
Algorithms and Architectures for Spiking
Neuromorphic Systems

Vu Huy The

a dissertation
submitted in fulfillment of the requirements

for the degree of doctor of philosophy
in computer science and engineering

Graduate Department of Computer and Information Systems
The University of Aizu

2019

Copyright by Vu Huy The
All Rights Reserved.

Contents

1 Introduction 1
1.1 Brain-inspired Computing: Towards a New Computation

Paradigm . 1
Von Neumann Architecture . 1
Brain-inspired Computing . 4

1.2 Motivation: Power, Scaling, and Reliability Challenges 7
1.3 Dissertation Goals and Contributions . 10
1.4 Dissertation Organization . 11

2 Neural Network Architecture: Background 15
2.1 Neural Network . 16

Overview . 16
Neural Network Topologies . 18

2.2 Artificial Neural Network . 19
2.2.1 Learning Rules . 19

Supervised Learning . 20
Unsupervised Learning . 20

2.2.2 Fundamental Implementation . 20
2.2.3 Existing Architectures . 22

2.3 Spiking Neural Network . 23
2.3.1 Neural Coding Methods . 24

Rate Coding . 24
Temporal Coding (Spike coding) . 25

2.3.2 Neuron Models . 25
Hodgkin-Huxley . 26
Izhikevich . 28
Leaky Integrate and fire . 29

2.3.3 Spiking Neural Network Learning Rules 30
Unsupervised Learning . 30
Supervised Learning . 31

v

2.3.4 Communication Network . 31
2.3.5 Existing Architectures . 31

2.4 Conclusion . 33

3 Related Works 35
3.1 Spiking Neuromorphic Systems . 35
3.2 Inter-neuron Communication . 38

3.2.1 Hierarchical Bus-based Spike Routing 40
3.2.2 2D Packet-swiched-based spike routing 40
3.2.3 3D Packet-swiched-based Spike Routing 41

3.3 Fault-tolerant Neural Network . 43
3.3.1 Learning-based approaches . 43
3.3.2 Architecture-based approaches . 46
3.3.3 Hybrid approaches . 47

3.4 Conclusion . 48

4 Comprehensive Analytic Performance Assessment 49
4.1 Assumption and Network Model . 50
4.2 Non-faulty System Assessment . 52

4.2.1 Performance Analysis of Hopfield NN Based on a 3D-mesh 52
Unicast-based Spike Routing . 52
Multicast and Broadcast Based Routing Schemes 53

4.2.2 Performance Analysis of RNDC NN Based on a 3D-mesh 55
Unicast Based Routing . 55
Multicast Based Routing . 56
Broadcast Based Routing . 57

4.3 Faulty System Assessment . 58
4.3.1 Performance Analysis of Hopfield Neural Network Based on a 3D-mesh 58

Unicast-based Spike Routing . 58
Multicast and Broadcast Based Routing Schemes 60

4.3.2 Performance Analysis of RNDC Neural Network Based on a 3D-mesh 61
Unicast based Routing . 61
Multicast and Broadcast Based Routing Schemes 62

4.4 Conclusion and Discussion . 63

5 K-means Based Multicast Spike Routing Algorithms 65
5.1 K-means Based Multicast Spike Routing Algorithm (KMCR) 66

5.1.1 The Proposed Routing Algorithm (KMCR) 66
5.1.2 Selection of the Optimal Number of Clusters 71
5.1.3 Weakpoint . 73

vi

5.2 Shortest Path K-means Based Multicast Routing Algorithm (SP-KMCR)) . . . 73
5.3 Fault-tolerant Shortest PathK-means BasedMulticast RoutingAlgorithm (FTSP-

KMCR) . 74
5.3.1 Proposed Fault-tolerant Routing Algorithm 74
5.3.2 Fault Management Algorithm . 79

5.4 Conclusion . 81

6 Towards Scalable Spiking Neuromorphic Architecture 83
6.1 System Architecture . 84

6.1.1 Topology . 85
6.1.2 System interface . 85

6.2 Spiking Neuron Processing Core (SNPC) . 86
6.3 Spike packet format . 88
6.4 Router Architecture . 90

6.4.1 Spike routing table . 91
6.4.2 Hard fault tolerance . 92

Fault-tolerant buffer . 92
Fault-tolerant crossbar: . 92
Fault-tolerant TSV . 92

6.5 Application deployment . 94
6.5.1 Application mapping methods . 94
6.5.2 Input-data-to-spike conversion methods 94

Converting from original data sets . 96
Using converters . 96

7 Design and Evaluation 99
7.1 Methodology . 99
7.2 Evaluation Results . 100

7.2.1 Spike Injection Rate Analysis . 100
7.2.2 K-means Based Multicast Routing Algorithm Evaluation 101

Performance Evaluation Under Realistic Benchmarks 101
Performance Evaluation Under Synthetic Benchmark 107
Hardware Complexity Analysis . 110

7.2.3 Shortest Path K-means Based Multicast Routing Algorithm Evaluation 112
7.2.4 Fault-tolerant K-means Based Multicast Routing Algorithm Evaluation 119

Performance Evaluation . 120
Hardware Complexity Evaluation: . 122
Discussion: . 123

8 Conclusions and Future Work 125

vii

References 149

viii

List of Figures

1.1 Computation paradigm is shifted from (a) von Neumann (centric compu-
tation) to (b) brain-inspired computing (distributed computation) 2

1.2 End of the road - a shringking challenge of of physical gate length at 10nm
[3]. 3

1.3 Power density and clock frequency challenges of conventional computing
architecture [4]. 3

1.4 An illustration of ANN and SNN hardware implementations for a hand-
written digit recognition application. 5

1.5 Neuron firing rate over different input arrival times: (a) Example of a post-
synaptic neuron (N4) receiving incoming spikes from three presynaptic
neurons, (b) Firing rate =1, (C) Firing rate =0. 8

1.6 Example of the connection-fault effect on the firing rate: (a) a postsynaptic
neuron (N4) receiving incoming spikes from three presynaptic neurons,
(b) with no connection fault, the firing rate = 1, (c) with the N1-to-N4
connection fault, the firing rate = 0, (d) long latency of a connection with
an inefficient routing algorithm resulting in the firing rate = 0. 9

1.7 Dissertation organization. 12

2.1 (a) a cartoon drawing of a biological neuron (b) a mathematical model of
a neuron. 16

2.2 Generations of artificial neural network. 17

2.3 Some common neural network topologies. 18

2.4 Synapse implementation: (a) Analog: memristor bridge synaptic circuit [48].
Digital: (b) 12T scheduler SRAM Cell (simplified) (c) 6T core SRAM
cell [16]. 21

2.5 A comparison of spiking neuron models in terms of implementation cost
and biological plausibility [77]. 26

ix

2.6 TheHodgkin-Huxleymodel: (a) the schematic diagram presents themem-
brane potential, in which current injection starts at t = 5 ms as (b), while
(c) and (d) show the dependency of the gating variables n, m and h on the
membrane potential v [79]. 27

2.7 Known types of the Izhikevich neuron with different values of the param-
eters a, b, c, d [80]. 28

2.8 Schematic diagram of the LIF model (soma, the circuit is in the dashed
circle) [13]. 29

2.9 STDP: (a) Spike-timing window of STDP characterized in hippocam-
pal cultures [86] (b) a minimum complexity digital implementation of
STDP [87]. 30

