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Abstract

Mobile devices are commonplace today, and smartphones have enabled big data ana-

lytics. The spreading mobile phones allows us to easily collect human activities and gen-

erate a large quantity of mobile data, such as health data, commuting route or restaurant

recommendations. Big data analysis is especially important in disaster scenarios. During

disaster scenarios, big data analysis can be used to detect obstructions and dispatch rescue

in a timely manner.

Communication infrastructure can be destroyed by the disaster, especially earthquakes

which occur in or near major cities that cause a lot of damage. It is critical to immediately

recover the communication system after a disaster occurs. Movable base stations (MBSs)

can be positioned to reestablish an emergency communication network after a disaster.

The above emergency communication network brings new challenges for big data

analytics because big data is often analyzed in a cloud center to save processing time

with high-performance PCs and servers in a general case. The transmission delay will be

extremely large when collecting data from mobile phones to cloud center via an MBS-

based network. We need to process small amounts of data before they get to the server in

order to handle the size of data that is collected.

In this thesis, we first proposed a set of delay models for spatial data processing net-

works, which specifically targeted disaster-stricken areas. We also have implemented a

genetic algorithm (GA) solution which showed to have a reduced maximum end-to-end

(E2E) delay over various network sizes. We researched some realistic constraints, and
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tested some of the conventional methods with MATLAB simulator, and modeled their

worst-case delays. The results showed that none of the conventional cases matched the

capabilities of the GA for increased computation or increased transmission rates.

Second, because the GA solution had a significant computation time, we proposed

the disaster area adaptive delay minimization algorithm (DAADM). The goal of this new

algorithm was to run in real-time. We also present a detailed mathematical model to rep-

resent data processing and transmission in an ECN fog network and an NP-hard proof for

the problem of optimization the overall delay. We evaluated the systems across various

transmissions speeds, processing speeds, and network sizes. Furthermore, we tested cal-

culation time, accuracy, and percent error of the systems. Through evaluation, we found

that the proposed DAADM algorithm can be implemented in a real-time system, which

had a major advantage over the GA.

All emergency communication networks have performance drawbacks. In order to

improve the network performance even further, we proposed an algorithm that determines

the best way for the MBSs to be connected. We assume that each of the fog node has

traffic in addition to the data that is used for the algorithm that needs to be processed,

and thus the system needs to be account for a queueing delay, both on the processor and

transmitter. The delay models were run in a genetic algorithm which solved for a delay-

optimized solution for the network. The results shows that the GA outperforms the greedy

algorithm.

Finally, the proposed architectures and algorithms were simulated with MATLAB,

which realized effective data processing and transmission in disaster scenarios. Results

show that the proposed system was able to achieve a higher performance with minimal

delay for the overall system and can be run in real-time. The resulting system is able

to address the problems of network topology as well as optimize processing delay and

transmission delay. The resulting system is more suitable for deployment than previous

existing systems.

Humans continue to demand higher performance from their computing systems, and

as a result we have had aggressive increases in the scaling of technology, but this is show-

ing signs of change. The power consumed by a chip is ever increasing, and recently the

power efficiency of communications has become as important as the computational power
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of the cores. Typical electronic Networks-on-Chip (NoCs) are reaching their performance

limitations thanks to various factors.

One highly sought after technology is Photonic Networks-on-Chip (PNoCs). PNoCs

offer several benefits over conventional electrical NoCs, such as high-bandwidth support,

distance independent power consumption, lower latency, and improved performance-per-

watt. Wavelength Division Multiplexing allows for multiple parallel optical streams of

data to concurrently transfer through a single waveguide and MRs can be switched at

speeds as high as 40 GHz to realize wavelength-selective modulators or switches. These

technologies allow for multiple bits of data to travel concurrently through the same waveg-

uide, which contradicts the one bit per wire limitation of electronic circuits. Another ben-

efit is that data is transferred in an end-to-end fashion once a path is configured, meaning

that the data does not need to be buffered multiple times, and thus saving power.

The photonic domain is immune to transient faults caused by radiation, but is still

susceptible to process variation (PV) and thermal variation (TV) as well as aging. The

aging typically occurs faster in active components as well as elements that have high

thermal variation. In the optical domain, faults can occur in MRs, waveguides, routers,

etc. Active components, such as photodetectors, have higher failure rates than passive

components, e.g. waveguides. Moreover, when paired with the fact that a PNoC is highly

vulnerable, as a fault may expose the single-point failure, a faulty MR can cause a message

to misdelivered or lost. In this dissertation, a set of novel photonic routing algorithms and

architectures are proposed for future on-chip optical networks.

First, a new fault tolerant photonic switch, capable of handling multiple faulty MRs.

The proposed switch is based on a non-blocking 5-port optical router. It requires no MRs

to travel in the opposite direction (e.g. East to West or North to South). The switch is also

able to handle the previous hybrid spatial switching used in PHENIC.

Second, a fault tolerant Path configuration algorithm, which checks for MR faults and

allocates the proper MRs to be used. This means that our previous 2 state MRST must also

have a faulty state. Additionally, the algorithm must use two MR Configuration Tables,

one for standard use and another to be used for the backup paths. This makes all of the

routing decisions within a single optical switch.

Third, a power estimation scheme for the optical layer, which is fast enough to be
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used for routing decisions. Because of the speed that the calculation must be done, the

calculation itself must be simple.

Finally, I propose an architecture and routing algorithm pair, which allow for the net-

work to make “strain” based decisions for the routing. This strain value is based on the

number of faulty MRs and the optical power of a node. This should improve the networks

reliability and performance by avoiding nodes with high temperature, a high number of

faulty nodes, or a lot of traffic.

The proposed architectures and algorithms were evaluated with a discrete-event sim-

ulator, which incorporates detailed physical models of the photonic components. Results

show that the proposed system was able to achieve a higher reliability with minimal sacri-

fices in the overall system performance and energy. The resulting system is able to address

the problems of process variation as well as temperature variation in optical components,

and is more reliable than previous existing systems.
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Chapter 1

Introduction

During the recent years, technology is playing an increasingly important role in our

lives. It exists everywhere in our daily life. Technology not only belongs to researchers,

engineers or developers, but is also used by everyone else for their life activities and work.

Technology provides a great advantage for our quality of life, and users enjoys using the

technology. With the rapid growth in the use of technology, the requirement of its qual-

ity increased. Users usually determine quality based on the performance and durability.

Many things today use wireless networks, thus a reliable communication system is be-

coming more necessary for daily life. This field is likely to impact other technological

fields due to the increase in IoT devices.

1.1 Background

1.1.1 Computing

Computers have had many forms over the years. Determining when computing started

is heavily dependent on what you define as computing. To help give an overview of the

history of computing, I will cover some of the first computers in each category.

Computing in its simplest definition is any device that calculates. This means that

the first calculators were computers, and the first known device used for calculating is

the abacus [2]. An example of an abacus can be seen in Fig. 1.1, but they can take

many different forms based on where they are used. The first known use of an abacus was

1
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around 2500BC in Sumeria. The devices are still used in some countries to this day. These

devices had beads which could represent numbers. The Chinese abacus, or suanpan, in

Fig. 1.1 has each row represent one digit of a number.

Figure 1.1: A Chinese Abacus

The next major step in computing was completed by Charles Babbage. He created

several calculating machines in the 1800s, but his crowning achievement was the Analyt-

ical Machine [3]. It was a mechanical calculating device which could handle arithmetic,

loops, and conditional branching. The machine stored numbers with 40 decimal digits

of accuracy, and had enough ’memory’ to store one thousand numbers. Different values

could be input into the system via punch cards.

The next major development in the computing world was the conversion to electri-

cal signals. While it is not the first electronic computer, the first Turing-complete non-

mechanical computer was ENIAC [4]. ENIAC stood for Electronic Numerical Integrator

and Computer. Its construction was completed in 1945, and could be programmed us-

ing patch cables and switches. Because of the electronic nature of the calculations, it

could perform the same process approximately 1000 times faster than its mechanical-

based competitors.

One of the biggest things holding back the ENIAC were its vacuum tubes. The answer

to this was transistors [5]. In their initial form, they were not a significant space-saver

because the vacuum tubes were capable of analog computation, until the invention of

integrated circuits [6]. This technology allowed for the semiconductors to be arranged in

a way that would create several prearranged transistors on a single chip. His circuit at the
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time was germanium-based, future ICs would be made of silicon, which allowed for P-N

junction Isolation. Suddenly, circuits that would take up whole buildings before could

be built in things the size of a dresser. Additionally, because the space reduction, the

wasted heat could be reduced, and the speed of the computer could be increased. In one

technological advancement, computers became smaller, faster, lower power, and cheaper

to make.

Modern computers follow the Von Neumann architecture [7]. This means that there

are 5 separate categories of components: a processing unit, a control unit, memory, stor-

age, and I/O. The processing unit is typically an Arithmetic Logic Unit (ALU), and is

controlled by the control unit. The control unit interprets the instruction and controls

the ALU accordingly. Memory is where the instructions and data are stored, while the

storage is where whole programs and other machine readable data is kept. I/O stands for

Input and Output, and accounts for any component that helps the computer interact with

the outside. This includes keyboards and displays that help a human interact with the

computer as well as any internet connection that the computer may have.

One heavily referred to law in the world of computing is Moore’s law [8]. This famous

law states that the number of transistors in a dense circuit doubles every two years. This

trend can be seen in fig. 1.2 This has for the most part held true for the last 4 decades, but

is starting to show signs of failing. The way that this is usually achieved is by reducing

the size of a transistor, which has several effects on the chip that it makes. In terms of

performance beyond just the clock speed improvements, the smaller transistors mean that

more cores and features can be added to the chip, thus Moore’s law can be extended to

include computer performance doubling every two years.

As stated earlier, Moore’s law is starting to level out. This is due to the fact that fab-

ricating smaller transistors is becoming more difficult simply because they have gotten so

small that quantum physics is starting to affect them and cause leaks.Lately, increasing the

core count has gotten popular, but the way that these cores communicate with each-other

in a bus is inefficient, so an on-chip network was proposed for their communications [9].

This will improve the performance the chip somewhat, but architectural improvements

will only go so far, so alternative communication mediums such as Photonics [10] and

Quantum Entanglement [11] are being investigated. The problem with these technologies
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Figure 1.2: Trend of Processing Elements on a Chip [1].

is that because their basic switching element is no longer a transistor, the entire structure

of the IC has to change.

1.1.2 Cloud Computing

One solution to improve the computing power of consumers was a technique called

Cloud Computing [12]. Cloud computing is separated into different categories based on

what type of service, but what they have in common is that the computation is performed

at a remote data center and the results are forwarded to the user’s device. The NIST

[13] has 5 basic characteristics which define cloud computing services: on-demand self-

service; broad network access; resource pooling; rapid elasticity; and measured service.

On-demand self-service means that a user can access the cloud without interacting with

another human. Broad network access means that it is not device limited, and can be

accessed over a standard network connection such as a mobile phone network or home

internet. Resource pooling is defined by the utilization of the same resources amongst

several users. Rapid elasticity means that the resources can be reallocated to another

user at any time. The last requirement can be handled in several ways. Some services

measure the amount of data stored in Gigabytes, some measure the computing time that is
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used, while others measure your bandwidth that you utilize. In order to have a true cloud

computing system all of these characteristics must be met.

