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Abstract

The digitization of health records has resulted in electronic health records (EHRs)

becoming a crucial source of information for healthcare providers, offering valuable

insights into patient health and enabling better-informed decision-making. EHR data

are from various sources and are stored in structured or unstructured formats. Together,

these data are the perfect representation of a patient. The multimodality of a patient

representation should be implemented by tools that mimic the basic reasoning of a

healthcare provider when analyzing the status of a patient in a specific period.

Recently, deep learning has shown impressive results in different predictive tasks.

However, those models have two main problems. On the one hand, available models

for transfer learning are not well adapted to the diversity of the data from the medical

field. Jargon and conventional annotations make it harder for traditional NLP to be used

effectively on raw medical narratives. The complexity, variability, and inconsistency of

medical structured data make it challenging to integrate and analyze the data effectively

and to extract meaningful insights using traditional supervised machine learning or en-

semble models. On the other hand, models are monomodal and learn specifically from

a specific single type of data. While these models can be effective at analyzing the

specific type of data they were trained on, they may not be able to capture complex re-

lationships between variables or provide a comprehensive view of a patient’s condition.

To address these limitations, we are proposing a study on optimizing multimodal

deep learning predictive models for electronic health records to ultimately integrate

data from multiple sources such as vitals, medications, diagnoses, lab results, narratives,

images, and other types of EHR data. Using the MIMIC-III (Medical Information Mart

for Intensive Care III) database, a publically available EHR of more than 46,000 adult

patients, we conducted our research as follows:

First, in Chapter 2, knowing that 80% of EHR data are in a free text format, it

was imperative to analyze different methods which have led to transformative advances

in supporting clinical decision-making with NLP. The main question of this chapter is

how the data preprocessing and modeling impact the predictive performance of NLP

of clinical text documents for mortality prediction. The task of outcome prediction is

complex and requires the ability to capture complex patterns in language data. Neu-

ral language modeling pipelines have become increasingly popular due to their ability

to capture such patterns, but there are many different approaches to neural language

modeling, and it is not clear which approach is best for outcome prediction. Therefore,

there is a need to compare different neural language modeling pipelines for outcome

prediction to determine which approach is most effective. This chapter contributes to

the field of NLP by comparing different neural language modeling pipelines for out-

come prediction. The research evaluates several approaches, including, Convolutional

Neural Networks(CNN), long short-term memory (LSTM), and transformers, and uses

several evaluation metrics. The experimental results show that mild processing and

xi



transformer-based modeling perform better than others for outcome prediction, espe-

cially when dealing with long-range dependencies between words. Due to their ability

to capture context-specific information, contextual embeddings like BERT exhibit supe-

rior performance compared to traditional word embeddings like Word2Vec and GloVe.

The significance of this research lies in its contribution to providing valuable guidance

on the most effective approach to neural language modeling for outcome prediction

tasks. Overall, this research advances our understanding of neural language modeling

pipelines for outcome prediction and provides valuable insights for the following step

in this research.

In chapter 3, Inspired by the Fuzzy theory of segmenting and representing con-

tinuous values into delimited ranges to represent a modellable entity, we proposed a

novel approach to transform numerical data into natural language text. We aggregated

the administration data, diagnosis, vital signs, procedures, and laboratories, and gener-

ated artificial narratives from the medical tabular data to describe the patient’s period

of hospitalization. The aim was to unify the accuracy and power of NLP models and

the completeness of medical tabular data. We evaluated our approach on a downstream

NLP text classification task to predict in-hospital mortality and demonstrated the im-

portance and competitiveness of this approach. We compared our results with a tabular

medical data benchmark publication and found that our best NLP model yielded com-

petitive accuracy with tabular medical data. We believe that this approach of generating

artificial narratives can open new paths for using NLP in the medical area for predic-

tive tasks and overcome the variability and incompleteness of structured medical data.

The significance of this research lies in its ability to improve the completeness and ac-

curacy of NLP models in predicting inpatient outcomes while we found a solution for

handling missing values, inconsistent formats, errors, duplicates, and data imbalance.

However, one major limitation of this approach is the biomedical language models are

not adapted to understand biomedical terminologies and handle the new length of the

generated narratives.

Chapter 4 addresses this issue by proposing two new Biomedical language models

trained from scratch to improving the representation of biomedical texts. This chap-

ter reviews recent studies on optimizing language models for biomedical and clinical

text. Challenges and opportunities associated with this task are highlighted and various

techniques are developed to improve performance. Two language models optimized for

biomedical and clinical data are presented, along with their evaluation and performance

on several NLP tasks, including NER, Q&A, and sentence and token classification. The

chapter explores domain-specific pre-training and fine-tuning techniques, including the

importance of transfer learning and different tokenizers in improving semantic repre-

sentation. The significance of hyperparameter fine-tuning is also discussed to improve

model robustness on clinical and biomedical text. The potential impact of optimized

language models on healthcare applications, including electronic health records and

clinical decision support systems, is examined. Ethical considerations and challenges

are highlighted by using raw clinical data from EHR with pre-trained language models.

This chapter provides a step forward in optimizing language models for biomedical and

clinical text and outlines future research directions.



Chapter 1

Introduction

1.1 Overview

The field of healthcare is rapidly evolving and technological advancements have

played a significant role in improving the quality of care provided to patients. With

the increasing digitization of health records, Electronic Health Records (EHRs) have

become a crucial source of information for healthcare providers [2, 3]. EHRs contain a

wealth of patient data, including medical history, lab results, prescriptions, and demo-

graphics. Analyzing this data can provide valuable insights into patient health and help

healthcare providers make better-informed decisions.

The traditional approach to analyzing EHR data has been to use statistical meth-

ods to identify patterns and correlations. However, this approach has limitations, as it

relies on pre-defined rules and assumptions, and is often not able to capture complex

relationships between different variables. With the advent of deep learning techniques,

there is an opportunity to move beyond traditional statistical methods and develop more

sophisticated predictive models [4].

Deep Learning (DL) is a subfield of Machine Learning (ML) that involves training

artificial neural networks to learn from large datasets. Deep learning models are capable

of automatically extracting features from data, making them well-suited to handling

large and complex datasets like EHRs [5]. There are many potential applications of

deep learning in healthcare, including predicting patient outcomes, diagnosing diseases,

and identifying risk factors for certain conditions [6].

In particular, the use of deep learning models to predict patient outcomes based on

EHR data has the potential to revolutionize healthcare by enabling healthcare providers

to identify patients at risk of adverse outcomes and intervene early to prevent them [6].

However, there are several challenges associated with developing deep learning models

for EHR data. First, EHR data is often incomplete and contains missing values, making

it challenging to train models effectively. Second, EHR data is highly heterogeneous,

meaning that different data sources may be recorded in different formats, making it

challenging to integrate them into a single model [7]. Finally, deep learning models

are often considered ”black boxes” because it can be challenging to interpret the results

they produce [8].

Despite these challenges, there have been many successful applications of deep

learning in healthcare, including predicting readmissions after hospitalization [9], iden-

tifying patients at risk of sepsis [10], and predicting outcomes in patients with cystic

fibrosis [11]. These studies have demonstrated the potential of deep learning to provide

1



valuable insights into patient health and improve the quality of care provided.

An accurate and robust EHR data mining approach has several potential applica-

tions, such as personalized medicine, disease prevention, and population health man-

agement. Our study on multimodal EHR data can enable more accurate and compre-

hensive predictive models, leading to improved healthcare outcomes.

1.2 Definitions

1.2.1 Improvement

The term ”Improvement” refers to the process of optimizing the performance of

the predictive models. In the context of deep learning, optimization can involve a data

mining process [12], a model learning technique, or adjusting the model’s parameters

and hyperparameters to minimize the loss function and improve the accuracy of the

predictions.

Several optimization techniques have been developed for deep learning models, in-

cluding gradient descent, stochastic gradient descent, and adaptive learning rate meth-

ods [13]. In healthcare applications, optimizing multimodal deep learning models is

essential to ensure accurate predictions and improve clinical decision-making.

One example of optimization in healthcare is the development of deep learning mod-

els to predict patient outcomes. In a study by Rajkomar et al., a deep learning model

was developed to predict patient mortality using EHR data [14]. The model was opti-

mized using a grid search to find the best hyperparameters for the model, resulting in

improved prediction performance.

1.2.2 Multimodality

The term ”Multimodal” refers to the use of multiple modes or types of data in build-

ing predictive models. In electronic health records, multimodality can refer to integrat-

ing various types of data, such as medical imaging, laboratory test results, clinical notes,

demographics, and medication information, among others [15]. These data types may

be combined to improve the accuracy and reliability of predictive models, as different

types of data may capture various aspects of a patient’s health status. By leveraging

multiple modalities, multimodal models can provide a more comprehensive and holis-

tic understanding of patient health, leading to better clinical decision-making and im-

proved patient outcomes. One example of a multimodal approach is the combination

of medical imaging and clinical data for disease diagnosis and prognosis. In a study by

Chassagnon et al., deep learning models were developed to perform disease quantifi-

cation, staging, and outcome prediction using both computed tomography (CT) images

and clinical data [16]. The multimodal approach improved the prediction performance

compared to models that used only one data type.

Another example is the combination of genomic and clinical data to predict drug

response. In a study by Baptista et al., a multimodal deep learning model was developed

to predict drug response in patients with cancer using genomic and clinical data [17].

The model outperformed traditional machine learning models and demonstrated the

potential for multimodal approaches in precision medicine.

However, developing and optimizing multimodal models for healthcare applications

can be challenging due to the heterogeneity and complexity of EHR data. Data prepro-
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1.2. DEFINITIONS

Figure 1.1: An illustration of EHR data on a patient in ICU from MIMIC3 Database

cessing, feature selection, and model optimization are critical steps in building accurate

and interpretable models. Interpretability is especially important in healthcare applica-

tions, as clinicians need to understand how the model arrived at its predictions in order

to make informed decisions.

1.2.3 EHR

Electronic Health Record(EHR) data refers to the digital record of a patient’s health

information, including their medical history, diagnoses, medications, laboratory test

results, radiology images, and other clinical data [3]. EHRs are created and maintained

by healthcare providers, such as hospitals, clinics, and physician practices, to support

the delivery of high-quality and coordinated patient care.

As shown in Figure 1.1, EHRs data can be collected from a variety of sources, in-

cluding clinical documentation systems, medical devices, and patient-generated data.

The data is typically stored in a structured format that can be easily accessed and ana-

lyzed by healthcare providers, researchers, and other stakeholders.

In the context of this research, EHR data is used to train and evaluate predictive

models that can make predictions about patient outcomes based on multiple sources of

clinical and non-clinical data. The multimodal nature of the data, which may include

imaging data, genetic data, and other types of data in addition to clinical data, presents
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unique challenges and opportunities for machine learning-based approaches.

1.3 Optimization Problem for Multimodal Learning

In deep learning, multi-modal learning refers to the process of training a model to

learn from multiple types of data, such as images, text, and signals. In the medical do-

main, The data used for training and evaluating the model often comes from different

sources and may have different characteristics, which can make the optimization prob-

lem more challenging. Additionally, medical data is often sensitive and private, which

means that data privacy and security must be taken into consideration when developing

and deploying deep-learning models for medical applications This is typically accom-

plished by using a deep neural network architecture that can process multiple modalities

at the same time, such as a multi-modal transformer or a multi-modal neural network.

The loss function in multi-modal learning is typically a combination of multiple

modality-specific loss functions. For example, in image-text retrieval, the loss function

may include a cross-entropy loss for the image modality and a cross-entropy loss for

the text modality. The loss function may also include additional terms such as a regu-

larization term or a term that encourages alignment between the different modalities.

1.4 The Loss Function

The loss function is calculated by comparing the model’s predictions with the true

outputs for each modality. The model’s parameters are then updated in order to mini-

mize the total loss. The optimization problem is defined as finding the set of parameters

that minimize the loss function.

As in chapters 3 and 4 of this dissertation, in a multimodal learning architecture,

various loss functions can be used:

• Joint loss function: The joint loss function combines the loss from multiple

modalities into a single scalar value. It can be defined as:

L(θ) = L1(θ) + L2(θ) + ...+ Ln(θ) (1.1)

Where L1, L2, ..., Ln are the loss functions for each modality, and θ are the model

parameters.

• Modality-specific loss function: Each modality is trained separately and the

modality-specific loss functions are combined to calculate the total loss. For ex-

ample, for an image-text retrieval task, the modality-specific loss function for the

image modality can be defined as a cross-entropy loss:

Limg(θ) = −
∑

i

[yilog(pi) + (1− yi)log(1− pi)] (1.2)

Where yi is the true label and pi is the predicted probability for the ith image.

And for the text modality, it can be defined as:
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1.5. SCOPE AND MOTIVATION OF THE STUDY

Ltext(θ) = −
∑

j

[yjlog(pj) + (1− yj)log(1− pj)] (1.3)

Where yj is the true label and pj is the predicted probability for the jth text.

• Alignment loss function: The alignment loss function calculates the loss by

comparing the different modalities’ output and encouraging alignment between

them. For example, in an image-text retrieval task, the alignment loss function

can be defined as the cosine similarity between the image and text representations:

Lalign(θ) = 1− vimg · vtext
||vimg|| · ||vtext||

(1.4)

Where vimg and vtext are the image and text representations, respectively, and

||vimg|| and ||vtext|| are the L2-norms of the representations.

It’s important to note that the use of these loss functions will depend on the specific

task, the data, and the model architecture. Additionally, in practice, it’s common to use

a combination of different loss functions to improve the performance of the model.

1.5 Scope and Motivation of the Study

There are many potential applications of deep learning in healthcare, including pre-

dicting patient outcomes, diagnosing diseases, and identifying risk factors for certain

conditions. In particular, the use of deep learning models to predict patient outcomes

based on EHR data has the potential to revolutionize healthcare by enabling healthcare

providers to identify patients at risk of adverse outcomes and intervene early to prevent

them.

However, there are several challenges associated with developing deep learning

models for EHR data. First, EHR data is often incomplete and contains missing val-

ues, which can make it challenging to train models effectively. Second, EHR data is

highly heterogeneous, meaning that different data sources may be recorded in differ-

ent formats, making it challenging to integrate them into a single model. Finally, deep

learning models are often considered ”black boxes” because it can be challenging to

interpret the results they produce.

Figure 1.2 illustrates the dissertation’s overall view. One of the biggest challenges

of machine learning in the medical area is the availability of data. The scope of this

dissertation covers the seven green points as we couldn’t proceed with the integration of

the clinical images because the Medical Information Mart for Intensive Care (MIMIC)

dataset that we were using didn’t have associated images for patients. However, the new

version of MIMIC 4 has comprehensive x-ray imaging that can be used to complete this

research in the future.

With all that being said, our research was motivated by the following reasons, which

will be reflected in this dissertation.

1. Unstructured data such as medical narratives are paramount to understand-

ing patients and disease trajectory. Therefore, it is important to analyze the

role of Natural Language Processing in clinical data and assess how they can

be improved to extract comprehensive features from EHRs data.
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Figure 1.2: Illustration of the dissertation’s overall view

2. EHR data, like most real-world data, are characterized by in-domain chal-

lenges that need to be addressed by specific tools and methods. We analyzed

and developed new language models to handle the in-domain challenges of

EHR raw data.

The ultimate goal of this dissertation is to propose optimization methods for predic-

tive models based on data processing and transformation, customization of the existing

models, and hyperparameter fine-tuning. To achieve this target, the following key com-

ponents were studied and used in the proposed methods:

• A data transformation based on fuzzy logic: We are proposing a Fuzzy logic-

based pipeline that generates medical narratives from structured EHR data and

evaluates its performance in predicting patient outcomes. The pipeline includes a

feature selection operation and a reasoning and inference function that generates

medical narratives.

• Biomedical Language Modeling: Biomedical and clinical documents are char-

acterized by various challenges that require in-domain models for effective biomed-

ical text mining. Most of the existing biomedical LM rely on self-attention,

which does not scale to clinical document length due to its space complexity

and quadratic time. We introduce new biomedical language models and their

tokenizers to mitigate with clinical and biomedical text data mining.

In conclusion, the motivation behind this research is to optimize the use of deep

learning models in predicting patient outcomes based on EHR data. Despite the chal-

lenges associated with developing these models, there is significant potential for deep

learning to revolutionize healthcare by enabling healthcare providers to identify pa-

tients at risk of adverse outcomes and intervene early to prevent them. By developing

more sophisticated predictive models, we can unlock the full potential of EHR data and

improve the quality of care provided to patients.
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1.6. DISSERTATION CONTRIBUTIONS

1.6 Dissertation Contributions

This dissertation presents a novel approach to analyzing Electronic Health Record

(EHR) data by integrating multiple sources of data, including clinical, narratives, and

potentially image data. Our work proposes using a comprehensive optimization frame-

work for fine-tuning deep learning models toward a better analysis of multimodal data

and making predictions about patient outcomes. This dissertation’s contributions can

be divided into three main areas:

1. An extensive comparison of Natural Language Processing (NLP) pipelines

for outcome prediction: Our first contribution started with a comprehensive

overview of the different NLP techniques and their effectiveness for outcome

prediction, as well as identifying the most promising approaches for future re-

search. This work evaluates several NLP techniques, including data processing,

rule-based, and machine learning-based approaches, and compares their advan-

tages and downsides in predicting patient outcomes from clinical notes.

2. A novel EHR data transformation mechanism: This research’s second con-

tribution proposes a mechanism to generate clean and comprehensive medical

narratives to describe a patient through a textualization process of the medical

tabular data. This textualization preserves the uncertainty and vagueness inher-

ent in medical data while still allowing for the application of NLP methods and

significantly improves the interpretability of predictions.

3. Optimization of biomedical NLP models:Our third contribution is a compre-

hensive optimization framework for fine-tuning biomedical NLP models that an-

alyze EHR text data. Deep learning models have shown great promise in an-

alyzing EHR data, but they require significant optimization to achieve optimal

performance. Our study proposes a framework that includes techniques such as

hyperparameter tuning, early stopping, and dedicated tokenizer which can signif-

icantly improve the performance of the models and the patient’s representation.

The optimization framework is designed to be flexible and can be applied to a

wide range of deep-learning models and datasets.

Multimodal learning in the medical area has the potential to unlock new knowledge

and provide more accurate and comprehensive insights into patient health and improve

clinical decision-making. One of the paths we recommend for future work is to inte-

grate more data such as images in a Contrastive Language-Image modeling where our

contribution can be evaluated and enhanced with new pretraining model architectures.

1.7 Experimental Setup

This entire research was conducted locally using equipment provided by the labo-

ratory. Most of the experiments were performed on a single computer equipped with

a GPU accelerator. The hardware utilized in our experiments included a GPU Nvidia

RTX3090 with 24GB of memory and an Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz

processor. The software environment was based on an x86 64 Ubuntu 18.04 LTS oper-

ating system, utilizing the Anaconda environment. The CUDA version varied through-

out the experiments from V10.1 to V12. CUDA was employed to leverage GPU ac-

celeration for efficient computations. The experiments made use of the Huggingface
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models, a widely recognized library in the field of NLP. The programming language

employed throughout the study was Python, with the PyTorch framework serving as

the primary DL framework. These details are provided to facilitate the replication and

validation of the experimental results by offering comprehensive information about the

hardware, software, and programming environment utilized in the research. We provide

each chapter with more precise details about their related environment setups.

1.8 Dissertation Outline

The study outlined in this dissertation has several key components. Using the illus-

tration in Figure 1.3, we describe the outline in 5 chapters.

• Chapter 1 gives an overview of the research and introduces its background on

optimization. It also defines key concepts from the dissertation’s title as well

as the scope of the research. We present the challenges and opportunities of

multimodal approaches in the medical area and give our thought on future work.

• Chapter 2 presents a preliminary study conducted on medical narratives in order

to determine the best procedures for data processing and modeling. This work

was necessary to understand from the existing solutions which provide the most

accurate pipeline to handle raw medical text for a task such as an outcome pre-

diction.

• Chapter 3 introduces a novel approach to bridge the gap between medical tabular

data and NLP by transforming tabular data into text using a fuzzy logic method.

This research highlights the need for a new method to handle the downside of

data regularization required by structured data. While our method was evaluated

on an outcome prediction task, we demonstrated a significant improvement in the

interpretability of the generated text using Shapley Values.

