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Abstract

With Artificial Neural Networks (ANNs) being at the forefront of Artificial Intel-
ligence (AI) research in recent decades, other Machine Learning (ML) models within
the larger field of AI can sometimes be overlooked as viable alternatives for solving
complex problems in many fields. This dissertation examines some possible use cases
of Evolutionary Algorithms (EAs) by applying them to audio Digital Signal Processing
(DSP) problems in particular, including those that have previously seen many proposed
solutions using ML. We start with the creation of Room Impulse Responses (RIRs) that
can be used within a real-time convolution reverb audio effect plugin. Using an Evolu-
tionary Programming (EP) approach, a user is able to gain some control over the shape
of the resulting RIRs through various parameters defined in the ISO 3382-1 standard
(e.g., reverberation time, early decay time, and clarity), the values of which determine
the fitness of potential RIRs. The resulting rooms can range from those whose RIRs
can be recorded in the real world, to virtual spaces that may be physically impossible
to represent. Results from a subjective evaluation show that such perceptual differ-
ences were reduced when the EA was executed for a sufficient number of generations,
or when the input audio signals consisted of only speech. We then proceed to a more
general case where entire software synthesizers are generated via Recurrent Cartesian
Genetic Programming (RCGP): given a target audio signal, DSP programs expressed as
directed cyclic graph structures are evolved to generate an approximation of the target
audio with arbitrary accuracy. The candidate program with the smallest error, using a
fitness function based on Mel-Frequency Cepstral Coefficients (MFCCs) quantifying
perceptual differences, is returned as the best fit solution. After an experiment evalu-
ating the effects of several RCGP parameters, we determined that a classical Cartesian
Genetic Programming (CGP) model with a weighted function set that accounts for prior
knowledge was able to generate steady state signals with minimal error. This method
was eventually generalized even further to include the generation of DSP audio effect
chains, with the Log-Spectral Distance (LSD) being used as a fitness metric to com-
pare the frequency spectra of their respective impulse responses. We then evaluated our
method by generating various Infinite Impulse Response (IIR) filters, with the accuracy
of these filters being dependent on the order of the target filters to be replicated. Work-
ing prototype implementations for these methods are publicly available as free software
for demonstration purposes.



概要

人工神経回路網（ANN）がここ数十年の人工知能（AI）研究の最前線にあるため、
AIという大きな分野の中で他の手法が、多くの機械学習（ML）技法で複雑な問
題を解決するための有効な選択肢として見過ごされてしまうことがある。本論文
では、進化的アルゴリズム（EA）を、以前にMLで解決されたオーディオのデジ
タル信号処理（DSP）の問題に適用することで、EAの可能な利用シーンを検討す
る。まず、コンボリューションリバーブをリアルタイムで実行するプラグイン内
で使用できる部屋のインパルス応答（RIR）を生成する。進化的プログラミング
（EP）を用いて、ISO 3382-1規格で定義された様々なパラメータ（残響時間、早
期減衰時間、透明度など）によってコスト関数が決定されるRIRが進化する。そ
の結果、RIRを実世界で記録できる部屋から、物理的に表現できないような仮想
空間まで、さまざまな部屋を作成できるようになる。主観評価の結果、EAを十分
な世代数で実行した場合や、信号が音声のみの場合、このような知覚差が減少し
た。次に、リカレントカルテジアン遺伝的プログラミング（RCGP）を用いて、ソ
フトウェアシンセサイザを生成する一般的な利用シーンに進む。目標信号を入力
すると、その信号を近似するために、有向巡回グラフ構造で表現したDSPプログ
ラムが進化する。知覚差を定量化するメル周波数ケプストラム係数（MFCC）に
基づくコスト関数を用いて、誤差が最小となる候補プログラムを最適解として出
力する。いくつかのRCGPパラメータの効果を評価する実験を行った結果、事前
知識を考慮した非巡回カルテジアン遺伝的プログラミング（CGP）を用いて、最
小限の誤差で周期信号を生成できる。さらに、デジタル信号に変換を施す機能の
生成を含むように一般化されて、インパルス応答の周波数分布を比較するための
コスト関数としてログスペクトル距離（LSD）を使用する。無限インパルス応答
（IIR）濾波器を生成して、本手法を評価した。その結果、この濾波器の精度は目
標濾波器の次数によって違った。これらの手法をデモするための実用的なプロト
タイプの実装は、フリーソフトウェアとして公開されている。



Chapter 1

Introduction

1.1 Background

In recent years, Artificial Intelligence (AI) has been the backbone of many state-of-

the-art solutions for numerous problems in just about every research field. In particular,

Machine Learning (ML) techniques and Artificial Neural Networks (ANNs), compu-

tational structures modeled after the neurons in the human brain, have seen the most

widespread adoption since the popularization of the back-propagation algorithm in the

mid-1980s [1]. Digital Signal Processing (DSP) research is no exception in this regard,

with various types of ANNs being used in, for instance, the generation of synthesized

audio signals via parameter estimation [2] or waveform manipulation [3]. As a result,

other techniques in AI can sometimes be overlooked as viable alternatives for solving

such problems.

In this dissertation, we introduce one such sub-field, namely Evolutionary Algo-

rithms (EAs), and explore their potential use cases in the creation of DSP programs,

especially those that have previously seen many proposed solutions using ML. EAs are

a family of optimization algorithms modeled after Darwin’s theory of evolution [4]. As

such, their applications in many research fields are still yet to be fully explored. This

dissertation details our novel contributions in regards to DSP applications in particular,

as well as discuss the potential and unique advantages EAs have over ML techniques in
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this field.

1.2 Overview

In the next chapter, we give a brief overview of EAs as well as several variations

to the algorithm that are relevant to our discussion, which includes Genetic Program-

ming (GP) in particular and some of its variations, eventually ending with Recurrent

Cartesian Genetic Programming (RCGP). The following chapters discuss how such

EAs can be used to generate DSP programs, with chapter 3 detailing the generation of

Room Impulse Responses (RIRs) using an Evolutionary Programming (EP) approach,

while chapters 4 and 6 detail the generation of generalized DSP programs with RCGP,

including both synthesizers and audio effect chains, respectively. The source code for

these projects is publicly available in [5] and [6]. Chapter 5 then discusses the effects of

various RCGP hyper-parameters on the output DSP programs. Finally, chapters 7 and

8 discuss the overall results and make concluding remarks, respectively.

2



Chapter 2

Overview of Evolutionary Algorithms

2.1 Types of Evolutionary Algorithms

Within AI, there is a sub-field known as Evolutionary Computation (EC), which

consists of a collection of EAs [7] inspired by Darwin’s theory of evolution [4] for

global optimization problems. Evolutionary Algorithms are multi-point meta-heuristic

optimization algorithms in that they take a “population” of “individuals” representing

potential solutions, and evolve them using various evolutionary operations, including

selection, crossover, and mutation, in order to find better solutions. Each individual is

also assigned a numerical “fitness value” to serve as a metric of its “goodness” relative

to the other individuals. These fitness values determine which individuals are selected,

or “reproduced,” as a basis for creating new “offspring” solutions, which are often cre-

ated by combining (or “crossing over”) the various characteristics from two or more

selected individuals. Afterwards, each individual can be modified even further through

mutation in order to increase the “diversity,” or genetic makeup, of the solutions in the

population, and avoid convergence towards local minima or maxima when other solu-

tions with better fit may exist elsewhere in the solution space. Each selection, crossover,

and mutation operation constitutes a “generation” in time, and can be repeated for as

long as needed until a termination condition is satisfied, often due to either a limit on

the number of generations to execute or the fitness of a candidate solution is deemed

3



“good enough” to be returned by the algorithm. A summary of this process is visualized

in Figure 2.1.

Start Initialize Population

Evaluate Fitness

Terminating
Condition Met?

Return Fittest Individual

Evolve Population
(Selection,

Crossover, Mutation)

Stop

no

yes

Figure 2.1: Flowchart summarizing the basic procedure for any EA.

Furthermore, these evolutionary algorithms can be divided into various categories

according to the “genomes” they use, or the various ways that these solutions can be

encoded or represented, and subsequently evolved. The most common types of EAs are

summarized in Table 2.1.

Table 2.1: Types of EAs with their respective solution representations.

EA Type Genome

Genetic Algorithm (GA) sequence of binary digits
Differential Evolution (DE) vector of real numbers
Evolutionary Programming (EP) set of program parameters
Genetic Programming (GP) the programs themselves

In this following sections, we will introduce in more detail GP in particular, as

up until now, it has seen relatively little usage for solving problems in DSP research

compared to other techniques such as EP.

2.2 Genetic Programming

GP, the idea of modifying computer programs through an evolutionary process,

was first introduced by Koza [8]. He evolved a population of programs in the LISP

programming language by encoding them as tree structures. Such structures were a

4



2.2. GENETIC PROGRAMMING

natural choice due to LISP’s functional programming paradigm as well as the paren-

thetical notation of LISP’s S-expressions, but almost any computer program, regardless

of language, can be encoded in the same way. Mathematical expressions, for exam-

ple, contain an operator function whose arguments can consist of both operands (i.e.

variables and constants) as well as other operator functions. Figure 2.2 shows how a

polynomial such as x2−2x+1 can be encoded as a tree structure, of which an equivalent

S-expression in LISP can be written as (+ (- (* x x) (* 2 x)) 1).

+

−

×

x x

×

2 x

1

Figure 2.2: A tree structure representing the expression x2 − 2x+ 1.

In GP, various evolutionary operations can be performed on these tree structures

in order to find the desired expressions. For example, the crossover operation may

take a random sub-tree from one parent and replace it with a random sub-tree from an-

other parent, or the mutation operation may replace an individual’s sub-tree with a new

random sub-tree entirely. Koza successfully used these methods in order to generate

Boolean multiplexer functions that adhere to arbitrary truth tables, among many other

applications.

A disadvantage to using tree structures, however, is that such representations can

be inefficient as programs become more complex or make use of other functions as

sub-trees. For instance, Figure 2.2 contains three nodes which all contain the same

redundant variable x, but a single node cannot be reused as an argument to multiple

different sub-branches. In general, the output of any sub-tree (function or operand) can

only be used as an argument to another function at most once in any tree structure,

forcing sub-trees to be duplicated each time they are used. Another example in DSP

5



is a feed-forward loop such as a comb filter, where a delayed audio signal is added to

itself. In a tree structure, such a filter requires two “input signal” nodes when there

ideally could be just one.

2.3 Cartesian Genetic Programming

Such limitations of tree-based GP would later be addressed thanks to the introduc-

tion of Cartesian Genetic Programming (CGP), which was first used by Miller [9] and

then later proposed as its own paradigm by Miller and Thomson [10]. In CGP, com-

puter programs are encoded as directed acyclic graphs instead, with the nodes being

classified into three different types: input nodes for the program inputs, function nodes

containing function primitives as in tree-based GP, and output nodes for the program

outputs. The nodes are laid out in that order in an array, with all of the edge connections

moving in a forward direction. An example chromosome provided by Turner and Miller

[11] is reproduced in Figure 2.3.

Figure 2.3: An example program encoded as a graph for evolution via CGP.

Note that not all input nodes and function nodes necessarily have to contribute to the

outputs of the program, as is the case for node 5 in Figure 2.3. The fact that certain nodes

can be “active” or “inactive” makes CGP an EA with a genotype-phenotype distinction,

the genotypes in this case being the entire hereditary information of each individual, and

the phenotypes being the expressed traits of each program through the active nodes.

This is regarded as an advantage in the evolutionary search, as the resulting “neutral

genetic drift” allows for the creation of offspring with differing genotypes but identical

6



2.4. RECURRENT CARTESIAN GENETIC PROGRAMMING

phenotypes [11, 12]. Other advantages of CGP over tree-based GP include the reuse of

data and function outputs, as well as the elimination of “bloat,” a common phenomenon

in tree-based GP where the programs in the population get larger over time without any

apparent benefits in fitness [12–15].

Another trait of CGP that distinguishes it from other EAs is the use of a (µ + λ)-

Evolutionary Strategy (ES), where the µ best-fit individuals in the population are chosen

as the parents for the next generation (i.e., elitist selection), and λ offspring individu-

als are generated via mutation-only reproduction, for a total population size of µ + λ.

Miller [9] found that small population sizes performed best for Boolean function learn-

ing problems, with µ = 1 and λ = 4 being the most common values for many sub-

sequent applications of CGP. He also determined that a crossover operation is not a

necessary step in the evolutionary search, and in fact can even hinder the search in

some cases.

2.4 Recurrent Cartesian Genetic Programming

In their paper introducing CGP, Miller and Thomson [10] had yet to explore the

possibility of allowing the graphs to be cyclic. Such an extension of CGP where the

graphs are allowed to be cyclic would later be introduced as RCGP by Turner and

Miller [11]. This technique includes the addition of a “recurrent connection probability”

parameter that controls the likelihood of recurrent connections, edges that connect from

one node to itself or to a previous node in the chromosome, being created via mutation.

Often, this can lead to the creation of feedback loops, but may not always be the case

depending on the arities (the number of arguments) of the relevant nodes. Another

example chromosome from Turner and Miller [11] that contains such a feedback loop

is reproduced in Figure 2.4.

Turner and Miller also demonstrated that RCGP provides better performance com-

pared to standard, acyclic CGP on two benchmark problems: time series prediction with

sunspot data [16], and Artificial Ants, a Finite-State Automation (FSA) problem which
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Figure 2.4: An example program encoded as a cyclic graph for evolution via RCGP.

was first proposed and tackled by Jefferson et al. [17] using ANNs and later tackled by

Koza [8] using GP.