The first category of cloud computing is Platform as a Service (Paas), and covers

all cases where according to NIST [13], ”The capability provided to the consumer is to

deploy onto the cloud infrastructure consumer-created or acquired applications created

using programming languages, libraries, services, and tools supported by the provider.

The consumer does not manage or control the underlying cloud infrastructure including

network, servers, operating systems, or storage, but has control over the deployed ap-

plications and possibly configuration settings for the application-hosting environment”.

The second common form of cloud computing is Software as a Service (SaaS), which is

defined as ”The capability provided to the consumer is to use the provider’s applications

running on a cloud infrastructure. The applications are accessible from various client de-

vices through either a thin client interface, such as a web browser (e.g., web-based email),

or a program interface. The consumer does not manage or control the underlying cloud

infrastructure including network, servers, operating systems, storage, or even individual

application capabilities, with the possible exception of limited user-specific application

configuration settings” [13]. The third common type of cloud computing is Infrastructure

as a Service (IaaS), and is defined as ”where the consumer is able to deploy and run ar-

bitrary software, which can include operating systems and applications. The consumer

does not manage or control the underlying cloud infrastructure but has control over oper-

ating systems, storage, and deployed applications; and possibly limited control of select

networking components” [13]. There are other less common forms of cloud computing,

and the list would be too long if we defined them all.

Cloud computing provided a way to use communication to handle computation for

users through the internet. Users can access servers, storage, databases and application

services over the internet. Amazon Web Services (AWS) [14] is a cloud service plat-

form, it owns all the hardware and software services which are related to the service

applications. Cloud services of AWS provide computing power, database storage, content

delivery, and other functionality to help business scale and develop. The coverage area

of AWS crosses 61 available zones within 20 geographic regions around the world. They

also have announced plan for 12 more available zones and 4 more regions.
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Cloud computing systems have already greatly expanded the capabilities of smart-

phones. In terms of storage-based computing, it allows users to keep several photos and

videos on the web, and save important space on the phone, all while making it simultane-

ously available to the users device. In terms of processing capabilities, a user can upload a

photo to social media, and the cloud can scan the faces in the photo and detect who is in it,

but the phone itself does not do any of the facial recognition because it would take a long

time. Engineers have also utilized cloud resources to execute long simulations, which

would take several days on their workstations but minutes or hours on a cloud service.

Cloud computing is not perfect. In areas where the internet service is poor, the delay

for results can be quite large. Additionally, if the user’s internet service is interrupted for

a period of time, then the cloud is inaccessible for that same period. This means that your

performance and experience is entirely dependent on another service working properly.

Additionally, user customizability of a service tends to be low because the business model

needs to fit everyone, which makes it difficult to get a perfect fit. The biggest concern with

cloud services recently has been security. If a user stores personal items on the cloud, and

they get hacked and leaked, it can be very embarrassing as evidenced by several famous

leaks making the news. It is however much worse if an IP algorithm is leaked and copied

by a competitor, who can then release a competing product sooner.

1.1.3 Big Data Processing

With the rapid growth in use of mobile devices, cameras, radio-frequency identifi-

cation (RFID) readers and wireless sensor networks, datasets have become easier to be

gathered. A report from IDC predict that the global data quantities will grow from 4.4

zettabytes to 44 zettabytes between 2013 and 2020 [15].

Big data is a massive dataset which is large in scale and too complex to use normal

processing application softwares to handle them. Big data is usually related with a few

key words: massive, variety, speed. The challenge of big data includes: speed, storage,

analysis, transfer, visualization, querying, security, etc. Each of these big data challenges

require us to come up with corresponding solutions.

Because of the cloud, it is now possible to provide a way to process more data at one

time. The big data resources can be sufficiently utilized. It promoted big data computing
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abilities and processing capabilities.

There have been many types of big data repositories. In [16], the importance of big

data technology on the modern world and existing projects were introduced.Even though

the large size of the datasets is very difficult to process, big data processing is able to offer

many market advantages to several organizations. The paper also discusses several tools

which are used for dealing with big data. Additionally, some good big data practices were

discussed.

There are several approaches for spatial big data analytics [17], including spatial pre-

diction for understanding the situation in the areas that are not covered by the network:

spatial outlier detection to find abnormal situations, spatial co-location feature detection

and spatial clustering. Spatial big data analysis is especially important in disaster sce-

narios. For example, kwan et al. [18] explored handling emergency response services by

detecting obstructions caused by a major disaster, such as a hurricane, by using LiDAR

data in a big data algorithm. This makes being able to properly service big data processing

in a disaster is more important than at a regular time.

In [19], the relationship between big data and cloud computing, big data storage sys-

tems, and Hadoop are introduced. The quantity of data is still increasing at a exponential

rate because cloud computing is be able to perform massive scale and complex comput-

ing. This is means that cloud computing and big data are conjoined. It brings a significant

benefit for machine maintenance and space occupation. The massive scale of data that is

gathered through the cloud has already been proved to be enough for many applications.

Determining the success of data processing and data analysis is heavily depended on the

processing time that they require. This is true of most big data processing because with

enough time massive amounts of data can be processed, but usually that data may no

longer be relevant by the time the data has finished processing.

In [20], the security problems for cloud computing, big data, map reduction and the

Hadoop environment has been introduced. They mainly focus on the security problem

between cloud computing and big data. Cloud computing security includes: computer

security, network security, information security and data privacy. This paper covers many

of the security concerns and possible solutions for those concerns.
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1.1.4 Internet of Things

The Internet of Things (IoT) is a term used for devices that extend internet range from

the traditional computing model into everyday objects. IoT devices are often have their

data processed in the cloud because the scale of the data can be very large, and the IoT

devices typically have very weak processors. IoT devices are embedded with electronics,

internet connectivity and others hardware like sensors. Those devices are connected and

interact with others through the internet. They can be remotely monitored and controlled.

The contribution of IoT consists of: wireless sensor networks, control systems, smart

devices, smart homes and smart buildings.

The IoT applications have been widely used in our daily life. The smart home concept

including lighting control, heating control, and air conditioning control. The NEST learn-

ing thermostat [21] can automatically learn and control your home temperature when you

enter the home. It can adjust the temperature after few times of running the self-learning

model. This smart object can also help you save energy. This works by turning off or

reducing the strength of the air-conditioning while you are at work, and putting it back on

a few hours before you return, so that you can arrive to an appropriate-temperature home,

but it does not need to be running at full power all the time.

The Instant Pot [22] is an IoT pressure cooker. There are several smart cooking devices

on the market but this one in particular is packed with many features. It is capable of

cooking rice and stews like most pressure cookers, but it has a few tricks up its sleeve.

One of its first major features is that through your phone, you are able to look up a recipe

in an online database, put in the appropriate ingredients, and hit start. The smart device

will take care of the rest of the cooking. It can cook meat at a specific pressure and

temperature for one hour and then shift to another temperature for another period of time.

This takes a lot of skill out of cooking, and brings restaurant quality food to novice level

chefs. The next major feature is that a user can put all of the ingredients in the pot before

they leave for work, and then start cooking it through a command that they send from

their phone at work, and can arrive to a meal that was appropriately timed to be consumed

at their desired dinner time, even if it requires several hours of cooking time, which the

user does not have between arriving at home and dinner time.

The Ring [23] is a home security IoT doorbell. Home security is one field where IoT
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is blooming because of the natural connection because it allows you to see your home in

real time, and alert authorities even if you are not at home. The Ring can also interface

with other IoT cameras to set up a joint video feed. One of the main features is that

if someone such as a delivery man rings your doorbell, you can talk to them via the

cellphone and see them. This allows you to instruct the delivery man an appropriate place

to leave the package to avoid having it be stolen, which is a common problems in America

and Europe with the recent popularity in the Amazon shopping service. Additionally, it

can record video of a few seconds every time that the bell rings. If a suspicious person is

ringing the bell at a certain time of day, he is likely to be a thief who is casing the joint by

checking what times the owner is away from home. But with this video, and a camera in

the doorbell, most thieves are not only deterred, they can also be caught in the future as

you will have photo evidence of a likely suspect.

IoT smart devices are making life more convenient, but are also placing a large burden

on our communication infrastructure. If each device has its own learning algorithm that

is constantly running, and each person has a handful of devices, this equates to a large

demand on computing power.

1.1.5 Fog Computing

Because of internet of things (IoT), there was more demand for cloud computing. In

order to reduce the delay of a cloud computing systems, fog computing [24] was proposed

as a possible solution, which offloaded some computation tasks from the cloud to edge

devices, e.g., routers, which are closer to the users. This new computing system was a

distributed cloud service, which still had a main cloud destination, but some key nodes had

some processing power of their own. The proposed idea greatly reduced the strain at the

center of the node, and increased response time to users near the the cell edge. Medium-

load tasks are typically assigned to the fog nodes, because their performance is more

based on the latency of the communication, so being closer to the user is more beneficial

than having a higher performance processor. Larger tasks, such as heavy simulations, are

more dependent on the processing power, and less on the network speed, and therefore

are commonly allocated to the cloud, but determining the ideal allocation schemes is a

common research problem as shown in [25–27]. One major practicality aspect is that
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edge users who may not live in a large enough city to have their own cloud center before,

can now have their own fog node, and save on communication distance simply because

the cost to make a fog node is much lower than a cloud center.

Because it is an extension of cloud computing, fog computing suffers from a lot of

the same drawbacks, such as security, and internet-dependence. Security may be an even

larger concern because it is separated across several physical locations which makes it

more vulnerable than a single high-security location. One nice security benefit is that

even though there are more vulnerable locations, the amount of data stored at each one is

reduced. It also increases the complexity of the system because instead of sending all of

the data to a single location, each task needs to be individually allocated to one of several

fog nodes, or the cloud center. The biggest downside is the power consumption, which is

increased because of the inefficiency of fog nodes.

1.1.6 Emergency Networks

An emergency communication network can provide a communication system after the

regular communication infrastructure has been destroyed in a disaster.

1.1.6.1 Disaster Area

A disaster area is a location or region that has been heavily damaged by either natu-

ral, technological or social hazards. Disaster areas affect the local or nearby population,

national economy, industrial economy, and natural economy. The disasters can also cause

discontinuity of services, lost energy, shortage of food, an increase in the risk of dis-

eases spreading, etc. An area struck by a natural disaster will affect quality of life for the

citizens and the environment. Natural disasters includes: tornadoes, hurricanes, floods,

and earthquakes. Hurricanes or typhoons can be refereed to as the same thing, the only

difference being location.

Earthquakes are a result of the shaking of the earth’s crust, which is caused by under-

ground volcanic forces of breaking and shifting rock beneath the earth’s surface. When a

major earthquake happens, most of the utilities will be damaged, especially communica-

tion facilities, which can easily be knocked down. The victims of the earthquake can not

send out any message to their family members or rescue teams.
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Big data analysis is especially important in disaster scenarios. Strategic ambulance

deployment can be decided by big data processing algorithms. Additionally, efficient

evacuation requires traffic knowledge, which is also handled by big data processing. It is

critical to immediately recover the communication system when a disaster happens.

