
A DISSERTATION
SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN COMPUTER SCIENCE AND ENGINEERING

Efficient Machine Learning Systems by
Exploiting Data Sparsity

by

Tao Liu

March 2024

© Copyright by Tao Liu, March 2024

All Rights Reserved.

Contents

Chapter 1 Introduction 1

Chapter 2 Background 7

2.1 Federated Learning . 7

2.2 Graph Convolutional Network . 8

2.3 Homomorphic encryption . 9

2.4 Local Sensitive Hash (LSH) . 10

2.5 Transformer and ViT . 11

2.6 Masked Autoencoders (MAE) . 12

Chapter 3 Federated Graph Learning with Traffic Throttling and

Flow Scheduling 14

3.1 Introduction . 14

3.2 Communication Bottleneck in FGL 17

3.3 System Design . 18

3.3.1 Overview . 18

3.3.2 Secure embedding sharing 20

Pre-aggregate . 20

Batching . 21

Multiple HE Servers . 21

3.3.3 Traffic Throttling . 21

Contribution Evaluation 22

Neighbor Selection . 23

3.3.4 Flow Scheduling . 24

v

Formulation . 24

Insights . 26

Joint Optimization . 26

3.4 Experiments and Evaluation . 29

3.4.1 Experimental Settings . 29

3.4.2 Results . 30

Accuracy Results . 30

Overall time cost . 31

The Effectiveness of the Joint Optimization 32

3.4.3 The Influence of System Parameters 33

3.5 Discussions . 34

3.6 Related work . 36

3.6.1 Federated Learning . 36

3.6.2 Graph Convolutional Networks 37

3.7 Conclusion . 37

Chapter 4 Graph Inference with Adaptive Sampling and Local

Sensitive Hash 38

4.1 Introduction . 38

4.2 Motivation . 42

4.3 LSH-based Graph Workload Clustering 44

4.3.1 Observations . 44

4.3.2 LSH-based Hierarchical Clustering 46

4.3.3 Parameters of LSH . 48

4.4 Adaptive Sampling . 48

4.4.1 Observation . 49

4.4.2 Adaptive Sampling . 50

4.5 Evaluation . 50

4.5.1 Experiment Settings . 50

4.5.2 Overall Results . 51

vi

4.5.3 The Effectiveness of Two strategies 53

4.5.4 Variants of the CAD Baseline 55

Size of the cache in CAD 55

Variants of CAD . 56

4.5.5 Design details of RAIN . 56

About re-index with degrees in adaptive sampling 56

About sampled neighbors in adaptive sampling 58

About sample index in LSH 58

About cluster graph in LSH 59

4.6 Related Work . 59

4.6.1 Various GNNs . 59

4.6.2 Caching Strategies . 60

4.7 Conclusion . 61

Chapter 5 Efficient Transformer Inference using Masked Autoen-

coders 62

5.1 Introduction . 62

5.2 Motivation . 67

5.2.1 Limited Resources of Edge Devices 67

5.2.2 Possibility of MAE-based Bandwidth-saving 68

5.2.3 Different Images Require Various Mask Ratios. 69

5.3 System Design . 71

5.3.1 Overview . 71

5.3.2 Two-round Offloading with Image Selection 72

5.3.3 SLO-adaptive Module . 74

5.3.4 Lightweight Inference Module 76

5.4 Evaluation . 77

5.4.1 Experiment settings . 77

5.4.2 Results . 78

With Computation-free Baselines 78

vii

With computation-required Baselines 79

5.4.3 The Influence of Various Strategies in A-MOT 79

About Image Selection and SLO-adaptive Modules 79

About Lightweight Inference Modules 80

5.4.4 The Choice of r1 . 81

5.4.5 The Choice of Threshold 82

5.5 Related work . 82

5.5.1 Offloading . 82

5.5.2 Image Sparsity and Completion 83

5.6 Conclusion . 84

Chapter 6 Conclusion and Future Work 85

viii

List of Figures

Figure 1.1 The composition of research fields in machine learning. . . . 1

Figure 1.2 CNN vs. GCN. 2

Figure 1.3 Sparsity of data. 3

Figure 1.4 Our contributions. 5

Figure 2.1 Federated learning process. 8

Figure 2.2 Convolution operation on the graph.. 9

Figure 2.3 An example of the process of LSH. 10

Figure 2.4 The process of MAE. 13

Figure 3.1 Example of cooperate training among three servers. 17

Figure 3.2 The architecture of S-Glint. 18

Figure 3.3 An example of joint optimization. 26

Figure 3.4 Time-accuracy performance comparison. 30

Figure 3.5 Overall time cost comparison. 31

Figure 3.6 The effectiveness of the joint optimization. 33

Figure 3.7 The influence of system parameters. 34

Figure 4.1 Time cost for the inference on four datasets. 42

Figure 4.2 The process of inference in different mini-batches. 43

Figure 4.3 Several observations. 44

Figure 4.4 The process of generating a similarity graph. 45

Figure 4.5 Inference accuracy with different sampling ratios. 48

Figure 4.6 Overall time costs for different datasets. 53

Figure 4.7 Time costs with various modified solutions for different datasets. 54

ix

Figure 4.8 Time cost of baselines with various parameters. 55

Figure 4.9 The influence of some designs in RAIN. 57

Figure 5.1 The basic MAE-based offloading scheme. 63

Figure 5.2 The development of models’ complexity and devices compu-

tation power per energy unit. 67

Figure 5.3 The output size of various state-of-the-art inference models. 68

Figure 5.4 MAE can be used for bandwidth-saving in offloading. 70

Figure 5.5 System overview. 71

Figure 5.6 Some crucial characteristics in the feedback process. 72

Figure 5.7 Different images demand various r2 for the second transmission. 74

Figure 5.8 The distributions of r2 in each confidence score interval. . . . 75

Figure 5.9 The process of the lightweight inference. 76

Figure 5.10The overall results with computation-free baselines. 79

Figure 5.11The results with computation-contained baselines. 79

Figure 5.12The Influence of Various Strategies in A-MOT. 80

Figure 5.13Accuracy of different settings in the lightweight inference mod-

ules. 80

Figure 5.14The accuracy and various r1. 81

Figure 5.15Percentage of samples that can be correctly classified in each

interval. 81

x

List of Tables

Table 3.1 Graph Datasets . 29

Table 4.1 The original nodes and loaded nodes of four datasets. 42

Table 4.2 The information in datasets, the letter “(m)” stands for mul-

tiple class classification. 50

Table 4.3 The comparison of accuracy. 53

Table 4.4 Time cost in on-line scene. 54

xi

List of Abbreviations

CNN Convolution Neural Network

DGL Deep Graph Library

FGL Federated Graph Learning

FL Federated Learning

GCN Graph Convolutional Network

HE Homomorphic Encryption

LSH Local Sensitive Hash

MAE Masked Autoencoder

NLP Natural Language Processing

PS Parameter Server

ViT Vision Transformer

WAN Wide-area Network

xii

Acknowledgment

During my doctoral studies, I received a great deal of assistance and support,

and I would like to express my gratitude to all those who helped me during this

time.

First and foremost, I would like to extend my sincere appreciation to my super-

visor, Professor Peng Li, for his invaluable guidance, encouragement, and unwa-

vering support throughout my Ph.D. journey. He has been an exceptional mentor

and a source of inspiration to me. My sincere appreciation also goes to Prof.

PHAM Tuan Anh, Prof. HAMADA Mohamed, and Prof. TRUONG Cong Thang

for their reviews and support.

I would also like to thank the entire university staff for creating a stimulating

and friendly environment that has greatly contributed to my success. I am grateful

for the assistance and cooperation of the staff and students who have supported

my research in various ways. Special thanks go to the SAD and ALO staff for

their help with my personal and academic affairs.

I would like to acknowledge my lab members and friends at the university for

their constant support and valuable advice on my research work. We shared some

unforgettable experiences, such as snowboarding together, which helped us bond

and learn from each other.

Finally, I owe a debt of gratitude to my family for their unconditional love,

patience, and understanding during this challenging period. They have been my

source of strength and motivation, and I dedicate this thesis to them.

xiii

Abstract

As machine learning technology becomes increasingly integrated into our daily

lives through various applications, building efficient machine learning systems is

becoming an important goal for both academia and industry for communication

or computation resource savings. One promising approach is exploiting data spar-

sity, which refers to the fact that many real-world datasets are inherently sparse

and used redundantly in machine learning processes. By exploiting this property,

significant overhead savings can be achieved.

Our work focuses explicitly on exploiting data sparsity for both Euclidean data,

such as images, and non-Euclidean data, such as graphs. We make three distinct

contributions, which contains both training and inference processes.

The first part of our work focuses on the scene of federated graph convolu-

tional network (GCN) training. The training process of GCN requires informa-

tion exchange between connected nodes in a graph. However, when graph data

is distributed among different owners, there are cross-device connections among

nodes that belong to different owners, resulting in cross-device communication.

Frequent communication may become a bottleneck for the whole system, and di-

rect data interaction may lead to privacy leaks. To address this, we propose a

secure federated graph learning system that encrypts transmitted data and ex-

plores redundant connections among data owners. We evaluate the contributions

of neighbors to each data owner and then eliminate unnecessary transmission.

We further schedule transmission flows in the network to make the training more

efficient.

The second part of our work focuses on the inference process of the GCN.

When we conduct inference on a large graph, the GPU may not have enough

memory to load the whole data. We usually need to generate multiple mini-batch

to load into the GPU one-by-one. We observe that many nodes in a graph are

loaded repeatedly into the GPU due to the non-sampling strategy in the inference.

This repeat loading significantly reduces inference speed. To address the issue, we

propose a more efficient system that uses an adaptive sampling design to sample

nodes’ neighbors according to their degree. And we reuse the loaded data from

the previous mini-batch. To get more data that can be used again, we reorder

these inference batches based on how similar they are using a local sensitive hash

(LSH)-based clustering scheme.

In addition to graph data, we also explore the sparsity of image data. Many

edge devices with weak computing power collect image data that needs to be

identified, but these devices may not have enough resources to conduct complex

neural network identification. Therefore, the data often needs to be uploaded to

a server for processing. We propose an offloading system that does not require

computation on the edge device and only needs to transmit part of the image data

to the server. The server can then recover the image and perform inference using

a feedback-driven strategy designed to achieve content-aware transmission.

xv

概要

機械学習技術がさまざまなアプリケーションを通じて私たちの⽇常⽣活に

ますます統合されるにつれて、通信や計算リソースの節約のために、効率的

な機械学習システムを構築することが学術界と産業界の両⽅にとって重要な

⽬標となっています。有望なアプローチの⼀つは、データの疎性を利⽤する

ことです。これは、多くの実世界のデータセットが本質的に疎であり、機械学

習プロセスで冗⻑に使⽤されているという事実を指します。この特性を利⽤

することで、⼤幅なオーバーヘッド節約が実現できます。

私たちの研究は、ユークリッドデータ（例えば画像）と⾮ユークリッドデ

ータ（例えばグラフ）の両⽅におけるデータの希薄性を活⽤することに明確

に焦点を当てています。私たちは訓練と推論のプロセスを含む 3 つの独⾃の

貢献をしています。

私たちの研究の最初の部分は、連合グラフ畳み込みネットワーク（GCN）

トレーニングのシーンに焦点を当てています。GCN のトレーニングプロセス

では、グラフ内の接続されたノード間で情報交換が必要です。しかし、グラフ

データが異なる所有者の間で分散されている場合、異なる所有者に属するノ

ード間にデバイス間接続があり、デバイス間通信が⽣じます。頻繁な通信は

システム全体のボトルネックになる可能性があり、直接的なデータのやり取

りはプライバシーの漏洩につながる可能性があります。これに対処するため

に、私たちは送信データを暗号化し、データ所有者間の冗⻑な接続を探求す

る安全な連合グラフ学習システムを提案します。私たちは、各データ所有者

に対する隣接ノードの貢献度を評価し、不必要な送信を排除します。さらに、

トレーニングをより効率的にするためにネットワーク内の送信フローをスケ

ジュールします。

私たちの研究の第⼆部では、GCN の推論プロセスに焦点を当てています。

⼤規模なグラフに対して推論を⾏う際、GPU のメモリが全データをロードす

るには不⼗分な場合があります。通常、複数のミニバッチを⽣成し、それらを

GPU に⼀つずつロードする必要があります。⾮サンプリング戦略により、グ

ラフ内の多くのノードが推論のために GPU に繰り返しロードされることが

観察されます。この繰り返しのロードは、推論速度を著しく低下させます。こ

の問題に対処するために、私たちはノードの隣接ノードをそれらの度数に応

じてサンプルする適応的サンプリング設計を使⽤するより効率的なシステム

を提案します。そして、前のミニバッチからロードされたデータを再利⽤し

ます。さらに多くのデータを再度使⽤できるようにするために、ローカルセ

ンシティブハッシュ（LSH）ベースのクラスタリングスキームを使⽤して、こ

れらの推論バッチをどれだけ似ているかに基づいて並べ替えます。

グラフデータに加えて、私たちは画像データのスパース性も探求していま

す。計算能⼒が弱いエッジデバイスは、識別が必要な画像データを収集しま

すが、これらのデバイスは複雑なニューラルネットワーク識別を⾏うのに⼗

分なリソースを持っていないかもしれません。そのため、しばしばデータは

サーバーへアップロードされて処理される必要があります。私たちは、エッ

ジデバイス上での計算を必要とせず、画像データの⼀部だけをサーバーに送

信するだけで良いオフロードシステムを提案します。その後、サーバーは画

像を復元し、内容認識型トランスミッションを達成するために設計されたフ

ィードバック駆動戦略を使⽤して推論を⾏うことができます。

xvii

Chapter 1

Introduction

Machine learning (ML) technology has integrated into our daily lives through

diverse applications such as intelligent email, facial recognition, content recom-

mendation, and more. The field of machine learning encompasses various distinct

categories, and the structure of these research areas is depicted in Figure 1. The

lower-level research is centered around hardware components, such as different

high-speed processing chips, while the higher-level research is focused on software

aspects, such as various frameworks and programming interfaces. The scope of

our research is centered around the system level of machine learning. This entails

studying the precise methods used to process data for computation, as well as the

training and inference processes of models.

Figure 1.1: The composition of research fields in machine learning.

1

CHAPTER 1. INTRODUCTION

Figure 1.2: CNN vs. GCN.

Machine learning encompasses various forms of data that are utilized for dis-

tinct tasks. The data can be categorized into two main types: non-Euclidean

data, which includes graphs, and Euclidean data, such as images. Figure 1.2 il-

lustrates various models designed to handle diverse types of data. Typically, the

image data is analyzed using a convolutional neural network, which employs a

convolution kernel to extract the fundamental characteristics and create the ab-

stract embeddings. The graph convolutional network (GCN) [1] aims to transform

vertex feature vectors into compressed embeddings by leveraging both the graph

structure and vertex features. Each vertex in the graph is associated with a fea-

ture vector. The GCN employs a stacking mechanism, where multiple layers are

combined, and each layer maintains the identical structure as the original graph.

Throughout the process of inference and training, we observe that the presence

of redundant content in the data can impede the overall efficiency of the system.

One can investigate the data’s sparsity to minimize unnecessary costs and speed

up the system. Figure 1.3 illustrates the occurrence of data sparsity in both image

data and graph data. The background of the image data is irrelevant in the process

of image recognition; in fact, only the target area is typically necessary to achieve

accurate identification results. While it is possible to incorporate additional nodes

in a graph to depict the human skeleton, the existing information regarding cru-

cial anatomical landmarks on the human body is already sufficient for certain

applications. These encourage us to leverage the scarcity of data to minimize the

2

Figure 1.3: Sparsity of data.

communication and computational burden in machine learning systems.

Directly harnessing the sparsity property of data is a nontrivial task. For

example, when the background of an image is intricate, it becomes challenging

to accurately locate the essential target area within the image. Employing an

intricate model for area extraction will result in additional overhead. In our work,

we explore the data sparsity in specific training and inference scenarios to combine

the unique characteristics of computation and communication.

Initially, we examine the scenario in which the graph data could be dispersed

among multiple proprietors. Consider a scenario where there exist multiple hospi-

tals alongside a central medical administration center. The global graph captures

the data of patients in the city, including their attributes and interactions, over a

specific time frame. More precisely, we possess two types of links: the first type

is explicitly recorded within each hospital, while the second type comprises cross-

hospital links that may exist but are not stored within any specific hospital. The

objective of the medical administration center may be to acquire a globally influ-

ential graph mining model while avoiding the sharing of data. Federated learning

facilitates collaborative training of a comprehensive model while preserving the

privacy of raw data [2]. Nevertheless, federated learning on graphs encounters

two primary obstacles. GCN training entails the exchange of features among

adjacent graph nodes across FL servers, resulting in the compromise of privacy.

Furthermore, previous studies have demonstrated that communication emerges as

the primary constraint in distributed machine learning, significantly impeding the

efficiency of learning tasks (Konečnỳ et al., 2016). While several techniques [3, 4]

3

CHAPTER 1. INTRODUCTION

have been suggested to enhance communication efficiency, they do not address

the specific issue examined in our study. They typically focus solely on analyzing

the trade-off between learning speed and energy efficiency [3, 4]. Privacy is not a

matter of concern.

Besides the training of graphs, the inference process of the graph also faces a

communication burden when loading graph data from the main memory to the

GPU. The data loading time is even longer than the inference time itself. We

further find that different inference batches contain many common nodes, and

their features are repeatedly loaded into the GPU by the current systems, which

leads to redundant energy consumption and time delay. In fact, this redundant

loading issue is even more severe in the inference than in the training since there

is no sampling operation in the inference for accuracy consideration [5]. This

observation motivates us to improve the efficiency of GNN inference by reusing

graph data already loaded into the GPU to avoid redundant data loading. And

an accuracy-guaranteed sampling strategy is needed for the inference. Note that a

similar reuse idea has been proposed for GNN training by [6]. However, the order

of batches in the training is random and non-controllable, while the inference

operation can be conducted periodically in an offline scenario to reorder batches.

For instance, PinSage [7] utilizes Map Reduce to generate embedding in an offline

process. GEM [8] detects malicious accounts with GNN daily. As a result of its

lack of flexibility, the static solution in [6] cannot scale to large graphs in the

inference.

Unlike process graph data, where the redundant information may come from

the structure, image data usually contains the content itself. There are lots of

edge devices with weak computing power that collect image data; the data may

need to be identified. However, the weak device does not have enough resources to

construct a complex neural network for identification. A straightforward offloading

strategy sends raw data to the cloud [9, 10], which does not require computation

at edge devices and achieves high inference accuracy by using powerful hardware

4

Figure 1.4: Our contributions.

in the cloud. However, since raw data has a large size, this strategy has high

communication costs. Some recent works propose data preprocessing techniques

at edge devices to reduce communication costs. Such preprocessing techniques

include DNN model splitting [11,12], input data compression [13], and input data

filtering [14]. These methods still need to be calculated on the edge device and

may incur an accuracy decrease.

The main idea of this dissertation is to exploit the data sparsity for both Euclid

data and non-Euclid data to propose efficient machine-learning systems to handle

the above issues. We summarize our works in Fig. 1.4.Specifically, we propose

a federated graph learning system with enhanced security insurance and a series

of novel designs to address the communication challenge. We found that some

neighbors were not necessary for the training, so we designed a traffic throttling

strategy to eliminate the transmission. In order to protect vertex embeddings,

we adopt a homomorphic encryption (HE)-based protocol that only transmits en-

crypted data.To accelerate the inference of the graph, we adopt an adaptive sam-

pling strategy that aims to reduce the number of loaded nodes while guaranteeing

accuracy. We also provide a Local Sensitive Hash (LSH) [15] based hierarchical

batch clustering scheme to reorder and reuse batch nodes.We finally propose a

new approach to achieve efficient offloading for image recognition on weak edge

devices. Its basic idea is to let edge devices randomly sample a small portion of

image patches and send them to the server, which then uses a masked autoencoder

(MAE) [16] to recover the image and conduct inference.MAE was originally de-

5

CHAPTER 1. INTRODUCTION

signed for pre-training, and we exploit its powerful capabilities in image recovery

for DNN offloading. Therefore, it is promising to achieve high inference accuracy

with limited sampled data. Our contributions are listed as follows:

1. We explore graph sparsity in federated graph learning by proposing an ef-

ficient distributed training system. It lets each data owner evaluate others

contributions and eliminates unnecessary transmission. The data flows are

properly scheduled.