3.1 (a) TrueNorth: consisting of neurosynaptic cores, tiled in a 2D array: log-
ical representation (left) and physical implementation (right) [117]. (b)
The architecture of the BrainScaleS wafer-scale hardware system [118].
(c) Neurogrid architecture: software and hardware [116] (d): SpiNNaker
consists of computational units using ARM processors and a 2D triangular
mesh interconnect architecture [119]. 36

3.2 Interconnect architectures for neuromorphic systems. 38

3.3 Summary of SNN routing methods on various interconnect platforms. . 39

3.4 Multicast routing mechanisms: (a) Unicast-based (b) Path-based (c) Tree-
based. 42

3.5 Taxonomy of fault-tolerant approaches for neural network architectures. . 45

3.6 A self-detect and self-repair mechanism mimicking capability in the hu-
man brain [144]. This mechanism is based on indirect feedback from the
astrocyte cell (i.e., the most abundant type of glial cell in the brain), by reg-
ulating the synaptic transmission probability of release when faults occur.
. 47

4.1 3D mesh NoC architecture with n neural tiles (PEs). 51

5.1 Flowchart of the proposed routing algorithm. 67

5.2 Example of the proposed routing algorithm for a 6×3×2 3DNoC-SNN
system, where nodes in L1 send spike packets to all nodes in L2: (a) desti-
nations are partitioned by adopting K-means clustering with centroids 26
and 29, (b) the formation of the first path of the tree from a given source
(node 3) to centroids, (c) the second part of the tree from centroids to its
destinations, (d) the routing tree from the given source to destinations. . . 70

5.3 Average latency under varying the values of k 72

x

5.4 Example of SP-KMCR for a 6×3×2 3DNoC-SNN system, where nodes
in L1 send spike packets to all nodes in L2: (a) destinations are partitioned
by adopting K-means clustering with centroids 26 and 29, (b) the forma-
tion of the first path of the tree from a given source (node 3) to shortest
path node of each subgroup (SP node), (c) the second part of the tree from
SP nodes to its destinations, (d) the routing tree from the given source to
destinations. 75

5.5 Primary and backup branches. 78
5.6 Fault-management algorithm applied for ”son”, on-backup, ”father” and

”grandfather” routers. 80

6.1 Block diagram of system architecture. 84
6.2 Spiking Neuron Processing Core (SNPC) architecture. 86
6.3 Spike packet format. 88
6.4 Multicast Spike 3D Router architecture (MC-3DR). 90
6.5 Block diagram of routing table architecture. D, U, W, S, E, N, L stand for

Down, Up, West, South, East, North, Local respectively. 91
6.6 Block diagram of Random Access Buffer (RAB) [164]. 93
6.7 Block diagram of Bypass-Link-on-Demand [164]. 93
6.8 Fault-tolerant TSV architecture: (a) router wrapper (b) sharing TSV ar-

chitecture with TSV cluster (red rectangles) and sharing arbitrators (S-UP,
S-DOWN) [165]. 95

6.9 Layer-to-layer mapping method. 96
6.10 2-D histograms and raster plots for different encoding schemes and neu-

romorphic data sets. (A) Poisson 28 × 28 input size sample. (B) Latency
28 × 28 input size sample. (C) MNIST-DVS 128 × 128 input size sample.
(D) N-MNIST 34 × 34 input size sample. (E) Fast-Poker DVS 32 × 32
input size sample. (F) Slow-Poker DVS 128 × 128 input size sample [171]. 97

6.11 Conversion using a DVS camera, captured from [172]. In this setup, two
different classes of images (here motorbikes or cars) are displayed on a
screen with a small jitter applied at 10Hz. A random subset of the spikes
is emitted by the DVS. 98

7.1 Setup for SIR evaluation. 101
7.2 Router acceptance rate (RAR) comparison when varying the number of

router RNP and SIRs. 102
7.3 Layer-to-layer application mapping: (a) block diagram of a node in each

layer (b) Inverted pendulum (c) Wisconsin data-set. 103
7.4 Average latency over various SIRs for Inverted Pendulum in: (a) 3D Do-

main (b) 2D Domain. 105

xi

7.5 Average latency over various SIRs for Wisconsin Data-set in: (a) 3D do-
main (b) 2D Domain. 106

7.6 Average throughput in NoC systems over various SIRs for Inverted Pen-
dulum in: 3D Domain, (b) 2D Domain. 108

7.7 Average throughput in NoC systems over various SIRs for Wisconsin
Data-set in: (a) 3D Domain, (b) 2D Domain. 109

7.8 Average latency evaluation and comparison over various SIRs. 110
7.9 Average throughput under the synthetic benchmark over various SIRs. . 111
7.10 Average latency over various SIRs in 3D domain: (a) Inverted Pendulum

(b) Wisconsin Data-set. 113
7.11 Average latency over various SIRs in 2D domain: (a) Inverted Pendulum

(b) Wisconsin Data-set. 114
7.12 Average throughput over various SIRs in 3D domain: (a) Inverted Pen-

dulum (b) Wisconsin Data-set. 116
7.13 Average throughput over various SIRs in 2D domain: (a) Inverted Pen-

dulum (b) Wisconsin Data-set. 117
7.14 Average latency over various fault rates: (a) Inverted Pendulum (b) Wis-

consin Data-set. 118
7.15 Average latency comparison of KMCR and SP-KMCR over different network

sizes. 119
7.16 Average throughput over various fault rates: (a) Inverted Pendulum (b)

Wisconsin Data-set. 121

xii

List of Tables

1.1 Comparison of von Neumann and Neuro-inspired computing 4

2.1 Platform comparison for neuromorphic implementation [62]. 22

4.1 2D mesh NoC [23] vs 3D mesh NoC analyzed for Hopfield NN 55
4.2 2D-mesh NoC [23] vs 3D mesh NoC performance analysis for RNDC

NN systems. 57

7.1 Realistic simulation configuration. 103
7.2 Synthetic simulation setup. 107
7.3 MC-3DR Hardware Complexity Evaluation and Comparison. 111
7.4 Power consumption of UCB-XYZ and KMCR under realistic benchmarks.112
7.5 Power consumption of the KMCR and FTSP-KMCR under the bench-

marks. 123

xiii

List of Abbreviations

2D-NoC Two dimensional Network-on-Chip
3D-IC Three dimensional Integrated Circuit
3D-NoC Three dimensional Network-on-Chip
3D-SIC Three dimensional Stacked Integrated Circuit
ASIC Application-Specific Integrated Circuit
ANN Artificial Neural Network
BLoD Bypass-Link-on-Demand
BC Broadcast
CPU Central Processing Unit
CT Crossbar Traversal stage
DRAM Dynamic Random Access Memory
ECC Error Correction Codes
FIFO First-In-First-Out
FT-KMCR Fault-Tolerant K-means based MultiCast Routing

algorithm
FTSP-KMCR Fault-Tolerant Shortest-Path KMCR
HDL Hardware Description Language
HF Hopfield neural network
IC Integrated Circuit
KMCR K-means based MultiCast Routing algorithm
MC Multicast
NoC Network-on-Chip
PE Processing Element
RAB Random-Access-Buffer
RC Routing Computation stage
RNDC Randomly Connected Neural Network
RTL Register-Transfer Level

xv

SA Switch Allocation stage
SRAM Static Random Access Memory
SNN Spiking Neural Network
SNPC Spiking Neural Processing Core
SoC System-on-Chip
SP-KMCR Shortest- Path K-means based MultiCast Routing

algorithm
TSV Through Silicon Via
UC Unicast

xvi

To my wife, my parent, and my family, with all my love

Acknowledgments

First, I would like to convey my deepest gratitude to my supervisor Prof. Abderazek Ben Ab-
dallah for his guidance, support, and encouragement. Also, I would like to thank Prof. Toshiaki
Miyazaki, Prof. Tsuneo Tsukahara, Prof. Junji Kitamichi of The University of Aizu and Prof.
Hideharu Amano of Keio University for taking the time to revise my thesis. Moreover, my sincere
gratitude to Prof. Yuichi Okuyama for his help and support during the past three years.