2.5 Evolutionary Algorithms in Sound and Audio

The idea of applying evolutive techniques to real-time DSP overall is not new (see,

for example, [18]), but compared to other techniques in AI, there seems to be little re-

search and few actual implementations so far. Collins [19] attempted to facilitate this

by providing a software library built in SuperCollider [20] that can apply EPs to both

sound synthesis and real-time DSP effects, including filtering and reverberation. Us-

ing SuperCollider’s built-in Graphical User Interface (GUI) and programming tools, a

framework for other developers to build software applications using EPs was provided.

Still, Collins does not mention any ability to evolve a population of impulse responses

(IRs) themselves for convolution reverberation, but rather other devices for reverbera-

tion techniques, such as multi-tap delay lines, feedback delay networks, and Schroeder

reverberators, and modifying their parameters through EP. In addition, the SuperCol-

lider environment requires the use of scsynth, a dedicated audio server for real-time

DSP computation, which allows for SuperCollider-based systems to be more modular,

but adds unnecessary network latency to and reduces the portability of such systems.

As of June 2023, a SuperColliderAU wrapper is available to embed scsynth into a

Audio Units (AU) plugin, but this technology is only available in the MacOS operating

system. As for Virtual Studio Technology (VST) plugins, the language currently sup-
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2.5. EVOLUTIONARY ALGORITHMS IN SOUND AND AUDIO

ports the ability to host and automate the parameters of existing plugins in an scsynth

server, but not to export the entire project as a VST plugin itself.

Additionally, an EP approach for sound localization and spatialization has been pro-

posed by Fornari et al. [21, 22], with implementations in both Pure Data (Pd) [23] and

MATLAB [24] programming languages. With their EA, they first calculate the Interau-

ral Time Difference (ITD) given sound intensity and azimuth angle as input parameters.

Then, with this ITD, a population of sound mark cues in a Sonic Localization Field

(SLF) with which sound can be perceived at particular locations in space are evolved

and used to generate spatial sound.

DSP applications for sound spatialization are, in general, limited because a free-

field is assumed; i.e., no reverberation is considered. In many cases, an audio signal is

directly convolved with a Head-Related Impulse Response (HRIR) that captures only

the transformations caused by the upper body of a listener to a sound in the absence

of an enclosure (e.g., [25]). However, these applications can benefit from artificial

reverberation since, when the direct sound is combined with reverberation or at least

with late reflections (the tail of the reverberation), the externalization of audio sources

seems to improve [26].

As for GP-based approaches, the only other known attempt comes from Macret and

Pasquier [27], who represented DSP synthesizers as Pd patches and evolved them via

Mixed-Type Cartesian Genetic Programming (MT-CGP), an extension of CGP where

the inputs and outputs of the node functions can be limited to certain data types. This

CGP variant has two distinct disadvantages: the first is that, without the possibility

of creating recurrent connections, feedback loops cannot be introduced into the DSP

graphs, and thus such programs are left out of the solution space. We believe RCGP is

a more ideal framework for evolving these DSP programs because of the allowance of

recurrent connections, since feedback loops are a common occurence in DSP for syn-

thesizing and manipulating audio signals, such as in sawtooth oscillators or in Infinite

Impulse Response (IIR) filters.

The second is that the introduction of multiple data types is merely a consequence
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of Pd’s distinction between audio and control signals, as well as objects that may ac-

cept as inputs one data type or the other (as of version 0.52-2). This means that extra

computation is required to validate the inputs of each Pd object, and arbitrarily limits

the solution space even further. For this reason, we believe that the FAUST [28] pro-

gramming language is a better alternative for DSP programming as well. Although both

FAUST and Pd use a block diagram-based paradigm for DSP development, FAUST is a

functional, platform-independent DSP programming language that can be “translated”

into a wide variety of other programming languages and compiled for various applica-

tions and frameworks, including Pd. From Chapter 4, we will explain how both RCGP

and FAUST can be used to evolve and create just about any DSP program imaginable.
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Chapter 3

Evolutionary Synthesis of Room

Impulse Responses

3.1 Introduction

For our first foray into using EAs for DSP applications, we introduce a method for

creating RIRs using an EP approach. This method produces unique RIRs with each

iteration while satisfying some constraints imposed by the end user. These RIRs can

then be used to perform real-time convolution reverb in “Genetic Reverb,” a custom

software plugin developed in MATLAB using VST 2, a popular cross-platform audio

software interface widely used in music production. We also investigate the suitability

of this approach by measuring the elapsed time, fitness, and subjective accuracy of the

IRs thus generated.

Parts of this chapter were first published in [29], then expanded upon in my Uni-

versity of Aizu (UoA) Master’s thesis and later in [30] within the duration of the doc-

toral program. The latter contains additional background information, updates to the

methodology and subsequent experimental results, and an additional (subjective) eval-

uation method.
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3.2 Background

3.2.1 Overview of Reverberation

In most situations, sound is perceived within enclosures such as rooms, large or

small venues, caves, etc. These enclosures imprint their characteristics (i.e., their trans-

fer functions) on the sound depending on where the sound source and the listener are

located within the enclosure. The direct sound travels the shortest path between the

source and the listener, while other paths may include reflections off the boundaries of

the enclosure. Hence, reflected sounds arrive later than the direct sound and are, in gen-

eral, weaker because of the energy absorption of the reflecting surfaces as well as the

transmission medium. The collection of early and late reflections is usually referred to

as “reverberation.” While this phenomenon is often detrimental to speech intelligibility

[31], it is frequently desired in music production as an expressive tool [32].

The most direct form of including reverberation in audio recordings is by capturing

the sound directly in spaces with the desired acoustic characteristics. Alternatively, one

can record the room’s characteristics, or its IR, with which a dry audio signal (one that is

anechoic or contains a very short reverberation) can be convolved. However, recording

(even just the IRs) in a majority of venues can be expensive and may not always be

possible, so other methods to add artificial reverberation have been devised. Later in

this section, a few of these techniques are described in more detail, but in any case,

these methods yield reverberations similar to those captured in venues without apparent

quality detriment. Regardless of the alternatives for adding reverberation, uniqueness

is a characteristic often sought for artistic purposes. However, creating new and unique

IRs with desired room characteristics can be a difficult task without correct or adequate

methods.

When producing reverberation artificially, however, it is often difficult to reproduce

some acoustic characteristics of physical spaces. Even when the IR of a desired room is

known, synthesizing a similar IR is still an open challenge. In this section, we will ex-

plain how artificial reverberation can be applied to an audio signal in real-time using IRs
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3.2. BACKGROUND

or other techniques. Then, we will provide a brief overview of previous research in EC

for musical applications, as well as recent advances in digitally simulating reverberation

via convolution with IRs.

3.2.2 Reverberation Techniques

Some of the most common techniques for digitally simulating reverberation involve

the use of delay lines, comb filters, feedback delay networks, etc. Fundamentally, all of

these DSP devices work similarly. A simple delay-line-based reverberation modifies an

audio signal by adding a delayed version of the same signal to itself. The delayed ver-

sion is also attenuated, simulating a single sound reflection. This delay can be repeated

many times to construct a synthetic IR, but having to program every reflection can be

very inefficient. Comb filters, in feed-forward form, work the same way, but a feedback

component can be included as well. In this case, the output signal can be recursively fed

back into the comb filter as an input signal. Given adequate parameters, a comb filter

can produce an infinite number of decaying reflections, or a series of echoes, at regular

time intervals. The first known implementation of reverberation in software was devel-

oped by Schroeder [33, 34], who used a combination of both feedback comb filters and

all-pass filters to simulate wall reflections with exponential decay, a system that would

later be known as Shroeder reverberators. Depending on the number of filters used,

however, the resulting IR can be difficult to modify, as the parameters of each delay ob-

ject only control either a single reflection or a series of related reflections. This makes

granular modification of the IR to match certain room characteristics cumbersome at

best.

Convolution reverb works differently in that instead of representing the IR of the

desired room as a series of delay objects, the IR information is stored directly as audio,

an array of samples in the time domain, with each sample value representing the gain

and polarity of the sound pressure signal after some delay. Then, assuming that an audio

signal and the IR are sampled at the same rate, the two signals can be combined (via the

convolution operation) to produce a reverberated signal.
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In order for this process to be implemented in real-time, however, two modifications

to the convolution operation have been proposed by Zölzer [35]. First, the convolution

operation is replaced by frequency-domain filtering (also called “fast convolution”). In

this operation, an audio signal and the IR are transformed from the time domain into

the frequency domain via the Discrete Fourier Transform (DFT), the two transformed

signals are multiplied element-wise, and the result is transformed back into the time

domain via the Inverse Discrete Fourier Transform (IDFT) to produce the output signal.

Second is the use of “partitioned convolution,” where the audio signal and the IR are

first partitioned into smaller blocks before fast convolution is performed on each block

individually [36]. Each of the reverberated blocks are then recombined to construct the

output signal.

Regardless of the specific algorithms used, current solutions (often software plug-

ins) that implement convolution reverb are limited by their selection of pre-loaded IRs

or enclosures that a user can choose from. While the ability to modify the existing IRs

may be offered by some plugins, a plugin in which new IRs can be generated from

scratch was yet to be found or implemented. That is the void that the “Genetic Reverb”

plugin presented in this chapter is seeking to fill.

3.2.3 Simulating the IR of a Box-Shaped Room

An image method for simulating the IR of a box-shaped room was originally pro-

posed by Allen and Berkley [37]. In their method, such a room was projected onto

three-dimensional space to determine which sound reflections contributed to an IR. The

same projection was also used to calculate the effective distance and associated gain for

each contributing reflection. As a metaphor, one can imagine a listener and a sound

source located arbitrarily within a room with mirrors on all sides. Such mirrors would

create an infinite number of images of the source outside the initial boundaries of the

room, and the listener could see the source reflected an infinite number of times. Then,

each source image would contribute a single sound reflection, and the sound from each

object image would then be delayed by some time before it reaches the listener. Such
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3.3. METHODS

a delay can simply be calculated as the perceived distance between the listener and the

image divided by the speed of sound. Additionally, each reflection will lose power

depending on the number of “walls” the sound has to “pass through” before reaching

the listener’s location. Practically, reflections greater than a certain order are ignored

in software implementations, as such reflections become too quiet to be perceived or

numerically represented.

Many extensions and applications based on the Allen and Berkley method would

later be proposed. One such implementation is provided by Habets [38] in MATLAB.

More recent revisions to the image method that tackled these performance issues have

also been proposed, such as those by Kristiansen et al. [39] and McGovern [40]. Kris-

tiansen et al. use the image method to extend the length of an existing IR by using

known lower-level reflections to calculate higher-level ones, while McGovern improves

on the original image method algorithm by using look-up tables and sorting to prevent

unnecessary calculations, greatly reducing computation time.

Initially, we implemented the fast image method proposed by McGovern as a base-

line model for generating an initial population of IRs in the “Genetic Reverb” plugin.

However, the EA ultimately outputs IRs that no longer represent box-shaped rooms re-

gardless of the nature of the initial population, so there was no reason why other (non-

box shaped) models could not be used in the first place either. Thus, a new method for

generating IRs modeled after recorded IRs was devised for our solution. The following

section describes our EA method in detail.

3.3 Methods

Typical EAs often evolve a population of individuals that can be encoded as a series

of binary or real-numbered values. As digital audio is also stored as an array of real

values, it seems natural to attempt to evolve IRs or even entire audio signals as well.

This section details each step of our evolutionary process for generating IRs as well as

some notes regarding the implementation of our algorithm in software.
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3.3.1 Evolutionary Process

An EA was implemented on a population of room IRs, where the genome for each

IR individual consists of an array of real-valued genes in the range of [−1, 1] in the

time domain. The first gene at the start of the IR is also assumed to be non-zero and to

represent the first reflection. Multiple applications of the genetic operations will then

change the amplitude of existing reflections until a created IR closely adheres to the user

constraints. Figure 3.1 provides an overview of the evolutionary process as it pertains

to our solution.

Start Initialize
Population

yes

no

End: Return
Best IR

Evaluate
Fitness

Truncation
Selection

Random Weighted
Average Crossover

Gaussian
Mutation

Terminating
Condition Met?

Save New
Best IR

Better
IR Found?

yes

no

Figure 3.1: Flowchart outlining each step of the EA used to generate an IR in the
Genetic Reverb plugin.

Five acoustic parameters that a user can impose on an IR in our solution are summa-

rized in Table 3.1. The first three parameters (T60, Early Decay Time (EDT), C80) are

defined under the ISO 3382-1 standard [41], while the other two parameters, Bass Ratio

(BR) and Initial Time Delay Gap (ITDG), are among many additional parameters and

attributes proposed by Beranek [42]. These parameters not only enable control over the

overall shape of the IR, but are also parameters that a typical end user may understand

and control.

The T60 parameter is perhaps the most important, since it specifies the overall length

of the reverberation (i.e., how long the lingering sound is heard). In general, a long

T60 correlates with large enclosures or enclosures with walls featuring high acoustic

reflection coefficients. The ITDG is a similar measure for determining the “intimacy”

of an enclosure, with longer ITDGs corresponding to wider or taller enclosures [42, pp.
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Table 3.1: Acoustic parameters used in our solution, along with their colloquial names
and definitions.

Parameter Common Name(s) Definition

T60
Decay Time,
Reverberation Time Time for sound pressure level of the

IR to decay by 60 dB from the initial
magnitude

Early Decay Time (EDT) Reverberance Time for sound pressure level of the
IR to decay by 10 dB from the initial
magnitude

C80 Clarity Ratio (in dB) between sound pres-
sure levels of direct sound plus early
reflections (< 80ms after direct
sound) vs. late reflections (≥ 80ms
after direct sound)

ITDG
Predelay,
Intimacy Time between the arrival of the di-

rect sound and the arrival of the first
reflection.

