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Abstract

In the modern world, a huge amount of data comes from various sources, such as so-
cial media, financial systems, and scientific experiments. Data mining is introduced as
a field that utilizes statistical and computational techniques to find patterns and relation-
ships in these data. Research areas within data mining include classification, clustering,
association rule mining, time series analysis, and big data analytics. These research
areas in data mining are not exhaustive, but finding periodic patterns in large spatiotem-
poral databases (S7'Ds) is one of the most significant areas in data mining. Discovering
periodic patterns in ST Ds is important because it allows us to identify regularities and
recurring trends in complex systems over time and space. Many researchers are dedicat-
ing their efforts to developing more effective methods for identifying periodic patterns
in ST Ds. In this thesis, we have made an effort to propose novel and fast techniques
to discover interesting patterns in large S7T'Ds. The initial two chapters of the thesis
focused solely on the temporal component of the database while neglecting the spa-
tial aspect. However, in the final chapter of the thesis, both the spatial and temporal
components were taken into account for analysis and interpretation.

Frequent pattern mining is a data mining technique that aims to discover patterns
that frequently occur together in a set of transactions based on a user-specified min-
imum support (minSup) constraint. The minSup determines the minimum number
of transactions that a pattern must cover in the database. Frequent pattern mining has
many applications, but its adoption and effectiveness are hindered by two primary chal-
lenges. The first challenge is that frequent pattern mining algorithms often generate a
large number of patterns, many of which may not be useful or relevant to the user’s
needs or application requirements. The second challenge is that most frequent pattern
mining algorithms do not consider the temporal behavior of patterns or the timestamp
(ts) associated with transactions in the database. To address these challenges in real-
world applications, researchers have generalized the frequent pattern model to enable
the discovery of periodic patterns in S7'Ds. This thesis proposes a generalized ap-
proaches that aims to identify interesting patterns in an spatiotemporal database (S7"D)
that meet the specific criteria set by the user in terms of minSup and maximum period-
icity (maz Per). The max Per constraint enables the regulation of the longest duration
for which a pattern has to repeat in the data. Several novel and efficient algorithms
were proposed to extract all interesting patterns from a S7T'D at regular intervals. In
addition, we have also explored the spatial information of the patterns to discover in-
teresting patterns in a S7'D that meet the specific criteria set by the user in terms of
minSup, maz Per, and maximum distance (maxDist). The maxz Dist controls how
far apart the items in a pattern can be. Through our exploration, we have discovered
that patterns where items are adjacent are more appealing to users than those where the
items are not adjacent to each other. This indicates that adjacency or proximity is an
important factor when considering the relevance and usefulness of patterns in S7T'Ds.



We have introduced a novel approach to extracting interesting patterns from ST Ds,
which incorporates the spatial relationship between items.

In this thesis, we propose three approaches for discovering periodic patterns in
ST Ds. The first two approaches are focused on identifying periodic (both full periodic
and partial periodic) patterns in S7T'Ds, while the third approach takes into account the
spatial information of the patterns and discovers G PF'P's.

We have seen that row and columnar databases are two different types of database
architectures for storing and organizing data. Both architectures have their own merits
and demerits. As a result, there is no universally accepted best database architecture
for any application. In this thesis, we have only used columnar database architecture,
as it is well suited for massive databases. Firstly, we have developed a novel Periodic
Frequent-Equivalence CLass Transformation (PF-ECLAT), which is an ECLAT-like al-
gorithm to discover PF'Ps in ST Ds. By utilizing depth-first search and applying the
downward closure property of PF Ps, the PF-ECLAT algorithm can efficiently reduce
the extensive search space. Secondly, we claim that PF-ECLAT generates the full-
periodic patterns (or PF' Ps), whereas in the real world there is a huge importance to
the 3 Ps though they occur only during specific times. Therefore, we introduce a novel
approach of 3Ps and propose an algorithm named 3P-ECLAT to discover 3Ps in ST'Ds.
Thirdly, we claim that earlier approaches overlooked the spatial (or geo-referenced) in-
formation of the patterns, and this information is also highly important. Therefore, we
have considered the geo-referenced information of the patterns and introduced an al-
gorithm named Geo-referenced Periodic-Frequent Pattern-Miner (GPFP-Miner) to dis-
cover GPF Ps in ST D:s.

The efficiency of the proposed algorithms is shown by conducting extensive experi-
ments on both synthetic and real-world databases. Finally, we demonstrate the practical
applications of the proposed approaches through several case studies on Traffic Con-
gestion analytics (TC analytics) and Air Pollution analytics (AP analytics). These case
studies showcase the real-world applications of the proposed approaches, demonstrat-
ing how they can be used to analyze traffic congestion and air pollution data to provide
insights into patterns, trends, and potential solutions.

Overall, it has been demonstrated that the proposed algorithms extract interesting
patterns in large S7'Ds more efficiently.

XV



Chapter 1

Introduction

Technological advancements in computer science and information technologies have
empowered real-world applications to produce massive data. This data is tradition-
ally stored and processed in databases. Depending on the data storage format, these
databases were broadly classified into row or columnar databases [1,2]. The row
databases are designed to store data in rows, with each row representing a single record.
These databases are very good at handling small to medium-sized databases, making
them ideal for applications with limited records. Furthermore, these databases prioritize
ACID! properties, ensuring data reliability and consistency. Examples of row databases
include MySQL [3] and Postgres [4]. On the other hand, columnar databases are de-
signed to store data in columns instead of rows. This database architecture is well-suited
for applications that process large amounts of data quickly, such as data warehousing
and analytics. These databases are also very good at handling large databases, making
them ideal for applications with a high volume of records. Furthermore, these databases
rely on BASE? properties, prioritizing the availability and scalability of data. Exam-
ples of columnar databases include Snowflake [5] and BigQuery [6]. Since row and
columnar databases offer unique advantages and disadvantages, selecting an appropri-
ate database depends on user and/or application requirements. In general, row databases
are better suited for Online Transaction Processing (OLTP) applications, while colum-
nar databases are better suited for Online Analytical Processing (OLAP) applications.
Since data mining is a part of OLAP, a supportive move has been made in this research
to find interesting patterns hidden in a columnar database.

Useful information that can empower the users with competitive information to
achieve socio-economic development lies hidden in these data. When confronted with
this problem, researchers introduced the field of data mining to discover knowledge
from big data. Data mining primarily consists of the following four techniques:(¢)
clustering [7] is a fundamental concept in unsupervised learning, where patterns and
structures are automatically identified in data without the need for predefined labels or
target outcomes, (i7) outlier detection [8] involve grouping similar data and identifying
anomalies that do not belong to any of the groups, (z¢%) classification [9] is a funda-
mental concept in supervised learning, where labeled data is used to train models that
can accurately classify new, unseen instances, and (¢v) pattern mining [10, 11] discovers
relationships or associations between different items in a database. This thesis, focuses
on addressing the issues encountered by pattern mining techniques.

TACID stands for Atomicity, Consistency, Isolation, and Duration
ZBASE stands for Basically Available, Soft state, and Eventually consistent



Table 1.1: Chetan’s supermarket row database

tid | Items purchased
100 | bread, milk

101 | books, pen

102 | bat, ball

103 | bread, butter
104 | bread, milk

Table 1.2: Chetan’s supermarket binary columnar database

Items
tid | bread | milk | books | pen | bat | ball | butter
100 1 1 0 0 0 0 0
101 0 0 1 1 0 0 0
102 0 0 0 0 1 1 0
103 1 0 0 0 0 0 1
104 1 1 0 0 0 0 0

A transactional database represents an unordered set of transactions. A transaction is
an unordered set of items or objects. Agrawal et al. [12] introduced the frequent pattern
model to discover regularities in a database. This model involves finding all patterns
(or itemsets) in a database that satisfy the user-specified minimum support (minSup)
threshold. The minSup regulates the threshold for the minimum occurrence of a pat-
tern within a database, specifically in terms of the number of transactions it must be
present in. A popular example of frequent pattern mining is customer purchase history
analytics. It involves determining how frequently the customers have purchased items
in an e-commerce store.

Example 1. Ler Chetan be a supermarket selling bread, milks, books, pen, bat, ball,
and butter. The purchase history of anonymous customers in row database format is
shown in Table 1.1. The first transaction in this table informs that five anonymous
customers whose identifier is equivalent to one have purchased the items bread and
malk simultaneously. Similar statements can be drawn for the remaining transactions
in this Table 1.1. Without loss of generality, this row database can be represented as a
binary columnar database, as shown in Table 1.2. It can be observed that the purchases
of items ‘bread and milk’ by the first customer were indicated with the value ‘1’ while
other unpurchased items were indicated with the value ‘0’. For brevity, we call our
binary columnar databases a columnar database. A frequent pattern generated from
these databases is:

{bread, milk} {support =2} (L.

The above pattern informs that most of the customers who buy bread have also
purchased milk. Therefore, both bread and milk are frequently co-occurring items. By
identifying these patterns, supermarket managers can make informed decisions about
product placement, marketing strategies, and inventory management.

Several algorithms [13] were described in the literature to find interesting patterns
in transactional databases [14, 15], sequence databases [16], uncertain databases [17],

2



1.1. DISCOVERING INTERESTING PATTERNS FROM TEMPORAL DATABASES

Table 1.3: Chetan’s supermarket temporal database

Timestamp | Items purchased
9AM bread, milk, jam
1PM books, pen
4PM bat, ball
7PM Jjam, butter
8PM bread, milk

Table 1.4: Chetan’s columnar temporal database

items
Timestamp | bread | milk | books | pen | bat | ball | butter
9AM 1 1 0 0 0 0 0
1PM 0 0 1 1 0 0 0
4PM 0 0 0 0 1 1 0
7PM 1 0 0 0 0 0 1
8PM 1 1 0 0 0 0 0

graphs [18], and streams [19]. However, the widespread adoption of frequent pattern
mining models has been hindered by its inability to discover temporal regularities that
may exist in temporal databases. When confronted with this problem in real-world
applications, researchers tried to discover frequent patterns that have exhibited perfect
(or full) periodic behavior in a temporal database [20-22].

1.1 Discovering interesting patterns from temporal databases

Periodic-Frequent Pattern Mining (PFPM) [20, 23] is a variant of the frequent pat-
tern mining model that focuses on identifying patterns that occur periodically in given
temporal (or time series) data. The mining process involves analyzing temporal data
to identify interesting patterns that occur periodically and frequently, named as PF Ps.
This can be achieved by defining a minSup and max Per thresholds. The max Per de-
termines the maximum time interval within which a pattern must repeat in the database.
A classical application of PFPM is Market Basket analytics (MB analytics). It involves
identifying frequent patterns that occur periodically in a TDB.

Example 2. Continuing with the previous Example 1, we have already mentioned that
bread and milk were frequently purchased items. However, looking at Table 1.3, we can
get more extra information, i.e., both bread and milk were purchased during the early
morning and late evening hours. Therefore, we can say that these items were PF Ps. By
identifying this PF Ps, retailers can make informed decisions about product placement,
marketing strategies, and inventory management.

In this thesis, Table 1.3 represents the Row Temporal database (RTDB) format, and
the same database can be represented as Columnar Temporal databases (CTDBs) as
shown in Table 1.4. We may generalize the content of the Table 1.3 to Table 1.5, i.e.,
each item is generalized with a specific symbol such as bread as item a and milk as
item b and so on. The following section discusses the formal model of PFPM.
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1.1.1 Periodic-Frequent Pattern Model

Definition 1. (Discovering set of timestamps of X.) In Temporal databases (or time
series databases) (TDBs), we are not worrying about the transaction identifier (ID),
and instead, we must consider the temporal occurrence information of the patterns as
timestamps denoted as ts. All the transactions were reconsidered as follows: each tuple
tx = (ts, Y) represents the occurrence of pattern Y at timestamp ts, where ts € R+
signifies the timestamp associated with the pattern Y. A TDB over I constitutes a col-
lection of transactions, denoted as TDB = {t1,- - - , t,,}, withm = | TDB| representing
the total number of transactions within TDB. Let’s consider the scenario where ty =
(ts, Y), and X C Y. In such cases, we state that X occurs within t;, (or t;, contains
X)), and we represent this relationship as ts;.. The entire set of ordered timestamps in
which X occurs within the TDB is denoted as TS™ = {ts,---  ts) }, where j < k.

Example 3. Consider a given set of items I = {a, b, ¢, d, e, f}. Let us suppose that we
have a hypothetical row temporal database (RTDB) derived from I, which is illustrated
in Table 1.5. To enhance our analysis, we can transform this RTDB into a columnar
temporal database schema (CTDBs), as presented in Table 1.6. Within this database,
the combination of items ‘b’ and ‘c’ forms a pattern, which we shall refer to as‘ bc’
for brevity. Given that this pattern consists of two items, it is classified as a 2-pattern.
Notably, the ‘bc’ pattern appears in transactions associated with ts 1, 3, 4, 6, 9, and
10. Consequently, we obtain a list of timestamps (ts) that contain the ‘bc’ pattern,
denoted as TS* = {1, 3, 4, 6, 9, 10}.

Definition 2. (The support of X [12].) The support of a given pattern X in the TDB
represents the number of transactions within the database that contain X. It is denoted
as sup(X), where sup(X) = |T'S¥|. Here, TS™ refers to the set of timestamps in
which the pattern X occurs.

Example 4. The support of ‘bc’, i.e., sup(bc) = |T'S™| = |{1, 3, 4, 6, 9, 10}| = 6.

Definition 3. (Frequent pattern X [12].) A pattern X is classified as a frequent pat-
tern if its support, denoted as sup(X) > the user-defined minimum support threshold
(minSup).

Example 5. Given a user-specified minSup of 5, the pattern ‘bc’ is deemed a frequent
pattern since its support, sup(bc), satisfies the condition sup(bc) > minSup.

Definition 4. (Periodicity of X [20].) Let’s consider two consecutive timestamps in
the set TSX: tsX and ts), where j < q < r < k. The time difference, also known

as the inter-arrival time, between ts> and tsf is defined as the period of pattern X.
We denote this period as pX, which can be calculated as pX = ts* — tsf . Now, let

PX ={pf, pf, -+, pX}, wherer > 1, represent the set of all periods for pattern X.
The periodicity of X, denoted as per(X), is defined as the maximum value among the
periods in PX. In other words, per(X) = max(pyX, py,---, pX).

Example 6. For the pattern ‘bc’, the periods are calculated as follows: pi¢ =1 (= 1 —
tSinitiat), Py =2 (= 3—1), py" = 1 (= 4-3), plf = 2 (= 6-4), pi* =3 (= 9-6), p’ =
1 (= 10-9), and p* = 0 (= t5 pina—10). Here, tSinii = O represents the timestamp of
the initial transaction, and ts ;e = | TDB| = 10 represents the timestamp of the final
transaction in the TDB. To determine the periodicity of ‘bc’, denoted as per(bc), we
find the maximum value among the periods: per(bc) = maz(1, 2, 1, 2, 3, 1, 0) = 3.
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1.1. DISCOVERING INTERESTING PATTERNS FROM TEMPORAL DATABASES

Definition 5. (Periodic-frequent pattern X [20].) A frequent pattern X is classified as
a periodic-frequent pattern if its periodicity, denoted as per(X), is less than or equal
to the user-defined maximum periodicity threshold (max Per).

Example 7. If the user-defined max Per is set to 3, then the frequent pattern ‘bc’ is
considered a periodic-frequent pattern (Periodic-Frequent Pattern (PF P)) because its
periodicity per(bc) satisfies the condition per(bc) < maxPer. Similarly, the patterns
‘bca’ and ‘ba’ are also classified as PF Ps because TS"* = {1, 3, 4, 6, 9}, TS =
{1, 3, 4, 6, 9, 10}, sup(bca) = 5, sup(ba) = 6, per(bca) = 3, and per(ba) = 3. The
complete set of PF Ps discovered from Table 3.3 is presented in Figure 2.3(f), without
the “sample” text being crossed out (i.e., strikethrough).

Table 1.5: Row database Table 1.6: Columnar database

ts | items ts | items items items

T [ abcf ¢ T abed ts|la|lblc|d|elf ts la|blc|d|elf

> T hd T ab 1{1|1]1]0]0]1 6 [1(1]1[1]0]0

3 T abed S T od 210(1]0]1(0]0 71111]0]0[0]0

T abce 9 T abed 311(1(1(1]07]0 8 10|]0|1]1]|]0]|O

5 cef 10 [ bef 4 11(1]1|10]1]0 9 |1|1]1]1]0]0
510(0(1]0|1]1 10j]O0|1|1]0]0]|1

Numerous algorithms were described in the literature using the above model to dis-
cover PF Ps in Row Temporal databases (RTDBs). Some of them are as follows: Tan-
beer et al. [20] proposed a periodic frequent pattern growth algorithm for discovering
PF Psin Transactional databases (TDs). Uday et al. [24] introduced the PFP-growth++
algorithm, which efficiently mined P F'Ps using the PF-tree++ structure, leveraging the
concept of local periodicity in large TDBs. Despite the existence of numerous algo-
rithms in the literature [20, 23, 24] for addressing the issue of mining PF'Ps, all of
them have employed the conventional RTDB format. This means multiple database
scans are required, or the computation of PF'Ps cannot be performed asynchronously.
Consequently, the algorithms for detecting PF' Ps become inefficient regarding both
time and memory usage. The significance of mining data from a CTDBs format cannot
be overlooked, given that large-scale real-world data is often stored in this format.

With this motivation, in this thesis we propose multiple efficient algorithms for iden-
tifying interesting patterns in CTDBs.