Aizu is really memorable for me because of my great friends and colleagues. I am thankful to Dr.
Akram Ben Ahmed of Keio University and Dr. Dang NamKhanh of Vietnam National University
for their significant help and discussion. I want to thank all the members of the Adaptive Systems
Laboratory and my friends at The University of Aizu. Their supportive words and encouraging
messages kept me motivated to work harder and be a better researcher and person. Not to forget
to appreciate the staff of The University of Aizu for their assistance.

My endless love goes to my parent and family who always endow me with infinite support and
unconditional love. Last but not least, my most heartfelt thanks are due to my dearest stunning
wife, Hien-san. She always stood by me and endowed me with her endless love and support.

Vu Huy The,
September 2019,
Aizu, Japan

xix

Thesis advisor: Professor Abderazek Ben Abdallah Vu Huy The

Algorithms and Architectures for Spiking Neuromorphic
Systems
Abstract

Inventing the powerful machine like the human brain has been a driving force in comput-
ing for decades. The von Neumann architecture has been considered to be a clear stan-
dard for such the system. However, the significant differences in the organization, power
consumption requirements, and the computational power of von Neumann architecture
compared to a biological brain leads to creating alternative architectures. Brain-inspired
computing or neuromorphic computing is a biologically inspired approach created from
highly connected neurons to not only model neuroscience theories but also solve machine
learning problems. The term neuromorphic was first introduced by Carver Mead in 1990,
where it referred to very large scale integration (VLSI) with analog components to mimic
biological neural systems.

In recent years, artificial neural networks (ANNs) with efficient learning methods (e.g.,
backpropagation) have shown a remarkable improvement in terms of accuracy (even better
human-level) for large-scale visual/auditory recognition and classification tasks. Particu-
larly, the convolution neural network (CNN) and recurrent neural network (RNN) have
shown promising tools for a wide range of applications such as image, video, and speech.
To reach considerable achievement, state-of-the-art neural networks, however, tend to
deeply increase their number of layers and size (i.e., deep learning). Consequently, they
require hardware platforms with a huge amount of computation as well as power con-
sumption. On the other hand, spiking neural networks (SNNs) was proposed to not only
mimic efficiently the behavior of biological neurons but also make neuromorphic systems
extremely power-efficient with tens of pJ per connection.

However, implementing a scalable interneuron communication architecture is one of
the major challenges for hardware-based SNNs. The architecture is required to maintain a
huge amount of traffic created from a massive number of neurons and synapses accommo-
dated on neural computation units. Furthermore, since the arrival time of spikes is used to
encode the information, timing violation in such communication architecture affects the
overall performance of SNNs. A shared bus as a communication medium is a poor choice
for implementing a large-scale complex SNN chip/system because adding neurons de-
creases the communication capacity of the chip and may affect the neuron’s firing rate due

xxi

to increasing length of the shared bus. Moreover, the nonlinear increase in neural connec-
tivity is too significant to be directly implemented using a dedicated point-to-point com-
munication scheme. Two-dimensional packet-switched network-on-chip (2D-NoC) has
been considered as a potential solution to deal with the interconnection problems found
in previously proposed shared communication medium based SNNs. However, such in-
terconnect strategies make it difficult to achieve a high level of parallelism and scalability
with low power consumption, especially in large-scale SNN chips.

We also consider three-dimensional network on chips (3D-NoCs) which take advan-
tage of 3D Integrated Circuits (3D-ICs) and mesh-based network on chip (NoCs) open-
ing a promising architecture for SNNs. They offer scalability and parallelism of NoCs that
are enhanced in the third dimension thanks to the short wire length and the low power
consumption of 3D-ICs interconnects. Consequently, 3D-NoCs are considered to be
one of the most advanced and suitable for SNN systems, with capabilities of extremely
high bandwidth, efficient scalability, and low power. However, to take the advantages
for SNNs, 3D-NoC demands an efficient multicast routing algorithm to deal with a high
traffic pattern where a presynaptic neuron sends spikes to a subset of postsynaptic ones.
Furthermore, due to the complex nature of 3D-ICs and the continuing shrinkage of the
semiconductor components, 3D-NoC based systems are becoming susceptible to a vari-
ety of faults. Especially in SNNs, when connections are faulty, the post-synaptic neuron
becomes silent or near-silent (i.e, firing rate reduction). This may degrade overall system
performance.

Starting from the facts mentioned above, this dissertation proposes algorithms and ar-
chitectures for spiking neural network systems based on 3D-NoC (3DNoC-SNN). First,
a performance assessment for 3DNoC-SNN is presented to analyze the system perfor-
mance with different spiking neural network topologies, spike routing methods (i.e., uni-
cast, multicast and broadcast), and in both with and without faults occurring in the system.
This analytical model aims to early analyze the system architecture before actual imple-
mentation. Second, this dissertation proposes novel multicast spike routing algorithms
which are a combination of k-means clustering and tree-based routing method. Adopting
k-means is as a partition method helping to get overall balanced traffic and then improve
system performance. Moreover, a fault-tolerant multicast routing algorithm is also pro-
posed to deal with connection faults in the system, in which primary and backup routing
paths are pre-defined. When faults appear in the primary route, routers switch incoming
spike packages via the backup path. This reduces recovery overhead, average latency, and
enables the system to avoid timing violation of SNNs. Finally, architecture and hardware
design and evaluation of the proposed 3DNoC-SNN system are presented to evaluate the
proposed works, as well as compare with the analytical model.

xxii

スパイキングニューロモルフィックシステムのためのアルゴリズム
及びアーキテクチャ

概要

数⼗年にわたり、⼈間の脳のような強⼒な計算機を発明することがコンピ

ュータの分野においての原動⼒とされてきた。フォン・ノイマン型アーキテクチ
ャは、これらのようなシステムにおいて、明らかな基準とされている。しかし、
その構成における重⼤な違いである、電⼒消費量、⽣物の脳に⽐べたフォン・ノ
イマン型アーキテクチャの計算能⼒は、新たなアーキテクチャの創出につながっ
た。脳に想起された、もしくは、脳の構造を模した計算システムという新たな計
算⼿段は、⾼度に結びついている神経細胞から創出され、⼈間の脳構造を模した
理論を形成するだけでなく、機械学習における問題を解くことにつながってい
る。”Neuromorphic”という専⾨⽤語は １９９０年にCarver Meadにより最初に
つくられたものであり、それはアナログな部品を付帯した超⼤規模集積回路
(VLSI)による⽣物的神経細胞システムの模倣を指したことばからきている