Bass Ratio (BR) Warmth Ratio between T60 times in low-
frequency (125 – 500Hz) and mid-
frequency (0.5 – 2.0 kHz) octave
bands

513–516]. Meanwhile, the EDT characterizes the initial rate of decay of the IR, and it

is generally considered more subjectively relevant than T60, since the early reflections

are more salient to the perception of reverberation than the late reflections [41].

Clarity (C80) measures the relative “intelligibility” of the original audio source

within its surrounding reverberations. High clarity indicates how “clearly” or “intel-

ligible” a sound source can be heard. Generally, IRs with long T60 tend to have low C80

values. Finally, the BR or warmth parameter is a measure of the frequency content of

an IR. Is is defined as the ratio of the reverberation times (RT ) within four consecutive

octave bands, with center frequencies at 125, 250, 500, and 1000Hz [42, p. 512]:

BR =
RT125Hz +RT250Hz

RT500Hz +RT1000Hz

. (3.1)

High BR values indicate that lower frequencies are more prominent in the reverber-

ated sound compared to higher frequencies.
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Initialization

In the initialization step, a population of IRs is generated using a custom Gaussian

noise method based on the scheme proposed by Zölzer [35, p. 144]. This noise is

typically present in observed IR recordings (mainly from the signal-to-noise ratio of

the recording apparatus). The IR population is stored as a two-dimensional matrix,

with each column representing an individual IR, and the number of columns is equal to

the desired size of the IR population. The length of each column (i.e., the number of

samples in the IR) is determined by the T60 reverberation time of the desired IR along

with the sampling rate of the IR to generate. In our solution, the sampling rate was set

to a constant 16 kHz in order to minimize computation time.

Within each IR, each sample is initialized as a random number from the standard

normal distribution. Then, each IR is manipulated in such a way in an attempt to pro-

duce IRs that resemble actual IRs that have been recorded in the real world. This is

done through the following steps:

1. Reduce the gain of the entire signal by a constant amount (a random factor between

0.2 and 0.7). This is to introduce some variation in regards to how much of the sound

is absorbed by the enclosure.

2. Change the value of certain samples to be closer to ±1. The probability that a sample

is chosen at time t (in s) is

P (t) = 1− pt (3.2)

for some randomly chosen probability constant p ∈ (0, 1), simulating the higher

density of late reflections compared to that of early reflections. In addition, the new

values of these samples are randomly generated from a normal distribution (µ = 1,

σ = 0.05), along with a 50% probability of each of these values being positive or

negative. This is to emphasize the presence of the room reflections over the diffused

sound.

3. Apply exponential decay to the gain of the entire IR (the rate of which is inversely

proportional to the input T60 value), simulating the absorption of sound from the
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surrounding walls.

4. Apply a 2nd-order Butterworth band-pass filter, where the cutoff frequencies of this

filter are randomly chosen (31.25 – 500Hz for the lower bound and 0.5 – 8 kHz for

the upper bound). Such a filter is normally applied to recorded IRs as well [43].

5. Additionally, low-pass Gaussian noise (cutoff frequency at 250Hz) with 12 dB per

octave rolloff is applied. This spectral tilt was observed in the tail of real IR rever-

berations [43], and it is perceptually relevant [44].

The steps and values specified above were arbitrarily chosen and, at least impres-

sionistically, these values produced IRs that best resemble IRs that have been recorded

in the real world, such as those in the OpenAIR database [43]. At the end of this pro-

cess, an initial population of IRs is seeded and used as a starting point from which other

parameters can be sought.

Fitness Function

Each IR in a population is then assigned a fitness value based on how closely it

matches user’s specifications. In our implementation, an “error” or “loss” value is as-

signed, with figures toward zero representing a better “fit,” since a value measuring the

differences between IRs is desired. First, we calculate the z-score for each of the stan-

dard room acoustic parameters summarized in Table 3.1 (except for ITDG, since it can

be generated with exact accuracy) using the desired IR parameter values as the mean

for each z-score. The error value of each IR is then determined by the absolute sum

of all the z-scores (i.e., the total number of standard deviations away from the optimal

solution). Because of the differences in units and in numerical scale between IR param-

eters, this error value allows one to weigh the individual parameters equally and also

detect and remove outlier IRs easily.

As for determining the acoustic parameter values for each IR, it is possible to com-

pute them directly and then compare them with the desired values to find the closest

match. For instance, T60 can be calculated using the IR’s Schroeder curve S(t) (also
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known as the energy decay curve) [45], formally defined as the integral of the square of

an IR h(τ) from time τ = t:

S(t) =

∫ ∞

t

h2(τ) dτ. (3.3)

By expressing S(t) in dB, it is possible to locate the instances where the sound

energy decays 5 dB and 35 dB from the initial level. This time difference is known as

T30, and doubling it yields an accurate approximation of T60. This is a common method

of calculating T60, as the Signal-to-Noise Ratio (SNR) of a measured IR is often less

than 60 dB, and samples within the noise floor should be avoided [41].

EDT can be computed in a similar manner, except that the time difference is esti-

mated between the arrival of the direct sound (0 dB) and the time when the total energy

decays 10 dB. Clarity (C80) can be determined using Schroeder curves as well, and is

defined in terms of S(t) as

C80 = 10 log10

(
S(0)− S(0.08)

S(0.08)

)
[dB], (3.4)

where t = 0 refers to the time of arrival of the direct sound.

For BR, instead of calculating the reverberation times of the relevant octave fre-

quency bands, the IR is transformed into the frequency domain via the DFT before the

sound energy ratio (in dB) between the 125 – 500Hz and 0.5 – 2.0 kHz bands is com-

puted. While the actual values between the two methods may differ, the implemented

algorithm is faster to execute with no apparent detriment in accuracy. In addition, ex-

pressing the BR in dB (as opposed to a unit-less value) may help naive users to better

understand this parameter.

Genetic Operations

In each generation, the IR population undergoes three successive operations (i.e., se-

lection, crossover, and mutation) in order to search for a better match. For our solution,

truncation selection, random weighted average crossover, and Gaussian multiplication
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for mutation have been chosen for the EA. Other alternatives include: rank selection,

tournament selection, n-point crossover, and permutation mutation (for a more com-

prehensive list of genetic operations, the interested reader is referred to [13]). These

operations were chosen based on maintaining both computational efficiency as well as

acoustic variety in the IR population. Additionally, some methods were simply not

viable within the context of creating artificial IRs. One-point crossover, for example,

would create a child IR where the size of the virtual room changes after some time,

which, in most cases, would not be desirable in a plausible IR.

Truncation selection (also known as elitist selection in other contexts) is one of the

simplest selection methods: The bottom percentile of IR individuals (those with the

worst fit) are removed from the pool each generation. For our solution, a selection rate

of 0.4 was chosen, meaning that individuals with error values below the 60th percentile

are removed from the population. The removed IRs are then replaced with new ones

through a random weighted average crossover operation. Given two random parent IRs

h1(t) and h2(t), and a random weight factor w ∈ (0, 1), the offspring IR h1,2(t) is

defined as

h1,2(t) = wh1(t) + (1− w)h2(t). (3.5)

This operation effectively blends the two parent rooms together to create a new room

with its own acoustic parameter values from which a fitness value can be determined.

Finally, in the mutation operation, each sample has a very small probability (1 out of

every 1000 samples) of changing its value completely. To mutate the IRs in particular, a

50% probability of increasing or decreasing in magnitude as well as a 50% probability

of switching sign for each sample to mutate is desired. To achieve this, mutation is

performed via Gaussian multiplication, where each sample is multiplied by a normally

distributed random number (µ = 0, σ ≈ 1.483).
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Table 3.2: Parameter values used in the EA within our solution depending on reverb
quality. Selection rate, fitness threshold, and mutation probability were constant at 0.4,
0.1, and 0.001, respectively.

Parameter Quality

Low Med High Max

Population Size 25 25 50 50
Max. Number of Generations 20 50 50 100
Plateau Length 4 10 10 20

Termination Conditions

After each round of genetic operations, the fitness of the new IR population is recal-

culated, but this is when the EA determines whether or not it should continue modifying

the population or stop and return the best-fit IR found so far. This decision is based on

three terminating conditions:

1. The fitness value of the best IR found is below a certain threshold value,

2. The fitness value of the best IR found does not decrease after a certain number of

generations (specified by a “plateau length” parameter) has passed, or

3. A predetermined limit on the total number of generations to execute has been

reached.

The fitness threshold, the plateau length, and the maximum number of generations,

therefore, are all parameters within the EA intended to limit computation time. Since an

end user might not understand what an EA does, however, including these parameters

directly in the plugin’s GUI might not be user-friendly. For this reason, a “Quality”

setting was used to abstract these parameters away while still providing the user some

control over the computation time of the EA and, hence, the fitness values of the IRs.

Table 3.2 lists the current mapping between the “Quality” parameter and the EA param-

eters.
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3.3.2 Implementation

Genetic Reverb was implemented as a subclass of MATLAB’s built-in System and

audioPlugin classes. These classes can be compiled into a VST 2 plugin compat-

ible with both Windows and macOS operating systems. Table 3.3 presents a list of all

parameters that can be controlled by a user, their valid ranges, and a brief description

of each.

Table 3.3: IR parameters used in the plugin with their valid ranges and descriptions.

Parameter Valid Range Description

Decay Time 0.4 – 10 s T60 of the desired IR
Early Decay Time 5 – 25% EDT of the desired IR (expressed as a per-

centage of T60)
Clarity −30 – +30 dB C80 of the desired IR
Warmth −10 – +10 dB BR of the desired IR
Predelay 0.5 – 200ms ITDG of the desired IR

Quality
{“Low,” “Medium,”
“High,” “Max”} Sets various parameters for the EA (see Ta-

ble 3.2)
Mono/Stereo {“Mono,” “Stereo”} Generate either one IR for both channels

(mono) or a different one for each channel
(stereo)

Normalize {“On,” “Off”} In “stereo” mode, forces the RMS level dif-
ference in IRs to be zero (“On”) or at most
20 dB (“Off”)

Dry/Wet 0 – 100% Balance between the dry input signal (0%)
and the processed one (100%)

Output Gain −60 – +20 dB Gain of the mixed dry/wet signal
Generate Room N/A Pressing this button generates a new IR us-

ing the current parameters
Toggle To Save N/A Pressing this button saves the current IR as

a binary file in the plugin directory

First, the user has a choice of producing either monotic or dichotic RIRs, labeled

in the plugin as “mono” and “stereo” modes, respectively. In “mono” mode, a single

IR is generated and then copied for both channels to use. In “stereo” mode, the EA

is executed twice, each producing a different IR for the left and right channels. In

either case, the “Generate Room” button controls when the EA is triggered to generate

new RIRs that replace the existing ones after the completion of the EA. Due to the

random nature of the EA, the RMS levels of the two IRs may also differ. We can
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limit this difference to be less than the maximum Interaural Level Difference (ILD),

approximately 20 dB [46, p. 230], to preserve the perception of sound localization.

When the perceived loudness of each IR must be roughly the same, users have the

option of equalizing the RMS levels of the IRs.

Then, we reinstantiate the predelay to the IRs, since a typical IR has some delay

before the first reflection reaches the ear. While this predelay was previously used to

determine the C80 value of the IRs, the delay itself is not added until after the IRs are

generated by the EA. Finally, the new IRs are resampled from 16 kHz to the sampling

rate of the host application before convolution with the input signal, since the sample

rates of the IRs and the input signal must match.

For real-time convolution reverb, an object that performs partitioned fast convolu-

tion is readily available in MATLAB. In the partitioned convolution, the IR is broken up

into blocks of 1024 samples each, which are convolved with the audio signal separately

and then added back together (via the “overlap-save” method) to produce the output

signal. This reduces the latency of the convolution from the entire length of the IR to

approximately 1024/f s, where f is the sample rate of the audio signal. One limitation

of this object is that the length of the array containing the filter coefficients (i.e., the

number of samples in the IR) cannot be changed dynamically. As a workaround, we

created multiple copies of this object, each with different lengths for the filter arrays.

Then, depending on the current value of the T60 parameter, the object with the most

appropriate length is chosen. Finally, the newly generated IRs can be saved into that

specific object, which can then be set as active for use with partitioned convolution with

the input signal. Figure 3.2 illustrates the basic flow of data and audio within the plugin,

while Figure 3.3 shows its current user interface. Our implementation along with some

demonstrations are available from [5].
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Figure 3.2: Flowchart illustrating the overall functionality of the plugin.

Figure 3.3: Program window displaying the plugin’s GUI.

3.4 Evaluation

While we were successful in implementing an EA that can produce synthetic IRs,

this alone does not tell us whether the EA can produce IRs that actually adhere to user

constraints. In other words, how closely does the output IR match what the user expects

in terms of the resulting reverberation? To that end, we performed one objective and one

subjective evaluation. For the sake of simplicity, only monophonic IRs were considered
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in these tests.

3.4.1 Objective Evaluation

Setup

We were interested in finding how close to zero the loss values could reach for every

IR returned by the EA given certain acoustic parameters. We were also interested in the

elapsed time to reach those loss values. These tests were run locally on a Windows 10

Home laptop computer equipped with an Intel Core i9-8950HK 6-core notebook CPU

running MATLAB version R2020b. In these evaluations, MATLAB’s built-in time-

keeping tools (i.e., the tic/toc functions) were used to record the execution times of

the EA.

In a first test, the values for EDT, C80, BR, and ITDG were randomly selected within

the valid range of the plugin for each IR, while T60 was restricted to 0.625, 1.25, 2.5,

and 5.0 s in order to measure the relationship between T60 and computation time. This

process was repeated four times, one for each of the four possible quality settings, with

a population of 250 IRs being generated for each combination of T60 and quality setting.