1.1.2 Contributions

In this thesis, we are discovering interesting patterns in spatiotemporal databases(S7'Ds).
TheST' D can be understood as a collection of Location Database (or geo-referenced
database) (LD) considers spatial component and TDB considers the ¢s component.
These two data types are integrated into a single database to allow for analysis and
querying based on location and time.S7 Ds find applications across various domains,
including transportation planning, environmental monitoring, and emergency response.
Examples of ST Ds include Oracle Spatial and Graph [25], PostGIS [26], and GeoServer
[27]. Many researchers are dedicating their efforts to developing more effective meth-
ods for identifying periodic patterns in ST Ds. In this thesis, we have made an effort
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to propose novel models and fast techniques to discover interesting patterns in large
ST Ds. The initial two chapters of the thesis focused solely on the temporal component
of the database while neglecting the spatial aspect. However, in the final chapter of the
thesis, both the spatial and temporal components were considered for analysis and in-
terpretation. In this thesis, even though we have used binary spatiotemporal databases,
we call them spatiotemporal databases for brevity. The summary of the proposed ap-
proaches is as follows.

Discovering periodic-frequent patterns in columnar temporal databases

The technique of identifying PF Ps can be utilized in RTDBs and CTDBs. How-
ever, current algorithms [20, 23, 28] in the literature only address RTDBs, making it
challenging to apply the same approach to CTDBs. This study introduces a new algo-
rithm, PF-ECLAT [29, 30], which is specifically designed to identify PF Psin CTDBs.
The PF-ECLAT is the first algorithm of its kind and can be used for CTDBs. The algo-
rithm has been tested on synthetic and real-world databases, and the results demonstrate
its efficiency in terms of memory and runtime, as well as its scalability. Additionally,
two case studies are presented to illustrate the algorithm’s usefulness. In the first case
study, the PF-ECLAT algorithm was used to identify regions in Japan (or sensor iden-
tities) where air pollution was regularly present. The second case study employed the
algorithm to find regularly congested road segments in a transportation network.

Discovering partial periodic patterns in columnar temporal databases

The distinction between full periodic patterns and 3Ps is highlighted, with the for-
mer strictly adhering to cyclic behavior and disregarding uninteresting patterns based
on a user-specific max Per constraint. At the same time, the latter occurs regularly
but only at specific times, such as on weekends or at a specific time of day. A new
algorithm called 3P-ECLAT [31] has been proposed in this thesis to identify 3Ps in
CTDBs, which is a unique approach. The state-of-the-art algorihtms cannot be directly
applied to CTDBs. Extensive experiments on synthetic and real-world databases show
that the 3P-ECLAT is efficient in terms of memory usage and runtime and is also scal-
able. Finally, we present a case study that showcases the usefulness of the 3P-ECLAT
in analyzing air pollution data. This case study shows that the 3P-ECLAT can be used
to identify patterns in air pollution data that occur regularly but only during specific
time periods.

Discovering geo-referenced periodic frequent patterns in geo-referenced time se-
ries databases

The fundamental PF' P model takes into account the time-related information of
a pattern but ignores any spatial information associated with the pattern in a database.
Thus, the model implicitly assumes that any geographical information, if present, would
not affect the pattern’s significance in a database. However, in reality, spatial informa-
tion plays a crucial role in determining a pattern’s interestingness, and users tend to
find a pattern more appealing if the patterns are adjacent to each other. This thesis pro-
poses a more flexible model, G PF' Ps, which can exist in a Geo-referenced Time Series
Database (GT'SD). A Geo-referenced Periodic-Frequent Pattern (GPF'P) is a set of
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frequently occurring neighboring items that appear regularly in the database. We in-
troduce an efficient algorithm, GPFP-Miner [32], to discover all GPF Ps ina GTSD.
The algorithm uses a smart DFS approach to uncover the required patterns efficiently.
The experimental results support the effectiveness of the proposed algorithm. Addition-
ally, we present two case studies demonstrating how our approach was used to extract
valuable information from databases related to air pollution and traffic congestion.

1.2 Related work

The focus of this section is on two related areas of research: the extraction of
PFPs and 3Ps. Next, we briefly discuss the efforts being made to discover spatial
co-occurrence patterns.

1.2.1 Literature review on periodic-frequent pattern mining

Frequent pattern mining is a vital big data analytical technique with applications in
various domains, including marketing, healthcare, and traffic congestion. It involves
identifying all frequently occurring patterns in a given transactional database. Sev-
eral algorithms, Apriori [12], FP-growth [14], and Eclat [15], have been developed for
finding frequent patterns in a database. These algorithms differ in their approach to
identifying frequent patterns and have varying levels of efficiency and scalability [13].
However, frequent pattern mining may not always be suitable for detecting consistent
patterns over time. This is because the technique focuses on identifying patterns that
occur frequently and does not consider temporal variations in pattern occurrence. To
address this limitation, other techniques, such as periodic-frequent pattern mining, have
been proposed [20].

Tanbeer et al. [20] developed a periodic frequent pattern growth algorithm to dis-
cover PF'Ps in TDs and introduced a tree-based data structure called PF-tree to store
patterns. PF-tree has a tail-node to maintain a list of transaction identifiers for the
pattern, which is moved to its parent when pruning. They used a max Per and support-
based measure to generate full-cyclic PF'Ps and claimed their mining process is effi-
cient.

Amphawan et al. [21] developed the Mining Top-K PF Ps (MTKPP) algorithm,
which is a non-support metric-based method. The algorithm first identifies all PF Ps
and maintains them in a Top-K list structure. This list structure maintains the top-K
PFPs and is sorted based on the frequency of the patterns. MTKPP uses a sliding
window technique to identify PF' Ps. It slides a window over the database and counts
the frequency of the items in the window. If the frequency of an item is above a certain
threshold, it is considered a candidate PF P. The algorithm then checks if the pattern
is periodic by comparing the frequency of the item in the current window with the
frequency of the item in the previous window. The pattern is considered periodic if
the difference is within a certain threshold. The algorithm uses a best-first strategy to
identify the Top-K PF'Ps. It starts with the most frequent patterns and gradually prunes
the patterns that are unlikely to be on the Top-K list. The algorithm stops when it has
identified K patterns or when no more patterns can be pruned.

Uday et al. [33] developed an advanced model for identifying frequent and rare
periodic patterns using a combination of multiple minSup and multiple max Per con-

7



straints. The researchers employed two limitations, minimum item support and max-
imum item periodicity, to identify significant patterns. Each pattern must satisfy dif-
ferent criteria for minSup and max Per, depending on the items included in it. Fur-
thermore, the authors introduced a pattern-growth algorithm that uses a new and effec-
tive tree-based data structure, the Multi-Constraint Periodic-Frequent tree, to detect the
complete set of frequent and rare items.

The PFP-growth++ algorithm proposed by Uday et al. [23,24] can efficiently mine
PFPs from large TDs. The PF-tree++ structure has also proved effective in storing
the patterns and optimizing the mining process. Furthermore, the concept of local peri-
odicity has significantly contributed to the algorithm, as it allows for early termination
of the mining process when no new PF'Ps can be found. This feature saves time and
resources by avoiding unnecessary computations. Finally, two pruning techniques are
applied to further reduce the search space and improve the algorithm’s efficiency. Over-
all, PFP-growth++ is an effective and scalable approach for discovering PF'Ps in TDs.

Amphawan et al. [34] discussed a novel approach for mining periodic-frequent pat-
terns from TDs. The authors introduce a data structure called Interval Transaction-
Ids List Tree (ITL-Tree), which efficiently stores and organizes interval transaction-ids
lists, enabling the discovery of periodic-frequent patterns with approximate periodicity
by identifying the intervals in which certain items frequently co-occur. The proposed
method first builds the ITL-Tree from the input database, which involves grouping the
transactions into intervals and constructing interval transaction-ids lists. The ITL-Tree
is then used to identify approximate periods of transactions and generate candidate
periodic-frequent patterns. Finally, the candidate patterns are pruned to obtain the final
set of periodic-frequent patterns.

Uday et al. [35] proposed the minimum periodic ratio measure to discover PF' Ps
from TDs, along with the concept of potential patterns consisting of a single item. They
also introduced the Extended Periodic-frequent Pattern-tree (ExPF-tree) and Extended
Periodic-frequent Pattern-growth (ExPF-growth) algorithms to mine the database, which
includes ExPF-list and a prefix tree to preserve transactional identifiers of patterns. The
ExPF-growth algorithm uses a DFS approach to construct the ExPF-tree and mine the
database for potential patterns. The algorithm works by starting with a single item as
a potential pattern and recursively expanding it by adding one item at a time, checking
the minimum periodic ratio and support threshold at each level, and pruning any unin-
teresting patterns. The algorithm stops when no more potential patterns can be found
or when all patterns have been mined.

Rashid et al. [36] describes an efficient approach for mining regularly frequent pat-
terns, which is important in various data mining applications. The described approach
utilizes the variance of interval time between pattern occurrences as a measure of tem-
poral regularity. It uses a pattern-growth approach to find regularly frequent patterns
based on user-given minSup and maximum variance thresholds.

Anirudh et al. [37] proposed a memory-efficient algorithm called Period Summary-
growth (PS-growth) for mining PF'Ps in sparse databases. The PS-growth algorithm
uses a vertical data format and a level-wise search approach similar to the Apriori al-
gorithm [12]. However, it employs a novel period summary technique to reduce search
space and memory usage. The period summary technique partitions the TD into multi-
ple periodic summaries, each representing a subset of transactions that share the same
periodicity. This reduces the number of candidate patterns generated at each level of
the search tree, leading to faster mining and lower memory usage.
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The EPF-growth algorithm proposed by Venkatesh et al. [38] is aimed at discovering
rare PF' Ps, which are patterns that occur frequently over a period of time but are rare in
the overall database. The algorithm is designed to work with non-uniform TDs, which
are databases where the length and content of transactions vary. The authors have also
introduced a new constraint measure called periodic-all-confidence, which is used to
extract interesting rare PF' Ps. This measure takes into account both the periodicity
and the rarity of a pattern and is shown to be effective in identifying patterns that are
both frequent and rare.

The algorithms discussed above are designed to work with row-based databases,
where the data is stored in rows, where each row represents a transaction, and the items
are represented as columns. However, Columnar databases (CDBs) have become in-
creasingly popular in recent years due to their superior performance in analytical work-
loads, especially for read-intensive queries. CDBs store data by column rather than by
row, which makes them more efficient for certain types of queries. As a result, these
algorithms cannot be directly applied to CDBs. In order to apply these algorithms to
CDBs, some modifications may be required to take advantage of the unique properties
of CDBs. On the other hand, we could make new algorithms that work well with CDBs.

In this thesis, we have made an effort to present a novel and efficient algorithm
named, PF-ECLAT [30] for discovering PF'Ps in CTDBs. The algorithm is an exten-
sion of the ECLAT algorithm, which is a well-known Frequent Pattern Mining (FPM)
algorithm. The main idea behind PF-ECLAT is to exploit the temporal dimension of
the data to identify patterns that occur frequently and periodically over time. To do
this, the algorithm uses a list-based approach to efficiently generate candidate patterns
and prune those that are not frequent. The algorithm also incorporates a period-based
pruning strategy to further reduce the search space.

The PF-ECLAT algorithm was first presented as a preliminary version at a confer-
ence [29]. Later, we have thoroughly extended the experimental results section of the
paper and presented these results in a journal [30]. Specifically, the extended exper-
imental results included comparisons with several existing state-of-the-art algorithms
on different databases. This suggests that we have further developed and evaluated the
PF-ECLAT algorithm and provided additional evidence of its effectiveness compared
to other approaches in the literature.

1.2.2 Literature review on partial periodic pattern mining

In the field of data mining and machine learning, time series analysis plays a crucial
role in various domains such as finance, weather forecasting, and healthcare. Periodic
pattern mining is a common problem in time series analysis and involves discovering
patterns that exhibit cyclic repetitions. This problem has been widely studied in liter-
ature [39-42]. To do this, most studies use a two-step model. The two-step approach
used to solve this problem involves partitioning the time series into distinct subsets or
period segments of a fixed length or period and then discovering all Periodic (either full-
periodic or partial periodic) patterns (PPs) that satisfy the user-defined minSup. The
first step of partitioning the time series is critical to the success of the periodic pattern
mining process. The length of the period or period segment should be chosen based on
the characteristics of the time series being analyzed. If the period is too short, it may
result in too many pattern occurrences, making it difficult to distinguish significant pat-
terns from noise. On the other hand, if the period is too long, it may result in patterns
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being missed entirely. Once the time series has been partitioned into distinct period
segments, the second step is to discover all PPs that satisfy the user-defined minSup.
The minSup is a threshold value that controls the minimum number of period segments
in which a pattern must appear. Setting the min.Sup too low may result in many false
positives, while setting it too high may result in missing important patterns.

Han et al. [39] proposed a method for discovering interesting patterns in time-related
databases, with a focus on identifying segment-wise periodic patterns (SPPs). These are
patterns that repeat in different segments of the time series data, rather than occurring
throughout the entire database. For example, a segment-wise periodic pattern (SPP)
could be a pattern that repeats every weekday in the morning but with a different pat-
tern occurring in the afternoon or evening. To identify these patterns, the proposed
method involves segmenting the time series data and then finding candidate patterns in
each segment using a modified version of the Apriori algorithm [12]. The method then
combines these candidate patterns across different segments to identify the complete set
of SPPs. Overall, this approach offers a novel way to mine in time-related databases for
interesting patterns, taking into account the segmented nature of the data.

Han et al. acknowledge that their previous work [39] on mining 3 Ps may provide
imperfect 3Ps i.e., the patterns exhibit some degree of repetition or periodicity, but
with some variations or irregularities. In other words, these patterns exhibit repeating
structures or motifs, but they may also contain variations or deviations from the ex-
pected pattern. These variations can be caused by a variety of factors, such as noise,
randomness, or incomplete data. To address this issue, they presented an extended ver-
sion [40] of their work that proposes efficient methods for mining 3Ps in Time Series
Databases (TSDs). The authors explored various properties related to partial periodicity
and proposed several algorithms that can handle both single and multiple periods. One
such property is the max-sub pattern hit set property, which enables the derivation of
frequent pattern counts from a small subset of patterns mined from the time series. To
further improve efficiency, the authors introduced a set of pruning techniques, such as
the use of upper bounds on the frequency of candidate patterns, to reduce the search
space for candidate patterns.

Yang et al. [42] proposes an algorithm for mining 3Ps in sequential data. The
algorithm extends the original InfoMiner [43] algorithm by allowing for gaps in the
patterns. The authors introduce a gap penalty parameter that controls the maximum
number of missing events allowed between two consecutive occurrences of a pattern.
This allows the algorithm to detect 3Ps with gaps between occurrences. The proposed
method uses a generalized information-gain approach to identify patterns that occur
periodically in the sequence data.

Raheed et al. [41] introduce a new algorithm called STNR for detecting periodic
patterns in time series data. The STNR algorithm is indeed based on a suffix tree and
designed to be resilient to noise, making it suitable for detecting periodic patterns in
time series data even in the presence of significant noise. The algorithm can detect sym-
bol, sequence, and segment periodicity while ignoring redundant and repeating periods.
The authors’ evaluation of the algorithm shows that it outperforms existing algorithms
in terms of accuracy and efficiency and is able to maintain high accuracy under different
levels of noise. Overall, STNR is a promising approach for detecting periodic patterns
in time series data.

Berberidis et al. [44] propose a novel algorithm for discovering multiple and 3Ps
in TSDs. The authors note that existing algorithms for periodicity mining typically as-
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sume that the data has a single global period and are not effective when the data has
multiple or partial periodicities. To address this limitation, the authors propose a two-
step algorithm based on the filter-refine paradigm that can identify multiple and 3Ps
in time series data. In this algorithm, during the filter step, the fast Fourier transform
is applied to the time series data to compute its Fourier transform, which is then used
to calculate the circular autocorrelation function. The resulting function provides a set
of candidate period lengths for each letter in the alphabet of the time series. The set
of candidate period lengths generated by this step is considered conservative because
it is designed to include only the most significant periodicities in the time series while
excluding noise or insignificant fluctuations. This conservative set of candidates is then
further analyzed in the refine step to identify any 3Ps that may exist within each candi-
date’s period length.

The above studies have a limitation in that they treat time series as a symbolic se-
quence and do not incorporate the temporal information of events within the time se-
ries. This can be a significant limitation, as the actual temporal information may contain
valuable insights that can be missed by treating the time series as a symbolic sequence.

Ozden et al. [45] introduced a method to discover cyclic association rules by en-
hancing a TD with a time attribute and fragmenting the database into non-overlapping
subsets based on time. They counted the number of subsets in which a pattern occurred
to discover cyclic association rules that appear in at least a certain number of subsets.
This simplifies the mining algorithm, but a limitation is that it cannot discover patterns
or association rules that span multiple windows.

While several models have been proposed in the literature to identify PF'Ps in a
TDBs without requiring data segmentation, it is important to note that periodic patterns
in a TDBs can be classified as full periodic patterns (P £ Ps), or 3Ps. Full periodic pat-
terns are monitored strictly within the database, and uninteresting patterns are discarded
based on user-defined constraints such as the maz Per. However, this approach may be
too strict, as it may exclude potentially interesting patterns if even one of their periods
does not meet the threshold. 3Ps, on the other hand, occur only during specific times
and can be found in real-world scenarios. For example, in a supermarket database, cus-
tomers may purchase dairy items frequently but other standard items only at the end of
the month. In the traffic congestion database, traffic congestion is higher during peak
hours of the day. As such, it is often useful to mine 3Ps in TDBs, as they can provide
valuable insights that full periodic patterns may not capture. It is worth noting that all
the existing models (see Section 1.2.1) for identifying PF' Ps are designed to detect
patterns that exhibit complete cyclic repetitions in RTDBs or CTDBs.

When confronted with this problem in real-world applications, researchers have
tried to find partially occurring PF'Ps using several new constraint measures. These
constraints may specify the time intervals during which the pattern should occur or the
minimum and maximum number of occurrences required for a pattern to be considered
periodic-frequent. By applying these constraints, researchers have been able to identify
partially occurring PF Ps.