• Chapter 4 develops two dedicated biomedical language models. One with a

traditional architecture based on a full attention mechanism while another has

sparse attention that allows the model to encode 8 times the length of regular

transformer-based models. Our goal was to provide an optimized language model

which can understand better raw medical notes. While most of the available

biomedical language models use existing tokenizers, we trained and provided

with our models a byte pair encoding-based tokenizer with the lowest fertility

rate. Our models set new state-of-the-art in different biomedical NLP tasks in-

cluding named entity recognition, question answering, sentence similarity, and

relation extraction.

• Chapter 5 concludes our dissertation by highlighting our contribution, and the

limits of our methods with a high note on the potential future direction of the

research.
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1.8. DISSERTATION OUTLINE

Figure 1.3: Illustration of the outline of the dissertation
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1.9 Publications

The research and experimental outcomes of this dissertation have been presented or

sent for consideration to several peer-reviewed journals and conferences. Chapters 2, 3,

and 4 of the dissertation encompass the findings of several papers published as follows:

Major Journals

1. Mugisha, Chérubin, and Incheon Paik. ”Comparison of Neural Language Mod-

eling Pipelines for Outcome Prediction From Unstructured Medical Text Notes.”

IEEE Access 10 (2022): 16489-16498.

2. Mugisha, Chérubin, and Incheon Paik. ”Bridging the Gap between Medical

Tabular Data and NLP Predictive Models: A Fuzzy-Logic-Based Textualization

Approach.” Electronics 12.8 (2023): 1848.

Major Conferences

1. Mugisha, Chérubin, and Incheon Paik. ”Pneumonia outcome prediction using

structured and unstructured data from EHR.” In 2020 IEEE International Confer-

ence on Bioinformatics and Biomedicine (BIBM), pp. 2640-2646. IEEE, 2020.

2. Mugisha, Chérubin, and Incheon Paik. ”Optimization of Biomedical Language

Model with Optuna and a Sentencepiece Tokenization for NER.” In 2022 IEEE

International Conference on Bioinformatics and Biomedicine (BIBM), pp. 3859-

3861. IEEE, 2022.

3. Mugisha, Chérubin, and Incheon Paik. “Medical Data Textualization using

Fuzzy Logic for NLP Predictive Models”. In 2022 IEEE International Confer-

ence on Consumer Electronics-Asia (ICCE-Asia), IEEE, 2022.

Non-Major Conference

1. Mugisha, Chérubin, and Incheon Paik. ”Comparison of Pre-trained Neural

Language modeling pipelines for patient’s outcome prediction from medical text

notes.” IEICE Technical Report; IEICE Tech. Rep. 121.51.
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Chapter 2

Comparison of Neural Language

Modeling Pipelines For Outcome

Prediction

Motivation and Contribution

The significance of incorporating natural language processing and neural language

modeling methods into clinical informatics research has been increasingly recognized in

recent years and has led to transformative advances to support clinical decision-making.

While statistics have shown that 80% of the information in EHRs is in a free text for-

mat [3]. Generally, clinical NLP systems are developed and evaluated on the basis of

the word, sentence, or document-level annotations that model specific attributes and fea-

tures, such as document content, document section types, named entities, concepts, or

semantics. These methods are applied in information retrieval on both EHRs and elec-

tronic patient-authored text [18]. However, from a clinical perspective, research studies

are typically modeled and evaluated at the patient or population level, such as predicting

treatment response, patient monitoring, and discharge, or commonly for outcome pre-

diction [19]. While medical notes can vehicle information between a multidisciplinary

team, they can aid in patient profiling, augment hospital triage systems, and generate

diagnostic models that detect early-stage chronic disease and ultimately suggest a pre-

diction of patient outcomes [20]. The development of open-source NLP procedures,

toolkits, and models has led to increased adaptability to clinical text to perform various

tasks like outcome prediction.

The main question of this research is how the data preprocessing and modeling im-

pact the predictive performance of NLP of clinical text documents for mortality predic-

tion. Accurate prediction of future outcomes based on past data can help with decision-

making and improve overall performance. However, the task of outcome prediction is

complex and requires the ability to capture complex patterns in language data. Neural

language modeling pipelines have become increasingly popular in recent years due to

their ability to capture such patterns, but there are many different approaches to neural

language modeling, and it is not clear which approach is best for outcome prediction.

Therefore, there is a need to compare different neural language modeling pipelines for

outcome prediction in order to determine which approach is most effective.

This chapter contributes to the field of natural language processing by comparing

different neural language modeling pipelines for outcome prediction. We evaluate sev-
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eral approaches, including recurrent neural networks (RNNs) and long short-term mem-

ory(LSTM), and transformers, and we use several evaluation metrics. Our experimental

results show that mild processing and transformer-based modeling perform better than

others for outcome prediction, especially when dealing with long-range dependencies

between words. We also find that contextual embeddings, such as BERT perform bet-

ter than traditional word embeddings, such as Word2Vec and GloVe, because they can

capture context-specific information. The contribution of this research is significant be-

cause it provides guidance on the most effective approach to neural language modeling

for outcome prediction tasks. This information can be used by practitioners in many

fields, including healthcare, to improve decision-making and overall performance. Ad-

ditionally, the evaluation metrics used in this research can be used as a benchmark for

future research in this area. Overall, this research advances our understanding of neural

language modeling pipelines for outcome prediction and provides valuable insights for

practitioners and researchers alike.

2.1 Introduction

Pneumonia is an infectious disease of the lungs affecting alveoli and caused by

bacteria, fungi, or viruses. Pneumonia can range in seriousness from mild to life-

threatening. It remains the commonest infective reason for admission to intensive care

as well as being the most common secondary infection acquired while in intensive care

Unit (ICU) [21, 22].

Electronic Health Records (EHRs) are health-related information on an individual

created in a health care organization. EHR systems contain structured data such as

demographics, vital signs, laboratory test results, medications, and procedures. They

also have unstructured medical or nonmedical data in a free format, such as imaging

reports or care-provider notes [23]. In medical assessment, it is common and practical

to use all types of data to understand the status of a patient or to predict his outcome.

However, for caregivers, medical notes are of paramount importance.

Within a hospitalization or a clinical visit, a patient might have several note doc-

uments which can constitute a rich and long clinical history. Clinical notes provide a

deep understanding of a patient’s illness because they describe symptoms, clinical his-

tory, reasons for admission, and details of any intervention made by a multidisciplinary

team [24]. With the medical texts representing 80% of the EHR data [3], admission

notes constitute an extensive informative source used by doctors to draw a patient’s

profile within the first 24 hours of admission. It is then crucial to be able to use the

patient’s history and admission description to predict what is likely to happen during

his stay.

In recent years, machine learning algorithms have been increasingly used to predict

the outcome by using structured or unstructured medical data. However, using free-text

notes to achieve such tasks may encounter a lot of challenges. Even though there are

standards [25] when taking medical notes, most of the texts are biased by internal and

conventional writing methods that make generalization harder for resulting models in

a different environment. In addition, medical text notes can be too long to be handled

by conventional natural language processing (NLP) models. Consequently, achieving

good results requires a better algorithm that preprocesses the data and models the de-

terminants of health condition for an overall understanding of a patient’s status.
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2.2. OUTLINE

Although there are different studies on medical text classification, not many have

demonstrated a clear statistical comparison of NLP pipelines to guide researchers in

selecting methods to ensure the best results.

Our main insight was that admission narrative notes have the potential to predict

outcomes only if, in the NLP pipeline, we can find the best combination of preprocess-

ing methods, document representation, and learning models.

The question of this research is what combination of NLP models and preprocessing

methods is appropriate to unlock the information from medical narratives. The present

study aims to use medical pneumonia patient notes, written by a multidisciplinary team

of care providers, to investigate among the dynamic word embeddings and static models

to assess and compare their performance on the outcome prediction of an ICU hospital-

ization. We evaluate the resulting models using admission notes taken within 24 hours.

2.2 Outline

In section 2.1 we provide the background and motivation for the research, dis-

cussing the importance of outcome prediction and the use of neural language modeling

pipelines. We also present the research question and the contribution of this research.

Section 2.3 is a literature review, which discusses previous research on neural lan-

guage modeling for outcome prediction. We also provide an overview of the different

approaches to neural language modeling, including RNNs, LSTMs, transformers, and

contextual and non-contextual embeddings. This section also presents the evaluation

metrics that we use in our experiments.

Section 2.4 describes the methodology of our research, including the dataset used,

the preprocessing steps, and the experimental setup. We provide details on how we

process and created different datasets, train and evaluate the different neural language

modeling pipelines, and we also describe the different models that we use in our exper-

iments.

In section 2.6, we present our experimental results. We compare the performance of

the different neural language modeling pipelines using the evaluation metrics that we

introduced in the literature review section. We also provide a detailed analysis of the

results, discussing the strengths and weaknesses of each approach.

Section 2.7 discusses the implications of our results and provides recommendations

for practitioners who want to use neural language modeling pipelines for outcome pre-

diction. We also discuss the limitations of our research and potential directions for

future research.

Finally, the chapter concludes with a summary of the research and its contributions.

We highlight the main findings and discuss their implications for practitioners and re-

searchers. We also discuss the strengths and limitations of our research and provide

recommendations for future research in this area.

2.3 Background

2.3.1 Traditional Linear Models

Prediction of prognosis to inform decision-making in the ICU has a long history.

Traditionally, statistical methods were widely used to evaluate the survival rate of a
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patient using domain experts’ features. Linear models such as Kaplan–Meier (KM) es-

timator were the most popular combination with Cox proportional hazards regression to

handle regression problems [26]. Using advanced methods based on logistic regression,

Simplified Acute Physiology Score (SAPS) and the Acute Physiologic Assessment and

Chronic Health Evaluation (APACHE) demonstrated a clear improvement in assessing

the disease severity of a hospitalized patient. However, those models use predetermined

features, which greatly limits their applicability in a real situation.

In recent years, those traditional methods have been surpassed by more modern

and accurate algorithms mainly using data-driven models based on machine learning

architectures. Since the linguistic string project [27] in analyzing clinical documents,

most of the work has been conducted around general medical management, treatment,

test and results, patient state, and patient behavior using medical text.

However, it has been more challenging to demonstrate the real usability of nonmed-

ical data. The nature of medical text data requires a combination of steps to unlock

the information embedded in a clinical text (e.g., disease, treatment, patient status) by

transforming the text into structured medical data. The automation of this process and

the efficiency of models to perform tasks such as clinical text classification has been

investigated [24].

2.3.2 ML Models and Documents Preprocessing

Currently, ML techniques have shown a major improvement for prediction in the

general domain and particularly in the medical domain. They can perform better using

either structured and unstructured data or even both through an ensemble of machine

learning processes [23, 28]. An NLP task starts with a preprocessing stage, to extract

useful information and structure the raw text into a format that can make use of auto-

mated computing power.

A review [29] conducted on 67 publications from 2000 to 2015 has shown that

extracting information from the EHR narratives can improve case detection for classifi-

cation tasks. While this process can use different techniques of information extraction,

67% of the studies incorporated rule-based, 24% used keywords, and only 9%, include

machine learning in their approach. However, this trend has changed and a recent re-

view [30] shows that machine learning-based methods are more used. The medical data

transformation stage is challenging for messy medical notes because preprocessing can

clean out significant information that is clinically important to predict the outcome ac-

curately [31, 32].

To process medical text, Authors have been using the Unified Medical Language

System (UMLS) in order to reduce ambiguity from abbreviations and conventional an-

notations. However, according to Liu et al. [33], 31% of UMLS abbreviations have

multiple meanings. This can be resolved by computing the proximity of the abbrevia-

tion to its expanded form and replacing it with the most suitable term. This abbreviation

disambiguation pipeline has brought a lot of controversy among the community and led

to the creation of several resources for different data.

In NLP, deep learning methods such as Long Short Term Memory (LSTM) and

its variants use a preprocessing pipeline with a filtering process based on predefined

controlled vocabulary terms before transforming data into training vectors [34, 35].In

this recent study [36], the authors propose an online medical pre-diagnosis support in

which semantic and sequential features are extracted from a patient’s inputs using a
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2.3. BACKGROUND

CNN-RNN-based architecture model to predict a diagnosis.

Geraci et al. proposed a neural network to extract phenotype information from

electronic medical record(EMR) text notes [37]. Their goal was to identify suitable

candidates for medical research using doctors’ narratives within a supervised learning

process. They extract useful information through a Document Term Matrix (DTM) us-

ing the TF-IDF algorithm. Their results show that NLP can help to identify criteria for

models to perform better for a task such as classification. Wang et al. [38] illustrated

a paradigm of clinical text classification using deep representation and weak supervi-

sion. Their work demonstrated that it could be possible to use a deep neural network

like CNN and outperform traditional NLP rule-based algorithms. Their approach also

compared the importance of using word embeddings over count vector algorithms such

as TF-IDF. However, their method has limitations because the model is trained from

scratch, it requires a lot of training data. The input size is also dictated by the word

embedding methods, which are usually unsuitable for long text like medical narratives.

Authors have tried to tackle this problem in recent literature by using more sophis-

ticated NLP models. For example, models like Bidirectional Encoder Representations

from Transformers (BERT) [39]have shown impressive results from an architecture of

multilayer encoder models, to learn words and document representation more deeply. In

the medical area, researchers have been trying to leverage the knowledge from general

documents to pre-train specific-domain models for higher performance for medical-

related tasks [40, 41].

Despite that evolution in NLP, we still have many publications that use either ad-

vanced machine learning models or archaic models. Although most of these studies

claim to have achieved the best scores in various tasks by using very different ap-

proaches, we can only wonder if there is no room for improvement. To our knowl-

edge, no other research trying to elucidate a fair comparison of those methods has been

published.

2.3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of artificial neural network that is

specifically designed for processing sequential data. The key feature of RNNs is their

ability to maintain a hidden state that can be updated and passed on to the next time

step, allowing them to capture the temporal dependencies in the data. This makes RNNs

particularly useful for tasks such as speech recognition, language translation, and time

series prediction.

The core mathematical formula for an RNN can be expressed as:

ht = f (Whhht−1 +Wxhxt + bh) (2.1)

Where ht represents the hidden state at time step t, xt represents the input at time

step t, Whh, Wxh, and bh represent the weight matrices and bias vector for the hidden

layer, and f is the activation function. The hidden state at each time step is updated

based on the previous hidden state, the current input, and the learned weights.

RNNs have been widely used in biomedical applications, including medical im-

age analysis, electronic health record analysis, and disease diagnosis. For example,

RNNs have been used to classify electroencephalography (EEG) signals for detecting

epileptic seizures [42], predicting the progression of Alzheimer’s disease using MRI

scans [43], and predicting hospital readmissions based on patient data from electronic
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health records [44]. RNNs have also been used for drug discovery and development,

such as predicting drug efficacy and toxicity based on molecular structure and identify-

ing potential drug candidates from large databases [45].

Despite their usefulness, RNNs have limitations, including the issue of vanishing

gradients and the lack of memory capacity, as discussed earlier. However, recent ad-

vancements such as Long Short-Term Memory (LSTM) and Gated Recurrent Units

(GRUs) have been developed to address these issues and improve the performance of

RNNs in sequence modeling tasks.

2.3.4 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN)

that was designed to address the vanishing gradients problem and the lack of memory

capacity in traditional RNNs [46]. LSTMs are particularly effective for processing

sequential data with long-term dependencies, making them useful for natural language

processing, speech recognition, and time series prediction.

The key feature of LSTMs is the use of memory cells that can store information

over long periods of time. The memory cells are controlled by gates that regulate the

flow of information in and out of the cells. The gates are composed of the sigmoid

and element-wise multiplication operations, allowing the LSTM to forget or remember

information from previous time steps selectively.

One way to represent the central mathematical formula of an LSTM cell is by:

ft = σ (Wf [ht−1, xt] + bf ) it = σ (Wi[ht−1, xt] + bi) = (2.2)

C̃t = tanh (WC [ht− 1, xt] + bC) Ct = ft ∗ Ct−1 + it ∗ C̃t = (2.3)

ot = σ (Wo[ht− 1, xt] + bo) ht = ot ∗ tanh(Ct) (2.4)

where ht is the output at time step t, xt is the input at time step t, Ct represents

the memory cell at time step t, and ft, it, and ot represent the forget, input, and output

gates, respectively. The weight matrices and bias vectors are denoted by Wf , Wi, WC ,

Wo, bf , bi, bC , and bo. The sigmoid function σ and the hyperbolic tangent function tanh
are the activation functions used in the LSTM.

LSTMs have been used in various biomedical applications, such as electrocardio-

gram (ECG) signal analysis, predicting patient outcomes in intensive care units, and

predicting drug-drug interactions. For example, LSTMs have been used to predict the

onset of atrial fibrillation using ECG signals [47], predict patient mortality and length of

stay in intensive care units based on electronic health record data, and predict drug-drug

interactions based on molecular structures.

Compared to traditional RNNs, LSTMs have demonstrated superior performance in

modeling long-term dependencies and handling vanishing gradients, making them more

effective for text modeling tasks. Additionally, LSTMs are more interpretable, allowing

researchers to better understand the reasoning behind the model’s predictions.
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2.3. BACKGROUND

2.3.5 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a type of neural network that have been

widely used in image and video processing tasks. However, they have also shown

great potential in Natural Language Processing (NLP), including text classification and

sentiment analysis tasks.

The key idea behind CNNs is to use filters (also called kernels) to convolve over a

fixed-length window of input data, producing a feature map that captures local patterns

in the data. These feature maps are then pooled to reduce the dimensionality and extract

the most relevant features for downstream tasks.

Mathematically, a 1D CNN can be expressed as follows:

hi = f (Wxi:i+k−1 + b) (2.5)

Here, xi:i+k−1 represents the input data of length k starting from the i-th position,

W is the weight matrix, b is the bias term, and f is the activation function. The resulting

output hi is the feature map obtained by convolving the filter over the input window.

In the context of biomedical text modeling, CNNs have been applied to various

tasks such as disease classification, drug identification, and medical image captioning.

For instance, in the task of identifying diseases from clinical text, CNNs have been

shown to outperform traditional machine learning methods, achieving state-of-the-art

performance [48].

Overall, CNNs have demonstrated their effectiveness in NLP tasks by capturing

local patterns in the data and extracting relevant features, making them a powerful tool

for biomedical text modeling.

2.3.6 Embeddings

In NLP, word embeddings are a way to represent words as vectors in a high-dimensional

space, where each dimension represents a semantic feature of the word. Word embed-

dings are used to capture the semantic and syntactic relationships between words, and

are commonly used in NLP tasks such as text classification, sentiment analysis, and

language translation [49].

Traditional embeddings for language modeling are a type of representation of words

in a low-dimensional space that aim to capture the semantic and syntactic similarities

between them. There are several types of traditional embeddings, such as one-hot en-

coding, count-based methods (e.g., Term Frequency-inverse Document Frequency (TF-

IDF), and neural network-based embeddings (e.g., Word2Vec, GloVe).

One-hot encoding represents each word as a sparse vector with a single ”1” in the

position corresponding to its index in a vocabulary and ”0”s elsewhere. Count-based

methods represent each word by its frequency of occurrence in a corpus, taking into

account the frequency of other words in the same document or corpus. Neural network-

based embeddings use a neural network to learn a dense representation of words in a

low-dimensional space, where semantically similar words are mapped to nearby points.

Word2Vec [49] and GloVe [50] are two popular neural network-based embedding meth-

ods that use different techniques for training the embeddings.

The most commonly used approach for generating word embeddings is the Word2Vec

algorithm, which uses a neural network to learn the embedding vectors from a large

corpus of text. The neural network is trained to predict the context words surrounding
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a target word, or to predict the target word from its context words, and the resulting

weight matrix of the neural network represents the word embeddings.