2. We further explore graph sparsity in the inference. We propose an efficient

inference system that uses adaptive sampling neighbors to reduce the number

of loaded nodes. And we reuse the previously loaded data for time savings.

The LSH-based minibatch clustering method is also included to reorder the

batches and reuse more data.

3. We finally explore image sparsity in the offloading of weak edge devices.

We propose a novel offloading system for image classification that does not

require computation on the device and only needs to transmit part of the

image data to the server. The server recovers the image and then conducts

inference.

4. We conduct extensive experiments to compare our methods with various

baselines and verify the effectiveness of the proposed systems.

For the rest of the dissertation, the background is given in Chapter 2. We

present our efficient federated graph learning systems in Chapter 3, followed by

the graph inference system in Chapter 4. Chapter 5 describes our novel image

offloading system. The conclusion and future work is in Chapter 6.

6

Chapter 2

Background

There are various machine learning models and computational paradigms in-

volved in our work. Specifically, for our first work, we use the federated learning

scheme to distribute train the graph convolution network. The homomor-

phic encryption is used to protect privacy in data exchanges among different

data owners. For the second work, the local sensitive hash is used to quickly

cluster the batches. For the third work, we recover a masked image with a ViT-

based Masked Autoencoder before the inference. In this chapter, we describe

the background of these machine learning models and computational paradigms

to serve as the fundamental principles for the subsequent work.

2.1 Federated Learning

Federated learning (FL) has been proposed to enable collaborative training

among multiple devices (data owners) without leaking any raw data. Its basic

idea is to let device share model parameters instead of training data. A typical

parameter synchronization scheme widely adopted by federated learning is the

Parameter Server (PS) as shown in Fig. 2.1 [17]. Specifically, a federated learning

system consists of a parameter server and a set of computing device. The training

process contains multiple rounds. Every device uses its local dataset to train a

model in each round. After local training, device send their local models to the

7

CHAPTER 2. BACKGROUND

Figure 2.1: Federated learning process.

parameter server, and the parameter server then creates a new global model and

distributes it for the next-round training. Despite the simplicity, PS-based feder-

ated learning suffers from the global synchronization bottleneck at the parameter

server.

2.2 Graph Convolutional Network

Given a graph where each vertex is associated with a feature vector, a graph

convolutional network (GCN) aims to transfer vertex feature vectors into com-

pressed ones, also called embeddings, by exploiting graph structure and vertex

features. GCN stacks multiple layers, and each layer has the same structure as

the original graph. The graph convolution operation is defined as aggregating

node embeddings of neighboring nodes as shown in Fig. 2.2. We use A to denote

the graph’s adjacent matrix and H l to denotes the matrix of node embeddings in

the l-th layer. The propagation rule of the GCN can be formally expressed by

zl+1 = AH lW l, H l+1 = σ(zl+1), (2.1)

where A = D− 1
2 (A+I)D− 1

2 , W l denotes trainable feature weights, D is the degree

matrix and σ is the activation function.

Given a set V of nodes with labels, the GCN training goal is to minimize the

8

2.3. HOMOMORPHIC ENCRYPTION

Figure 2.2: Convolution operation on the graph..

loss function:

L =
1

|V|
∑

j∈V

F(yj, ŷj), (2.2)

where yj and ŷj denote the true label and the predicted one, respectively. The

loss function F usually uses cross-entropy.

2.3 Homomorphic encryption

Homomorphic encryption (HE) is designed for carrying out function compu-

tation on ciphertexts while preserving the functional characteristics of the plain-

text [18]. A typical homomorphic encryption scheme can be expressed as HE =

(KeyGen,Enc,Dec, Eval), where the function KeyGen generates a public key pk

and a private key sk, Enc and Dec are the encryption function and the decryption

function, respectively. The computation operations supported by homomorphic

encryption are denoted by Eval. The characteristic of homomorphic encryption

can be described as Dsk(Eval(Epk(a), Epk(b))) = Eval(a, b), which indicates that

by decrypting the results of operations on ciphertext, we can obtain the same

results with those of original operations on the plaintext. Due to this unique char-

acteristic, homomorphic encryption is usually used for outsourcing computation

to the third-parties.

9

CHAPTER 2. BACKGROUND

Figure 2.3: An example of the process of LSH.

For example, suppose two servers, holding a and b respectively, are untrusted

with each other but still want to conduct some computation involving a and b.

They can send encrypted data, i.e., Eval(Epk(a) and Eval(Epk(b), to the cloud

that conducts operations and then returns results in the form of Eval(Epk(a), Epk(b)).

Then, both computers can obtain the final result after decryption.

2.4 Local Sensitive Hash (LSH)

Local sensitive hash (LSH) has been proposed to deal with quick similarity

queries [15]. In our case, we adopt the commonly used min-hash-based [19] LSH

implementation, which measures the Jaccard similarity among sets. The Jaccard

similarity of two sets w and v can be calculated as (w ∩ v)/(w ∪ v), equal to

the union of two sets that divide their intersection. This similarity calculation is

suitable for our scenario since inference batches can be treated as multiple sets

with various lengths (each element is the index of the node), making the Euclid

distance unworkable. Instead of calculating the Jaccard similarity among pairs

one by one, LSH utilizes hash functions to reduce the data size while keeping the

similarity among the original data first and then maps similar sets to the same

key value of the dictionary (also named bucket).

We give a toy example to express the process of min-hash-based LSH as shown

in Fig. 2.3. Suppose there are two sets (w and v) with various lengths. The LSH

process contains two hash periods. The first hash period is min-hash, each hash

10

2.5. TRANSFORMER AND VIT

function fi() goes through the two sets to obtain fi(w) and fi(v). Suppose there

is a full set Ω that contains every element in the sets, fi(w) can be considered as

the index of the first element of w in Ω after randomly disrupting w. We have

P (fi(w) = fi(v)) = Sim(w, v), (2.3)

where Sim(w, v) means the Jaccard similarity among two sets. The first hash

period replaces the original set with a small number of hash values while keeping

the similarities among sets. However, calculating their similarities is still time-

consuming since the number of sets is still large. We need another hash process.

For the second hash period, the previously obtained output will be further seg-

mented and hashed. Specifically, every r values in every set will be formed into

a band and hashed into a bucket. The first bands from the two sets are the same

in the example, thus being hashed into the same bucket and becoming a similar

pair. Suppose there are n sets with the average length as m, and the number

of hash functions in the first period is F . Thus, the computation complexity is

O(n ·m · F + n ·m/r), which equals O(n) when ignoring the constants.

2.5 Transformer and ViT

Transformer has been proposed as a self-attention-based model that can ef-

fectively handle various learning tasks related to natural language processing

(NLP) [20–23]. Given a sentence whose words can be expressed as feature embed-

dings X = [x0, x1, ..., xn] ∈ Rd, the core self-attention operation can be described

as follows:

Qi = xiW
Q, Ki = xiW

K , Vi = xiW
V . ∀xi ∈ X (2.4)

Ai,j =
QiKj

√
d

, x
′

i = (
n∑

j=0

softmax(Ai,j)Vj). ∀xj ∈ X (2.5)

The WQ, WK , W V ∈ Rd in Equation 2.4 are trainable weights that transform

X into query, key, and value matrices, respectively. Ai,j is the normalized weight

11

CHAPTER 2. BACKGROUND

of value for xj. The newly generated hidden embedding x
′
i is a weighted sum

based on all values. A complete attention layer contains multiple self-attention

operations (multi-heads), and a Transformer model contains multiple attention

layers.

Inspired by Transformer’s successes in NLP, Vision Transformer (ViT) has

been proposed to deal with image data [24]. Concretely, an image is divided

into different patches, where each patch’s size is fixed at 16 × 16 since it brings

good performance. All patches go through a convolutional layer to generate their

initial feature embeddings. After that, they are formatted as a sequence with

position embedding. An additional classification patch is added to the beginning

of a recognition task’s sequence. The self-attention mechanism described above is

applied to the sequence of patches to generate a high-level representation for each

patch. The classification patch can therefore aggregate embedding data from all

other patches based on the attention and output of the final recognition result.

2.6 Masked Autoencoders (MAE)

Training ViT requires a vast quantity of labeled data and computational re-

sources. However, many images have no labels. Masked Autoencoders (MAE)

have been proposed for pre-training ViT model with unlabeled images [16]. Sim-

ilar to the NLP pre-training that masks words in a sentence and utilizes the

Transformer to infer [20], MAE also constructs a self-supervised task that masks

image patches and then infers them using the ViT-based autoencoders.

As shown in Fig. 2.4, MAE is comprised of two steps. First, it masks some

patches of an image and sends the rest to an encoder to generate high-level em-

beddings. Second, we combine these embeddings and the masked patches, which

are then sent to a decoder to recover the original images. The masked patches are

learnable vectors here since we do not know their content. The combined patch

sequence goes through a decoder to infer the original pixel values of the masked

12

2.6. MASKED AUTOENCODERS (MAE)

Figure 2.4: The process of MAE.

patches. The mean squared errors of the inferred values and the real values are

used as the loss for the backward propagation. The decoder is a tiny ViT with a

limited number of attention layers. As contrasted to the average pixel values of its

neighbors, a large mask ratio can assist MAE in learning genuine visual semantics

for reconstruction. The self-supervised trained encoder can be further fine-tuned

based on the labeled images to obtain the final parameter for the classification

task.

13

Chapter 3

Federated Graph Learning with

Traffic Throttling and Flow

Scheduling

This chapter focuses on the training of federated graph convolutional networks

(GCN). GCN requires each node to aggregate its neighbors in the graph. However,

when graph data is distributed among different data owners, the aggregation oper-

ation may cause cross-device communication. Direct data interaction may lead to

privacy leaks, and frequent communication is a bottleneck for the whole system.

To address this, we propose a secure federated graph learning system that en-

crypts transmitted data and explores redundant connections among data owners.

We eliminates unnecessary transmission and schedules transmission flows more

efficiently.

3.1 Introduction

Federated learning (FL) has shown great promise in enabling collaborative

machine learning among distributed devices while preserving their data privacy [2].

When federated learning meets 6G networks, they can benefit each other while new

challenges also emerge, which motivates us to study the communication efficiency

14

3.1. INTRODUCTION

of federated learning in this Chapter.

Existing federated learning mainly focuses on convolution neural network (CNN)

models that show superior learning accuracy in recognizing images and voices.

However, many applications generate graph data (e.g., social graphs and protein

structures) consisting of vertices and edges, which cannot be efficiently handled

by CNN. Graph convolutional network (GCN) model [1] has been proposed to

deal with graph learning by filtering the features of neighboring vertices.

In this Chapter, we study federated graph learning (FGL) under a cross-silo

setting, including a set of FL servers maintained by different institutions (e.g.,

banks, hospitals, and universities). These servers may reside in public or private

clouds, and they are connected by a wide-area network (WAN). Each server

maintains a graph with edge connections to the others, and they cooperate in

training a GCN model.

The FGL studied in this Chapter faces two main challenges. First, GCN

training involves sharing features of neighboring graph nodes between FL servers,

which leads to privacy leakage. Our previous work [25, 26] protects privacy by

eliminating node feature sharing in the first layer of GCN. However, abandon-

ing these node features may reduce learning accuracy. Second, there are massive

devices in 6G, and existing works have shown that communication becomes the

main bottleneck of distributed machine learning, which seriously affects the effi-

ciency of learning tasks [2]. The communication challenge faced by FGL is more

severe than traditional CNN-oriented federated learning. In addition to trainable

parameter synchronization, servers in FGL need to exchange vertex embeddings

in every graph convolutional layer during each training round due to its unique

characteristics. Moreover, FGL relies on a wide-area network, which is shared by

many applications, and bandwidth allocated to FGL is limited and dynamic.

Although various methods [3, 4] have been proposed to optimize communica-

tion, they differ from the problem studied in this Chapter. The most significant

difference is that they usually only study the trade-off between learning speed

15

CHAPTER 3. FEDERATED GRAPH LEARNING WITH TRAFFIC THROTTLING AND
FLOW SCHEDULING

and energy efficiency [3, 4]. Privacy is not a concern. And the previous cross-silo

related work [27] does not exploit GCN’s characteristics about frequency embed-

ding exchange. We also notice that some distributed systems [28,29] conquer the

communication issue by jointing data movement and task allocation schemes. In

contrast, due to privacy protection, FGL does not allow such graph data move-

ment. There also exist some general flow scheduling approaches like conventional

shortest-flow-first [30], but they bring limited improvements. Some other complex

scheduling approaches claim a better performance [31–33]. However, it should be

quite a challenge to fully exploit the unique characteristics of FGL.

We propose S-Glint, a federated graph learning system with enhanced secu-

rity insurance and a series of novel designs to address the communication chal-

lenge. In order to protect vertex embeddings, S-Glint adopts a homomorphic

encryption (HE) based protocol that only transmits encrypted data. We adopt

pre-aggregation and batching strategies with multiple HE servers to accelerate the

encryption process. S-Glint further tackles the communication challenge with two

novel designs. First, it reduces network traffic by eliminating the transmission of

unimportant embeddings, also referred to as traffic throttling. Specifically, S-Glint

lets each node quickly evaluate its neighbors’ contributions based on marginal loss

and only collects data from a subset of essential neighbors. The second novel de-

sign is a priority-based dynamic flow scheduling strategy. S-Glint monitors the

training speed of FL servers and dynamically assigns different priority levels to

network flows. Besides, traffic throttling and flow scheduling are jointly considered

for further time savings. The main contributions of this Chapter are summarized

as follows:

1. We propose a secure federated graph learning system called S-Glint to enable

collaborative training of GCN models among distributed servers without

leakage of their local graph data. We have identified that communication is

the main bottleneck of the decentralized, federated graph learning system.

2. We analyze the graph training characteristics and propose a homomorphic

16

3.2. COMMUNICATION BOTTLENECK IN FGL

(a) The amount of transmitted data. (b) Time cost with various network band-
widths.

Figure 3.1: Example of cooperate training among three servers.

encryption-based embedding-sharing strategy for safety and efficient em-

bedding interaction. We design the traffic throttling module to eliminate

unimportant transmission. Besides, the flow scheduling problem is formu-

lated and analyzed. We further combine traffic throttling and heuristic flow

scheduling for joint optimization.

3. We simulate S-Glint based on trace data and evaluate its performance using

a 20-server setting. Extensive experimental results show that S-Glint can

significantly outperform existing works.

The rest of this Chapter is organized as follows. In Section 3.2, we first give

some motivation. Then we present the system design in Section 3.3. The experi-

mental results are presented in section 3.4, followed by some discussions in Section

3.5. The related work is in Section 3.6. We conclude our work in Section 3.7.

3.2 Communication Bottleneck in FGL

It has been well recognized that communication is the main bottleneck of

distributed machine learning, especially in the WAN environment [34]. To better

understand how communication affects FGL, we have conducted some preliminary

empirical studies on a 3-server cluster, where each server is equipped with Inter

i7-10700 CPU, 16GB memory, and Geforce RTX 2080 GPU. A switch connects

three servers, and the network bandwidths of all links are set to 1500 Mbps. We

divide the widely used Reddit graph dataset (232965 vertices with 602 features

17

CHAPTER 3. FEDERATED GRAPH LEARNING WITH TRAFFIC THROTTLING AND
FLOW SCHEDULING

Figure 3.2: The architecture of S-Glint.

for each vertex) into three parts stored by these servers, respectively. Each server

creates a two-layer GCN based on its local graph (including connected vertexes

held by others) and exchanges trainable parameters after each training round.

The amount of data exchange averaged over training rounds are shown in Figure

3.1. The size of trainable parameters is about only 0.25Mb, while the exchanged

embedding size is over 400 Mb.

We then change the network bandwidth and study how it affects training

time. As shown in Fig. 3.1, we can see that the communication time increases

dramatically as bandwidth decreases, while the computation time is almost the

same. Other graph data in practice may involve even billions of nodes and edges

[7], which makes the FGL more challenging.

3.3 System Design

3.3.1 Overview

We consider a typical federated setting consisting of a set C of distributed

servers connected by a WAN with limited bandwidth. Each FL server ci ∈ C

holds a local training dataset expressed as a graph Gi = (Vi, Ei), where Vi and Ei

denote the vertex set and edge set, respectively. Every vertex v ∈ Vi is associated

with a feature vector xv that cannot be exposed to other servers. Note that there

18

3.3. SYSTEM DESIGN

exist some graph edges across servers. Each server is aware of the existence of

connected vertices at other servers but cannot access their vertex feature vectors.

For example, suppose there are some hospitals and a medical administration cen-

ter. The global graph records, for a certain period, the cityʼs patients (nodes),

their information (attributes), and interactions (links). Specifically, we have two

kinds of links, the first one is explicitly stored in each hospital, and the second

one is the cross-hospital links that may exist but are not stored in any hospital.

The medical administration center may have the goal that the system obtaining

a globally powerful graph mining model while not sharing data.

Based on the above scenario, we propose a secure federated graph learning sys-

tem, S-Glint. S-Glint adopts a decentralized design to coordinate model parameter

sharing and embedding sharing. At the beginning of each training round, each FL

server collects model parameters from others and then averages them to get the

initial weights used in the current-round training, eliminating the global barrier of

the centralized parameter server in traditional federated learning. The schematic

diagram of S-Glint is shown in Fig. 3.2. There are three critical designs in S-Glint.

The first is neighbor selection. For each FL server, its neighbors may have vari-

ous contributions; S-Glint aims to evaluate each FL server’s neighbors and select

essential neighbors. The second is data encryption. S-Glint adopts the HE mecha-

nism with pre-aggregate and batching operations to efficiently encrypt transmitted

data, thus protecting users’ privacy. In the conference version [25], the features

of nodes are multiplied by the weight at the second GNN layer. The decreased

dimension thus protects privacy. We claim that this method mainly contains two

weaknesses. First, although the above method is workable in most situations, it

has a high risk of being exposed when the feature matrix is sparse since it lacks

rigorous safety theory proof. Second, although the conference version considers

the neighbors’ information from the second layer, ignoring the first GNN layer

harms the accuracy. In our experiments, the dimension decrease method causes

a little accuracy decrease. The gap needs to be made up. The third key design

19

CHAPTER 3. FEDERATED GRAPH LEARNING WITH TRAFFIC THROTTLING AND
FLOW SCHEDULING

of S-Glint is flow scheduling. S-Glint analyzes the flow scheduling problem in our

scenario and proposes a heuristics scheduling method with co-design to neighbor

selection design. The details of the three designs are described in the following

subsections.

3.3.2 Secure embedding sharing

For each FL server ci, the set of nodes with edge connections to graphs held by

other servers is denoted by V n
i , whose embeddings are encrypted as {Enpk[h(v)], ∀v ∈

V n
i }. These encrypted embeddings are sent to a HE server which aggregates them

according to the requirements of FL servers. For example, FL server c4 requests

embeddings of nodes v3 from server c1 and v5 from server c2, the HE server ag-

gregates their encrypted embeddings as Enpk[h(v3)] + Enpk[h(v5)] and sends the

result to the c4.

Pre-aggregate

We find that the above process has high communication overhead due to the

transmission of a large number of encrypted node embeddings from the FL servers

to the HE server. By carefully examining this process, we find that the commu-

nication overhead can be reduced if FL servers can aggregate some embeddings

before encryption. For example, if two shared node sets of different parties have re-

peated nodes, the repeated nodes can be aggregated first to avoid being encrypted

and transmitted separately.

Motivated by the above example, we express embedding requests as a matrix

and derive its basis. Then, each FL server encrypts its embeddings according

to this basis and sends them to the HE server. Any linear combination of these

encrypted embeddings at the HE server can be computed and shared with other

FL servers.

20

3.3. SYSTEM DESIGN

Batching

We find that the ciphertexts generated by HE are significantly larger than

plaintexts. Large ciphertexts incur high communication overhead. That is because

ciphertexts have roughly the same number of bits with the key size rather than

plaintext size. For example, graph embedding values are typically 32-bit, but the

key size of Paillier, a popular HE lib, is 2048. To reduce ciphertext size, we adopt

the batching technique [35] that concatenates several embedding values to encrypt

them together so that they share the same plaintext while preserving the additive

property.