1.1.6.2 Wireless Disaster-area Networks

In order to repair communication networks rapidly after they are damaged by a dis-

aster, many companies deploy wireless networks to patch up the damaged areas of the

traditional network. Wireless networks are computer networks that use wireless data con-

nections between network nodes. Wireless networks avoid to install or connect with the

cables for internet connection. This implementation occur at the physical layer of the

network structure.

Wireless network include cell phone networks, wireless local area networks (WLANs),

wireless sensor networks, satellite communication networks, and terrestrial microwave

networks.

The first wireless network was developed in 1969 at the university of Hawaii and

became operational in June 1971. In 1991, 2G cell phone network started. In June of

1997, the ”Wi-Fi” protocol was first released.

Wireless networks include a few types. Wireless personal area networks (WPANs)

provide internet for a small area, that is usually within a person’s reach. For example,

Bluetooth connections, etc.

Wireless local area network (WLAN) provide a connection for two or more devices

in a short distance. A cellular network or mobile network is a radio network distributed

over land areas called cells, this enables a large of number nodes to communicate with

each transceiver, known as cell site or base station.

Wireless disaster-area networks is a type of cellular communication network. MBSs

can be positioned to reconstruct an emergency communication network after a disaster.

One currently available MBS is the movable and deployable resource unit (MDRU) from

NTT in Japan. This type of base station can help to rebuild the communication network

in disaster areas. This MDRU assists in the rescue efforts for the local people.
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1.2 Thesis Objectives

The regular communication infrastructure can be damaged by disasters. NTT pro-

vided an easily deployable solution to construct an emergency communication network

(ECN), but ECNs are slow at propagating big data due to their limited transmission ca-

pabilities. One major issue is efficiently integrating data processing in the ECN to realize

effective data processing and transmission in disaster scenarios.

1.3 Thesis contributions

In order to improve the performance using the current technology, we propose a few

contributions in this thesis. The main contributions of this research are as follows:

• The first contribution of this paper was a set of models for fog computing on a

wireless network. In Chapter 3, we started with a simplistic model and used it to

evaluate our algorithm. In Chapter 4, we proved that the model was NP-Hard. In

Chapter 5, the model was improved by accounting for queuing delay in the pro-

cessor and the communication networks. Additionally, we accounted for average

delay.

• We proposed a genetic algorithm which was able to solve for the ideal set of data

processing ratios for each node to reduce the maximum delay that the system. We

started with a random population, and ran each of the genes through the models, and

selected the best results, and performed crossover and mutation with them. This is

repeated for 80 generations, but a solution usually settled before 40 generations.

• We also presented a real-time algorithm in Chapter 4 that could solve the same

problem as the GA from Chapter 3. This new DAADM algorithm would account

for the network structure and performance metrics. While this is running, it is

assumed that the structure is not changing in real-time, but the performance of the

links connected to the current node can change in real-time. This allows for the

algorithm to adapt the processing ratio in real time, without receiving additional

information from other nodes.



1.4. Thesis Outline 13

• New models were made to find the average delay of each node in the system, which

is more applicable to a herd-satisfaction model, and we attempted to solve for the

ideal mapping connections for each node. This was also handled by a GA, which

functioned similarly to the one used in the second contribution.

1.4 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 presents some of the works that are related to communication network

infrastructure optimization.

• Chapter 3 introduces the system model and genetic algorithm for determining the

optimal data processing ratio.

• Chapter 4 presents a real-time solution for the data processing ratio, as well as the

proof for the NP-hardness of the problem.

• Chapter 5 introduces the queueing delay model and covers the fog node topology

optimization algorithm, and the methodology and results are also described in each

sections.

• Chapter 6 demonstrates a system model that starts with individual users, and allo-

cates them to MBSs according to a genetic algorithm.

• Finally in Chapter 7, we highlight the advantages and summarize the main conclu-

sions of this thesis, and introduce some future works to optimize the contents even

more.



Chapter 2

Related Works

In this chapter, we will first discuss some edge computing networks. We will then

have a section detailing some of the optimization schemes which have been used in fog

networks.

2.1 Edge Computing Networks

Recent studies on cloudlets [28] provide possible solutions for offloading tasks from

the cloud to the devices near users by deploying special servers in the urban areas. A

cloudlet network is a concept related to fog computing. A cloudlet is basically a small

cloud that provides service in a similar way to traditional cloud computing. Cloud com-

puting offered seemingly unlimited resources, but cloudlets run with limited resources.

The main benefit of cloudlets is that they can be located closer to users, so users can di-

rectly connect to other devices in a cloudlet. The response time is therefore significantly

reduced.

The optimal deployment of a cloudlet server has become one key research problem,

as studied in [29]. Our solution can be considered to be an extension for big data analysis

work on connected cloudlet servers.

Fog computing and its non-stationary counterpart, mobile fog computing, have been

proven to be an efficient way to process big data algorithms. In [30], the authors proved

that mobile fog networks had three main advantages: high-performance, low operational

costs, and high elasticity/adaptivity. They applied a data flow algorithm to the network

14
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and then optimized the computation partitioning. This allowed them to achieve a higher

throughput. Fog computing is also called edge computing because fog resources are

placed near the edge of the service area. Fog computing facilities assist a cloud center

in processing IoT services. Fog networks can match the demand of high-speed mobile

devices and reduce the bandwidth load on the network core.

Ad-hoc computing networks do not rely on a pre-existing infrastructure, such as

routers or access points. Each node forwards data to other nodes, thus the data trans-

mission is based on the network connections and routing algorithms.

Ad-hoc networks are suitable for a variety of applications, such as Vehicular ad hoc

networks (VANETs). Authors in [31] presented a survey on VANETs. They describe

the network architecture and communication domains of VANETs. They also discuss

the wireless access technologies that can be used to establish the communication of the

network. Network challenges, requirements and simulation tools are also presented in the

paper.

2.2 Fog Network Optimization

One of the major research problems in fog computing is task offloading/scheduling, as

shown in [25–27]. However, the recent solutions may not fully satisfy a disaster scenario

when reconstructing an emergency communication network with MBSs, since most of

them only consider data transmission. Additionally, spatial big data is collected from a

majority of smart phones, which makes the solution too complex if we see each smart

phone as the basic unit for task distribution. Finally, besides 0/1 decisions (fully in cloud

or fully local), it is necessary to investigate partial allocation solutions for data processing

locally or in the cloud in this study.

Authors in [25] discussed a Fog Computing Supported Medical Cyber-Physical Sys-

tem (MCPSs), in which task distribution and VM placement problems are formalized as a

Mixed Integer Non-liner Problem (MINLP).To support MCPSs, cloud resources are used

to process the medical sensing data. Meanwhile, a high quality-of-service is required by

MCPSs between the cloud data center and medical devices. To solve this issue, mobile

edge cloud computing, or fog computing, offloads the computation resources to the edge
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nodes. Thus, the fog computing supported MCPS were built. More specifically, they

jointly investigate base station association, task distribution, and virtual machine place-

ment toward cost-efficient fog-based MCPS. To address the computation complexity, they

also propose a Linear programming (LP) based two-phase heuristic algorithm. They show

that their proposed algorithm has a performance advantage over the greedy one.

Similar work has been done in [26], where the task scheduling problem has been

involved. They have discussed about which data should be analysed in which fog node,

and which fog node should have a VM deployment to minimize total cost. Both of them

have been solved through linearization of the problem.

A computation offloading game was designed in [32] for MCC based on game theory.

They formulated the decentralized computation offloading decision among mobile device

users. The results shows that their system achieves efficient computation offloading per-

formance especially as the system size increases.

Rapidly delivering related information in ECNs can be a major challenge, because the

data right after a disaster can sometimes be critical for life. A rapid and flexible disaster

recovery network is required because traffic loads can change unpredictably [33]. A truly

flexible network is able to take full advantage of all resources in real-time after the loads

change.

Authors in [34] focus on the interplay and cooperation between the edge (fog) and

the core (cloud). They investigated the tradeoff between power consumption and trans-

mission delay in fog-cloud computing systems. They formulate the workload allocation

problem and approximately decompose the primal problem into three subproblems, which

can be, respectively, solved within corresponding subsystems. Based on the simulation

and results, they presented that sacrificing a modest amount of computation resources

could save communication bandwidth and reduce transmission latency, and that fog com-

puting would significantly improve the performance of cloud computing. As such, fog

computing complements cloud computing toward low-latency high-performance services

for mobile users.

The delay benefits of using a fog-computing architecture for smart-cities has been

demonstrated in [35]. The system leveraged closer processing nodes to reduce the overall

system delay and energy consumption. But, this paper did not consider the possibility that
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partially processing the data in the cloud could result in an even lower delay.

Managing the computation distribution is a technique used in this field to efficiently

use the limited computation and communication resources in the fog layer, as studied

in [25, 27, 36, 37].

In [37], the authors first studied the multi-user computation offloading problem for

mobile-edge cloud computing in a multi-channel wireless interference environment, then

designed a distributed computation offloading algorithm. They mainly showed that com-

puting a centralized optimal solution is NP-hard, and hence adopt a game theory approach

for achieving efficient computation offloading in a distributed manner. Numerical results

verified that the proposed algorithm can achieve superior computation offloading perfor-

mance and scale well as the number of users increases.

There are several studies on efficient computation distributions for mobile edge-clouds (MECs)

computing. In [36], the authors studied the dynamic service migration problem in mobile

edge-clouds that host cloud-based services at the network edge, and formulate a sequential

decision-making problem for service migration using the framework of Markov Decision

Process (MDP). The results provide an efficient solution to service migration in MECs.

This offers benefits in the form of a reduction in network overhead and latency.

The authors in [27] optimized the users’ quality of experience (QoE) and network

performance. They are addressed the issue of load balancing in fog computing. The

challenging of this paper is that when multiple users requiring computation offloading,

where all requests should be processed by local computation clusters resources. They

proposed a customizable algorithm for fog clustering. Their results showed that their

proposed algorithm has a higher performance.

The non-stationary counterpart of fog computing has given an efficient solution for

processing big data algorithms. The authors in [38] illustrated that mobile fog networks

had three major merits: high-performance, low operational costs and high adaptivity.

They optimized the computation partitioning by applying a data flow algorithm to the

network.

In [39], authors provide a high-performance computation system for mobile devices

by introducing the optimal tunable-complexity bandwidth manager (TCBM). They tested

an optimal bandwidth manager for live migration of virtual machines in wireless channels
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from smartphone to access point. In order to reduce the energy consumption, a novel ap-

proach for bandwidth management was proposed using live migration of virtual machines

in a wireless network context. The results showed a significant improvement when using

TCBM.

Authors in [40] introduced that femtocells are a effective way to build up communi-

cation structure and system capacity. The benefits and drawbacks of the different access

methods, including open access, closed access and hybrid access methods, were also elab-

orated in the paper. Closed and open access both have disadvantages, cross-tier brings

lower network performance for closed access, and fewer customers’ acceptance for open

access, as well as a large number of handovers. Hybrid access offers a full range of al-

gorithm that can be defined in order to control who accesses the femtocell and how the

connection is configured.

In [41], authors found that some of media application have unnecessary energy con-

sumption, thus, they introduced a new energy adaptive (EA) objective. They formulate the

energy-efficient downlink resource allocation problem. With the required user’s data rate

base station’s available transmit power, they minimize the total energy consumption of

smart devices. The results shows that their proposal is very effective for reducing energy

consumption of smart devices.