Mathematically, given a vocabulary of N words, each word is represented by a d-

dimensional vector, where d is the dimensionality of the embedding space. Let wi

denote the ith word in the vocabulary, and let vi be its corresponding d-dimensional

embedding vector. The goal of the Word2Vec algorithm is to learn the embedding

vectors such that the dot product of two vectors captures the similarity between the

corresponding words. This is achieved by minimizing the negative log-likelihood of

observing the context words given the target word, or vice versa:

The Skip-gram model of word2vec can be written mathematically as:

T
∑

t=1

∑

−m≤j≤m,j ̸=0

logP (wt+j | wt) (2.6)

where T is the total number of words in the corpus, m is the window size (i.e., the

maximum distance between the predicted word and the context words), wt is the target

word, and wt+j is the context word. P (wt+j | wt) is the conditional probability of

observing the context word wt+j given the target word wt, which is modeled using the

softmax function and the dot product of the word vectors:

P (wt+j | wt) =
exp(vTwt+j

uwt
)

∑W

w=1 exp(v
T
wuwt

)
(2.7)

where vw is the vector representation (i.e., embedding) of word w, and V is the

vocabulary of the corpus. The objective of the Skip-gram model is to maximize the

average log probability of predicting the context words given the target words:

1

T

T
∑

t=1

∑

−m≤j≤m,j ̸=0

logP (wt+j | wt) (2.8)

This objective can be optimized using stochastic gradient descent (SGD) and back-

propagation through time (BPTT) to update the word vectors during training.

2.4 Methods and Materials

The task of prediction has been extensively researched in academia. Establishing

a relationship between the copious amounts of clinical data and the outcome has the

potential to enhance our understanding of life and the factors involved in its end. In the

ICU, time could be a crucial factor, and medical notes offer a viable option to identify

critical patient issues when other sources are unavailable, providing valuable and easily

interpretable information. The concise descriptions of patients contained in text nar-

ratives can inform caregivers about their status upon admission to the ICU. However,

these narratives may include unnecessary information, such as duplicates of structured

data or repetition from different contributors, making it difficult to model them for prog-

nosis or prediction. Machine learning and NLP have proven to be incredibly adept at

learning from even the messiest of data, with the potential to produce model outputs.

Nonetheless, constructing a consistent and valuable model requires a profound under-

standing of the data, including what preprocessing steps are necessary and what model
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2.4. METHODS AND MATERIALS

architecture is best suited for the data.

2.4.1 Study Workflow Diagram

This research was conducted in several steps consisting of three main processes

illustrated in Fig. 2.1. A summarized workflow for the study is as follows:

1. Step1: Data sampling and selection from a large dataset of MIMIC notes.

2. Step2: Data preprocessing through a light(A), thorough(B), and extreme(C) clean-

ing performed by extracting medical entities, producing three separate datasets.

3. Step3: Use of various embeddings to train different NLP classifier models. α, β,

and γ illustrate different embeddings for each model. α used Global Vectors for

the three datasets, β used CountVector and TF-IDF from the NER dataset, while

γ used BERT embeddings for all three datasets

Figure 2.1: Study Framework.

Detailed descriptions of each of these steps are provided in the following sections.

2.4.2 Data Cleaning

Data cleaning refers to steps that we took to standardize our data and to remove text

and characters that are not relevant to be left with a clean text dataset that is ready to be

analyzed.

Authors have suggested many methods of text data cleaning. Most of the NLP

cleaning tasks are based on basic rules such as converting text to lowercase, regular ex-

pression and word replacement, punctuation, and nonalphanumeric character removal.
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Advanced preprocessing will include more tasks such as stop-words and tokenization,

stemming and lemmatization, word tagging, or Named Entity Recognition (NER). All

of these will depend on the data, whether it has a dictionary or not, or simply the NLP

task we want to perform. For data privacy, an illustration sample of the cleaning results

is provided as a reference in Fig. 2.2. This table shows an example of the transforma-

tion of the raw data (first column), through a cleaning process, producing three different

datasets A,B, and C. To create our three datasets and analyze in detail the impact of each

cleaning approach, especially for medical notes, we proceed as follows:

Minor Cleaning

This cleaning task follows the basic rules of the NLP cleaning task utilizing the nat-

ural language toolkit (NLTK). For case sensitivity, we converted all text into lowercase

and used regular expressions to remove punctuation extra white spaces, line breaks, and

nonregular expressions. In addition, We utilized the Stop-words dictionary to filter out

irrelevant entities.

Thorough Cleaning

To take our cleaning process even further, and harmonize clinical abbreviations

and acronyms, we manually built up a matching dictionary of 80 terms. Using the

UMLS [51, 52] with its metathesaurus inventory, we selected the top used acronyms in

medical notes presented in these studies [53,54] and added predominant risk factors for

pneumonia such as acute respiratory distress syndrome (ARDS) and acute respiratory

failure (ARF) [55, 56]. We also removed de-identification characters and harmonized

typos and conventional spellings (e.g., pt, dr, W/O). These two cleansing processes are

suitable for the emergent bidirectional models because their tokenization uses a word-

piece technique and does not need a deep cleaning.

Named Entity Recognition

Narratives can be very long and full of information for which it could be necessary

to filter out domain-related data. NER has shown the ability to process data semantically

by identifying and categorizing key information (entities) in text [57–59]. Traditionally,

dictionary NER-based models have been used for text data mining, and recently, deep

learning-based models have shown outstanding progress leveraging pretrained language

models. For our case, we addressed this step as sentence-level biomedical information

extraction tasks. The biomedical language representation model for biomedical text

mining (BioBERT) [40] is a domain-specific language model that has been trained on

medical text data. BioBERT NER (BERN) [60] is one of its modules for recognizing

biomedical entities and discovering new entities. We used BERN to extract entities

related to disease, drugs/chemicals, genes/proteins, and species. However, the resulting

entities are independent of each other, so they can only be used by nonsequential models

and their association would be considered as correlated features.
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2.5. NLP MODELS USED IN THE STUDY

Figure 2.2: Illustration of the three types of data cleaning.

2.5 NLP Models Used in the Study

In this study, we utilized various NLP models, ranging from traditional to modern

ones, to ensure a comprehensive comparison. In the medical field, count-vector-based

models, word-embedding-based models, and transformer-based models have been com-

monly used in NLP tasks. To conduct a fair comparison, we employed all of these

models and prepared the data accordingly.

2.5.1 Text Representation Techniques

To transform the raw text into a machine-understandable format, we used different

text encoding techniques, including:

Bag of Words (BOW)

BOW is a statistical method that represents text by the frequency of occurrence of

each word or sentence in a document [61]. BOW has been widely used in text classifi-

cation [62,63] due to its effectiveness in keyword-based classification. However, it only

represents words in a one-dimensional vector and lacks semantic and syntactic informa-

tion. We hypothesized that discriminative terms could be identified through term fre-

quency counting. The CountVectorizer, a low-level one-hot encoder, converts text into

a vector based on the frequency of each term in the entire document. This approach can

be effective if each class has distinctive identifying terms. Another approach, the Term

Frequency-Inverse Document Frequency (TF-IDF) measures the relevance of a given

term by multiplying its frequency by the logarithm of the inverse document frequency

of that term across the entire corpus.

xij = TFij ∗ log(|J |/TFij) (2.9)
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where TFij is the term frequency and J is the number of documents in the corpus.

TF-IDF is a more efficient technique compared to other methods since it scales up the

importance of rare terms and reduces the significance of frequently occurring words

like ”patient” in our context. For our dataset, which involved ignoring or breaking the

order of words (such as NER), we utilized both Count Vectorizer and TFIDF Encoder.

Furthermore, we experimented with varying the vocabulary size between 1000 and 5000

words.

Global Vectors for Word Representation

To fully capture the various dimensions of text data, a model that can vectorize text

based on precise syntactic and semantic word relationships must be employed. Global

Vectors for Word Representation (GloVe) [50] represents words as real-valued vectors

in a vector space with relatively low dimensions compared to their vocabulary size. As

a result, words that are semantically and syntactically similar will be closer in the vector

space. This approach differs from previous embeddings like Word2Vec [64], where the

frequency of co-occurrences within context windows is crucial for semantic information

to be retained. For our study, we assumed that frequent co-occurring words are critical

in determining the outcome, and the global corpus statistics are already embedded in

the GloVe vectors. We obtained pre-trained word vectors and used them as our word

embeddings for training a sequence model.

BERT Embeddings

BERT is a word vector representation that is contextualized, meaning it creates dif-

ferent vectors for a word depending on the context it is used in. Its encoding is done by

the transformer encoder, which captures the relationships between distant words more

efficiently than traditional bidirectional encoders, thus resulting in higher-dimensional

space. It can encode any words or subwords, using its position in the input sequence,

and utilizes a vocabulary size of more than 30000 tokens. In addition, BERT provides

a [CLS] token to each sequence, which can be used for a classification task. In the

biomedical text, subword utilization has an advantage as it enables the encoding of

uncommon medical terminologies more accurately.

2.5.2 Learning Models

Recurrent Networks

In the realm of deep learning, recurrent neural networks (RNNs) have traditionally

been applied to time series data, including sound and monitoring data in medical con-

texts [65]. However, standard RNNs are often slow and can suffer from the vanishing or

exploding gradient problem when dealing with long sequences [66]. To address these

issues, researchers have developed variants of RNNs, such as LSTMs, that can handle

longer sequential inputs and bidirectional dependencies through attention mechanisms

like BiLSTMs [67]. These models employ an encoder component for classification

tasks, where multiple recurrent cells process each input vector and propagate it forward.

ht = f(W (hh)ht−1 +W (hx)xt) (2.10)
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2.5. NLP MODELS USED IN THE STUDY

Hidden states ht are computed by applying some weights w(hh) on the previous input

vector xi where i is the order of the input words. For the output, a decoder part will

calculate a vector where each value will represent a probability score for each class.

yt = SoftMax(W sht) (2.11)

Here, ht represents the output of the encoder for an input i, and W s is the respective

weight applied by the decoder before feeding to a SoftMax function [68].

Transformer

RNNs and LSTMs suffer from slowness because they require sequential process-

ing of data. However, transformer-based models can take advantage of the progress in

computing technology and perform parallel processing, allowing them to learn more

quickly. In the field of medical text analysis, researchers have proposed several lan-

guage models based on the knowledge gained from models like BERT. For our study,

we specifically utilized ClinicalBERT and BioBERT, which are domain-specific models

for biomedical text. Despite their domain specificity, these models were pre-trained on

different data. BioBERT was initialized using BERT weights and trained on PubMed

abstracts and Central full-text articles, while ClinicalBERT utilized BioBERT weights

and was pre-trained on MIMIC medical notes. To use these models for our classifica-

tion task, we fine-tuned their weights and tried different approaches suggested by the

authors of [39] for classification using the [CLS] token. For our study, we obtained a

sentence embedding vector by vector-wise summation of the last four layers and used it

as an input to train a logistic regression classifier, which computed a binary probability.

P (outcome = 1|hn) = ArgMax(Whn), (2.12)

where hn is the averaged output of n hidden layers and W is the parameter matrix

of the classifier.

2.5.3 Experiment Design

Our experimental design involved using free-text narratives from the MIMIC-III

database to develop a model for predicting a binary outcome through the NLP process,

starting from the cleaning stage and proceeding to prediction. As illustrated in Fig. 2.1,

our experiment was comprised of three main stages.

The first stage involved data gathering and selection, whereby only patients with

pneumonia as the primary disease were chosen for our experiment.

The second stage was related to data preprocessing, which aimed to enhance data

quality and prepare it for models. To this end, we proposed three cleaning methods

that resulted in three distinct datasets, which we refer to as set A, B, and C. These sets

were generated using minor cleaning, thorough cleaning, and medical entity extraction

(NER).

The third stage was focused on optimizing the NLP machine learning models. In

this study, we evaluated the performance of different machine learning algorithms using

both static and contextualized word embeddings.
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Static Word Embeddings

The first method we used in this study is static word embeddings, which assign a

single vector to each word. These vectors are dense and have lower dimensionality

compared to the vocabulary size. We utilized two vectorization techniques, namely

count vectorization and TF-IDF, to generate simple document vectors. However, these

models do not consider the context and meaning of a word in a document. Therefore,

they are suitable for bag-of-words representations, such as those obtained from NER

methods, which do not have any sequential relationship. To improve the discrimina-

tion of our classification, we used n-gram (n = 1) vectors for medical terms with low

frequency. We passed the resulting vectors to a logistic regression model and set the

maximum number of iterations to 5000, the solver to liblinear, and other parameters to

their default values.

For a more advanced static word embedding method, we utilized Global vectors

for word representation (GloVe) [50]. These pretrained word embedding vectors in-

clude the sequential dimension and were trained on a Wikipedia dataset. Each of the

approximately 6000 words is represented by a vector of size 300. These embeddings

are suitable for sequential models such as LSTM and BiLSTM.

Dynamic Word Embeddings

To analyze the importance of contextualized word embeddings for medical free text,

we relied on 12 layers of language representation models (BERT, BioBERT, and Clin-

icalBERT). To handle long narratives, we shrunk them into small sentences of 380

words, to leave some room for the tokenization process that will output 512 tokens.

2.5.4 Experimental Setup

Our hypothesis was to test the effectiveness of using text notes for predicting out-

comes by making predictions as soon as a patient is admitted to the ICU. To test this,

we created a test set using only admission notes. However, we found that the database

did not have any tags to identify admission narratives, so we utilized SQL queries to

filter admission notes based on certain criteria, such as uniqueness per admission ID,

and taken by a nurse within the first 24 hours. We sampled this set as the test set and

split the rest into a 90% training set and a 10% validation set to have a separate valida-

tion set. The training and validation sets consisted of progress, nursing, and procedure

notes.

One limitation of contextualized encoding is that it has a restriction on sentence

length. Medical narratives are typically lengthy and do not indicate which part contains

the most relevant information. Thus, we had to truncate each long note to a maxi-

mum size of 380 words to use in all embeddings. As a result, our dataset changed from

85,085 long notes to 1,101,524 notes, with each note producing nearly 12 small consec-

utive notes that we labeled as their original narratives. Although we trained these notes

separately, we averaged the predicted classes to calculate the loss. We will describe the

distribution of our datasets in the results section (Table 2.2).
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2.6 Results

For a fair comparison, given the low mortality rate in the data (29%), we calculated

the accuracy in terms of sensitivity and specificity, respectively by recall and preci-

sion metrics. As an overall evaluation metric, we reported the F1-scores and balanced

accuracy

(
1

2
∗ TP

P
∗ TN

N
) (2.13)

We reported results with Matthews correlation coefficient (MCC) metrics. MCC

takes into account true positives, true negatives, false positives, and false negatives,

providing a more balanced measure of classification performance than metrics such as

accuracy, precision, and recall, especially when the classes are imbalanced like in our

case.

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.14)

In contrast, we evaluated each model with different datasets resulting from our

cleaning methods. This evaluation was conducted on the aforementioned test set made

from admission notes. The scores demonstrate how well each model with a particular

preprocessing can predict the outcome using the information described by admission

notes.

Table 2.1: Evaluation and comparison of BOW-based models. A logistic regression

classifier used a unigram representation from count-vectorizer and TF-IDF of 1000 and

5000 vocabulary size, respectively.

Vectorization Accuracy Precision Recall Specificity F1-Score

B dataset

CountVec-1000 0.51 0.743 0.532 0.831 0.621

CountVec-5000 0.59 0.798 0.63 0.867 0.71

TF-IDF-1000 0.657 0.761 0.804 0.743 0.789

TF-IDF-5000 0.778 0.784 0.928 0.725 0.852

C dataset

CountVec-1000 0.521 0.777 0.567 0.863 0.656

CountVec-5000 0.62 0.837 0.656 0.911 0.736

TF-IDF-1000 0.697 0.802 0.827 0.792 0.815

TF-IDF-5000 0.801 0.805 0.993 0.728 0.889

From the very basic BOW, Table 2.1 shows that vectorization from NER leads to

better results than a thorough cleaning process by all metrics. Between Count-vectorizer

and TF-IDF, the latter performs better with accuracy, recall, and F1-score of 0.801,

0.993, and 0.889, respectively.

Table 2.2 shows a deep comparison of the static and contextualized embeddings as

well as the accuracy of models to predict the outcome. For LSTM and BiLSTM, we

performed a k = 10-fold cross-validation, using the training set and we trained both

models for 10 epochs. Contextualized embeddings demonstrated a higher ability to

understand the medical narratives than the static embeddings with a difference of 6%
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between their respective best scores. For static embedding, BiLSTM shows a better

F1-score of 92.01% using the B dataset, however, using independent entities from the

C dataset, BOW outperforms LSTM with an F1-score of 88.9% from TF-IDF against

54.6% from LSTM.

2.6.1 Performance on the best-performing models

Fig. 2.3 reports values obtained from the training of contextualized word representa-

tion using different word-piece tokenizations and embeddings. Each model was trained

for 50 epochs using a validation set of 20% to control the over-fitting, this shows a

comparison of the training, validation, and accuracy of BERT, BioBERT, and Clini-

calBERT Extensive training of 50 epochs on the B dataset shows that BioBERT and

ClinicalBERT have a more stable logarithmic training loss curve while BERT needs

more training epochs. This is also illustrated by the validation (Fig. 2.3b) and the test

(Fig. 2.3c), where BioBERT and ClinicalBERT performed similarly but BERT needed

more than 20 epochs to gain stability.

However, despite BERT’s pre-training on a general corpus, all models exhibited

notable discriminatory capability, as illustrated in Table 3.2 where F1-scores of 98.2%,

97.4%, and 98.2% were achieved.

Although these scores appear to be similar, the precision scores of 98.1%, 96.7%,

and 97.4% clearly indicate that BioBERT has a comparatively limited ability to han-

dle imbalanced data. Despite the lower performance of BioBERT on Dataset A, it is

noteworthy that it exhibits the best specificity score among the models. This suggests

that BioBERT has the lowest false positive ratio and is reliable in correctly identifying

true negatives. Notably, the most effective model relied on the B dataset, highlighting

the significance of a thorough data-cleansing process prior to training a contextualized

model. Substantial improvements of 9.79%, 7.7%, and 4.3% in MCC scores were ob-

served for BERT, BioBERT, and ClinicalBERT, respectively.

2.6.2 Additional analysis

Word and document embeddings serve as foundational elements for representing

the underlying knowledge within the input text. In order to gain insights into how vari-

ous models and embeddings interpret medical notes differently, we sought to elucidate

these distinctions through vector similarity analysis. Once our narratives were vector-

ized, we employed statistical similarity methods for further exploration. However, it

is important to note that multidimensional vectorization techniques like BERT cannot

be easily reshaped into two dimensions without sacrificing crucial information. Con-

versely, BOW-based models lack semantic and contextual information, which poses a

limitation in initiating any clustering behavior right from the outset of the NLP pipeline.

As depicted in Figure 2.4, the application of cosine similarity distance analysis re-

vealed no discernible evidence of clustering between the feature representations of the

two classes. This analysis was conducted on a sample of 12 inputs, consisting of 6 notes

from discharged patients and 6 notes from deceased patients. By randomly selecting

samples and organizing them into six positive and six negative notes, we examined the

potential of cosine similarity to identify any similarities between the two classes. How-

ever, none of the noncontextualized models exhibited such discriminatory capability.
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(a) Training

(b) Validation

(c) Val. accuracy

Figure 2.3: BERT-based models training.
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2.6. RESULTS

(a) Count-vectorizer cosine

similarity (b) TF-IDF cosine similarity

(c) GloVe 300 cosine similar-

ity

Figure 2.4: Cosine similarity for non-contextualized models.

(a) BERT embeddings cluster-

ing

(b) BioBERT embeddings

clustering

(c) ClinicalBERT embeddings

clustering

Figure 2.5: Contextualized embeddings clustering.
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Alternatively, employing the dimensionality reduction technique known as Uniform

Manifold Approximation and Projection (UMAP), we reduced the dimension of the

contextualized embeddings obtained from 100 notes per class. Figure 2.5 showcases

distinct clusters corresponding to the two classes prior to the learning and classification

processes. These figures substantiate that the utilization of UMAP for dimension re-

duction effectively facilitates the identification of similarities between the embedding

vectors derived from the two classes.

Figure 2.6: Logits from 200 input samples represented by y = θpos − θneg.

To assess the reliability of advanced models in terms of prediction certainty, we con-

ducted an analysis using a random sample of 200 instances. The logits, obtained from

the final layer of each model prior to the activation function, were extracted for further

examination. Figure 2.6 illustrates the distribution of unnormalized scores (θ) across

the three models, with each class represented by 100 consecutive samples. Specifically,

sentences from deceased patients are depicted on the left, while those from discharged

patients are presented on the right. The y-axis represents the evaluation scale, reflect-

ing the polarity of each model’s output. The results demonstrate that both BioBERT

and ClinicalBERT consistently exhibit superior distance scores between the two classes

compared to BERT. This indicates that when a score approaches 0, the probability for

the corresponding sequence to belong to a specific class is approximately 0.5. Conse-

quently, such scores can be interpreted as low confidence in the prediction.