Uday et al. [46] paper proposes a novel approach for discovering Partial Periodic-
Frequent Patterns (PP F Ps) ina TD. PPF Ps are sub-sequences that occur frequently
and periodically within longer sequences, such as a specific purchasing pattern that
occurs every week or month. The authors introduce a novel measure called periodic-
ratio to identify the P PF'Ps that satisfy a minimum periodic-ratio constraint. However,
these PPF Ps do not satisfy the down ward closure property, so the authors propose

11



a new algorithm called Generalized Periodic-Frequent pattern-Growth (GPF-Growth).
GPF-Growth scans the entire database twice and stores candidate P PF'Ps in GPF-List
format, which is then used to compress the database into a novel data structure called
GPF-Tree. The authors then use a recursive mining process to generate the complete
set of PPF Ps.

S. Nakamura et al. [47] proposes a novel algorithm for discovering PPF Ps in
TDBs, which considers both Row database (RDB) and Columnar database (CDB) ar-
chitecture. The authors introduce a novel generalized dictionary-based data structure to
efficiently identify one-length candidate patterns. The proposed algorithm uses a mea-
sure called probable maximum periodic-ratio to prune uninteresting patterns in a DFS
manner, which reduces the search space and increases efficiency. To evaluate the effec-
tiveness of the proposed algorithm, the authors conducted experiments on both synthetic
and real-world databases and compared it with the existing GPF-Growth algorithm. The
results show that the proposed algorithm outperforms the existing algorithm in terms of
both runtime and memory usage.

Rashid et al. [36] introduces a new algorithm for mining regularly occurring fre-
quent patterns in TDs. The proposed algorithm uses a novel data structure and pruning
techniques to efficiently discover patterns that occur frequently in a regular manner.
The algorithm works by first identifying the sets of items that occur in a transaction
with a frequency that satisfies a user-specified minSup threshold, and then generating
regularly frequent patterns by combining these sets of items using a novel maximum
variance constraint. The algorithm uses a prefix tree-based data structure named RF-
tree. The use of the maximum variance constraint and the RF-tree data structure are key
contributions of the algorithm, as they help to reduce the computational complexity of
the pattern mining process and improve the efficiency of the algorithm.

The extended models that have been proposed for partial PFPM often have numer-
ous input parameters and are impractical to use on large databases. This is because
the patterns generated by these models do not satisfy the downward closure property,
making them less efficient for analyzing and interpreting large amounts of data.

Uday et al. [48] propose a new model for discovering 3Ps in TDBs. The authors
note that traditional periodic pattern mining techniques may not be sufficient for dis-
covering 3 Ps and thus propose a new interesting measure named period-support, which
allows the partial periodic behavior of the pattern. All of the uninteresting patterns were
discarded using a novel minimum period-support measure. The authors have also pro-
posed a novel pattern growth algorithm named 3P-growth to discover the complete set
of 3Ps using a 3P-tree data structure. Unfortunately, this algorithm can find 3Ps only
in RTDBs.

In this thesis, we have made an effort to present a novel and efficient algorithm
named 3P-ECLAT [31] for discovering 3Ps in CTDBs. One of the significant advan-
tages of 3P-ECLAT is its versatility, as it can also be applied to horizontal databases,
making it more flexible than existing algorithms. One of the key contributions of this
paper is the use of columnar storage to improve the efficiency of the pattern discovery
process. Columnar storage allows for efficient scanning and filtering of the database,
which is critical for discovering 3Ps in large databases. We have also proposed a tech-
nique for compressing the database to further reduce the memory requirements of the
algorithm.

12



1.2. RELATED WORK

1.2.3 Literature review on spatial co-occurence pattern mining

FPM, which was introduced in [49], has been widely used for identifying frequent
patterns in TDs. However, the extension of FPM to ST Ds presents several challenges,
such as the need to consider both spatial and temporal dimensions in the analysis. To ad-
dress these challenges, various methods have been proposed for identifying Spatiotem-
poral (ST) co-occurrence patterns or association rules in S7'Ds.

Ding et al. [50] present a comprehensive framework for discovering interesting pat-
terns and associations in spatial databases. By using a combination of clustering and
association rule mining algorithms, the framework can identify regions of interest and
uncover relationships between spatial objects that might not be apparent through other
methods. The authors have identified regions of interest using a clustering algorithm,
Supervised Clustering using Multi Resolution Grids (SCMRG). The use of the SCMRG
algorithm is particularly noteworthy, as it allows for the identification of regions that are
both geographically close and share similar attributes. This can be especially useful for
understanding complex spatial patterns that might be difficult to detect using traditional
clustering techniques. Each region was used by the regional association rule mining
algorithm to discover interesting patterns. The regional association rule mining algo-
rithm uses a modified version of the Apriori [12] algorithm, which takes into account
the spatial relationships between the items in the database. The algorithm discovers
rules that are both spatially and statistically significant, taking into account both the
spatial proximity of the items and their frequency of occurrence.

Eick et al. [51] propose a new framework for mining regional co-location patterns in
spatial databases with continuous variables without the need for discretization. The pro-
posed approach uses a clustering algorithm and a correlation-based fitness function to
identify regions with high densities of data points that share similar values for multiple
variables. The fitness function allows researchers to specify their notion of interesting-
ness, enabling them to rank regions according to their research priorities. The approach
was tested in a case study involving chemical concentrations in Texas water wells cen-
tered on co-location patterns involving arsenic, and proved useful in identifying and
suggesting promising hypotheses for future research. The proposed algorithm, named
CLEVER, is able to identify known and unknown regional co-location sets. Overall, the
proposed method provides a powerful tool for identifying co-location patterns in spatial
databases with continuous variables and has a wide range of potential applications in
fields such as ecology, meteorology, and urban planning.

Mohan et al. [52] proposed an approach to identifying regional co-location patterns
(RCPs) in geographical data. The authors propose the use of a neighborhood graph to
represent the spatial relationships between different types of features in the data, such
as businesses and residential areas. They then use this graph to identify regions of high
co-location, where certain types of features are clustered together more than would be
expected by chance. The authors introduce two novel interest measures to quantify the
regional prevalence of RCPs. The effectiveness of the proposed approach is evaluated
on real crime databases, which demonstrates that it is capable of identifying significant
RCPs and providing insights into the underlying causes of spatial phenomena. Over-
all, the paper presents a novel approach for identifying regional co-location patterns
in spatial databases and introduces two novel interest measures and a novel pruning
algorithm.

Hung et al. [53] discussed a method to analyze ST data to identify co-occurring
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events. The authors focus on the challenge of analyzing data that is unevenly distributed
in time and space, which is a common problem in many real-world applications. The
authors used the DBSCAN [54] clustering algorithm and repeated the process to de-
fine ST neighborhoods and quantify co-occurrence patterns between events. They also
propose a new interest measure of co-occurrence patterns for prediction purposes. The
authors evaluated the proposed method on a real-world database of traffic congestion
during disasters in Kansai, Japan. They show that their method is able to identify mean-
ingful co-occurrence patterns between traffic congestion and typhoons, which can be
useful for improving traffic safety. Overall, the paper provides a novel method for an-
alyzing ST data that is unevenly distributed, which has the potential to be applied to a
wide range of applications beyond traffic safety.

Uday et al. [55] introduced a method for discovering frequent spatial patterns in
large spatiotemporal databases. The authors first define the problem of frequent spatial
pattern mining and then present their approach, which is based on the idea of a “pat-
tern growth” method. This method involves identifying frequent sub-patterns and then
growing them into larger patterns by adding new spatial locations. Finally, the authors
evaluate their approach in several real-world, and the results demonstrate the effective-
ness of their approach in discovering frequent spatial patterns in large databases with
high efficiency and scalability.

Unfortunately, all the above-mentioned approaches have only considered the support
and spatial in formation of patterns while disregarding their temporal in formation.
This is a significant limitation of the existing approaches.

However, the research presented in this thesis aims to address the limitations of ex-
isting approaches to ST co-occurrence pattern mining by developing a new and efficient
algorithm, GPFP-Miner [32], to discover all GPF Ps in a GT'SD that considers not
only the support and spatial in formation of a pattern but also its temporal in formation.
The algorithm uses a smart DFS approach to uncover the required patterns efficiently.
The experimental results support the effectiveness of the proposed algorithm. Addition-
ally, we present two case studies demonstrating how our approach was used to extract
valuable information from databases related to air pollution and traffic congestion.

1.3 Organization

In Chapter 2, we discuss the limitations of existing algorithms for discovering PF'P's
in CTDBs and propose a new algorithm that leverages the temporal dimension of the
data to identify such patterns efficiently. The proposed algorithm utilizes a list-based ap-
proach to generate candidate patterns and incorporates period-based pruning to reduce
the search space further. The chapter presents experimental results that demonstrate the
proposed algorithm’s effectiveness compared to the state-of-the-art algorithms. Over-
all, Chapter 2 provides an overview of the proposed methodology and its advantages in
discovering PF'Ps in CTDBs.

In Chapter 3, we discuss the limitations of existing algorithms for discovering 3Ps
in CTDBs and propose a new algorithm that addresses these limitations. The chap-
ter presents the partial periodic pattern discovery mechanism, allowing the algorithm
to identify patterns that occur only at certain period intervals. Experimental results
demonstrate that the proposed algorithm outperforms the existing algorithm in terms
of efficiency and scalability. Overall, Chapter 3 presents a novel algorithm to discover
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3Ps in CTDBs and addresses a significant problem in data mining.

In Chapter 4, we present a model for G PF P and propose a smart DFS algorithm to
uncover interesting patterns efficiently. The proposed algorithm can handle variations
in the data’s support and spatial aspects and detect patterns that occur at different
time scales. The results of applying the algorithm to real-world traffic congestion and
air pollution databases demonstrate its ability to uncover meaningful patterns that offer
insights into the underlying dynamics of the data. Overall, the chapter contributes to
the field of spatiotemporal data mining by providing a new approach for discovering
G PF Ps in Geo-referenced Time Series Databases (G1'SDs).

The conclusion and future research directions of our thesis are presented in Chapter
5.
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Chapter 2

Efficient Discovery of
Periodic-Frequent Patterns in
Columnar Temporal Databases

GTSD is one of the key forms of a ST'D [56]. Our research is focused on dis-
covering interesting patterns in S7'Ds, but during the early stages, we did not consider
the spatial characteristics of these databases, i.e., we did not consider LD. Specifically,
we only focused on the temporal characteristics of the patterns and aimed to discover
interesting patterns based on temporal (or time series) databases only. In this chapter,
we have discovered PF'Ps in CTDBs

The discovery of PF'Ps can be utilized in both RTDBs and CTDBs. There have
been numerous algorithms proposed in the literature, including PFP-growth [20], PFP-
growth++ [23], and PS-growth [37], which aim to identify PF Psin RTDBs. However,
there is no algorithm available to identify PF'Ps in a CTDBs. One approach to finding
PFPs in a Columnar Temporal database (CTDB) involves converting it into a RTDB
using existing methods. However, such a transformation process can be computation-
ally expensive and should be avoided. Therefore, the objective of our research is to
identify PF Ps in a CTDB more efficiently.

Finding PF Ps in CTDBs is non-trivial and challenging due to the following rea-
sons:

1. Zaki et al. [15] made a significant contribution by highlighting the significance
of identifying frequent patterns in Row databases (RDBs). They introduced the
Equivalence Class Transformation (ECLAT) algorithm, which utilizes a DFS ap-
proach to discover frequent patterns in a RDB. However, it is important to note
that the ECLAT algorithm is not directly applicable for finding PF' Ps in CTDBs.
This limitation arises from the fact that the ECLAT algorithm disregards the tem-
poral occurrence information associated with each item in the database. As a
result, it cannot capture the temporal characteristics such as periodicities required
to identify PF'Ps effectively.

2. The space of items within a database forms an itemset lattice, which represents
the entire search space for discovering interesting patterns. The size of this lattice
is determined by the number of items present in the database and is given by
2™ — 1, where n denotes the total number of items. Consequently, the itemset
lattice can quickly become enormous, resulting in a challenging task for pattern
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mining. One of the primary challenges in pattern mining is reducing this vast
search space to a manageable size. It involves developing efficient techniques
and algorithms that can effectively navigate and explore the itemset lattice. By
employing various pruning strategies, optimization techniques, and heuristics,
researchers aim to reduce the search space and focus on discovering patterns that
are deemed interesting or significant based on certain criteria, such as support,
periodicity, or other measures.

Example 8. The itemset lattice, as depicted in Figure 2.1(a), represents the search
space for patterns consisting of the three items a, b, and c. In this case, the size
of the itemset lattice is 2° — 1 = 7. This means that there are a total of 7 pos-
sible combinations of itemsets that need to be explored by the mining algorithm
to discover the desired PF Ps in a CTDB. Effectively searching this extensive
lattice poses a significant challenge due to the large number of possible item-
set combinations. Mining algorithms need to be designed with efficient search
strategies and pruning techniques to navigate and explore the itemset lattice in
an optimized manner. This involves considering various factors, such as pattern
length, temporal constraints, and periodicities, to identify and prioritize the most
relevant and interesting PF' Ps within the given CTDB. Addressing the complex-
ity of searching the itemset lattice is crucial for efficient and effective mining of
PF Psin CTDBs, particularly when dealing with larger databases with a higher
number of items.

a b el a c
ab ac bc ab ac bc

abc abc

(a) (b)

Figure 2.1: Sample representation of itemset space. (a) representing the items a, b, and
c using a lattice structure (b) DFS-based evaluation of the itemsets

In this chapter, we first define the problem of discovering PF' Psin CTDB. Next, we
discuss about the PF-ECLAT [30] algorithm !, which is designed to identify the com-
plete set of PF'Ps in CTDB. After that, we check the performance of the PF-ECLAT
algorithm against several state-of-the-art algorithms by considering both synthetic and
real-world databases. Finally, we conclude the chapter by summarizing our findings.

Definition 6. (Problem definition.) The objective is to identify the comprehensive col-
lection of PF Ps from a given TDB, while satisfying the user-specified minSup and
max Per constraints.

'Tnitial version of this algorithm is presented at [29]
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2.1 Proposed Algorithm

Although our proposed algorithm can generate interesting patterns using either RTDB
or CTDB architecture, existing state-of-the-art algorithms are only capable of generat-
ing such patterns in RTDB architecture. As a result, we used RTDB architecture for
evaluation purposes only, even though this required additional effort to transform the
data from row to columnar architecture.

In this section, we will outline the procedure for identifying one-length PF'Ps (or
1-patterns) and transforming a RTDB into a CTDB. Subsequently, we will introduce
the PF-ECLAT algorithm, which facilitates the discovery of a comprehensive set of
PFPsin a CTDB. The PF-ECLAT algorithm utilizes a DFS approach and leverages
the downward closure property (see Property 1) of PE'Ps. This property helps in ef-
fectively reducing the immense search space during mining process. By utilizing the
DFS approach and leveraging the downward closure property, the PE-ECLAT algorithm
enables efficient exploration of the search space and identifies a complete set of PF'Ps
within the CTDB.

Property 1. (The downward closure property [20].) if a pattern Y is classified as a
PF'P, then for any non-empty subset X of Y, where X is not equal to the empty set, X
is also considered a PF P.

2.1.1 PF-ECLAT algorithm
Finding one length periodic-frequent patterns

By employing Algorithm 1 in conjunction with the specified RTDB shown in Table
1.5, we can effectively identify and extract the set of 1-patterns. The algorithm leverages
the PFP-list dictionary to maintain relevant occurrence information and support counts
for each item. Subsequently, it filters out items that fail to meet the minSup thresh-
old. Additionally, the periodicity of each remaining item is assessed by calculating
the periods between consecutive occurrences within transactions. Any item exceeding
the max Per constraint is excluded from the final list of 1-patterns. Throughout the
evaluation of the algorithm, we set the minSup to 5 and the max Per to 3.

The algorithm begins by scanning the first transaction, “1:abcf”, with the current
timestamp tS.,,, = 1. This results in the insertion of items a, b, ¢, and f into the PFP-
list. The timestamps of these items are set to 1 (= ¢S.), and their corresponding Per
and 7'S; values are also initialized to 1. This process is executed in lines 5 and 6 of
Algorithm 1. The generated PFP-list after scanning the first transaction is depicted in
Figure 2.2(a). The second transaction, “2:bd”, is then scanned with ts.,,, = 2. This
leads to the insertion of the new item d into the PFP-list, with its timestamp set to 2.
Simultaneously, the Per and 7'S; values of item d are updated to 2. Additionally, the
timestamp 2 is added to the TS-list of the existing item b, and its Per and 7T'S; values
are adjusted accordingly (lines 7 and 8 in Algorithm 1). The resulting PFP-list after
scanning the second transaction is illustrated in Figure 2.2(b). The third transaction,
“3:bcd”, is processed, leading to the update of the TS-lists, Per, and T'S; values of
items b, ¢, and d in the PFP-list. The updated PFP-list after scanning the third trans-
action is shown in Figure 2.2(c). The fourth transaction, “4:abce”, is scanned with
tSewr = 4. As a result, the new item e is inserted into the PFP-list, with its timestamp
set to 4. Simultaneously, the Per and 7T'S; values of item e are initialized to 4. Ad-
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Figure 2.2: Initially, the PFP-list is empty. After scanning the first transaction, we insert
each item into the PFP-list, as seen in (a). After scanning the second transaction, we
add a new item to the PFP-list and update the values of the existing items, as shown in
(b). After scanning the third transaction, we update the values of the existing items, as
shown in (c). After scanning the fourth transaction, we add a new item to the PFP-list
and update the values of the existing items, as shown in (d). After scanning the whole
database, we obtain the final 3P-list as shown in (e). Finally, we sort the one-length
PF Ps in descending order of their support, as shown in (h).
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Figure 2.3: Mining P F'Ps using DFS.

ditionally, the TS-lists, Per, and T'S; values of the existing items a, b, ¢, and e in the
PFP-list are updated accordingly. The PFP-list after scanning the fourth transaction is
depicted in Figure 2.2(d). This process is repeated for the remaining transactions in the
database. The final PFP-list generated after scanning the entire database is presented in
Figure 2.2(e). Utilizing Property 1, the patterns e and f are pruned from the PFP-list as
their support values are less than the user-specified minSup. This pruning process is
carried out in lines 10 to 15 of Algorithm 1. The remaining patterns in the PFP-list are
considered PF' Ps and are sorted in descending order based on their support values.
The final PFP-list, obtained after sorting the PF'Ps, is displayed in Figure 2.2(f).