Multiple HE Servers

The straw-man design has a single HE server, which would be the communi-

cation bottleneck since all shared embeddings, in the encrypted form, need to go

through it. We deploy multiple HE servers to distribute the communication bur-

den and eliminate this bottleneck. Specifically, we set one HE server and several

FL servers to become a group. The HE server is responsible for the incoming data

flow for all FL servers in the group (including the data interaction among the FL

servers in the same group). The whole system then contains multiple groups and

still works in a decentralized way.

3.3.3 Traffic Throttling

In S-Glint, each server collects feature embeddings from its neighbors. These

neighbors have different contributions to the training process. We divide the com-

monly used Cora dataset (containing 2708 nodes and 10556 edges) into four parts

stored by four servers. Server 1 and server 2 can train a model with 50% accuracy,

while server 1 and server 3 achieve 60%. The basic idea of traffic throttling is to

evaluate neighbors’ contributions and eliminate unimportant data transmissions,

which have a linear complexity. Traffic throttling mainly contains two phases:

contribution evaluation and neighbor selection, whose pseudo-codes are shown in

21

CHAPTER 3. FEDERATED GRAPH LEARNING WITH TRAFFIC THROTTLING AND
FLOW SCHEDULING

Algorithm 1 Experience-based Traffic Throttling.
1: INPUT: C is the set of all servers, Ni contains the neighbors of server ci,

Epo is the total training epochs, and The previous k epochs are utilized for
evaluation.

2: OUTPUT: Selected neighbors of every ci.
3: # The contribution evaluation phase :
4: for server ci ∈ C in parallel do
5: for r = 1, 2, . . . , k do
6: ci calculates neighbors’ embedding contributions scores with (3.1).
7: ci calculates neighbors’ weight contributions scores with (3.1).
8: end for
9: end for

10: # The neighbors selection phase :
11: for each server ci ∈ C in parallel do
12: Selects the neighbors according to the joint optimization with the threshold

ψ.
13: for r = k + 1, k + 2, . . . , Epo do
14: Collects information from the selected neighbors.
15: Estimates the unselected neighbors’ embedding and model weight using

(3.2) and (3.3), respectively.
16: Conduct the local GCN training.
17: end for
18: end for

Algorithm 1.

Contribution Evaluation

We follow the idea in [36] to quantify the contribution of shared embeddings.

Note that the network flows associated with model sharing can be throttled in

a similar way. Specifically, in each epoch r, server ci first receives embeddings

from all neighbors in set Ni and conducts training to generate a local model M r
Ni

.

Then, for each neighbor cj ∈ Ni, sever ci also trains a model M r
(Ni−j), where Ni−j

means the neighbors set excluding the server cj. The embedding contributions of

cj thus can be calculated as:

Sj,i =

∑k
r=1[L(M

r
Ni
)− L(M r

Ni−j)]∑
j∈N(i)

∑k
r=1[L(M

r
Ni
)− L(M r

Ni−j)]
, (3.1)

where L(MNi) denotes the training loss of model MNi . Both models M r
Ni−j and

M r
Ni

are trained based on the M r−1
Ni

in the previous epoch. Note that k is the

22

3.3. SYSTEM DESIGN

number of epochs used for contribution evaluation.

The contribution evaluation process can be completed quickly with several

reasons and strategies. Firstly, we claim that a few epochs (threshold k) are enough

to evaluate the contributions, and it will be verified in Section 3.4. Secondly, the

formulation (3.1) does not involve the process of complete backpropagation and

verification, which will save time. Thirdly, compared to CNN, the GCN model

is lightweight enough that the overhead in computation time is limited even in

the case of multiple executions. Finally and most importantly, we propose a

caching strategy to accelerate the process. There are many repeated nodes in the

evaluation, and we can save the repeated nodes in the GPU to avoid reloading

and reduce communication and computation overhead.

Neighbor Selection

The neighbor selection phase selects neighbors with high contributions and

estimates the training input accordingly based on contribution evaluation results.

In our conference version [25], we let each FL server sort its neighbors accord-

ing to their contributions scores and select those with larger contributions until

their total scores exceed the threshold ψ. However, this design may demand data

transmission from a slow neighbor, while two faster neighbors may replace the

contribution of this slow neighbor and save time. Thus we only expect the sum of

the contribution to exceed the given threshold here. The specific neighbor selec-

tion needs to jointly consider the communication conditions and arriving speed of

incoming flows. We will talk about the details in the following section.

As for ψ, our experimental results in Section 3.4 show that an appropriate

threshold can speed up the training process with minor accuracy reduction. After

neighbor selection, we estimate the embedding used for training input according

to the collected ones from selected neighbors. For each server ci with αi flows,

it extracts the embedding information contained in these flows and updates the

local adjacent matrix Auv as follows.

23

CHAPTER 3. FEDERATED GRAPH LEARNING WITH TRAFFIC THROTTLING AND
FLOW SCHEDULING

A
(l−1)
uv =

⎧
⎪⎨

⎪⎩

|N(u)|
|N ′(u)|Auv, if v ∈ N(u),

0, otherwise,
(3.2)

where N(u) denotes the set of neighbors of vertex u in the original graph, and

N ′(u) denotes the set of neighbors obtained with αi flows. Note that both N(u)

and N ′(u) contain internal neighbors and external neighbors maintained by other

servers. For weight-sharing stages, we estimate the initial weights with βi flows,

whose senders are included in set Ci:

ωi =
∑

cj∈Ci

|Vj|wj∑
cj∈Ci

|Vj|
, (3.3)

where Vj is the set of labeled vertices held by server cj.

3.3.4 Flow Scheduling

It has been well recognized that flow scheduling is significant for communication

efficiency [3]. The intuitive idea is to formulate the scheduling process as an

optimization problem. Thus we first formulate and analyze the problem.

Formulation

Suppose the data amount of flow f s
ij is Ds

ij, which means the server ci needs

transmit Ds
ij data to the server cj at training stage s. We suppose the server’s

index that takes the longest time to complete the total S training stage is 0. We

let T s
j denotes the completion time of the server cj in the stage s. To minimize

the total training time T , i.e., the completion time of the final stage, we formulate

the flow scheduling problem as follows:

24

3.3. SYSTEM DESIGN

minT S
0 ; (3.4)

T s
j = max

t
{T s

ij}+ tsj,cpt, ∀j, s; (3.5)

T s
ij = max

t
{t · xs

ij[t]}, ∀f s
ij; (3.6)

xs
ij[t] ≥

ysij[t]

Ds
ij

, ∀i, j, s, t; (3.7)

∑

t

ysij[t] ≥ Ds
ij, ∀f s

ij; (3.8)

∑

fs
ij∈F (p)

ysij[t] ≤ Bp∀t, p; (3.9)

xs
ij[t]T̂

s
ij ≤ t · xs

ij[t], ∀f s
ij, t; (3.10)

T s−1
i ≤ T̂ s

ij, ∀f s
ij, t; (3.11)

Our objective is to minimize the completion time of the final stage, which is

expressed in constraint (3.4). For each stage s, the completion time of the server

cj is calculated by (3.5), where T s
ij denotes the completion time of flow f s

ij and

tsj,cpt means the computation time of the server cj for the stage s. We define a

binary variable xs
ij[t] to denotes whether we transmit the flow f s

ij in the time slot

t. Then the flow completion time T s
ij can be expressed by (3.6). Another integer

variable ysij[t] is defined to denote the amount of transmitted data of flow f s
ij in the

time slot t, whose relationship with xs
ij[t] is shown in (3.7). If f t

ij is transmitted

in time slot t, i.e., ysij[t] > 0, the binary variable xs
ij[t] = 1. Otherwise, we have

xs
ij[t] = 0 due to the minimization objective. Constraint (3.8) presents that the

total amount of transmitted data should be no less than the flow size. Due to the

bandwidth constraint of each network link, we have constraint (3.9), where F (p)

denotes the set of flows going through the network link p. We let T̂ s
ij denotes the

start time of flow f s
ij and it should be no less than the completion time T s−1

i of

the previous stage, which is represented by constraints (3.10) and (3.11).

The above formulation is hard to solve directly. It is a mixed-integer non-

25

CHAPTER 3. FEDERATED GRAPH LEARNING WITH TRAFFIC THROTTLING AND
FLOW SCHEDULING

濆澩

澧

澥

澦

澨

濇
濄

濅 濅

濠濴濽瀂瀅濍澳瀎濅瀐
濠濼瀁瀂瀅濍澳瀎濆澿澳濇澿澳濈瀐

瀎濅瀐澳澾澳瀎濈瀐澳濍澳濈澳瀆濸濶瀂瀁濷瀆
瀎濅瀐澳澾澳瀎濆瀐澳澾澳瀎濇瀐濍澳濆澳瀆濸濶瀂瀁濷瀆濗濈澿濄濐濇

濗濇澿濄濐濇 濗濆澿濄濐濇

Figure 3.3: An example of joint optimization.

linear programming problem, which is generally NP-hard. Although it is easy

to transfer it into a linear form by applying some internalization techniques, it

is still challenging to solve this large-scale optimization problem since federated

graph learning contains many stages. Besides, the network bandwidth Bp could

be dynamic because many applications share the network.

Insights

Although it is challenging to find the optimal scheduling solution, there are

some heuristic insights when revisiting the federated graph learning details. First,

the flows belonging to the earlier stages should be transmitted preferred because

they can enable the received server to finish the current stage computation faster.

Second, we need to consider the computation time of the servers after receiving

flows. If a server needs a longer time for training, its incoming flows should have

a higher priority to avoid being the bottleneck.

Since the neighbor selection decision in the previous traffic throttling module

has multiple possibilities, which will seriously affect the flow scheduling module,

S-Glint adapts a joint optimization scheme to combine the neighbor selection and

flow scheduling. The details are described as follows.

Joint Optimization

Our conference version [25] only considers the above two insights into a dy-

namic flow scheduling strategy while ignoring the selection of neighbors. Here we

26

3.3. SYSTEM DESIGN

Algorithm 2 Joint Optimization.
1: INPUT: There are P priority levels. Each server ci divides its output flows

into major flow set {Fi1} and minor flow set {Fi2}. cj1 is the major neighbor
set of ci, cj2 is the minor neighbor set of ci. C is the FL server set.

2: OUTPUT: The final transmission time cost.
3: for server ci ∈ C in parallel do
4: # The first period
5: When ci starts its r − th training epoch, ci collects stage set Sti, time set

Ti and records their size Leni.
6: ci distributes priorities of flows in {Fi1} according to (14) and (15).
7: ci distributes lowest priorities of flows in {Fi2}.
8: if a server ci receive all major neighbors’ data then
9: # The second period

10: for server cj ∈ cj2 do
11: if cj transmit data to ci before then
12: cj will be selected
13: end if
14: select servers in cj2 according to estimated arrival time.
15: end for
16: Turn the selected neighbor in minor to major and distribute priorities

according to (14) and (15).
17: end if
18: end for

propose a joint heuristic scheme with linear complexity. The process is shown in

Algorithm 2. For a FL server ci, we classify its neighbors as two sets, {cj1}, j1 ∈ Ni

and {cj2}, j2 ∈ Ni. {cj1} contains the major neighbors whose embedding infor-

mation is indispensable. cj2 contains the minor neighbors part of them may be

selected to match the contribution threshold.

Fig. 3.3 gives an example of neighbor selection. Suppose server 1 has the major

neighbor 2 and minor neighbor set {3, 4, 5}. Suppose the contribution of neighbor

5 is larger than neighbor 3 and neighbor 4, and the server has two choices to match

the contribution threshold, {2}+ {5} or {2}+ {3, 4}. Obviously, if we still select

neighbors according to the contribution order, neighbor 5 will be selected, and it

will take 5 seconds for minor neighbors. Otherwise, if we choose {3, 4}, it only

takes 3 seconds.

Since the selection of neighbors is related to both their contributions and arrival

time, we separate our joint optimization into two periods. Specifically, we let each

27

CHAPTER 3. FEDERATED GRAPH LEARNING WITH TRAFFIC THROTTLING AND
FLOW SCHEDULING

FL server receive all neighbors’ data for the first period, and a dynamic priority-

based flow scheduling method has been adopted. The main idea of the scheduling

is that all the major neighbors should prioritize over the minor neighbors, and

we should arrange proper priorities among the major neighbors. We suppose the

system provides P priority levels that range from 0 to P − 1, where 0 means the

highest priority level. In training epoch r, server ci maintains a set of flows Fi to

be transmitted to other servers, which can be divided as major flows set Fi1 and

minor flows set Fi2 according to the major or minor neighbor set it belongs. It

also collects the information of corresponding receivers’ current training stage and

previous training stage time cost of the flows in Fi1 and maintains them in set Sti

and Ti, respectively. We let Leni denotes the size of Sti. We first sort the flows

in Fi1 according to their receivers’ training stages. The flows are ordered from the

smallest training stage value to the largest one, and the smaller one means a larger

priority. For the flows whose receivers are in the same training stage, we describe

them as a sub-flow set and further sort the flows in each sub-flow set according to

the time cost information. The sorted Fi1 is denoted as F ′
i1 . For a flow fj in F ′

i1 ,

we calculate its priority Pj as follows:

ind = ⌈Leni/P ⌉, (3.12)

Pj = ⌈j/ind⌉. (3.13)

Then, the flow fj is put into the Pj priority level queue. Note that all flows

belonging to Fi2 are also sorted and only put into the P − 1 priority.

Once a server obtains all flows from its major neighbors, it starts the second

period. The server needs to choose neighbors in the minor set in the second period.

If a neighbor in the minor set has already transmitted some data to the server

previously, it will be chosen, like neighbor servers {3, 4} in the previous example,

and the rest minor neighbors whose estimated arrival time is the shortest will

also be selected until the sum of the contributions exceeds the threshold. If all

28

3.4. EXPERIMENTS AND EVALUATION

Table 3.1: Graph Datasets

Dataset Nodes Edges Features Classes
Cora 2,708 10,556 1,433 7

PubMed 19,717 88,651 500 3
Coauthor physics 34,493 991,848 3,703 6

Reddit 232,965 114,848,857 602 41

the neighbors in the minor set have no data transmission before, all selections are

based on estimated arrival time. The selected neighbors in the minor set then turn

to the major neighbor, and their priority level will also be distributed from the

above principle. The transmission from unselected neighbors will be eliminated.

The above joint optimization process considers dynamic training speed and

time cost to avoid the slower party becoming the bottleneck. It also ensures that

the major neighbors are selected, and the minor neighbors are selected according

to their coming speed to accelerate the process.

3.4 Experiments and Evaluation

3.4.1 Experimental Settings

We simulate S-Glint based on PyTorch, and a python graph learning package,

named Deep graph Library (DGL) [37]. The hardware includes Inter i7-10700

CPU, 16GB memory, and Geforce RTX 2080 GPU. We choose four widely used

graph datasets: Cora, PubMed, Coauthor, and Reddit, whose details are sum-

marized in Table 3.1. We extract a network topology from a real peer-to-peer

network [38], which contains 20 FL servers, 10 HE servers, and 76 routers. Each

HE server is responsible for the incoming data streams of two FL servers. The

trace about data transmission among each part thus can be obtained through

their real data interaction demand when we divide each dataset into 20 parties.

Different links do not have identical capacities, and we set the bandwidth of links

randomly from 5 Mbps to 500 Mbps. Note that network bandwidth may fluctu-

ate over time, and network congestion can also happen. Thus we randomly set

29

CHAPTER 3. FEDERATED GRAPH LEARNING WITH TRAFFIC THROTTLING AND
FLOW SCHEDULING

0 5 10 15 20 25 30 35 40
Epoch

0

0.2

0.4

0.6

0.8

1
Ac
cu
ra
cy

S-Glint
F-Glint
Glint

(a) Cora

0 5 10 15 20 25 30 35 40
Epoch

0

0.2

0.4

0.6

0.8

1

Ac
cu
ra
cy

S-Glint
F-Glint
Glint

(b) PubMed

0 5 10 15 20 25 30 35 40
Epoch

0.6

0.8

1

Ac
cu
ra
cy

S-Glint
F-Glint
Glint

(c) Coauthor

5 10 15 20 25 30 35
Epoch

0.95

1

Ac
cu
ra
cy

S-Glint
F-Glint
Glint

(d) Reddit

Figure 3.4: Time-accuracy performance comparison.

the bandwidth values of all links according to a Gaussian distribution, where the

standard deviation is one-tenth of the mean. The threshold k, which represents

the number of epochs for contribution evaluation, is set to 10. The threshold ψ,

which denotes the sum of transmitted flows’ contribution score, is set to 0.9. Each

server randomly chooses a subgraph from a given dataset and trains a two-layer

GCN model with the ADAM optimizer.

3.4.2 Results

We evaluate S-Glint in different dimensions with various baselines.

Accuracy Results

To evaluate the accuracy results of S-Glint, we choose two baselines. The first

is F-Glint, where each FL server has no traffic throttling part. The second is our

conference version, Glint [25]. Glint lets each FL server transmit the embedding

information after the dimensional reduction in the second GCN layer to protect

30

3.4. EXPERIMENTS AND EVALUATION

S-Glint CFA DGB SS-Glint
0

2000

4000

6000

8000

10000

12000

Ti
m

e(
S)

(a) Time on Cora
S-Glint CFA DGB SS-Glint

0

1

2

3

4

5

Ti
m

e(
S)

104

(b) Time on PubMed

S-Glint CFA DGB SS-Glint
0

2

4

6

8

Ti
m

e(
S)

104

(c) Time on Coauthor
S-Glint CFA DGB SS-Glint

0

1

2

3

4

5

Ti
m

e(
S)

104

(d) Time on Reddit

Figure 3.5: Overall time cost comparison.

privacy and contains independent traffic throttling and flow scheduling strategies.

The accuracy convergence of them over different datasets is shown in Fig. 3.4.

We can see that the accuracy of S-Glint is similar to the F-Glint, while Glint has

a slight gap between S-Glint and F-Glint. For example, for the Cora dataset,

S-Glint and F-Glint both have an accuracy of about 81%, while Glint is bout

80%. The reason is that Glint still ignores some information interaction since

it only transmits data in the second GCN layer. F-Glint guarantees accuracy

while does not consider privacy issues. S-Glint achieves similar accuracy to F-

Glint and further efficiently encrypts the data to protect privacy and utilizes joint

optimization to release the communication burden.

Overall time cost

We also compare S-Glint with three baselines to evaluate the overall time

cost. The first is centralized federated average graph learning (CFA). We extend

FdeAvg [17], which has been widely used by many federated learning schemes,

31

CHAPTER 3. FEDERATED GRAPH LEARNING WITH TRAFFIC THROTTLING AND
FLOW SCHEDULING

to implement a centralized federated average graph learning (CFA) scheme by

adapting the single priority-based flow scheduling strategy like in Glint for the

embedding exchanging part. It has a secure embedding sharing strategy without

pre-aggregation and batching. The second is decentralized gossip-based federated

graph learning (DGB). Combo [39] uses a segment operation and a gossip protocol

to deal with local models’ aggregation under a decentralized-federated learning

scenario. The basic idea is to let the models take random walks in the network

topology and get updated when they arrive at a server, which is different from ours.

We extend Combo to implement a decentralized gossip-based federated graph

learning (DGB) baseline with Glint’s same single-flow scheduling strategy. It also

has a secure embedding sharing strategy without pre-aggregation and batching.

The third is simple S-Glint (SS-Glint) with joint optimization, while the secure

embedding sharing strategy has no pre-aggregation and batching.

We measure the completion time of different systems after 40 training epochs

when they all have converged and show the results in Fig. 3.5. We can see

that S-Glint achieves about 30x-40x speedup than other CFA and DGB. The

improvement comes from the efficient, secure embedding sharing strategy and joint

optimization. The performance of DGB is a little better than CFA because its local

model aggregation needs less communication time. However, the improvement is

limited because local models are a small percentage of the whole network traffic,

as shown in Fig. 3.1. The effectiveness of the encryption acceleration in our secure

embedding sharing is just the gap between S-Glint and SS-Glint, which is about

10x-25x speedup. The traffic throttling and flow scheduling bring about 40% to

50% improvement when comparing CFA and DGB with SS-Glint.