2.7 Discussion

With this research, pneumonia patients were selected among ICU EHR data. Through

the NLP pipeline, we aim to demonstrate the ability to predict outcomes using the narra-

tives taken during a patient’s stay by comparing the existing NLP approaches. Cleaning

thoroughly improves the contextual understanding of the inputs, as demonstrated by

ClinicalBERT with an MCC score of 4.3%.

BERT-based domain-specific models can perform slightly better than the general

BERT, but the difference resides mainly in the convergence time between the train-

ing and the validation process. In case we want to use independent entities, such as
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2.8. SUMMARY

NER, BOW models are more suitable to handle prediction tasks because only term fre-

quency over inverse document frequency is more relevant. Nonetheless, the preprocess-

ing methods may change with a different EHR that utilizes a different notation. Besides

the performance of a prediction model, it should be interpretable. For our case, the

accuracy of the prediction should be quantified by diagnosis, drugs, bioinformation, or

even demographics. However, the high dimensionality of modern NLP models contains

abstract features for which we have no words or mental concepts. To visualize which

feature or medical terminology activated the model along with the input text does not

necessarily have a meaning for us. Therefore, we judged that interpreting the outcomes

from the narratives is beyond the scope of this research.

There are also some limitations of this study. First, we limited this analysis to pneu-

monia patients who stayed in the ICU, and our prediction test used admission notes.

NLP models require a lot of data to be generalizable and avoid over-fitting the models.

Therefore, our guarantee for reproducibility using different domain data is limited.

A second limitation is common to EHR-driven prediction models for supervised learn-

ing. It is rare to have a sufficient balance between classes; however, for our case, the

minority class represented by 29% of the data did not give an alarming false-negative

for high-dimensional models, and its precision score was as high as the majority class.

2.8 Summary

Through this chapter, we present a deep comparison of Neural Language model-

ing pipelines for outcome prediction from medical text notes using pneumonia patients.

We compare the performance of medical notes preprocessing, their representation as

well as a supervised learning mechanism to predict outcomes of ICU admissions. We

demonstrated that text preprocessing is of paramount importance as the first step of the

pipeline. Light preprocessing will not achieve results as good as deeper processing. Re-

placing medical jargon and abbreviation terms to harmonize the data will have a high

positive impact. For example, changing ”dx PE” to ”diagnosis Pulmonary Embolism”

will allow models to add more weight to each of those tokens as related to pneumo-

nia and appears multiple times. However, extreme processing such as NER will limit

the applicable models besides cutting off some useful information from the text. The

choice of embeddings depends mostly on the input type, size, and domain. Current

NLP models, utilizing transformers as the fundamental structure, understand the medi-

cal text better at the expense of prediction interpretability. A meticulous data cleaning

and subword level representation from a medical domain embedding and a fine-tuned

transformer-based model yielded better optimal results.
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Chapter 3

Bridging the Gap between Medical

Tabular Data and NLP Predictive

Models: A Fuzzy Logic-based

Textualization Approach

Recent works have demonstrated an impressive ability for transformers-based mod-

els of learning and predicting from various contexts. Our approach is inspired by the

Fuzzy theory of segmenting and representing continuous values into delimited ranges to

represent a modelable entity. We used that idea to transform the numerical clinical data

into descriptive narratives. We aggregated the administration data, the diagnosis, the

vital signs, the procedures, and the laboratories. The prediction results from this natural

language-generated text show competitive results that can average the numerical-based

outcome prediction performance.

With machine learning and artificial intelligence, researchers have presented mod-

els to predict inpatient outcomes using structured or unstructured medical information

collected through EHRs systems. We propose an approach to unify the accuracy of

NLP models and the completeness of the medical tabular data using a Fuzzy Logic

(FL) theory by generating artificial narratives from the medical tabular data to describe

the patient’s period of hospitalization. To evaluate our approach, we performed an ex-

tensive application on a downstream NLP text classification task to predict in-hospital

mortality. Additionally, we demonstrated the importance and competitiveness of our

approach by comparing our results with a tabular medical data benchmark publication,

which shows an F1-score of 93,7% using tabular medical data, while the evaluation of

our best NLP model yielded a similar F1-score, it has better sensitivity(recall) score of

93.11% on an intensive care unit mortality prediction task. This approach of generating

artificial narratives is important to open new paths of using NLP in the medical area for

predictive or entity recognition models.

3.1 Introduction

EHRs generally contain various information concerning a patient to promote conti-

nuity of care among caregivers. This data may be from any source or format grouped

into two subclasses [19]. On the one hand, we have well-documented structured data
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3.1. INTRODUCTION

describing the patient with demographic information, diagnosis, monitoring data, and

others. However, the characteristics of this data may vary from one patient to another

depending on their disease or period of stay. On the other hand, unstructured data such

as narrative reports are noisy and particularly challenging for NLP applications. The

quality of this EHR data is arguably different from general care to intensive care. Due

to the superior medical care provided in ICU, their data are not always easily accessible.

Structured medical data impose a feature selection as a data regularization mechanism

for standard models such as neural networks, tree-based models, or other mainstream

modeling methods [69].

With the adoption of machine learning algorithms, artificial data have been one

of the predominant solutions to tackle some challenges such as imbalanced data for

classification, data augmentation, and generation for image processing and language

translation [70]. In NLP, Gated Recurrent Unit (GRU) [71] has achieved impressive

performance in text data generation for machine translation and medical synthetic data

generation [72, 73]. Clinical report notes contain tremendous information about the

patients, events, diagnoses, opinions, and different interventions made by a multidisci-

plinary team. The purpose of the notes is to share relevant information for informed

decision making users ignore the existence of a set of guidance dictating the format

and the grammar of clinical notes. However, using NLP for such data requires certain

standards since document representation relies on dictionaries and vocabularies from

common natural languages [74]. On the one hand, using structured data with standard

machine learning models or clinical reports with NLP models have different challenges

and drawbacks. On the other hand, studies have shown promising possibilities of build-

ing knowledge-based models by employing FL rule-based algorithms for medical di-

agnosis systems [75]. Few researchers propose a focus on the data to adapt it to the

existing pipeline [76] for the sake of managing imprecise and vague knowledge [77].

Generating synthetic narratives of a patient is a way of creating domain-oriented data

for models to guide attention to the most essential features and sensitive information.

Through this research, we propose a rule-based pipeline to describe a patient us-

ing structured data by generating a text document and evaluating the usefulness of the

synthetic summary by transformers-based models to predict a patient’s outcome.

The first step consists of feature selection inspired by a baseline study from the lit-

erature review [28], then from the selected features. We divide the data extraction task

into small clinical services-related data clusters. We then textualize the features using

preconceived prompts according to the availability of the feature values. We finally ex-

perimented the importance of the generated text on a downstream text classification task

using several transformers-based NLP models such as an optimized RoBERTa based

model [78],BERT [79] and a pre-trained biomedical language representation model

(BioBERT) [80] models.

The contribution of this research is summarized as follows:

• We are proposing a novel approach that consists of generating clean and compre-

hensive medical narratives to describe a patient through a textualization process

of the medical tabular data.

• A superficial application of the Fuzzy theory through a defuzzification to create a

syntax dictionary substituting the numerical values of medical parameters. This
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textualization preserves the uncertainty and vagueness inherent in medical data

while still allowing for the application of NLP methods.

• An extensive study of using the generated data to solve a patient outcome predic-

tion problem based on an NLP classifier optimization method.

As related to this research, to the best of our knowledge, no prior research has been

conducted to demonstrate the ability to transform tabular data into text to apply NLP to

perform a task such as a prediction.

3.1.1 Outline

This chapter presents a novel approach to combining structured medical data with

natural language processing (NLP) techniques to improve predictive modeling and ex-

plainability.

The chapter is divided into five main sections.

1. The first section 3.1 introduces the problem of using traditional methods on struc-

tured medical data and relates the limitations of NLPs in the medical field. This

section also introduces the proposed solution, which is to use fuzzy logic-based

textualization to transform unstructured medical narratives into structured data

that can be used in predictive models.

2. The section 3.2 provides a literature review of related work. It highlights related

publications and preliminary concepts. We also discuss the limitations of existing

approaches to FL and textualization, which typically rely on manually defined

rules or templates and do not scale well to large datasets.

3. The section 3.3 presents the proposed approach in detail. It describes how FL

can be used to generate linguistic variables from medical values and how these

linguistic variables can be combined with natural language processing techniques

to generate medical narratives. We describe the algorithm of our methods and

give examples of how this approach can be used to describe a patient’s hospital

stay.

4. Section 3.4 presents results from experiments using real-world medical data. We

demonstrated the usefulness of our proposed approach for predicting patient out-

comes, particularly when it comes to dealing with noisy and unstructured data.

We also demonstrate the ability of our generated narratives to provide highly in-

terpretable outcomes.

5. Finally, section 3.5 provides a conclusion and discusses limitations and future

work.

3.2 Literature Review

Biomedical data mining aims to extract knowledge from large amounts of biomedi-

cal data. The goal of this process is to identify and understand patterns and relationships

within the data that can be exploited later to improve healthcare and understand the out-

come. With machine learning, biomedical data mining requires a data transformation
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3.2. LITERATURE REVIEW

that involves converting raw data into a format that can be easily manipulated with the

available tools for better performance [81]. Various normalization techniques include:

• Standardization, which scales data to a common range.

• Normalization, which scales data to a common distribution.

• Discretization, which converts continuous data into discrete data.

Data discretization can be performed by binning which groups data into a specified

number of bins, or by clustering data based on similarity. Discretization strives to im-

prove the interpretability of biomedical data. For EHR data, these methods can be

computationally expensive but can also lead to a massive loss of information.

In recent years, many studies have proposed various techniques to process and an-

alyze medical data. For instance, deep learning models have been used to predict clin-

ical outcomes, such as patient mortality, length of stay, and readmission rates, using

electronic health records (EHR) data [82, 83]. A study by Choi et al. [84] proposed

a recurrent neural network (RNN) model that uses clinical notes, to predict hospital

readmission. Their approach proposes an interpretable predictive model for healthcare

that uses a reverse time attention mechanism to capture relevant information from the

patient’s historical medical records. Similary, a study by Purushotham et al. (2018)

proposed a deep learning model that incorporates both structured and unstructured data

from EHRs to predict patient mortality [83]. In data transformation, several works have

been presented. For instance, Arnaud et al. [85] proposed a distillation method to ex-

tract structured data from unstructured text.

However, few studies have suggested transforming structured data into unstructured

free text. The structured data are naturally accurate for machine learning models and in-

teroperability, while NLPs are still a black box. Subsequently, processing unstructured

data, such as clinical notes, can be challenging due to the variability and complexity of

clinical language [86].

In their book, Jang et al. [87] proposed a comprehensive theory on applying FL and

machine learning to address the uncertainty in a data transformation while emphasizing

the interpretability of the result. This work inspires us to solve the vagueness inherent

in medical data.

3.2.1 Fuzzy Theory

Traditionally, FL is a science that makes machines think and understand the way hu-

mans do [88] by proposing fuzzy sets to manage imprecise and vague knowledge [89].

As a computational Intelligence technique, for effective decision-making, fuzzy meth-

ods are used to bridge the gap between human and machine intelligence by resolving

the ambiguity of terms. The paradigm of computing with words was a rational conse-

quence of the fuzzy theory reasoning for computers [90]. However, FL, in its concept of

a linguistic variable and application to approximate reasoning, is a method of comput-

ing with words [91]. While Today’s technologies can only simulate that computation,

we still cannot compute with words as long as the encoding process transforms words

back into numbers. Therefore, this approach can be assimilated into a rule-based algo-

rithm to define numerical variables with words. While numbers are used in statistical
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and machine learning models, humans understand better in natural language. There-

fore, using NLP should require a data transformation of the numerical values into terms

that are more meaningful for such models.

3.2.2 Hybrid Fuzzy-based Models for Text Generation

Hybrid modeling integrating Deep Neural Network (DNN) and fuzzy systems has

been defined in various ways for diverse reasons [92, 93]. One of the main motiva-

tions for that symbiosis is DNN optimization [94, 95]. As an illustration of how FL is

used in NLP is in Natural Language Understanding (NLU). Fuzzy logic can be used

to interpret the meaning of a natural language input by taking into account the context

and the degree of uncertainty of the input [96]. For example, a statement like ”The

patient has a high blood pressure ...” could be interpreted differently. Fuzzy logic can

be used to determine the degree of membership of the input in different categories,

such as ”normal”, ”elevated”, ”High” or ”Hypertensive” to make a more accurate

interpretation of the input based on that information.

Another example of the use of fuzzy logic in NLP is in Natural Language Generation

(NLG). Fuzzy logic can be used to generate natural language output that is more human-

like and less rigid than traditional rule-based systems by taking into account context

and degree of certainty [90,97]. Let’s assume a set of linguistic variables that represent

different features or attributes of the text:

X = x1, x2, ..., xn (3.1)

and a set of fuzzy sets that represent the values of the linguistic variables.

A = A1, A2, ..., An (3.2)

The membership functions of the fuzzy sets are used to represent the degree of mem-

bership of each value in a linguistic variable.

Fuzzy logic can be utilized to generate text by using a fuzzy inference system, which

consists of a set of rules that define the relationships between the linguistic variables.

The rules can be defined as IF x1 is A1 AND x2 is A2 THEN x3 is A3. The rules are

used to emanate a set of fuzzy output variables that are fused and a reverse engineer-

ing mechanism(defuzzification) is applied to generate the final text. This fuzzy text

generation can be expressed as:

y =
n
∑

i=1

(wi ∗ µA(xi)) (3.3)

Where y is the output text, w is the weight of each rule, and µA(x) is the member-

ship function of the fuzzy set for each linguistic variable.

3.2.3 Defuzzification

The fuzzy membership degrees are used to define a crisp output or a single, definite-

meaning representation of the input [98, 99]. This reverse engineering mechanism has

three main methods:
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3.3. APPROACH AND METHODS

• Centroid Method: It calculates the center of mass of the fuzzy set, which de-

scribes the average value of the set.

xcentroid =

∑n

i=1 xi ∗ µA(xi)
∑n

i=1 µA(xi)
(3.4)

Where xcentroid is the crisp value resulting from defuzzification, xi is a sample

value, and µA(xi) is the membership degree of xi in fuzzy set A.

• Maximum Membership Degree Method: This method specifies the value with the

highest membership degree as the crisp output.

xmax = argmax
x

µA(x) (3.5)

Where xmax is the crisp value resulting from defuzzification and argmaxx is the

argument that maximizes the membership function.

• Mean of Maximum (MOM) Method: MOM method calculates the average value

of the values that have maximum membership degrees.

xMOM =

∑n

i=1 xi ∗ [µA(xi) = µmax]
∑n

i=1[µA(xi) = µmax]
(3.6)

Where xMOM is the crisp value resulting from defuzzification, xi is a sample

value, µA(xi) is the membership degree of xi in fuzzy set A, µmax is the maxi-

mum membership degree in fuzzy set A, and [µA(xi) = µmax] is a binary variable

equal to 1 if µA(xi) = µmax and equal to 0 otherwise.

With this research, we are converging this traditional use of fuzzy logic theory in

NLU and NLG. We are proposing a way of using balanced linguistic theory and clin-

ical features occurring in a tabular format to build comprehensive patient descriptive

documents using defuzzification methods. In the following section, we describe our

approach to the construction of the fuzzy set, and how our application yielded the best

performance on a patient outcome prediction task.

3.3 Approach and Methods

3.3.1 Introduction

The ultimate goal of textualizing tabular data is to propose a predictive model based

on a general understanding of a patient’s status. The best part of this is the use of as

much information as available from the EHR, without compromising on using certain

parameters in the process of handling missing data and outlier values. Numerical mod-

els require the regularity of the input features. However, medical data are full of such

irregularities that an extensive data processing step, including sample selection, data

balancing, and normalization, is needed. Ideally, a patient’s complete medical descrip-

tion should:

• Include patient’s name, a unique identifier, and location of hospitalization
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• Reflect the continuum of patient care in a chronological order contain data recorded

on admission, handover, and discharged

• Be dated and signed by its author.

In most of the publicly available medical datasets, this important information is missing

due to the de-identification process. This won’t make any exceptions for the synthetic

data when describing a patient.

In EHR, an equivalent description can mostly be found in clinical reports, which

usually use natural language to describe a patient. However, free narratives are irregular

and hard to process due to conventional writing, which can vary from one health center

to another. Our objective is to describe a patient in a natural way using medical data,

mimicking real-world datasets. Moreover, we want to bring the benefits of NLP and

transformers to more use cases in medical predictive models while avoiding the pre-

processing step required by the EHR narratives and comparing our results with the

existing tabular-based models.

3.3.2 Data Acquisition and Mining

Medical Information Mart for Intensive care-III(MIMIC-III) is a publicly available

dataset with real medical data from over 38,597 distinct patients admitted to the inten-

sive care Unit (ICU) [100]. The data are distributed as CSV files that can be imported

and mapped to a relational database such as MySQL. Using SQL queries, datasets were

extracted and processed in a python notebook. In order to benchmark later the effective-

ness of our proposed method, we utilize the same data inclusion criteria as our baseline

model from the literature [28]. We selected patients admitted or transferred to the Car-

diac Surgery Recovery Unit (CSRU), Medical ICU(MICU), Surgical ICU (SICU), and

“emergency or Urgent” as ADMISSION TYPE. Please, refer to the mentioned paper

for details on the inclusion criteria and statistics. To keep the relations between enti-

ties for the next step, we query the database in five distinct dataset clusters containing

Administrative information, Diagnoses related information, laboratory tests, vital signs,

and procedures Fig. 3.1 shows a summary of the process from the data extraction down

to the next generation.

A common problem for any medical outcome prediction studies is class imbalance.

Within our dataset, few patients are those who died during their hospitalization in the

ICU, representing a minority of 5058 among 37111 unique admissions. This shows a

fatality rate of 13.62% in our population. Different techniques for handling imbalanced

data exist; for our case, in order to keep the integrity of the data, downsampling the

majority class by a random selection was utilized. However, this technique has the

consequence of cutting out some potential knowledge from the majority class. To limit

this information loss, we sampled the new dataset to 40% for the fatality class and 60%

for the discharged class.

3.3.3 Proposed Model: Data Textualization

Literature has shown the most relevant features to predict a patient’s outcome in an

ICU [28, 82]. However, most of the authors are also limited by constant missing data

across the population sets and the targeted case of study. In our case, our limit could be

determined by the NLP model itself for not performing well with numerical data. As
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3.3. APPROACH AND METHODS

Figure 3.1: Summary of the data extraction and synthetic narratives generation pipeline
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described in the following section, a rule-based algorithm based on fuzzy logic theory

can be used to map numerical values with classes that can be understood by a modern

LM. Generating synthetic text data with fewer numbers and more key terms allows us

to build a more comprehensive NLP model to accomplish a task such as classification.

To describe a patient inherently, we conducted the generation of the narratives with

the help of key phrases. These key phrases connect medical parameters extracted from

different EHR tables to ensure semantic and syntactic integrity and relevance of the

generated text.

3.3.4 Feature Engineering

One of the most typically used methods in fuzzy logic is the membership function,

which assigns a degree of membership to each element of the input set, based on its

resemblance to the set or category in question.

MIMIC-III dataset uses the International Classification of Diseases in its ninth ver-

sion (ICD9) to encode and classify diagnoses. These codes are the primary source of

information related to the patient’s main complaint, comorbidities, and phenotypes. For

our textualization process, we extracted all the codes related to each patient of our pop-

ulation found in the ADMISSIONS and DIAGNOSES ICD tables. To map the codes

with their label, we used a python library (icd9cms) [101] that takes the ICD9 codes as

an input and we specifically output the most granular label from the hierarchy of the

ICD9 nomenclature tree. This step provides us with the clinical name of the ICD9 code

which we append to other prompts and texts related to patient identification (adminis-

trative information), procedures, vitals, and laboratory test and results.

In the following section, we describe our methods of transforming all those numer-

ical data into text using a defuzzification system.