2.3 Chapter Summary

In this chapter, we discussed some of the important related works that deal with com-

puting network architectures. More specifically, we covered edge computing networks,

and fog network optimization. Several authors address the problem of task-allocation,

but none of the works covered in this chapter consider users in overlapping areas or the

data processing ratios of each node. Future algorithms will have to extend these existing

works, and combine optimization of the task allocation with these aspects so that future

fog networks can run as efficiently as possible.



Chapter 3

Model and Genetic Algorithm for Data

Processing Ratio

3.1 Introduction

Spatial big data analytics has become possible with the data collected from the sen-

sors in smart phones, which can support decision-making in disaster scenarios. How-

ever, sometimes the regular communication infrastructure can be destroyed after disas-

ters. Movable base stations (MBS), as studied by the company NTT, offer an easily de-

ployable solution to construct an emergency communication network, but are not suitable

for transmitting big data from sensing devices to the cloud for data processing in the

cloud. To solve this issue, we have studied a novel algorithm to process spatial big data

efficiently in a wirelessly networked disaster area that uses multiple MBSs. More specifi-

cally, we proposed a novel algorithm to minimize overall delay for spatial data processing

in wirelessly-networked disaster areas (SDP-WNDA), to enable quick responses to data

analysis.

19
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Figure 3.1: Different layers of a fog computing network.

3.2 System Model and Problem Formulation

3.2.1 System Model

Fog computing gave a possible solution by offloading computation tasks from cloud

to edge devices. Fig 3.1 shows the different layers of a fog computing network. Fig.

3.2 represents a system model for a SDP-WNDA. After a disaster, movable base stations

(MBSs) can be deployed to the disaster-stricken areas, to reconstruct a communication

network. Users can upload data through the MBSs.

We used k to denote a MBS, which integrates both wireless communication and com-

putation functions. First, smart phone users connect with k and upload data with spatial

information, where the data size is represented as dk. Then we assumed a part of the

SBDA algorithm has been deployed in the MBS beforehand, and that the data size com-

pression ratio after processing in node k is ρ, where 0 < ρ ≤ 1. The processing rate in

each MBS k is represented as µk.

We also assumed that the MBSs are connected via a wireless medium, and that the

communication rate is represented by R. We assumed all MBSs send data into a special

node j, which is located at the edge of the disaster area and can transmit data to the cloud

quickly with a wired connection. To simplify the discussions, we considered a single j

node case, but a multiple j node case can be modeled and solved similarly. Generally

speaking, data analysis in cloud centers will not start until all the data is collected from
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the whole area. To enable quick decision-making in the disaster scenario, in this section,

we investigated the minimal overall delay between mobile phones and the node j. Mean-

while, we supposed that for each end node i, there is a designated path from i to j, denoted

as Pi. We also grouped all child nodes of k in the set Ck, and all nodes in the set N.

Figure 3.2: System Model

3.2.2 Problem Formulation

Based on the system model in Fig. 3.2, we studied the minimal delay from each end

node to j for transmission to the cloud center. By adjusting the data processing ratio,

denoted as xk, in each MBS k. X is the set including the processing ratios for all MBSs.

The delay of each path Pi can be calculated based on the processing delay and trans-

mission delay in each relay node k, which are formalized as follows.

3.2.2.1 Delay for Processing Data in Node k

To study the processing delay of each node k, we first formalized the size of the output

data after processing as follows.

The size of the output data after processing in node k is denoted as Ok, and can be

represented by two parts. One is the size of processed data and the other part is the size

of the unprocessed data. They are different, since the data size will be compressed by ρ

after data processing in the MBSs.
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Ok = Op
k + Ou

k (3.2.1)

where Op
k represents the processed data and Ou

k represents the unprocessed data from node

i.

Then Ou
k is calculated as follows:

Ou
k = (dk +

∑
i∈Ck

Ou
i ) ∗ (1 − xk) (3.2.2)

where Ou
k depends on the amount of data collected in node k and the amount of unpro-

cessed data from k’s child nodes Ck.

Then, Op
k is formalized as follows:

Op
k = (dk +

∑
i∈Ck

Ou
i ) ∗ ρ ∗ xk +

∑
i∈Ck

Op
i (3.2.3)

where the data processed in k’s child nodes Ck are considered in the equation.

Generally speaking, the data processing often starts collecting data from all data re-

sources, so the processing delay in node k is calculated as follows:

Dp
k =

(
∑

i∈Ck
Ou

i + dk) ∗ xk

µk
(3.2.4)

3.2.2.2 Delay for Receiving Data in Node k

The second type of delay in node k comes from receiving data from k’s child nodes,

Ck. Here we assumed the data collection and transmission in the network are well sched-

uled, so that the receiving delay in node k can be represented as:
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Dr
k =

∑
i∈Ck

Oi

R
(3.2.5)

3.2.2.3 Overall Delay and Problem Formulation

Then the overall delay in the node k can be represented as:

Dk = Dp
k + Dr

k (3.2.6)

For each end node i, the overall delay of sending data to j can be represented as

Do
i =

∑
k∈Pi

Dk (3.2.7)

Therefore, the total delay of the network is represented as:

Do = max
i∈N

Do
i (3.2.8)

Then, the delay minimization problem (DMP) for spatial data processing in wireless

networked disaster areas (WNDA) can be formalized as follows.

DMP-WNDA: In wireless connected disaster areas, the goal is to minimize the over-

all delay to send all data outside under the system model in section 4.2.1, by adjusting the

processing ratio of each MBS.

The mathematic representation is:

Find the set X to min (Do)

3.3 Proposed Solution (GA)

The goal of our system is to find the set X, which yields the minimum system de-

lay. To achieve this, we have implemented a genetic algorithm [42], which is a widely
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Figure 3.3: Genetic algorithm flow chart

used optimization solution that can be applied to a wide variety of problems. Our genetic

algorithm’s flow chart can be seen in Fig. 3.3. Each simulation starts with an initial pop-

ulation, called generation one. Then the algorithm selects the ideal candidates, performs

genetic crossover and then mutation, creating the next generation. The algorithm perform

the selection, crossover and mutations 80 times, until a solution is settled. We compared

the results of the genetic algorithm to some baseline cases. The first baseline case was

when all Xk values are set to 0, which represents a typical cloud computing system where

all of the data is processed at the cloud [12]. The next case covered situations where each

node processes all of the data that it receives immediately. Finally, we created a case

where 50% of the data is processed in the fog [43], and 50% is handled by the cloud. We

figured that these are some of the standard cases, representing the conventional, greedy,

and balanced algorithms.

The modeling and calculations were all coded in MATLAB. We first attempted to

determine the capabilities of each algorithm across different network sizes. We did this

by first generating 3 random networks with 3 random sizes. The small network was an 11

node system. The medium sized system was 35 nodes. The large system was 154 nodes.

The large system is approximately equivalent to the island of Okinawa, which according

to the 2016 report by the Japanese Ministry of Internal Affairs and Communications has

stated to have 105 LTE base stations [44]. In order to let the evaluation match with real

cases, we surveyed some realistic values for R, µk, and ρ. Most 5G antennas currently in

development suggest that the wireless speeds will reach 20Gbps [45]. Hinitt et al. [46]

have estimated that a GPU based processor for wireless networks is capable of processing

speeds of at least 4Gbps. The amount of processing that a standard computer can handle
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is still scaling very rapidly, so we expected this number to increase rapidly as well. Guo

et al. [47] suggest that LTE compression is capable of a one third ratio, so we adopted

this value for evaluation. Furthermore, for a variety of applications, ρ can be significantly

different, from a very small value (e.g. feature extraction from data) to a bigger value

(e.g. data compression). We considered the above issue and have performed evaluation

accordingly to different ρ in Fig. 3.10. All of these values, and other ones used for testing

Table 3.1: System Configuration.
Design Parameters Description and Values

Ok the output data after processing in node k
Op

k the processed data from node i
Ou

k the unprocessed data from node i
Dp

k the processing delay in node k
Dr

k the receiving delay in node k
Dk overall delay in node k
Do total delay of whole network

Nodes 11,35,154
ρ 1/3
R 20Gbps
µk 4Gbps

Node Patterns Random with max of 5 child nodes
dk Random with a max value of 200 Gb

Generations 80

the scalability of the algorithms can be seen in Table 3.1.

An output of X for the small system is shown in Fig. 3.4.

Figure 3.4: Sample ideal X values for a small network

In the next experiment, we attempted to see how the results change as we vary certain

constraints. We first vary the µk, expecting the cases with faster speeds to have less delay.

We then performed similar tests for R and ρ values.



3.4. Simulations and Performance Evaluation 26

3.4 Simulations and Performance Evaluation

3.4.1 Evaluation Across Various Network Sizes

One important aspect of the GA solution is that it is scalable in terms of the network’s

size. It still needs to perform better than the baseline algorithms. If it performs worse than

any one of them, then there is no reason to implement it. Fig. 3.5, 3.6, and 3.7 show the

worst case delay results for the small, medium, and large networks, respectively.
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Figure 3.5: Delay evaluation on a 11 node network.

We can see that for the smallest network size, with the researched values, the cloud

and the GA reach the same solution. As the network size is increased, such as Fig. 3.7

the benefit is more pronounced. These results suggest that even for a very large network,

there is a benefit, in terms of system delay, to use the GA’s solution.

3.4.2 Evaluation Across with Varied Bandwidth Constraints

The next step is to ensure that the GA’s solution is the ideal one when the bandwidth

parameters are varied. Fig. 3.8 shows the response that the delays have to these changes.
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Figure 3.6: Delay evaluation on a 35 node network.
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Figure 3.7: Delay evaluation on a 154 node network.
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Fig. 3.9 shows the response that the delay has to changes in R. The constraints that

aren’t varying for the tests are constant, and based off of realistic values found in other

publications mentioned above. We only show the results for the largest system, because

this is the system that should have the greatest sensitivity to changes in the bandwidth

values.
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Figure 3.8: Delay values of a 154 node network with varying µk values.

From Fig. 3.8, we can see that as µk increases, all of the delays decrease, except for

the cloud-based solution, which does no processing at the nodes, and is unaffected by the

value of µk. One other thing to notice is that for the lower values, such as 4Gbps, the

GA solves the problem significantly better than the conventional methods. If we designed

these nodes with more processing power, then fog computing significantly outperforms

cloud computing.

As R values increase, all of the delays decrease. The cloud computing value in par-

ticular decreases significantly. The Xk values yielded by the GA for the ideal case are

lower as R increases, suggesting that as the transmission rate increases significantly in the

future without a significant improvement of the computational power of the nodes, then



3.5. Chapter Summary 29

10

100

1000

10000

2.5 5 10 20 40 80 160

D
e
la

y
 (

m
s
)

R (Gbps)

Max End-to-End Delay

GA's ideal solution

100% processed at each node

100% processed at the cloud

50% processed at each node

Figure 3.9: Delay values of a 154 node network with varying R values.

cloud computing will likely be the most efficient solution.

Fig. 3.10 shows the delay values as ρ is varied. As expected, on the high end of the

ρ spectrum, the GA’s solution aligns with the fully cloud processed solution. Towards

the left, the GA outperforms all conventional methods. The research results show that the

proposed solution is significantly better than the conventional methods for the applications

with a high data reduction/compression ratio, because of the way spatial big data analysis

works in.