近年では、⼈⼯神経細胞ネットワーク(ANNs)と、誤差逆伝搬法のような
効率的な学習⼿法が、⼤規模な視覚・聴覚的認識と分類において、精度の観点か
ら、顕著な功績を⽰しており、それはときに⼈間のレベルを凌駕することもあっ
た。特に、畳み込みニューラルネット(CNN)と再帰型ニューラルネットは、画像、
動画、⾳声のような幅広い分野における有望なツールとしての成果を⽰している。
著しい成果、最先端なニューラルネットに達するとき、そこには深層ニューラル
ネットとよばれるような、深く増加された層や⼤きさのネットワークが形成され
る。結果として、それらは⼤規模な計算量と消費電⼒を必要とするハードウェア
プラットフォームを必要とする。⼀⽅で、スパイキングニューラルネット(SNN)
は、⽣物の神経細胞を効率的に模倣するだけでなく、⾮常に電⼒効率の良い脳の
構造を模したシステムの構成（⼀つの結びつきにつき、数⼗ pJ 程度）を可能に
する。

しかしながら、拡張可能な神経細胞の通信アーキテクチャを実装すること
は、ハードウェアを基盤とした SNN の実装における⼤きな課題となっている。
そのアーキテクチャは、膨⼤なニューロンとその計算に⽤いられる接続部におけ
る、⼤規模な通信網の制御性を維持することが必要とされしまう。さらに、スパ
イクの到達時間はデータの加⼯に⽤いられ、タイミング違反は SNN の処理全体
に影響を与えてしまう。通信⼿段としての共有バスは、ニューロン数を増やすこ
とは通信容量を減少させることにつながるため、⼤規模で複雑な SNN回路/シス
テムの実装において乏しい選択であり、共有バスの⻑さを増加させることからそ
れはニューロンの発⽕率に影響するとされる。さらに、ニューロンの接続におけ
る⾮線形的増加はとても著しく、ポイント・ツー・ポイント型の通信に適⽤され
るような直接の接続は実装できない。⼆次元パケットスイッチ型ネットワーク・
オン・チップ（NoC）は、先で述べられたような共有バスを媒体とした SNN の
実装おける相互通信問題に対する潜在的な解決策として考えられている。しかし

xxiii

ながら、そのような相互通信における戦略は、⾼い並列性と拡張性および⼤規模
な SNN 回路における低消費電⼒を獲得する上で⼤きな困難を要することにつな
がる。

私たちは、SNN において有望なアーキテクチャとされる３次元階層にお
ける集積に利点を持つ３次元ネットワーク・オン・チップについても考えます。
それらは、３次元化することにより縮⼩されたワイヤーのおかげで、ネットワー
ク・オン・チップにおいての拡張性と並列性を提供する。結果として、⾮常に⾼
い帯域幅と効率的な拡張性、低消費電⼒により、３次元型 NoCはもっとも SNN
のシステムにおいて最も適しているとされるものの中の⼀つである。しかしなが
ら、SNNにおいてこのような利点を受けるために、３次元型 NoCは、⾼度な交
通形態に対処するための、効率的なマルチキャストルーティングアルゴリズムを
必要とする。さらに、３次元型 NoC の複雑性と継続的なセミコンダクタ部品の
縮⼩により、３次元型 NoC を元ととしたシステムは様々な⽋陥に対して影響を
受けやすくなってしまう。特に SNN において、接続に⽋陥が⽣じた場合、ポス
トシナプティックなニューロンは、発⽕率の現象に⾒られるような、静もしくは
ほとんど静な状態になってしまう。これはシステム全体の性能を低下させてしま
う。

以上に述べられた事実をはじめ、この論⽂では３D-NoC をベースとした
スパイキングニューラルネット(3D-NoC-SNN)のためのアルゴリズムとアーキテ
クチャを提案する。第⼀に、３DNoC-SNN の性能評価は、ユニキャスト、マル
チキャスト、ブロードキャストのようなスパイクルーティングの⽅法、そしてシ
ステムに発⽣する⽋陥のあるかないかにおいて、異なるトポロジーの SNN との
⽐較で⾏われた。第⼆に、この論⽂は画期的な、k-平均法とツリーベースのルー
ティング⽅法の組み合わせによるマルチキャストスパイクルーティングアルゴリ
ズムについて提案する。分割⽅法としてk-平均法を採⽤することは、全体的にバ
ランスの取れた交通を可能にし、システムの性能を向上させることにつながった。
さらに、フォールトトレラントなマルチキャストルーティングアルゴリズムは、
主要な経路とバックアップ経路を設けることにより、システムにおける接続の⽋
落に対処することにも役⽴てられた。主要ルートにおいて⽋陥が現れた時、ルー
ターはバックアップ経路を⽤いて、⼊⼒スパイクのパッケージを切り替える。こ
れは復旧にかかるオーバーヘッド、平均遅延を削減し、システムがタイミング違
反を回避することを可能とした。最後に、アーキテクチャとハードウェアの設計
と提案された 3D-NoC-SNN システムは、解析的な⽐較により提案された仕事に
ついての評価を⽰した。

xxiv

xxv

1
Introduction

1.1 Brain-inspired Computing: Towards a New Computation

Paradigm

Von Neumann Architecture

The Von Neumann architecture, that was presented 60 years ago, is still a solid base for

computer design. The architecture operates in a sequential manner where data is fetched

from memory. This concept is very powerful in building supercomputing machines used

in a wide range of applications such as quantum mechanics, weather forecasting, climate

research, and so on. However, the architecture has faced challenges: (1) in the traditional

von Neumann architecture, both data and instructions are stored in the memory, as shown

1

Neurons

Synapses

Memory

Bus

CPU

Computation units

Memory blocks

Memory wall/bottleneck

0 1 0 1 0 1 0 1 0

(a) von Neumann architecture (b) Brain-inspired architecture

(c) Signal in computer (d) Spiking pulse signal in biological brain

Up to GHz Up to 1 kHz

Figure 1.1: Computation paradigm is shifted from (a) von Neumann (centric computation)
to (b) brain-inspired computing (distributed computation)

in Figure 1.1 (a). From this, the CPU can fetch the instructions from the memory and

compute arithmetic operations on the data; it however cannot do both at the same time.

Consequently, this results in the well-known memory wall problem of the data move-

ment between the CPU and the memory which has become the bottleneck of the entire

system [1]. (2) The continued success of the development of the modern von Neumann

computing system was secondly enabled by increasing the transistor integration density,

followed by the multicore architecture. This was presented in Moore’s law predicting that

the integration density is doubled every 18 months. The silicon semiconductor industry

has shown extraordinary achievements throughout its history. However, since the density

of data continuously escalates, extracting valuable information from this huge amount of

data becomes computationally expensive, even for supercomputers. Furthermore, when

transistors are getting smaller and their power density keeps constant, the questions of

domination of dynamic power and the increase in leakage current [2] are raised. Conse-

quently, this slows down the transistor switching rate as well as the overall speed of the

system if an efficient cooling mechanism is not employed.

As the end of Moore’s law seems closer than ever (see Figure 1.2), computer scientists

2

Figure 1.2: End of the road - a shringking challenge of of physical gate length at 10nm [3].

Figure 1.3: Power density and clock frequency challenges of conventional computing archi-
tecture [4].