Finding periodic-frequent patterns using PFP-list.

Algorithm 2 outlines the step-by-step procedure for discovering all PF'Psin a given
database. We will now elaborate on the workings of this algorithm using the above
generated PFP-list.
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The algorithm commences by selecting the first pattern in the PFP-list, which is item
‘b’ (line 2 in Algorithm 2). The support and periodicity values of ‘b’ are recorded and
displayed in Figure 2.3(a). Since ‘b’ satisfies the criteria to be classified as a PF'P, we
proceed to its child node ‘bc’. To generate the TS-list for ‘bc’, we perform an inter-
section operation between the TS-lists of ‘b’ and ‘c’, denoted as T'S* = T'S® N T'S¢
(lines 3 and 4 in Algorithm 2). The support and periodicity values of ‘bc’ are recorded
and displayed in Figure 2.3(b). Next, we verify whether ‘bc’ qualifies as a PF'P or
is deemed an uninteresting pattern (line 5 in Algorithm 2). As ‘b¢’ satisfies the re-
quirements to be classified as a PF' P, we proceed to its child node ‘bca’. Similarly,
we generate the TS-list for ‘bca’ by intersecting the TS-lists of ‘b¢’ and ‘a’, denoted as
T .Sba = TS*NT'S*. The support and periodicity values of ‘bca’ are recorded and dis-
played in Figure 2.3(c), confirming its classification as a PF'P. Subsequently, we move
to the child node ‘bcad’ and generate its TS-list by performing an intersection between
the TS-lists of ‘bca’ and bed’, denoted as T'S*% = T.Sb@ N T'Sd, However, as the
support of ‘bcad’ is less than the user-specified minSup), we prune this pattern from
the list of PF' Ps (Figure 2.3(d)). Since ‘bcad’ is the leaf node in the set-enumeration
tree (or there exists no superset of ‘bcad’), we construct ‘bed’ by intersecting the TS-
lists of ‘bc” and ‘d’, denoted as T'S*? = T'.S** N T'S¢. However, as the support of ‘bed’
is less than the user-specified minSup, we prune this pattern from the list of PF Ps
(Figure 2.3(e)). This process is repeated for the remaining nodes in the set-enumeration
tree to identify all PF' Ps. The final list of PF'Ps generated from Table 1.5 is displayed
in Figure 2.3(f). Utilizing the downward closure property for the detection of PF'Ps
greatly optimizes the process due to its impactful role in diminishing the explored space
and computational burdens. The algorithm’s reliability is validated by its adherence to
Properties 2, 3, and 4, and this is further substantiated through the practical illustration
provided by Lemma 1.

Property 2. Let X, Y, ZC I be three patterns such that X # 0, Y #0, Z#0, XNY
=0and Z=X UY. If TSX and TSY denote the set of ts at which patterns X and Y
have respectively occurred in the database, then the set of ts at which Z has appeared
in the database, i.e., TS? = TSXNTSY.

Property 3. In the case where the minSup> |T'SX|, it can be concluded that X does
not meet the criteria to be classified as a PF P. Additionally, for any itemset Z that is
a superset of X, it is similarly impossible for Z to qualify as a PF' P.

Proof. The relationship between patterns X and Z can be established by observing that
if X is a subset of Z, then the set of ts T'S¥X is a superset of 7'S%. Consequently,
considering the definition of minSup, it follows that minSup must be greater than the
cardinality of 7S, which in turn is greater than or equal to the cardinality of T'SZ.
Based on this reasoning, it can be concluded that Z cannot be classified as a PF'P.
Thus, the property is proven. (]

Property 4. If per(T'S* )> maxPer, then X cannot be PFP. Moreover, ¥ Z D> X , Z
cannot be a PF' P.

Proof. If X C Z, then T'S* D T'SZ. Thus, per(T'S?)> per(T'S*) > max Per. Thus,
Z cannot be a PF'P. Hence proved. (|

Lemma 1. Let X, Y, ZC I be three patterns such that X # 0, Y #0, Z# 0, X NY
=0and Z=X UY. If X orY is not PF Ps, then Z cannot be a PF P. In other words,
we do not need to check whether Z is a PF' P if any one of its supersets is not a PFP.
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Algorithm 1 PeriodicFrequentltems(Row database (7'DB), minimum support
(minSup), maximum periodicity (mazx Per):

1:

SAN AN

10:
11:
12:
13:
14:
15:
16:
17:

We define the dictionary PF P-list = (X, TS-list(X)) as a data structure that
stores the temporal occurrence information of a pattern in a TDB. To facilitate
the storage and retrieval of this information, we utilize the temporary lists 7'.5; and
Per. The list 7'S; maintains the timestamp of the last occurrence of each item in
the database, while the list Per records the periodicity of the items. Additionally,
we employ another temporary list, denoted as support, to keep track of the support
values associated with patterns during the mining process
for each transaction ¢.,,,, € T DB do
Set tSeyr = tour-tS;
for each item i € t,,,..X do
if 7 does not exit in PFP-list then
The item ¢ and its corresponding ¢s are inserted into the PFP-list. Subse-
quently, the ¢s ts.,, is recorded as the last occurrence of item 7 by setting
TS[i] = tScur- Additionally, the periodicity Per[i] of item i is calculated
as P@T’[Z] = (tscur - tsinitial);
else
The item ¢ and its corresponding ¢s are inserted into the PFP-list. The last
occurrence of item i is recorded as ts.,. by setting T'S;[i] = tSy-. The
periodicity of item i is calculated as Per[i| = (tSecur — tSinitiar)» Where
tSinitia TEPTESents the initial £s of the database.
for each item ¢ in PFP-list do
support[i] = length(T'S-list(1))
if support[i] < minSup then
Prune 7 from the PFP-list;
else
Calculate Per|[i] = max(Perli], (tsfima — T'S1[i]));
if Per[i] > max Per then
Prune ¢ from the PFP-list.
The remaining items in the PFP-list are sorted either in ascending or descending
order based on their support values. Afterwards, the PF-ECLAT algorithm is in-
voked, passing the sorted PFP-List as input.

Algorithm 2 PF-ECLAT(PFP-List)

1:

SAN AN

for each item ¢ in PFP-List do
Set pi = ) and X = 7;
for each item j that comes after ¢ in the PFP-list do
SetY = XUjand TSY =TSXNTS7;
if sup(T'SY) > minSup and per(T'SY) < maz Per then
The itemset Y is added to the pattern pt, and as a result, Y is classified as a
PFP.
PF-ECLAT (pi)
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2.2. EXPERIMENTAL RESULTS

Proof. The correctness of the above statement is straightforward to prove from Proper-
ties 2, 3, and 4. Hence proved. O

2.1.2 Time complexity analysis

Suppose we are examining a database that stores temporal information. This database
contains a total of a transactions, each of which corresponds to a specific point in time.
Across all of these transactions, there are ¢ unique items that have been recorded. Fur-
thermore, the average transaction length is equal to b. In this database, all items are
deemed to be of interest and are therefore included in the analysis. Understanding
the characteristics of the database, including the number of transactions, unique items
count, and the length of transactions, is crucial for performing the complexity analysis.

The PF-ECLAT algorithm provides significant contributions to the field of PFPM,
as demonstrated by its efficient computation and identification of PFPs. The Algorithm
1 begins by scanning the entire database and calculating the support, and periodicity
of each item. A list of items that meet the minSup and max Per constraints is then
created and sorted in descending order based on their support. The complexity of this
initial Algorithm is O(ab), where a is the number of transactions and b is the average
transaction length.

Once the one-length PFPs have been identified, then we proceeds to generate com-
binations of items to form larger periodic-frequent itemsets. This is accomplished using
procedures outlined in Algorithm 2. Algorithm 2 is follows two steps procedure. The
first step involves accessing two items and comparing their (d — 1) itemset timestamp
lists to generate a d-itemset timestamp list with a complexity of O(c?). The second
step involves calculating the periodicity and support of each itemset and discarding
the uninteresting patterns based on the user-specified Overall, the complexity of this
Algorithm 2 is O(c?).

Finally, the entire complexity of finding all the PFPs using PF-ECLAT is O(c?),
which makes the PF-ECLAT a highly efficient method for PFPM in columnar temporal
databases.

2.2 Experimental Results

In this section, we commence by conducting a comparative analysis of the PF-ECLAT
algorithm against state-of-the-art algorithms such as PFP-growth [20], PFP-growth++
[23], and PS-growth [37]. Our objective is to demonstrate that our algorithm outper-
forms these existing approaches in terms of memory utilization, runtime efficiency, and
scalability. Furthermore, we showcase the practical significance and applicability of our
algorithm through two case studies: TC analytics and AP analytics. These case stud-
ies highlight the effectiveness of PF-ECLAT in real-world scenarios, providing insights
into its utility and potential impact in diverse domains.

2.2.1 Experimental setup

The Python implementations of the algorithms, namely PFP-growth, PFP-growth++,
PS-growth, and PF-ECLAT, were developed specifically for Python version 3.7. The
experiments were conducted on a machine equipped with an Intel(R) Core i5-3230M
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Table 2.1: Statistics of the databases

.No | Database Type Nature Transactlon Length Total transactions
min. | avg. | max.

1 BMS-WebView-1 | Real Sparse 1 3 267 59,602
2 Pollution Real Dense 11 460 971 720
3 Drought Real Dense | 6,289 | 8,341 | 10,122 766
4 | Congestion Real Sparse 1 58 337 8,928
5 BMS-WebView-2 | Real Sparse 2 5 161 77,512
6 | TI0I4D100K Synthetic | Sparse 2 11 29 100,000
7 Kosarak Real Sparse 2 9 2,499 990,000

CPU operating at a base frequency of 2.6GHz and a maximum Turbo Boost frequency
of 3.2GHz. The machine had 4GB of RAM and was running the Ubuntu 18.04 operat-
ing system. To evaluate the performance of the algorithms, experiments were conducted
on both real-world and synthetic databases. The real-world databases used in the ex-
periments were BMS-WebView-1, Pollution, Drought, Congestion, BMS-WebView-2,
and Kosarak. Additionally, the synthetic database T10I14D100K was also employed for
evaluation purposes.

The T1014D100K database is a synthetic database generated following the proce-
dure outlined in [12]. It has been widely utilized as a benchmark for evaluating various
pattern-mining algorithms. The BMS-WebView-1 and BMS-WebView-2 databases are
real-world sparse databases that contain clickstream data from an anonymous eCom-
merce company. These databases were utilized in the KDD Cup 2000 competition.
Notably, both databases feature short transactions. The Kosarak database is a mas-
sive real-world sparse database that has been widely used for evaluating the scalability
of pattern-mining algorithms. Its inclusion in this chapter enables an assessment of
the scalability of the PFP-growth, PFP-growth++, PS-growth, and PF-ECLAT algo-
rithms. To ensure the reproducibility of our experiments, comprehensive evaluation
results, including the databases and algorithms used, have been made available through
GitHub [57]. These databases were obtained from the Sequence Pattern Mining Frame-
work (SPMF) [58] repository. Lastly, the Drought database [59] is a dense real-world
database characterized by a high-dimensional structure. It has been selected to provide
a unique and challenging dataset for evaluation purposes.

The monitoring of traffic congestion in smart cities poses a significant challenge in
the field of Intelligent Transportation Systems. In addressing this challenge, the JApan
Road Traffic Information Center (JARTIC) [60] project has established a comprehensive
sensor network spanning across Japan. This nationwide network aims to monitor and
analyze traffic congestion levels in real-time. The sensor network deployed by JARTIC
operates by collecting data from individual sensors placed at various locations. Each
sensor provides information on the congestion level of a specific road segment at regu-
lar 5-minute intervals. The collected data from this network forms a substantial volume
of big data, representing a quantitative (non-binary) columnar temporal database. To
facilitate the analysis and mining of this extensive dataset, we have converted it into a
binary form, resulting in a columnar temporal database (CTDB). This conversion was
achieved by setting a threshold value of 200 meters. Specifically, congestion lengths
shorter than 200 meters, which are often attributed to waiting times at traffic signals,
were excluded from the dataset. For our expertise and analysis, we focus on the binary
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columnar traffic database named Congestion, which was derived from the JARTIC net-
work’s data collected in Kobe, the fifth-largest city in Japan. This database serves as a
valuable resource for investigating traffic congestion patterns and developing effective
strategies for congestion management in urban areas.

Air pollution is a significant contributor to cardio-respiratory health issues reported
in Japan, resulting in an alarming annual death toll of approximately 60,000 individ-
uals [61]. In response to this pressing concern, the Ministry of Environment in Japan
has implemented a sensor network system known as SORAMAME [62]. This system
is designed to monitor air pollution levels across the entire country. Within the SORA-
MAME network, each sensor is responsible for collecting data on pollution levels of
various air pollutants at hourly intervals. For this particular experiment, we have uti-
lized a three-month dataset focusing on the PM2.5 pollutants. This dataset comprises
readings collected from sensors positioned throughout Japan. The Pollution database
used in this experiment is characterized by its dense nature and high dimensionality. It
contains numerous long transactions, capturing a comprehensive representation of air
pollution levels across various regions and time periods in Japan. The database serves
as a valuable resource for conducting analyses and investigations related to air pollu-
tion patterns, contributing to the development of effective strategies and policies for
mitigating the impact of air pollution on public health.

Table 2.1 presents the statistics of all the aforementioned databases, including their
key characteristics and relevant details. To ensure the reproducibility of our experi-
ments, we have made the complete evaluation results, along with the databases and
algorithms used, available through GitHub [57]. This enables independent verification
and replication of our experimental findings. However, please note that the Congestion
and Drought databases are not included in the GitHub repository due to confidentiality
reasons. Nonetheless, all other databases, algorithms, and evaluation results are acces-
sible for comprehensive analysis and validation purposes.

2.2.2 Evaluation of PFP-growth, PFP-growth++, PS-growth, and
PF-ECLAT algorithms by varying max Per constraint

In this experiment, the performance of the PFP-growth, PFP-growth++, PS-growth,
and PF-ECLAT algorithms was evaluated by varying the max Per constraint while
keeping the minSup value fixed for each of the databases. The fixed minSup val-
ues ensured consistency in the support threshold across all databases, while the vary-
ing maz Per constraints provided insights into the algorithms’ behavior and perfor-
mance in relation to different levels of periodicity present in the databases. The spe-
cific minSup values chosen for the BMS-WebView-1, Pollution, Drought, Congestion,
BMS-WebView-2, and T1014D100K databases were 0.07%, 51%, 57%, 30%, 0.2%,
and 0.1% respectively.

The runtime performance of the PF-ECLAT algorithm was compared to that of the
PFP-growth, PFP-growth++, and PS-growth algorithms. Figure 2.4 illustrates the re-
sults of this comparison, demonstrating that PF-ECLAT outperforms the other state-
of-the-art algorithms across all evaluated databases. In each subfigure of Figure 2.4,
the vertical axis represents the runtime in milliseconds, while the horizontal axis rep-
resents the max Per threshold values. Several key observations can be made from the
results: (¢) The PF-ECLAT algorithm exhibits faster execution times compared to the
PS-growth algorithm. This indicates that the periodic calculation approach employed
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in PF-ECLAT is highly effective, allowing for the efficient pruning of non-periodic pat-
terns. Furthermore, the results indicate that PF-ECLAT outperforms the PFP-growth++
algorithm in terms of runtime. (z¢) Generally, for all databases, increasing the max Per
threshold value leads to an increase in the runtime of the algorithms. However, in such
cases, PF-ECLAT demonstrates superior efficiency compared to the other algorithms,
particularly in the BMS-WebView-1, Pollution, Drought, and Congestion databases.
(¢47) Marginal differences in runtime were observed between PF-ECLAT and the other
algorithms in the BMS-WebView-2 and T1014D 100K databases, both of which exhibit a
sparse nature with short transactions. Further investigation revealed that the PS-growth
algorithm generates P F'Ps quickly by summarizing the database when it has a sparse
nature with short transactions, resulting in the marginal runtime improvement. (iv)
Overall, the PFP-List structure utilized in the PF-ECLAT algorithm proves to be more
compact and efficient compared to the corresponding structure used in the other state-
of-the-art algorithms.

The memory consumption of the PF-ECLAT algorithm was compared to that of
the PFP-growth, PFP-growth++, and PS-growth algorithms. Figure 2.5 presents the
results of this comparison, demonstrating that PF-ECLAT outperforms the other state-
of-the-art algorithms across all evaluated databases. In each subfigure of Figure 2.5,
the vertical axis represents the memory consumption in kilobytes, while the horizontal
axis represents the max Per threshold values. Several important observations can be
made from the results: (¢) As the max Per threshold increases, the memory require-
ments of the PFP-growth, PFP-growth++, PS-growth, and PF-ECLAT algorithms also
increase. (i7) Across all databases, including those with sparse or dense characteristics
and containing short or long transactions, PF-ECLAT consistently exhibits significantly
lower memory consumption compared to the other state-of-the-art algorithms at any
given max Per value. This difference is particularly prominent at high max Per val-
ues. (¢¢7) Furthermore, PF-ECLAT consumes less memory than the PS-growth algo-
rithm, although they are relatively close in some cases. This highlights the efficiency of
the PFP-List structure utilized in the PF-ECLAT algorithm, which helps reduce mem-
ory usage. Overall, the evaluation results confirm that the PF-ECLAT algorithm offers
superior performance in terms of memory consumption when compared to the PFP-
growth, PFP-growth++, and PS-growth algorithms.