3.5 Chapter Summary

In this paper, we presented a set of delay models for spatial data processing networks,

which was specifically targeted at disaster-stricken areas. This model accounts for both

the transmission delay and processing delay at each connection and node, respectively.

We researched some realistic parameters, and put them into an in-house simulator, which

tested some of the conventional methods, and modeled their worst-case delays. The sim-
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Figure 3.10: Delay values of a 154 node network with varying ρ values.

ulator also ran a genetic algorithm which found the ideal situation in each case.

Evaluation results show that for the realistic parameters, the genetic algorithm was

able to solve the ideal case after approximately 40 generations for the largest system.

With our researched values, the cloud system was closest to the GA. However, as µk

was increased, the maximum processing algorithm got much stronger. But, as the R was

increased, the cloud computing solution was more successful. The current GA solution

shows that the amount of processing that needs to be done by each node changes with

the R and µk values greatly, and that with the standard test parameters, the Xk value was

heavily based on the number of hops that the node was from the cloud. This is possibly

based on a transmission-compression trade-off. Additionally, because the ρ value can vary

so much between compression and data processing cases, the target application varies the

results greatly.

In the next chapter, we will cover an algorithm which can determine the ideal config-

uration in real time.



Chapter 4

Real-time Solution for the Data

Processing Ratio

4.1 Introduction

In Chapter 4, we presented some models and a GA-based solution. This chapter ex-

tends that work by improving the algorithm so that it can be run in real time and adapt as

the network speeds change. This chapter is relates to the work published in [48].

Fog computing (FC) is a disruptive technology in the big data analytics area. Smart-

phone users and organizations use cellular services, which can support decision-making in

disaster scenarios with the data that has been collected. Nevertheless, the regular commu-

nication infrastructure can be damaged by disasters. NTT provided an easily deployable

solution to construct an emergency communication network (ECN), but ECNs are slow

at propagating big data due to their limited transmission capabilities. One major issue is

efficiently integrating data processing in the ECN to realize effective data processing and

transmission in disaster scenarios. In this chapter, we present: a detailed mathematical

model to represent data processing and transmission in an ECN fog network; an NP-hard

proof for the problem of optimizing the overall delay; and a novel algorithm to minimize

the overall delay for wirelessly-networked disaster areas (WNDA) that can be run in real-

time. We evaluated the systems across various transmission speeds, processing speeds,

and network sizes. We also tested the calculation time, accuracy and percent error of the

systems.

31
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It is our goal to reduce the processing speed incurred by the genetic algorithm solution,

and still maintain a result that has lower or equal latency, when compared to conventional

algorithms, such as Fog [24] and Cloud [12] Computing. It is key to have better results

than the conventional algorithms, otherwise, there is no reason to implement an adaptive

one.

We attempt to minimize the effect that each node has on the system delay. One impor-

tant aspect of each algorithms’ efficacy is its execution time. The conventional methods

(fog and cloud) determine the data processing ratio before running and they can not adapt

to changes in transmission speed and processing speed, but at least they will not delay

the system while trying to calculate how much data to process. Genetic algorithms, such

as in [49], can yield a final solution that minimizes the system’s delay, but they may take

a significant amount of time to coverage. Thus, our proposed algorithm will attempt to

get better results, in particular, be able to adapt to changing processing and transmission

rates, but not require a large amount of processing power, which is feasible with a simple

calculation.

The main contributions of this section are summarized as follows:

• We developed an MBS-based wireless network model that considers real-time com-

putations for big data collection and analysis. The problem model is demonstrated

to be a non-deterministic polynomial-time hardness (NP-Hard) problem.

• We propose an adaptive algorithm for fog-layer big data analysis which determines

the data processing ratio for real-time wireless computation structures. The opti-

mization objective is to achieve delay minimization for data processing of a WNDA

in a real-time manner.

• We demonstrate the instant response of the proposed scheme through theoreti-

cal and simulation studies, which prove that the proposed adaptive algorithm can

achieve high-performance results.
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Figure 4.1: System Model

4.2 System Model and Problem Definition

4.2.1 System Model

Fig. 4.1 represents the system model for a WNDA. It is created by deploying MBSs to

a disaster area in order to patch up the holes in the network. From a user’s point-of-view,

the network should work seamlessly, but slower. The proposed scenario is similar to [50],

but the solution proposed in this section is solvable in real-time. .1

A single node which has computation and communication capabilities is denoted by

the letter k. Smartphones connect with k, and upload large amounts of data. The total

amount of data that k receives from these smartphones is denoted as dk. The big-data

processing algorithm that we are trying to optimize has a data compression ratio of ρ,

where 0 < ρ ≤ 1. The algorithm can be run at a rate of µk Gbps on the MBSs. The

communication speed between a node k, and another node i, is denoted as Rik.

Due to the aggregation needs of most big-data processing, we assume that all the data

must be collected by a single node, j, which is located at the edge of the disaster, and

is capable of transmitting data to the cloud in a quick and efficient manner because the

wired connection from that point is still intact. This paper considers and discusses a case

with a single j node, but a multiple-j-node case can be solved similarly. Because of the

nature of big-data algorithms, the data analysis generally does not begin until all the data

from the area has been collected into a single node, but some of the processing can be

done to reduce the size of the data that is transmitted. This means that the algorithm

cannot begin its final step until the data from the last node is received at the cloud. The
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time between starting to send data, and the last bit of data being received by the cloud

is called the overall delay, and this paper attempts to minimize that overall delay using a

real-time algorithm. To do this we assume that for each node i, there is a path Pi that is

predetermined and terminates at j. Each node k has a set of child nodes Ck based on all

of Pi’s for each node in N, the set that contains all nodes in the system.

Figure 4.2: Data Structure Change from Spatial Data Processing on a Tweet

To help understand how data processing can achieve a significant size reduction, Fig.

4.2 demonstrates one way to handle spatial data processing. We can see that the raw

tweet structure contains several bytes of information related to twitter and linking to other

tweets. The algorithm only saves a few pieces of this data to make a single data point,

namely: Time, Position, and Keywords. The time and position values are carried from the

raw structure, but keywords must be generated using an algorithm that is specific to the

application. The remaining data that is not used, such as hash-tags, can be discarded.

The authors in [51] have used spatial data to track human mobility throughout the day.

Instead of analyzing tweets, they take data submitted by taxis and subways, and perform

some analysis. Through the spatial analysis they are able to determine the travel distance,

trip duration and trip interval. This information led the authors to conclude things such as

whether people travel more for work or for pleasure on the subway, but that taxi users do
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not lean one way or another. This is one such algorithm that could run on an MBS-based

Fog system in order to track a city’s return to work after a disaster.

4.2.2 Problem Formulation

Based on the system model in Fig. 4.1, we came up with a series of equations in [50].

We attempt to solve the same model, but with an additional guarantee that the calculation

time is small enough to be run in real-time. We also assume that no node knows the traffic

of any other node, this way none of the bandwidth of the infrastructure is used to transfer

traffic information.

Table 4.1: Variable Definitions
Design Parameters Definition

Ok Node k total output
O

p
i Node i processed output
Ou

i Node i unprocessed output
Iu

k Node k total unprocessed input
D

p
k Delay for processing data in node k
Dr

k Delay for receiving data in node k
Do Network’s overall delay
Ck Set of all child nodes of k
ρ Data compression ratio
Rik Communication rate between i and k
µk Processing rate of node k
dk Cellular data input at node k
Hk Number of hops remaining in the path
∆D Delay effect of each node

Given the abbreviations in Table 4.1, we consider the output data to be:

Ok = Ou
k + O

p
k =

[
Iu

k ∗ (1 − Xk)
]
+

[
Iu

k ∗ ρ ∗ Xk +
∑
i∈Ck

O
p
i
]

(4.2.1)

Figure 4.3 demonstrates the basic data flow, and the adopted abbreviation. Node k

receives raw data from nearby cellphones, labeled as dk, as well as any unprocessed data

(Ou
l and Ou

m) from the child nodes (Ck ∈ {l,m}). All of these points combine to make

the unprocessed input to node k (Iu
k). The child nodes also output some processed data

to node k (Op
l and Op

m). Only the unprocessed data can be processed in node k, because

the same data can not be processed twice by the algorithm. Node k then outputs some

processed (Op
k ) and unprocessed (Ou

k) data.
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Figure 4.3: Node Model

Then we consider the delay measurement of a single node to be:

Dk = D
p
k +Dr

k =
[
(Iu

k ∗ Xk) ∗ µk
−1] +

[∑
i∈Ck

Oi

Rik
,∀i ∈ Ck

]
(4.2.2)

The delay for i to process and send its data to j can be calculated as:

Do
i =

∑
k∈Pi

Dk,∀i ∈ Ck (4.2.3)

And because the system’s overall delay is based on the time to receive the last bit of

data, the overall delay of the system is:

Do = max
i∈N
Do

i

s.t. (4.2.1), (4.2.2), and (4.2.3)
(4.2.4)

We then formalize the delay minimization problem for wirelessly networked disaster

areas (DMP-WNDA) as:

DMP-WNDA: Minimize the overall delay for sending all data to the cloud by adjust-

ing the data processing ratios of the nodes in the system.

Find the set X to min (Do)
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4.2.3 NP-hardness of DMP-WNDA

Before proposing the algorithm, we first analyze the NP-hardness of the DMP-WNDA

problem in this section, by first proving that the DMP-WNDA problem is equivalent to

the Partition Problem (PP), we first introduce the following definition 1.

Definition 1: The Partition Problem (PP): decide whether a given multi-set S of pos-

itive integers can be partitioned into two subsets S1 and S2 such that the sum of S1 is

equal to the sum of S2.

Instance 1: Given a list of positive integers {A1,A2, ...,An}, determine whether there

is a set of I ⊆ {1, 2, ..., n} such that
∑

i∈I Ai =
∑

i<I Ai.

The PP has been proven to be an NP-hard problem [52]. In the following Proof 1, we

show that the DMP-WNDA problem is an expansion of the PP.

Proposition 1: DMP-WNDA is an NP-hard problem.

Proof 1: We start by assuming that the DMP-WNDA can be simplified from the

original problem as a system which has one fog node F and one cloud node C. Second,

we denote the data collected from devices as D = {d1, d2, ..de, .., dn}, where de is the

size of data block e, and there are n data blocks in total. Then, the original problem

can be redefined to find the minimal delay based on the data block allocation instead of

based on the data processing ratio. We build a WNDA fog computing system instance as

{C,F ,S,D} to evaluate the delay according to the aforementioned conditions.

We can formalize these notions as follows: S = {se}
n is a set to denote the data dis-

tribution strategy for n blocks data, where se is a binary value: 1 denotes fog and 0 rep-

resents cloud allocation respectively, and a system delay D(S) that is based on the se

values. Given that se ∈ S, 1 ≤ e ≤ n, determine if there are two subsets S1,S2 ⊆ S and

S1 ∪ S2 = S, S1 ∩ S2 = ∅, such that
∑

s∈S1
D(S ) =

∑
s∈S2
D(S ). Then we consider the

two disjoint distribution strategies, S1 = {s1
1, s

1
2, ..s

1
e , ..s

1
n} and S2 = {s2

1, s
2
2, ..s

2
e , ..s

2
n}, where

s1
e =!s2

e , for each block of data e.