The Effectiveness of the Joint Optimization

To further evaluate the joint optimization, we also choose several related base-

lines. Firstly, we modify S-Glint to separate the joint optimization part as inde-

pendent traffic throttling and flow scheduling as in Glint, named G1. Secondly,

32

3.4. EXPERIMENTS AND EVALUATION

S-Glint G1 G2 G3 G4
0

200

400

600

800

1000

1200

Ti
m

e(
S)

(a) Time on Cora
S-Glint G1 G2 G3 G4

0

500

1000

1500

2000

2500

Ti
m

e(
S)

(b) Time on PubMed

S-Glint G1 G2 G3 G4
0

1000

2000

3000

4000

Ti
m

e(
S)

(c) Time on Coauthor
S-Glint G1 G2 G3 G4

0

500

1000

1500

2000

2500

Ti
m

e(
S)

(d) Time on Reddit

Figure 3.6: The effectiveness of the joint optimization.

we modify S-Glint to adopt traffic throttling and shortest-first scheduling, named

G2. Thirdly, we modify S-Glint to adopt traffic throttling and fair-share schedul-

ing, named G3. Finally, we modify S-Glint to abandon the traffic throttling part,

named G4.

The results are shown in Fig. 3.6. We can find that the joint optimization

brings about 10% improvement compared with the separate one. Even though we

separate the joint optimization, there is also about 10% improvement compared

with other scheduling methods. The specific traffic throttling strategy brings

about 40% benefits when comparing S-Glint with G4.

3.4.3 The Influence of System Parameters

S-Glint’s performance is also affected by system parameters, k represents the

number of training rounds for contribution evaluation, and ψ denotes the threshold

for neighbor selection in traffic throttling.

We use the Cora dataset as an example to show the influence of parameters

33

CHAPTER 3. FEDERATED GRAPH LEARNING WITH TRAFFIC THROTTLING AND
FLOW SCHEDULING

0 5 10 15 20 25 30
k

0

1

2

3

4
D
is
ta
nc
e

(a) Various k

50 100 150 200
Time(S)

0.4

0.6

0.8

Ac
cu
ra
cy

=1
=0.95
=0.9
=0.85

(b) Various ψ

Figure 3.7: The influence of system parameters.

in Fig. 3.7. We conduct experiments to calculate the embedding contribution

scores of server 1’s neighbors. We first calculate the scores based on the complete

training epochs. The scores of all neighbors thus can be formed as a vector. Then

we compare the Euclidean distance between the above vector and the new vector

calculated based on various k. When the value of k is larger than 10, their distance

is stabilized and approaches 0. Similar phenomena occur in other datasets. Thus

we set k to 10 in previous experiments.

For the threshold ψ, we set it as 1, 0.95, 0.9, 0.85, respectively. The choice

of neighbors is based on the joint optimization until the sum score of neighbors

exceeds the threshold. We can find that a smaller ψ may cause a large input error

and further result in no coverage or slow down the training. We set ψ as 0.9,

which has attractive performance on all datasets in practice.

3.5 Discussions

The Efficiency of the Caching Strategy. S-Glint introduces a caching

mechanism in the neighbor contribution evaluation part to reuse the common

nodes to accelerate the process. We claim that the caching strategy only brings

very limited overhead. We use the tensor mask operation on GPU in the cache

process to avoid complex index operation, thus having a minor increase in the

computation overhead. In fact, the data loading from CPU to GPU takes the

main time in the training of GNN [6], thus the limited computation overhead of our

34

3.5. DISCUSSIONS

caching strategy is favorably offset by reducing the data loading communication.

The Overhead of the Encryption. Homoerotic encryption usually is a

heavy operation with time-consuming. In S-Glint, we have two core strategies to

reduce encryption time. The first one is pre-aggregation. We do not encrypt every

original node’s features, instead, we express the request as a matrix and derive

the basis. The encryption is according to the basis, thus can reduce the amount

of encrypted data. In our experiments, The reduced ratio can be achieved from

about 10% (Cora dataset) to about 30% (PubMed dataset) when the dataset is

divided into 20 parties.

The second strategy is batching. In HE, the size of ciphertexts is only

related to the key rather than plaintext. The batching technique can concatenate

plaintext and reduce the computation and communication overhead. We use the

Cora dataset as an example to compare the S-Glint (with pre-aggregation and

batching), SS-Glint (direct apply HE without pre-aggregation and batching), and

P-Glint (plaintext with no encryption operation). Their overall time costs for the

40 epochs are about 560 seconds, 6280 seconds, and 230 seconds. We find that

direct encryption brings a very high overhead on communication and computation,

while the proposed strategies in S-Glint successfully reduce the overhead by an

order of magnitude.

The Synchronization in S-Glint. There are two kinds of transmitted data

flows in the network. The first is the shared encrypted embedding, and the second

is the encrypted weight. In a decentralized scheme, a naive method to synchronize

the weight lets every participant transmit its model to all of the others, making the

synchronization the basic bulk synchronous parallel (BSP). However, in S-Glint,

we do not force this kind of fully-connected transmission. Instead, the traffic

throttling strategy has been adopted to eliminate unnecessary transmission. Since

we reduce the transmission, the communication overhead will be released. As the

results are shown in the previous section, there are about 40% brought by the

traffic throttling strategy. The benefit comes from eliminating some unnecessary

35

CHAPTER 3. FEDERATED GRAPH LEARNING WITH TRAFFIC THROTTLING AND
FLOW SCHEDULING

and slow neighbors for each FL server.

The Overhead of Neighbors’ Evaluation. In the contribution evaluation

process, the FL server needs to perform forward propagation many times based

on the marginal loss. We claim that this brings limited computation overhead

due to the characteristic of GCN (small model) and our strategy, caching (quickly

achieved by the tensor mask operation).

We compare the time cost of various components with a single training epoch

of the Cora dataset, including forward-backward propagation (original training),

our evaluation process, and the whole communication time. Their time costs are

about 0.48 seconds, 1.25 seconds, and 10.57 seconds. Although our evaluation

takes several times on time cost when compared with the original one, it only

occupies a tiny part of the overall time (communication takes the most). Thus

the evaluation process is far from being the bottleneck of the system. Besides, the

evaluation process was only conducted in the several previous epochs in training,

further releasing its computation burden.

3.6 Related work

3.6.1 Federated Learning

Federated learning has been proposed to enable joint learning among dis-

tributed data owners without privacy leaking concerns [17]. Due to its great

promise, substantial growth has occurred in this research field. For example, to

address data non-IID issues, Zhao et al. [40] explain the impact with mathemati-

cal and try to release the problems by sanding a set of uniform distribution data

among servers. Mehryar et al. [41] proposed an agnostic federated learning scheme

to avoid distribution bias. Recently, the DRL algorithm has been adapted to dy-

namically select a subset of training participants by Wang et al. [42], which can

accelerate the model convergence and alleviate the non-IID issue.

36

3.7. CONCLUSION

3.6.2 Graph Convolutional Networks

After being proposed, GCN shows its effectiveness in various fields like rec-

ommendation systems [7], temporal link prediction [43], and spam review detec-

tion [44]. A realistic situation is that the graph’s size is usually too large to load

in the memory. Thus various sampling strategies have been proposed to make the

training process more efficient. GraphSAGE [5] mandates each node to sample a

fixed number of neighbors in each layer, which may lead to data exploding when

layers get deeper. To release the issue, VR-GCN [45] utilizes history neighbors’

embedding to control variance and reduce the sampled neighbors to two nodes.

Cluster-GCN [46] clusters the large graph into subgraphs and then completes con-

volution separately. FastGCN [47] fixes the number of nodes in each convolutional

layer to avoid data exploding.

3.7 Conclusion

This Chapter proposes a decentralized and secure federated graph learning

system, named S-Glint, to jointly train a global GCN model among distributed

graph data owners. We adopt homomorphic encryption (HE) based security pro-

tocol with pre-aggregation and batching strategies to preserve privacy efficiently.

The traffic throttling and flow scheduling strategies are jointly optimized to al-

leviate the communication burden further. The former evaluates the embedding

contribution of neighbors and selects partial of them while estimating others. The

latter dynamic tuns the priority of flows according to the training stage and train-

ing completion time. We conducted multi-dimensional comparison experiments

with various baselines, including a centralized solution and a decentralized solu-

tion. The experimental results have shown the superiority of S-Glint over the

baselines.

37

Chapter 4

Graph Inference with Adaptive

Sampling and Local Sensitive

Hash

This chapter focuses on the inference process of the GCN. We observe that

many nodes in a graph are loaded repeatedly into the GPU during the inference

process, significantly reducing inference speed. To address this, we propose a more

efficient system that adaptive sampling neighbors in the graph and reuses loaded

data to accelerate the inference process. Our system also reorders inference batches

according to their similarities with a local sensitive hash (LSH)-based clustering

scheme to reuse as many nodes as possible.

4.1 Introduction

Recently, the emerging graph neural networks (GNNs) have received lots of

attention because of their impressive capability in dealing with graph data for

various network-based tasks like network traffic forecast, network traffic schedul-

ing, network node classification, etc. [1, 5, 7, 44, 48–50]. The basic idea of GNNs

is that each node aggregates the features of its neighbors and generates a new

representation via a linear or non-linear transformation. This operation can lead

38

4.1. INTRODUCTION

to a significant waste of energy because of the extensive, repeated aggregation.

We have seen many research efforts aimed at improving the training efficiency

of GNNs. For example, instead of aggregating all neighbors, GraphSAGE [5]

samples a subset of neighbors and aggregates their features, thus saving lots of

computational resources. Chen et al. [51] find that this sampling method cannot

well guarantee the training convergence, and it uses historical node activations

to reduce the variance of aggregation results. Cluster-GCN [46] splits a large

graph into subgraphs and then conducts graph convolution operations separately

to avoid memory overflow. GraphSAINT [52] generates subgraphs according to

node importance to improve training efficiency.

A sustainable GNN should be efficient in both training and inference. How-

ever, all of the above works focus on GNN training, while the inference has been

seldom studied. The GNN inference in social networks and product networks is

the core operation of many graph-related businesses [7, 8], which aims to provide

efficient inference services with low-latency and high-throughput. Unfortunately,

the efficiency of existing GNN inference methods is still far from meeting these

requirements. The main bottleneck stems from the overhead incurred when load-

ing graph data from the main memory to the GPU, which has been confirmed

by our experimental results in Section 4.2. The data loading time is even longer

than the inference time itself. We further find that different inference batches

contain many common nodes, and their features are repeatedly loaded into the

GPU by the current systems, which leads to redundant energy consumption and

time delay. In fact, this redundant loading issue is even more severe in the in-

ference than in the training since there is no sampling operation in the inference

for accuracy consideration [5]. This observation motivates us to improve the effi-

ciency of GNN inference by reusing graph data already loaded into the GPU to

avoid redundant data loading. And an accuracy-guaranteed sampling strategy is

needed for the inference. Note that a similar reuse idea has been proposed for

GNN training by [6]. However, the order of batches in the training is random

39

CHAPTER 4. GRAPH INFERENCE WITH ADAPTIVE SAMPLING AND LOCAL
SENSITIVE HASH

and non-controllable, while the inference operation can be conducted periodically

in an offline scenario to reorder batches. For instance, PinSage [7] utilizes Map

Reduce to generate embedding in an offline process. GEM [8] detect malicious

account with GNN daily. As a result of its lack of flexibility, the static solution

in [6] cannot scale to large graphs in the inference.

In this Chapter, we propose RAIN 1, a sustainable and efficient inference

system for graph learning. When RAIN finishes the inference computation of the

current batch, it maintains the graph data that the next batch can reuse in the

GPU instead of cleaning GPU memory. In such a way, we can reduce the amount of

data loaded from the main memory to the GPU. Motivated by this data reuse idea,

given a number of inference batches, we can reorder their computation sequence

so that adjacent batches have more common nodes. A straightforward way of

reordering inference batches is to compare the similarity between pairs of batches

and then conduct inference for similar batches sequentially, which unfortunately

leads to high overhead, especially when there are a large number of batches and

each batch contains massive nodes.

To address this challenge, RAIN abandons pair-wise comparison and adopts

a Local Sensitive Hash (LSH) [15] based hierarchical batch clustering scheme.

The scheme conducts coarse-grained clustering first and then turns to fine-grained

clustering, and the batches in the same fine-grained cluster will be arranged ad-

jacently. Specifically, we first leverage different sizes among batches to naturally

divide them into different coarse-grained clusters. Every batch in GNN has the

same number of target nodes but varying total sizes because different target nodes

have different amounts of neighbors. The insight of the above operation is that

there are more repeated nodes among large batches in terms of probability. After

coarse-grained clustering, each cluster still contains lots of batches that need to

be clustered further. Instead of using complex similarity computation over every

pair, we aim to quickly map the similar batches into the same feature space and

1Source code: https://github.com/xiaobing0/RAIN .

40

https://github.com/xiaobing0/RAIN

4.1. INTRODUCTION

become the same fine-grained cluster. The LSH method is utilized here. The main

idea behind LSH is to use multiple hash functions and double hash processes to

obtain similarities among batches of different lengths. We obtain the clustering

results based on the output of LSH. We further adopt a simple index-sampling

strategy for all batches in the same coarse-grained cluster to accelerate the LSH.

To further alleviate the communication burden of data loading, RAIN also

provides an adaptive sampling strategy that aims to reduce the loaded nodes while

guaranteeing accuracy. It separates batches into different parts according to their

average degrees. The batch with a low average degree saves all neighbors, while

those with high degrees adaptive sampling target nodes’ neighbors. We set the

number of the sampled nodes proportional to the size of the degree. The adaptive

strategy’s insight comes from the intuitive idea that there are many redundant

neighbors with high-degree nodes, and we need to sample more neighbors to control

the bias of the high-degree nodes. Our experiments show that a proper sampling

strategy can significantly save time while having a negligible accuracy decrease.

Our main contributions are summarized as follows:

• We analyze the data loading overhead issue in the inference of graph learning

and claim that the redundant data loading is even more severe than the

training process.

• We propose our clustering-based efficient inference system, RAIN. RAIN

utilizes LSH to cluster the batches quickly with a two-level scheme. The

same nodes from two adjacent batches will be reused to reduce repeated

data loading.

• RAIN further contains the adaptive sampling strategy to save lots of infer-

ence time while having a negligible accuracy decrease.

• We conducted extensive experiments to verify the effectiveness of the pro-

posed system.

41

CHAPTER 4. GRAPH INFERENCE WITH ADAPTIVE SAMPLING AND LOCAL
SENSITIVE HASH

Table 4.1: The original nodes and loaded nodes of four datasets.

Dataset Nodes Loaded nodes
Reddit 232,965 32,177,528
Yelp 716,847 23,795,116

Amazon 1,598,960 274,445,528
OGB-products 2,449,029 237,185,914

Reddit Yelp Amazon OGB-products
0

20

40

60

80

100

120

Ti
m

e(
S)

Communication Computation

Figure 4.1: Time cost for the inference on four datasets.

The rest of this Chapter is organized as follows: The motivation is given in Section

4.2. The LSH-based graph workload clustering is presented in Section 4.3 and the

adaptive sampling strategy is proposed in Section 4.4. In Section 4.5, we conduct

extensive experiments to verify the effort of our system, and the related work is

summarized in Section 4.6. We finally conclude our Chapter in Section 4.7.

4.2 Motivation

The inference of graph learning usually needs to load the data into the GPU

(communication) and then calculate the forward process (computation). It is

unrealistic to load the entire graph into GPU when facing large graph data due to

memory limitations. Instead, we divide the graph into multiple batches to process

in sequence [6]. There is a lot of data redundancy among batches.

Here we conduct some preliminary experiments to study the time cost of com-

munication and computation in inference. The experiments are based on PyTorch

and Deep Graph Library (DGL) [37]. The hardware includes Intel i7-10700 CPU,

42

4.2. MOTIVATION

濄
濇

濅

濈
濌

濊

濋

濆
濉

Original graph Mini-batch 1 Mini-batch 2

濄
濅

濈
濌

濊

濆
濄

濇

濅

濌

濉 濊

Figure 4.2: The process of inference in different mini-batches.

8GB memory, and Geforce RTX 1080 GPU. We conduct experiments based on four

commonly used network-based datasets, Reddit (social network) [5], the OGB-

products (product co-purchasing network) [53], the Yelp (social network) [52] and

the Amazon [52] (product co-purchasing network). The number of their nodes is

summarized in Table 4.1.

The results of inference time are shown in Fig. 4.1. We can see that the

communication time is longer than the computation time on all datasets. The

gap mainly comes from repeated data loading. As the example shown in Fig. 4.2,

suppose there are two mini-batches with node 1 and node 2 as their target node,

separately. The two target nodes and their neighbors will be formed as a subgraph

and loaded into the GPU for aggregation. We can see that there are four repeated

nodes in two subgraphs, which means these nodes need to be loaded twice and

cause severe overhead.

Table 4.1 also gives the number of loaded nodes among four datasets. We can

see that the number of loaded nodes is tens or even hundreds of times greater

than the original nodes, where the ratio is about four in training [6]. The exact

ratios of time costs for communication and computation among different datasets

are related to their average degree and features’ dimensions.

Note that there is no neighbor-sampling operation in the inference, which will

cause the scalability problem. For example, the original process in GraphSAGE

will generate a subgraph for each inference batch that includes all the target nodes

and all of their 2-hop neighbors (which means two layers). In our experiment,

43

CHAPTER 4. GRAPH INFERENCE WITH ADAPTIVE SAMPLING AND LOCAL
SENSITIVE HASH

0 0.5 1 1.5 2

Amount of nodes 105

0

0.2

0.4

0.6

0.8

1

C
D

F

(a) The CDF curve of the number of nodes
among inference batches.

10 20 30 40
Compared batches

0

3

6

9

12

Am
ou

nt
 o

f
re

pe
at

ed
 n

od
es 104

50,000-nodes batch
100,000-nodes batch

(b) Amount of repeated nodes among dif-
ferent batches.

Figure 4.3: Several observations.

the size of this single-batch subgraph may include almost all of the nodes in

the graph, which could cause memory to overflow. And repeated loading of a

large number of redundant nodes between these subgraphs will make the whole

inference process extremely slow. To reduce the overhead, DGL first computes

the embedding of all nodes for only one layer at a time to reduce the size of the

subgraph. After conducting the process twice, all nodes complete the inference of

two GNN layers. Although DGL reduces some overhead, there are still a lot of

repeat communications between batches, as shown in Table 4.1. We claim that

communication is the bottleneck in the inference process, even with the strategy

in DGL.

4.3 LSH-based Graph Workload Clustering

The basic idea of RAIN is to cluster the batches according to their similarity

and arrange the batches in the same cluster adjacently to reuse the repeat data.

To achieve efficient clustering, we start with two observations.

4.3.1 Observations

First, we observe that batches show a great diversity of sizes, even across several

orders of magnitude. We count the number of nodes in batches in the Reddit

dataset and show the CDF curve in Fig. 4.3a. We can see that the smallest batch

44

4.3. LSH-BASED GRAPH WORKLOAD CLUSTERING

Algorithm 3 Coarse-grained clustering.
Require:

{Qi} is the set of batches with the original order.
λ is the size of the interval.

Ensure:
K coarse-grained clusters, {Qk′}.

1: Define K intervals (clusters) according to the λ.
2: for i = 1, 2, 3, ...len({Qi}) do
3: Cluster the batch Qi to different intervals according to its size.
4: end for
5: for k = 1, 2, 3, ...K do
6: {Qk} is the batch set of the k − th cluster.
7: for j = 1, 2, 3, ...len({Qk}) do
8: Sampling the index on the batch Qkj to generate Qk′j.
9: end for

10: {Qk′} is the sampled batch set of the k − th cluster.
11: end for

Figure 4.4: The process of generating a similarity graph.

contains thousands of nodes, while the biggest one has over a hundred thousand.

This phenomenon is reasonable since the neighbors of nodes are distributed from

several to hundreds. Our second observation is that the number of common nodes

among larger batches is higher than that among smaller batches. We randomly

select a 50,000-node batch and a 100,000-node batch and compare their common

nodes with all batches whose size is more than 100,000. Figure 4.3b shows the

result. In a large batch, target nodes usually have high degrees, so they would have

a high possibility of being reused in other batches. We have similar observations

on other datasets.

45

CHAPTER 4. GRAPH INFERENCE WITH ADAPTIVE SAMPLING AND LOCAL
SENSITIVE HASH

Algorithm 4 Fine-grained clustering.
Require:

{Qk′} is the set of batches of a coarse-grained cluster.
H is the number of hash functions.