The number of patterns was measured for different max Per threshold values on
each database, and the results are presented in Figure 2.6. The vertical axes of the
subfigures represent the number of patterns, while the horizontal axes correspond to
the max Per threshold values. It was observed that PFP-growth, PFP-growth++, PS-
growth, and PF-ECLAT algorithms generated the same number of PF' Ps in each of
the databases. However, the number of patterns increased as the max Per threshold
increased. This implies that a higher max Per threshold led to a greater number of
patterns being identified as periodic patterns. The results indicate that the PF-ECLAT
algorithm effectively captures the periodic nature of patterns in the data, producing a
significant number of periodic frequent patterns. These findings demonstrate the use-
fulness of the max Per threshold in controlling the identification of periodic patterns
and further highlight the potential of the PF-ECLAT algorithm in pattern mining tasks.
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Figure 2.4: The runtime performance of PFP-growth, PFP-growth++, PS-growth, and
PF-ECLAT algorithms, was compared across multiple databases with a fixed value of
max Per and varying values of minSup.
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Figure 2.5: The memory usage of PFP-growth, PFP-growth++, PS-growth, and PF-
ECLAT algorithms, was compared across multiple databases with a fixed value of
max Per and varying values of minSup.

2.2.3 Evaluation of PFP-growth, PFP-growth++, PS-growth, and
PF-ECLAT algorithms by varying minSup constraint

In this subsection, we evaluate the performance of PFP-growth, PFP-growth++, PS-
growth, and PF-ECLAT algorithms by varying only the minSup constraint in each of
the databases. The max Per value in each database is set to a specific value, while the
minSup is varied. For the BMS-WebView-1, Pollution, Drought, Congestion, BMS-
WebView-2, and T10I4D100K databases, the maz Per values are set at 40%, 51%, 5%,
35%, 54%, and 20% respectively. By varying the minSup constraint, we can assess the
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Figure 2.6: The number of PF Ps generated by the PFP-growth, PFP-growth++, PS-
growth, and PF-ECLAT algorithms, was compared across multiple databases with a
fixed value of max Per and varying values of minSup.

impact of different support thresholds on the performance of the algorithms. Through
this evaluation, we aim to analyze and compare the runtime, memory consumption,
and number of patterns generated by each algorithm for different minSup values. The
results will provide insights into the scalability, efficiency, and effectiveness of the al-
gorithms in handling varying support constraints across different databases.
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Figure 2.7: The runtime performance of PFP-growth, PFP-growth++, PS-growth, and
PF-ECLAT algorithms, was compared across multiple databases with a fixed value of
minSup and varying values of max Per.

In this experiment, we compare the runtime of the PF-ECLAT algorithm with that
of PFP-growth, PFP-growth++, and PS-growth algorithms by varying only the minSup
constraint in each of the databases. The runtime performance is evaluated by mea-
suring the execution time (in milliseconds) required by each algorithm for different

28



2.2. EXPERIMENTAL RESULTS

BMS-WebView-1 Pollution Drought
o~ x10% —~ x10* o~ x10°
Q Q Q A N
K 2 ey
=) o =)
2 4y = S
2 .0 2 0 2,0
> > 4 >
—- - —-
S o5 S S £ =
g h = = = 4 E 25 = = & E
G S— 18 L — — 2 ok
= 7 107§487§. 10-2 01 0 12 51 515 52 525 53% 58 59 60 61
ongestion BMS-WebView-2 T10I14D100K
= x10% = x10% = x10°
2 5 A A 2 ]
= > 8¢ S PO ——o— ¢
° o 4 E R
S 40 < % 2
< g °r 2
SRS o4l 2 2
=] =} =]
é N § 21 2 2 5 J—=a g ]
30 32 34 36 0.2 0.25 0.3 OA352 0.1 0.2 0.3 0.4

minSup(%) minSup(%) minSup(%)

| —6— PS-growth —A— PFP-growth —¢— PFP-growth++ —=5— PF-ECLAT |

Figure 2.8: The memory usage of PFP-growth, PFP-growth++, PS-growth, and PF-
ECLAT algorithms, was compared across multiple databases with a fixed value of
minSup and varying values of max Per.
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Figure 2.9: The number of patterns generated by the PFP-growth, PFP-growth++, PS-
growth, and PF-ECLAT algorithms, was compared across multiple databases with a
fixed value of minSup and varying values of max Per.

minSup threshold values. Figure 2.7 illustrates the runtime comparison results, where
the vertical axis represents the runtime and the horizontal axis represents the minSup
threshold values in each subfigure. The following observations can be made from this
figure: (i) Increasing the minSup value generally decreases the runtime requirements
of all algorithms. This is because a higher minSup threshold reduces the number of
patterns to be generated and, thus, the computation time. (¢¢) Among the compared
algorithms, PF-ECLAT consistently exhibits superior runtime performance across all
databases. It significantly outperforms PFP-growth, PFP-growth++, and PS-growth
algorithms in terms of runtime efficiency. Even at low minSup values, PF-ECLAT

29



Kosarak database

-10° -10°

g

Memory (Kilobytes)
IS

8
6
4
2
0

=

0 I ! !
0.2 0.4 0.6 0.8 1

| |
0.2 0.4 0.6 0.8

Runtime (milliseconds)

=

Number of transactions o6 Number of transactions o6

| —6— PS-growth —a&— PFP-growth —&— PFP-growth++ —=5— PF-ECLAT |

Figure 2.10: Scalability of PFP-growth, PFP-growth++, PS-growth, and PF-ECLAT

demonstrates remarkable speed and efficiency. (ii¢) Particularly in databases such as
BMS-WebView-1, Pollution, Drought, and Congestion, PF-ECLAT achieves substan-
tial runtime advantages over the PS-growth algorithm. The margin of improvement
becomes even more significant at higher minSup values. However, in sparse databases
with short transactions like BMS-WebView-2 and T10I14D100K, the runtime difference
between PF-ECLAT and PS-growth is relatively small.

In this experiment, we compare the memory consumption of the PF-ECLAT algo-
rithm with that of the PFP-growth, PFP-growth++, and PS-growth algorithms by vary-
ing only the minSwup constraint in each of the databases. The memory performance is
evaluated by measuring the memory usage (in kilobytes) of each algorithm for different
minSup threshold values. Figure 2.8 illustrates the memory comparison results, where
the vertical axis represents the memory usage in kilobytes and the horizontal axis rep-
resents the minSup threshold values in each subfigure. The following observations can
be made from this figure: (i) As the minSup value increases, the memory requirements
of all algorithms generally decrease. This is because a higher min.Sup threshold leads
to a smaller number of patterns, resulting in reduced memory usage. (i¢) Across all
databases, PF-ECLAT consistently exhibits superior memory performance compared to
the other state-of-the-art algorithms. Regardless of whether the database is sparse or
dense, and whether it contains short or long transactions, PF-ECLAT consistently con-
sumes significantly less memory than the other algorithms at any given minSup value.
The difference in memory usage is particularly high at low minSup values. (ii7) The
effectiveness of the PFP-List structure used in the PF-ECLAT algorithm is evident in
the memory comparison results. The compact and efficient representation of patterns in
the PFP-List significantly reduces the memory requirements of the algorithm. Overall,
these findings demonstrate that the PF-ECLAT algorithm excels in terms of memory ef-
ficiency compared to the other state-of-the-art algorithms. It consistently consumes less
memory across various databases and minSup values, making it a preferable choice for
memory-constrained environments.

In this evaluation, we analyze the number of patterns generated by the PFP-growth,
PFP-growth++, PS-growth, and PF-ECLAT algorithms by varying only the minSup
constraint in each of the databases. Figure 2.9 depicts the results, where the vertical
axes represent the number of patterns and the horizontal axes indicate the corresponding
minSup threshold values. From the figure, it can be observed that all four algorithms
generate the same number of PF'Ps in each of the databases. This indicates that the
algorithms are consistent in their ability to discover frequent patterns. Furthermore, as
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2.2. EXPERIMENTAL RESULTS

the minSup threshold increases, the number of patterns decreases. This is because a
higher minSup value sets a stricter criterion for pattern frequency, requiring patterns to
appear more frequently in the database to be considered frequent. As a result, patterns
that fail to meet the increased minSup constraint are filtered out, leading to a reduced
number of PF' Ps.
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2.2.4 Scalability test

In order to assess the scalability of the PFP-growth, PFP-growth++, PS-growth, and
PF-ECLAT algorithms, the Kosarak database was divided into five portions, each con-
taining 0.2 million transactions. The performance of these algorithms was evaluated as
each portion was accumulated with the previous portions. Figure 2.10 illustrates the
runtime and memory requirements of all algorithms at different database sizes, consid-
ering a minSup value of 1% and a max Per value of 0.1%. From the analysis of these
figures, the following two observations can be made: (¢) The runtime and memory re-
quirements of the PFP-growth, PFP-growth++, PS-growth, and PF-ECLAT algorithms
exhibit an almost linear increase with the growth of the database size. This indicates
that these algorithms scale well as the size of the database increases. (iz) At any given
database size, the PF-ECLAT algorithm demonstrates superior performance in terms of
both runtime and memory consumption compared to the other algorithms (i.e., PFP-
growth, PFP-growth++, and PS-growth). This highlights the efficiency and scalability
of the PF-ECLAT algorithm, making it a favorable choice for mining periodic frequent
patterns in large databases.
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2.2.5 A case study 1: finding areas where people have been regu-
larly exposed to hazardous levels of PM2.5 pollutant

The Ministry of Environment in Japan has established the SORAMAME [62], sen-
sor network system to monitor air pollution across the country (shown in Figure. 2.11
(a)). This sensor network generates raw data, which represents quantitative values of
pollution levels collected by individual sensors at various locations. The raw data, in the
form of a quantitative CTDB (shown in Figure. 2.11 (b)), is transformed into a binary
CTDB by considering a threshold value (in this case, >15) as shown in Figure. 2.11
(c). This transformation helps identify instances where pollution levels are high. The
transformed binary CTDB is then input into the PF-ECLAT algorithm, which employs
the downward closure property and efficient mining techniques to identify sets of sen-
sor identifiers (patterns) associated with high pollution levels. These patterns represent
areas or time intervals where pollution levels consistently exceed the threshold. The
identified patterns, representing areas of high pollution (shown in Figure. 2.11 (e)), can
be further analyzed and visualized geographically. In Figure 2.11 (f), the spatial loca-
tions of these interesting patterns are visualized. It can be observed that the majority of
the sensors in the southeast region of Japan exhibit high pollution levels periodically.
This information provides valuable insights to ecologists and policymakers, enabling
them to devise targeted policies and measures to control pollution and improve public
health in the identified areas. It’s worth noting that the PF-ECLAT algorithm allows
for more in-depth studies, such as analyzing high-polluted areas during specific time
intervals or on weekends. This flexibility enables researchers and stakeholders to gain
a comprehensive understanding of pollution patterns and their temporal variations, sup-
porting more informed decision-making processes.
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2.2.6 A Case Study on Traffic Congestion Analytics

In July 2005, Typhoon Nangka caused heavy rainfall and subsequent flooding in
Kobe, Japan. To monitor traffic congestion resulting from the evacuation efforts, the
JARTIC [60] deployed a sensor network across Japan. The road network in Kobe,
Japan, covered by the congestion monitoring sensors, is shown in Figure 2.12(a). The
raw data collected by these sensors, representing quantitative values of congestion lev-
els (shown in Figure 2.12(b)), can be transformed into a binary CTDB by applying a
threshold value (in this case, greater than or equal to 15). The transformed binary CTDB
as show in Figure 2.12(c) is then processed by the PF-ECLAT algorithm to identify pat-
terns consisting of sensor identifiers where traffic congestion is particularly high. The
spatial locations of these interesting patterns, generated from the Congestion database,
are visualized in Figure 2.12(e). Additionally, the rainfall data from Typhoon Nangka
during the respective hour can be overlaid on the discovered patterns, as shown in Figure
2.12(f). By analyzing the combined information of the congestion patterns and rainfall
data, valuable insights can be gained for effective decision-making in traffic control.
For example, traffic control room operators can use this information to divert traffic and
suggest alternative routes to users. In Figure 2.12(f), road segments requiring attention
are indicated with a black circle, which moves from left to right over a span of 4 hours.
This information is highly beneficial for traffic management.

2.3 Discussoin about PAMI package

In this section, to ensure the practical applicability and accessibility of PF-ECLAT,
we have developed a dedicated Python package, referred to as PAttern MIning (PAMI).
The PAMI serves as a comprehensive Python library designed to facilitate efficient
and scalable pattern mining. The package encompasses the implementation of the PF-
ECLAT algorithm [63], providing researchers and practitioners with a powerful tool for
discovering periodic-frequent patterns in large databases. The PAMI package encapsu-
lates key functionalities necessary for effective application of the PF-ECLAT algorithm.
These include optimized data structures and algorithms that expedite the mining pro-
cess, ensuring computational efficiency even for databases of considerable size. More-
over, PAMI offers a user-friendly Github [64] guide that streamlines the integration
of PF-ECLAT into existing data mining workflows. Its well-documented comprehen-
sive examples guide users through the installation, configuration, and utilization of the
package, ensuring a smooth and intuitive experience.

In addition to the technical aspects, PAMI encourages community engagement and
collaboration. The package is open-source and hosted on a publicly accessible repos-
itory, facilitating contributions, bug reports, and feature requests from the wider data
mining community. This collaborative approach fosters continual improvements, as
users can benefit from the expertise and diverse perspectives of fellow researchers and
practitioners.

2.4 Conclusions

In summary, this chapter introduces the PF-ECLAT algorithm, which efficiently
discovers PF Ps in CTDBs. By incorporating the minSup and maxz Per constraints,
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the algorithm filters out uninteresting patterns. The utilization of the PFP-List struc-
ture further enhances the algorithm’s performance by reducing both runtime and mem-
ory requirements. Experimental evaluations conducted on various real-world and syn-
thetic databases demonstrate that PF-ECLAT outperforms existing algorithms in terms
of PFPM, achieving faster pattern discovery with lower memory usage. The chapter
concludes by presenting two case studies, namely AP analytics and TC analytics, that
highlight the practical utility of the proposed algorithm.

In the next chapter, we discuss the importance of 3Ps and introduce a model of
Partial Periodic Pattern (3P) mining. Additionally, we propose a novel ECLAT-based
algorithm named 3P-ECLAT to discover 3Ps in CTDBs.
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Chapter 3

Towards Efficient Discovery of Partial
Periodic Patterns in Columnar
Temporal Databases

In this chapter, too, the spatial characteristics of the ST Ds, specifically LD, were
not taken into account. Instead, the research focused solely on discovering interesting
patterns based on the temporal characteristics of the patterns. The main objective of
this chapter is to identify 3Ps in CTDBs.

Periodic patterns in a TDB can be classified as full periodic patterns or 3Ps. Full
periodic patterns are monitored strictly within the database, and uninteresting patterns
are discarded based on user-defined constraints such as the max Per. 3Ps, on the other
hand, occur only during specific times and can be found in real-world scenarios. How-
ever, these events will happen regularly.

A classical application of 3P mining is MB analytics. It is used to discover patterns
that occur partially regularly in a TDB. 3Ps reveal that certain items are frequently
purchased together on certain days of the week or at certain times of the day.

Example 9. [f we consider the department store database (see Table 1.3), most of the
customers may purchase bat and ball during the evening hours only and other stan-
dard items during the remaining time of the day. However, these might have happened
regularly. Therefore, we call these types of purchases made only during this particular
time of the day as 3Ps. By identifying these 3 Ps, retailers can make informed decisions
about when to stock these items and how much inventory to keep on hand. They may
also offer special discounts or promotions during these times to encourage customers
to purchase more of these items.

It is often useful to mine 3Ps in TDBs, as they can provide valuable insights that
full periodic patterns may not capture.

In this chapter, we first discuss the model. of 3Ps in TDBs. Next, we discuss
the 3P-ECLAT algorithm, which is designed to identify the complete set of 3Ps in
CTDB. After that, we check the performance of the 3P-ECLAT [31] algorithm against
the state-of-the-art algorithm by considering both synthetic and real-world databases.
Finally, we conclude the chapter by summarizing our findings. This chapter shows the
importance of discovering partial periodic patterns over patterns generated in chapter
2. We proposes a novel model and introduces an algorithm to efficiently discover these
patterns. Finally, we shows the importance of the .
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3.1. THE MODEL OF PARTIAL PERIODIC PATTERN

Table 3.1: Row database Table 3.2: Columnar database

ts | items ts | items items items
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Table 3.3: List of ¢s of an item

item | TS-list
1,4,5,6,9,11,12
2,3,4,6,7,8,9,11,12
1,2,5,6,7,9,10,11,12
3,5,6,7,9,10,11,12
1,3,4

34,58

S| |la|o S a

3.1 The Model of Partial Periodic Pattern

In this section, we first use the few definitions discussed in the previous chapter. We
use the Definition 1 and 2 to discover the sup(X).

Example 10. Consider a set of items [ = {a, b, ¢, d, e, f}, and suppose we have a
hypothetical RTDB generated from I, as depicted in Table 3.1. Without loss of gener-
ality, this RTDB can be represented as a CTDBs as shown in Table 3.2. The ts of each
item in the entire database are shown in Table 3.3. The TDB contains 12 transactions.
Therefore, m= 12. The minimum and maximum ts in this database are 1 and 12, re-
spectively. Therefore, t5,,;, = 1 and tS;a. = 12. In this database, the set of items ‘b’
and ‘c’ forms a pattern, which we represent as ‘bc’ for brevity. Since this pattern con-
tains two items, it is classified as a 2-pattern. The ‘bc’ pattern appears in transactions
withts’s : 2, 6, 7, 9, 11, and 12, which yields a list of ts containing ‘bc’, denoted by
TS* =1{2, 6, 7,9, 11, 12}. The support of ‘bc’, i.e., sup(bc) = |T'S*| = 6.

Definition 7. (Periodic appearance of pattern X [48].) Let ts) and ts), 1 < j <
k < m, be the two consecutive ts in T'SX. An inter-arrival time of X denoted as iat™
= (tsy —ts)). Let IAT = {iat{" iat} - --- ialy }, k = sup(X) — 1, be the list of
all inter-arrival times of X in TDB. An inter-arrival time of X is said to be periodic
(or interesting) if it is no more than the user-specified per. That is, a iat;s € TATY is
said to be periodic if iat;X < per.