3

Table 1.1: Comparison of von Neumann and Neuro-inspired computing

von Neumann Neuro-inspired computing
Very high operation frequency
(GHz)

Low operation frequency (KHz)

Centric computation Distributed computation
Low parallelism High parallelism
Low power efficiency High power efficiency

have been exploring to build machines as complex and efficient as our brain, dealing with

power density and clock frequency challenges of the conventional architecture, as shown

in Figure 1.3. Our brain works completely different compared to traditional vonNeumann

architecture. In fact, there are many secrets behind how the human brain works. What

we know is that it distributes computation and memory (see Figure 1.1(b)) among 100

billion biological neurons, and each of them is highly connected with thousands of others

via synapses. Neurons communicate with each other through spikes (i. e., short electrical

pulses or spikes). The brain is a powerful computation system that helps us survive, adapt,

and predict while consuming tens of watts, as summarized in Table 1.1.

Brain-inspired Computing

Brain-inspired computing or neuromorphic computing is a biologically inspired ap-

proach created from highly connected neurons to not only model neuroscience theories

but also solve machine learning problems. The term neuromorphic was first introduced

by Carver Mead in 1990 [5], where it referred to very large scale integration (VLSI) with

analog components to mimic biological neural systems. Such systems can be categorized

as non-spiking and spiking approaches. First, the non-spiking approach is referred to as

the implementation of traditional artificial neural networks (ANNs), in which it aims to

improve throughput over power (or acceleration purpose). In recent years, ANNs have

shown a remarkable improvement in terms of accuracy (even better human-level [6]) for

large-scale visual/auditory recognition and classification tasks. Particularly, the convo-

lution neural network (CNN) [7] and recurrent neural network (RNN) [8] have shown

promising tools for a wide range of applications such as image, video, and speech. Nowa-

4

28x28 pixels
78

4

out
N2

0.98N2

10

In
pu

t l
ay

er

Hi
dd

en
 la

ye
r

O
ut

 la
ye

r

Fires
first

Conventional ANN

SNN approach

fla
tte

n

storage

neuron

connection

1

784

2

1

2

200

1

2

10

active neuron

synapse

spike

MACinp Activation
Function

785x32 32 32

N100

MACinp Activation
Function

201x32 32 32

X

X

X

+

+
+

!"#"
!$#$

!%&'#%&'

Rate coding
Temporal coding

flatten

and

converted

into

spikes

Adderinp

N100

Comparator

784x8 8 1

8
()*

out(Adderinp

N2

Comparator

784x8 8 1

8
()*

out(

Event based computation

“2”

Figure 1.4: An illustration of ANN and SNN hardware implementations for a handwritten
digit recognition application.

days, they are typically trained by using graphic processing units (GPUs) or on the cloud

side. To reach considerable achievement, state-of-the-art neural networks tend to deeply

increase their number of layers and size (i.e., deep learning). For example, Residual Net-

work (ResNet) [9] has 152 layers to achieve 3.57% error on the ImageNet test set (1st place

on the ILSVRC 2015 classification challenge [10]). However, this leads to challenges for

hardware systems in terms of computation, memory and communication resources. For

example, Google’s autoencoder [11] was implemented on a cluster of 16,000 processing

cores consuming ∼100 kW of power to successfully recognize faces of cats from ten mil-

lion images captured from YouTube videos.

The second approach based on spiking neural networks (SNNs), witnesses increasing

attention both to gain a better understanding of the brain and to explore novel biologically-

inspired computations. SNNs have been successfully applied for solving practical prob-

lems such as visual recognition and classification tasks [12]. Besides, implementations

of neuromorphic hardware have enabled large-scale networks to run in real-time, which

5

is a critical requirement for several applications, including neuro-robotics control, brain-

machine interfaces, and robotic decision making. In principle, SNNs attempt to mimic

the information processing in the mammalian brain based on parallel arrays of neurons

which communicate via spike events. Unlike the typical multi-layer perceptron networks

where neurons fire at each propagation cycle, the spiking neurons fire only when a mem-

brane potential reaches a specific value. In SNN, information is encoded using various en-

coding schemes, such as coincidence coding, rate coding or temporal coding [13]. There

have been many spiking neuron models proposed. SNN typically employs integrate-and-

fire neurons model [14] in which a neuron generates voltage spikes (roughly 1ms in du-

ration per spike) that can travel down nerve fibers if it receives enough stimuli from other

neurons with the presence of external stimuli. These pulses may vary in amplitude, shape,

and duration, but they are generally treated as identical events. To better model, the dy-

namics of the ion channel in a biological neuron, which is nonlinear and stochastic, the

Hodgkin-Huxley [15] conductance-based neuron is often used. However, the Hodgkin-

Huxley model is too complicated to be used for a large scale simulation or hardware im-

plementation.

Software simulation of SNN is a flexible method for investigating the behavior of neu-

ronal systems. However, simulation of a large (deep) SNN system in software is slow. An

alternative approach is a hardware implementation, which provides the possibility to gen-

erate independent spikes accurately and simultaneously output spikes in real-time. Hard-

ware implementations also have the advantage of computational speedup over software

simulations and can take full advantage of their inherent parallelism. Hardware imple-

mentation of ANN and SNN is explained in Figure 1.4. Specialized hardware architec-

tures with multiple neuro-cores could exploit the parallelism inherent within neural net-

works to provide high processing speeds with high power-efficiency, which make SNNs

suitable for embedded neuromorphic devices and control applications. For example, a

TrueNorth chip [16] consists of 4,096 neuro-synaptic cores with one million integrate-

and-fire neurons and 256 million SRAM synapses. It consumes only 65 mW of power to

6

perform real-time (30 frames/s) object recognition tasks.

1.2 Motivation: Power, Scaling, and Reliability Challenges

Inventing the powerful machine like the human brain has been a driving force in com-

puting for decades. The von Neumann architecture has been considered to be a clear stan-

dard for such a system. However, the significant differences in the organization, power

consumption requirements, and the computational power of von Neumann architecture

compared to a biological brain leads to creating alternative architectures. As inspired by

the biological brain, neuromorphic systems require high computation power that can per-

form operations in parallel. Such systems are more suitable for real-time applications such

as: real-time control [17], real-time digital image reconstruction [18], and autonomous

robot control [19]. These systems emphasize many simple processing components (i.e., as

a form of neurons) combined with dense interconnections between them (i.e., as the form

of synapses). This makes that traditional von Neumann architectures are not able to meet

this requirement because of the bottleneck [1] coming from the separation of memory

and processing unit. Therefore, there is a high demand for neuromorphic systems that

can deal with this bottleneck as well as challenges related to end of Moore’s law and the

end of Dennard scaling. Furthermore, extremely low power operation is an important mo-

tivation at the moment and this is inspired by the human brain which performs extremely

complex computations with small power, about 20 watts. It, therefore, motivates us to

adopt spiking neural networks (SNNs) in our work instead of artificial neural networks

(ANNs).