Ensure:
The final set of batches, {Qnew}.
#Generate signature matrix.

1: for i = 1, 2, 3, ...len({Qk′}) do
2: for n = 1, 2, 3, ...F do
3: Calculate hash value for each element in the batch Qk′i by fn();
4: min is the min-hash value of the batch Qk′i, generated by the n− th hash

function.
5: end for
6: Mi consist of {min, n = 1, 2, 3, ...F}.
7: end for
8: Each batch is a column, the signature matrix M consist of {Mi, i =

1, 2, 3, ...len({Qk′})}.
#Divide M into b bands by rows and hash separately.

9: Each band contains r rows.
10: A graph G = (V), V is the set of index of batches.
11: for j = 1, 2, 3, ...b do
12: for i = 1, 2, 3, ...len({Qk′}) do
13: Hash r min-hash values Mi[j ∗ (r − 1), j ∗ r] of the j−th band of batch i

to the bucket.
14: if The bucket already exists another batch i′ then
15: Nodes i and i′ in the G will have a connection and the weight of the

connection will be plus one.
16: end if
17: end for
18: end for

Arrangement
19: Cluster the G into ψ parts and generate new order of {Qk′} as {Qnew}, where

the batches belong to the same cluster will adjacent front and rear.

4.3.2 LSH-based Hierarchical Clustering

RAIN adopts a two-level scheme to accelerate the clustering inspired by the

above observations. The coarse-grained clustering process is based on batch size

information. Algorithm 3 shows the process of coarse-grained clustering. We

sort batches according to their size and then divided them into K clusters. For

each cluster {Qk}, we further sample the indexes in every batch to generate a

new batch (line 8). The algorithm has a linear complexity. The sampling can

save on computation overhead when we further conduct fine-grained clustering

46

4.3. LSH-BASED GRAPH WORKLOAD CLUSTERING

since fewer elements are included. The coarse-grained clustering design can sig-

nificantly reduce the overhead compared with full-set clustering since there is no

need to compare across coarse-grained clusters. Meanwhile, according to the sec-

ond observation, it has a negligible negative impact on the final result since there

are more repeated nodes in large-scale batches by nature.

The algorithm 4 shows the process of fine-grained clustering, which contains

several steps. First, we need to generate a signature matrix based on all batches.

In each batch, every element is the node index of the original graph and is hashed

by a hash function fn() (line 3). The min represents one mini-hash value of the

current batch (line 4). We use several hash functions to generate multiple min-

hash values for each batch (line 6). These values can be expressed as a signature

matrix (line 8). An illustration of this process is shown in Fig. 4.4. Note that

we sample the indexes in each batch in the coarse-grained clustering phase so

that we do not need to hash every index value in the batch and the generation

of the matrix can be efficient even with multiple functions. After generating the

signature matrix, we need to hash the signature matrix further. As shown in Fig.

4.4, each batch is split into multiple bands (two bands in the example), and the

content in each band is mapped to a bucket by the general hash function (line

13 in Alg. 4). If two batches are mapped into the same bucket for a band, their

min-hash values are the same in this band and thus become a similar pair.

Next, we go through all the bands and generate a similarity graph where edges

contain weight (line 15 in Alg. 4). Specifically, each inference batch is a node in the

graph; if two batches are a similar pair in one band, they have a connection, and

the weight of the connection increases correspondingly. Then the weighted graph

is clustered into ψ parts using Metis [54]. Note that ψ is a pre-defined threshold.

After clustering, the batches in the same cluster are arranged adjacently.

47

CHAPTER 4. GRAPH INFERENCE WITH ADAPTIVE SAMPLING AND LOCAL
SENSITIVE HASH

1 0.95 0.9 0.85
Samping ratio

94

94.5

95

95.5
Ac

cu
ra

cy
(%

)

(a) Accuracy based on various sampling
ratios.

 0.95 0.95+0.9 0.9 0.9+0.85
Samping ratio

94

94.5

95

95.5

Ac
cu

ra
cy

(%
)

Single ratio
Mix ratio

(b) Comparison between single ratio and
mixed ratio.

Figure 4.5: Inference accuracy with different sampling ratios.

4.3.3 Parameters of LSH

The LSH-based algorithm contains several important parameters, including

the number of hash functions, the number of bands b, and the number of rows

each band contains r. We set the number of hash functions at 128. Suppose the

similarity of two sets is s, then the possibility that they are the same pair at least

one band is 1 − (1 − sr)b. We calculate the b and r by minimizing the sum of

false positives (sets should have the same bands, but do not) and false negatives

(sets should not have the same bands but do) even with a small s, similar to

the settings in [55]. Another parameter is ψ, which represents the number of

clusters. Basically, a larger ψ generates more clusters, which may lead to high

computational complexity. We set ψ as one-twentieth of the number of batches

by balancing inference efficiency and clustering overhead.

4.4 Adaptive Sampling

Based on LSH-based clustering, we propose to further reduce graph data load-

ing time by adaptive sampling.

48

4.4. ADAPTIVE SAMPLING

4.4.1 Observation

We use the Reddit dataset as an example. We randomly sample a fixed portion

of edges for each batch and show inference results in Fig. 4.5a. We find that some

edges are redundant since non-sampling and sampling 95% edges have almost the

same accuracy. The accuracy gap is observed when the ratio is 0.9 and becomes

more obvious when the ratio is 0.85. A similar observation has been also reported

by DyGNN [56]. The authors claim that some neighbors’ edge information is use-

less in the neighborhood aggregation phase. The authors further use experiments

to verify that some similar neighbors do not contribute extra information to the

nodes, and a similarity threshold-based method is proposed to filter out similar

neighbors. However, this method of reducing edge redundancy needs to calculate

and compare each neighbor’s similarity for every node, which is time-consuming.

We conduct additional mix ratio experiments to reduce the sampling ratio of

nodes with a degree greater than 120, which is set to 0.9 when the basic ratio

is 0.95, and 0.85 when the basic ratio is 0.9. Figure 4.5b shows the accuracy

results based on single and mixed ratios. We can see that the lower ratio on

high-degree nodes does not reduce the accuracy compared with these single-basic

ratio settings. That means the single ratio-based simple sampling method can not

reduce the redundancy well since there is still much redundancy with the high-

degree nodes. Besides, it may eliminate some valuable connections during the

sampling, thus causing the accuracy to decrease even with a quite large sampling

ratio (see the results in Fig. 4.5a). After all, the single ratio sampling strategy

is on the batch level, which supposes all neighbors have the same importance to

the target node. However, compared with the nodes with a large degree, some

nodes have limited neighbors, and each of them could be important and can not

be eliminated.

49

CHAPTER 4. GRAPH INFERENCE WITH ADAPTIVE SAMPLING AND LOCAL
SENSITIVE HASH

Table 4.2: The information in datasets, the letter “(m)” stands for multiple class
classification.

Dataset Nodes Edges Average degree Features Classes Train/Val/Test
Reddit 232,965 114,848,857 50 602 41 0.66/0.1/0.24
Yelp 716,847 6,977,410 10 300 100 (m) 0.75/0.1 /0.15

Amazon 1,598,960 132,169,734 83 200 107 (m) 0.85/0.05/0.10
OGB-products 2,449,029 61,859,140 25 100 47 0.08/0.02/0.9

4.4.2 Adaptive Sampling

Based on the above observations, we propose a simple but efficient node-level

adaptive sampling strategy to reduce redundant edges. It contains several steps.

First, we re-index all the nodes according to their degrees; a small degree node will

have a small index. This operation will help make the nodes in the same batch

have as similar degrees as possible when we generate batches. Since deciding the

sampled neighbors for each node is time-consuming, we turn to make the nodes

in each batch have similar degrees and set them with the same sampling strategy.

Second, we divide the batches into two parts according to their nodes’ average

degree with a pre-designed threshold. If the degree is below the threshold, the

batch will belong to the “full-sample” part. Otherwise, it belongs to the “tune-

sample” part. The batches in the “full-sample” part keep all their nodes, while

batches in the “tune-sample” part conduct neighbor sampling. The number of

neighbors sampled is tuned by the average degree of the batch. Specifically, the

number grows as the increasing of batches’ average degree. This is reasonable since

nodes with large degrees should sample more neighbors to control the sampling

bias.

4.5 Evaluation

4.5.1 Experiment Settings

We prototype our system based on the Ubuntu system with Intel i7-10700

CPU and Nevada Geforce RTX 1080 GPU. We use PyTorch and DGL [37] graph

50

4.5. EVALUATION

process package. Four widely used graph datasets are chosen as summarized in

Table 4.2. We run graph inference in a batch manner with the GraphSAGE

model [5, 6]. We set the batch size to 1000, as the default setting. The threshold

λ, which represents the internal size in coarse-grained clustering, is set as 20,000

empirically. We compare our system with three baselines:

1. The original inference process (OIW): This is the basic inference operation

with mini-batch while having no optimized strategies, as the default setting

in DGL [37].

2. Caching according to node degree (CAD): This is the caching strategy pro-

posed in PaGraph [6]. The nodes with higher degrees have higher priorities

to be cached in GPU memory. Since the cache size usually is small, we

suppose the cache-based solution can only cache 200 MB for all datasets.

The other cache size conditions will be further discussed in the following

subsection.

3. Simple reusing of the repeated nodes without reordering (SRW): We also

consider reusing the repeated nodes among batches according to the order

of the default inference setting.

4.5.2 Overall Results

The overall results of the time cost of inference are shown in Fig. 4.6. Note

that the pre-processing time is not contained since the inference process is con-

ducted periodic [7,8] and thus can be considered as an off-line scenario. We can see

that our system has a lower time cost compared with all other baselines. Specif-

ically, we are faster by about 4.5X, 1.8X, 6.8X, and 2.0X over the Reddit, Yelp,

Amazon, and OGB-products datasets compared with the original solution. The

improvement is related to the average degree of the dataset. For example, the

improvement on the Yelp dataset is the smallest, and the dataset has the small-

est average degree. The Amazon dataset has the largest improvement with the

51

CHAPTER 4. GRAPH INFERENCE WITH ADAPTIVE SAMPLING AND LOCAL
SENSITIVE HASH

largest average degree. The results are reasonable since a large average degree

means more redundant neighbors and more severe communication overhead, and

our system can significantly reduce this kind of overhead.

As for other baselines, our system is faster by about 2.1X compared with SRW

on the Reddit dataset, 1.72X compared with CAD on the Yelp dataset, 4.2X

compared with SRW on the Amazon dataset, and 1.6X compared with CAD on

the OGB-products dataset. The SRW takes more time than CAD on the OGB-

products and Yelp datasets because these two datasets have a limited average

degree, and the feature size of nodes is also tiny. Hence, the benefit of data reuse

is less than the overhead from data replacement and the logical process of these two

solutions. Note that we not only reduce the communication time but also reduce

the computation time. CAD and SRW’s computation times are larger than OIW’s

because of the extra logical process, while RAIN has a lower computation time,

and the reduction comes from the benefit of adaptive sampling.

The results of accuracy are shown in Table. 4.3. We can see that RAIN has

a negligible accuracy decrease, from 0.0003 to 0.0007. The minor decrease verifies

the effort of the proposed adaptive sampling method. Specific sampling is a trade-

off between accuracy and efficiency. We will discuss the details of the trade-off in

the following subsection.

Although our system focuses on the scene that allows us to pre-process the data

in idle time for the reuse of as much data as possible, we claim that RAIN still

achieves fast pre-processing rather than a long preliminary preparation time. We

record the total time cost (including pre-processing time and accuracy statistics

time) over four datasets among different solutions, and the results are shown in

Table 4.4. We can see that RAIN achieves time reduction on all datasets, even

considering the pre-processing time, and the improvement can be across the order

of magnitude. For example, we reduce the time cost from 116.26 seconds to 34.89

seconds on the Amazon dataset.

52

4.5. EVALUATION

OIW CAD SRW RAIN
0

5

10

15

20

25

Ti
m

e(
S)

Communication Computation

(a) The Reddit.
OIW CAD SRW RAIN

0

5

10

15

Ti
m

e(
S)

Communication Computation

(b) The Yelp.

OIW CAD SRW RAIN
0

20

40

60

80

100

Ti
m

e(
S)

Communication Computation

(c) The Amazon.
OIW CAD SRW RAIN

0

10

20

30

Ti
m

e(
S)

Communication Computation

(d) The OGB-products.

Figure 4.6: Overall time costs for different datasets.

Table 4.3: The comparison of accuracy.

Dataset Reddit Yelp Amazon OGB-products
Original accuracy 0.9513 0.6161 0.7510 0.7018
Accuracy in RAIN 0.9507 0.6158 0.7504 0.7011

Decrease 0.0006 0.0003 0.0006 0.0007

4.5.3 The Effectiveness of Two strategies

To fully evaluate the effectiveness of the LSH-based workload clustering and

the adaptive sampling strategies, we also conduct some ablation experiments for

comparison. The first two baselines are still OIW and SRW. The third solution is

our system with only the clustering part, RAIN-R. The fourth is our system with

only a clustering part, and that part only contains the coarse-grained classification,

named RAIN-RC. The fifth is the RAIN with only an adaptive sampling part,

RAIN-A.

The results of the inference time on four datasets are shown in Fig. 4.7. We

can see RAIN-R achieves about 30% to 70% improvement compared with OIW on

the Reddit, Yelp, and Amazon datasets. For the OGB-products dataset, RAIN-R

53

CHAPTER 4. GRAPH INFERENCE WITH ADAPTIVE SAMPLING AND LOCAL
SENSITIVE HASH

Table 4.4: Time cost in on-line scene.

Dataset Reddit Yelp Amazon OGB-products
OIW (S) 25.73 18.20 116.26 41.74
CAD (S) 21.39 14.72 82.65 38.24
SRW (S) 13.68 15.94 86.79 40.31
RAIN (S) 10.02 13.78 34.89 35.20

OIW SRW RAIN-R RAIN-RC RAIN-A
0

5

10

15

20

25

Ti
m

e(
S)

(a) The Reddit.

OIW SRW RAIN-R RAIN-RC RAIN-A
0

2

4

6

8

10

12

14

Ti
m

e(
S)

(b) The Yelp.

OIW SRW RAIN-R RAIN-RC RAIN-A
0

20

40

60

80

100

120

Ti
m

e(
S)

(c) The Amazon.

OIW SRW RAIN-R RAIN-RC RAIN-A
0

5

10

15

20

25

30

Ti
m

e(
S)

(d) The OGB-products.

Figure 4.7: Time costs with various modified solutions for different datasets.

achieves about 11% improvement compared with OIW because the dataset has

a limited average degree and feature dimension. The significant improvement

verifies the effort of the LSH-based clustering strategy even without the proposed

adaptive sampling strategy.

When we compared with SRW, which simply reuses data without clustering,

RAIN-R still achieved about 10% (Yelp dataset) to 30% (Amazon dataset) im-

provements, which means the clustering operation is important and our LSH-

clustering achieves both speed and effectiveness. Note that RAIN-RC always

takes more time than RAIN-R, which means the coarse-grained clustering is in-

sufficient. The comparison between OIW and RAIN-A represents the effectiveness

54

4.5. EVALUATION

100M 200M 500M 800M 1000M Ours

5

10

15

20

Ti
m

e(
S)

(a) Time costs of various cache sizes in
CAD and ours.

CAD RC PDC ADC Ours

5

10

15

20

Ti
m

e(
S)

(b) Time costs of various cache-based so-
lutions and ours.

Figure 4.8: Time cost of baselines with various parameters.

of the adaptive sampling strategy, which can reduce about 30% to 70% time cost

among four datasets.

4.5.4 Variants of the CAD Baseline

There are some parameters or variants in the caching-based baseline that may

affect their performance when compared with RAIN. With the Reddit dataset, we

conduct more experiments to investigate the time cost under different parameters

in CAD and different variants of CAD.

Size of the cache in CAD

The size of the cache is the critical point in the CAD. We conduct more ex-

periments to record the time cost of CAD under different cache sizes, as shown

in Fig. 4.8a. One pronounced tendency is that the time cost decreases as the

cache size increases. However, our solution is still in the lead even with a 1000M

cache. The total graph is almost all cached in such a large cache size. However,

when we process a vast graph with batching realistically, the graph cannot be

completely loaded into the GPU memory, and the cache size should be limited.

Otherwise, we can directly increase the size of the batch to accelerate the process.

The experiments verify the effort of our proposal in this realistic setting.

55

CHAPTER 4. GRAPH INFERENCE WITH ADAPTIVE SAMPLING AND LOCAL
SENSITIVE HASH

Variants of CAD

Besides the degree-based cache in CAD, we also conduct experiments to com-

pare some other caching strategies, including random caching (RC, random choos-

ing some nodes for caching), period dynamic caching (PDC, change cached con-

tent every fifty batches), and all-hit dynamic caching (ADC, dynamic change the

cached content to ensure that all needed nodes are in the cache). The time costs

of these caching solutions are shown in Fig. 4.8b. We can see that all these vari-

ants have similar time costs to CAD. RC takes more time than CAD since the

random strategy has a lower hit ratio. PDC should have a higher hit ratio, but

the overhead of cache replacement is greater than the reduction in data loading.

A similar overhead is also severe in ADC.

4.5.5 Design details of RAIN

There are some parameters in the RAIN that may affect the performance;

here, we use the Reddit dataset as an example to discuss the relationship between

the performance and some parameters.

About re-index with degrees in adaptive sampling

In the proposed adaptive sampling part, we make the target nodes in the same

batch have a similar degree. This operation can be simply achieved by re-indexing

the target nodes according to their degree, from small to large. It can help us

eliminate the influence on accuracy when we conduct the same sampling strategy

for the nodes in the same batch. We designed a simple experiment to verify the

benefit of this operation. We specify that batches with less than 50,000 points

are not sampled, and for batches with more than 50000 points, each target node

sample N neighbors. N is set as 10, 20, 30, 40, 50, and the results of accuracy are

shown in Fig. 4.9a. The accuracy increases as the increased of sampled neighbors.

Compared with the random index, indexing according to degrees always has higher

accuracy. The two lines tend to be the same when all neighbors are sampled.

56

4.5. EVALUATION

0 10 20 30 40 50 60
Sample numbers

93.5

94

94.5

95

Ac
cu

ra
cy

(%
)

Random
According degree

(a) Accuracy of random and reordered in-
dexes.

10 20 30 40 50
Sample numbers

94

94.5

95

95.5

96

Ac
cu

ra
cy

9

9.5

10

10.5

11

To
ta

l t
im

e

(b) Accuracy and total time cost when
sampling various neighbors.

0 2 4 6 8 Ours
Sample numbers

0

20

40

60

80

Pr
e-

pr
oc

es
s

tim
e

6

6.2

6.4

6.6

6.8

7

In
fe

re
nc

e
tim

e

(c) Time cost for pre-processing and in-
ference when sampling various indexes for
LSH.

2 4 6 10 14
3.5

3.6

3.7

3.8

3.9

4

Ti
m

e(
S)

(d) Time cost for inference when clustering
various classes with LSH.

Figure 4.9: The influence of some designs in RAIN.

57

CHAPTER 4. GRAPH INFERENCE WITH ADAPTIVE SAMPLING AND LOCAL
SENSITIVE HASH

About sampled neighbors in adaptive sampling

The above experiments are just used to verify the effort of re-index. We still

need to decide on the specific sample strategy for adaptive sampling. In the

RAIN, we split batches with fewer than 10000 nodes into the “full-sample” set

and others into the “tune-sample” set. The latter can be further divided into four

sets, including S1 whose nodes are not larger than 50000, S2 whose nodes are

not larger than 10000, S3 whose nodes are not larger than 150000, and S4 whose

nodes are larger than 150000. We set the target nodes in S1 sample 10 neighbors

and the others sample 10 more on top of the previous one, i.e., 20 for S2, 30 for

S3. We also set S1 start at 20, 30, 40, and 50, and other sets still sample 10 more

on top of the previous one for comparison. The sampled neighbors decide the

total time cost and final accuracy, and the results are shown in Fig. 4.9b. We can

see from the two lines that a higher number of neighbors means higher accuracy

while needing more time. A small number of neighbors can complete the inference

process quickly while causing an accuracy decrease. In the RAIN, we set S1 to

start at 40, which has a good trade-off between time cost and accuracy.

About sample index in LSH

After coarse-grained clustering in RAIN, we conduct the LSH process for each

batch. This process is time-consuming since we need to go through every node.

