainly because the ViT encoder pre-trained

with a large dataset performs better on image classification. However, the CATANIC

model has a slightly higher score in BLEU-4 and CIDER-D despite having a parameter

size almost three times larger than ours, with differences of 3% and 3.5%, respectively.

5.6 Conclusion and Possible Future Work

In this paper, we propose a ViT-LSTM model for solving image captioning tasks

to address the challenge of long-range dependencies. The ViT model pre-trained with

the ImageNet 21k dataset can capture global context, enabling the following LSTM to

generate captions that reflect local and global visual cues.

Moreover, we employ convolutional layers for feature map dimension reduction.

Convolutional layers preserve spatial relationships and local patterns while reducing

dimensionality. This helps the model understand local details and relationships between

regions. In this way, better performance and less computational cost could be balanced.

Our proposed model can automatically generate descriptive captions in plain En-

glish for images. Experiments on the Flickr 8K dataset show the robustness of our ViT-

LSTM model in terms of parameter scale and multiple metrics such as BLEU scores,

METEOR, ROUGE, and CIDEr. Convolutional layers can reduce the dimension of

the final feature map from the encoder to maintain the generated caption quality while

speeding up the prediction process. The experiment results proved that our model could

address the challenge of balancing performance and cost.

It is also essential to acknowledge the limitations of our model. As we know, the

cross-entropy loss calculates the distance between the prediction distribution and the

target. It is a good choice for prediction with only one correct ground truth. However,
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5.6. CONCLUSION AND POSSIBLE FUTURE WORK

image captioning has five or even more ground truth and several specific metrics. It

would be interesting to research how to train a model to fit the metrics better.

95



Chapter 6

Conclusion

So far, we have seen that image captioning has emerged as a dynamic and promis-

ing field at the intersection of computer vision and natural language processing. The

intricacies of image captioning, delving into the challenges the visually impaired face in

comprehending their surroundings and the significance of leveraging machine learning

to facilitate a more inclusive and accessible world, one is that the mobile device-oriented

models require real-time prediction. Moreover, training a deep and large-scale neural

network with high performance in a single GPU machine is computationally expensive.

Even loading a pre-trained large-scale image captioning model in a single lab-level GPU

sometimes runs out of memory. In addition, training an image captioning model in a

single GPU device takes several days. During testing time, the higher total number of

parameter costs require a longer time for prediction. This is why we research balancing

performance and cost of image captioning.

In conclusion, our research aims to determine the model’s effectiveness for real-

world applications, particularly in providing visually impaired individuals with imme-

diate, contextually relevant information about their surroundings. In this dissertation,

we first proposed a novel Darknet-based image captioning model. Through several the-

oretical analyses and empirical studies with image captioning, we have shown that such

models achieve comparable performance to the large-scale image captioning models.

In the following paragraphs, we conclude the dissertation in a chapter-wise manner.
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5.6. CONCLUSION AND POSSIBLE FUTURE WORK

Chapter 2 summarized a literature review of existing image captioning models. We

provided some preliminary knowledge about our proposed models in this dissertation.

The literature review undertaken in this dissertation has served as the foundation upon

which our research journey was built. Through an exhaustive examination of existing

studies, we gained insights into the historical progression, significant milestones, and

the evolving landscape of image captioning. The review provided a critical perspective

on the challenges, trends, and state-of-the-art methodologies shaping the field.

In Chapter 3, we first introduced a novel end-to-end image captioning model archi-

tecture that combines a Darknet-based feature extractor with an LSTM-based caption

generator. Unlike existing models that rely on pre-trained CNNs as intermediaries,

our model allows for a direct path from raw images to generated captions, simplifying

the overall process. The end-to-end image captioning model utilizes carefully designed

feature extractors and caption generators to enhance caption quality. Empirical research

supports the model’s outstanding performance, and its low parameter requirements and

efficiency make it well-suited for various practical applications. Our model is designed

with a low computational and time cost by convolutional feature dimension reduction,

making it highly suitable for resource-constrained environments.

Chapter 4 aims to strike a harmonious balance between performance and computa-

tional cost. To achieve this, this chapter introduces an innovative approach—utilizing

a pre-trained deep learning model initially designed for object detection to encode the

input image. By leveraging this pre-trained model, features representing various objects

within the image can be efficiently extracted in a single pass. Furthermore, we propose

incorporating a size-adjustable convolutional module (SACM) as an intermediary step

before decoding these features into coherent sentences.

The experimental results demonstrate the effectiveness of our approach. With the

appropriately configured SACM, our model achieves remarkable performance on stan-

dard image captioning benchmarks. Leveraging a pre-trained object detection model

and a size-adjustable convolutional module, our method demonstrates outstanding re-

sults on benchmark datasets while reducing the computational overhead substantially
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compared to existing approaches.

Lastly, in Chapter 5, we introduced a novel image captioning model that combines

a vision transformer encoder and LSTM decoder, emphasizing its unique approach and

real-time applicability while providing insights into its performance compared to estab-

lished vision models. This approach represents an innovative departure from existing

methods, which typically involve encoding and decoding stages. Importantly, this re-

search marks the first utilization of the vision transformer method in image caption

generation. Furthermore, we applied the convolutional layer for feature dimension re-

duction to emphasize the practicality of real-time image caption generation.
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