In a second test, the acoustic parameter values were limited to those from real IRs to

determine how well the artificial IRs from the plugin could emulate real IRs. For this, an

IR was arbitrarily chosen from the OpenAIR database [43], and its acoustic parameter

values were calculated using the same algorithms used in the EA. The selected IR

was recorded inside the York Guildhall Council Chamber (source position 1, receiver

position 1, channel 1), with its acoustic values summarized in Table 3.4. Then, 250 IRs

were generated for each of the four quality settings, with the acoustic parameters set to

the listed values.

Results

Figures 3.4 and 3.5 provide a summary of the output IRs from the first test, reporting

the distributions of loss values and elapsed times, respectively, for each quality setting

and T60 decay time via violin plots [47]. Like box plots, violin plots include a center

26



3.4. EVALUATION

Table 3.4: Acoustic parameter values for an IR recorded in the York Guildhall Council
Chamber.

Parameter Value

T60 0.884 s
EDT 0.133 s
C80 4.473 dB
BR −1.233 dB

white dot and surrounding gray bar to indicate the mean and Interquartile Range (IQR),

respectively. Violin plots, however, are more informative than box plots with the inclu-

sion of probability density functions that are smoothed via kernel density estimation.

Figure 3.6 provides a similar summary for the output IRs from the second test.

3.4.2 Subjective Evaluation

Setup

For the subjective evaluation, the goal was to determine whether or not there were

perceptual differences between audio signals convolved with real-world IRs and arti-

ficial IRs generated with the EA. For this evaluation, three IRs from the OpenAIR

database with different T60 decay times were chosen. For each one, its acoustic param-

eter values were calculated, and then two artificial IRs were generated based on these

values. One IR was generated using the high quality setting, while the other was gen-

erated using the max quality setting. These IRs were then convolved with two mono

audio signals: one from a male speaker at 16 kHz, and one from a dry riff of a syn-

thesized drum kit at 48 kHz, to produce 12 unique reverberated audio stimuli. The IRs

were generated at a default sample rate of 44.1 kHz, and then resampled to match the

sample rate of the audio signals.

With these audio samples, an ABX test was created. An ABX test consists of a

series of questions where two similar but different audio samples labeled A and B are

presented, along with a third audio sample labeled X [48]. The audio sample labeled

X is identical to either sample A or sample B at random, and participants were asked

to determine whether X was equal to A or B. Each possible real IR and artificial IR
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Figure 3.4: Violin plots of loss values for IRs generated with random acoustic parameter
settings (lower is better). The center white dots and surrounding gray bars in these and
other violin plots indicate the mean and IQR, respectively, of each distribution.

pair combination was presented six times in total, three with the speech stimuli and

three with the drum kit stimuli, with random labeling of A, B, and X for each of the

36 total questions. The survey was split into two blocks, with the speech samples being

presented in the first block before the drum kit samples in the second block. The order of

the questions within each block was randomized for each participant. Participants were

asked to conduct the experiment in an environment free of external noise or distractions,

and to refrain from creating noise such as eating or chewing gum. However, since the

survey was conducted online (as a COVID-19 precaution), such conditions could not

be guaranteed.

After the conclusion of the survey period, 26 participants (21 male and 5 female)

completed the survey, while five more volunteers started the survey, but did not com-

plete it. The latter were removed from the statistical analyses. Participants who com-

pleted the survey were financially compensated for their collaboration. Before the start

of the experiment, participants were asked about their age, sex, and amount of musical
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Figure 3.5: Violin plots of computation times for IRs generated with random acoustic
parameter settings (lower is better). The center white dots and surrounding gray bars in
these and other violin plots indicate the mean and IQR, respectively, of each distribu-
tion.

experience. The ages of the participants who completed the survey were in the range

of 20 – 41, although 24 of the 26 participants were between 20 and 25 years old. Seven

of the participants declared that they had no musical experience, ten responded with

1 – 3 years of experience, and the remaining nine declared four years of experience

or more. Permission for performing this experiment was obtained following the UoA

ethics procedure.

Results

Table 3.5: ANOVA Type II Wald chi-squared test results for the GLMM fitted to all
responses.

Factor χ2 df p

program 35.113 1 < 0.001
quality 5.827 1 0.016
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Figure 3.6: Violin plots of (a) loss values and (b) computation times for IRs generated
with fixed settings (lower is better).

A script was developed in R [49] to determine whether or not variables such as

age or quality settings had a significant effect on the rate of correct answers in the

experiment. A Generalized Linear Mixed Model (GLMM) was implemented to predict

such effects for the binomially distributed data. Although there are other alternatives

to analyze this kind of data, it has been shown that GLMMs are suitable for these

analyses [50]. For this experiment, age, sex, years of musical experience (‘exp’), the

repetition order of a question (‘rep’), and subjects (id) were considered random effects.

Meanwhile, the program (speech vs. drum riff), IR quality (high vs. max), and

whether sample X was created from a real or artificial IR (x.type) were deemed

fixed effects. Starting with a model just containing each subject as a random factor, we

conducted multiple pairwise Analysis of Variance (ANOVA) tests between models that

differ by a single factor or interaction, updating the model each time to keep any factors

that resulted in significantly better fit at a 95% confidence level.

At the end of this process, it was determined that only program and quality had

a significant effect on the subjective responses. We then conducted an ANOVA Type II

Wald chi-squared test on the final model, of which the χ2 values, degrees of freedom

(DFs), and p-values for each significant factor are summarized in Table 3.5.

A post-hoc analysis based on Tukey’s Honest Significant Difference (HSD) test

comparing the Estimated Marginal Means (EMMs) of each level of the interaction was
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Figure 3.7: Means (dots) and 95% confidence intervals (error bars) for the rates of
correct responses by quality setting and program: (a) for all subjects, and (b) after
removing responses from subjects deemed as super-classifiers.

conducted with the emmeans library [51], with the DFs being asymptotically computed

for this analysis. Tukey’s test showed that, regardless of quality setting, the rate of

correct answers for the drum riff was significantly higher than that of speech (z = 5.926,

p < 0.001). Additionally, regardless of program, the rate of correct answers given

high quality IRs was significantly higher than that of max quality IRs (z = 2.414,

p = 0.016). These findings are summarized in Figure 3.7a, which shows the mean and

95% confidence interval of the probability of a correct answer by quality setting and

program. We can also conclude from Figure 3.7a that the subjective responses were

significantly different from random, since the rate of correct responses is significantly

higher than 50% in all cases.

A further inspection of the responses revealed that twelve participants returned per-

fect or near-perfect scores (those who answered 100% correctly for at least three out of

four question groups, where each question is classified based on the program and the

quality setting of the artificial IR). We ran a similar statistical analysis without these

participants (or “super-classifiers”) to verify that the previous results still hold for the

remaining participants.

Despite a decrease due to the removal of super-classifiers, the rate of correct re-
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sponses is still significantly higher than 50% in all cases. Furthermore, similar GLMMs

with the reduced dataset still show that the simplest statistically significant prediction

model remains the same as that shown previously, as summarized in Table 3.6. Tukey’s

Table 3.6: ANOVA Type II Wald chi-squared test results for the GLMM fitted to all
responses except those from super-classifiers.

Factor χ2 df p

program 28.432 1 < 0.001
quality 4.140 1 0.042

HSD test also yielded similar results, with the rate of correct answers for the drum riffs

being higher than that of speech (z = 5.332, p < 0.001, across levels of quality).

Similarly, the rate of correct answers given high quality IRs was still significantly

higher than that of max quality IRs (z = 2.035, p = 0.042, across levels of program).

These findings are summarized in Figure 3.7b.

3.5 Discussion

In short, our solution is not able to produce an adequate IR 100% of the time.

However, this outcome was to be expected for reasons that will be explained below.

Both the objective and subjective evaluations also provide some further insight into

specific areas where the EA may be lacking, along with possible solutions.

3.5.1 Objective Evaluation

The mean loss value for a population of IRs given random parameter values is

around the 10 – 18 range (about 2.5 – 4.5 standard deviations per parameter) on the

low quality setting, with minimal improvements in fitness as the quality setting is in-

creased. This indicates that not every combination of parameter values will be able to

yield viable results. The relatively high error values for this first test can be partially

attributed to the fact that certain combinations of parameter values would result in IRs

that would be very difficult (or impossible) to produce. For instance, IRs with long T60
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tend to have lower clarity (C80) values as well, since there are many more late reflec-

tions that can overpower the early ones. Otherwise, if reasonable values are chosen

for these parameters, as is the case for the second test, then IRs that closely match the

desired parameter values can be obtained through the EA, with a mean error value of

about 4 at low quality and decreasing as quality increases.

3.5.2 Subjective Evaluation

As a whole, while the participants were able to distinguish between real and arti-

ficial IRs, two observations can be made: First, there is a significant decrease in the

rate of correct responses when going from high quality to max quality IRs in both the

speech and music sections of the experiment. So even though the artificial IRs have

yet to be indistinguishable from real IRs, the fact that such a drop occurred suggests

that it is possible to minimize perceptual differences even further by increasing the ex-

ecution time (e.g., by increasing the size of the population or the maximum number of

generations). Second, the IRs are more distinguishable when convolved with music as

opposed to speech. One possible explanation for this outcome is that the original speech

and music signals were sampled at different frequencies (16 and 48 kHz, respectively).

It is possible that the additional information (in frequencies above 8 kHz) could be used

to identify differences in music and gain an advantage over speech. Furthermore, the

impulsive nature of the drum riff could also make the differences more apparent (re-

gardless of the difference in sample rate).

One open question regarding these results would be: Given two different IRs with

the same acoustic values, are they perceptually indistinguishable? According to Hak

et al. [52], there is a Just Noticeable Difference (JND) for each of the ISO parameters

in our solution: 5% for T60, 5% for EDT, and 1 dB for C80. Further experiments could

determine the JND for combinations of these parameters and IRs in general.
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3.5.3 Limitations

As previously mentioned, only monophonic IRs were evaluated. While binaural

IRs can be produced by our solution, comparing them to real binaural IRs may hinder

their perceptual evaluation, since spatial aspects, such as apparent location of the sound

source (i.e., its azimuth and elevation), proximity, etc., may take relevance over the

parameters we controlled (decay time, EDT, clarity, etc.).

As for the implementation of the plugin, while MATLAB allows the prototyping

and generation of VST plugins with relative ease, there are a few setbacks for a full

implementation: There are a limited number of data types for parameters, meaning that

some GUI elements such as buttons cannot be directly implemented. In practice, a

toggle switch can act as a substitute for triggering actions such as generating an IR or

saving a file, but the resulting interface may be clunky for an end user. One feature

that could be improved in our solution is the capability to save the IRs on the disk. As

of June 2023, MATLAB does not allow saving IRs directly as Waveform Audio File

Format (WAV) files (or in most other audio formats), so binary files are used instead.

These can be converted into WAV files using an ancillary program (an example of which

is also implemented and provided in the plugin repository).

An additional area of improvement pertains to how the ILD can be controlled in our

solution. Currently, a user can choose to either balance the stereo image (i.e., equalize

the RMS levels of the IRs) or leave the ILD value to random chance. In the latter

case, the ILD is clipped to ±20 dB only if it falls outside of this range. However, the

ability to specify the ILD of the stereo image (e.g., from −20 to 20 dB) is another

possibility. A revised implementation and subsequent change to the GUI is deferred to

a future version. Another issue is the amount of CPU resources needed to both generate

the impulse responses and process the input audio stream in real time, especially as

the length of the IR increases. This is why the sample rate of the IRs in the plugin

is set to 16 kHz, and why the IRs must then be resampled to match that of the input

audio. Despite this, CPU overloading issues can still arise, especially when attempting

to generate IRs with long T60 times. Even with a CPU as powerful as the one used in
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this research, when running the plugin within Ableton Live 10 [53] at 44.1 kHz, the

application often crashed when attempting to generate T60 longer than about 2.5 s due

to the long convolution. It is expected that, in the future, the full potential of multi-

core processors becomes more accessible for real-time audio plugins so that either the

partitioned convolution load can be distributed among several cores or the EA can be

run as a background task while the convolution continues to run with the current IRs.

One more possible point of contention in our solution is the inclusion of the BR

parameter, since it only accounts for frequencies in the 125 – 2000Hz range, meaning

there is no control over frequencies outside of this range in the IR. Even Beranek [42,

p. 512] admits that BR is not very useful for measuring “warmth,” even though this

method has been around for the longest time. The decision to include the parameter

was done for the sake of convenience to the user, who is thus able to partially control

the frequency content of the reverberation with just a single parameter. One possible

modification to our solution that could ameliorate this would be to allow the user to

control the T60, EDT, and C80 values for individual octave bands, and to modify the

fitness function of the EA to take these parameters into account for all octave bands.

This would require adding additional parameters to the plugin’s GUI for each desired

octave band, meaning that there is a trade-off between control over the artificial IRs and

ease of use of the plugin.

3.6 Interim Conclusion

A working prototype was developed for a plugin that uses EAs to create artificial

reverberation. The parameters of the plugin have been carefully chosen and designed so

that anyone from music producers to game designers could understand and utilize the

plugin with ease. Even if current technologies prevent us from producing IRs with good

enough fit within a reasonable amount of time, there is not necessarily a correlation

between fitness value and desirability either. Perhaps the random nature of the EA can

be seen as a feature rather than a setback to some users, as an IR that sounds pleasing to
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the ear may come at unexpected times. Thus, evolutionary algorithms can be a source

of creativity in digital signal processing, audio design, and music production, as shown

in our solution.