We propose to sample the indexes for the batches in the same coarse cluster for

time-saving. We also give some experimental results to verify the effort of this

index sampling design. Since this sampling is not related to the adaptive sampling

part, we use all neighbors here. We experiment with various solutions, including

no sampling (use all indexes to do LSH), sampling every two indexes (choose one

index to do LSH for every two indexes), sampling every four indexes, sampling

every six indexes, and sampling every eight indexes. Their trade-off is shown in

Fig. 4.9c. A low sampling ratio can significantly reduce the pre-processing time

cost on LSH since only a small part of the indexes are involved; however, it has

58

4.6. RELATED WORK

a negative effect on the results of LSH-based clustering and increases the final

inference time.

As a comparison, with the same amount of nodes, our solution conducts coarse-

grained clustering first to split batches into three clusters according to their size.

And then sample their indexes with different strategies in each cluster separately.

For the cluster whose batches’ sizes are small, we sample one index for every 10

indexes for all batches in the cluster. Otherwise, we sample one index for every

100 indexes. As bold nodes are shown in the figure, we achieve a better trade-off

between pre-processing and inference time.

About cluster graph in LSH

In our LSH-based clustering, we need to generate a similarity graph and use the

Metis [54] method to cluster the graph into ψ parts. We do some experiments to

see the time cost under different settings of ψ. The results are shown in 4.9d. We

ignore the coarse-grained clustering process to emphasize fine-grained clustering.

We can see from the figure that a large amount of clustered classes do not mean

a small time cost because when we have lots of clusters, the order among clusters

may also become important. In our experiments, set ψ as 4 (about one-twentieth

of the amount of the batches) has a good result on the Reddit dataset. For other

datasets, we also set ψ as the one-twentieth of the amount of the batches.

4.6 Related Work

4.6.1 Various GNNs

Extensive studies show the effectiveness of GNNs in various applications like

recommendation systems [7], temporal link prediction [43], and spam review de-

tection [44]. A significant challenge in these business applications is handling the

huge graph. Various strategies have been proposed to make the training process

more efficient. GraphSAGE [5] lets each node sample a fixed number of neighbors

59

CHAPTER 4. GRAPH INFERENCE WITH ADAPTIVE SAMPLING AND LOCAL
SENSITIVE HASH

for each layer. VR-GCN [51] utilizes history neighbors’ embedding to control vari-

ance and reduce the sampled neighbors to two nodes. Cluster-GCN [46] cluster

the large graph into subgraphs and then complete convolution separately. Some

works consider the cache aspect. For instance, PaGraph [6] has been proposed to

cache the nodes with large degrees in the GPU memory. BGL [57] is a co-design

of cache policy and neighbor selection to increase the cache hit rate.

Some works also focus on the inference process of GNNs. Zhou et al. [58]

utilize channel pruning technology to reduce the input feature dimensions and

cache some visited nodes’ hidden features for reuse. However, the model needs to

be retained after each pruning since the dimensions of features changed, and it does

not introduce a specific caching strategy. This work is orthogonal to ours because

we do not modify the model. Zeng et al. [59] propose to extract a subgraph for the

target nodes in inference to decouple the depth and scope of GNNs. The benefit of

the decoupling operation is the lower computation complexity in inference when

conducting a deeper GNN layer on the limited subgraph. However, it still involves

many nodes since the subgraph is extracted with hundreds of neighbors or all

2-hop neighbors.

4.6.2 Caching Strategies

It is not a new topic in data caching and reusing. However, the previous works

have high complexity and are not the optimal solution in our case because of the

unique character of the graph learning’s inference. We will analyze the existing

solutions in our scenario in this subsection. For the general offline caching prob-

lem, the Farthest-in-Future (FF) algorithm [60] can achieve the optimal result.

The basic idea is to discard the information in the cache that will not be needed

for the longest time in the future when the cache is full. FF is not optimal in our

scenario because when queering each batch’s nodes, the nodes can be obtained

from the cache or directly from the main memory. We also call this character-

istic as bypassing as in [61]. Besides the bypassing, the reordering operation is

60

4.7. CONCLUSION

also allowed in our case. In [62], the author also allows bypassing and considers

query j may be served before i if j − i < r. Under the constraint of this kind

of r−reordering, the author batches the queries first and gives the corresponding

bound compared to the standard r−reordering. After batching operations, the

author also gives the optimal offline algorithm, BMIN. The main idea of BMIN

is described as follows. Suppose node d is queried and d is not in the cache. Let

In(d) be the index of the batch where the next unserved query to d occurs. Deter-

mine Inmax = MAXd′∈Sb(d′), where S is the set of nodes in the cache currently. if

In(d) < Inmax, then load d into cache and evict any node d′ with In(d′) = Inmax.

BMIN has a similar principle with FF while considering the bypassing simulta-

neously. Although considering bypassing, BMIN is not optimal in our scenario

since an inference batch in our setting already contains multiple elements.

4.7 Conclusion

In this Chapter, we propose an efficient inference system for graph learning,

named RAIN. We consider reusing the repeated nodes among inference batches

to reduce the redundant data loading, which takes a significant toll on the time

cost of the complete inference process. The inference batches can be reordered

to reuse as many nodes as possible. However, directly reordering batches is time-

consuming. RAIN adopts an LSH-based two-level clustering scheme to quickly

cluster the unequal-length batches and arrange the batches in the same cluster

adjacently. We also propose an adaptive sampling strategy to sample the target

nodes’ neighbors according to their degree while having a minor influence on the

final accuracy. We compare RAIN with various baselines, and the results verify

the effort of the LSH-based reordering and adaptive sampling strategies.

61

Chapter 5

Efficient Transformer Inference

using Masked Autoencoders

In addition to graph data, we also explore the sparsity of image data. Many

edge devices with weak computing power collect image data that needs to be

identified, but these devices may not have enough resources to conduct complex

neural network identification. Therefore, the data often needs to be uploaded to

a server for processing. We propose an offloading system that does not require

computation on the edge device and only needs to transmit part of the image data

to the server. The server can then recover the image and perform inference using

a feedback-driven strategy designed to achieve content-aware transmission.

5.1 Introduction

There is a strong demand to deploy intelligent applications, e.g., object detec-

tion [63], data augmentation [64], and image recognition [65, 66], on mobile/IoT

devices with various sensors. These applications are based on the inference oper-

ations of complex deep neural networks (DNN), which can hardly run on devices

with limited hardware resources. This dilemma motivates broad-spectrum re-

search on offloading DNN inference operations to edge servers or clouds. An ideal

offloading policy should satisfy three requirements: (1) high inference accuracy;

62

5.1. INTRODUCTION

Figure 5.1: The basic MAE-based offloading scheme.

(2) low communication overhead, as mobile/IoT devices using wireless networks

usually have limited network bandwidth; and (3) low computation overhead on

the device side [67, 68].

Unfortunately, none of the existing work can achieve all three requirements

at the same time. A straightforward offloading strategy sends raw data to the

cloud [9], which eliminates computation at edge devices and achieves high infer-

ence accuracy by using powerful hardware in the cloud. However, since raw data

have a large size, this simple strategy would incur a high communication cost.

Some recent works have proposed data preprocessing techniques at edge devices to

reduce communication costs. Such preprocessing techniques include DNN model

splitting [11], input data compression [13], and input data filtering [14]. DNN

model splitting is based on the observation that the output of some intermediate

layers is smaller than the original input. Thus, we can trade running a few DNN

layers at edge devices for a significant reduction in communication cost. However,

running just a few DNN layers could be also a heavy burden for weak-edge devices.

Furthermore, not all DNN models exhibit the feature of smaller intermediate data.

Some DNN-based data compression methods also have a heavy computation over-

head for edge devices [13]. A higher compression ratio can reduce the amount

of data transmitted over networks, however, the inference accuracy could also be

decreased if the data is over-compressed. Data filtering techniques select and send

image regions, including target objects, instead of whole images. The commonly

used MobileNet-SSD [69] filter demands about 1200 Million Floating Point Opera-

tions (MFLOPs) for 300×300 images [70], while some edge devices, like raspberry

63

CHAPTER 5. EFFICIENT TRANSFORMER INFERENCE USING MASKED
AUTOENCODERS

pi-zero-w and raspberry pi-aplus, only support about 200 Million Floating-point

Operations per Second (MFLOPS) [71]. Du et al. [67] have proposed a server-

driven offloading method for video analysis. Edge devices transmit low-quality

frames with reduced size to the server first, and then the server identifies target

regions and requests a re-transmission of high-quality content within these regions.

There are additional works that formulate and resolve various offloading op-

timization problems. The issue of privacy is considered during model splitting

in [72] and the energy consumption constraint is added in [73]. The deep Q-

network-based offloading strategies are also proposed with consideration of chan-

nel conditions [74,75]. and reinforcement learning is used to let each device make

its own offloading decision [76]. However, these methods are tailored to specific

tasks and lack a holistic perspective that simultaneously considers computation,

communication, and accuracy.

In this Chapter, we propose a new approach to breaking the myth of the

impossible trinity of DNN offloading. The basic idea is shown in Fig. 5.1. Edge

device (e.g., an old smartphone) collects image data and randomly samples a

small portion of image patches, and sends them to the server, which then uses

a masked autoencoder (MAE) [16] to recover the image and conduct inference.

Sampling is a simple operation with negligible computation overhead for edge

devices. Since the sampling ratio could be very low, usually less than 30%, only

a small amount of data need to be transmitted over networks, leading to low

communication cost. MAE was originally designed for pre-training, and we exploit

its powerful capability in image recovery for DNN offloading. Therefore, it is

promising to achieve high inference accuracy with limited sampled data. Note

that our method is orthogonal to conventional compression methods that encode

image data using various transform strategies. The sampled data can also be

further compressed by these methods.

Although the MAE-based scheme shown in Fig. 5.1 is promising, we are facing

several critical challenges to make it work efficiently in practice. The first is to de-

64

5.1. INTRODUCTION

termine how many patches should be sampled to guarantee a good recovery with

high inference accuracy. More patches could be helpful for better image recovery

while leading to higher communication costs. Especially, weak edge devices have

insufficient hardware resources to run complex algorithms for content recognition

to make decisions. We address this challenge by designing a two-round offload-

ing scheme for inference, named A-MOT (Adaptive MAE-based Offloading for

Transformer inference). A-MOT contains an image selection process. Specifically,

in the first round, edge devices randomly sample a small number of patches and

send them to the server. If these patches are sufficient for recovery and obtaining

inference results with high confidence, the server returns results and completes

the inference service. Otherwise, several “important” patches are selected and

requested by the server in the second round of offloading.

Second, we find that different images require different numbers of patches for

correct inference. Some images with simple contents can be well recovered by

MAE even with a few patches, but more patches are needed for complex images.

Offloading efficiency could be further improved if this feature is well exploited.

Since both edge devices and the server are unaware of image contents before the

first round of offloading, we let all devices offload the same amount of patches. In

the second round of offloading, the server requests different amounts of patches

for images, by using the information obtained by MAE and inference operation.

However, this method is agnostic to SLO (service level objective), i.e., it determines

the number of patches without considering network bandwidth. Thus, A-MOT

has an SLO-adaptive design that can decide how many patches are transmitted in

the second round of offloading for different images, given a traffic budget.

The final challenge is the high computational burden on the server. Although

the two-round offloading scheme is promising in terms of reducing communication

costs and increasing inference accuracy, the server has high computational over-

head because it needs to run two inference operations for some images that need

the second round of offloading. The commonly used inference models are Vision

65

CHAPTER 5. EFFICIENT TRANSFORMER INFERENCE USING MASKED
AUTOENCODERS

Transformer (ViT)-based, which divides an image into multiple small patches to

form a patch sequence. The most significant component of the models is the at-

tention layer, where they calculate the attention value among each patch pair to

generate new embeddings. The overhead of inference is thus positively related to

the length of the patch sequence. The optimization method for language inference

with the Transformer model in [77] does not work here since it takes advantage

of the fact that language sentence lengths are naturally different, while images

from the same device have the same size. To reduce the overhead, A-MOT has

a lightweight inference operation for the second round of offloading. Instead of

running a full inference with the complete patch sequence, the server lets newly

received patches go through an encoder, which has the same attention layer as

the inference model. This operation has low overhead because of the short input.

Then, the embeddings generated by this encoder are combined with the ones from

the first round. The combined results are sent to a decoder to generate the final

output.

The main contributions of this Chapter are summarized as follows:

• We propose a two-round inference offloading scheme based on MAE so that

weak edge devices can also achieve high inference accuracy with low com-

munication costs.

• We design an SLO-adaptive strategy to maximize the inference accuracy

with the constraint of limited network bandwidth.

• We reduce the computational cost at the server by proposing a lightweight

inference operation for the second-round offloading.

The rest of this Chapter is organized as follows. We introduce the motivation

in section 5.2. The system design is described in section 5.3. We evaluate the

system in section 5.4 with various baselines. Section 5.5 discusses some related

works, and Section 5.6 is the conclusion.

66

5.2. MOTIVATION

Figure 5.2: The development of models’ complexity and devices computation
power per energy unit.

5.2 Motivation

5.2.1 Limited Resources of Edge Devices

The popular deep neural networks are vital in dealing with data analysis [78].

However, edge devices could be rather resource-limited [67,68], making it hard to

run inference tasks with complex models. Fig. 5.2 shows the FLOPs of several

commonly used models for image recognition and the FLOPS/W of the various

raspberry pi devices [71]. The growth of computing capability on edge devices lags

behind the increase in model complexity. For example, the computing power of pi-

4B(4G-64bit) is about 2.0 FLOPS/W, which is around four times that of pi-zero,

while the FLOPs of the FixEfficientNet-B7 are about 2700, which is thousands

of times that of the edgeNetx-S. This suggests that edge devices have struggled

to efficiently run growing models. Offloading has therefore been widely exploited

for inference tasks. However, bandwidth is a scarce and even volatile resource

[11, 79, 80]. The direct transmission of raw data may incur a significant delay. To

reduce offloading traffic, some works use small-size selectors to choose and transmit

critical regions in the image. However, these selectors are still resource-intensive

for resource-limited edge devices. There are also efforts to run a part of the

inference model on edge devices and upload the intermediate output to the server

for the rest of the inference [11]. These DNN partition-oriented works hypothesize

67

CHAPTER 5. EFFICIENT TRANSFORMER INFERENCE USING MASKED
AUTOENCODERS

Figure 5.3: The output size of various state-of-the-art inference models.

that some intermediate layers in the neural network may have a smaller output size

than the raw data, thus saving bandwidth. However, lots of models do not show

this characteristic. We list four models with the highest accuracy on the commonly

used ImageNet dataset, including CoCa [81], BASIC-L [82], ViT-G/14 [82], and

ViT-e [83]. These models are all attention-based with an isotropic architecture

[84], which means all main layers contain heavy attention operations and have the

same output size. Figure 5.3 shows the normalized output sizes (with the size

of the input image set to one) of intermediate layers for each model. Coca, ViT-

G/14, and ViT-e have large intermediate data. For BASIC-L, the size is similar to

the input image. However, this output size is obtained after running more than 40

layers, and such a computational burden cannot be afforded by weak-edge devices.

5.2.2 Possibility of MAE-based Bandwidth-saving

Due to MAE’s potent reconstruction capabilities, it is reasonable for the device

to randomly mask images before transmitting the preserved data to the server

for MAE reconstruction and inference. Two related competitors exist. The first

option is to replace the MAE with other ways to reconstruct the image, such as

the complete-based method in [85]. The other server-driven method [67] initially

reduces image resolution on the device and then utilizes server-side computing to

identify the target object in the image before retransmitting high-level pixels.

We conducted some preliminary experiments to compare the efforts of different

solutions. We employ a subset of the ImageNet dataset for accuracy testing with

10 classes and 50 images for each. We apply the Large-ViT-based encoder in

68

5.2. MOTIVATION

MAE and the DeiT-Small inference model (a variant of ViT) [86]. To conserve

bandwidth, all three systems transport only 30% of the original data volume in

total. For the server-driven method, we only retransmit part of the target area

and prioritize high-attention patches to match the budget constraint. Figure.

5.4a illustrates their accuracy. The MAE-based method has the best performance

among all bandwidth-saving solutions. For the complete-based works, they target

filling reasonable content with photorealistic appearance into the missing regions

[85, 87]. The target is different from our reconstruction process and will generate

unrelated content when we have a large mask ratio. For the server-driven work,

we give an example as shown in Fig.5.4b. With a sample ratio of 0.1, detecting

the fish in the masked image is difficult, but reconstruction makes it simpler, and

the reconstructed image can be accurately identified. The server-driven method,

on the other hand, must retransmit the target region, which is greater than the 0.1

transmission ratio in the MAE-based method. The comparison verifies that MAE

may study the deep semantics of a masked image and be utilized for bandwidth

savings in offloading. Note that there is a tradeoff between communication and

accuracy in our scenario. However, it is difficult to mathematically formulate the

relationship between increased communication and improved accuracy since we

have an image recovery process.

5.2.3 Different Images Require Various Mask Ratios.

Although the MAE-based method has the best performance among all bandwidth-

saving solutions, the challenge, however, is that the MAE-based recovery method

still has a significant accuracy gap in comparison to the raw image in Fig. 5.4c.

Allowing each image to have its optimal sampling ratio for a given transmission

budget is a potential method for further enhancing accuracy. We investigated the

MAE-based method using additional image instances. As depicted in Fig. 5.4c,

the image has a complex background, and the object fish in the image is quite

small, which cannot be identified with a sample ratio of 0.1 like in Fig. 5.4b.

69

CHAPTER 5. EFFICIENT TRANSFORMER INFERENCE USING MASKED
AUTOENCODERS

(a) The accuracy of different solutions

(b) An image example between two solutions

(c) Complex image demands more data for recon-
struction

Figure 5.4: MAE can be used for bandwidth-saving in offloading.

When we send more data to bring the mask ratio up to 0.5, the reconstructed im-

age is much clearer, and the fish can be correctly identified. The results show that

since the contents of different images are different, their mask ratios should be

varied to achieve content-aware transmission and bandwidth savings. However,

due to limited processing resources on edge devices, we cannot know the best

mask ratio for each image, and giving all images the same sample ratio results in

duplicate transmission and reduced accuracy.

70

5.3. SYSTEM DESIGN

Figure 5.5: System overview.

5.3 System Design

5.3.1 Overview

Fig. 5.5 illustrates the process of the proposed two-round offloading system,

A-MOT. There are three key designs in the A-MOT, including the image selection

module, the SLO-adaptive module, and the lightweight inference module. Specif-

ically, the device randomly samples the data on each image (①) and transmits it

to the server. The server then reconstructs the images using the MAE model (②)

and conducts inference (③). The confidence score is compared with a threshold

in the image selection module. If the score exceeds the threshold, the inference

result is direct output; otherwise, high-attention tokens are chosen to prepare for

the second round of offloading (④). The SLO-adaptive module (⑤) then deter-

mines and requests additional data volume for each image within the given traffic

budget adaptively. The short extra-transmitted data sequence (⑥) will be en-

coded (⑦) independently in the lightweight inference module, and we combine the

output of the encoder and the embeddings of the first inferences to send to an

attention-based decoder and obtain the final results. We present the details in the

following.

71

CHAPTER 5. EFFICIENT TRANSFORMER INFERENCE USING MASKED
AUTOENCODERS

(a) The relationship between confidence scores and accuracy

(b) High-attention regions in the image are focused
on the target object

Figure 5.6: Some crucial characteristics in the feedback process.

5.3.2 Two-round Offloading with Image Selection

The MAE model can help to recover the sampled data transmitted by the

device in order to increase accuracy. It is critical to decide the sample ratios on

the device side for each image since the ratio determines the communication costs

and the recovery effect. However, weak edge devices have no sufficient hardware

resources to run complex algorithms for content recognition to make decisions, and

a one-time transmission with a content-random sample operation is not enough to

obtain the desired accuracy. We choose to present a two-round offloading scheme.

The scheme transmits a low ratio of data for all images first. If these patches are

sufficient for recovery and inference, the server returns results and completes the

inference service. Otherwise, a second round of offloading is needed. However, it

is not a trivial issue to decide whether the second offloading is needed since we

cannot know if the image is correctly recognized.