3.3.5 Defuzzification System Architecture

Our ultimate goal is to evaluate our approach to a language model. However, lan-

guage models understand better textual context than numerical context. Therefore, a

patient with a blood pressure annotated like ”140/101 mmHg” has not much mean-

ing for a language model. However, its interpretation in medical terms (hypertension,

specifically stage 2 hypertension) has more potential to be well understood by an LM.

The fuzzy theory defines the linguistic variable by:

(X, T (x), U,G,M) (3.7)

X is the variable and T (x) is the set of terms, U is the universe of discourse, G rep-

resents the syntax rules, and M defines the semantic rules. For our case, X represents

the medical variables, T (x) are clinical interpretations, and U groups the values of each

medical parameter [91].

A defuzzification dictionary for blood pressure readings could be mapped to cate-

gories such as ”Low”, ”Normal”, and ”High”. In our algorithm, instead of computing

the centroid of the fuzzy output, we simply compute the maximum degree of member-

ship among all categories using a binary rule approach. This approach can be more

efficient and easier to implement, but it may not be as accurate as the centroid approach

in certain cases.
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Algorithm 1 Defuzzification for Blood Pressure Categories (Binary Rule)

Fuzzy blood pressure reading x Blood pressure category Compute the degree of mem-

bership of x in each category using fuzzy sets or rules, such as:

• Low: µLow(x) =

{

1, if x ≤ 90 mmHg

0, otherwise

• Normal: µNormal(x) =

{

1, if 90 mmHg < x ≤ 139 mmHg

0, otherwise

• High: µHigh(x) =

{

1, if x > 139 mmHg

0, otherwise

Compute the maximum degree of membership among all categories, such that:

µmax = maxµLow(x), µNormal(x), µHigh(x)

If µmax = µLow(x), return ”Low” as the blood pressure category.

If µmax = µNormal(x), return ”Normal” as the blood pressure category.

If µmax = µHigh(x), return ”High” as the blood pressure category.

The membership function µNormal(x) returns a value of 1 if the blood pressure read-

ing x falls within the range of 90 mmHg to 139 mmHg, indicating that the reading is

”Normal”. The value of µNormal(x) is 0 for readings outside of this range. Similarly,

membership functions can be defined for each of the other categories which we intend

to substitute with words in the textualization process. However, the encoding part of

the logic can be handled by a multidimensional LM to vectorize these entities of words.

As in fuzzy theory, where each linguistic variable is described by a “set of terms”, to

textualize our medical features, each feature’s value is represented by a term instead of

a number. Our approach utilizes binary discrimination [102] to allocate a category to

each value. However, this approach has one limitation. On the one hand, the accuracy

of the resulting model depends directly on the size of the universe of discourse grouping

the classes, and on the other hand, for some features, there is no deterministic way of

establishing boundaries between those classes. Table 3.1 reports the set of terms with

the range and source of reference for each parameter.

3.3.6 Machine Learning Models

In NLP, transformer-based models [1] have become a reference as the state-of-the-

art on several natural language understanding tasks. In this research, we decided to use

this representation over the fuzzification since it captures relations between neighbor-

ing and distant words while the Fuzzy encoder only considers one single word as an

independent entity.

BERT

BERT model is a high bidirectional, unsupervised language representation pre-

trained on unlabeled plain text corpus from books and English Wikipedia. The original
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Table 3.1: Medical parameters, set of category terms and their ranges

Parameter Range Category Reference

Age

15-40 Young adult

[103]
41-60 Middle-aged adult

61-89 Old-aged adult

90+ Very old-aged adult

Arterial

Blood

Pressure

Sys < 90mmHg Low

[104]Sys:90-139mmHg Normal

Sys > 139mmHg High

Heart

rate(HR)

< 60 BPM Low

[104]60-100 BPM Normal

> 100 BPM High

SpO2
< 92% BPM Low

[105]
> 92% BPM Normal

Heart

Rate(HR)

< 60 BPM Low

[104]60-100 BPM Normal

> 100 BPM High

Respiratory

Rate

< 12 BPM Low

[104]12-25 BPM Normal

> 25 BPM High

model was presented with two versions, the BERTBASE with 12 encoders and 12 self-

attention heads and BERTLARGE with 24 encoders and 16 bidirectional self-attention

heads. We omit more details on the architecture as it is well described in [79]. BERT

utilizes the transformer encoder architecture based on a self-attention mechanism to

represent a sequence of words or tokens in a higher dimensional space. We utilized the

BERTBASE version since our inputs had an average of 353 tokens.

BioBERT

The Biomedical language representation model for biomedical text mining (BioBERT)

is a domain-specific language model [80]. This baseline model initialized its weights

from BERT and uses PubMed abstracts and PMC full-text articles to fine-tune its un-

derstanding of the medical domain. Please, refer to the original paper for more details

on the training process and the performance of the resulting model.

During the tokenization process, two additional tokens are used: a [CLS] token as

an input starter and [SEP] to mark the end of the input sequence. Thus, a sequence S
for these models is represented by [cls, t1, ..., tn, sep] where t is a word or a subword

of S. The maximum length of the input sequence is 512 tokens. The goal of using

tokens is to represent any words and avoid OOV words. However, BERT and BioBERT

are token based-models, thus, some words will be broken down into a character if that

entity is not present in the 30.000 token vocabulary file of those models.

BioBERTa

BioBERTa is a pre-trained RoBERTa-based language model designed specifically

for the biomedical domain [106]. Like other domain-specific LM, BioBERTa has been
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trained on a diverse range of biomedical texts mostly electronic health records, and

raw medical notes to learn the language patterns, terminologies, jargon, and knowl-

edge relevant to the biomedical domain. BioBERTa was optimized in the pretraining

process by adopting the modifications of the source model such as dynamic masked

language modeling, no next-sentence prediction task, and most importantly, a Word-

Piece tokenizer that suppresses the out-of-vocabulary (OOV) occurrences. This model

demonstrated high performance on several named entity recognition tasks and showed

the best fertility rate for biomedical texts.

To fine-tune these three models for a classification task, we append a classification

layer on top of the last hidden layer with a given loss function, and this can be performed

on the output of the [CLS] token alone. For our case, we utilized the [CLS] token and

a logistic regression classifier. We perform a hyperparameter search to find the best set

of training epochs, learning rate, and batch size that optimizes the result [107].

3.4 Results

The process of generating data begins with the extraction of features from the main

MIMIC-III dataset. The extracted features were then individually merged in a fusion

process to form a more comprehensive representation of the patient. In this operation,

the features were contextualized using key phrases to semantically link them, thereby

creating a coherent representation of a narrative. To ensure the quality of the generated

data, a grammatical assessment was carried out to eliminate any unnecessary duplica-

tion of features or syntax errors that may have been introduced during the fusion pro-

cess. This grammatical assessment helped to improve the coherence and consistency

of the generated data and provided a better sequence of the features extracted from the

main MIMIC-III dataset.

3.4.1 Generated Data

In order to provide a comprehensive understanding of each patient’s hospitalization,

we generated narratives for each of the 37110 admission IDs in the dataset. The length

of these generated texts was determined by the number of parameters each patient had,

resulting in a dataset that includes both admission IDs and labels indicating the outcome

of the patient’s hospitalization.

When preparing the generated dataset for use with classification models, it was

essential to ensure that it would fit within the limitations of the models. Using the BERT

tokenizer, we counted the tokens of each input sentence, and the results were 1686 and

67, respectively, for the longest and shortest sentence with a median of 258 tokens.

With this in mind, we made the decision to exclude normal values of the parameters

from the training data. The rationale for this was that the primary purpose of medical

procedures is to identify or treat abnormalities. Figure 3.2 shows the variation of the

narrative’s lengths before and after this step.

By keeping the normal values of the parameters, more than 2700 narratives have

over the 512-token limit of our classification, while only less than 1600 will hit than

limit without normal values.
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(a) overview of the generated text

(b) Sentences of ≤ 512 tokens with normal val-

ues

(c) Sentence of ≤ 512 tokens without normal

values

Figure 3.2: Generated narratives lengths: These three graphs provide an overview of

the lengths of our synthetic texts.
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3.4. RESULTS

3.4.2 Classification Results

To train and evaluate our two models, we used 10,116 input sentences and tested

their performance on 2,529 narratives. To ensure compatibility, we utilized the bert-

base-uncased tokenizer for BERT and BioBERT’s tokenizer and the vocabulary that

came with the pre-trained BioBERT files. For BioBERTa, it has a custom byte-pair

encoding(BPE) tokenizer of 50265 tokens.

Input Length Variation Study

To understand the behavior and determine the optimal input size for the model, we

conducted experiments using different input lengths of 512, 350, and 255 tokens. This

allowed us to determine the most effective input size to achieve the best results. Prelim-

inary results revealed that the best performance was achieved using a maximum input

length of our models(512 tokens). For the rest of the experiment, we used tokenized

inputs of a maximum length of 512 tokens for the three models.

Hyperparameters Optimization

Hyperparameter optimization in NLP consists of selecting the optimal values for

the model’s hyperparameters to achieve the best performance on a downstream task by

effectively capturing the patterns in the data and avoiding overfitting or underfitting.

These hyperparameters define the configuration of the model, such as the learning rate,

the batch size, and the number of hidden layers. For our case, we focused our attention

on the training batch size, the learning rate, and the training epochs.

To develop an adaptive (sequential) hyper-parameter search, we utilized a random

search algorithm to erratically select different combinations in the provided ranges [108].

Figure 3.3a shows that an accuracy of 93.47 can be achieved using a batch size of 32

and 4 training epochs and a learning rate of 3.86e-05.

Outcome Prediction Results

Our evaluation was to use the generated data and evaluate its importance in solving

the problem of hospitalization outcomes. Our data were labeled as ”0” if the patient

was discharged and ”1” if died during his hospitalization.

We measured the efficiency of the in-hospital predictive models by the evaluation

metrics, F1-score, precision, and recall, between the fatality and survivor classes. Each

reported score in Table 3.2 is an average of 5 experiments on both BERT, BioBERT,

and BioBERTa models.

The benchmark paper [28] explores two different methods for approaching the task

at hand. The first method involves the utilization of a list of unimodal baseline classi-

fiers, including K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP), Linear Dis-

criminate Analysis (LDA), Logistic Regression (LR), and Decision Tree (DT), applied

to various experimental feature sets. The second method involves ensemble models,

such as random forest, voting, bagging, and boosting, to improve the performance of

the best single models. These evaluations were conducted both with and without a

feature-selection step.

Building upon these two approaches, the paper introduces a stacking classifier al-

gorithm based on the generalization stacking ensemble model, using LR as the meta-
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(a) Hyperparameter search on a predetermined range of values

(b) Loss on the different models’ configuration

Figure 3.3: Hyperparameter Search and Validation Loss
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Table 3.2: Outcome prediction results from three different NLP models and a tabular

data-based stacking model as a baseline

Model Input length F1 P Sensitivity Specificity

Stacking Model [28] - 0.937 0.964 0.911 -

BERT

L=256 0.849 0.815 0.886 0.767

L=360 0.848 0.825 0.873 0.793

L=512 0.858 0.847 0.870 0.832

L=512(optimized) 0.897 0.887 0.895 0.882

BioBERT

L=256 0.851 0.817 0.887 0.770

L=360 0.860 0.865 0.855 0.872

L=512 0.881 0.894 0.908 0.869

L=512(optimized) 0.925 0.931 0.926 0.934

BioBERTa

L=256 0.854 0.797 0.921 0.714

L=360 0.860 0.845 0.875 0.825

L=512 0.879 0.849 0.891 0.821

L=512(optimized) 0.937 0.94 0.931 0.946

classifier. This stacking technique demonstrated impressive accuracy, with F1-score,

precision, recall, and AUC scores of 0.937, 0.964, 0.911, and 0.933, respectively.

The results displayed in Table 3.2 demonstrate the highly competitive performance

of both models, with BioBERTa exhibiting better performance than other language

models. It is evident that fine-tuning the hyperparameters plays a crucial role in the

model’s performance, as the results show a difference of up to 6.5% in the f1-score.

This highlights the need for proper tuning to achieve optimal results and underscores

the significance of this aspect in the development of language models.

Figure 3.4 reports different results obtained by evaluating each model with varying

configurations on the test set. We noticed a high variability in performance based on

the model’s hyperparameters.

Figure 3.4: Our Different Models Prediction Accuracy
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Overall, our approach has shown to perform comparably with the benchmark base-

line models while exhibiting slightly improved results in terms of recall. We believe

that this performance is the result of the specific data sampling technique that we im-

plemented during the training phase, which aimed to balance the data distribution. By

leveraging this approach, we were able to address the class imbalance and improve

model performance effectively.

3.4.3 Interpretability of the Generated Text

The interpretability of models, as illustrated in Figure 3.5, plays a crucial role in

understanding a model’s decision-making process and predictions, especially in med-

ical applications [109]. Using fuzzy theory in defuzzification processes helps to deal

with uncertain and ambiguous information. Still, this uncertainty can also impact the

interpretability of the models trained on such data.

(a) Narrative of a deceased patient

(b) Narrative of a discharged patient

Figure 3.5: Interpretability visualization using SHapley Additive exPlanations on the

narratives from two different classes

The explainability of models on the text generated from a defuzzification process

depends on various factors, such as the choice of the defuzzification method, the struc-

ture of the model, and the complexity of the generated text. The rule-based text provides

more nuanced data by structuring the narratives into a more comprehensive and inter-

pretable construction.

Figure 3.5 shows a visualization of BioBERTa of two generated texts using Shapley

values [110], revealing the importance of each token. Red regions correspond to parts

of the text that increase the model’s output when they are included pushing the model

to predict the patient as ”deceased”. In contrast, blue regions decrease the output of the

model to predict a ”discharged” patient.

It can be seen in Figure 3.5a that even if vitals and length of stay helped the model to

increase the output values, the shade of red seen on ”sepsis” and ”lactate” was too high

to predict the fatal outcome. This is more understandable as sepsis is life-threatening

48



3.5. CONCLUSION

on its own; a high serum lactate level as a consequence of sepsis may predict death

within 24 hours [111]. Figure 3.5b shows a narrative where the primary diagnosis

indicates a significant contribution to the survival of the patient despite an elevated

value given to the patient’s coinfection of ”respiratory syncytial virus”, a less lethal

infection [112].

3.5 Conclusion

This research aimed to analyze the impact of the generated data on the prediction

of in-hospital outcomes. The defuzzification process of generating narratives involved

extracting features from the MIMIC-III dataset and fusing them to represent the patient

exhaustively. The generated data were then subjected to a grammatical assessment

to eliminate errors and improve the quality of the generated narratives. The data was

generated for 37110 admission IDs in the dataset, and the length of the narratives varied

based on the number of parameters each patient had.

To train and evaluate the models, 10,116 input sentences were used, and the perfor-

mance was tested on 2,529 narratives. The BERT, BioBERT, and BioBERTa models

were trained using the bert-base-uncased tokenizer and the BioBERT tokenizer, respec-

tively. The study also involved hyperparameter optimization, where a random search

algorithm was used to select the optimal values of hyperparameters, such as the batch

size, learning rate, and training epochs. The best performance was achieved with a

batch size of 32, 4 training epochs, and a learning rate of 3.86e-05.

The evaluation of the models was based on the prediction of the outcome of the pa-

tient’s hospitalization, where the data was labeled as 0 for patients who were discharged

and 1 for those who died. The results were measured using the F1-score, precision, and

recall between the fatality and survivor classes. The results demonstrated the highly

competitive performance of both the BERT and BioBERT models, with BioBERTa ex-

hibiting better performance compared to the other language models. The results showed

that the best performance was achieved using a maximum input length of 512 tokens,

with hyperparameters optimized.

In conclusion, the study demonstrates that FL and rule-based approaches can play

a significant role in generating comprehensive and interpretable medical narratives to

extensively describe a patient. The results of the study demonstrate the potential of

fine-tuned language models such as BioBERTa to improve the accuracy of predictions

and provide a better understanding of the hospitalization outcomes of patients. The

interpretability of models trained on the text generated from a defuzzification process

is crucial for ensuring the transparency and reliability of the model’s predictions.

However, our approach has two significant limitations. Firstly, the accuracy of the

resulting model depends directly on the size of the universe of discourse grouping the

classes, and for some features, there is no deterministic way of establishing boundaries

between classes. Subsequently, this approach requires domain expertise to determine

the appropriate linguistic rules and the potential for bias in the textualization process.

In addition to that, the experimental results show that the performance of LM relies

heavily on hyperparameter fine-tuning.

In future work, we plan to explore the use of neuro-fuzzy theory, in combination

with current state-of-the-art LMs, and investigate methods for reducing expert depen-

dency by incorporating external data sources such as ontology. Overall, this study
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provides a step toward improving healthcare outcomes through data-driven decision-

making processes.
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Chapter 4

Optimization of Transformer-based

Model for Medical Documents

4.1 Motivation and Contribution

With the ever-increasing availability of biomedical and clinical data, the use of nat-

ural language processing (NLP) techniques to analyze and extract information from

unstructured medical narratives has become increasingly important. Language mod-

els, in particular, have shown significant promise in improving the accuracy of clinical

decision-making and medical research. However, language models trained on general-

purpose text datasets may not perform optimally on clinical and biomedical text, as

such text often contains specific terminologies, abbreviations, and jargon.

In this chapter, we review recent studies on the optimization of language models for

biomedical and clinical text. We highlight the challenges and opportunities associated

with this task, as well as the various techniques that have been developed to improve

the performance of language models on such text. As a result, we provide two language

models trained and optimized for biomedical and clinical data as well as their evaluation

and performances on several NLP tasks.

We first discuss the need for creating specialized language models for biomedical

and clinical text. We then explore the use of domain-specific pre-training and fine-

tuning techniques, including transfer learning, to improve the performance of language

models. We also review the importance of different tokenizers to improve the in-domain

semantic representation of clinical text.

Additionally, we examine the importance of hyperparameters fine-tuning in order to

improve the robustness of language models on clinical and biomedical text.

Finally, we discuss the potential impact of optimized language models on various

healthcare applications, including electronic health records (EHRs) and Clinical De-

cision Support Systems (CDSS). We also highlight some of the ethical considerations

and challenges associated with the use of raw clinical data from EHR with pre-trained

language models.

Overall, this chapter provides a step forward in the optimization of language models

for biomedical and clinical text and outlines future directions for research in this field.
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4.2 Introduction

As demonstrated in chapters 2 and 3, recent research has demonstrated the po-

tential of language models for processing and understanding human expression for a

wide variety of tasks in the general domain [113–115]. These techniques have greatly

improved the general understanding of the biomedical text and information extraction

by means of named-entity recognition (NER), relation extraction (RE), and classifica-

tion [116, 117]. The adoption of electronic health records (EHR) by more than 86%

of healthcare facilities in developed countries has increased the volume of biomedical

data [118]. EHRs contain a tremendous amount of structured and unstructured data,

which can be used to fine-tune predictive algorithms and drug compatibilities and help

to understand the course of diseases and patients. Various researchers have proposed

adapted NLP models to address better biomedical documents [116,117,119,120]. With

medical texts representing 80% of the EHR data [113], it’s imperative to develop more

robust and efficient language models which can be used to understand and extract rele-

vant information contained in those texts.

Unstructured medical texts, which can be clinical notes, surgical records, discharge

records, radiology reports, or pathology reports, are written primarily for communi-

cation purposes between healthcare actors. These texts are usually too long for con-

ventional biomedical models that are generally built for a maximum of 512 position

embedding. This limitation is mainly due to the quadratic computational and mem-

ory growth of the self-attention mechanism in the traditional transformer models [121].

Recent technics have emerged to propose sparse attention that grows linearly with the

input length [122, 123].

In previous research, BioBERT [116], which was trained using BERT architec-

ture [114] on English biomedical data from books, PubMed abstracts, and full-text

articles, showed a significant contribution by enriching its dictionary with terms and

expressions that were not included in the general domain corpus used by BERT. This

critical step reduces the over-segmentation [124, 125] significantly, preserving more

meaningful biomedical terms. However, pretraining a model exclusively on clinical

data such as MIMIC [126] will prevent the model from expanding its application to

general biomedical tasks.