Further research and development could explore other methods that could decrease

computation time and/or improve fitness, such as choosing different genetic operations

or changing the genetic algorithm parameters. Parallelizing certain tasks with a multi-

core CPU or a Graphics Processing Unit (GPU), or at the very least executing the EA in

the background, is one of several improvements that could also be made with further de-

velopment. Whether or not it is possible to generate synthetic IRs that are perceptually

indistinguishable from real-world IRs or other synthetic IRs with acoustic parameters

within the JNDs margin is another topic for further investigation.
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Chapter 4

DSP Audio Synthesis via RCGP

4.1 Introduction

In audio DSP research, the replication of (perhaps unknown) sounds via software

synthesizer programs has been a long-studied problem with many potential applica-

tions. One such application is the reproduction of musical instruments, whether they be

recorded from real instruments or produced by other audio synthesizers: given a target

sound, is it possible to generate an audio synthesizer whose output closely approximates

(if not matches) the given sound?

In this chapter, we introduce the first part of our CGP method in which DSP synthe-

sizers are represented as directed cyclic graphs, and are evolved via RCGP to produce

candidate DSP programs, the output of which are compared to the target sound via Mel-

Frequency Cepstral Coefficients (MFCCs) to determine fitness. The best-fit program is

returned as source code in FAUST. We then evaluate our method, as well as determine

the effects of various RCGP hyper-parameters, by replicating as closely as possible the

Sandell Harmonic Archive (SHARC) database [54], a collection of steady state tone

descriptions whose waveforms can be reproduced by additive synthesis. Finally, we

discuss the results of such evaluation as well as future directions with this research.
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4.2 Background

4.2.1 Previous Work

While RCGP can be used as a framework to create more general DSP applications,

various other evolutionary techniques can be used for more specialized tasks. For in-

stance, in the previous chapter, we described how a classic EA can evolve a population

of RIR waveforms to generate a desired RIR subject to various room characteristics

input by the user [29, 30]. Such IRs can then be mixed with an input audio signal via

convolution reverb in real-time within a VST audio effects plugin to produce a signal

with the desired reverberation.

However, there were two major limitations with our method. To summarize, the

first is the fact that the EA itself is unable to generate IRs in real-time, rendering tasks

such as the automation of room parameters impossible to perform. The other is due to

the limitations of the MATLAB programming language with which “Genetic Reverb”

was implemented. Furthermore, while the tools that MATLAB provides enables quick

prototyping of real-time audio plugins, the fact is not only that MATLAB is proprietary

software, but also that only the VST version 2 and AU interfaces, both proprietary

themselves, are supported when compiling such plugins. Despite these limitations, we

believe that our first attempt at using evolutionary techniques to generate DSP programs

was a successful one, as it paved the way for further exploration into not only alternative

methods for generating artificial reverberation (see, for example [55]), but also other

potential applications of such algorithms in DSP research.

As such, we began to expand on the idea of generating DSP programs using evolu-

tionary techniques to include any DSP program in general. In practice, however, DSP

programs can be classified as either audio instruments/synthesizers, which can produce

an audio signal, or audio effects, which can manipulate an input audio signal to produce

a modified output signal, so each use case must be treated separately. For this chapter,

we focus on the development of an implementation of RCGP that can generate DSP

synthesizers subject to the characteristics of the target audio signal. An early version of
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this implementation was demonstrated in [56], which used the Log-Spectral Distance

(LSD) as a fitness measure to compare audio signals. Since then, we have improved our

implementation to include bug fixes, additional features, and alternative fitness mea-

sures and selection schemes. In the next chapter, we will evaluate the effects of various

RCGP hyper-parameters on the fitness of the best-fit solutions.

4.2.2 Related Work

In comparison, many of the previous attempts by others to use evolutionary algo-

rithms in sound replication tackled the problem in terms of EP, or the optimization

of a predefined set of parameters to produce values that closely match a target sound.

These programs can focus on a single synthesis technique such as wave-table synthesis

[57, 58] or Frequency Modulation (FM) [59–63], or they can be based on real-world

synthesizers [64, 65], which include a combination of an arbitrary number of these

techniques in a specified configuration.

In recent years, however, ANNs have overtaken such algorithms as a popular tool for

tackling the problem as a whole. While various ANN architectures have been trained

and used to replicate the target signal directly (see, for example [3, 66]), others have

been developed to optimize various synthesizer parameters as well [2, 65]. Regardless,

this EP paradigm for parameter optimization ultimately comes with the disadvantage

of inflexible or inefficient program design, as different DSP algorithms or synthesis

techniques may be more suitable for different sounds. GP (as opposed to EP or ANNs)

solves this issue by evolving the program itself, easing the finding of a DSP algorithm

suitable for a given sound without requiring any knowledge of the target sound itself.

Previous attempts to use GP to handle this problem, however, are far and few be-

tween. As mentioned in Section 2.5, the first and only other known attempt was con-

ducted by Macret and Pasquier [27], representing DSP synthesizers as Pd patches and

evolving them via MT-CGP. With the main disadvantages of MT-CGP being its arbi-

trary typing and its lack of recurrent connections, We believe that both RCGP and the

FAUST language are better alternatives for the automatic induction of DSP programs,
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and that our method, which we will describe in the next section, allows for more appro-

priate solutions to be found for any given sound.

4.3 Methods

4.3.1 FAUST Implementation

We now discuss the details around the implementation of RCGP as it pertains to our

specific application. One of the first things to consider when creating an RCGP method

is the function set, a collection of basic functions that can be composed together to form

a more complex program. This includes what are known as “terminals,” or functions

that do not take any input values. Often, terminals take the form of constant values, but

other functions such as random number generators can fall into this category as well.

In FAUST, all functions and primitives operate on a single “signal” data type, which

is itself a function s : Z → R, where s(t) = 0 for all t < 0. Because of this, FAUST

primitives are also known as “signal processors,” which are of the form p : Sn → Sm

for n,m ∈ N, where S = Z → R is the set of all possible signals. For instance, the

symbol ‘/’ is the division function primitive in FAUST, defined as / : S2 → S, where

y(t) = x1(t)/x2(t) for x1, x2, y ∈ S.

This division is strictly speaking not a valid signal processor, however, as y(t) can

be undefined (or rather, take the NaN value) for some values of t whenever x2(t) = 0.

In reality, even addition and multiplication themselves are not valid signal processors

either, as values of ±∞ can be produced if the output is too large to be represented

as a floating-point number. Whenever any function is added to the function set, one

must ensure that the “closure property” remains satisfied, whereby each function must

be able to accept any value that is returned by any function in the function set as input

[8]. Functions that do not satisfy the closure property such as division, then, are often

modified in such a way that closure can be ensured. Sanfilippo [67] provides some

techniques on how to protect these operations from ±∞ and NaN values in FAUST,

thus avoiding any undesirable behavior that can arise from these values. The protected

40



4.3. METHODS

division operation can be defined as:

y(t) =


x1(t)

min(x2(t), −ϵ)
, x2(t) < 0

x1(t)
max(x2(t), ϵ)

, x2(t) ≥ 0
, (4.1)

where ϵ is a FAUST constant equal to the smallest positive value that can be repre-

sented as a floating point number. For additional safety, the result of the division can

also be clipped to some fixed interval, (in this case, [−1/ϵ, 1/ϵ] at the time of original

publication) to ensure that future computations also cannot reach ±∞. In fact, all four

of the basic arithmetic operations, among other functions, require their outputs to be

clipped in order for them to both be considered valid signal processors and satisfy the

closure property.

Once these protections are in place, we can now define a basic set of functions with

which we can generate DSP programs. Figure 4.1 defines a list of basic functions,

along with their corresponding primitives and FAUST definitions, for the function set

in our implementation of RCGP. It includes a helper constant MAX, which is equal to

1/ϵ, as well as a helper function max_clip, which clips its inputs values to the range

[−1/ϵ, 1/ϵ].

The usual arithmetic operations are performed via the add, sub, mul, and div

functions, with their results clipped and div defined as above. Constant terminals such

as 0 and 1 are also manually added as these values cannot easily be reproduced with

the current function set. Finally, the four oscillator functions that generate the various

basic waveform shapes (sine, sawtooth, square, and triangle) make up the component

signals that will ideally be added together to form the target signal. The one-sample

delay function, or the mem primitive/keyword in FAUST, is also included as a way to

partially control the phase of the oscillators as well as the combined signals.

4.3.2 RCGP Implementation

Recall from Section 2.4 that in RCGP, each individual program is encoded as an

array of nodes, which are classified into three types: inputs, functions, and outputs.

41



1 import("stdfaust.lib");
2

3 EPS = ma.EPSILON;
4 clip = min(1 / EPS) : max(-1 / EPS);
5

6 // Constants (Terminals)
7 zero = 0;
8 one = 1;
9

10 // Fundamental frequency (Terminal)
11 freq = 440;
12

13 // Protected arithmetic operations
14 add = + : clip;
15 sub = - : clip;
16 mul = * : clip;
17 div(n, d) = ba.if(d < 0, n / min(-EPS, d), n / max(EPS, d))
18 : clip;
19

20 // One-sample delay
21 delay = mem;
22

23 // Waveform oscillators
24 sine = os.osc;
25 sawtooth = os.sawtooth;
26 square = os.square;
27 triangle = os.triangle;

Figure 4.1: Preamble FAUST code defining basic functions for use in RCGP.

Typical RCGP usage includes at least one input node, one output node, and dozens of

function nodes. A function node contains exactly one function from the function set

with, depending on the individual function, n inputs and m outputs from which edges

can be connected. During program execution, each function node also contains an

internal value that is calculated based on the input values it is given. Each output node

is connected to exactly one function node from which its value is returned as the output

of the program. Not all function nodes necessarily have to contribute to the output of

the program, however. Depending on the layout of the edges, a function node may be

considered “inactive” if it does not contribute to the output of the program at all, but

function nodes may become active or inactive at any time as the population is evolved.

This allows for “neutral genetic drift,” where the phenotype of an individual program
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can be variable in length [11].

Finally, the input node contains a value that typically changes when calculating the

fitness of the program, depending on the outputs of the program to be evaluated. While

a DSP synthesizer can technically produce a signal without requiring any inputs, typical

usage of DSP synthesizers allows at least for the pitch to be adjustable in order for them

to be useful as musical instruments. To mirror this in our RCGP implementation, the

fundamental frequency of the target sound can be provided as an optional argument.

Then, for each individual in the population, we include one input node that will effec-

tively serve as a function node instead, but whose value is a constant equal to the given

frequency, thereby adding the fundamental frequency into the function set as a terminal

function in the process.

In the CGP evolutionary process, a population of DSP programs is initialized, pick-

ing a random function for each function node and randomly drawing the connecting

edges. Each “generation” consists of computing the fitness of each individual, selecting

an individual to be reproduced for the next generation, and generating new “offspring”

programs (via some modifications to the selected individual) to replace the population.

Typically, an ES where only one parent is selected each generation and four offspring

are produced from that parent is used, denoted as (1 + 4) [10]. In RCGP, an additional

“recurrent connection probability” parameter is added to control the frequency of feed-

back loops being created during this step [11]. This generational process is repeated a

predetermined number of times or until the fitness value is satisfactory. Then, the pro-

gram with the best fitness value across all generations is returned as the result. Table 4.1

summarizes the list of parameters used in RCGP as well as the values used in our DSP

implementation.

In order to demonstrate the capabilities of RCGP, Turner and Miller developed and

released CGP-Library [68], a library licensed under the GNU Lesser General Public

License Version 3 (LGPLv3) which implements RCGP in C. This library is used as

the basis for our RCGP implementation, with some modifications to produce working

FAUST code. In support of the free software movement, these modifications as well
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Table 4.1: List of RCGP parameters and the default values used in FaustCGP.

Parameter Name Value

Evolutionary Strategy (1 + 4)
Input Nodes 1
Function Nodes 15
Output Nodes 1
Error Threshold 0.1
No. of Generations 1000
Recurrent Connection Probability 0.1

as the source code for the RCGP implementation are also publicly available as free

software, the latter of which also being released under the GNU General Public License

Version 3 (GPLv3) [6].

4.3.3 DSP Synthesis

Before executing the evolutionary process, we begin with the target audio stored in

Free Lossless Audio Codec (FLAC) format. After removing any Direct Current (DC)

offset and normalizing the first two seconds of the signal to 0 dBFS (decibels relative

to full scale), we calculate its power spectrum from 0Hz to the Nyquist frequency via

the DFT [69] for the first 4096 samples. The values are stored in a text file as (x, y)

pairs, with x being the frequency of a frequency bin, and y, its magnitude. This power

spectrum can then be read by the RCGP fitness function as a reference for comparison

with the power spectra of signals generated by candidate programs.

Then, to evaluate the fitness of each individual, we first convert each individual’s

genotype (i.e., graph structure) into their respective phenotypes as text in the format

of FAUST code. Ren et al. [70] provide an algorithm for precisely this task, which is

also capable of handling an arbitrary number of feedback loops at any and all points

within the graph structure. A simple example of how an arbitrary feedback loop can be

coded in FAUST is shown in Figures 4.2 and 4.3, with the former showing an example

feedback loop in Pd and the latter showing the corresponding FAUST code for this

feedback loop.
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inlet

outlet

+  f  

Figure 4.2: A Pd patch with a simple feedback loop.

1 main(rec_in, inlet) = rec_out, outlet with {
2 add = inlet, rec_in : +;
3 rec_out = add;
4 outlet = add;
5 };
6

7 process = main ˜ _ : !, _;

Figure 4.3: The FAUST code corresponding to the Pd patch in Figure 4.3, based on the
algorithm by Ren et al. [70].

From there, we can compile the source code via the libfaust library, compute the

output signal from the resulting executable, and calculate its power spectrum. Finally,

we calculate the LSD value by comparing this power spectrum with that of the target

signal (retrieved from the text file) from the given fundamental frequency up to 10 kHz.