Due to Eq. (4.2.4), and considering one fog node system,Do can be represented as

Do =
DT ∗ Xa

µ
+
ρ ∗ DT ∗ Xa + (1 − Xa) ∗ DT

R
(4.2.5)
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where DT =
∑

e∈n de is the total generated data and Xa is the distribution ratio between the

cloud and the fog layer, which is equivalent to Xk in the original DMP-WNDA problem,

where a can be 1 or 2 to represent them based on which distribution strategy S1 or S2 is

used. X1 and X2 can be further represented as follows,

X1 =

∑
e∈N[de ∗ s1

e]
DT

, X2 =

∑
e∈N[de ∗ s2

e]
DT

(4.2.6)

When considering X1 = X2, which yields the minimum system delay as long as R =

(1 − ρ) ∗ µ, we can achieve two equal system delays for S1 and S2 as

∑
e∈N de ∗ s1

e

µ
+

(ρ − 1) ∗
∑

e∈N[de ∗ s1
e] +

∑
e∈N de

R

= ∑
e∈N de ∗ s2

e

µ
+

(ρ − 1) ∗
∑

e∈N[de ∗ s2
e] +

∑
e∈N de

R
(4.2.7)

The above statements combined with the fact that X1 is X2’s complement means that

they are both equal to 1
2 . In such cases, the DMP-WNDA problem can be represented as:

∑
e∈N

[de ∗ s1
e] =

∑
e∈N

[de ∗ s2
e] =

1
2
∗
∑
e∈N

de (4.2.8)

which is the definition of the PP problem as long as we assume that the data block sizes

are integers, therefore DMP-WNDA is an NP-hard problem.

4.2.4 Proposed Algorithm (DAADM)

Since the problem is NP-Hard, we settled for an adaptive algorithm that accounts for

the number of hops to reach node j and various network parameters and has each node

calculate its own Xk. We relaxed the problem for our proposed solution, so we expected

that the delay results would not be as good as the GA. We still demanded that the solution

is never worse than the conventional methods for every variation of topology and network
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parameters. We propose a solution that minimizes the delay effect of each node (∆Dk),

which is the amount of delay that comes from processing the data in node k affects theDo
i

of Pi. The model does not account for transmission delay of data that has already been

processed in a previous node (
∑

i∈Ck
O

p
i /Rik), because the current node can not process

it any further or do anything that would affect the delay caused by that data, but can

only forward the data to the next node in the path. The number of hops to reach node

j is multiplied by the estimated delay per hop, so we can get an estimate for the effect

that processing the data in the current node has on the transmission delay for all hops in

the path Pi. The set of unprocessed data from node i (i ∈ Ck) denoted as Iu
k , where Hk

represents the number of hops that remain in the path from i to j in Pi (i ∈ Ck), and the

∆Dk is defined as:

∆Dk = D
p
k +Hk(Dr

k −

∑
i∈Ck

O
p
i

Rik
)

=
Iu

k ∗ Xk

µk
+Hk(

Iu
k ∗ ρ ∗ Xk

Rik
+
Iu

k ∗ (1 − Xk)
Rik

)

(4.2.9)

After reduction, we can see that ∆Dk is linearly related to Xk. Algorithm 1 provides

the Xk that will yield the minimum ∆Dk when it is bounded by [0,1]. This does not

perfectly align with the problem statement where partial processing ratios are available,

but this is true for minimizing the ∆Dk, which means that the GA is a more accurate

solution to the problem. This is a small sacrifice for achieving much faster calculation

times.

By performing a derivative of (4.2.9), the ∆Dk
′ is defined as:

∆Dk
′ =
Iu

k

µk
+
Hk ∗ I

u
k ∗ ρ

Rik
−
Hk ∗ I

u
k

Rik
(4.2.10)

We use Algorithm (1) to have each node calculate their own Xk value within a few cy-

cles. This new algorithm is called the Disaster Area Adaptive Delay Minimization (DAADM)
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Algorithm.
Algorithm 1: Disaster Area Adaptive Delay Minimization Algorithm

Data: ∆D′k: objective function;Hk: hops;ρ: compression ratio;µ: processing rate;

Rik: communication rate; Iu
k: unprocessed input in node k;

Result: Xk, the processing ratio for the current node;

1 initialization;

2 while True do

3 calculate ∆D′k using equation (4.2.10);

4 if ∆D′k < 0 then

5 Xk ← 0;

6 else

7 Xk ← 1;

8 end

9 end

The purpose of the algorithm is to calculate an ideal set X that will yield the minimal

overall system delay, while keeping the algorithm simple enough to be useful for decision

making on a fog node. The two aforementioned equations should be calculable with

only a few cycles on the processor, which is orders of magnitude faster than a Genetic

Algorithm.

To make sure that the complexity matches up with our goal, we perform some basic

Big-O analysis. We will do the complexity analysis from the view of whatever is actually

performing the calculation of the algorithms. The Fog-based, Cloud-based, and the pro-

posed DAADM solutions calculate or set Xk on a node-by-node basis, but the GA solution

must be calculated as a whole system. The Fog-based and the Cloud-based solutions pre-

set Xk to 0 or 1, and require no calculations at all. Therefore, they are independent of the

network size, which is the problem size ‘n’. The complexity analysis of the Fog-based

and Cloud-based solutions are both O(1). The GA solution from chapter 4 is run multiple

times based on the network size. First, the length of a chromosome is n*8 (one byte per

node). This alone would not affect the complexity, but the amount of chromosomes in the

pool must be increased so that the crossover and mutation applications can have enough

genetic diversity to be effective. Additionally, each gene needs to be run individually, and
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accounts for calculations of the whole network. Therefore, the GA solution has a com-

plexity of O(n2). The proposed DAADM algorithm is shown in algorithm 1, and is run

one time which calculates ∆Dk
′ once. The calculation of ∆Dk

′ is unrelated to the network

size, thus it is O(1), making the DAADM algorithm have a complexity of O(1).

4.3 Simulations and Performance Evaluation

4.3.1 Evaluation Methodology

In order to evaluate our DAADM algorithm, we tested it in a simulator, and compared

it to conventional methods and a genetic algorithm (GA). The first conventional method

is one where all of the processing is done in the cloud [12], and each node just forwards

the data. The second conventional method is the one where all of the data is processed

entirely in the fog, and the results are sent to the cloud. The genetic algorithm is run

exhaustively and represents the baseline solution. The biggest problem with the GA is its

run time.

The mathematical models and computations were all done in MATLAB. We test each

system across a variety of parameters such as: network size, Rik, and µk. For network

size, 3 networks were randomly generated with a random number of nodes, which were

randomly scattered around the map, and links were create. The 3 random sizes ended up

being 11, 35, and 154 to represent the small, medium and large networks, respectively.

All networks were formed using a tree topology, witch each node having no more than

6 child nodes. The largest system is 50% larger than the network coverage of the island

of Okinawa in Japan which has 105 base stations [44]. The other network constraints

were taken to match realistic cases, which were surveyed from other papers. The raw

data input values varied randomly for each node. The communication speed was assumed

to match 5G speeds, which was 20Gbps according to [45]. A GPU-based processor for

wireless networks had a demonstrated performance capability of 4Gbps [46] This num-

ber is expected to increase rapidly as time goes on, especially as the next generation of

computation-based GPUs was just announced [53]. The data compression ratio varies

greatly between data processing and data compression algorithms. Authors in [47] esti-

mate that a one third ratio is possible for LTE data compression. Most data processing
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algorithms are able to almost completely reduce the data down to a fraction of a per-

cent. The previously mentioned spatial big data processing algorithm is capable of a data

compression ratio of 0.01 from our tests. For each of the tests, we held all values at

their default, except for the variable being tested. All tests comparing the different data

processing ratio algorithms used the same network map and data input values.

4.3.2 Evaluation Across with Varied Bandwidth Constraints

Next, we need to determine how successful the adaptive algorithm is at achieving the

minimum delays across the different bandwidth parameters. Figure 4.4 and 4.5 show the

response that the delays have to changes in the processing speed on the large and small

systems, respectively. Figure 4.6 and 4.7 show the response that the delay has to changes

in the transmission rate for the large and small systems, respectively. In order to perform

the tests, the network constraints that were not being tested were set to the default values,

which correspond to the surveyed values. In the following tests, we only show the results

for the large and the small system because the largest system is the one that is most likely

to react to small changes in bandwidth, while the small network has the least sensitivity.

Figure 4.4 shows that all networks perform better as the processing capabilities are in-

creased except for the cloud-based solution. One particular area to notice is the transition

of the ideal case between the cloud and the fog. The GA is very apt at finding specific

cases and can find the perfect combination of nodes that will yield the best possible solu-

tion. The adaptive algorithm is able to switch between the two main schemes, one node at

a time, but this is handled less gracefully. As we shift to the small system in Fig. 4.5, we

can see that the DAADM handles the transition much better, and is able to perform very

similarly to the GA.

As expected, all of the systems other than the fog-based one perform better as the

communication speeds are increased. The Xk values for the GA and the DAADM shift

closer to 0 as the Rik increases, which suggests that if the transmission speeds can be

significantly improved in the future, then cloud computing will once again become the

best solution. Unfortunately, the opposite seems to be true, and the computation speeds

are rapidly increasing, while our wireless communication speeds are lagging behind. In

Fig. 4.7, we can see that the DAADM algorithm has a much better transition than in the
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Figure 4.4: Delay results while varying µk values on a large network
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Figure 4.5: Delay results while varying µk values on a small network
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Figure 4.6: Delay results while varying Rik values on a large network

large system (Fig. 4.6).

4.3.3 Time Complexity Evaluation

As the final and most important test, we needed to confirm that the complexity of our

algorithm could be handled in an appropriate time frame and with appropriate accuracy

and error. We measured the accuracy as
∑n

i=1 Ideal/(Achieved × n), where n is the number

of data points collected. For both the accuracy and the percent error, we assume that

the genetic algorithm was able to find the ideal result. We understand that increasing the

number of data points, and the data point selection itself will affect the results of these two

values, but they do help to give an overall idea of how the different algorithms compare

overall. The accuracy represents how often the result aligns with the ideal, so higher is

better (max of 100%). The percent error more accurately represents how far off a target

can be from the ideal result, and so lower is better.

Figure 4.8 shows the results of our experimentations, and how long each algorithm
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Figure 4.7: Delay results while varying Rik values on a small network

took to calculate their respective results. The cloud and fog based solutions took exactly

one cycle to assign either fully unprocessed or fully processed, respectively. The proposed

DAADM took 3 cycles, which is still fast enough for a real-time system. However, the GA

required over 8000 cycles per node (8.4s). While different processors will yield different

times per cycle, these results should accurately approximate the ratio of the processing

times between the different solutions.

As far as accuracy and error go, the GA was assumed to be the ideal solution, and so it

had 100% accuracy, and 0% error. Because the cloud and fog solutions did not adapt well,

they both had accuracies of around 65% of the time, but would have even worse results if

we took data points from a wider range. This is because as the data points expand in either

direction, either the fog or the cloud solution will have points that miss the ideal value.