While traditional transformer-based models have demonstrated the effectiveness of

having a full attention-based model, their architecture has a high computational and

memory cost limitation. In the clinical domain, this drawback yields models with poor

performance in real-world applications. This study aims to demonstrate that adapting

a model such as BigBird [122] to a biomedical domain with a focus on unstructured

EHR data has the potential to contribute to the biomedical NLP community for any

downstream tasks. Within this chapter, our contribution could be summarized as follow:

1. We introduce BioBERTa, a RoBERTa-based biomedical language model trained

on biomedical and electronic health record corpora.

2. Utilizing a combination of random attention, window attention, and global at-

tention, inspired by BigBird architecture, we provide a sparse attention-based

model, referred to as Medical BigBERTa, which can handle eight times more

tokens than the traditional models including BioBERTa.

3. Equipped with a biomedical dedicated tokenizer, we trained from scratch a sen-

tencePiece tokenizer to enhance the embedding capabilities of in-domain terms,

52



4.3. OUTLINE

grammatical errors, and conventional annotations.

4. We perform a modeling optimization, using a Bayesian-based algorithm to fine-

tune hyperparameters on each dataset.

5. Finally, we aim to publicly share our models and their tokenizers with the research

community, which we believe will help in other biomedical data mining studies.

The prevailing transfer learning methods for LMs take a general-domain LM and

its vocabulary and fine-tune it with specific-domain data. However, some authors have

suggested that domain-specific vocabulary can outperform that mixed-domain approach

[127]. We assumed that this vocabulary inheritance has two consequences. It helps the

general model to transfer its weights to tokens adequately, yet those tokens might not

be similarly contextualized in the specialized domain because, as a source, the general

domain text is substantively different from the target text. We thus conducted a tok-

enizer training that generated a new vocabulary file, combining biomedical and clinical

corpora used to train and fine-tune the final model. The main difference between our

approach and most BERT variants is that those LM are technically based on a con-

tinuous training approach where the source model is fine-tuned on a specific domain

corpus [125], while ours adopts a similar approach as [120] by including in the process

a dedicated tokenizer.

Table 4.1: Data description of the four datasets used for our experiment

Data name
Data

size
#Seq

av. word-

s/seq

Tokenizer

training

Model

training

Medical text for text

classification
36MB 28.8K 183 36MB 36MB

Medical transcriptions 17MB 3.9K 409 17MB 17MB

PubMed title abstract

baseline 2019
21.63GB 5.1M 218 3GB 21GB

MIMIC III 2GB 1.1M 1258 2GB 2GB

Total 5.05GB 23.05GB

4.3 Outline

• In section 4.2, we provide the background and motivation for the research, dis-

cussing the importance of a tailored LM and hyperparameter fine-tuning. We also

present the research question and the contribution of this research.

• Section 4.4 is a literature review that discusses previous research on biomedical

neural language modeling and hyperparameter fine-tuning. We also provide an

overview of the different approaches for in-domain optimization, modeling for

long sequences, and various tokenization methods.

• Section 4.5 describes our research methodology, including the dataset used, our

tokenization process, evaluation tasks, and hyperparameter optimization in the
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following section 4.6. We also provide an overview of our inspired architecture

of the LM and the training process of our proposed two new models.

• In section 4.7, we present our experimental results. We compare the performance

of our new LM on several downstream tasks. We demonstrate the importance of

our new tokenizers as well as the hyperparameter search and the sparse attention

mechanism.

• Section 4.9 discusses the implications of our results and the effect of a dedicated

tokenizer.

• Finally, section 4.10 concludes the chapter by summarizing our findings, the lim-

itations of our research, and potential directions for future research.

4.4 Literature Survey

4.4.1 Language Models

Language Models (LMs) have revolutionized the field of natural language process-

ing (NLP) in recent years, achieving state-of-the-art results in a wide range of tasks such

as machine translation, sentiment analysis, text classification, and question-answering.

A language model is a type of NLP model that learns the patterns and relationships

between words in a text corpus and uses this knowledge to predict the likelihood of a

given sequence of words.

One of the earliest and most widely used language models is the n-gram model [128],

which estimates the probability of a word given its previous n-1 words. However, n-

gram models suffer from the curse of dimensionality and struggle to capture long-term

dependencies between words [129]. This led to the development of recurrent neu-

ral network (RNN) [71] based language models such as the long short-term memory

(LSTM) [46] and gated recurrent unit (GRU) models, which can capture long-term

dependencies through their recurrent connections. Nonetheless, LSTMs can be com-

putationally expensive and difficult to train on large datasets due to the complex nature

of their architecture and the need to propagate gradients over many time steps [130].

Additionally, LSTMs can suffer from the problem of vanishing or exploding gradients,

which can lead to issues with training stability and convergence [130].

More recently, attention-based transformer models such as BERT [114], GPT-2 [131],

and T5 [132] have emerged as the state-of-the-art in many NLP tasks. These models use

self-attention mechanisms [1] to capture the relationships between all words in a text

sequence and have achieved remarkable results in tasks such as language generation,

text classification, and question-answering. The key to the success of transformers is

their ability to process entire sequences of words at once without being limited by the

sequential processing of RNNs.

4.4.2 Tranformers

The transformer model consists of an encoder and a decoder, each consisting of a

stack of multi-head self-attention and fully connected feed-forward layers. The self-

attention mechanism allows the model to weigh the importance of different words in
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a sequence when making predictions, while the feed-forward layers apply non-linear

transformations to the input.

Given an input sequence of length T , the encoder maps it to a sequence of hidden

states H = h1, h2, ..., hT as follows:

hi = f(xi) for i ∈ [1, T ], (4.1)

where xi is the i-th input token, and f(·) is a function that applies multi-head self-

attention and feed-forward layers to the input.

The decoder then uses the encoder’s output to generate a sequence of target tokens

Y = y1, y2, ..., yU , where U is the length of the output sequence. At each time step u,

the decoder predicts the next token yu based on the previous tokens and the encoder’s

output using the following equation:

p(yu|y1, y2, ..., yu−1, H) = g(yu−1, zu), (4.2)

where zu is a context vector computed by attending to the encoder’s output, and

g(·) is a function that applies multi-head self-attention and feed-forward layers to the

decoder’s inputs and the context vector. The global attention mechanism is calculated

as follows:

Attention(Q,K, V ) = softmax

(

QKT

√
dk

)

(4.3)

where Q, K, and V are the query, key, and value matrices, respectively, with dk
denoting their dimensionality. The dot-product of the query and key matrices is divided

by
√
dk to avoid the dot product from becoming too large or too small, which could

result in slow learning or numerical instability. The softmax function is applied to the

scaled dot-product to compute the weights for each value vector. Finally, the output is

computed as the weighted sum of the value vectors.

The transformer’s effectiveness stems from its ability to capture long-range depen-

dencies in sequences using self-attention, which allows it to process entire sequences

in parallel and make more accurate predictions. Additionally, the use of residual con-

nections and layer normalization helps mitigate the vanishing gradient problem and

improve training stability.

Moreover, they can be fine-tuned on specific tasks with relatively few additional pa-

rameters, making them highly versatile and efficient. Figure 4.1 relates the transformer

architecture.

4.4.3 Modeling Long Sequences

Most NLP models, such as BERT and RoBERTa are provided with longer versions

that can encode text up to 1024 tokens. Few models, such as BioMegatron800 [119],

BioMegatron1.2, and BioM-ALBERTxxLarge [133] were pre-trained in a multi GPU en-

vironment to provide models with up to 4096 hidden size, trading off the embedding

position size to mitigate with the memory cost. The larger the hidden size, the more

complex patterns and relationships the model can learn and the more accurate its predic-

tions may be. However, a larger hidden size also requires more computational resources

and may increase the risk of overfitting the training data, which can lead to poorer per-

formance on new or unseen data. We provide in table 4.2 details of biomedical larger
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Figure 4.1: The Transformer model architecture [1]

LM from the literature to understand the necessity of a different approach to handling

longer input sequences. Various approaches have been proposed to handle long input

sequences for transformers. Text truncation is the most used method to encode texts that

exceed the model input size. It consists of splitting input sequences into segments of

fixed size and overlapping consecutive segments to reconstitute the context [134, 135].

However, those methods are interpreted as segment representations other than se-

quence representations. For biomedical, segment representation could harm the model

performance where, for a given task, important information such as a disease, a drug,

or a procedure could be located in one of the truncated segments. This technique can

not ensure the capture of the long-range dependencies between segments.

Moreover, authors have reported this to be a direct consequence of the attention

mechanism [121] despite its efficiency. The drawback of models with a full-attention

has brought authors to think about alternatives that can reduce that exponential growth

to a more reasonable dimension to allow encoders to process longer sequences that can

fit in the current computational resources, as demonstrated by authors of BigBird [122]

and Longformer [123]. For this work, We leveraged the architecture and the initial

weights of BigBird, a transformer model for longer sequences [122]. For the sake of

brevity, we refer readers to the original paper for more details. In the biomedical area,

Li Y. et al. [136] provided two models based on BigBird [122] and LongFormer [123]

architectures. However, this research did not consider the paramount importance of a

tailored tokenizer for a specific domain using the default vocabulary from the source

model.
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4.4.4 Sparse Attention

Sparse Attention (SA) in transformers is a modification to the standard self-attention

mechanism that reduces the computational complexity of the attention calculation by

only considering a subset of the tokens in the input sequence.

Let Q, K, and V be the query, key, and value matrices, respectively, with dimensions

dq×nq, dk×nk, and dv×nv, where dq, dk, and dv are the dimensions of the query, key,

and value vectors, and nq, nk, and nv are the number of tokens in the input sequence.

In the standard self-attention mechanism, the attention weights A are computed as

follows:

A = softmax

(

QTK√
dk

)

∈ R
nq×nk (4.4)

However, in sparse attention, the attention weights are computed based on a subset

of the key vectors, which are selected using a predefined pattern or a learned attention

mask. Let M ∈ 0, 1nq×nk be the attention mask, where Mij = 1 if the jth key vector

can attend to the ith query vector, and Mij = 0 otherwise. Then, the attention weights

A are computed as follows:

A = softmax

(

QTKM√
dk

)

∈ R
nq×nk (4.5)

By restricting the attention operation to a subset of the input tokens, sparse attention

reduces the computational cost of the self-attention mechanism while still allowing the

model to capture important dependencies between the tokens.

Sparse attention has been shown to be effective in various NLP tasks, including

language modeling, machine translation, and text classification, particularly when the

input sequence is long or the model has limited computational resources.

4.4.5 In-domain Optimization of LMs

There are several ways to optimize in-domain language models:

1. Increase the amount of in-domain data: One of the most effective ways to

optimize in-domain language models is to train them on more data specific to the

domain of interest. This can be achieved through data augmentation techniques

such as paraphrasing, back-translation, and domain-specific dictionaries [137].

2. Fine-tune pre-trained language models: Fine-tuning pre-trained language mod-

els such as BERT and GPT-2 on in-domain data can significantly improve their

performance on domain-specific tasks. Fine-tuning involves retraining the model

on a small amount of in-domain data, which allows it to adapt its parameters to

the specific characteristics of the domain [116].

3. Use domain-specific embeddings: Another approach is to use domain-specific

embeddings instead of generic word embeddings. Domain-specific embeddings

are trained on in-domain data and capture domain-specific semantics and con-

cepts that are not present in generic embeddings [137].
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4. Incorporate domain-specific knowledge: Incorporating domain-specific knowl-

edge into the model architecture can also improve its performance on domain-

specific tasks. For example, incorporating domain-specific ontologies or tax-

onomies can help the model better understand the relationships between domain-

specific concepts.

Our approach used both strategies through a combination of data selection, model

fine-tuning, and in-domain tokenizer and incorporated domain-specific knowledge us-

ing raw EHR data.

Optimizing language models for these domains can have significant practical impli-

cations, such as improving accuracy and efficiency in clinical decision-making, infor-

mation extraction, and knowledge discovery from medical texts.

Therefore, this study aims to explore different approaches for optimizing language

models for biomedical and clinical text, with a focus on both training domain-specific

models and adapting pre-trained models. By reviewing the current state of the art in

this area, this chapter will provide insights into the challenges, opportunities, and future

directions for developing more effective language models for biomedical and clinical

text.

4.4.6 Transfert Learning: Biomedical Language Models

Transformer-based models like BERT are the most used for various domains, and

the biomedical is no exception. After its breakthrough in 2018 on different tasks with its

simple yet efficient architecture has made its reputation. This pre-trained model has in-

spired researchers, considering that training from scratch can be expensive. Moreover,

continuous training can be enriched with more knowledge, such as clinical, through a

transfer learning mechanism. Models such as BioBERT [116] and clinicalBERT [138]

used the knowledge acquired by the original BERT and fine-tuned it to clinical and

biomedical documents to improve their performance on biomedical-related tasks. De-

spite that these models set the state-of-the-art in this domain, they inherited the strengths

and weaknesses of their original model. As demonstrated in the RoBERTa paper [115],

the BERT model was undertrained, and its hyperparameters were not optimized. Most

importantly, we consider that transfer learning should be accompanied by setting op-

timum parameters for the data and the downstream tasks. Recent models that set

state-of-the-art on the Biomedical Language Understanding Evaluation(BLUE) bench-

mark [139] used the same vocabulary inherited from their original models. However,

the SciBERT paper [137] demonstrated the importance of building a dedicated tokenizer

with an in-domain vocabulary for scientific documents.

4.4.7 In-domain Tokenization

General language representation models similar to BERT have been trained on a

large variety of English documents such as Wikipedia and Book corpus. This pre-

training process gives them a high ability to contextualize individual words and tokens

because of the attention mechanism in their architecture. However, the same mod-

els and tokenizers don’t perform well on domain-specific texts such as biomedical or

scientific documents [137]. Researchers understood that subsequent efforts should be

focused on using additional in-domain text to provide a more accurate representation

of the related contexts. BioBERT [116] uses 4.5B and 13.5B words from respectively
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Figure 4.2: BioBERTa Training overview

PubMed and PMC to pre-train their model. In addition, ClinicalBERT [138] utilized

real-world biomedical data from MIMIC to capture unusual grammatical structures that

most models are not paying enough attention to. Although some authors [140] claim

that a continual pre-training of the general domain to a domain-specific LM doesn’t

necessarily help the resulting model to perform better, we believe that some important

steps of an LM development, such as a proper tokenizer can challenge that assumption.

4.5 Experiment, Methods, and Materials

The essence of our experiment relies on introducing an adapted tokenizer and a fine-

tuned model for biomedical and clinical data. We extended our approach and provided

a sparse attention-based model to represent long biomedical sequences better. In this

section, we describe our tokenization process, the model training, and the experimental

setup that leads to BioBERTa and later to Medical BigBERTa, as illustrated in Fig 4.2

and Fig 4.3.

4.5.1 Tokenization Process

Tokenization is the process of splitting a sequence of sentences into words or sub-

words in order to identify entities by looking them up in a vocabulary table. This trans-

formation is crucial for computers to understand words in a numeric environment by

replacing tokens with their respective IDs from the table. Comparable to a new lan-

guage, clinical texts such as EHR notes and reports require dedicated dictionaries to

handle inner-domain jargon and conventional annotations to grasp their contextual rep-

resentations.

With regard to mitigating rare words with subwords, Byte Pair Encoder (BPE) was

introduced in 2015 [141, 142] and has since been used in LMs such as GPT2 [131]

and RoBERTa [115]. BPE relies on a 2-step tokenization process. A pre-tokenization

simply splits the training data into words and associates them with their occurrence

frequency. The second step consists of segmentation of words to a character level and

60



4.5. EXPERIMENT, METHODS, AND MATERIALS

Figure 4.3: Biomedical BigBERTa

learning merging rules to constitute the most frequent 1character associations limited by

the vocabulary size defined as a hyperparameter. Training a BPE for domain-specific

LM has two major advantages. First, a new tokenizer for any specific domain is nec-

essary to build the domain-related vocabulary. In addition, BPE can balance the vo-

cabulary size to the frequency of words,sub-words, and characters on a gradual scale

since common entities will be merged earlier, resulting in a dictionary that provides a

more accurate representation of the domain-related context. In pursuance of reducing

the vocabulary size, we utilized bytes as the base vocabulary, a technique called Byte-

level BPE proposed in GPT2 [131]. Byte-level BPE tokenization better suits the need to

represent various vocabulary of the raw medical texts without using the <UNK> token,

and where abbreviations need to be interpreted within their contexts in each note.

To train our tokenizer, we combined approximately 43.6M tokens of raw EHR notes

from MIMIC III [126] and about 215M tokens from the general biomedical text, total-

izing over 5GB of text data as shown in Table 4.1. By treating sequences as a series

of Unicode characters, this tokenization supports multiple subword algorithms, such

as BPE [142], unigram language models [143] and others. BPE stands between char-

acter and word-level language modeling by taking advantage of both word-level in-

puts for frequent sequences of symbols and character-level inputs for rare symbol se-

quences. This attribute gives the resulting representation a tremendous benefit over

any character-based tokenization for a domain-specific document by excluding out-of-

vocabulary tokens, which restrict the space of a contextual input representation. Our

BPE tokenizer can encode any text within the UTF-8 characters, which requires only

256 uni-characters in its base vocabulary.

1In contrast to Wordpiece algorithm, which is based on likelihood instead of frequency
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4.5.2 Experimental Datasets

Inspired by the training approach of BlueBERT [139], we trained our model by

employing myriad biomedical and clinical datasets. We used both real-world medical

text notes from the publicly available dataset, MIMIC III [126] and general English

biomedical text corpus from three different datasets obtained from Kaggle 2. Language

models are sensitive to the data distribution, we integrated these corpora in order to

balance and generalize the tokenization with the off-domain word frequency. A brief

description is given below, and we refer readers to Table 4.1 for more details.

• MIMIC III (Medical Information Mart for Intensive Care) is a widely used

dataset for medical purposes. it aggregates deidentified medical data from more

than 40.000 patients who were admitted to the critical care units of the Beth Is-

rael Deaconess Medical Center from 2001 to 2012. We extracted over 1 million

sequences with an average of 1258 words per sequence, containing procedure

notes, reports from different services, and discharge summaries. To standardize

the data, we applied the preprocessing methods described as a thorough cleaning

in our previous work [144].

• PubMed title abstract baseline 2019 is a public dataset, aggregating titles and

abstracts from the PUBMED database for articles published in 2019. However,

we consider this dataset as general English texts with biomedical terminologies.

• The medical transcription and the Medical Text for Text Classification con-

tains sample medical transcriptions and reports from various medical specialties

describing a patient. although they are purely medical-related and not relatively

large, both datasets provide text with grammatically and syntactically rich se-

quences.

4.5.3 Biomedical Language Model 1: BioBERTa

As for most language models, we utilize a combination of pre-training and super-

vised fine-tuning. As suggested in the BERT paper [114], we used our cased tokenizer

to evaluate our model on a NER task. We created a conda environment on a single

GPU RTX3090 with 24GB memory. As for the training, we followed a similar con-

figuration as RoBERTa-base [115] for the optimization and hyperparameter arguments.

Although some authors recommend freezing the embedding while performing continu-

ous training, we needed to train all the layers since we used our own tokenizer. In order

to optimize our computing power, we concatenated and then chunked all the training

sequences in samples of the model input length. Our training took over 446 hours with

a maximum input length of 512 and a batch size of 16. With a perplexity score of 3.35,

we didn’t perform any hyperparameter search at this stage since we believed it to be

either a task-dependant or data-dependant optimization.

4.5.4 Biomedical Language Model 2: Medical BigBERTa

Medical BigBERTa is a transformer trained for autoregressive language modeling,

trained to predict only a hidden token [mask] given a context on its left. This model

2The three datasets are available in 1, 2, 3
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4.5. EXPERIMENT, METHODS, AND MATERIALS

shares the same architecture with BigBird [122], which was trained over RoBERTa

[115] weights. We implemented our model’s architecture to fit with BigBird in order

to evaluate our contribution in contrast with the existing work and simplify its sharing

with the community.

BigBird

In disparity to predominant transformer-based models that use a fully quadratic

self-attention mechanism, BigBird and our model are designed with a sparse atten-

tion scheme based on a few inner products of selected tokens. This innovative attention

mechanism is an efficient approximator of the traditional full attention to allow design

models that can operate longer sequences. Consequently, it does not seek to be better

than the latter. It consists of three types of blocks of tokens:

• Global tokens g are composed of a window of tokens that attend to all other

sequence tokens.

• Local tokens l where each token attends to its neighbors and itself.