Given two power spectra X1 and X2, the LSD d in the range [a, b] is

d =

√√√√ 1

b− a+ 1

b∑
k=a

(
10 log10

X1(k)

X2(k)

)2

[dB]. (4.2)

In other words, the LSD is the RMS of the level difference in corresponding fre-

quency bins. This LSD serves as an error value quantifying the difference between the

two sounds, where values closer to zero represent better fitness. A diagram summariz-

ing this process is shown in Figure 4.4.

Once the best-fit individual is determined (i.e. the program whose output signal

has the smallest LSD when compared to the reference signal), the FAUST source code

corresponding to that individual is output.
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DSP Graph

Diagram to
FAUST Code [70]

Dynamic Compilation (via
libfaust LLVM C API)

Compute Output Signal

Discrete Fourier Transform

Log-Spectral Distance
Reference

Signal Data File

Fitness Value

Figure 4.4: Flowchart summarizing the procedure for calculating the fitness value of
any given individual in FaustCGP.

4.4 Evaluation

4.4.1 Setup

As a starting point for our evaluation, we attempt to replicate the sounds in the

SHARC timbre database [54], a collection of steady state tone values analyzed from

recordings of various orchestral instruments at various pitches, where each tone is iden-

tified by a fundamental frequency along with the magnitude and phase at each harmonic

up to 10 kHz. As such, the provided data makes it easy to both reproduce the steady

state waveforms and compare our solution to the reference signals. With a total of 1338

tones in the database across 39 different instruments, we believe such a collection is a

suitable enough challenge for our implementation, as such instruments are regarded as

being able to produce a musically diverse set of timbres [71].

Using the set of functions as defined in Section 4.3.1, ten seeded runs of RCGP

were executed for each tone, one for each combination of 15, 30, 60, 120, and 240
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function nodes, stopping after 100 and 1000 generations. The LSD values of the best-fit

individuals were recorded along with its FAUST code and corresponding waveform,

for ease of comparison between the signals. The runs were executed with a Mac mini

(running Arch Linux instead of macOS), with 8GB of RAM and an 8-core Intel i7-

2635QM CPU. For faster computation, all 8 CPU cores were utilized at the same time,

with one RCGP process per core, via GNU parallel [72].

4.4.2 Results

The entire experiment took approximately 10 days to complete, even with the par-

allelism that GNU parallel provides. The mean execution times for all runs that

stopped after 100 and 1000 generations were 69.1 and 769.4 s, respectively. Of the

1338 tones in the SHARC database, only one was unable to be generated after the pre-

defined number of generations, resulting in infinite LSD values. Among the remaining

programs, the mean LSD value was 6.3 dB (σ = 2.7 dB) after 100 generations. After

1000 generations, it was 5.1 dB (σ = 2.3 dB). Similar values are obtained when bro-

ken down by the number of function nodes given. The minimum LSD values attained

after 100 and 1000 generations were 0.81 dB and 0.52 dB, respectively, although they

are still above the previously set threshold of 0.1 dB. Figure 4.5 reports the mean and

standard deviation of LSD values via an error plot, broken down for each combina-

tion of the number of function nodes and the number of generations. The generated

FAUST code is publicly available online [6], with audio samples generated on-the-fly

via Faust2WebAudio, a JavaScript wrapper that can compile and run FAUST pro-

grams in a web browser.

4.4.3 Discussion

Our experiment shows that for a select number of tones, our method has the poten-

tial to reproduce the target sounds with sufficient accuracy. While early results show

some promise, we believe the results can be improved in several ways. First, we plan to

perform parameter sensitivity analysis in order to find a more optimal set of RCGP pa-
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Figure 4.5: Means and standard deviations of LSD values by number of function nodes
and number of generations.

rameters for our method. While the number of function nodes does not seem to have a

significant effect on the LSD values, other changes such as increasing the number of al-

lowed generations even further, increasing the population size, or changing the function

set may help yield better results. Second, even though we provided to the RCGP basic

component functions that are common in basic additive synthesis, the random nature

of the connections between nodes means that not all DSP programs generated will ad-

here to the additive synthesis model, and that non-steady state signals can be produced.

We intend to improve our fitness function by evaluating the output signals over longer

periods, calculating the LSD as the mean of several LSD values at regular intervals.

This should increase the likelihood that non-additive synthesizers and non-steady state

signals would be removed from the population.

Another possibility to explore is the addition of even more component functions

such as noise generators, filters, Boolean operators, and many more. This means that

our approach could be extended to generate almost any DSP synthesizer in existence,

including subtractive, wavetable, FM, and other synthesis techniques on top of additive

synthesis, along with possibly even new types of synthesis that are yet to be discovered.
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4.5 Interim Conclusion

We proposed a novel framework for generating arbitrary DSP programs via RCGP

in order to replicate a target sound as closely as possible. These programs are encoded

as directed graphs which can be cyclic or acyclic, and various similarity measures be-

tween each program’s output signal and the target signal determine the fitness of these

programs. The result is in the form of source code in FAUST, a functional program-

ming language that can be exported to a multitude of other programming languages

and applications. Preliminary evaluations show that the steady state spectra of a wide

variety of orchestral instruments and pitches can be reproduced with varying degrees

of accuracy. The advantages of this approach do not just lie in the flexibility of the

FAUST language, which in itself can have practical uses across multiple platforms and

architectures, but also lie in the flexibility of the RCGP, which is only limited by the

function set that is provided.

Such a function set can be extended with the addition of even more component

functions such as noise generators, filters, Boolean operators, and many more. This

means that our approach could be extended to generate virtually any DSP program in

existence, including subtractive, wavetable, and FM synthesis, along with even new

types of synthesis that are yet to be discovered.

As previously mentioned, another possible application of this method the ability to

generate audio effect chains as well. Given a dataset containing the desired frequency

response of the effect chain, candidate programs generated via RCGP can be similarly

evaluated based on the spectral characteristics of the IR of the audio effect. In Chapter

6, we will discuss in further detail how RCGP can be extended to facilitate such DSP

applications as well.
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Chapter 5

Effects of RCGP Parameters on DSP

Programming

5.1 Introduction

In the last chapter, we demonstrated the real-world potential of RCGP in its appli-

cations to DSP synthesizer programming. Many open questions still remain regarding

the performance and efficacy of CGP, however [12]. as many of the CGP parameters

were still left to their default values as determined by Miller [9], among other similar

papers, which may or may not be the most optimal values for our particular application.

To extend our knowledge on CGP, we evaluated the effects of three parameters in

the context of digital audio synthesis: selection method, recurrence probability, and

inclusion of prior knowledge in the evolutive process. In other words, we draw the

probabilities of node selection and mutation from a known distribution as opposed to a

uniform distribution, in a similar manner as informative priors are often preferred over

non-informative priors in Bayesian data analysis.

This chapter was first published in [73].
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5.2 Background

Many previous approaches to sound synthesis using EAs have been done through

EP, where the structure of the program is fixed to one or more known synthesis tech-

niques and only the parameter values are evolved and evaluated (see, for example, [74]

for a survey of basic approaches). As for GP-based approaches, the first and only other

known attempt was conducted by Macret and Pasquier [27]. As previously explained

in Section 2.5, they used MT-CGP to evolve Pd patches, synthesizing sounds in a vi-

sual programming environment in real-time. The use of mixed typing, however, was

only needed because of Pd’s distinction between audio and control signals, arbitrarily

limiting the solution space of DSP programs. In [56], we were able to remove this

distinction by evolving DSP programs in FAUST instead, which operates on a singular

“signal” data type, instead. In either case, extensive analysis of the CGP parameters

used was yet to be conducted, which is what we aim to address here.

Arguably, the most common CGP configuration is a (1 + 4)-ES, as previously de-

scribed in Section 2.3 [9], although other population sizes are also possible. Turner

and Miller [11] also showed performance improvements of recurrent CGP over acyclic

CGP on the Artificial Ants [17] and sunspot prediction [16] problems. Thus, (1 + 4) in

recurrent CGP became the de-facto standard in many implementations.

However, a recent study by Kalkreuth [75] shows that other evolutionary strategies,

such as tournament selection in combination with subgraph crossover, outperform (1 +

4) or even (µ + λ) in some symbolic regression and Boolean function problems. His

findings suggests that the best CGP configuration may be problem-dependent.

The aim of this research is to determine whether the hitherto default settings of

CGP achieve better accuracy than other configurations in the context of DSP. Chiefly,

we compare the elitist selection method used in (µ + λ) with two other less elitist

alternatives, as the former has been shown to perform best in other contexts [76]. We

also compare acyclic vs. recurrent CGP, the latter having been shown to perform better

than the former in other contexts [11].

Finally, we compare the traditional way of initializing and mutating programs by
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drawing the function set primitives from a uniform distribution with drawing them from

a prior known distribution. In a similar way that there are more function words (articles,

conjunctions, etc.) than content words (nouns, adjectives, etc.) in speech, assigning

functions to nodes in CGP could be done to reflect an underlying known distribution

different from the uniform distribution. While our approach may reduce the likelihood

that unexpected, but better, solutions are found, introducing prior knowledge to CGP

could improve its efficiency (in convergence time) and its accuracy (in achieved fitness).

A similar approach was used by Ardeh et al. [77] for classical, tree-based GP, using

Probabilistic Prototype Trees (PPTs), structures which encode different probability dis-

tributions for each tree node, to generate new GP individuals. They also demonstrated

that using such distributions improves accuracy over traditional GP, especially in the

initial population and subsequent generations. Because the depth of each function node

is not fixed in CGP, however, our approach differs from theirs in that a single proba-

bility distribution is used for all nodes, and that such a distribution is based on known

theoretical solutions rather than being based on prior, GP-based solutions.

Another related approach was recently proposed by Huang et al. [78], who devised

a new GP variant called Multi-Population Gene Expression Programming (MP-GEP)

which divides a population of individuals into multiple sub-populations and assigns a

random probability distribution to each sub-population on initialization. Such distri-

butions then undergo evolution themselves with each subsequent generation based on

the makeup of the individuals in the population. As we evaluate our method using

known synthesis techniques, however, such random distributions are not needed in our

case. That way, a predetermined distribution based on known theoretical solutions can

be used to randomly select primitives for all individuals in the population rather than

continuously updating and applying it for multiple sub-populations.
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5.3 Methods

Our simulations were performed with an updated version of FaustCGP [56], a

software application that, up to this point, can generate DSP synthesizers in FAUST

using CGP (the source code is publicly available at [6]). The updated version allows

the setting of any recurrence probability (0 for acyclic CGP and 1 for only recurrent

connections), and implements a modified function set that satisfies closure in the inter-

val [−1, 1], values that can be represented in a floating-point audio signal. The current

function set is now comprised of arithmetic operations (sum, sub, mul, and div);

1st-order Butterworth low- and high-pass filters (lop and hip, respectively); sine,

sawtooth, square, and triangle wave oscillators (sinp, sawp, sqrp, and trip, re-

spectively) whose frequency and phase arguments are set as fractions of the Nyquist

frequency and 2π, respectively; and Ephemeral Random Constants (ERCs), random

values in the range [−1, 1] which remain constant unless the mutation operation is ap-

plied to them (const). Any graph produced with FaustCGP is syntactically valid.

Figure 5.1 summarizes the updated implementation of the function set in FAUST for all

functions except for the generation of ERCs.

This software application also features two mechanisms to deal with “plateaus” after

a local minimum is reached. After a number of generations defined by a “soft plateau,”

the mutation rate increases five percent each generation until either a new best-fit in-

dividual is found, resetting the mutation probability back to its original value, or the

mutation probability reaches unity. After a number of generations defined by a “hard

plateau,” the CGP terminates. The default thresholds for “soft” and “hard” plateaus

were set to 10 and 200 generations, respectively.

Different selection methods can also be set. In addition to elitism (dubbed Elite

here), two more methods are available: one where the best-fit individual among the

offspring is selected as the parent for the next generation (Child) and weighted random

selection (Rand), where a parent is chosen with a probability proportional to its fitness

relative to other individuals in the same generation. In any case, the best solution across

all generations is output.
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1 import("stdfaust.lib");
2

3 // Helper constants and functions
4

5 EPS = ma.EPSILON;
6 MAX_DELAY = 8192;
7 NYQUIST = ma.SR / 2;
8 freq = *(NYQUIST);
9

10 pos = abs : max(EPS);
11 clip(a, b) = min(b) : max(a);
12 sclip = clip(-1 / EPS, 1 / EPS);
13 fclip = clip(NYQUIST * 0.0001, NYQUIST * 0.99);
14 ffreq = freq : abs : fclip;
15

16 pdel(f, p) = 2 * ma.frac(p) / pos(f), _ : de.delay(MAX_DELAY);
17

18 // Function set (except "rand")
19

20 add = + : sclip;
21 sub = - : sclip;
22 mul = * : sclip;
23 div(n, d) = ba.if(d < 0, n / min(-EPS, d), n / max(EPS, d))
24 : sclip;
25

26 sinp(f, p) = os.oscp(freq(f), p * ma.PI) : sclip;
27 sawp(f, p) = os.sawtooth(freq(f)) : pdel(f, p) : sclip;
28 sqrp(f, p) = os.square(freq(f)) : pdel(f, p) : sclip;
29 trip(f, p) = os.triangle(freq(f)) : pdel(f, p) : sclip;
30

31 lop(s, f) = ffreq(f), s : fi.lowpass(1);
32 hip(s, f) = ffreq(f), s : fi.highpass(1);

Figure 5.1: Updated preamble FAUST code defining basic functions for use in RCGP.