The image selection module is proposed to determine whether the second of-

floading is needed by exploring the potential of confidence scores. To study the

correlation between confidence score and precision, we use the same settings in-

72

5.3. SYSTEM DESIGN

troduced in the previous section. We divide all image samples into ten groups

based on their inference confidence scores. The accuracy of the samples at each

interval is recorded as in Fig. 5.6a. We find that the confidence score correlates

highly with accuracy. A similar observation is also made in [88]. Consequently,

we can design a threshold-based strategy to focus on the additional data-required

images based on the confidence score. The threshold is previously determined by

the expected level of precision since it has a direct relationship with accuracy. If

the confidence score exceeds the threshold, we finish the inference by generating

the result and sending it back to the device; otherwise, the server will demand a

second transfer to run the inference process with supplemented data to improve

accuracy.

The selection module also selects the contents of the image for the second

transmission. Instead of random content chosen, we find that the attention results

of the initial inference are related to the image’s content. An example is shown in

Fig. 5.6b. After inferring the reconstructed image with a 0.8 mask ratio, we choose

the 30/20/10 tokens that have the highest attention values on the classification

token. Note that there are multiple attention heads in the ViT; we average the

attention values of all heads in the last attention layer as the final value. We

can see that these tokens are most focused on the target object, which is in the

red square. Because of this, we can send the high-attention tokens during the

second transmission to improve accuracy. Note that two-round offloading is usually

enough to obtain good performance with the given communication budget. If we

increase the rounds without limitation, the performance may even decrease since

it will be complex to decide the bandwidth budget allocation among rounds, and

the increased inference operation will bring an extra computation burden to the

server.

73

CHAPTER 5. EFFICIENT TRANSFORMER INFERENCE USING MASKED
AUTOENCODERS

Figure 5.7: Different images demand various r2 for the second transmission.

5.3.3 SLO-adaptive Module

Different images require different numbers of patches for correct inference.

Assume r1 and r2 are the transmission ratios compared to the original image size

for the two offloading rounds mentioned above. We set all images to have the

same r1 since we were unaware of their contents at first. However, r2 should be

varied since all images have their own unique content. Fig. 5.7 shows an example

where two reconstructed images have the same r2 as 0.1. The upper image has a

simple background, and the re-transmitted content can catch the central part of

the target bird, whereas the other image with a complex background requires a

larger r2 of 0.5 to cover the target. In fact, the traffic budget can be limited and

constant, so we need to require different images with various amounts of data and

achieve the SLO (service level objective) by taking the given traffic budget into

account.

We propose the SLO-adaptive module to overcome the challenge by exploring

the relationship between the confidence score and the needed r2. We first obtained

the smallest r2 values for each image that could be correctly identified by running

the inference multiple times. The distributions of r2 in various confidence score

intervals are shown in Fig. 5.8 when the first-time transmission ratio r1 is set as 0.6.

We can see that a higher confidence score means a small and more concentrated

distribution of r2. This distribution is consistent among all images according to

our experiments, which can be used as a priori knowledge.

74

5.3. SYSTEM DESIGN

Figure 5.8: The distributions of r2 in each confidence score interval.

The above distribution can be represented as pi,j, which means the percentage

in the i−th raw and j−th interval. Note that
∑R

i=0 Pi,j = 1, where R is the number

of selections of r2. Since the only information we know is the confidence score of the

images, we give the images in the same confidence interval with the same r2. Then

we need to decide various r2 for each interval. With the distribution information,

we decide r2 by solving a resource allocation problem. We formulate the problem

first. Suppose the total transmission budget is B and we have a given first-time

transmission ratio r1. The N images in a batch will be naturally distributed in

various confidence intervals after the first-time inference. For the j − th interval,

the amount of samples is denoted as dj. Suppose xj is the second-time transmission

ratio (r2) for the j − th intervals. We have the following formulations:

maximize
K∑

j=0

xj∑

i=0

pi,j; (5.1)

K∑

j=0

xj · dj ≤ B − r1 ·N (5.2)

Our target is to maximize the accuracy, which means maximizing the sum

of the probabilities that the images can be correctly classified in each interval

as formulated in (5.1). K is the number of intervals. The transmission budget

constraint is given in (5.2).

75

CHAPTER 5. EFFICIENT TRANSFORMER INFERENCE USING MASKED
AUTOENCODERS

Figure 5.9: The process of the lightweight inference.

5.3.4 Lightweight Inference Module

The newly transmitted data contains important information about the image;

however, it will be time-consuming if we conduct the reconstruction process again

or implement another complete inference operation with the augmented image.

Here we propose the lightweight inference module to reduce the computational

cost at the server as shown in Fig. 5.9. First, the data sequence for the second

round of offloading is independently encoded by the encoder, and the encoder

is configured with the same attention layers as the initial inference model. The

overhead of the encoder is low due to the short input sequence. However, the

accuracy will be decreased if we only use the new, short data. Then, the lightweight

inference module combines the output of the encoder and the embeddings of the

first inference. Specifically, they go through the linear layers independently, and

the feature values corresponding to the same positions in the image will be added

together to generate a new embedding sequence. Finally, the new sequence goes

through an attention-based decoder to obtain the final classification result.

The overhead of the second-time inference is proportional to the length of

the newly transmitted data and the complexity of the additional decoder. The

former is typically shorter than 20% of the original length on average. For the

decoder, we set it with three attention layers, and each layer has the same size

as the attention layer in the encoder. The complexity of the decoder is about 1.2

GFLOPs. The prior inference model (DeiT-Samll) with the original image input

achieves 4.6 GFLOPs. This indicates that the total overhead of the lightweight

inference will not exceed 50% of the original inference.

76

5.4. EVALUATION

5.4 Evaluation

5.4.1 Experiment settings

We deploy an A-MOT server on an Ubuntu system with an Intel i7-10700 CPU

and a Nvidia Geforce RTX 3080 GPU. We use the ImageNet-1K dataset (1000

classes, each with 50 images for the validation, and around 1200 images for the

training) for inference. We apply the Large-ViT-based encoder in MAE [16] for

the image recovery and the DeiT model (a variant of ViT) [86] to infer the images.

The confidence threshold to select the images for the second round of offloading in

the image selection part is set at 0.8. With various total traffic budget conditions,

we compare our system to the following baselines in accuracy, which also don’t

require a lot of computing on the device side:

• Non reconstruction (Non-R). A natural baseline is to directly infer the

transmitted data without any reconstruction operations.

• Server-driven transmission (SDT). The DDS [67] is configured to trans-

mit a low-quality image to the server and retransmit high-quality content of

the chosen areas again for video analysis. We apply this method to transmit

low-quality images first and then offload high-quality content of the target

area in the image. We choose the best performance among various combi-

nations of r1 and r2 as the final result.

• Image Super resolution (ISR). Another possible solution is to transmit a

low-quality image to the server, and the server reconstructs a high-resolution

(HR) image with a trained model, which is also called the super-resolution

(SR) method. The HR image can be further inferred. We also follow this

principle to generate HR images with the commonly used SR model proposed

in [89].

Besides, we also compare A-MOT with some computation-required solutions

in both accuracy and communication overhead:

77

CHAPTER 5. EFFICIENT TRANSFORMER INFERENCE USING MASKED
AUTOENCODERS

• Partition-oriented inference (PO). The inference model contains multi-

ple attention layers, and each layer has the same structure. We let the device

complete the first attention layer and transmit the intermediate results to

the server in a split form like in [11].

• Data filtering on the device (DF). The image can contain lots of re-

dundant content, we let the device run a MobileNet-SSD [69] based model

locally, to select the crucial area in the image first. Only the selected region

is transmitted to the server, like in [14].

• Model-based compression (MBC). After splitting the inference model

between the edge device and the server, it also has an encoder-decoder

scheme to compress the intermediate results to reduce communication [13].

5.4.2 Results

With Computation-free Baselines

Fig. 5.10 shows the overall results when compared with these computation-free

baselines. The number on the x-axis represents the total traffic budget. Suppose

100% means to transmit all the raw images to the server, we compare the per-

formances of solutions under various given traffic budgets (different percentages).

Our solution improves the accuracy by even more than 10% at a 40% transmission

budget compared with the Non-R solution. The gap is gradually reduced when the

total transmission ratio gets larger, which is reasonable since all solutions should

have similar performance when transmitting the total images. It is worth noting

that in A-MOT, when the total budget is small (such as 40%), we allocate 10%

of the raw data volume as the budget for r2 in the second round of offloading,

and it becomes 20% for the other larger budget settings. This heuristic can bring

the best performance in our experiments, and we will discuss more details in the

latter subsection. The SDT does better than the Non-R solution and still lags

behind A-MOT since the MAE model in A-MOT can help to learn genuine visual

78

5.4. EVALUATION

Figure 5.10: The overall results with
computation-free baselines.

Figure 5.11: The results with
computation-contained baselines.

semantics. The gap is also more noticeable when the total transmission budget is

low. ISR achieves only a slight advantage over Non-R. Its one-time transmission

strategy is far from content-aware offloading.

With computation-required Baselines

Consider transmitting the raw images with a communication cost of one, we

normalize all communication costs to the raw data. Fig. 5.11 shows the results

when compared with the baseline that contains computation on the device side.

For computation, PO demands about 400 MFLOPs, DF demands about 1200

MFLOPs, and MBC demands about 500 MFLOPs, while our method (A-MOT)

almost demands no computation on the device. For communication, PO has the

highest data transmission requirements, and its accuracy is also the highest. A-

MOT has a small data transmit requirement and the accuracy gaps between PO

and DF are slight. MBC has a small communication overhead. When the device

is weak, A-MOT offers significant advantages in terms of power savings while

guaranteeing accuracy.

5.4.3 The Influence of Various Strategies in A-MOT

About Image Selection and SLO-adaptive Modules

There are some key designs in A-MOT, including the image selection module

and the SLO-adaptive module. We chose some different settings in A-MOT to

79

CHAPTER 5. EFFICIENT TRANSFORMER INFERENCE USING MASKED
AUTOENCODERS

Figure 5.12: The Influence of Various
Strategies in A-MOT.

Figure 5.13: Accuracy of different
settings in the lightweight inference
modules.

evaluate the effort of the above designs.

A-MOT-O. We propose a two-round offloading scheme in A-MOT. We also

compare the accuracy when there is only a one-time transmission process, called

A-MOT-O. The images also need to be reconstructed and inferred, and the result

will be directly transmitted to the device as the final outcome.

MOT. We propose the SLO-adaptive module to set different r2 for different

images. We also compare our solution to the same r2 setting, which is our work

in the previous conference version (MOT) [90].

The results are shown in Fig. 5.12. The OFTT solution and the MOT solution

have similar accuracy when the total transmitted data is small, and the benefit of

the feedback strategy in the MOT solution will be obvious when the data amount

gets larger since it achieves content-aware transmission. Basically, the key designs

can further help the mask-reconstruct scheme in A-MOT to improve the accuracy

by about 2% when the traffic budget is limited.

About Lightweight Inference Modules

We also evaluate the lightweight inference module by comparing it with var-

ious alternative settings, such as only inferring newly offloaded data (only-new),

combining the result of the encoder and embeddings from the first inference with-

out linear layers (non-linear), and employing the decoder with only one attention

layer (one-attention). Fig. 5.13 shows the accuracy results of these settings when

80

5.4. EVALUATION

Figure 5.14: The accuracy and various r1.

Figure 5.15: Percentage of samples that can be
correctly classified in each interval.

the total traffic budget is 40%. We can see that using only new data can result in

a significant decrease in accuracy. The non-linear method lags behind our solu-

tion as well. Usually, the accuracy is proportional to the number of layers in the

decoder model; thus, the one-attention setting is insufficient to achieve the desired

accuracy.

5.4.4 The Choice of r1

With a constant transmission budget, there are multiple r1, r2 combinations

that can be chosen in A-MOT. Different r1 can lead to various inference accuracy.

Fig. 5.14 shows the distribution of accuracy among various r1 with different

transmission budgets. We can see that the accuracy has a more concentrated

distribution when the total budget is large. In A-MOT, allocating 10% or 20%

of the original data volume as r2 for the second transfer can achieve the best

accuracy. This small amount of r2 also means a more lightweight inference for

81

CHAPTER 5. EFFICIENT TRANSFORMER INFERENCE USING MASKED
AUTOENCODERS

the second round of offloaded data. As we mentioned before, even considering the

extra attention-based decoder, the total overhead of the lightweight inference will

not exceed 50% of the original inference.

5.4.5 The Choice of Threshold

In A-MOT, we set a threshold to decide if the images need a second round

of offloading according to their confidence score. The threshold setting can help

reduce transmission since we can obtain the output of the high-confidence image

directly. We show the distribution of the raw image samples in the ImageNet

data set among various confidence scores in Fig. 5.15. With a set threshold

of 0.8 in A-MOT, the upper bound percentage of only once-time transmission

samples can be about 53%. This means that many images only require once offload

and once inference, allowing the limited budget to be focused on improving the

identification accuracy of low-confidence images. The specific percentage of these

one-time samples is related to the setting of the first-time transmission ratio r1

since r1 can decide the distribution of the confidence scores. The percentage is

increased as r1 becomes larger basically. In A-MOT, we have a larger r1 when

there is more traffic budget; thus, more samples will be inferred only once, and

the resource will focus on the low-confidence image.

5.5 Related work

5.5.1 Offloading

For edge devices, their data can be trained with federated learning [91,92], and

the data inference with offloading to the server also exhibits an increasing pattern.

Li et al. [11] proposed to adaptive split DNN and model right-sizing with an on-

demand inference framework to tackle the network latency. Shi et al. [72] further

consider the privacy issue during the partition process. The energy consumption

situations and task deadline constraints are also added to the partition problem

82

5.5. RELATED WORK

[73, 93]. Jeong [94] et al. considered the incremental offloading problem and

proposed to partition a DNN into various subtasks. The prediction of energy

consumption for each DNN’s layer is proposed in [95], and then a partition scheme

is adopted. These partition-based methods have an irreparable limitation when

applied to real computation-constrained edge devices. The drawback is that the

intermediate data sizes of the first several layers are still large [96], even larger than

the raw data [80]. The device does not have enough capacity or energy budget

to compute the whole layers before the small output point. There are also some

works considered from data compression [13,96,97] with extra-trained encoder and

decoder, and the encoder is conducted by the edge device.

In our scheme, the decoder and encoder are all moved into the server for time-

saving. [65] and [66] consider accelerating the inference with the cooperation of

multiple edge devices, which is a different scene from ours.

There are some works that focus on the task of video analysis in an offloading

scheme. zhang et al. [98] proposed only uploading the frame/camera that has the

best view to capture the scene. [99] adjusts the encoding quality on each frame to

reduce the transmission latency based on the Regions of Interest (RoIs) detected

in the last offloaded frame. The DDS [67] is present to transmit a low-quality

image to the server in video analysis. The server conducts an inference model for

tasks like object detection or semantic segmentation and chooses the uncertain

area. The device transmits the high-quality content of the chosen area again to

achieve high inference accuracy. This video-focused work is inefficient to apply

to image recognition since the target and input are different. Similar input data

redundant reduction works have also been proposed [100, 101]. However, they all

demand computing power from the device.

5.5.2 Image Sparsity and Completion

In contrast to language that contains high semantics and information density,

an image usually contains heavy spatial redundancy [16]. There are some works

83

CHAPTER 5. EFFICIENT TRANSFORMER INFERENCE USING MASKED
AUTOENCODERS

trying to reduce the redundancy in the inference of images to accelerate the process

and improve accuracy. Different from the common operation in ViT that divides

an image into 14× 14 tokens, the DVT [102] claims that some images are suitable

for 4 × 4 tokens, thus reducing computation overhead. It processes the image

by sequentially activating a cascade of Transformers with increasing numbers of

tokens. DynamicVit uses a prediction module to prune the unimportant tokens in

the training to accelerate the process. Similar image sparsity ideas have also been

proposed in [103–105]. These works are orthogonal to ours since they reduce the

redundancy during the conducting process rather than at the beginning.

There are some works related to image completion or image inpainting that

target filling reasonable content with photorealistic appearance into missing re-

gions [85, 87]. These works have different targets for our reconstruction process;

they may reconstruct totally unrelated content when we have a large mask ratio.

5.6 Conclusion

In this work, we propose a two-round offloading scheme to save bandwidth

resources for weak edge devices. The MAE model is utilized to recover the sampled

images transmitted from the edge. All images transmit a small volume of data

at the first round; the confidence and attention results from the inference will

determine if the second offloading is needed and what content should be offloaded.

The SLO-adaptive module is also made to look into how the confidence score and

the amount of data sent are related to determine the transmission volume for each

image independently. Finally, the lightweight inference module is proposed to

save inference time and improve accuracy. We compare our system with different

baselines to verify its effectiveness.

84

Chapter 6

Conclusion and Future Work

In this chapter, we conclude our research contributions and discuss our further

work. Our research explores the data sparsity in both the training and inference

processes for graph learning. In federated graph training, graph data is distributed

among different owners, and information exchange among nodes is required. We

propose an efficient system that eliminates unnecessary transmission and dynam-

ically tunes the priority of flows according to the training stage and completion

time. Additionally, we introduce a homomorphic encryption (HE)-based security

protocol. In graph inference, we find that repeated loading of nodes into the GPU

significantly reduces inference speed. To address this, we propose a more efficient

system that uses adaptive sampling neighbors and reuses the loaded data. The

LSH-based two-level clustering scheme is also proposed to reorder the batches and

reuse more nodes. Lastly, we explore the sparsity of data in images and propose

an offloading system that doesn’t require computation on the edge device and only

transmits part of the image data to the server by utilizing the image sparsity. The

masked autoencoder (MAE)-based model is used to recover the masked image. To

achieve content-aware transmission, we propose a feedback-driven scheme that uti-

lizes threshold and attention values to tackle the dilemma between random mask

patterns and high accuracy requirements. All proposed systems are compared to

various baselines to verify their effectiveness.

85

CHAPTER 6. CONCLUSION AND FUTURE WORK

Our future research directions will focus on the optimization of data scheduling

mechanisms tailored for users engaging with expansive models like GPT. Due to

the computational intensity associated with large models, latency in inference can

be a notable challenge, whereas smaller models demonstrate adeptness in swiftly

processing rudimentary input data. A systematic approach to model selection

contingent on the complexity of the dataset can substantially curtail superfluous

computational expenditures.

86

References

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with graph con-

volutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[2] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and

D. Bacon, “Federated learning: Strategies for improving communication ef-

ficiency,” NIPS Workshop on Private Multi-Party Machine Learning, 2016.

[3] H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies for

federated learning in wireless networks,” IEEE Transactions on Communi-

cations, vol. 68, no. 1, pp. 317–333, 2019.

[4] Y. Zhan, P. Li, and S. Guo, “Experience-driven computational resource

allocation of federated learning by deep reinforcement learning,” 2020 IEEE

International Parallel and Distributed Processing Symposium (IPDPS), pp.

234–243, 2020.

[5] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning

on large graphs,” Advances in neural information processing systems, pp.

1024–1034, 2017.

[6] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, “Pagraph: Scaling gnn training on

large graphs via computation-aware caching,” Proceedings of the 11th ACM

Symposium on Cloud Computing, pp. 401–415, 2020.

[7] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,

“Graph convolutional neural networks for web-scale recommender systems,”

87

REFERENCES

Proceedings of the 24th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, pp. 974–983, 2018.

[8] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, “Heterogeneous graph

neural networks for malicious account detection,” Proceedings of the 27th

ACM International Conference on Information and Knowledge Management,

pp. 2077–2085, 2018.

[9] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation

offloading for mobile systems,” Mobile networks and Applications, vol. 18,

no. 1, pp. 129–140, 2013.

[10] Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep reinforcement learning based

offloading game in edge computing,” IEEE Transactions on Computers,

vol. 69, no. 6, pp. 883–893, 2020.

[11] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating

deep neural network inference via edge computing,” IEEE Transactions on

Wireless Communications, vol. 19, no. 1, pp. 447–457, 2019.

[12] Y. Xiao, L. Xiao, K. Wan, H. Yang, Y. Zhang, Y. Wu, and Y. Zhang, “Rein-

forcement learning based energy-efficient collaborative inference for mobile

edge computing,” IEEE Transactions on Communications, 2022.

[13] Y. Matsubara, D. Callegaro, S. Singh, M. Levorato, and F. Restuccia, “Bot-

tlefit: Learning compressed representations in deep neural networks for effec-

tive and efficient split computing,” arXiv preprint arXiv:2201.02693, 2022.