• Random tokens r where all tokens attend to a set of random tokens in the se-

quence.

Fig. 4.4 illustrates the sparse attention mechanism used in the BigBird model [122]

Figure 4.4: An illustration of the sparse attention mechanism

Our Model Configuration

Given the computational limitation of our environment (Single GPU, Nvidia RTX

3090, 24GB), we couldn’t follow the original setup of BigBird. To optimize the training

process, our model uses the internal transformer construction (ITC) configuration with

a block size b of 64 and g = 2 x b, l = 3 x b and r = 3 x b. We pretrained it with only the

prediction objective of a masked token for 7.8M steps and a learning rate of 5e-5 with

a batch size of 4.

The sparse attention architecture is kept intact only if the input length is more than

1024 tokens. Differently, the model automatically switches to the quadratic full atten-

tion. One of the techniques of training such a model to its full potential is to either

pad the inputs to the maximum length or bucketing by subgrouping samples accord-

ing to their lengths [145]. However, these approaches will only use resources without

adding any values. Thus, to accelerate our training, we concatenated all the training se-

quences and chunked them into samples of length max size = 4096. As in RoBERTa,
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our model was trained with dynamic masking that changes each epoch of the training.

The masking procedures were kept the same as BigBird. This choice has the advan-

tage of preventing the model from overfitting within the new domain while we ensure

a constant gradient descent. We trained two separate models with two different input

lengths of 2048 and 4096 separately. However, we observed that the shorter model was

not long enough to highlight a significant contribution compared to the existing long

version models such as BioMegatron [119] or BioBERT large.

4.5.5 SentencePiece Tokenizer

To train our tokenizer, we combined approximately 43.6M tokens of raw EHR notes

from MIMIC III [126] and about 215M tokens from the general biomedical text, total-

izing over 5GB of text data as shown in Table 4.1. By treating sequences as a series

of Unicode characters, this tokenization supports multiple subword algorithms, such

as byte-pair-encoding (BPE) [142], unigram language models [143] and others. BPE

stands between character and word-level language modeling by taking advantage of

both word-level inputs for frequent sequences of symbols and character-level inputs

for rare symbol sequences.This attribute gives the resulting representation a tremen-

dous benefit over any character-based tokenization for a domain-specific document by

excluding out-of-vocabulary tokens, which restrict the space of a contextual input rep-

resentation. Below is the synthesized algorithm of how we created our tokenizer using

the BPE method:

Algorithm 2 BPE-based Tokenizer

1: procedure BPETOKENIZER(S, V, k)

2: Initialize the vocabulary V with all unique characters in the input text S
3: for i = 1 to k do

4: Compute the pair frequency of all pairs of characters in V
5: Select the most frequent pair (a, b)
6: Add the new token ab to V
7: Replace all occurrences of (a, b) in S with the new token ab
8: end for

9: return BPE tokenizer with the vocabulary V
10: end procedure

11: procedure TOKENIZE(tokenizer, S)

12: Initialize an empty list T
13: for each substring s in S do

14: Append the tokens obtained by applying the tokenizer to s to T
15: end for

16: return List of tokens T
17: end procedure

In this algorithm, the first procedure, ‘BPETokenizer‘, creates a BPE-based tok-

enizer using the input parameters: the input text S, the initial vocabulary V , and the

number of BPE iterations k. The algorithm first initializes the vocabulary with all

unique characters in the input text. It then enters a loop, where it repeatedly com-

putes the pair frequency of all pairs of characters in the vocabulary, selects the most

frequent pair, adds the new token to the vocabulary, and replaces all occurrences of the
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pair in the input text with the new token. The loop runs for the specified number of BPE

iterations. At the end of the loop, the algorithm returns a BPE tokenizer with the final

vocabulary V . The second procedure, ‘Tokenize‘, takes the BPE tokenizer created by

‘BPETokenizer‘ and the input text S as parameters. It initializes an empty list T and

iterates over each substring s in the input text. For each substring, it applies the BPE to-

kenizer to s and appends the resulting tokens to T . At the end of the loop, the algorithm

returns the list of tokens T , which represents the BPE tokenization of the input text.

In the end, our BPE tokenizer can encode any text within the UTF-8 characters,

which requires only 256 uni-characters in its base vocabulary.

4.5.6 Evaluation Tasks

Biomedical language models have been improved on various ranges of downstream

tasks. Like in general-domain, comprehensive benchmarks such as GLUE [146] have

been used to evaluate the evolution of language models on different tasks, giving a

clear orientation to researchers on where they should focus on expanding the NLP

boundaries. Our initial model BioBERTa was evaluated only on the Named Entity

Recognition(NER) to help us to determine the contribution of an extended optimiza-

tion. Our ultimate goal was to evaluate the performance of our long model on various

tasks in comparison to other state-of-the-art biomedical domain-oriented LM. Biomed-

ical Language Understanding Evaluation (BLUE) [147] was the first publicly available

benchmarking for biomedical LM. However, we decided to use a more recent bench-

mark with more coverage on datasets used in recent work for this evaluation. The

Biomedical Language Understanding and Reasoning Benchmark(BLURB) [140] is a

comprehensive collection of thirteen corpora covering six different tasks, while BLUE

covered five tasks and used ten datasets. Furthermore, we would have liked to include

the real-world clinical datasets evaluation provided with the BLUE benchmark. How-

ever, the MedNLI corpus [147], for instance, was not available at the indicated location.

In the following sections, we discuss the tasks we evaluated our model on as well as

the datasets utilized for each task. Table 4.3 provides a brief description of each dataset

as well as its evaluation metrics. For the sake of brevity, we refer readers to the orig-

inal BLURB benchmark paper [140] for more details about the data preparation and

description.

Named Entity Recognition(NER)

This task consists of predicting mentioned spans of the input document. These

entities range from chemicals, diseases, drugs, proteins, and others. The performance

is measured by comparing the set of predicted tags and spans with a set of ground

truth labels to the entity level. This task is regarded as a token classification problem

involving the measurement of the model and its tokenization. We evaluate the model

by calculating the average f1-score for each class using the precision and recall on the

entity level.

Relation Extraction(RE)

The relation extraction task aims to predict the relation between a pair of entities

mentioned as artifacts in the input document. Biomedical mentions can be classified

as drugs, chemicals, proteins, diseases, or genes. This task highlights the ability of a
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Table 4.3: Summary of our considered datasets for model evaluation

Dataset Domain task
Evaluation met-

rics

BC5CDR-Chem [148]

Biomedical NER

F1 entity-level

BC5CDR-disease [148] F1 entity-level

NCBI-disease [149] F1 entity-level

BC2GM [150] F1 entity-level

JNLPBA [151] F1 entity-level

BC5CDR [148] F1 entity-level

Linnaeus [152] F1 entity-level

BC4CHEMD F1 entity-level

Species-800 [153] F1 entity-level

ChemProt [154]
Biomedical RE

Micro F1

DDI [155] Micro F1

BIOSSES [156] Biomedical SS Pearson corr.

BioASQ 4b [157]

Biomedical QA AccuracyBioASQ 5b [157]

PubMedQA [158]

SQUAD V1 [159]
General QA

Accuracy

SQUAD V2 Accuracy

model to extract structured information from unstructured inputs. The model requires

a classification layer as the task is regarded as a sequence classification problem into

classes of relations. The evaluation measures the micro-averaged F1 score of the pre-

dicted classes.

Sentence Similarity (SS)

This task measures and predicts how similar two sequences are. Capturing the se-

mantic information and calculating how close the sequences are, this task gauges the

ability of an LM to retrieve and cluster biomedical information. We evaluate this simi-

larity by calculating the Pearson correlation coefficients between pairs of inputs.

Evidence-Based Medicine(EBM)PICO

The EBM PICO(Patient, Intervention, Comparison, and Outcome) dataset contains

clinical questions formulated in the PICO format and corresponding biomedical arti-

cles or evidence-based documents that provide answers or information relevant to the

questions. It consists of extracting information from clinical text, answering clinical

questions, or supporting evidence-based decision-making in healthcare settings. We

evaluated using a micro F1 score on words in the model’s output.

Question Answering(QA)

The question Answering task consists of extracting an answer from a given doc-

ument. The model takes a context text and a question and returns an answer. The

answers can be a reference text from the context input (extractive QA), a factoid, or a
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label( yes, no, maybe). Although this task is evaluated on F1-score or Exact Match, we

used accuracy to compare our results with the baselines on the BLURB benchmark.

4.6 Hyperparameter Optimization

Hyperparameters are parameters that cannot be learned directly from the training

data but rather must be set before training [160]. For performance optimization, the

practice of using recommended hyperparameters does not guarantee optimum results

with the subsequent model. Moreover, we understand that while predefined learning

parameters could lead to good performance, optimizing hyperparameters should yield

better results [160, 161].

4.6.1 Optimization Problem

An optimization problem is a mathematical problem that involves finding the best

solution from a set of possible solutions that satisfies a set of constraints [162,163]. The

best solution is typically the one that maximizes or minimizes an objective function. For

our case, it involves finding the optimal set of hyperparameters that result in the best

performance of a given model on a specific task. While this optimization problem can

be solved using a variety of methods, Some common methods include:

• Bayesian Optimization: Bayesian optimization aims to find the maximum of an

unknown function f(x) with a minimum number of function evaluations [161].

It models the unknown function as a Gaussian process, which allows it to trade

off exploration (sampling in unexplored regions) and exploitation (sampling in

regions where the function is expected to be high). The acquisition function is

defined as a trade-off between the mean µ(x) and variance σ2(x) of the Gaussian

process at a candidate point x:

xt+1 = argmaxx∈X ;α(x;Dt) (4.6)

where Dt = (xi, yi)
t

i=1 is the history of function evaluations up to time t, and

α(x;Dt) is an acquisition function that balances exploration and exploitation.

The most commonly used acquisition functions are the upper confidence bound

(UCB) and the expected improvement (EI):

UCB(x;Dt) = µ(x) +
√

βtσ(x) (4.7)

EI(x;Dt) =

{

(f(x)− f(xbest))Φ(Z) + σ(x)φ(Z), if σ(x) > 0,

0, if σ(x) = 0
(4.8)

where βt controls the trade-off between exploration and exploitation, Z is a stan-

dard normal random variable, Φ and φ are the cumulative distribution function

and probability density function of the standard normal distribution, and xbest is

the current best point found.
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If σ(x) > 0, the expected improvement consists of two terms: the first term

(f(x)−f(xbest))Φ(Z) represents the exploitation term, encouraging the search to

focus on areas where the surrogate model predicts improvements over the current

best observation. The second term σ(x)φ(Z) represents the exploration term,

encouraging the search to explore regions with high uncertainty.

If σ(x) = 0, it means that the surrogate model’s predicted standard deviation

(uncertainty) at point x is zero. In other words, the surrogate model is certain

about the objective function value at that particular point because it has already

been observed in the historical data Dt.

In this case, if σ(x) = 0, the expected improvement function EI(x;Dt) is defined

as:

EI(x;Dt) = 0 (4.9)

When the uncertainty is zero, there is no need for exploration because the objec-

tive function value at point x is already known. Therefore, the expected improve-

ment is set to zero in order to avoid unnecessary exploration of already observed

points. This ensures that the algorithm does not waste computational resources by

evaluating the objective function at points that have already been sampled. This

Gaussian process makes this algorithm more efficient and powerful for hyperpa-

rameter search.

• Random Search: Random search [160, 164] is a simple and popular method for

hyperparameter optimization . It involves randomly sampling hyperparameters

from a specified range and evaluating them to find the best set of hyperparameters:

θbest = argmax
θ∈Θ

f(θ) (4.10)

where Θ is the set of all possible hyperparameters and f(θ) is the objective func-

tion evaluated at hyperparameters θ.

• Grid Search: Grid search [164] involves searching over a pre-defined grid of

hyperparameters and evaluating them to find the best set of hyperparameters:

θbest = argmax
θ∈Θ

f(θ) (4.11)

where Θ is the grid of hyperparameters and f(θ) is the objective function evalu-

ated at hyperparameters θ.

• Tree-structured Parzen Estimator (TPE): TPE is another Bayesian optimiza-

tion method based on dividing the hyperparameter space into two regions: good

and bad. It uses kernel density estimation to model the probability density func-

tion of each region. It finds the hyperparameters that maximize the ratio of the

probabilities of being in the good region over the bad region.

The objective function is modeled as a conditional distribution:

68



4.6. HYPERPARAMETER OPTIMIZATION

p(y|x) =
{

l(x), y = f(x)

g(x), y ̸= f(x)
(4.12)

Where f(x) is the black-box function that is being optimized, and l(x) and g(x)
are probability density functions of the good and bad regions, respectively.

Although all these methods have been used in machine learning optimization, we

could not evaluate all of them. Our choice of an optimization tool was guided by the

following considerations:

• Scalability: It should be scalable and can handle optimization tasks with a large

number of hyperparameters.

• Flexibility: It should support various hyperparameters, including continuous, dis-

crete, and categorical parameters.

• Interoperability: It should integrates easily with our machine learning frame-

works(PyTorch).

• Efficient: It employs state-of-the-art algorithms for optimization, such as TPE,

which have been shown to be highly efficient in finding optimal hyperparameters.

4.6.2 Optuna

The hyperparameter exploration was conducted using Optuna framework [165], an

open-source library written in Python that uses state-of-the-art optimization algorithms

to automatically search for the best hyperparameters of a machine learning model. As-

sume that we have a hyperparameter search space H and an objective function f(h) that

maps a hyperparameter configuration h ∈ H to a scalar value representing the perfor-

mance of the corresponding model. The goal is to find the hyperparameter configuration

h∗ that maximizes or minimizes the objective function:

h∗ = argmax /min f(h) (4.13)

To achieve this, Optuna builds a probabilistic model of the objective function using

a Gaussian Process (GP) [166] model, which represents the objective function as a

probability distribution over the search space of hyperparameters. Specifically, the GP

model estimates the mean and variance of the objective function at each point in the

search space based on the evaluations of the objective function at previous points.

Given the probabilistic model of the objective function, Optuna uses an acquisition

function to suggest the next hyperparameter configuration to evaluate. The acquisition

function balances the exploration of new regions of the search space (where the uncer-

tainty is high) with the exploitation of promising regions (where the objective function

is expected to be high). The expected improvement (EI) [161, 165] criterion is com-

monly used as the acquisition function in Optuna, which is defined as:

EI(h) = E[max(f(h)− f(h∗), 0)] (4.14)

where h∗ is the current best hyperparameter configuration found so far, and E[·] denotes

the expected value. The hyperparameters are then sampled from the probabilistic model
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using a sampling algorithm, such as the Tree-structured Parzen Estimator (TPE) or the

CMA-ES algorithm, and evaluated using the objective function. The new evaluation

is then added to the set of previous evaluations, and the probabilistic model is updated

using the new information. This algorithm can be summarized by the following steps:

Algorithm 3 Optimizing Multiple Hyperparameters with TPE

Require: Hyperparameter search space Θ, objective function f(θ)
Ensure: Optimal set of hyperparameters θ∗

1: Define the search space Θ
2: Define the objective function f(θ)
3: Choose the TPE algorithm

4: Initialize the search process by creating a study object and specifying the search

algorithm, search space, and objective function

5: while search not complete do

6: Optimize the hyperparameters by calling the optimize method of the study ob-

ject

7: Evaluate the objective function for each suggested set of hyperparameters

8: Update the search space based on the results of previous trials

9: i← i+ 1
10: Compute the probability of improvement using a TPE

11: Sample new hyperparameters from the search space based on the probability of

improvement

12: end while

13: return the set of hyperparameters that produced the best objective value, θ∗

Optuna uses a while loop to repeat the optimization process until a stopping criterion

is met. During each iteration of the loop, the algorithm suggests new sets of hyperpa-

rameters using TPE, evaluates the objective function for each set of hyperparameters,

updates the search space, and samples new hyperparameters based on the probability of

improvement. Finally, the algorithm returns the set of hyperparameters that produced

the best objective value

4.7 Results

A new Tokenizer and an LM fine-tuned with biomedical and clinical data have a

transient objective of evaluating our approach using a single task. However, our ulti-

mate goal is to demonstrate the utility of optimizing biomedical LMs by combining an

implementation of sparse attention, a dedicated tokenizer, and hyperparameter finetun-

ing. Moreover, we aim to evaluate our proposed model on a variety of NLP tasks to

compare its performance with existing models. We discuss in the following subsections

the evaluation of our model and its tokenizer. We demonstrate the model performance

on different tasks by comparing its results with the BLURB [140] leaderboard as of

October 2022, as well as the SoTA from the literature.
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4.7.1 An Adapted Tokenizer

The main goal of a tokenizer is to split a sequence of texts into units with a semantic

meaning. With this objective, keeping words unsplit could be ideal. However, a signifi-

cant drawback of a word-level tokenizer is the huge vocabulary size created, especially

from documents with such a large amount of lexical variation or lexical diversity due to

typos or the medical domain itself. Our goal for a new tokenizer was to produce a vo-

cabulary that would split as few words as possible to preserve a word’s original context

and semantics in a sequence. We built a 50358 vocabulary-size tokenizer. We borrow

the fertility rate (FR) concept defined in statistical machine translation [167] as the ratio

of the lengths of sequences generated from a translation. In our case, FR measures the

average number of tokens produced from a word. It reveals how your tokenizer vocabu-

lary is adapted to the documents. Thus, the ideal FR of 1 indicates that each word of the

input text is included in the tokenizer vocabulary. Moreover, a tokenizer with the lowest

FR has the advantage of generating the shortest input sequence, whereas it preserves a

consistent word representation in any context.

Fig. 4.5a shows the fertility of each model on various datasets. Fig. 4.5b ranks the

models while Fig. 4.5c reports the mean average of all the models showing that ours

has the lowest FR.

Figure 4.5 provides the results of FR and some baseline models. Figure4.5a shows

the results of the models over different datasets, while figure4.5b shows the rank of the

models on each dataset. Our model demonstrates the lowest FR on three datasets out of

6, with the lowest average FR of 1.3893 in figure 4.5c.

This ability to recognize entities demonstrates that our tokenizer is less susceptible

to breaking the semantic meaning of medical terminologies where an over-segmentation

is observed on the counterpart tokenizers. As demonstrated and stated by Rust P. et

al. [124], ”both the data size and the tokenizer are among the main driving forces of

downstream task performance.”

4.7.2 Model 1: BioBERTa

As suggested in the BERT paper [114], we used our cased tokenizer to evaluate our

model on a NER task. We created a conda environment on a single GPU RTX3090 with

24GB memory. As for the training, we followed a similar configuration as RoBERTa-

base [115] for the optimization and hyperparameter arguments. Although some authors

recommend freezing the embedding while performing continuous training, we needed

to train all the layers since we used our own tokenizer. In order to optimize our comput-

ing power, we concatenated and then chunked all the training sequences in samples of

the model input length. Our training took over 446 hours with a maximum input length

of 512 and a batch size of 16. With a perplexity score of 3.35, we didn’t perform any

hyperparameter search at this stage since we believed it to be either a task-dependant or

data-dependant optimization.

4.7.3 Model 2: Biomedical BigBERTa

We introduced parse attention for biomedical documents as a solution to mitigate

long sequence encoding with a relative tolerance on the model performance. To eval-

uate that effectiveness, we compare our model with a large transformer-based model.
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(a) The fertility rates

(b) The fertility ranks

(c) Mean of the fertility rates of each model

Figure 4.5: Comparison of the fertility rates.
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4.7. RESULTS

(a) Train memory along batch size (b) Inference memory along batch size

(c) Train time along input size (d) Inference time along input size

Figure 4.6: Train and inference benchmarks.

Fig. 4.6 demonstrate the effectiveness of the sparse attention in reducing the time and

memory cost while we still can encode four times the input size of a base model such

as BioBERT and BioBERT large. Our proposed approach proves that sparse attention

is an efficient pruning technique to improve the handling of longer clinical documents.

Fig. 4.6a and 4.6b show the memory cost over the increase of the batch size as long

as the change of input lengths. Fig. 4.6c and 4.6d show a comparison of our model on

the training and inference time along the input size while we change the batch size(bsz).

Fig. 4.6a suggests that our model requires relatively less memory in comparison

to BioBERT large on the same input size. That affirmation is supported by Fig. 4.6b

showing the average memory required for inference. Fig. 4.6c, and 4.6d both show that

Medical BigBERTa trains and infers faster and on larger input sequences.