5.4 Evaluation

5.4.1 Setup

We attempted to replicate the steady state spectra of 250 entries randomly cho-

sen from the SHARC [54]. Recall that this timbre database is comprised of 1338

entries, each containing frequency components (amplitudes and phases) up to 10 kHz

from recordings of 24 orchestral instruments played with different styles at various

pitches. The three aforementioned selection methods (Elite, Child, and Rand),
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three recurrent connection probabilities (0, 0.25, and 0.5), and two function set dis-

tributions (equally probable—Eq and weights based on the proportions of an additive

synthesizer—Add) were considered in the evaluation. A signal generated via additive

synthesis is merely a sum of sinusoids, each with their own frequency, phase, and ampli-

tude. For the weighted function case, functions present in the additive synthesizer (sum,

mul, sinp, and const) were chosen 80% of the time. Const is three times as likely

as the other functions to be chosen so that enough numbers are available as arguments

to the other functions. The remaining 20% was equally divided among functions absent

in the additive synthesizer. Table 5.1 summarizes the proportions and probabilities of

each function in the additive synthesizer and the weighted function set case.

Table 5.1: Proportion of functions in an additive synthesizer (p1), and probabilities for
each function to be selected in the weighted function set (p2).

Function p1 p2

const 0.500 0.400
sum, mul, sinp 0.167 0.133
sub, div, sawp, sqrp, trip, lop, hip 0 0.029

Fitness was measured as the Euclidean distance between 40 MFCCs [79]. These

coefficients were obtained from the CGP-generated audio and those of an additive syn-

thesizer programmed in FAUST that perfectly replicates each SHARC tone. Such co-

efficients were taken from 48 triangular filter banks equally spaced in the mel scale

between 20 – 10240Hz. As opposed to LSD, we believe that MFCCs provide a bet-

ter metric with which the perceptual differences between signals can be quantified and

minimized, and this metric has been used in other academic literature for similar appli-

cations as well (see, for example, [27, 55]).

Other parameters such as the genotype length, initial mutation rate, distance thresh-

old, and the maximum number of generations to evaluate remain constant throughout

the evaluation (64, 0.05, 0.1, and 1000, respectively). Finally, a total of 4500 seeded

simulations were conducted, one for each combination of timbre, selection method,

function set weights, and recurrence probability. The runs were executed on the same

hardware and software stack as in the previous evaluation: a Mac mini with 8GB of
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RAM and an 8-core Intel i7-2635QM CPU running Arch Linux, with GNU parallel

[72] being utilized to minimize computation time.

5.4.2 Results

The results were analyzed with a series of Linear Mixed-Effects Models (LMEMs)

eased with the lme4 library [80] in R [49]. The MFCC distance was set as the de-

pendent variable, while selection method (select), prior knowledge initialization

(weights), recurrence probability (rec), and the MIDI note (pitch, ranging from

C1 to F#7, or approximately 32.7Hz to 2.96 kHz) corresponding to a given timbre were

considered as explanatory variables. Starting with a model only including timbre (en-

tries in the SHARC database) as a random factor, more complex models were built and

accepted if the additional complexity resulted in significantly better fit (with a 95%

significance level), as assessed with pairwise ANOVA tests. The final model included

significant effects of all four explanatory variables and their two-way interactions ex-

cept that between select and pitch (χ2
138 = 128, p = 0.720), as summarized in

Table 5.2. All three-way and four-way interactions were not significant.

Table 5.2: ANOVA Type II Wald chi-squared test results for the fitted LMEM.

Factor χ2 df p

pitch 120.1 69 < 0.001
rec 1012.6 2 < 0.001
select 813.4 2 < 0.001
weights 33.3 1 < 0.001
pitch:rec 241.4 138 < 0.001
pitch:weights 121.0 69 < 0.001
select:weights 10.9 2 0.004
select:rec 23.4 4 < 0.001
weights:rec 14.4 2 < 0.001

A post-hoc analysis based on Tukey’s HSD of the EMMs [51] shows that best mean

fitness (shortest distance) was achieved when the elitist selection was applied to acyclic

CGP, as shown in Figure 5.2a. Fitness worsened with recurrence probability, and dif-

ferences in fit within levels of recurrence probability increased with less elitist selection
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methods, with weighted random selection observing the greatest difference. Figure 5.2b

shows that the default, equally distributed, function set yielded worse fit for non-zero

recurrence probabilities, and that the differences in fitness achieved by the two function

sets also increased with recurrence probability. Figure 5.2c shows that prior knowledge

initialization yielded better fit for the elitist selection method, but not when recursion

was allowed.

The interactions with pitch are shown in Figure 5.3. This figure indicates that best

fits were achieved at low and high pitches, but not for mid-pitches. The weighted func-

tion set was more likely to yield better fitness than the default function set for mid-

pitches, as shown in Figure 5.3a. In a similar manner, Figure 5.3b indicates that acyclic

CGP was more likely to yield better fitness within the same frequency range.

5.4.3 Discussion

Our results are in agreement with previous findings for which the conventional elitist

selection method outperforms others. In contrast, we found that acyclic CGP outper-

formed recurrent CGP in our problem, suggesting that the apparent benefits of RCGP

are problem-dependent. We mentioned in Section 2.4 that feedback loops are used

in DSP programming to create IIR filters, sawtooth oscillators, among other common

functions. Despite this, they worsen the fitness achieved in our case. We speculate two

reasons for this outcome: (a) acyclic graphs being more suitable structures for addi-

tive synthesis and steady state tones in particular, and (b) an increase in the solution

space by introducing feedback loops into candidate programs and therefore increasing

the possibility of exploring sub-optimal solutions.

When recursion was allowed, we observed better fitness for the weighted function

set compared to the default function set. The largest differences in fitness occurred with

elitist selection and a recurrence probability of 0.5 (i.e., when feedforward connections

were equally as likely as feedback ones). Thus, our findings support the hypothesis that

assigning functions to nodes in CGP based on an underlying known distribution (the

proportions found in an additive synthesizer in our case) is more beneficial than assign-
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ing them based on a uniform distribution, as it is traditionally performed. But, such

benefits are more pronounced with increasing recurrence probability and more elitist

selection methods. One possible explanation for this phenomenon is the elimination of

length bias in recurrent CGP, where each function node is equally likely to be activated

regardless of their position in the chromosome [81]. This in turn allows for longer

program phenotypes, and thus more complex tones, to be produced, a finding that is

supported by our evaluation. The mean number of active nodes was 7.56 when acyclic

CGP was used, compared to 15.63 and 21.18 for recurrence probabilities of 0.25 and

0.5, respectively.

Such short phenotypes, as in our case, may still adversely affect the fitness achieved

by the algorithm. As additive synthesis requires a number of nodes proportional to the

number of desired harmonics. With the chosen function set, a chromosome length of 64

can ideally hold up to 10 harmonics, which is well insufficient for more complex tones,

especially those corresponding to low pitches that may contain hundreds of harmonics.

We argued that including harmonically rich functions (as those indicated in Table 5.1)

could help to compensate for the lack of nodes. However, our results show no significant

differences between the two function sets at low pitches, while the weighted function

set was more likely to trump the default function set at mid-pitches. Recall that the

latter could assign harmonically rich functions to nodes more freely than the weighted

function set. Since the inclusion of these harmonically rich functions did not yield

fitness gains for the default function set, we argue that the observed fitness gains of

the weighted function set must come from the prior knowledge used in this case. The

arbitrary 80 – 20% split we imposed in the weighted function set then could hinder the

capabilities of this set to find even better fitness. Whether to eliminate such split or

modify it is deferred to future research.

Our findings are encouraging and far from being complete. Future investigations

will explore the synthesis of non-steady state sounds to determine other CGP parameters

that may be context-dependent, or whether other CGP variants perform better for DSP

programming in general. Though our focus is on applications of CGP in audio DSP, we
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5.5. INTERIM CONCLUSION

believe that the ideas introduced here (such as the inclusion of prior knowledge through

weighting of the function set primitives) may benefit other applications of graphical

evolution in general.

5.5 Interim Conclusion

We determined that acyclic CGP, elitist selection, and inclusion of prior knowl-

edge in the initialization and mutation of candidate programs significantly outperformed

other evaluated options for steady state additive synthesis, indicating that the superior-

ity of RCGP over CGP cannot be generalized to all problem domains. At least for our

audio synthesis problem, increasing the recurrence probability worsens the resulting

fitness, in a similar manner that selection methods less elitist than the (1 + 4)-ES also

does. Modifying the distribution of function set primitives based on prior knowledge

also shows promising results as it improves the fitness of candidate programs over the

traditional (equal) distribution in our case.

59



Elite Child Rand

0 0.25 0.5 0 0.25 0.5 0 0.25 0.5
3.5

4.0

4.5

5.0

5.5

6.0

Recurrence Probability

D
is

ta
nc

e

Selection Method

(a)

0 0.25 0.5

Eq Add Eq Add Eq Add
3.5

4.0

4.5

5.0

5.5

6.0

Function Set Type

D
is

ta
nc

e

Recurrence Probability

(b)

Elite Child Rand

Eq Add Eq Add Eq Add
3.5

4.0

4.5

5.0

5.5

6.0

Function Set Type

D
is

ta
nc

e

Selection Method

(c)

Figure 5.2: Mean MFCC distances and 95% confidence intervals: (a) by recurrence
probability and selection method, (b) by function set type and recurrence probability,
and (c) by function set type and selection method.
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Figure 5.3: Mean MFCC distance by pitch and function set type (a), and recurrence
probability (b). Shaded areas around lines indicate 95% confidence intervals. Dots
indicate where significant differences within pitch were found. Distance between pitch
marks are not scaled.
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Chapter 6

DSP Filter Design via RCGP

6.1 Introduction

Filtering is a common technique in DSP that is used in various applications includ-

ing room reverberation, noise reduction, and electronic music production. Such filters

can be described in a number of ways, such as difference equations, transfer functions,

IRs, or directed graphs visualizing signal flow. They can be used to modulate the mag-

nitude and/or phase of an input signal. Often, these graphs adhere to one of four direct

forms which implement the difference equations [82]. Such forms can be cyclic or

acyclic, resulting in IIR or Finite Impulse Response (FIR) filters, respectively.

In Chapter 3, we provided an EP method for generating new RIRs in order to add the

desired reverberation to an input signal, effectively creating FIR filters in the process.

In Chapter 4, we investigated the application of RCGP to additive audio synthesis by

using functional programming as a way to treat actual signals and control parameters

of the synthesizer as equal. In Chapter 5, we showed that introducing prior knowledge

for the initialization and mutation of RCGP was beneficial for the achieved fitness of

the algorithm. In a similar manner, we demonstrate in this chapter how RCGP can be

used to generate Single-Input/Single-Output (SISO) IIR and FIR digital filters by taking

advantage of their directed graph representation.

We evaluate our method by replicating various filters with different (or perhaps
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6.2. BACKGROUND

unknown) topologies and orders. As a result, we produce computer programs imple-

menting these filters that can subsequently be used for real-time signal processing, and

open a new path for the exploration of real-time digital audio effects. This research is

also important because it demonstrates that combining the use of RCGP and functional

programming solves some of the hurdles for applying the former in the context of DSP,

and illustrates how, by selecting an adequate function set, arbitrary DSP programs can

be evolved.

This chapter was first published in [83].

6.2 Background

Many different techniques have been devised to generate close approximations of

desired filters, including those that tackle this problem using ML techniques such as

neural networks (e.g., [84, 85]) and those using evolutive approaches (e.g., [86]).

A GP-based approach for filter design was proposed by Koza et al. [87] using a pop-

ulation of computer programs represented as tree structures. These programs generate

syntactically valid analog electrical circuits, with analog filters being one example of

the various circuits that were generated and evaluated. In contrast, CGP would com-

monly be used to generate digital circuits, often for use as Boolean logic functions or

n-bit adder and multiplier circuits (e.g., [88]). In Chapter 3, we provided a rudimentary

EP method for generating new RIRs in order to add the desired reverberation to an input

signal, effectively creating FIR filters in the process.

A GP method that can generate digital DSP filters in general, however, is to the best

of our knowledge yet to be devised. This chapter aims to not only fill this gap, but also

take advantage of the recurrent properties of RCGP to theoretically create any desired

FIR or IIR filter with ease.

Another attempt at using a quasi-evolutionary approach to generate basic filters was

conducted by Santolucito et al. [89], who used a technique called Programming By Ex-

ample (PBE), which takes a mapping provided by a user between various input signals
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with their corresponding output signals, as a way to define and generate basic filters.

Initial attempts, however, were restricted to a combination of a Butterworth low-pass

filter, a Butterworth high-pass filter, and gain control. Stochastic gradient descent was

also used to “evolve” the filter cutoff frequencies and gain amount. A fitness func-

tion based on the locations of peaks in the spectrograms of the output signals would

then evaluate and find the combination of values that closely approximates the desired

mapping. Thus, while PBE itself may not be an evolutionary approach, the evolution

of these parameters is a heuristic approach regardless that is akin to EP, a type of EA

where the population individuals consist of a set of parameters belonging to a program

that is predetermined and remains fixed throughout the evolution.

One disadvantage of EP is that the design of the fixed program limits the variety of

solutions that can be created. In the DSP domain, an additive synthesizer may have a

difficult time trying to reproduce sounds made with subtractive synthesis, for example.

Thus, the use of only Butterworth filters (as in the previous case) is merely an arbitrary

limit imposed onto the solution space of IIR filters. Furthermore, Butterworth filters

are a sub-class of analog IIR filters that can be transformed into digital filters using the

bilinear transform [82]. This suggests that our method is capable of generating not only

digital Butterworth filters, but also any filter with some arbitrary transfer function. In

addition, while the use of a mapping between different input and output audio signals

may be intended to make the system more accessible for end users, such a mapping is

excessively large when, in reality, just a single IR is sufficient. Our proposed system

addresses these issues by using a CGP-based approach instead, adding more flexibility

to the kinds of solutions that can be generated while minimizing the amount of user

input (information about the target filter) as much as possible.