Example 11. The pattern ‘bc’ has initially appeared at the ts of 2 and 6. Thus, the
difference between these two ts gives an inter-arrival time of ‘bc’ That is, iat’® =
4 (= 6 — 2). Similarly, other inter-arrival times of ‘bc’ are iaty = 1 (= 7 — 6),
iaty =2 (=9 —7), iatl = 2 (= 11 = 9), and iat? = 1 (= 12 — 11). Therefore, the
resultant [AT"= {4,1,2,2,1}. If the user-specified per = 2, then iaty, iat’, iath
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and iat’® are considered the periodic occurrences of ‘bc’ in the data. In contrast, iat}e
is not considered a periodic occurrence of ‘bc’ because iat}® £ per.

Definition 8. (Period-support of pattern X [48].) Let ﬁT\X be the set of all inter-
arrival times in IATX that have iat™ < per. That is, TATX C IATX such that if 3
iaty € TATX: iaty¥ <per, then iat; € TATX. The PS of X, denoted as PS(X) =
ITATX]|,

Example 12. Continuing with the previous example, I/A\Tbcz {1,2,2,1}. Therefore,
the PS of ‘bc’, i.e. PS(bc) = |IATY| =1{1,2,2,1}| = 4.

Definition 9. (Partial periodic pattern X [48].) A pattern X is said to be a 3P if
PS(X) > minPS, where minPS is the user-specified minimum period-support.

Example 13. Continuing with the previous example, if the user-specified minPS = 4,
then ‘bc’ is a 3P because PS(bc) > minPS. The complete set of 3Ps discovered
from Table 3.3 including I-patterns’(in Figure3.1(f)) are shown in Figure3.2 without
“sample”(i.e., Strikethrough) mark on the text.

Definition 10. (Problem definition.) Given a TDB and the user-specified per and
minPS constraints, find all 3Ps in TDB that have PS no less than minPS. The
PS of a pattern can be expressed as a percentage of (|TDB| — 1). The per can be
expressed as a percentage of (tSmaz — tSmin). In this chapter, we employ the above
definitions of the period and period-support for brevity.

3.2 Proposed Algorithm

Although our proposed algorithm can generate interesting patterns using either RTDB
or CTDB architecture, existing state-of-the-art algorithms are only capable of generat-
ing such patterns in RTDB architecture. As a result, we used RTDB architecture only
for evaluation purposes, even though this required additional effort to transform the data
from a row to a columnar architecture.

This section first describes the procedure for finding one-length 3 Ps (or 1-patterns)
and transforming RTDB to CTDB. Next, we will explain the 3P-ECLAT algorithm to
discover a complete set of 3Ps in CTDBs. The 3P-ECLAT algorithm employs DFS and
the downward closure property (see Property 5) of 3Ps to reduce the vast search space
effectively.

Property 5. (The downward closure property [20].) If Y is a 3P, then ¥ X C Y and
X # 0, X is also a 3P.

3.2.1 3P-ECLAT algorithm
Finding one length partial periodic patterns

The Algorithm 3 describes the procedure to find 1-patterns using 3P-list, which is a
dictionary. We now describe this algorithm’s working using the RTDB shown in Table
3.1. Let minPS= 4 and per = 2.
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3.2. PROPOSED ALGORITHM
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Figure 3.1: Finding 3Ps. (a) after scanning the first transaction, (b) after scanning the
second transaction, (c) after scanning the entire database, and (d) final list of 3 Ps sorted
in descending order of their P.S (or the size of TS-list) with the constraint minPS= 4
and per = 2
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(e)
Figure 3.2: Mining 3Ps using DFS.

We will scan the complete database once to generate 1-3Ps and transforming the
RTDB to CTDB. The scan on the first transaction, “1 : ace”, with ts.,, = 1 inserts the
items a, ¢, and e in the 3P-list. The ts of these items is set to 1 (= S, ). Similarly,
PS and TS values of these items were also set to 0 and 1, respectively (lines 5 and 6
in Algorithm 3). The 3P-list generated after scanning the first transaction is shown in
Figure 3.1(a). The scan on the second transaction, “2 : bc”, with ts,,, = 2 inserts the
new item b into the 3P-list by adding 2 (= ¢s.,,) in their TS-list. Simultaneously, the
PS and TS values were set to 0 and 2, respectively. On the other hand, 2 (= ts.,)
was added to the TS-list of an already existing item, ¢ with P.S and T'S; set to 1 and
2, respectively (lines 7 and 8 in Algorithm 3). The 3P-list generated after scanning the
second transaction is shown in Figure 3.1(b).

A similar process is repeated for the remaining transactions in the database. The
final 3P-list generated after scanning the entire database is shown in Figure 3.1(c). The
patterns e and f are pruned (using the Property 5) from the 3P-list as its P.S value is less
than the user-specified minP.S value (lines 10 and 11 in Algorithm 3). The remaining
patterns in the 3P-list are considered 3Ps and sorted in descending order of their P.S
values. The final 3P-list generated after sorting the 3Ps is shown in Figure 3.1(d).
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Algorithm 3 PartialPeriodicltems(7'D B: temporal database, minPS: period-Support
and per: period)

1: Let 3P-list=(X,TS-list(X)) be a dictionary that records the temporal occurrence
information of a pattern in a TDB. Let 7'S; be a temporary list to record the times-
tamp of the last occurrence of an item in the database. Let P.S be a temporary list
to record the periodic-support of an item in the database. Let ¢ be an item in any
transaction t € T'D B and ts.,, is current time stamp of any item ¢ € ¢.

2: for each transactiont € T'DB do

3:  if ts.,, 18 ¢’s first occurrence then

4: Insert ¢ and its timestamp into the 3P-list.
5: Set T'S[i] = tSeyr and PS* = 0.

6: else

7: Add ¢’s timestamp in the 3P-list.

8: if (tScur — T'Si[i]) < per then

9: Set PS* + +.

10: Set T'S[i] = tScur-

11: for each item 7 in 3P-list do

12:  if (PS" < minPS) then

13: Remove ¢ from 3P-list.

14: Consider the remaining items in the 3P-list as partial periodic items. Sort these

items in support descending order. Let L denote this sorted list of partial periodic
items.

Finding partial periodic patterns using the 3P-list.

Algorithm 4 describes the procedure for finding all 3Ps in a CTDB. We now de-
scribe the workings of this algorithm using the newly generated 3P-list.

We start with item ‘b’, which is the first pattern in the 3P-list (line 2 in Algorithm
4). We record its P.S, as shown in Figure 3.2(a). Since b is a 3P, we move to its
child node ‘b¢’ and generate its TS-list by performing intersection of TS-lists of ‘b’ and
‘¢, i.e., T'S*= TS* N TS (lines 3 and 4 in Algorithm 4). We record PS of ‘bc’, as
shown in Figure 3.2(b). We verify whether ‘bc’ is 3P or uninteresting pattern (line 5 in
Algorithm 4). Since ‘bc’ is 3P, we move to its child node ‘bcd’ and generate its TS-list
by performing intersection of TS-lists of ‘b¢’ and ‘d’ , i.e., T'S*¢ = T'S* N T'S¢. We
record PS‘bed’, as shown in Figure 3.2(c) and identified it as a 3P. We once again,
move to its child node ‘bcda’ and generate its TS-list by performing intersection of TS-
lists of ‘bed’ and ‘a’, i.e., TSP = TS N TS As PS of ‘beda’ is less than the
user-specified minP.S, we will prune the pattern ‘bcda’ from the 3 Ps list as shown in
Figure 3.2(d).

A similar process is repeated for remaining nodes in the set-enumeration tree to find
all 3Ps. The final list of 3Ps generated from Table 3.1 is shown in Figure 3.2(e). The
above approach to finding 3 Ps using the downward closure property is efficient because
it effectively reduces the search space and the computational cost.
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3.3. EXPERIMENTAL RESULTS

Table 3.4: Statistics of the databases

S.No | Database Type Nature leansactlon Length Total transactions
min | avg | max
1 Kosarak Real Sparse | 2 9 2499 990000
2 | T2016d100k | Synthetic | Sparse 1 20 47 199844
3 Congestion Real Sparse 1 58 337 17856
4 Pollution Real Dense | 11 | 460 971 1438

Algorithm 4 3P-ECLAT(3P-List)

1: for each item ¢ in 3P-List do

2: Setpi=0and X =1

3:  for each item j that comes after ¢ in the 3P-list do

4 SetY = X Ujand Tid" = Tid* N Tid’;
5: Calculate Period-support of Y;
6
7
8

if Period-support > minPS then
Add Y to pi and Y is considered as 3P;
3P-ECLAT(pi)

3.3 Experimental Results

In this section, we first compare the 3P-ECLAT against the state-of-the-art algorithm
3P-growth [48,65] and show that our algorithm is not only memory and runtime efficient
but also highly scalable as well. Next, we describe the usefulness of our algorithm with
a case study on air pollution data. Please note that 3P-growth ran out of memory on this
database.

The algorithms 3P-growth and 3P-ECLAT were developed in Python 3.7 and ex-
ecuted on an Intel i5 2.6 GHz, 8GB RAM machine running Ubuntu 18.04 operating
system. The experiments have been conducted using synthetic (T2016d100K) and real-
world (Congestion and Pollution) databases. The statistics of all the above databases
were shown in Table 3.4. The complete evaluation results, databases, and algo-
rithms have been provided through GitHub' to verify the repeatability of our ex-
periments. We are not providing the Congestion databases on GitHub due to confiden-
tiality reasons.

3.3.1 Evaluation of algorithms by varying minPS

In this experiment, we evaluate 3P-growth and 3P-ECLAT algorithms perfor-
mance by varying only the min P.S constraint in each of the databases. The per value in
each of the databases will be set to a particular value. The minPS in the T2016d100K,
Congestion, and Pollution databases have been set at 60%, 50%, and 50%, respectively.

Figure 3.3 shows the number of 3 Ps generated in the T2016d100K, Congestion, and
Pollution databases at different minP.S values. It can be observed that an increase in
minPS has a negative effect on the generation of 3Ps. It is because many patterns fail
to satisfy the increased minPS.

'https://github.com/udayRage/PAMI/tree/main/PAMI/
partialPeriodicPattern/basic
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Figure 3.4: Runtime evaluation of 3P-growth and 3P-ECLAT algorithms at constant
per

Figure 3.4 shows the runtime requirements of 3P-growth and 3P-ECLAT algorithms
in the T2016d 100K, Congestion, and Pollution databases at different minP.S values. It
can be observed that, even though the runtime requirements of both algorithms decrease
with the increase in munPS, the 3P-ECLAT algorithm completed the mining process
much faster than the 3P-growth algorithm in both sparse and dense databases at any
given minPS. More importantly, the 3P-ECLAT algorithm was several times faster
than the 3P-growth algorithm, especially at low minP.S values.

Figure 3.5 shows the memory requirements of 3P-growth and 3P-ECLAT algorithms
in the T2016d100K, Congestion, and Pollution databases at different min P.S values. It
can be observed that, though an increase in minPS resulted in a decrease in memory
requirements for both algorithms, the 3P-ECLAT algorithm has consumed relatively
little memory in all databases at different min P.S values. More importantly, 3P-growth
has taken up a huge amount of memory, especially at low minPS values in all of the
databases, and ran out of memory in the Pollution database.

3.3.2 [Evaluation of algorithms by varying per

In this experiment, we evaluate 3P-growth and 3P-ECLAT algorithms performance
by varying only the per constraint in Congestion database. The minPS is set at 23%
during the evaluation.

Figure 3.6 first graph shows the number of 3 Ps generated in Congestion database at
different per values. It can be observed that an increase in per has increased the number
of 3Ps in both of the algorithms.

Figure 3.6 second graph shows the runtime requirements of 3P-growth and 3P-ECLAT
algorithms in Congestion database at different per values. It can be observed that
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3.3. EXPERIMENTAL RESULTS
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Figure 3.6: Evaluation of 3P-growth and 3P-ECLAT algorithms using Congestion
database

though the runtime requirements of both the algorithms increase with the increase in per
value, the 3P-ECLAT algorithm consumes relatively less runtime than the 3P-growth
algorithm.

Figure 3.6 third graph shows the memory requirements of 3P-growth and 3P-ECLAT
algorithms in Congestion database at different per values. It can be observed that
though the memory requirements of both the algorithms increase with per, the 3P-ECLAT
algorithm consumes very less memory than the 3P-growth algorithm.

3.3.3 Scalability test

The Kosarak database was divided into five portions of 0.2 million transactions in
each part in order to check the performance of 3P-ECLAT against 3P-growth. We have
investigated the performance of 3P-growth and 3P-ECLAT algorithms after accumu-
lating each portion with previous portions. Figure3.7 shows the runtime and memory
requirements of both algorithms at different database sizes (i.e., increasing order of the
size) when minPS= 1 (%) and per = 1 (%). The following two observations can
be drawn from these figures: (¢) runtime and memory requirements of 3P-growth and
3P-ECLAT algorithms increase almost linearly with the increase in database size. (%)
At any given database size, 3P-ECLAT consumes less runtime and memory as com-
pared against the 3P-growth algorithm.
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Figure 3.7: Scalability of 3P-growth and 3P-ECLAT
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3.3.4 A Case Study: Finding Areas Where People Have Been Reg-
ularly Exposed to Hazardous Levels of PM2.5 Pollutant

The Ministry of Environment, Japan, has set up a sensor network system, called SO-
RAMAME, to monitor air pollution throughout Japan, as shown in Figure 3.8(a). The
raw data produced by these sensors, i.e., quantitative CTDB (see Figure 3.8(b)), can
be transformed into a binary CTDB, if the raw data value is >15 (see Figure 3.8 (c)).
The transformed data is provided to 3P-ECLAT algorithm (see Figure 3.8(d)) to iden-
tify all sets of sensor identifiers in which pollution levels are high (see Figure3.8(e)).
The spatial locations of interesting patterns generated from the Pollution database are
visualized in Figure 3.8(f). It can be observed that most of the sensors in this figure
are situated in the southeast of Japan. Thus, it can be inferred that people working or
living in the southeast parts of Japan were periodically exposed to high levels of PM2.5.
Such information may be useful to ecologists in devising policies to control pollution
and improve public health. Please note that more in-depth studies, such as finding high-
polluted areas on weekends or during particular time intervals of a day, can also be
efficiently carried out with our algorithm.
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3.4. DISCUSSOIN ABOUT PAMI PACKAGE

3.4 Discussoin about PAMI package

We have also extended our efforts to ensure the practical applicability and accessi-
bility of the 3P-ECLAT [66] algorithm by incorporating it into the PAMI package. The
PAMI package, named PAttern MIning (PAMI), is a comprehensive Python library de-
signed to facilitate efficient and scalable pattern mining. Within the package, we have
implemented the 3P-ECLAT algorithm, which introduces a novel approach to address
the limitations of the state-of-the-art 3P-growth algorithm. By integrating 3P-ECLAT
into the PAMI package, we provide researchers and practitioners with a powerful tool
for efficient 3P mining in diverse columnar databases.

The PAMI package encapsulates key functionalities necessary for the effective ap-
plication of 3P-ECLAT. It leverages optimized data structures and algorithms that expe-
dite the mining process, ensuring computational efficiency even for large-scale databases.
Researchers and practitioners can benefit from the seamless integration of 3P-ECLAT
into the PAMI package, which provides intuitive well documented analysis of the re-
sults. Through the well-documented comprehensive examples and user-friendly Github
guide offered by PAMI, users can easily navigate the installation, configuration, and
utilization of 3P-ECLAT, fostering a smooth and intuitive experience.

In addition to its technical aspects, PAMI fosters community engagement and col-
laboration. The package is open-source and hosted on a publicly accessible repository,
encouraging contributions, bug reports, and feature requests from the wider data mining
community. This collaborative approach ensures continuous improvements as users can
tap into the expertise and diverse perspectives of fellow researchers and practitioners,
enhancing the overall effectiveness and functionality of 3P-ECLAT within the PAMI
package.

In addition to the technical aspects, PAMI encourages community engagement and
collaboration. The package is open-source and hosted on a publicly accessible repos-
itory, facilitating contributions, bug reports, and feature requests from the wider data
mining community. This collaborative approach fosters continual improvements, as
users can benefit from the expertise and diverse perspectives of fellow researchers and
practitioners.

3.5 Conclusions

This chapter has proposed an efficient algorithm named 3P-ECLAT to find 3Ps in
CTDBs. The performance of the 3P-ECLAT is verified by comparing it with a 3P-
growth algorithm on different real-world and synthetic databases. Experimental analy-
sis shows that 3P-ECLAT exhibits high performance in 3P mining and can obtain all
3 Ps faster and with less memory usage than the state-of-the-art algorithm. We have also
presented a case study to illustrate the usefulness of generated patterns in a real-world
application.

Finally, in the next chapter, we will have considered the spatial characteristics of the
patterns along with their frequency and temporal characteristics, discussed the model
of GPF P mining, and proposed a novel GPFP-Miner algorithm to discover GPF Ps
in GT'SDs.
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Chapter 4

Discovering Geo-referenced
Periodic-Frequent Patterns in
Geo-referenced Time Series Databases

A GTSD is a type of spatiotemporal database [56] that stores time-stamped data
that is associated with specific geographical locations. The geo-referencing component
of this type of database ensures that each data point is accurately located in geographic
space, while the time series component allows for the analysis of temporal patterns and
trends in the data. By combining these two components, a GT'S D provides a powerful
tool for analyzing and visualizing complex spatiotemporal data.

A classical application is air pollution analysis, which involves discovering the set
of sensor identifiers whose pollution levels are periodically at danger levels and who
are close in their proximity.