[14] K. Du, Q. Zhang, A. Arapin, H. Wang, Z. Xia, and J. Jiang, “Ac-

cmpeg: Optimizing video encoding for video analytics,” arXiv preprint

arXiv:2204.12534, 2022.

[15] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards remov-

ing the curse of dimensionality,” Proceedings of the thirtieth annual ACM

symposium on Theory of computing, pp. 604–613, 1998.

88

REFERENCES

[16] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoen-

coders are scalable vision learners,” Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pp. 16 000–16 009, 2022.

[17] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-

cas, “Communication-efficient learning of deep networks from decentralized

data,” Proceedings of the Artificial Intelligence and Statistics Conference

(AISTATS), pp. 1273–1282, 2017.

[18] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic

encryption schemes: Theory and implementation,” ACM Computing Surveys

(CSUR), vol. 51, no. 4, pp. 1–35, 2018.

[19] A. Z. Broder, “On the resemblance and containment of documents,” Pro-

ceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.

97TB100171), pp. 21–29, 1997.

[20] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” Proceedings

of NAACL-HLT, pp. 4171–4186, 2019.

[21] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,

“Language models are unsupervised multitask learners,” OpenAI blog, vol. 1,

no. 8, p. 9, 2019.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural

information processing systems, vol. 30, 2017.

[23] B. Fu, F. Chen, P. Li, and D. Zeng, “Tcb: Accelerating transformer

inference services with request concatenation,” Proceedings of the 51st

International Conference on Parallel Processing, 2023. [Online]. Available:

https://doi.org/10.1145/3545008.3545052

89

https://doi.org/10.1145/3545008.3545052

REFERENCES

[24] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image

is worth 16x16 words: Transformers for image recognition at scale,” arXiv

preprint arXiv:2010.11929, 2020.

[25] T. Liu, P. Li, and Y. Gu, “Glint: Decentralized federated graph learning with

traffic throttling and flow scheduling,” 2021 IEEE/ACM 29th International

Symposium on Quality of Service (IWQOS), pp. 1–10, 2021.

[26] F. Chen, P. Li, T. Miyazaki, and C. Wu, “Fedgraph: Federated graph learn-

ing with intelligent sampling,” IEEE Transactions on Parallel & Distributed

Systems, vol. 33, no. 08, pp. 1775–1786, aug 2022.

[27] Z. Li, H. Zhou, T. Zhou, H. Yu, Z. Xu, and G. Sun, “Esync: Accelerat-

ing intra-domain federated learning in heterogeneous data centers,” IEEE

Transactions on Services Computing, pp. 1–1, 2020.

[28] S.-J. Yang and Y.-R. Chen, “Design adaptive task allocation scheduler to im-

prove mapreduce performance in heterogeneous clouds,” Journal of Network

and Computer Applications, vol. 57, pp. 61–70, 2015.

[29] J.-w. Lee, G. Jang, H. Jung, J.-G. Lee, and U. Lee, “Maximizing mapreduce

job speed and reliability in the mobile cloud by optimizing task allocation,”

Pervasive and Mobile Computing, vol. 60, p. 101082, 2019.

[30] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and

S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” ACM

SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 435–446,

2013.

[31] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling with

varys,” Proceedings of the 2014 ACM conference on SIGCOMM, pp. 443–

454, 2014.

90

REFERENCES

[32] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng, “Coda:

Toward automatically identifying and scheduling coflows in the dark,” Pro-

ceedings of the 2016 ACM SIGCOMM Conference, pp. 160–173, 2016.

[33] H. Tan, S. H.-C. Jiang, Y. Li, X.-Y. Li, C. Zhang, Z. Han, and F. C. M.

Lau, “Joint online coflow routing and scheduling in data center networks,”

IEEE/ACM Transactions on Networking, vol. 27, no. 5, pp. 1771–1786, 2019.

[34] F. Chen, P. Li, D. Zeng, and S. Guo, “Edge-assisted short video sharing with

guaranteed quality-of-experience,” IEEE Transactions on Cloud Computing,

pp. 1–1, 2021.

[35] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt: Efficient

homomorphic encryption for cross-silo federated learning,” 2020 {USENIX}

Annual Technical Conference ({USENIX}{ATC} 20), pp. 493–506, 2020.

[36] T. Nishio, R. Shinkuma, and N. B. Mandayam, “Estimation of individual

device contributions for incentivizing federated learning,” arXiv preprint

arXiv:2009.09371, 2020.

[37] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang,

C. Ma et al., “Deep graph library: Towards efficient and scalable deep learn-

ing on graphs,” arXiv preprint arXiv:1909.01315, 2019.

[38] https://snap.stanford.edu/data/p2p-Gnutella08.html.

[39] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A seg-

mented gossip approach,” arXiv preprint arXiv:1908.07782, 2019.

[40] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated

learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[41] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” arXiv

preprint arXiv:1902.00146, 2019.

91

https://snap.stanford.edu/data/p2p-Gnutella08.html

REFERENCES

[42] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning

on non-iid data with reinforcement learning,” IEEE INFOCOM 2020-IEEE

Conference on Computer Communications, pp. 1698–1707, 2020.

[43] K. Lei, M. Qin, B. Bai, G. Zhang, and M. Yang, “Gcn-gan: A non-linear

temporal link prediction model for weighted dynamic networks,” IEEE IN-

FOCOM 2019-IEEE Conference on Computer Communications, pp. 388–

396, 2019.

[44] A. Li, Z. Qin, R. Liu, Y. Yang, and D. Li, “Spam review detection with

graph convolutional networks,” Proceedings of the 28th ACM International

Conference on Information and Knowledge Management, pp. 2703–2711,

2019.

[45] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convolutional

networks with variance reduction,” arXiv preprint arXiv:1710.10568, 2017.

[46] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-

gcn: An efficient algorithm for training deep and large graph convolutional

networks,” Proceedings of the 25th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pp. 257–266, 2019.

[47] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph convolu-

tional networks via importance sampling,” arXiv preprint arXiv:1801.10247,

2018.

[48] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A com-

prehensive survey on graph neural networks,” IEEE transactions on neural

networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[49] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A sur-

vey,” Expert Systems with Applications, p. 117921, 2022.

92

REFERENCES

[50] Z. Liu, Y. Wang, X. Liang, Y. Ma, Y. Feng, G. Cheng, and Z. Liu, “A

graph neural networks-based deep q-learning approach for job shop schedul-

ing problems in traffic management,” Information Sciences, 2022.

[51] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convolutional

networks with variance reduction,” International Conference on Machine

Learning, pp. 942–950, 2018.

[52] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graphsaint:

Graph sampling based inductive learning method,” International Conference

on Learning Representations, 2019.

[53] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and

J. Leskovec, “Open graph benchmark: Datasets for machine learning on

graphs,” Advances in neural information processing systems, vol. 33, pp.

22 118–22 133, 2020.

[54] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme

for partitioning irregular graphs,” SIAM Journal on scientific Computing,

vol. 20, no. 1, pp. 359–392, 1998.

[55] E. Zhu and V. Markovtsev, “Datasketch: big data looks small,” 2018, https:

//www.zenodo.org/record/290602.

[56] C. Chen, K. Li, X. Zou, and Y. Li, “Dygnn: Algorithm and architecture sup-

port of dynamic pruning for graph neural networks,” 2021 58th ACM/IEEE

Design Automation Conference (DAC), pp. 1201–1206, 2021.

[57] T. Liu, Y. Chen, D. Li, C. Wu, Y. Zhu, J. He, Y. Peng, H. Chen, H. Chen,

and C. Guo, “Bgl: Gpu-efficient gnn training by optimizing graph data i/o

and preprocessing,” arXiv preprint arXiv:2112.08541, 2021.

[58] H. Zhou, A. Srivastava, H. Zeng, R. Kannan, and V. Prasanna, “Accelerating

large scale real-time gnn inference using channel pruning,” Proceedings of the

VLDB Endowment, vol. 14, no. 9, pp. 1597–1605, 2021.

93

https://www.zenodo.org/record/290602
https://www.zenodo.org/record/290602

REFERENCES

[59] H. Zeng, M. Zhang, Y. Xia, A. Srivastava, A. Malevich, R. Kannan,

V. Prasanna, L. Jin, and R. Chen, “Decoupling the depth and scope of

graph neural networks,” Advances in Neural Information Processing Sys-

tems, vol. 34, 2021.

[60] L. A. Belady, “A study of replacement algorithms for a virtual-storage com-

puter,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[61] M. Brehob, S. Wagner, E. Torng, and R. Enbody, “Optimal replacement is

np-hard for nonstandard caches,” IEEE Transactions on computers, vol. 53,

no. 1, pp. 73–76, 2004.

[62] S. Albers, “New results on web caching with request reordering,” Proceedings

of the sixteenth annual ACM symposium on Parallelism in algorithms and

architectures, pp. 84–92, 2004.

[63] L. Hu and Q. Ni, “Iot-driven automated object detection algorithm for ur-

ban surveillance systems in smart cities,” IEEE Internet of Things Journal,

vol. 5, no. 2, pp. 747–754, 2017.

[64] J. Yi and Y. Lee, “Heimdall: mobile gpu coordination platform for aug-

mented reality applications,” Proceedings of the 26th Annual International

Conference on Mobile Computing and Networking, pp. 1–14, 2020.

[65] R. Hadidi, J. Cao, M. Woodward, M. S. Ryoo, and H. Kim, “Real-time

image recognition using collaborative iot devices,” Proceedings of the 1st on

Reproducible Quality-Efficient Systems Tournament on Co-designing Pareto-

efficient Deep Learning, p. 1, 2018.

[66] R. Hadidi, B. Asgari, J. Cao, Y. Bae, D. E. Shim, H. Kim, S.-K. Lim, M. S.

Ryoo, and H. Kim, “Lcp: A low-communication parallelization method

for fast neural network inference in image recognition,” arXiv preprint

arXiv:2003.06464, 2020.

94

REFERENCES

[67] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and

J. Jiang, “Server-driven video streaming for deep learning inference,” Pro-

ceedings of the Annual conference of the ACM Special Interest Group on

Data Communication on the applications, technologies, architectures, and

protocols for computer communication, pp. 557–570, 2020.

[68] J. S. Jeong, J. Lee, D. Kim, C. Jeon, C. Jeong, Y. Lee, and B.-G. Chun,

“Band: coordinated multi-dnn inference on heterogeneous mobile proces-

sors,” Proceedings of the 20th Annual International Conference on Mobile

Systems, Applications and Services, pp. 235–247, 2022.

[69] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural

networks for mobile vision applications,” arXiv preprint arXiv:1704.04861,

2017.

[70] R. J. Wang, X. Li, and C. X. Ling, “Pelee: A real-time object detection sys-

tem on mobile devices,” Advances in neural information processing systems,

vol. 31, 2018.

[71] VMW Research Group, “The gflops of the various machines,” https://web.

eece.maine.edu/~vweaver/group/green_machines.html, 2022.

[72] C. Shi, L. Chen, C. Shen, L. Song, and J. Xu, “Privacy-aware edge comput-

ing based on adaptive dnn partitioning,” 2019 IEEE Global Communications

Conference (GLOBECOM), pp. 1–6, 2019.

[73] Z. Xu, L. Zhao, W. Liang, O. F. Rana, P. Zhou, Q. Xia, W. Xu, and

G. Wu, “Energy-aware inference offloading for dnn-driven applications in

mobile edge clouds,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 32, no. 4, pp. 799–814, 2020.

[74] J. Qiu, R. Wang, A. Chakrabarti, R. Guérin, and C. Lu, “Adaptive edge

offloading for image classification under rate limit,” IEEE Transactions on

95

https://web.eece.maine.edu/~vweaver/group/green_machines.html
https://web.eece.maine.edu/~vweaver/group/green_machines.html

REFERENCES

Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 11,

pp. 3886–3897, 2022.

[75] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-

based computation offloading for iot devices with energy harvesting,” IEEE

Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1930–1941, 2019.

[76] Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep reinforcement learning based

offloading game in edge computing,” IEEE Transactions on Computers,

vol. 69, no. 6, pp. 883–893, 2020.

[77] B. Fu, F. Chen, P. Li, and D. Zeng, “Tcb: Accelerating transformer inference

services with request concatenation,” in Proceedings of the 51st International

Conference on Parallel Processing, 2022, pp. 1–11.

[78] X. Zhou, W. Liang, I. Kevin, K. Wang, and L. T. Yang, “Deep correlation

mining based on hierarchical hybrid networks for heterogeneous big data

recommendations,” IEEE Transactions on Computational Social Systems,

vol. 8, no. 1, pp. 171–178, 2020.

[79] F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service placement

problem in fog and edge computing,” ACM Computing Surveys (CSUR),

vol. 53, no. 3, pp. 1–35, 2020.

[80] W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng, “Improving device-

edge cooperative inference of deep learning via 2-step pruning,” IEEE IN-

FOCOM 2019-IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), pp. 1–6, 2019.

[81] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu,

“Coca: Contrastive captioners are image-text foundation models,” arXiv

preprint arXiv:2205.01917, 2022.

[82] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S.

Morcos, H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith et al., “Model

96

REFERENCES

soups: averaging weights of multiple fine-tuned models improves accuracy

without increasing inference time,” International Conference on Machine

Learning, pp. 23 965–23 998, 2022.

[83] X. Chen, X. Wang, S. Changpinyo, A. Piergiovanni, P. Padlewski, D. Salz,

S. Goodman, A. Grycner, B. Mustafa, L. Beyer et al., “Pali: A jointly-scaled

multilingual language-image model,” arXiv preprint arXiv:2209.06794, 2022.

[84] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu, “Vision gnn: An image is

worth graph of nodes,” arXiv preprint arXiv:2206.00272, 2022.

[85] Q. Dong, C. Cao, and Y. Fu, “Incremental transformer structure enhanced

image inpainting with masking positional encoding,” Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.

11 358–11 368, 2022.

[86] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Je-

gou, “Training data-efficient image transformers & distillation through

attention,” International Conference on Machine Learning, vol. 139, pp.

10 347–10 357, July 2021.

[87] C. Zheng, T.-J. Cham, J. Cai, and D. Phung, “Bridging global context inter-

actions for high-fidelity image completion,” Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 11 512–11 522,

2022.

[88] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern

neural networks,” International conference on machine learning, pp. 1321–

1330, 2017.

[89] X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-esrgan: Training real-

world blind super-resolution with pure synthetic data,” in Proceedings of

the IEEE/CVF International Conference on Computer Vision, 2021, pp.

1905–1914.

97

REFERENCES

[90] T. Liu, P. Li, Y. Gu, and P. Liu, “Efficient transformer inference for ex-

tremely weak edge devices using masked autoencoders,” in 2023 IEEE In-

ternational Conference on Communications (ICC), 2023.

[91] X. Zhou, W. Liang, I. Kevin, K. Wang, Z. Yan, L. T. Yang, W. Wei, J. Ma,

and Q. Jin, “Decentralized p2p federated learning for privacy-preserving and

resilient mobile robotic systems,” IEEE Wireless Communications, vol. 30,

no. 2, pp. 82–89, 2023.

[92] X. Zhou, X. Ye, I. Kevin, K. Wang, W. Liang, N. K. C. Nair, S. Shimizu,

Z. Yan, and Q. Jin, “Hierarchical federated learning with social context

clustering-based participant selection for internet of medical things applica-

tions,” IEEE Transactions on Computational Social Systems, 2023.

[93] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min, “Energy-efficient

offloading for dnn-based smart iot systems in cloud-edge environments,”

IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 3, pp.

683–697, 2021.

[94] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremen-

tal offloading of neural network computations from mobile devices to edge

servers,” Proceedings of the ACM Symposium on Cloud Computing, pp. 401–

411, 2018.

[95] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang,

“Neurosurgeon: Collaborative intelligence between the cloud and mobile

edge,” ACM SIGARCH Computer Architecture News, vol. 45, no. 1, pp.

615–629, 2017.

[96] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher, “Deep

compressive offloading: Speeding up neural network inference by trading

edge computation for network latency,” Proceedings of the 18th Conference

on Embedded Networked Sensor Systems, pp. 476–488, 2020.

98

REFERENCES

[97] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool,

“Conditional probability models for deep image compression,” Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pp.

4394–4402, 2018.

[98] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee, “The

design and implementation of a wireless video surveillance system,” Pro-

ceedings of the 21st Annual International Conference on Mobile Computing

and Networking, pp. 426–438, 2015.

[99] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection

for mobile augmented reality,” The 25th annual international conference on

mobile computing and networking, pp. 1–16, 2019.

[100] K. Huang and W. Gao, “Real-time neural network inference on extremely

weak devices: agile offloading with explainable ai,” Proceedings of the 28th

Annual International Conference on Mobile Computing And Networking, pp.

200–213, 2022.

[101] S. Jiang and L. Zhang, “Quality-aided annotation service selection in mlaas

market,” 2022 IEEE/ACM 30th International Symposium on Quality of

Service (IWQoS), pp. 1–11, 2022.

[102] Y. Wang, R. Huang, S. Song, Z. Huang, and G. Huang, “Not all images are

worth 16x16 words: Dynamic transformers for efficient image recognition,”

Advances in Neural Information Processing Systems, vol. 34, pp. 11 960–

11 973, 2021.

[103] L. Wang, X. Dong, Y. Wang, X. Ying, Z. Lin, W. An, and Y. Guo, “Explor-

ing sparsity in image super-resolution for efficient inference,” Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition, pp.

4917–4926, 2021.

99

REFERENCES

[104] L. Yang, Y. Han, X. Chen, S. Song, J. Dai, and G. Huang, “Resolution

adaptive networks for efficient inference,” Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 2369–2378, 2020.

[105] M. Najibi, B. Singh, and L. S. Davis, “Autofocus: Efficient multi-scale infer-

ence,” Proceedings of the IEEE/CVF international conference on computer

vision, pp. 9745–9755, 2019.

100

	Chapter Introduction
	Chapter Background
	Federated Learning
	Graph Convolutional Network
	Homomorphic encryption
	Local Sensitive Hash (LSH)
	Transformer and ViT
	Masked Autoencoders (MAE)

	Chapter Federated Graph Learning with Traffic Throttling and Flow Scheduling
	Introduction
	Communication Bottleneck in FGL
	System Design
	Overview
	Secure embedding sharing
	Pre-aggregate
	Batching
	Multiple HE Servers

	Traffic Throttling
	Contribution Evaluation
	Neighbor Selection

	Flow Scheduling
	Formulation
	Insights
	Joint Optimization

	Experiments and Evaluation
	Experimental Settings
	Results
	Accuracy Results
	Overall time cost
	The Effectiveness of the Joint Optimization

	The Influence of System Parameters

	Discussions
	Related work
	Federated Learning
	Graph Convolutional Networks

	Conclusion

	Chapter Graph Inference with Adaptive Sampling and Local Sensitive Hash
	Introduction
	Motivation
	LSH-based Graph Workload Clustering
	Observations
	LSH-based Hierarchical Clustering
	Parameters of LSH

	Adaptive Sampling
	Observation
	Adaptive Sampling

	Evaluation
	Experiment Settings
	Overall Results
	The Effectiveness of Two strategies
	Variants of the CAD Baseline
	Size of the cache in CAD
	Variants of CAD

	Design details of RAIN
	About re-index with degrees in adaptive sampling
	About sampled neighbors in adaptive sampling
	About sample index in LSH
	About cluster graph in LSH

	Related Work
	Various GNNs
	Caching Strategies

	Conclusion

	Chapter Efficient Transformer Inference using Masked Autoencoders
	Introduction
	Motivation
	Limited Resources of Edge Devices
	Possibility of MAE-based Bandwidth-saving
	Different Images Require Various Mask Ratios.

	System Design
	Overview
	Two-round Offloading with Image Selection
	SLO-adaptive Module
	Lightweight Inference Module

	Evaluation
	Experiment settings
	Results
	With Computation-free Baselines
	With computation-required Baselines

	The Influence of Various Strategies in A-MOT
	About Image Selection and SLO-adaptive Modules
	About Lightweight Inference Modules

	The Choice of r1
	The Choice of Threshold

	Related work
	Offloading
	Image Sparsity and Completion

	Conclusion

	Chapter Conclusion and Future Work