A major challenge of neuromorphic implementation is scalability. It requires a scal-

able interneuron communication architecture that can maintain a huge amount of traffic

created from a massive number of neurons and synapses accommodated on neuron com-

putation units. Since arrival time of spikes is used to encode the information, timing

violation in such communication architecture affects the overall performance of SNNs. A

shared bus as a communication medium is a poor choice for implementing a large-scale

7

N1

N2

N3

N4

𝑡2𝑡1 𝑡3 𝑡4
∆𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑣𝑡ℎ

𝑡2𝑡1 𝑡3 𝑡4
∆𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑣𝑡ℎ

(a) (b) (c)

Membrane
Potential

Input

Output

Firing rate = 1 Firing rate = 0

Figure 1.5: Neuron firing rate over different input arrival times: (a) Example of a postsy-
naptic neuron (N4) receiving incoming spikes from three presynaptic neurons, (b) Firing
rate =1, (C) Firing rate =0.

complex SNN chip/system with multicast routing because adding neurons decreases the

communication capacity of the chip and may affect the neuron’s firing rate due to increas-

ing length of the shared bus. Moreover, the nonlinear increase in neural connectivity is

too significant to be directly implemented using a dedicated point-to-point communica-

tion scheme. Two-dimensional packet-switched network-on-chip (2D-NoC) [20] has

been considered as a potential solution to deal with the interconnection problems found

in previously proposed shared communication medium based SNNs [21, 22]. However,

such interconnect strategies make it difficult to achieve high scalability with low power

consumption, especially in large-scale SNN chips. From another hand, the routing al-

gorithm also plays a vital role in neuron communications because it influences the load

balance across the network and the overall latency of system [20]. Since the traffic pat-

tern in a given SNN is in a one-to-many fashion, where a presynaptic neuron sends spikes

to a subset of postsynaptic ones, the use of conventional unicast-based routing in large-

scale SNNs is inefficient [23].

One of the othermain problems of hardware implementations for SNNs is their reliabil-

ity potential. Although it has been claimed that SNNs have some intrinsic fault-tolerance

8

N1

N2

N3

N4

!"!# !$!%
∆!

!

!

!
!
!

'()

!"!# !$!%
∆!

!

!

!
!
!

'()

(a) (b) (c)

Membrane
Potential

Input

Output

Firing rate = 1 Firing rate = 0

!"!# !$!%
∆!

!

!

!
!
!

'()

(d)

Firing rate = 0

X

Figure 1.6: Example of the connection-fault effect on the firing rate: (a) a postsynaptic
neuron (N4) receiving incoming spikes from three presynaptic neurons, (b) with no con-
nection fault, the firing rate = 1, (c) with the N1-to-N4 connection fault, the firing rate =
0, (d) long latency of a connection with an inefficient routing algorithm resulting in the
firing rate = 0.

properties thanks to their massive and parallel structures inspired by the biological neural

models, it is not always the case when it comes to practical cases [24]. In fact, with the

challenges inherited from the continuing shrinkage of semiconductor components, the

implementation of SNNs in hardware exposes them to a variety of faults [24]. The fault

risk becomes even more important as we move towards integrating large-scale SNNs for

embedded systems when the yield becomes a major problem [25]. When considering the

inter-neuron communication reliability, faults may affect the system performance, espe-

cially when they occur in critical applications (e.g., aerospace, autonomous car, biomedical,

etc.). Such failures can result in undesirable inaccuracies or even irreversible severe con-

sequences. In SNNs, when faults occur in the inter-neuron connections, the postsynaptic

neurons become silent or near-silent (low firing activity). As shown in Figure 1.6 (c), at

the presence of a broken link in the N1-to-N4 connection, the membrane potential of N4

fails to reach the threshold that would allow it to fire an output spike, as it is the case in

Figure 1.6 (b). This leads to a reduction in the firing rate of the postsynaptic neuron. Con-

sequently, it may have an impact on the overall performance of SNN models based on the

rate coding method [26]. Neurons with low firing rates become more susceptible to noisy

9

firing rates and temporal jitter of spikes resulting in an increase of the variance [27]. As

a result, it demands efficient fault-tolerant techniques. In such mechanisms, the recovery

time is one of the important requirements. The long latency of a fault-tolerant routing

method may influence the firing rate, as shown in Fig. 1.6 (d). It may impact especially,

SNN models using a temporal coding method that is based on the relative timing between

spikes. Therefore, the challenge to find efficient fault-tolerant solutions is becoming more

important with the integration of large SNNs onto silicon. Routing algorithms are con-

sidered as one of the most efficient recovery mechanisms in SNNs as they play a vital role

in neuron communication performance. In addition, when considering fault-tolerance

requirements, the routing algorithm should be carefully chosen in order to minimize the

inter-neuron communication latency; otherwise, the postsynaptic node accuracy can be

compromised despite the fact that the failure has been worked around. Figure 1.6 (d) il-

lustrates a clear example of such a case. In this figure, we can see that the long latency due

to an inappropriate routing can prevent the postsynaptic neuron to timely fire the output

spike.

1.3 Dissertation Goals and Contributions

In this thesis, we present algorithms and architectures for spiking neural network sys-

tems based on 3D-NoC, named 3DNoC-SNN. The system exploits the inherent 3D

structure of the brain to reduce the communication distances between neurons and allows

the seamless implementation of large-scale SNN-based computing systems. The evalu-

ation results show essential characteristics, such as low-latency, high throughput, main-

taining the traffic at high fault-rates and low power footprint that make the proposed ar-

chitecture suitable for large-scale SNN-based embedded AI implementations. The main

contributions of this dissertation are summarized as follows:

1. Aperformance assessment for 3DNoC-SNN. The assessment is done by providing

an analytic model to analyze the system performance with different spiking neural

network topologies, spike routing methods (i.e., unicast, multicast and broadcast),

10

and in both with and without faults occurring in the system. The goal is to provide

an efficient and accurate performance assessment to early understand and evaluate

the advantages and drawbacks of potential neural network topologies before the

actual hardware development of the SNN system.

2. Multicast spike routing algorithms for 3DNoC-SNN. In SNNs, a neuron needs

to send their output spikes to thousands of others. In addition, neurons also have

different spiking operation modes with different spike rates. As a result, an efficient

multicast routing method is highly demanded. This thesis proposes novel routing

algorithms which are a combination of k-means clustering and tree-based routing

method. Adopting k-means is as a partition method helping to get overall balanced

traffic and then improve system performance as well.

3. A fault-tolerant routing mechanism to deal with link faults in the 3DNoC-SNN

system. In SNNs, when faults occur in inter-neuron connection, the postsynap-

tic neuron becomes silent because it does not receive enough inputs (spikes) from

presynaptic ones. To deal with this issue, this thesis proposes a new fault-tolerant

routing algorithm where it pre-defines primary and backup routing paths. When

faults appear in the primary route, routers switch incoming spike packages via the

backup path. This reduces recovery overhead, average latency, and enables the sys-

tem to avoid timing violation of SNNs.

1.4 Dissertation Organization

The remaining parts of this thesis is organized as follows:

• In chapter 2, we first overview neural networks, its generations, and topologies. We

then present the fundamental of neural networks and their hardware implementa-

tion.

• Chapter 3 presents some of the important related works which deal with inter-

11

C
ha

pt
er

 1
INTRODUCTION
Brain-Inspired Computing
Motivation
Dissertation Goals and Contributions
Dissertation Organization

C
ha

pt
er

 2 NEURAL NETWORK ARCHITECTURES
Neural Network and Topology
ANN Architectures
SNN Architectures

C
ha

pt
er

 3 RELATED WORKS
Spiking Neuromorphic Systems
Inter-neuron Communication
Fault-tolerant Neural Network

C
ha

pt
er

 4 COMPREHENSIVE ANALYTICAL PERFORMANCE ASSESSMENT
Assumption and Network Model
Non-faulty System Assessment
Faulty System Assessment

C
ha

pt
er

 5 K-MEANS BASED MULTICAST SPIKE ROUTING ALGORITHMS
K-means Based Multicast Spike Routing Algorithms
Shortest Path K-means Based Multicast Routing Algorithm
Fault-tolerant Shortest Path K-means Based Multicast Routing Algorithm

C
ha

pt
er

 6

TOWARDS SCALABLE SPIKING NEUROMORPHIC ARCHITECTURE
System Architecture
Spiking Neuron Processing Core
3D Multicast Router
Application Deployment

C
ha

pt
er

 7 DESIGN AND EVALUATION
Methodology
Results

B
ac

k
gr

o
u
n
d

C
ha

pt
er

 8 CONCLUSIONS AND FUTURE WORK
Conclusions
Future Work

A
lg

o
ri

th
m

s
A

rc
h
it

ec
tu

re
s

Figure 1.7: Dissertation organization.