The percent error shows that the fog solution tends to miss the goal by a larger amount,

with a percent error greater than 160%. The DAADM algorithm, which only took 3 cycles

to calculate, had 95.2% accuracy and had a percent error of 5.7%. Additionally, taking

more data points into consideration would improve the results of the DAADM. These
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results are promising for the use of algorithms such as DAADM to determine proper data

processing ratios at each node.
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Figure 4.8: Time consumed by calculating, Accuracy, and Percent error of each allocation
schemes of a large network

As we make the network slightly smaller, it reduces the runtime of the GA because

it required a smaller gene pool. The results are still approximately 1.4 seconds, which is

too slow to be used in real-time. It’s also important to notice that for this particular net-

work size and configuration that the percent error of the Fog-computing solution exceeded

600%. This likely happens on a case by case basis and does not reflect the efficacy of the

algorithm at all times, but does show how the conventional algorithms can be susceptible

to network structures. Again the DAADM algorithm solved the systems with a reasonable

time and accurate results.

On the small-sized network, we can see that the cloud-computing solution is becom-

ing more feasible, but still has a fairly low accuracy of 85%, while the DAADM has

99% accuracy. As the networks get smaller, the DAADM seems to have even less error,

with only 0.8%. Then when we compare the calculation times, the DAADM has a 235x

reduction compared to the GA.



4.3. Simulations and Performance Evaluation 47

 0.0001

 0.001

 0.01

 0.1

 1

 10

Genetic Algorithm Fog Computing All Cloud DAADM Algorithm
 0

 40

 80

 120

 160

 200

C
a
lc

u
la

ti
o
n
 t

im
e
 (

s)

P
e
rc

e
n
t

Calculation Time
Accuracy (%)

Percent Error (%)

Figure 4.9: Time consumed by calculating, Accuracy, and Percent error of each allocation
schemes of a medium network
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Figure 4.10: Time consumed by calculating, Accuracy, and Percent error of each alloca-
tion schemes of a small network
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4.4 Chapter Summary

This chapter presented delay models for the various delays of big data applications

seen in a WNDA. The models account for the time spent on processing as well as the

time spent on transmitting the data at each of the nodes. After collecting some realistic

network parameters, we simulated our proposed algorithm on various network sizes, and

compared it to a GA and the two most common conventional methods. The DAADM was

proposed to significantly reduce the calculation time that the genetic algorithm has, and

still maintain better results than the conventional methods.

Evaluation results show that for the realistic parameters, the DAADM algorithm could

be solved with minimal processing, enough to be considered a real-time algorithm. This

means that it can be run constantly, and the results can adapt as the network does. With

our researched values, for conventional algorithms, the cloud system was closest to the

GA, but the DAADM algorithm matched the curve shape of the GA. However, as µk was

increased, the maximum processing algorithm got much stronger, and the DAADM and

GA adjusted accordingly.

The proposed DAADM solution shows that the appropriate Xk value is greatly deter-

mined by the processing speed, communication speed, and the number of hops that the

current node is away from node j. There is a tradeoff between the time for transmitting

raw data versus processing at the fog node, which is only amplified the further away a

node is from the cloud. While the ρ value did affect the delays, the trend between dif-

ferent solutions was not greatly affected once ρ was small enough. This means that a

smaller ρ value did improve the cloud, DAADM and GA’s delays, but affected them all in

a similar manner as long as ρ was not too large. Additionally, we saw the best results on a

small network, which is more likely to be the case for an MDRU deployment as it would

cover a small and dense area, not a county or something larger.



Chapter 5

Base Station Allocation for Users with

Overlapping Coverage

5.1 Introduction

After major disasters, temporary deployable cellular networks are often used to con-

struct an emergency communication network. These networks do not have the same level

of performance as a typical fog or cloud network, and in order to service the users in a

way that is sustainable, utilization of optimization algorithms must be considered. We

proposed using a genetic algorithm (GA) to optimally allocate these users in the overlap-

ping areas to a base station so that the system could provide an improved user experience.

We tested our proposed algorithm against a greedy algorithm, a random algorithm, and al-

locating users to the closest MBS. The greedy algorithm outperformed the two other base-

line algorithms, but the proposed algorithm was able to reduce the average and worst-case

delay of the system by 80% compared to the greedy algorithm. The genetic algorithm had

completely settled by 150 generations. This algorithm provided such an advantage that it

warrants deeper study.

The main contributions of this paper are summarized as follows:

• We study a delay optimization problem under the MBS-fog-based wireless network

model for big data collection and analysis. The network model problem mainly

consists of processing delay, and transmission delay.

49
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• We propose an overlapping wireless network structure which have different commu-

nication rate between users and MBSs. The optimization objective is to minimize

the average delay for achieving the higher performance for all users.

• To solve this problem, we verify our framework through a genetic algorithm. Sim-

ulation results show that our proposed wireless network structure can achieve high-

performance results.

5.2 System Model and Problem Formulation

In this section, we introduce the system model, the processing and transmission delay

model. The average latency model will also be presented. We give the list all the major

variables in Table 5.1.

5.2.1 System Model

Before presenting our proposal in detail, we will first introduce the system structure

for computing the delay under our considered scenario.

Fig.5.1 shows a wirelessly networked disaster area (WNDA) fog based network. The

movable base stations (MBSs) are deployed to the disaster area to rebuild communication

network. Users are randomly distributed in the overlapping areas and non-overlapping

areas. Refugees can upload data through the MBSs to the cloud.

Figure 5.1: Structure of the Network in an Overlapped Area
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We consider each MBS as having its own communication and computation capabili-

ties. Users access the MBS and upload a large amount of data. We use γc to denote the

data size collected by node c. ρ denote the compression ratio for spatial data processing

algorithm, 0 < ρ 6 1. Meanwhile, the processing and communication rate at node c

denote as µc, rc, respectively.

Based on the spatial big data processing algorithms, we consider a system where all

MBSs send data to a node ce which is located at the edge of the disaster area. We assume

the wired connected between ce and the cloud is still intact, thus, ce is able to transfer data

rapidly and efficiently. In this paper, we introduce and discuss a single ce node situation,

but a multiple ce node situation can be modeled and solved similarly.

According to the different distances between individual users and MBSs, the commu-

nication rate of each link is also different. Therefore, we consider that a communication

rate follows Shannon’s channel capacity. During the processing and transmission process,

the average queueing time has been considered in the networking model.

For typical big data analysis, the algorithm cannot start until all the data has been

gathered by the last node and has been sent to the cloud. The time between the data

starting to transfer and the last bit of data being received by the cloud for each link called

the path delay. The path between the starting node and the edge node ce is denoted by P(i).

We attempt to minimize the average delay of all users in the system by properly allocating

base stations in the overlapping areas.

5.2.2 Processing Delay

In this section, we present the processing delay model. We introduce the computation

model for output data after processing through the equation below. After processing data

in node c, the data can be separated into processed data and unprocessed data. We assume

that the processed data cannot be processed second , which is why the two data types must

be accounted for separately.

The raw cellular data collected by node c is defined by γc, where γc follows the Normal

Density Function. We use α̂ to denote the mean value of γc and σ2 denotes the variance

of γc. Therefore, the probability value of γc can be given by:
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Table 5.1: System Variables
Design Parameters Descriptions

N set of all nodes
c current node
c′ child node
γc raw cellular data size
ρ compression ratio
α̂ mean value of γ
σ2 variance of γ
xc data processing ratio at node c
µc processing rate
rc communication rate
Φ

p
c processing arrival rate at node c

ΦT
c transmission arrival rate at node c

Ou
c unprocessed output data from node c

Op
c processed output data from node c

Ŵp(q)
c average queuing waiting time of processing data

ŴT (q)
c average queuing waiting time of transmitting data

Dp
c processing delay at node c

DT
c transmission delay at node c

Dpath
c totally delay for initial node c on path P(i)

Daverage average delay

P (γc | α̂, σ
2) =

1
√

2πσ2
e−

(γc−α̂)2

2σ2 (5.2.1)

Then, the data processing ratio at node c is represented by xc, we group all child nodes

of c in the set Cc, and all nodes in the set N. The unprocessed output data from node c

can be calculated as:

Ou
c = ( γc +

N∑
c′∈Cc

Ou
c′ ) · ( 1 − xc ), ∀c ∈ N (5.2.2)

Next, we use ρ to denote the data compression ratio, since the total output data after

processing consists of two parts, we then can compute the processed output data from

node c as follows:

Op
c = ( γc +

N∑
c′∈Cc

Ou
c′ ) · ρ · xc +

N∑
c′∈Cc

Op
c′ , ∀c ∈ N (5.2.3)

For the processing delay at each node c, we also consider the time spent waiting to
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process the data. The data arrival rate follows a Poisson process which is denoted by Φ,

then the processing arrival rate at each node can be expressed as Φ
p
c .

We consider the processing order of data sent to node c by users follows a M/M/1

queue model. The processing rate is denoted as µc. Thus, the average queueing time for

processing data can be calculated as below:

Ŵp(q)
c =

Φ
p
c

µc(µc − Φ
p
c )
, ∀c ∈ N (5.2.4)

Therefore, we can compute the processing delay at node c as follows:

Dp
c =

( γc +
N∑

c′∈Cc

Ou
c′ ) · xc

µc
+ Ŵp(q)

c , ∀c ∈ N (5.2.5)

5.2.3 Transmission Delay

The transmission model for a wireless network area is presented as follows. We as-

sume rc denote the set of communication rates for each channel. W means the chan-

nel bandwidth. pc denote the MBS c’s transmission power, h represents the channel

gain for the link between the MBS and the mobile user. (λ/4πd)2 denotes the loss of

signal power for each channel. The distance between user i and MBS c is defined as√
(xi − xc)2 + (yi − yc)2. N0 denotes the signal noise at the receiving end, and is composed

of both the Gaussian noise and the interference.

rc = W log2 (1 +
pch(λ/4dπ)2

N0
) (5.2.6)

We then consider that transmitting data between nodes or from users to the MBS

follows a M/M/1 queue model. ΦT
c denote the arrival rate of transmission data at node c.

Thus, we can compute the average queueing time for transmitting data from node c as:
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ŴT (q)
c =

ΦT
c

rc(rc − ΦT
c )
, ∀c ∈ N (5.2.7)

Therefore, we can calculate the transmission delay as:

DT
c =

Ou
c + Op

c

rc
+ ŴT (q)

c , ∀c ∈ N

s.t. (5.2.2), (5.2.3), (5.2.6) and (5.2.7)
(5.2.8)

5.2.4 Delay Model

Next, we will introduce the delay model. We can compute the relevant delay for any

node c following the path P(c) in terms of processing delay model and transmission delay

as:

DPath
c = Dp

c +
∑
c∈P(i)

DT
c , ∀c ∈ N

s.t. (5.2.4), (5.2.5), (5.2.6), (5.2.7) and (5.2.8)

(5.2.9)

According to the communication model of wireless networks, we are attempting to

achieve the best performance for all users, thus by (5.2.9), the average latency of the

network can be calculated as following:

Daverage =

∑
c∈N

DPath
c

|N|
(5.2.10)

Wirelessly Networked Disaster Area Base Station Allocation for Minimal De-

lay (WNDA-BAMD): In overlapping wireless network areas, the goal is to achieve the

best performance for all users by allocating them in a manner that minimizes the average

delay of all users, which is shown in Eq. 5.2.10.
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5.3 Proposed Solution

The goal of our system is to realize the ideal allocation of users to yield the minimum

delay for the system. To achieve this, we have implemented a genetic algorithm [42]

(GA), which has been applied to a wide variety of problems and is able to solve many

more in the future. Each simulation starts with an initial population, called generation

one. Then the algorithm selects the ideal candidates, performs genetic crossover and then

mutation, creating the next generation. The algorithm performs the selection, crossover

and mutation 50 times. The pseudo code for our GA can be seen in Algorithm 2.