4.7.4 NER

Table 4.4 reports the named entity recognition results. The first column shows each

dataset’s baseline result from the BLURB leaderboard. The literature has reported sev-

eral results obtained on similar data without being listed on the leaderboard; we reported

the best results found within the literature. In our experiment for NER, we utilized two

versions of the model. ”BigBERTa2048” and ”BigBERTa4096” can respectively encode

2048 and 4096 tokens. We find that the shorter version performed slightly better than

the longer one. A tradeoff between the embedding length and accuracy was established
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in favor of the embedding size for other tasks. That mild difference can be explained

by the fact that both models use full attention for all the NER datasets because the input

sequences are relatively short of triggering the use of sparse attention. Moreover, our

model performs better on most of the datasets. This is partially due to the tokenizer that

better bridges the sub-word representation and the token-level prediction by providing

a less segmented vocabulary rich in biomedical terms.

Table 4.4: Evaluation results of our models on the named entity recognition task.

Dataset BLURB Lit. BigBERTa2048 BigBERTa4096

BC5-chem 94.04 94.88 [168] 92.37 92.3

BC5-disease 86.39 88.5 [119] 89.08 87.83

NCBI-disease 88.76 90.48 [168] 92.48 92.4

BC2GM 85.18 88.75 [168] 88.44 88.37

JNLPBA 80.06 82.0 [169] 85.72 85.68

Linneaus - 89.81 [116] 84.90 82.72

Species-800 - 82.59 [168] 77.68 76.25

BC4CHEMD - 94.39 [168] 94.47 93.34

4.7.5 Relation Extraction, PICO, and Sentence Similarity

Table 4.5 reports the results of three tasks. On our token classification task with the

Evidence-Based Medicine (EBM) corpus, spans of the inputs are annotated with P, I,

and O(Participant, Intervention, and Outcome). Our model sets a new SOTA over 8%

of the Pearson correlation score. This dataset contains a lot of medical terminologies,

and our model takes advantage of its rich medical vocabulary learned from MIMIC to

limit the over-segmentation of terms since the accuracy is evaluated on the word level.

The proposed model outperformed existing models on 2 out of 3 relation extraction

datasets. However, it didn’t show higher performance on the sentence similarity task.

We suspect that it is due to the dataset size, which is relatively too small for a larger

model without using any extra training data as illustrated by counterpart models [125].

Table 4.5: Evaluation results from evidence-based medical information extraction

(PICO), relation extraction(RE), and sentence similarity(SS) tasks

Dataset Task BLURB Lit. BigBERTa4096

EBM PICO PICO 74.19 74.19 [125] 82.99

ChemProt RE 80.0 88.95 [170] 89.87

DDI RE 83.35 83.35 [125] 94.04

GAD RE 84.90 84.90 [125] 81.83

BIOSSES SS 94.49 93.63 [125] 90.12

4.7.6 Q&A

On the question-answering task, we had two datasets from the BLURB benchmark.

The BioASQ [140] evaluates LMs only on the yes/no questions(task7b), as well as Pub-
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MedQA [140], which focuses only on the yes/maybe/no questions. Table 4.6 provides

our results from the two corpora compared to the leaderboard and the literature SOTA.

Our model performed poorly on the BioASQ 7b dataset due to insufficient training

data(670 questions). As recommended by BLURB, other authors have used data from

previous tasks (2747 training questions) to pre-train their models before stepping up to

the 7b dataset. However, our model outperformed the SOTA on PubMedQA by a 5%

F1 score. This performance was achieved by taking advantage of our large model. We

incorporated the provided long answers into the context as a single input sequence.

Nonetheless, one of the best ways to evaluate a model on a language understanding

task is its ability to generate answers on a factoid-type QA task. This reveals whether an

LM understands or simply memorizes the input sequence [171]. To assess that ability,

we additionally evaluate our model on BioASQ task4b and 5b used by Lee et al. [116].

The results are shown in table 4.7, where our model outperformed the results obtained

with BioBERT. We reproduced the BioBERT results using the same batch size=8 as for

our model.

Table 4.6: Comparison of our model and SOTA on Biomedical Q&A tasks

BLURB Lit. Our Model

BioASQ(7b) [140] 94.82 94.8 [125] 89.28

PubMedQA [140] 72.18 72.2 [125] 77.87

Table 4.7: Results on biomedical and general question answering tasks

Models Metrics SQUAD V2 BioASQ 4b BioASQ 5b

BERT
EM 78.81 80.52 83.91

F1 86.70 80.85 83.27

BioBERT

v1.1

3 EM - 82.11 * 86.21

F1 - 83.35 * 88.04

BigBird

ITC

EM 76.20 79.89 84.50

F1 82.63 77.90 86.38

Our

model

EM 78.30 81.98 87.11

F1 86.94 82.13 88.36

4.8 Further Analysis

4.8.1 Ablation Studies

To assess the impact of our novel approach incorporating the new tokenizer and the

sparse attention-based model, we conducted an ablation study following these steps.

Initially, we pretrained the RoBERTa model using the identical dataset and subsequently

fine-tuned it on multiple tasks utilizing our custom tokenizer. Additionally, we gauged

3* BioBERT results were obtained from our environment, using the same batch size as our model
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the influence of the tokenizer on our model’s performance by substituting it with the

standard tokenizer from RoBERTa. Throughout the experimentation, we maintained

consistent hyperparameter settings as presented in Table 4.9.

Table 4.8: Ablation studies: Comparison of our proposed approach with a combination

of (1) BigBERTa and RoBERTa tokenizer, and (2) RoBERTa model and BigBERTa

tokenizer.

Dataset BigBERTa
RoBERTa

(base)

BigBERTa+

Tok.RoBERTa

RoBERTa+

Tok.BigBERTa

BC5-Chem 92.37 93.81 90.05 90.81

BC5-disease 89.08 88.04 78.13 69.01

NCBI-disease 92.48 88.44 81.13 76.72

BC2GM 88.44 86.47 82.47 78.06

JNLPBA 85.72 85.15 82.15 79.63

BioASQ 89.28 65.29 65.29 65.29

PubMedQA 77.87 73.8 57.4 58.2

EBM PICO 82.99 77.11 69.43 66.90

ChemProt 89.87 88.58 83.89 83.97

DDI 94.04 95.99 90.59 90.83

GAD 81.83 80.71 72.59 75.59

From the results in Table 4.8, we can observe that BigBERTa (base) consistently out-

performs RoBERTa across most datasets, demonstrating its effectiveness for biomedical

natural language processing tasks. However, RoBERTa demonstrated high competi-

tiveness due to its full attention and the input size of different datasets. Interestingly,

BigBERTa outperforms the RoBERTa-based model in most datasets when combining

different tokenizers with the models. On one hand, the combination of BigBERTa with

the RoBERTa tokenizer shows a significantly lower score compared to the individual

models. This indicates that the RoBERTa tokenizer might not be well-suited for tok-

enizing the biomedical domain text present in the NER task. On the other hand, the

combination of RoBERTa model with the BigBERTa tokenizer performs relatively well

on the EBM PICO, ChemProt, DDI, and GAD datasets. This suggests that the tokeniza-

tion strategy of BigBERTa better suits the relation extraction task and complements the

strengths of RoBERTa, leading to improved performance. In conclusion, the ablation

study highlights the importance of considering both the model architecture and the tok-

enizer when tackling in-domain NLP tasks such as biomedical.

4.8.2 Hyperparameters Fine-tuning

For performance optimization, the practice of using recommended hyperparame-

ters does not guarantee optimum results with the subsequent model. Moreover, we

understand that while predefined learning parameters could lead to good performance,

optimizing hyperparameters should yield better results. This hyperparameter search

task is regarded as task-dependant or, more granularly, as data-dependant optimiza-

tion. The hyperparameter exploration was conducted using Optuna framework [165] by

searching for the optimum combination of parameters for a given input data. This al-

gorithm utilizes a Tree-structured Parzen Estimator(TPE) to perform a dynamic search
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loop through a parameter space for a determined number of trials. Since this proba-

bilistic approach constructs models to approximate the performance of hyperparame-

ters based on historical measurements, its efficiency largely depends on the number of

trials. To limit the search cost, we defined a set of parameters and a value range that

should be investigated and kept the rest of the parameters in their base configuration as

predefined in the training arguments.

• learning rate η = [1e− 4 : 1e− 2]

• training epoch i = [5 : 100]

• per device train batch size β = [4, 8, 12, 16, 32, 64]

Table 4.9 provides all the resulting hyperparameters used for each dataset.

Table 4.9: Hyperparameters from Optuna obtained and used to fine-tune our model for

each dataset

Dataset name learning rate train epochs batch size Replications

BC5-Chem 2.9968e-05 29 8 5

BC5-disease 3.8067e-05 13 4 5

NCBI-disease 1.3479e-05 58 4 5

BC2GM 1.3297e-05 44 32 4

JNLPBA 1.8522e-05 56 64 4

Linnaeus 2.1036e-05 30 64 4

Species-800 1.7597e-05 30 8 4

BC4CHEMD 1.5543e-05 31 4 4

BioASQ 1.1637e-05 10 8 7

PubMedQA 2.0840e-05 5 16 4

EBM PICO 4.5284e-05 40 4 4

ChemProt 3.5699e-05 5 8 4

DDI 1.5971e-05 24 8 4

GAD 1.4770e-05 14 16 6

BIOSSES 7.1114e-05 53 64 5

Using these customized hyperparameters helped to boost our performance up to

+3.11% F1 score on average on all downstream tasks by running 200 trials for each

search.

4.8.3 Tokenizer Analysis

As our tokenizer was oriented toward improving real-world clinical document em-

bedding, we wanted to understand its limits and performances. The fertility rate mea-

sures the average number of tokens produced from an input sequence of words. The

ideal rate of 1 means that each input word has a corresponding token in the tokenizer’s

vocabulary. A tokenizer with a lower word segmentation has the advantage of gener-

ating the shortest input sequence size, whereas it preserves a consistent word repre-

sentation in any context. The fertility rate being one of the best tools for measuring
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how good a tokenizer [124], we systematically compare our tokenizer with general and

biomedical-oriented tokenizers. Table 4.10 shows that our tokenizer has the lowest

fertility rate on 7 of 9 datasets. A simple direct interpretation of these results high-

lights that our tokenizer can respectively encode on average 15.1% and 27.4% longer

sequences than RoBERTa and BioBERT. However, we observed a poor performance on

general English NER datasets such as CoNLL-2003 [172]. This generalization problem

is mainly due to our tokenizer type, which is uncased. It is also due to the essence of

the training objective, where we only used clinical and biomedical documents.

Table 4.10: Fertility rate of BioBERTa on NER datasets

Datasets BERT BioBERT SciBERT RoBERTa Ours

BC5-Chem 1.258 1.343 1.122 1.224 1.127

BC5-disease 1.302 1.390 1.128 1.254 1.056

NCBI-disease 1.290 1.354 1.126 1.237 1.096

BC2GM 1.277 1.362 1.119 1.245 1.088

JNLPBA 1.456 1.544 1.244 1.409 1.207

BC5CDR 1.350 1.441 1.167 1.287 1.074

Linnaeus 1.215 1.285 1.104 1.189 1.107

BC4CHEMD 1.291 1.374 1.126 1.246 1.094

Species-800 1.268 1.344 1.147 1.241 1.126

CONLL2003 1.237 1.338 1.356 1.278 1.458

While it has been established that specialized tokenizers improve the downstream

performance of the dedicated LM in almost every task and language [124], we noticed

that some models utilized pre-existing tokenizers without considering the importance of

a tailored vocabulary. For instance, we found that BioLinkBERTLarge [125] shares the

same tokenizer vocabulary with BioM-ELECTRALarge [133], BioMegatroncased [119]

uses the BioBERTcased [116] tokenizer, while BioMegatronuncased [119] utilized the

BERTuncased [114] vocabulary. Further experiments should demonstrate the conse-

quence of default tokenizers for a domain-specific LM.

4.9 Discussion

4.9.1 Effect of a Dedicated Tokenizer

Employing an open dictionary of medical terms of about 98119 terminologies, we

assessed the embedding capability of our models in a pure medical domain. We found

out that our tokenizer vocabulary has the highest (13.01%) occurrences of whole med-

ical terminologies compared to BioBERTLarge, PubMedBERTmicrosoft (9.05%), and

BioLinkBERTLarge (3.97%) while BigBirdbase initially has only 2.35%. We also ob-

served an averaged embedding length gain of +7.71% across datasets compared to the

source model.

Moreover, the design choices of a domain-specific language model have a consider-

able impact on the performance of the consequent model. We demonstrated that train-

ing a language model among diverse text genres is important. The combination of a

byte-based tokenizer and a real-world in-domain document provides a tokenizer with
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minimum subword fertility to prevent a potential over-segmentation of medical termi-

nologies. Ultimately, our tokenizer extensively increased the input sequence length and

intuitively exhibited that the tokenizer is well suited to the specific domain.

However, we noticed that having a cased and uncased vocabulary file can subsequently

affect the tokenization process for general terms. For example, as reported in the ta-

ble 4.7, using our uncased vocabulary file, our tokenizer was unable to recognize a ba-

sic word as ’Chicken-’ in ’Chickenpox’ simply because this token started with a capital

”C” which is not present in our vocabulary.

4.9.2 Effect of Sparse Attention

We observed that our method heavily relies on supervised training in order to per-

form some tasks, such as QA, especially when the input is not long enough for the

model to use sparse attention. These large input embedding models might have the po-

tential to speed up even further LMs for reading comprehension applied to QA where

the answer is searched in a potentially very large corpus of documents. This assumption

is well demonstrated by the results on PubMedQA, where we encoded the context as

one single input improved the results of +5% F1 score. As assessed with NER tasks,

a shorter sparse attention model(2048) has the potential to perform better on relatively

short inputs(+0.776 F1) since the blocks will skip fewer tokens. As for the input size,

we noticed that the more data we have, the more memory we need; therefore, control-

ling the batch size is the ultimate key.

4.10 Conclusion

The design choices of a domain-specific language model have a considerable impact

on the performance of the consequent model. We demonstrated that training a language

model among diverse text genres is important. The combination of a byte-based tok-

enizer and a real-world in-domain document provides a tokenizer with minimum sub-

word fertility to prevent a potential over-segmentation of medical terminologies. In the

end, our tokenizer extensively increased the input sequence length and intuitively ex-

hibited that the tokenizer was well suited to the specific domain. However, we noticed

that having a cased and uncased vocabulary file can subsequently affect the tokeniza-

tion process for general terms. Even if we couldn’t reach state-of-the-art results on all

datasets, we observed a constant improvement over the default values from the hyper-

parameters fine-tuning.

Sparse attention was initially proposed to approximate full attention in the most

efficient way [122], with no striving to outperform the latter. However, our results

suggest that a combination of diversity in training data, the ability to embed long-term

dependencies, and an appropriate set of hyperparameters yield better performance.

Medical BigBERTa enhanced the performance of Biomedical language models with-

out compromising on training and inference in terms of time and memory costs. We pro-

vide this model with a significantly adapted tokenizer that prevents over-segmentation

and breaks through clinical and biomedical domains. We improved our performance

through a tailored data-dependant hyperparameters optimization.

In summary, while the use of language models for biomedical and clinical text holds

great promise, there are several challenges that need to be addressed by further research.

79



Figure 4.7: Example of tokenization of random biomedical and clinical terms
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These challenges include the lack of large annotated datasets, domain-specificity of

clinical text, lack of transparency and interpretability, and ethical concerns. Addressing

these challenges will facilitate the development of optimized language models toward

improving healthcare outcomes and accelerating medical research.
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Chapter 5

Conclusion

In this thesis, we have focused on the development and optimization of multimodal

deep-learning predictive models for electronic health records. Through our research,

we have covered various aspects.

We investigated various neural language modeling pipelines for outcome prediction

in medical text data and identified the most effective approaches for analyzing clini-

cal text documents for mortality prediction. Our experiments revealed that contextual-

ized models, specifically those based on BERT and BioBERT, outperformed traditional

word embedding models such as GloVe and Word2Vec. Furthermore, we found that

combining different models and embeddings, as well as implementing transfer learning

techniques, can further improve prediction performance. Our findings have important

implications for the development of NLP-based clinical decision support systems that

can assist healthcare professionals in making more accurate and timely patient manage-

ment decisions. Overall, chapter 2 highlights the importance of selecting appropriate

neural language modeling pipelines and utilizing advanced techniques to achieve opti-

mal prediction results.

In the optic of handling the multimodality of the medical structured data, chapter

3 presented a novel approach to bridge the gap between medical tabular data and NLP

predictive models using fuzzy logic. The proposed approach addresses the challenges

of extracting useful information from structured medical data by transforming them into

narrative texts that can be used for predictive modeling. The results of the experiments

show that the approach has high accuracy and significantly improves interpretability, a

crucial point for the healthcare domain. We believe that this research paves the way for

a more unified and comprehensive analysis of structured and unstructured EHR data

With the power of language models demonstrated, it was natural to push the bound-

aries of existing models in order to build more adapted to raw and long medical doc-

uments such as narratives. Chapter 4 has discussed several optimization methods for

transformer-based models that have been proposed in recent literature, including pre-

training techniques, sparse attention, and hyperparameter fine-tuning approaches. The

combination of these practices has shown to improve the performance of transformer-

based models for various medical prediction tasks, from classification and similarity

to Q&A. Our optimization approach substantially improves the processing and under-

standing of biomedical texts for different tasks in healthcare applications.

However, there is still room for improvement, and further research is needed to

fully exploit the potential of these models. With the development of new optimization

techniques and the availability of more extensive medical datasets, the future looks

82



5.1. LIMITATIONS

bright for transformer-based models in medical document processing.

5.1 Limitations

Despite our achievements, our work has several limitations.

• Data availability: Our research is based on MIMIC-III dataset, focussing pri-

marily on text-based EHR data, both structured and unstructured. However, the

unavailability on time of a subset of the dataset, particularly images, significantly

limited the scope and generalizability of a multimodal research project. Having

been released recently to the public, we couldn’t embrace the depth and richness

of a fully integrated multimodal learning of EHR data. While there are often

practical limitations and constraints around data access, the lack of timely and

comprehensive data can be a significant challenge for researchers in multimodal

analysis.

• Quality of generated artificial narratives: Although our approach to transform-

ing numerical data into natural language text demonstrated promising results, the

generated artificial narratives may not be as rich and informative as actual clin-

ical narratives written by healthcare providers. The artificial narratives may not

capture certain nuances, contextual information, or the expertise of healthcare

providers in describing the patient’s condition. In addition, the proposed ap-

proach utilizes a limited number of medical features due to the manual feature

engineering on the related universe of discourse.

• Reliance on a single EHR dataset: Our research is based on the MIMIC-III

dataset, which, although comprehensive, may not fully represent the diversity of

EHR data from other sources or countries. The generalizability of our findings

could be limited if the models and approaches developed in this study do not

perform as well on other datasets with different characteristics.

These limitations highlight the areas where our research could be improved or ex-

panded upon, offering valuable insights for future studies to build upon the foundation

laid by our work. The following section suggests ways to address these limitations

and develop more compelling, comprehensive, and robust multimodal deep-learning

predictive models for electronic health records.

5.2 Future Research

Building upon the findings of our research, there are several directions for future

work:

• Further exploration and refinement of the proposed approach to generate artifi-

cial narratives from medical tabular data, with a focus on improving the quality

and informativeness of the generated text. This could also explore more on the

explainability using different

• Expansion of the research to include other types of multimodal data, such as

medical imaging, and audio recordings, to develop more comprehensive and in-

tegrated predictive models for healthcare applications.
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• The development of more advanced and specialized biomedical large language

models(LLM) and large multimodal models (LMM) that can handle a broader

range of biomedical data and adapt to the specific characteristics of different EHR

datasets.

• Evaluation and comparison of the proposed approaches on other EHR datasets,

including those from different sources or countries, to assess their generalizability

and applicability in various healthcare contexts.

In conclusion, our research has demonstrated the potential of multimodal deep-

learning predictive models for electronic health records, providing valuable insights and

innovative approaches to improve clinical decision-making. As the field of healthcare

informatics and artificial intelligence continue to evolve, we believe that our findings

and the future research directions outlined above will contribute significantly to advanc-

ing this critical area of study.
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