12

neuron connection challenges in neuromorphic systems. Furthermore, we also pro-

vide a survey of fault-tolerance in neural network systems.

• Chapter 4 provides an analytical model to assess the performance of 3DNoC-SNN

under different spiking neural network topologies and routing methods. It is con-

ducted under considerations of the fault and no-fault appearance.

• Chapter 5 is dedicated to introducing the proposed multicast routing algorithms.

First, it describes a K-means based multicast routing algorithm (KMCR). It then

presents an improved algorithm of KMCR, named SP-KMCR. Finally, a fault-

tolerant multicast routing algorithm (FTSP-KMCR) that based on SP-KMCR is

presented.

• In Chapter 6, we present the system architecture. We then describe its two main

components that are a spiking neural processing core (SNPC) as a main computa-

tional unit and a 3D router where the proposed spike routing algorithms are imple-

mented. Furthermore, some aspects of deploying the applications onto the system

are also presented.

• We dedicate Chapter 7 for presenting implementation, evaluation, and results. We

first describe how to implement and evaluate the proposed architecture and algo-

rithms. After that, we provide a comprehensive evaluation and results of the pro-

posed works.

• Finally in Chapter 8, we end this thesis with the conclusion before discussing further

future works.

13

2
Neural Network Architecture:

Background

I
n this chapter, we first present an overview of the artificial neural net-

work, its generations, and topologies. After that, we introduce implemen-

tations of the artificial neural network and also spiking neural network, in

each of which we consider the neuron model, learning, and existing implementations.

15

2.1 Neural Network

Overview

A coarse biological neuron, shown in Figure 2.1 (a) is considered to be an information

processing system. Dendrites play a role as input devices, where input signals are collected.

The neuron will process the signals and then produce output signals which are propagated

along its axon. Finally, the axon transmits the signals via synapses to dendrites of other

neurons. It is important to emphasize that this model of a biological neuron is very coarse,

and there are many different types of neurons, each of which has different properties.

axon

nucleus

soma

dendrite axon
terminals

synapse

axon of other
neuron

(a)

! = #
$%&

'()
*$+$ + - .

+&

*)+)

*&

*'()+'()

1
1 + 0(1

synapse

activation
function

axon

axon

-

(b)

Figure 2.1: (a) a cartoon drawing of a biological neuron (b) a mathematical model of a
neuron.

In the computational model of a neuron, shown in Figure 2.1 (b), each output sig-

nal (e.g., x) from a previous neuron is multiplied with a weight (e.g., w). This weight

presents the synaptic strength at that synapse. Dendrites carry the signals (e.g., wx) to

the cell body where they all get summed. In the basic model, if the final sum exceeds a cer-

tain threshold, the neuron can fire, sending a spike along its axon. An activation function

is modeled as the firing rate of the neuron.

16

!"

#$
#%

#&

x$
x%

x&
⍬)*

Threshold

!"
!+

#$
#%

#& ⍬)*

Activation function

!+

#$
#%

#&

x$
x%

x&

x$
x%

x&

t

t

t
t

Spike train
Spike train

1st generation – perceptron 2nd generation – deep learning 3rd generation – SNN

Figure 2.2: Generations of artificial neural network.

Neural networks can be classified into three generations according to their computation

units [28, 29], as shown in Figure 2.2:

• Thefirst generation: networks have neurons as computational units, and these neu-

rons are referred to as perceptrons or threshold gates. These networks only process

with digital inputs and outputs, boolean functions, and a single hidden layer. Mul-

tilayer perceptrons, Hopfield networks, and Boltzmann machines are typical exam-

ples of this kind of neural network.

• The second generation: each neuron in the network applies an activation function

with a continuous set of possible output values, such as sigmoid or polynomial or ex-

ponential functions. Feedforward, recurrent sigmoidal neural networks, and radial

basis function units are considered typical examples of this generation. Moreover,

these systems compute not only arbitrary boolean functions but also functions with

analog inputs and outputs. Furthermore, neural networks in this generation support

learning algorithms based on gradient descent.

• The third generation: Spiking neural networks are considered to be a closer ap-

proach to modeling biological neurons than previous ANNs. Biological neural sys-

tems use the timing of single-action potentials (or spikes) to encode information.

Basically, each spiking neuron has a membrane potential which is integrated by in-

coming pikes. When the membrane potential exceeds a threshold, the neuron fires

(i.e., a spike is generated).

17

input layer
hidden layer 1 hidden layer 2

output layer

input layer recurrent layer 1 recurrent layer 2 output layer

Input neuron

Hidden neuron

Output neuron
Recurrent neuron

Hopfield neuron

(a) Feed Forward Neural Network (b) Hopfield Neural Network

(c) Recurrent Neural Network

Figure 2.3: Some common neural network topologies.

Neural Network Topologies

Neurons can be connected together in differentmanners. Typical neural network topolo-

gies are summarized, as illustrated in Figure 2.3:

• Feed forward neural networks: Figure 2.3 (a) depicts a feed forward neural network

(FF or FFNN). This network is organized into separate layers of neurons: input,

hidden, and output layers. In this architecture, there are many connections between

neurons across layers, but not within a layer. Information is fed from the front to

the back. This network usually is used with the back-propagation training method.

There are some other neural networks with the same topology as FFNNs. If neurons

use a simple binary function, this architecture is called Perceptron (B) or Multilayer

perceptron (MLP). The simplest network, with two input neurons and one output

neuron, can be used to model logic gates. Radial basis function (RBF) [30] networks

are FFNNswith neurons having radial basis functions. RBFs are suitable for pattern

recognition and classification.

18

• Hopfield neural network (HFs): HFs [31] are quite different compared to the sys-

tems mentioned above, as shown in Figure 2.3 (b). In this architecture, each neuron

is connected to others. Neurons play distinct roles when the network is trained, they

are input, hidden, and output, corresponding to before, during, and after training

respectively. HFs offer a model for understanding human memory. They are also

used as content-addressable memories. Boltzmann machines (BMs) [32] are pretty

similar to HFs. However, BMs are composed of some input neurons, while the

others are hidden neurons. The input neurons will become output neurons after

each update of the full network.

• Recurrent neural networks (RNNs): As shown in Figure 2.3 (c), RNNs are pretty

similar to FFNNs, but the hidden layers are replaced by recurrent neural layers.

Unlike FFNNs, neurons in RNNs are not only fed from the previous layer but also

from the previous pass of themselves [33]. This results in different outputs when

changing the order of information in feeding. RNNs can be used in many areas

where the data form can be represented as a sequence such as a string of text. Thus,

RNNs are regularly used in autocompletion systems and machine translation. A

big drawback of RNNs is the vanishing/exploding problem when using gradient

descent technique.

2.2 Artificial Neural Network

2.2.1 Learning Rules

One of the major challenges for neuromorphic designs is how to implement learning

algorithms. In general, implementation of learning algorithm can be performed on-chip

or off-chip depending on many factors such as neural network models and hardware re-

sources.