Algorithm 2: Genetic Algorithm
1 Gen← 1
2 Pop← InitialPop()
3 while Gen < MaxGenerationCount do
4 F ← CalcFitness(Pop)
5 PS ← S election(P, F)
6 PC ← Crossover(PS )
7 PM ← Mutation(PC)
8 Pop← PM

9 Gen← Gen + 1
10 end
11 IdealGene← S electBest(Pop)

We compared our proposed system to 3 conventional methods: nearest, greedy, and

random. The random algorithm randomly chose one of the MBSs whose area covers

the user in the overlapping area. The nearest algorithm calculates the physical distance

between the user and any MBS which cover that position, and allocates that user to the

MBS that has the smallest distance. The greedy algorithm chooses the node, which will

give that individual user the least amount of communication delay.

The modeling and calculations were all coded in MATLAB. We first attempted to

determine the capabilities of each algorithm across different network sizes. In order to let

the evaluation match with real cases, we surveyed some realistic values for R, µk, and κ.

Most 5G antennas currently in development suggest that the wireless speeds will reach

20Gbps [45]. Hinitt et al. [46] have estimated that a GPU based processor for wireless

networks is capable of processing speeds of at least 4Gbps. Guo et al. [47] suggest that

LTE compression is capable of a one-third ratio, so we adopted this value for evaluation.
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The amount of processing that a standard computer can handle is still scaling very rapidly,

so we expected this number to increase rapidly as well. All of these values, and other ones

used for testing the scalability of the algorithms can be seen in Table 5.1.

All systems were evaluated according to their average and worst-case delays. The

average delay is more applicable to IoT device and everyday use, whereas many big data

processing algorithms are bottle-necked by what time it takes for the last bit of data to

be aggregated, and are thus better represented by the worst-case delay. The worst-case

delays are expected to have less smooth curves because of nature of how easily one user

can affect the results.

5.4 Simulations and Performance Evaluation

5.4.1 Evaluation Across Processing Parameters

Figure 5.2: Average Delay Results for Variations in Node Processing Speed

The results in Figures 5.2 and 5.3 show how a Fog system reacts to changes in the

processing speeds of the fog nodes. As expected, all systems decrease their Average
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Figure 5.3: Worst-Case Delay Results for Variations in Node Processing Speed

Delay as the processing capabilities are increased, until each of them plateaus when the

communication delay becomes the bottle neck. The average delay of the GA seems to

start to plateau at the limit of our simulation, but the worst-case delay still appears to

be improving. It is worth noting that the limits of these simulations still far exceed our

current technology, but it is nice to know that this algorithm will still be applicable as

technologies improve. In terms of average delay, the algorithm which allocates users

to their closest MBS works approximately as well as randomly allocating users, but the

worst-case user ends up being slightly worse when only considering position. The Greedy

algorithm, which attempts to connect each user to the base station which can offer that user

the best connection has an improved average latency over all node processing speeds, but

the worst-case delay for low processing speeds can be even worse than the nearest node

as many users in the same overlapping area will all choose the same node to be processed

at, increasing the queuing delay at that node. The GA has a curve that is vastly below that

of the other algorithms and often results in its delay having a 70% or greater reduction in

latency compared to the next best algorithm.

The results for changes in the data compression ratio can be seen in Figures 5.4 and
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5.5. Values of 10−1 and less are examples of rates we can expect from efficient processing

algorithms. 0.25 to 0.5 are values we would expect to see from compression algorithms.

Values greater than 1 show examples where processing increases the size of the data,

which is very inefficient and rare done in fog systems, but is still good to look at for

evaluation.

Figure 5.4: Average Delay Results for Variations in the Data Compression Ratio

The random and nearest algorithms performed similarly in terms of average latency,

but the random algorithm was the most successful conventional algorithm for the worst-

case delay because it balances the load evenly across the network. This does not hold true

when running an inefficient BDP algorithm on the fog nodes, which leads the greedy al-

gorithm to have the best worst-case delay. The Greedy algorithm was the most successful

algorithm in terms of average latency, but was approximately 4x slower than the GA. The

GA was approximately 3x better than the best conventional algorithm for all data com-

pression ratios, in terms of worst-case and average delay, even when the best conventional

method changes.
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Figure 5.5: Worst-case Delay Results for Variations in the Data Compression Ratio

5.4.2 Evaluation Across various Channel Capacities

Perhaps the most important metric for this algorithm is its capability to adapt to vary-

ing communication rates. MBSs will likely soon be equipped with improved 5G antennas

which have a higher channel capacity than current 4G antennas. This means that this

technology will be significantly improved in the near future.

To show how our system reacts to changes in communication rates, we varied the

channel capacities, and the results can be seen in figures 5.6 and 5.7. As we have seen

in the past simulations, the average delay of the random and the nearest algorithms are

similar, with the greedy algorithm giving a slight improvement and the GA gave a sig-

nificant improvement. Overall the GA typically held a 4x improvement over the greedy

algorithm, but this advantage took a dip around 20Gbps, where the advantage was only

2.8x. This still suggests that the GA is far superior to the deterministic methods. In terms

of the worst-case latency, seen in figure 5.7, the GA maintains a 6x improvement over the

greedy algorithm.
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Figure 5.6: Average Delay Results for Variations in the Channel Capacity

Figure 5.7: Worst-case Delay Results for Variations in the Channel Capacity
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5.4.3 Cloud System Evaluation

Sometimes, MBS stations are set up to function as relay points, and then the MBS

system functions like a cloud computing system. This is why it was important to verify

the algorithms capabilities in a cloud network.

Figure 5.8: Cloud System Average Delay Results for Variations in the Channel Capacity

The results for varying the channel capacity in a cloud system can be seen in figures

5.8 and 5.9. For a cloud system, the results are much more linear due to the lack of

a processing delay. The random and nearest algorithms follow similar speeds for the

average delay, but the random algorithm performs slightly better in terms of worst-case

latency. The greedy algorithm is always the second best for both the average and worst-

case, with the GA performing approximately 2.5x better across all values.

5.5 Chapter Summary

This paper presented a genetic algorithm which was capable of solving for the ideal

combination base station allocations to reduce the network’s overall delay. Users who
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Figure 5.9: Cloud System Worst-case Delay Results for Variations in the Channel Capac-
ity

were in areas that could be covered by two or more MBSs would be allocated in a way

that was faster and improved the overall user experience for everyone in the coverage

area.

The proposed algorithm provided the minimum worst-case and overall delay for the

entire system across all network parameters. It was approximately at least 70% better

than the next most efficient algorithm across all processing speeds. Across most of the

Fog System evaluations, the GA maintained a 4x improvement in performance compared

to the greedy algorithm, which was the best performing conventional algorithm. In a

cloud system, it performed approximately 2x better than the greedy algorithm across all

channel capacities.



Chapter 6

Conclusion and Discussion

This dissertation concludes with a summary of the main contributions and a discussion

of future research. We create an overview of the results of each contribution. The future

works will mostly consist of design considerations that were not implemented.

6.1 Contributions

This thesis presents four main contributions: (1) a set of models for fog computing on

a wireless network; (2) a genetic algorithm to optimize the data processing ratio of each

node; (3) a real-time algorithm to solve for a data processing ratio that will result in a

reduced latency for the fog network; and (4) a genetic algorithm which can solve for the

ideal mapping configuration of the network.

The first contribution of this paper was a set of models for fog computing on a wireless

network. In chapter 4, we started with a simplistic model and used it to evaluate our

algorithm. In chapter 5, we proved that the model was NP-Hard. In Chapter 6, the model

was improved by accounting for queuing delay in the processor and in the communication

networks. Additionally, we accounted for average delay

In chapter 4, we proposed a genetic algorithm which was able to solve for the ideal

set of data processing ratios for each node to reduce the maximum delay that the system.

We started with a random population, and run each of the genes through the models, and

select the best results, and perform crossover and mutation with them. This is repeated

for 80 generations, but a solution usually settled before 40 generations.

63



6.2. Results Summary 64

Chapter 5 presented a real-time algorithm that could solve the same problem as the GA

from chapter 4. This new DAADM algorithm would account for the network structure and

performance metrics. While this is running, it is assumed that the structure is not changing

in real-time, but the performance of the links connected to the current node can change in

real-time. This allows for the algorithm to adapt the processing ratio in real time, without

receiving additional information from other nodes.

Chapter 6 attempted to solve a different problem. The models were shifted to find the

average delay of each node in the system, which is more applicable to a herd-satisfaction

model, and attempted to solve for the ideal mapping connections for each node. This was

also handled by a GA, which functioned similarly to the one used in chapter 4.

6.2 Results Summary

Evaluation results show that for the realistic parameters, the genetic algorithm was

able to solve the ideal data processing ratios after approximately 40 generations for the

largest system. With our researched values, the cloud system was closest to the GA.

However, as µk was increased, the maximum processing algorithm got much stronger.

But, as the R was increased, the cloud computing solution was more successful. The

current GA solution shows that the amount of processing that needs to be done by each

node changes with the R and µk values greatly, and that with the standard test parameters,

the Xk value was heavily based on the number of hops that the node was from the cloud.

This is possibly based on a transmission-compression trade-off. Additionally, because

the ρ value can vary so much between compression and data processing cases, the target

application varies the results greatly.

Evaluation results show that for the realistic parameters, the DAADM algorithm could

be solved with minimal processing, enough to be considered a real-time algorithm. This

means that it can be run constantly, and the results can adapt as the network does. With

our researched values, for conventional algorithms, the cloud system was closest to the

GA, but the DAADM algorithm matched the curve shape of the GA. However, as µk was

increased, the maximum processing algorithm got much stronger, and the DAADM and

GA adjusted accordingly.
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Evaluation results show that the GA was able to reduce the average network delay

by approximately 40% with ideal connections. Further simulations showed that the GA’s

results had a worst-case delay that was approximately equivalent to the greedy algorithm’s

average delay. The actual run-time of the GA was quite small, because it only needed to

run for a few generations. The results of the GA were resilient to changes in the processing

speeds, transmission speeds, and data compression ratios.

6.3 Discussion

Even though GAs and the DAADM algorithm showed promising results, there are still

some points that we would like to consider in future research.

As a future work, we plan to implement the DAADM algorithm on a real MBSs net-

work system. Furthermore, we will determine the ideal paths for a set of coordinates for

MBSs. We can also calculate the packet loss rate while we are generating the maps, be-

cause we can calculate the signal loss based on the paths and distances. Additionally, we

would like to account for the signal strength of each connection. This can possibly affect

the amount of times that the data needs to be resent, ultimately affecting the transmission

speed of a link.

In order to improve the mapping scheme, we plan to propose a real-time algorithm

which is able to replace the GA. The current algorithm does not run for a long time,

approximately two seconds on a standard PC, but this could be taxing on a Fog network

if it is to be continuously run so that the network could adapt to changes in real time.

Assuming that the real-time algorithm is successful, we would like to test it on an MDRU

network.
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