Example 14. Air pollution is the primary cause of several respiratory diseases. In
Japan, the Atmospheric Environmental Regional Observation System [67] has deployed
a network of sensors across the country to monitor pollution levels in various locations
or spatial identities. This research focuses on identifying the spatial identities of sen-
sors that exceed a user-specified pollution threshold. Figure 4.1 (a) illustrates the spa-
tial locations of the sensors associated with high pollution levels. The data generated
by these sensors, depicted in Figure 4.1 (b), represents a significant volume of infor-
mation commonly referred to as a spatiotemporal big data (GT'SD). By performing
pattern mining on this database, as shown in Figure 4.1 (c), users can identify patterns
of neighboring sensor locations that exhibit high levels of air pollutants, specifically
focusing on pollutants like PM,.5. The acquired patterns from the Pollution database,
depicted in Figure 4.1 (d), provide valuable insights into the spatial regions associated
with high air pollutant concentrations. These patterns play a crucial role in assisting
ecologists and policymakers in formulating effective measures to control air pollutants,
particularly targeting pollutants like P M, 5. By leveraging this information, it becomes
possible to enhance living standards and minimize environmental damage.

Periodic pattern mining algorithms, which were discussed in the earlier chapters,
have been widely used for identifying periodic patterns in spatiotemporal databases.
Unfortunately, those approaches have only considered the support and temporal infor-
mation of patterns while disregarding their spatial information. This is a significant
limitation of the aforementioned algorithms in Chapter 2 and 3.
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Figure 4.1: Air pollution analytics. The terms ‘SensorID’ and ‘P M, 5’ represent ‘Sen-
sor IDentifier’ and ‘value of the air pollutant,” respectively

Table 4.1: Location (or Geo-referential) database

Item | Point Item | Point
p (2,3) s (2,3)
q (6,8) t (1,5)
T (1,4) U (3.4

In this chapter, we discuss the model of GPF Ps in GT'SDs. Next, we discuss
the GPFP-Miner [32] algorithm, which is designed to identify the complete set of
GPFPs in GTSD. After that, we check the performance of the GPFP-Miner [31]
algorithm against the state-of-the-art algorithm by considering both synthetic and real-
world databases. Finally, we conclude the chapter by summarizing our findings.

4.1 Proposed Model

This section begins by introducing the concept of G71'S D, which can be viewed as
a combination of two fundamental data bases: Location database (LD) and time series
data (TSD). LD refers to data associated with specific spatial locations or regions,
such as the geographic coordinates of the items in a database. On the other hand,
TSD captures data collected over time, such as the temporal variations in a database.
To effectively analyze and extract meaningful insights from G'7'S D, we introduce the
model of GPF Ps.

4.1.1 Location database and time series database

Let [ ={iy,i2, -+ ,i,}, n > 1, be a set of items. A LD, denoted as LD, is a collec-
tion of items and their coordinates. That is, LD=U; 7 (i;, Coori].) , Where Coon—j rep-
resent the set of coordinates of an item ¢;€ /. Please note that the coordinates of an item
can represent a point, a line, or a polygon. A TSD, denoted as TSD, is a set of events.
Each event represents, ts and items. That is, TSD=U.er+ Uj_, (ts, i;), where ts €
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Table 4.2: Time series database. The items whose values were equal to O at a particular
timestamp were removed for brevity

ts | items ts | item

1 | paqrs 6 | paqrs

2 | rs,t 7 | pq

3 1 p,qgnru 8 | tu

4 | p,s,t 9 |Inrs

5 |¢qnrstu 10 | p,q,7,8,t,u

R+ represents the timestamp. For the sake of brevity, the TSD can also be represented
by grouping the events with respect to a timestamp as follows: An (irregular) TSD is a
collection of transactions. That is, TSD= {¢;,t;,--- ,tx}, i < j < k < | TSD|, where
tr=(ts,Y), where Y C I is a pattern. and | TSD| represents the size of the database. If
apattern X C Y, it is said that X occurs in transaction ¢;. The ts of this transaction is
denoted as ts; . Let T'S*={ts;,ts¥,--- ,ts3'}, 4, j, k € (1, | TSD|), denote the set
of all ¢s in which the pattern X has appeared in the database.

Example 15. We have a set of sensor identifiers (or items), I, which includes p, q, r, s,
t, and u. The spatial locations of these items are represented in Table 4.1. In Table 4.2,
we have a hypothetical TSD that contains transactions of these items. Each transaction
represents a specific ts and a set of items. For example, in the first transaction, ts is ‘1’,
and the set of items is {p, q, r, s}. This transaction indicates a high level of pollution
for the sensors p, q, v, and s at ts ‘1’. Similar information can be inferred from the
remaining transactions in Table 4.2. The size of this temporal database is given by
| TSD| = 10. Moreover, the complete set of timestamps (ts) at which the pattern ‘r,s’
has occurred in Table 4.2 is represented by T'S™ = {1, 2, 5, 6, 9, 10}.

4.1.2 Model of Geo-referenced Periodic-Frequent Patterns

Both TDBs and TSDs deal with ts data, but TDBs are more general-purpose and
can handle any type of temporal data (such as historical data, ts data, and data with
effective dates), while TSDs are specialized for handling ¢s data exclusively (such as
sensor data, financial data, and log data). In this research, we have used TSDs which
is quite equivalent to TDBs. Therefore, in this section, we use the few definitions
discussed in the Chapter 1. We use the Definition 2, 3, 4, and 5 to discover the PF Ps.

Example 16. The support of ‘r,s’, denoted as sup(rs), is calculated as the cardinality
of TS™, which is sup(rs) = [{1,2,5,6,9,10}| = 6. If the user-specified minSup
is 3, then ‘r,s’ is considered a frequent pattern because sup(rs) > minSup. The
periods for this pattern are: p° = 1 (= 1 — tsjpiia), P° = 1 (= 2 = 1), p§* =
3(=5-2),p) =1(=6-=5),p*=3(=9-6),p =1(=10-9), and
P =0 (=ts Ffinal — 10). Here, tS;ipiiay = O represents the ts of the initial transaction,
and ts yinq = |TSD| = 10 represents the ts of the final transaction in the database. The
periodicity of ‘r,s’, denoted as per(r,s), is calculated as the maximum value among
the periods: = mazximum(1,2,3,1,3,1,0) = 3. If the user-defined max Per is 4, then
the frequent pattern ‘r,s’ is considered a PF P because per(r,s) < max Per.

Definition 11. (Geo-referenced periodic-frequent pattern X.) A PF' P X is considered
a GPF P if the maximum distance between any two items in X is less than or equal to
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Table 4.3: Neighbors

Item | Neighbor list
r S, p,u
s Lpu
)4 LS, u
q
t
u

Lu
q u
LS, pqt

the user-specified max Dist. In other words, X isa GPF P if max(Dist(iy,, iy)|Vip, i, €
X) < maxDist, where Dist() is a distance function (e.g., Euclidean distance). The
condition ensures that the maximum distance between any two items in X is within the
specified threshold max Dist.

Example 17. The pattern ‘r,s’ is a GPF P because the maxDist between the items
r and s, i.e., max(Dist(r, s)), is less than or equal to the specified max Dist. On the
other hand, the pattern rst O rs is not a GPF P because Dist(r,t) is not less than
or equal to max Dist, or in other words, max(Dist(r,s), Dist(r,t), Dist(s,t)) is not
less than or equal to max Dist. The Table 4.3 shows the complete list of neighbors for
all the one-length patterns.

In various research studies, different distance functions, such as the Euclidean and
Geodesic distances, have been utilized to calculate the separation between two items.
However, it is important to consider the user’s or application’s requirements before
choosing an appropriate distance function. For the purpose of this study, we represented
geo-referenced items as points and opted for the Euclidean distance function for the sake
of simplicity.

Definition 12. (Problem definition.) The problem of G PF P mining involves finding all
patterns in a TSD that satisfy certain criteria. Specifically, we aim to discover patterns
with a support value greater than or equal to minSup, a periodicity value less than
or equal to max Per, and a maximum distance between any two items in the pattern
that does not exceed mazx Dist.

4.2 Proposed algorithm

In this section, we commence by outlining the initial approach, a naive algorithm,
employed for the identification of GPF' Ps, highlighting its inherent limitations. Sub-
sequently, we propose a novel strategy aimed at mitigating these limitations by ef-
fectively reducing both the search space and computational overhead associated with
G PF Ps identification. Finally, we introduce our meticulously designed algorithm,
specifically tailored to facilitate the comprehensive detection of all GPF Ps within a
given database.

4.2.1 Naive algorithm

The process of discovering GPF Ps in a GT1'SD typically involves a naive algo-
rithm consisting of two steps. In the first step, all PF Ps are generated from the database
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using the PF-ECLAT algorithm [30]. This step aims to extract patterns that meet the
minSup threshold. In the second step, the generated PF Ps are further processed to
identify GPF Ps by pruning those patterns that are deemed uninteresting based on a
distance measure. However, it is evident that this naive two-step algorithm suffers from
significant inefficiencies. The main issues lie in the vast search space it explores and the
generation of a large number of PF'Ps, many of which may hold little interest to the
user. Consequently, the algorithm’s computational cost becomes impractical, hindering
its usability and effectiveness.

In the subsequent subsection, we present our fundamental concept aimed at signifi-
cantly reducing the search space and computational overhead associated with discover-
ing GPFPs.

4.2.2 Basicidea

When searching for G PF' Ps inside a database, the search space is represented by
an itemset lattice. As a result, the search space has a size of 2Inl — 1 itemsets, where n
represents the total number of items in a database. To identify G PF Ps efficiently, one
tough challenge that must be tackled is reducing this enormous search space. We tackle
this challenging problem by exploiting the downward closure property of GPF Ps (see
Property 6). In particular, we exploit two pruning techniques to reduce the search space
and the computational cost of finding GPF Ps. We now describe these two pruning
techniques.

Definition 13. (Neighborhood-based pruning) Let X and Y be two patterns such that
Y= X Uiy, where i; € I and i; ¢ X. If X is a GPFP, then Y can be a candidate
GPFP if and only if i; is a neighbor of every item in X. That is, Y can be a candidate
GPFP ifand only if Dist(i;,ix) < maxDist, where i), € X.

Example 18. Consider the items and their neighborhood information in Table 4.3. We
start with item r. If r is an interesting pattern, then we perform DFS by considering only
the neighbors of r, i.e., s, p, and w. If ru an interesting pattern, then we perform DFS
(or expand the ru pattern) by considering the common neighbors of r and u, i.e., s and
p. We do not perform DFS by considering the items q and t, which are the neighbors
of u. It is because they are not neighbors of r. Thus, this neighborhood-based pruning
(or expansion) technique can effectively reduce the search space and GPF P mining
practicable in real-world applications.

Definition 14. (Support and Periodicity-based pruning:) If X is not a PF'P, then' Y
D X cannot be a PFP [20].

We use both of these pruning techniques to effectively reduce the search space.

Property 6. (The downward closure property of GPF Ps.) If Y isa GPF P, thenV X
CY and X # 0, X is a GPF P. The correctness of this property is based on Properties
7 and 8.

Property 7. If X C Y, then sup(X) > sup(Y') and per(X )< per(Y).

Property 8. If X isnot a GPFP, then Y D X cannot be a GPF P. The correctness is
based on Property 9 and shown in Lemma 2.
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Example 19. In Table 4.2, prsu is a GPFP. Thus, all its non-empty subsets, i.e.,
rs, Tp, TU, Sp Su, pu, rsp, rsu, rpu and spu must also geo-referenced periodic-
freqeunt patterns. Now consider the pattern pt. Since Dist(p,t) £ maxDist, pt is not
a geo-referenced pattern. Furthermore, all supersets of pt cannot be GPF Ps. Thus,
we can effectively reduce the search space by pruning uninteresting G PF Ps.

Lemma 2. If X is a GPFP, then VY C X andY # 0, Y is also a GPFP. The
correctness is straight forward to prove from Property 9.

Property 9. If X is a GPFP, then every item p € X is a neighbor to another item q
€ X, where p # q. That is, if X is a GPF P, thenVp,q € X, Dist(p,q) < maxDist,
where p # q.

4.2.3 GPFP-Miner

Our GPFP-Miner basically involves the following two steps:

1. Since GPF Ps have the property of downward closure, one-length GPF Ps, also
called 1-patterns, are crucial to finding all interesting G PF'P's efficiently. So, we
start by getting one-length GPF Ps from the database.

2. In the next step, we find the complete set of GPF Ps by recursively mining the
GPF Ps in a DFS fashion.

In the following subsection, we will provide a detailed explanation of both of these
steps.

Finding one-length geo-referenced periodic-frequent patterns

The technique for discovering 1-patterns using GPFP-list, which is a dictionary, is
outlined in Algorithm 5. Now, with the help of the temporal database shown in table
4.2, we will explain how this method works. First, let’s assume that minSup is 3,
max Per 1s 3, and max Dist is 3.

We will scan the complete database once to generate 1-patterns from the TSD. The
scan on the first transaction, “1 : pgrs”, with ts.,,. = 1 inserts the items p, ¢, 7, and s
in the GPFP-list. The timestamps of these items are set to 1 (= ts.,,). Similarly, per
and T'S; values of these items were also set to 1 and 1, respectively (lines 5 and 6 in
Algorithm 5). The GPFP-list generated after scanning the first transaction is shown in
Figure 4.2(a). The scan on the second transaction, “2 : rst”, with ¢s.,,, = 2 inserts the
new item ¢ into the GPFP-list by adding 2 (= ¢s.,,) in their TS-list. Simultaneously, the
per and T'S; values were set to 2 and 2, respectively. On the other hand, 2 (= ts.,,) was
added to the TS-list of already existing items r and s with per and 7'S; set to 1 and 2,
respectively (lines 7 and 8 in Algorithm 5). The GPFP-list generated after scanning the
second transaction is shown in Figure 4.2(b). The other transactions in the database go
through a procedure that is quite similar to this one. The complete GPFP-list obtained
after searching through the full database can be shown in Figure 4.2(c). All the patterns
have satisfied the minSup and maz Per constraints. Hence, no pattern is pruned from
the GPFP-list. All the items on the GPFP-list are the items that are deemed to be one-
length GPF' P and arranged in increasing order of their support values. The complete
GPFP-list can be seen in Figure 4.2(d). Now for each one-length pattern 7; available in
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i TS—-1list per|ts, i TS—-1list per|ts;
pl1 1 1 pl1 1 1
agl1 1 1 gl1 1 1
r |1 1 1 r|1,2 1 2
s |1 1 1 s [1,2 1 2
t]| 2 2| 2

(a) (b)
i TS-1list per|ts; i TS-1list
pl1,3,4,6,7,10 6 3 r|(1,2,3,5,6,9,10
ql|1,3,5,6,7,10 6 3 s |1,2,4,5,6,9,10
r|1,2,3,5,6,9,10 7 3 p|1,3,4,6,7,10
s|1,2,4,5,6,9,10 7 3 ql|1,3,5,6,7,10
t|2,4,5,8,10 5 3 t|2,4,5,8,10
ul1,5,8,10 4 4 ul1,5,8,10

(c) (a)

Figure 4.2: Finding one-length GPF Ps. (a) Content of the list after reading the 1
transaction, (b) after reading the 2" transaction, (c) Final content after reading the
whole database, and (d) The complete list of one-length G PF Ps sorted in increasing
order of support (or the size of ts-list).

the GPFP-list, we calculate the corresponding neighbors list, say N (i;). We will only
focus on immediate supersets whose items have common neighbors with all of the items
in a pattern.

Finding geo-referenced periodic-frequent patterns using the GPFP-list and neigh-
boring lists.

The process of extracting all GPF' Ps from a GT'SD is outlined in Algorithm 6.
We will explain how this algorithm works using the GPFP-list and neighboring lists.

We start with item ‘r’, which is the first pattern in the GPFP-list (line 2 in Algorithm
5). We record its support and periodicity, as shown in Figure 4.3(a). Since ‘r’ is a
G PF P. We check its neighbor list from the Table 4.3, i.e., N (r) = s,p,u. We create pat-
tern r’s childs from the only items present in the N () (Algorithm 6 Line 3). Therefore,
we move to its child node ‘r,s’ and generate its TS-list by performing the intersection of
TS-lists of ‘s’ and ‘r’,i.e., T'S™* = TS"NTS? (lines 4 to 7 in Algorithm 6). We record
support and periodicity of ‘r,s’, as shown in Figure 4.3(b). We verify whether ‘r,s’
is GPF P or an uninteresting pattern (line 8 in Algorithm 6). Since ‘rs’ is GPF P, we
create rs’s neighbor list by performing the intersection of neighbor lists of ‘s’ and ‘r’,
ie., N(r,s) = N(r) N N(s) = p,u and it is shown in Figure 4.3(b). We create pat-
tern 7s’s childs from the only the items present in the N (7). We move to its child node
‘r,s,p” and generate its TS-list by performing the intersection of TS-lists of ‘rs’ and ‘p’,
ie., T'S™P =TS™ NTSP. We record support and periodicity of ‘r,s,p’, as shown in
FPerig. 4.3(c). As the periodicity of ‘r,s,p’ is greater than the user-specified max Per,
we will prune the pattern ‘r,s,p’ from the GPFP-list as shown in Figure 4.3(d). In or-
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Figure 4.3: Mining of GPF Ps.

der to discover GPF Ps, the same procedure is followed for the rest of the nodes in
the set-enumeration tree. The complete set of G PF' Ps obtained from Table 4.2 can be
shown in Figure 4.3(e). The procedure described above for discovering G PF' Ps using
the downward closure property is beneficial because it minimizes the search space and
the computational cost. This makes the proposed approach more efficient.

4.3 Experimental results

This section will begin by demonstrating that G PF'Ps are an order of magnitude
smaller than PFPs, particularly when the minSwup value is low. Next, we demonstrate
that GPFP-Miner is more effective than the current state-of-the-art PF-ECLAT method
in terms of memory, shown in Bytes (bytes), and runtime, shown in seconds. Finally,
we present two separate case studies to illustrate how beneficial the proposed model is
in practice.