6.3 Methods

We extend the functionality of our FaustCGP software application, previously dis-

cussed in Chapter 4, to include the evolution and generation of any target IIR or FIR
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6.3. METHODS

filter in FAUST. To replicate the direct form design of such filters, we start with a func-

tion set comprising four basic components for the difference equations of any direct

form digital filter: addition, multiplication, one-sample delay, and ERCs. The latter are

random values in the range of [−1, 1] that will ideally be associated with the real poles

and zeros of a filter. The output of each operation is also clipped to [−1, 1] as necessary

so that the function set satisfies the closure property within this interval, which is also

the range of values that can be represented in a floating-point audio signal.

The direct forms often require a number of one-sample delays to be chained in

parallel, which may be more difficult to replicate through evolution the more filter taps

are required. Thus, we add an additional fractional delay line (with interpolation for

non-integer delays) that takes as arguments both the signal to delay and the number of

samples to delay expressed as an absolute fraction of the delay line length that must be

arbitrarily set at compile time. Initially, we have set this maximum to 8192 samples.

To evaluate the fitness of candidate programs, the DSP graphs are first converted

into FAUST code, using an algorithm based on that provided by Ren et al. [70] that is

capable of handling any number of feedback loops in the graphs, before being compiled

via libfaust using the LLVM backend API. The digital unit impulse function (δ :

Z → R, where δ(n) = 1 if n = 0 and δ(n) = 0 otherwise) is then given as an input

signal to the resulting executable. That way, the IR of each candidate program is output.

We then return to the LSD

d =

√√√√ 1

b− a+ 1

b∑
k=a

(
10 log10

X1(k)

X2(k)

)2

[dB], (6.1)

as a cost function to evaluate the magnitude spectra of the IRs of each candidate pro-

gram. Unlike the previous chapters, we computed the LSD over the entire magnitude

response (between the DC and the Nyquist frequency, exclusive). This metric is com-

monly used in applications that attempt to minimize such deviations as well (see [44]

for a non-exhaustive list).
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6.4 Evaluation

6.4.1 Setup

For this evaluation, We first implemented in FAUST a basic low-pass FIR filter

sampled at 44.1 kHz, with its transfer function given by H(z) = 1 + 0.75z−1 (i.e., a

single zero at −0.75 along the real axis of the z-plane). For the second filter, we selected

the minimum-phase inverse filter of an Optimus Pro 7 loudspeaker, which is provided

as part of a database of HRIR measurements released by Gardner and Martin [90]. In

either case, their magnitude responses (in decibels relative to overload) over the first

512 samples were calculated, and the data was stored as text files to be used by the

RCGP algorithm for comparison with the candidate filters.

The genotype length (the maximum number of function nodes allowed per chromo-

some) was set to 64 function nodes for the one-zero filter. Miller and Smith [91] sug-

gested that the phenotype length (the number of function nodes that actively contribute

to the output of the program) be < 5% of the genotype length for best performance. By

this logic, a genotype length of approximately 41000 is recommended for the inverse

filter assuming an FIR filter design of order 512. Such a length, however, results in DSP

graphs that are currently too large to compile with our current hardware, so a limit of

1000 nodes was used instead.

Kalkreuth [75] also found that the optimal values for each RCGP parameter are de-

pendent on the context of the problem to which they are applied. Thus, we decided to

evaluate the effects of recurrence probability on the fitness of candidate filter programs

to determine which values, if any, are optimal for each target filter. Such probabilities

are also known to affect the amount of length bias [12, 81], a phenomenon in acyclic

CGP where function nodes closer to the input nodes are more likely to be active than

those closer to the output nodes. This probability subsequently affects the percentage

of active nodes in the candidate graphs as well as their compilation time. For our eval-

uation, recurrence probabilities of 0 to 0.5, in increments of 0.1, were selected for each

filter. Finally, 100 runs were executed for each combination of recurrence probability
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Figure 6.1: Distributions of LSD values by recurrence probability when replicating the
one-zero filter. Violin plots show the shape of these distributions. Overlaid box-plots
indicate intermediate quartiles.

and target filter. To minimize the overall computation time, these runs were executed

via GNU parallel [72], allowing all CPU cores to be utilized at the same time with

each core being given its own RCGP process. All runs were executed on the same hard-

ware as in previous chapters: a Mac mini (running Arch Linux) with 8GB of RAM and

an 8-core Intel i7-2635QM CPU.

6.4.2 Results

Fig. 6.1 reports the distributions of LSD values achieved for the one-zero filter

grouped by recurrence probability. This figure shows that our method was successful at

replicating short filters, with the final LSD values of most runs being < 1 dB. Among

the 600 total runs, 20 of them finished with LSD values of < 0.01 dB, which was the

threshold set for early termination by fitness. Increasing the recurrence probability does

not seem to affect the distances achieved in this case, suggesting that the RCGP process

is still able to find appropriate solutions for short filters regardless of whether or not the

solution space includes IIR filters.

Figs. 6.2 and 6.3 show the distances and best-achieved magnitude responses, respec-

tively, given the Optimus Pro 7 minimum-phase inverse filter as the target. Here, the

best filter found had an LSD = 1.486 dB, obtained from a run where the recurrence

probability was set to 0.4. By comparison, these figures show that our method was
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Figure 6.2: Violin plots of LSD values by recurrence probability for the Optimus Pro 7
minimum-phase inverse filter case.
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Figure 6.3: IR magnitude spectra of the best fit filters by recurrence probability (black
lines) compared to that of the Optimus Pro 7 minimum-phase inverse filter (gray lines).

Table 6.1: Minimum LSD values in decibels achieved for each recurrence probability
and target filter.

Recurrence Prob. Filter

One-Zero Optimus 7

0 0.007 1.716
0.1 0.003 1.740
0.2 < 0.001 1.763
0.3 0.007 1.560
0.4 < 0.001 1.486
0.5 < 0.001 1.537

less successful at replicating much longer filters. This is also evidenced by the distinct

mismatch between the magnitude responses of the target and the artificial filters. As in
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the case of the simpler filter, the recurrence probability setting does not seem to have

a significant effect on spectral distances, nor on the overall magnitude responses of the

artificial filters output (at least in terms of adequately matching the target filter). Table

6.1 reports the best LSD values obtained for each recurrence probability per filter.

6.4.3 Discussion

The results show that the distances achieved by our method depend on the order of

the target filter, especially if the genotype length does not scale in accordance with such

complexity as well. While the 1st-order filter can be replicated with relative ease, the

same cannot be said for higher-order filters.

Genotype lengths that become too large will quickly become unfeasible to compute

with our current hardware. As mentioned, the RCGP process seems to work best when

the average phenotype length is < 5% of the genotype length, so a genotype length of

1000 nodes would suffice for IIR filters up to a maximum order of 8 (a direct-form II

implementation with none of the poles and zeros being equal to 0 requires a minimum

of 51 nodes). Thus, the chances that the RCGP process would find and recreate this

exact structure (or any of the four direct forms) may also decrease as the number of

dimensions in the solution space increases with every increase in filter order. Neverthe-

less, the observed results for the inverse filter are encouraging since the evolved filters

approximate it reasonably despite its limited genotype length.

The recurrence probability seems to have no effect on the mean fitness of the gen-

erated filters. Although, for the inverse filter, we see a different amount of variance

as well as smaller LSD values found for recurrence probabilities >= 0.3 compared to

those < 0.3. While this finding supports the hypothesis that the optimal RCGP pa-

rameter values are problem-dependent, it may seem odd that this particular behavior is

two-tiered rather than gradual. One could hypothesize that the feedback loops in IIR

filters should reduce the number of nodes required to represent the filter as well as the

total order compared to FIR filters. However, such reductions in filter representation

may be counteracted by the fact that including recurrent connections increases the size
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of the solution space due to the addition of IIR filters. This drastically decreases the

likelihood of finding a correct solution through evolution.

The specified genotype length may also be a factor as it places a hard limit on the

size or order of the filters that can be produced as well. For filters that are automatically

programmed through evolutionary means, there are some properties such as the order

of the generated filters that are more difficult to control. In situations where only the

IR of the target filter is known, one could implement a matching digital filter as an

FIR filter. In order to reduce the latency of this system, however, it would be ideal to

return an equivalent IIR filter whose order is less than that of the target filter. Due to

the random nature of the evolved solutions, however, there also exists the possibility

that the order of the best fit solution is larger than that of the target filter. If desired, the

fitness function may be modified to penalize higher-order filters, but such possibilities

cannot be eliminated entirely in an evolutionary system.

The phase response is also currently not considered when evaluating the fitness

of candidate filters. Therefore, all-pass filters cannot be synthesized with our current

method since all-pass filters with different cut-off frequency will have the same magni-

tude response but different phase responses. Still, the fitness function can be extended

so that both the magnitude and phase spectra are considered.

6.5 Interim Conclusion

We introduced an extension to the FaustCGP framework whereby IIR filters can be

generated to approximate the magnitude response of any desired filter or IR. Two arbi-

trary filters of differing orders were chosen as targets for replication with our software,

and our experiments showed that the accuracy of the genetic solutions is dependent on

the complexity of the target solutions, which can be related to the order of the target

filter or the parameter values chosen for the RCGP evolution. The recurrence probabil-

ity setting in particular only affects the variance in the fitness of the evolved solutions

rather than the mean, further supporting the context-dependence of RCGP parameters.
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Chapter 7

Discussion

Over the past three chapters, we demonstrated how RCGP can be applied to the

automatic program induction of both DSP synthesizers and DSP audio effects, as well

as demonstrated a few research problems in the DSP domain to which this method can

be applied. In particular, we evaluated the effectiveness of RCGP on the matching of

both steady state sounds and IIR/FIR filters in the digital domain. Future work may

extend these evaluations to other DSP applications and research problems Regardless,

the simple fact that this single method can be used in a wide variety of problem domains

highlights how flexible and extensible CGP can be compared to other AI methods, and

this is all thanks to a cross-platform and cross-architecture programming language that

can be described as flexible and extensible itself as well.

The goal of this research is to advance progress into the applications of EAs in

DSP programming, and for that, we believe we have succeeded in that goal, making

significant contributions in the field while inspiring others to do the same. That being

said, it is also important to recognize that EAs have their own strengths and weaknesses

in relation to ML techniques. For one, the fact that EAs do not require any training

data can be seen as a double-edged sword. While the lack of such data eliminates

any concerns regarding training bias or data security and privacy, this comes at a cost of

executing all computations on-demand rather than in the training stage. This means that

EAs are unlikely to be useful for real-time DSP applications in the near future, as they
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may not be able to produce chromosomes with satisfactory fitness within the acceptable

limit for audio latency, which is approximately 70ms depending on the stimuli before

the precedence effect can be felt [92]. This especially holds true for EP applications

in particular where the parameters of a DSP synthesizer or audio effect are subject to

real-time automation.

For DSP applications that do not require real-time synthesis, such as the program-

ming of the synthesizers or audio effects themselves, such concerns no longer apply.

While further evaluations may be needed to compare the performance of both evolu-

tionary and ML methods given the same inputs, as previously demonstrated, we believe

that EAs can be just as viable as ML for such tasks. Furthermore, we have demonstrated

a general-purpose evolutionary framework that can be applied to multiple DSP research

applications at once, something that ML cannot accomplish as they have no knowledge

of any problem domains or data points outside of those they are trained upon.

Nevertheless, we do not claim that our framework is state-of-the-art either, as such

a generalization comes at a cost of having a much larger solution space in which certain

solutions must be found. Still, the advantage of having such a space to search through

is that prior knowledge about the desired solution is helpful but not required in the

evolutionary search. For instance, previous ML or EP methods for sound re-synthesis

[57–65] are limited to a subset of synthesis techniques with which a target sound is

assumed to use, so sounds generated using other techniques would be unsuitable for

replication using such methods.

Our framework can also be easily extended by defining new functions to add to

the function set as previously mentioned in Section 4.5. Just about any function that

is available or can be implemented in FAUST can be added in a similar fashion to the

existing functions, scaling the range of input parameter values and clipping the output

signals in a similar manner as necessary. Adding such sub-modules to the function

set would then allow for even more complex programs to be created and found. Fur-

thermore, this function set can be as small or large as necessary to fit the known (or

unknown) requirements of the solution to be found.
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Chapter 8

Conclusion

We introduced a general-purpose evolutionary framework for the automatic program

induction of any DSP program, and demonstrated several research applications to which

this framework can be applied. We started with the EP of FIR filters as RIRs for use

in a real-time convolution reverb application before generalizing the task to include the

generation of any digital filter or synthesizer. We also publicly provide some prototype

implementations of our applications via source code as free software to allow future

researchers to both verify and build upon our work. While the accuracy of the output

programs depends on many factors related to the parameters chosen for the framework,

some of which may even be unfeasible to perform with current hardware, we have

nevertheless demonstrated that this framework is a viable alternative to ML for solving

many DSP research problems, removing the need for large datasets and eliminating all

of the pitfalls associated with such data.

We hope that the introduction of these methods will lead to future research and new

developments in both DSP program synthesis as well as Cartesian Genetic Program-

ming, as there are still many open issues and questions concerning both DSP and GP

that are yet to be solved. The intersection of these fields is one that is yet to be explored,

but shows a lot of promise in the future as new DSP programs or synthesis techniques

may be discovered as a result of this evolutionary search, leading to the advancement

of new knowledge in ways that other AI methods cannot.
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