4.3.1 Experimental setup

Both the GPFP-Miner and the PF-ECLAT algorithms were programmed in Python
3.7 and ran on a Dell 2U Tower server system that was equipped with 2.30GHz Intel
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Algorithm 5 PeriodicFrequentltems(time series database (7°SD), location database
(LD), minimumsupport(minSup), maximumperiodicity(maxPer), maximum
distance (max Dist):

1:

AN

=

10:
11:
12:
13:
14:
15:
16:
17:

18:

19:

Let’s say that the GPFP-list=(Y, 7'S-list(Y)) is a dictionary that keeps track of
temporal information about a pattern that occurs in a TSD. First, let’s create a
temporary list called 7'S; and use it to keep track of the timestamp of the last time
an item appeared in the database. Next, let’s say that the per list is a temporary
one that we use to keep track of the database item’s periodicity. Finally, let’s use
another temporary list called support to capture the database’s support for an item.

for each transaction t.,, € T'SD do
Set tSeyr = towr tS;
for each item j € t.,,.Y do
if j does not exist in GPFP-list then
Insert j and its timestamp into the GPFP-list. Set 7'S)[j] = ¢S and
per(j] = (tScur — tSinitial);
else
Add j’s timestamp to the GPFP-list. Update 7'S;[j] = tS.. and per[j] =
mazx(per[j], (tscur — T'Sil7]));
for each item j in the GPFP-list do
support[j| = length(T S-list(j))
if support[j] < minSup then
Prune j from the GPFP-list;
else
Calculate per(j] = maz(per(j], (¢ ina — TSI):
if per[j] > maxPer then
Prune j from the GPFP-list.
Sort the remaining items in the GPFP-list in ascending or descending order of their
support.
Scan the LD and find neighbors for each item available in the GPFP-list using the
distance function. Let N (i;) denote the list of neighboring items for an item i;. We
call these items as one-length GPF Ps.
We identify the remaining G PF' Ps for each item available in the neighours list
(N (i;)) by Calling GPFP-Miner(GPFP-list, neighor list of all the items).
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Algorithm 6 GPFP-Miner(GPFP-list, neighborList)

1: for each item j in GPFP-list do
Setpi = and Y = j;
Let neighY = neighborList[j]
for each item ¢ that comes after 5 in the GPFP-list do
if 7 not in neighY then
continue
Set X =Y Uiand TS* =TSY NTS
if sup(T'S*) > minSup and per(T'S*) < max Per then
let neighX = neighborList[i]
ne = netghY NneighX
11: Add X to pi and X is considered as G PF P. update ne with their respective
X to the neighborList;
122 GPFP-Miner(pi)

R e A A

_
e

Xeon Gold 6140 processors. This server computer has 32 gigabytes of RAM and works
with CentOS 7.The experiments have been carried out on both synthetic (T1014D100K)
and real-world (Pollution, and Congestion) databases. The complete evaluation
results, databases, and algorithms have been provided through GitHub' to verify
the repeatability of our experiments..

4.3.2 Evaluation of PF-ECLAT and GPFP-Miner algorithms by vary-
ing minSup constraint

This experiment aims to analyse the performance of the PF-ECLAT and GPFP-Miner
algorithms by varying just the minSup constraint present in each of the databases.
The max Per in Pollution, Congestion, and T10I4D100K databases has been set at
0.07(%), 6(%), and 0.1(%), respectively. The maz Dist in Pollution, Congestion, and
T10I14D100K databases has been set at 25, 35, and 15, respectively.

Figure 4.4 (a) — Figure 4.4 (c) shows the number of GPF Ps and PF Ps gener-
ated by GPFP-Miner and PF-ECLAT respectively, over different databases at a distinct
minSup values. The following are some noteworthy findings that may be derived from
these figures: (i) The increase in minSup has decreased the number of GPF Ps and
PF Ps. More importantly, G PF' Ps were an order of magnitude smaller than the PF'Ps
in any database. (i¢) In any database, the total number of GPF Ps generated is rela-
tively smaller than the total number of PF' Ps at alow minSup value. The GPFP-Miner
pruned all those uninteresting patterns whose items were not neighbors to each other.
More importantly, GPFP-Miner has generated fewer patterns at the low minSup values.

Figure 4.5 (a) — Figure 4.5 (c) shows the runtime requirements of PF-ECLAT and
GPFP-Miner algorithms over different databases at a distinct min.Sup values. It can be
observed that GPFP-Miner is significantly faster than the PF-ECLAT. It is because our
algorithm prunes the uninteresting patterns locally to reduce the search space.

Figure 4.6 (a) — Figure 4.6 (c) shows the memory consumption of both PF-ECLAT
and GPFP-Miner algorithms over different databases at a distinct minSup value. The
following are some noteworthy finding that may be derived from these figures: The

'https://github.com/udayRage/PAMI/tree/main/PAMI/
geoReferencedPeriodicFrequentPattern/basic
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Figure 4.5: Runtime evaluation of PF-ECLAT and GPFP-Miner algorithms at constant
maxPer

increase in minSup has decreased the memory requirements of both PF-ECLAT and
GPFP-Miner algorithms. As a result, both algorithms must spend fewer resources to
generate fewer PF'Ps and GPF Ps.

4.3.3 Evaluation of PF-ECLAT and GPFP-Miner algorithms by vary-
ing max Per constraint

This experiment aims to analyse the performance of the PF-ECLAT and GPFP-Miner
algorithms by altering just the max Per constraint present in each of the databases.
The munSup and max Dist value in each of the databases will be set to a particular
value. The minSup in Pollution, Congestion, and T1014D100K databases has been set
at 15(%), 5(%), and 10(%), respectively. The max Dist in Pollution, Congestion, and
T10I14D100K databases has been set at 15, 25, and 30, respectively.

Figure 4.7 (a) — Figure 4.7 (c) shows the number of GPF Ps and PF Ps gener-
ated by GPFP-Miner and PF-ECLAT respectively, over different databases at distinct
max Per values. The following are some noteworthy findings that may be derived
from these figures: (¢) An increase in the max Per value has increased the number
of GPFPs and PF Ps. It is because most patterns have become periodic due to an
increase in the max Per value. (i7) In any database, the total number of GPF Ps gen-
erated is relatively smaller than the total number of PF Ps at all max Per values. The
GPFP-Miner pruned all those uninteresting patterns whose items were not neighbors to
each other. More importantly, GPFP-Miner has generated fewer patterns at the higher
max Per values.

Figure 4.8 (a) — Figure 4.8 (c) shows the runtime requirements of PF-ECLAT and

56



4.3. EXPERIMENTAL RESULTS

| —©— PF-ECLAT —A— GPFP-Miner

Pollution Congestion T1014D100K
o~ x10% x10% x10%
Q 1.2
z° tr 1 D
= L1 0.8 [
\M; 0.6 [ 081
g 1 0.4 |- 0.6 [~
N ;:—A—A\A\‘ .
g oA o2 T O4fA—A———4
26 28 30 32 34 36 5 6 7 8 9 1 2 3 4 5 6
minSup(%) minSup(%) x10—2 minSup(%) x10—3

Figure 4.6: Memory evaluation of PF-ECLAT and GPFP-Miner algorithms at constant
maxPer
Pollution Congestion T1014D100K
- x10% x10% x10%
£
g 4 -
s 2 |- 2~
2 o i
£
2 0 e o o 0 T 1 ! 0 o o
50 60 70 80 90 100 180185 190 195 200 205210 215 1 2 3 4 5 6
maxPer(%) maxPer(%) maxPer(%)x10—2

| —©— PF-ECLAT —A— GPFP-Miner

Figure 4.7:
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Patterns evaluation of PF-ECLAT and GPFP-Miner algorithms at constant

GPFP-Miner algorithms over different databases at distinct max Per values. It can be
observed that GPFP-Miner is significantly faster than the PFP-Miner. Our algorithm is
pruning the uninteresting patterns locally to reduce the search space.

Figure 4.9 (a) — Figure 4.9 (c) shows the memory consumption of both PF-ECLAT
and GPFP-Miner algorithms over different databases at a distinct maxz Per value. The
following are some noteworthy finding that may be derived from these figures: In-
crease in max Per has increased the memory requirements of both PF-ECLAT and
GPFP-Miner algorithms. As a result, both algorithms have to spend more resources to
generate more PF Ps and GPF Ps.

4.3.4 A case study 1: air pollution analytics

Figure 4.10 shows two patterns colored in green and blue. The parameters
used to generate these patterns were minSup = 500, max Per =4111, and max Dist
=40 (KM). Since PF-ECLAT completely disregards the spatial information of the
items, it considered both patterns equally interesting and found them. More importantly,
many of the patterns discovered by PF-ECLAT were similar to the blue-clored pattern,
where sensors were far apart from each other. In contrast, the proposed GPFP-Miner
has taken into account the spatial information of the items and found only the green-
colored pattern as an interesting pattern. It can be observed that the green-colored
pattern may be found to be more interesting than the blue-colored pattern, as the former
represents a concentrated area. Therefore, one might draw the conclusion that those
who work or live in the vicinity of green-colored regions have been routinely exposed
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Figure 4.9: Memory evaluation of PF-ECLAT and GPFP-Miner algorithms at constant
minSup

to high amounts of P M, 5. For the sake of formulating policies to reduce pollution and
promote public health, such knowledge could prove to be of great use to ecologists.

4.3.5 A case study 2: traffic congestion analytics

Figure 4.11 shows two patterns colored in black and red. The parameters used
to generate these patterns were minSup = 200, maz Per =3211, and max Dist = 80
(K M). Since PF-ECLAT completely disregards the spatial information of the items, it
considered both patterns as equally interesting and found them. More important, many
patterns discovered by PF-ECLAT were similar to black pattern, where roads were far
apart from each other. In contrast, the proposed GPFP-Miner has taken into account the
spatial information of the items and found only the red-colored pattern as an interesting
pattern. It can be observed that the red pattern may be found to be more interesting than
the black pattern as the former represents a concentrated area. The information that our
model gives us can be very helpful when making plans to monitor and diverting the
traffic during peak situations.

4.4 Discussoin about PAMI package

In this section, to ensure the practical applicability and accessibility of GPFP-Miner,
we have developed a dedicated Python package, referred to as PAttern MIning (PAMI).
The PAMI serves as a comprehensive Python library designed to facilitate efficient
and scalable pattern mining. The package encompasses the implementation of the
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Patterns
® {227, 1149, 1020, 2530, 3835, 5052, 5684}
® {3319, 3322, 3334, 3326, 3316, 3336}

Figure 4.10: Interestingness of our patterns

136, 235, 237, 243, 1977}
2 2211, 2322, 100, 2274, 1442, 7593}

Figure 4.11: Interestingness of our patterns
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GPFP-Miner algorithm [68], providing researchers and practitioners with a powerful
tool for discovering geo-referenced periodic-frequent patterns in large databases. The
PAMI package encapsulates key functionalities necessary for effective application of
the GPFP-Miner algorithm. These include optimized data structures and algorithms
that expedite the mining process, ensuring computational efficiency even for databases
of considerable size. Moreover, PAMI offers a user-friendly Github [64] guide that
streamlines the integration of GPFP-Miner into existing data mining workflows. Its
well-documented comprehensive examples guide users through the installation, config-
uration, and utilization of the package, ensuring a smooth and intuitive experience.

In addition to the technical aspects, PAMI encourages community engagement and
collaboration. The package is open-source and hosted on a publicly accessible repos-
itory, facilitating contributions, bug reports, and feature requests from the wider data
mining community. This collaborative approach fosters continual improvements, as
users can benefit from the expertise and diverse perspectives of fellow researchers and
practitioners.

4.5 Conclusions

In this chapter, we provide a flexible model of GPF Ps that could be present in
the GT'SD. In addition, a list-based set enumeration tree methodology that is both
effective and efficient has been developed to discover all the needed GPF' Ps inside a
GTSD. The results of the experiments show that the suggested approach is not only
cost-effective in terms of memory and runtime, but that it also excludes a large number
of patterns that are not interesting by taking into consideration the spatial information
of the items.
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Chapter 5

Conclusion

5.1 Conclusion

This thesis highlights the challenges present in traditional PFPM algorithms in
RTDB architecture. These challenges include the need for multiple scans of the database
and the inability to compute P F'Ps asynchronously. To address these challenges, the
thesis proposes a novel and efficient algorithm in Chapter 2 that considers CTDB archi-
tecture for discovering interesting patterns. The thesis also notes that periodic pattern
mining algorithms can discover both PF'Ps and 3 Ps, each with its own ability to reveal
important insights and patterns in the data. Chapter 3 proposes a novel and efficient al-
gorithm for discovering 3Ps in CTDB architecture. Furthermore, the thesis argues that
earlier models overlooked the spatial or geo-referenced information of patterns, which
is highly important. To address this issue, Chapter 4 proposes a novel and efficient
algorithm for discovering G PF' Ps in CTDB architecture.

Chapter 2 of this thesis introduces an algorithm called PF-ECLAT, which is de-
signed to effectively identify PF'Psin CTDBs. PF'Ps are patterns that recur regularly
over a period of time. The PF-ECLAT algorithm employs two criteria, namely minSup
and max Per, to eliminate uninteresting patterns. By doing so, it is able to focus on the
most relevant patterns and reduce the search space. The algorithm also uses a PFP-List
structure to eliminate non-candidate patterns, resulting in decreased memory usage and
runtime. To evaluate the effectiveness of the PF-ECLAT algorithm, it was compared
to several state-of-the-art algorithms using different real-world and synthetic databases.
The experimental results demonstrate that PE-ECLAT outperforms other algorithms in
terms of achieving faster and more memory-efficient PF'P identification. Finally, two
case studies are presented to demonstrate the usefulness of PF-ECLAT in air pollution
and traffic congestion analytics. In the air pollution case study, the algorithm is used
to identify patterns of pollution that recur regularly over time, enabling more effective
pollution reduction strategies. In the traffic congestion case study, PF-ECLAT is used
to identify regular traffic patterns, which can be used to optimize traffic flow and reduce
congestion. Overall, the PF-ECLAT algorithm offers an effective and efficient way to
identify PF' Ps in CTDBs, with potential applications in a range of fields, including
environmental monitoring and transportation optimization.

Chapter 3 of this thesis introduces the 3P-ECLAT algorithm, which is designed to
identify 3Ps in CTDBs. One of the key challenges in this area is identifying patterns
that recur only within specific intervals of time, which is precisely what 3P-ECLAT is
designed to address. To evaluate the effectiveness of 3P-ECLAT, we conducted a se-

61



ries of experiments on different real-world and synthetic databases. The results of these
experiments demonstrate that 3P-ECLAT outperforms the state-of-the-art 3P-growth al-
gorithm, as it can identify all 3Ps more efficiently and with less memory usage. We
also presented a case study to demonstrate the practical usefulness of the discovered
patterns in a real-world application. In this case study, we applied 3P-ECLAT to a pol-
lution database of sensor recordings to identify the frequently polluted sensor identifiers
during specific time intervals. This information can be used to target pollution reduc-
tion efforts more effectively and efficiently. Overall, our study provides a promising
new approach to identifying 3Ps in CTDBs, with potential applications in fields such
as healthcare, marketing, and environmental monitoring. The 3P-ECLAT algorithm of-
fers a more efficient and effective way to mine these patterns, enabling researchers and
practitioners to extract valuable insights from large databases.

Chapter 4 of this thesis presents a new and adaptable model for identifying G PF' Ps
ina ST Ds or GT'SDs. The model is designed to identify patterns based on geograph-
ical points (or spatial information) and can be applied in various applications, such as
traffic and pollution analytics. This novel model offers a flexible approach to identifying
patterns in the data and can be used to gain valuable insights for real-world applications.
To efficiently identify all relevant G PF' Ps in the database, the authors have devised a
list-based set enumeration tree methodology. This technique has been shown to save
memory and runtime while also eliminating a significant number of irrelevant patterns
by taking into account the spatial information of the items. The approach was tested
on various synthetic and real-world databases, and the experimental results show that
the proposed technique is effective in terms of memory and runtime while minimiz-
ing the number of irrelevant patterns. The authors have demonstrated the usefulness
of the proposed model by applying it to traffic congestion and air pollution analytics.
The results show that the model provides valuable insights and supports data-driven
decision-making.

In summary, this thesis focuses on proposing algorithms for discovering interesting
patterns in ST Ds, specifically through identifying PF Ps, 3Ps, and GPF Ps. Chap-
ter 2 introduces the PF-ECLAT algorithm, which identifies PF'Ps that occur regularly
over a period of time, while Chapter 3 presents the 3P-ECLAT algorithm, which identi-
fies 3 Ps that recur within specific intervals of time. Both algorithms do not consider the
spatial information of the patterns. However, in Chapter 4, we propose a model for iden-
tifying G PF Ps that considers the spatial information of patterns along with frequency
and temporal information. Overall, the proposed algorithms and model are evaluated
on both real-world and synthetic databases and demonstrate improved memory usage
and runtime compared to existing methods. The usefulness of the proposed approaches
is demonstrated through case studies in fields such as environmental monitoring and
transportation optimization.

5.2 Future Research

In recent years, ST Ds have grown in size, which means that processing the data
in a distributed environment may become necessary to handle the computational load.
However, the algorithms proposed in Chapters 2, 3, and 4 are not directly applicable to
discovering interesting patterns in a distributed environment. This is because distributed
computing requires new algorithms that can process the data in parallel across multiple
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5.2. FUTURE RESEARCH

machines and strategies for aggregating the results obtained from each machine. As
a result, future research could explore the development of extended versions of the
algorithms that can process the data in a distributed environment.

Furthermore, although the algorithms presented in Chapters 2, 3, and 4 offer an effi-
cient way of discovering PF' Ps, 3Ps, and G PF Ps, there may be further opportunities
to reduce the computational cost of mining these patterns. For example, future research
could investigate novel measures or techniques that reduce the search space, optimize
the algorithms themselves to further reduce computational costs, or develop new data
structures that are more efficient at storing and retrieving patterns.

Lastly, Chapter 4 focuses on the challenge of discovering G PF Ps using static and
definite data. However, in real-world scenarios, data can be dynamic and uncertain.
Future research could explore the adaptation of the proposed algorithm to data streams
and uncertain databases by developing algorithms that update patterns dynamically and
account for uncertainty. This would involve developing algorithms that can quantita-
tively measure and account for uncertainty in the patterns and dynamically update the
patterns as new data becomes available.
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