19

Supervised Learning

Backpropagation (BP), a supervised learning method, is the most commonly used algo-

rithm for programming neuromorphic systems. It can be employed in many neural net-

work models such as feed-forward neural networks, recurrent neural networks, and convo-

lution neural networks. The simple way to implement BP in hardware is off-chip [34, 35].

In this case, PB is performed on a traditional host machine. After that, pre-trained param-

eters are transferred or configured into the target neuromorphic chip. While this method

benefits for taking precision of software implementation and requiring lower hardware

resource, it is not suitable for systems that have to re-train frequently. However, on-chip

BP implementations have been used in many neuromorphic systems [36, 37]. Besides,

variations of BP that are optimized or simplified for neuromorphic systems are also im-

plemented [38, 39]. There are other on-chip learning implementations for convolution

neural networks [40, 41], Boltzmann machines [42], Restricted Boltzmann machines [43]

and deep belief networks [44].

Unsupervised Learning

Compared to supervised learning, implementations of unsupervised learning are less

popular. There have been some on-chip ones implemented in neuromorphic systems.

Most of them were based on self-organizing maps or self-organizing learning rules [45–

47].

2.2.2 Fundamental Implementation

For ANN neurons, the inputs, weights, and outputs are presented as real values. In

general, implementations of ANN neurons can be categorized in two ways: analog and

digital. Analog implementations offer power efficiency with low area cost and high pro-

cessing speed, but their downside is a limited accuracy due to being susceptible to noise

and difficulty in presenting real values. On the other hand, digital implementations bene-

fit high computation precision, high reliability, and programmability, but they suffer high

area cost and high latency compared to analog approaches.

20

(a) (b) (c)

Figure 2.4: Synapse implementation: (a) Analog: memristor bridge synaptic circuit [48].
Digital: (b) 12T scheduler SRAM Cell (simplified) (c) 6T core SRAM cell [16].

Digital neuron implementations are relatively straightforward thanks to supporting

powerful design tools. Also, synaptic strengths (weights) are implemented by using reg-

isters, latches, or SRAM (see Figure 2.4(b-c)). In addition, all elementary operations

such as adders, subtracters, and multipliers can be implemented by available standard cir-

cuits [49] while implementation of non-linear activation functions such as sigmoid use

specialized hardware, approximated mechanisms (i.e., piecewise-linear function) [35], or

look-up tables [50].

Apart from digital CMOS technologies, FPGAs are very attractive due to its pro-

grammability and short development time. An FPGA implementation for a general-

purpose neuron is presented in [51]. In [52], authors discussed how to implement a single

neuron with parallel computation blocks, in addition to bit precision and use of look-up

table. Other attractive works were presented in [53, 54]. In these works, authors also dis-

cussed implementations and optimization methods of arithmetic operations on FPGAs

such as shift add neural arithmetic for fast perceptron and non-linear activation functions.

Analog neuron implementations: In the analog domain, weights are usually imple-

mented by using registers [55], charge-coupled devices [56], capacitors [57, 58], floating

gate EEP-ROMS [59], or memristor in recent years (see Figure 2.4(a)). For non-linear

activation functions, the characteristic can sometimes be captured directly or using some

approximation functions [60]. Although it is difficult to implement a coherent set of all

21

Table 2.1: Platform comparison for neuromorphic implementation [62].

Parallel
com-
puter

FPNN
in
FPGA

DSP FPGA Analog
ASIC

Digital
ASIC

Speed + + - + +++ ++
Area - - + - + +++ ++
Cost - - ++ ++ ++ - - - -
Design time + +++ ++ ++ - - - -
Reliability ++ ++ ++ ++ - - +
- - very unfavorable, - unfavorable
+ favorable, ++ very favorable, +++ highly favorable

the basic elements, some operations can be easy to achieve by exploiting simple physical

effects [61], such as accumulator can be presented by summing currents (Kirchhoff ’s cur-

rent law). Table 2.1 compares different platforms for hardware implementation of neural

networks.

2.2.3 Existing Architectures

Digital platform: This is mainly the kind of available neural network platforms, with

several categories. First, bit-slice architectures where a processor is composed of mod-

ules processing bit-field for ”slice” of an operand. Micro Devices’ MD1220 neural bit

slice [63] is an example. It composes of eight neurons that have eight 16-bit synapses.

Slice platforms generally employ off-chip learning. Another kind of platforms is based on

single instruction multiple data (SIMD), in which each PE runs the same instruction at

the time on different datasets. For instance, work in [64] proposes a SIMD based pro-

cessor optimized for image processing. It composes of 16 PEs, each has 24-bit 2K-word

local memory and support 24 instructions. Array-based architectures are common de-

signs, especially for neural network acceleration purpose. This architecture composes of

multiple PEs in an array where they operate synchronously in the pipeline manner. They

are optimized to be very suitable for implementing matrix multiplication [65], a common

computation in ANNs. To connect PEs together, these systems use various communica-

tion architectures such as common bus [66], ring [67], and network-on-chip [68]. Apart

22

from the platforms mentioned above, other approaches are self-organizing feature map

(SOFM) [69] and Digital Signal Processing (DSP) processor [70].

FieldProgrammableGateArray (FPGA:) Is also an attractive platform for implement-

ing ANNs thanks to very short development time, low cost, and configurability. However,

its downside is resource limitation in implementing large neural network sizes. In [71], a

bitstream arithmetic approach is proposed for dealing with resource limitation. Due to the

advantages, FPGAs are employed in many applications such as real-time hand detection

and tracking [72] and face tracking and identity verification in video sequances [73].

Analog Platforms: Compared to digital approaches, analog platforms are less common

due to challenges in implementations. In the early stage of analog implementations, Intel

introduced Electrically Trainable AnalogNeural Network (ETANN) 80170NX chip [59].

It is a powerful analog chip composing of 64 fully-connected neurons and 10240 synapses,

supporting on-chip learning. While neuron states are presented in voltages, weights use

floating gates. ETANN can be scaled up to 1024 neurons with 81,920 synaptic weights,

using direct-pin/bus interconnection. Authors in [74] proposed a mixed-signal CMOS

feed-forward chip using capacitors for weights. It supports on-chip learning implement-

ing Random Weight Change algorithm to be suitable for direct feedback control. An-

other work [75] implemented a continuous-time recurrent neural network. The inter-

esting thing here is that while available states are expressed by voltages, neural signals are

conveyed as currents. This makes the system relatively robust and scalable thanks to neural

signals being maintained over long distances.

2.3 Spiking Neural Network

In this section, we first present fundamental of spiking neural network regarding en-

coding methods, neuron models, and learning rules. We then briefly introduce intercon-

nection architecture and platforms for implementing spike neuromorphic systems.

23

2.3.1 Neural Coding Methods

As mentioned above, biological neurons use spikes (action potentials) which are short

electrical pulses to communicate among them. In a small area of the cortex, there are

thousands of spikes that are emitted in every millisecond. This raises the question of how

the spikes can be encoded to contain the information? In recent year, there have been

many efforts to answer this question, but none of them has proposed a general method.

Some coding methods are described as in [13]. This section summarizes two of the most

common coding methods which are rate coding and temporal coding. Unlike rate coding

method, temporal coding considers the timing of spikes.

Rate Coding

• Spike Count Rate (Average over time): This method is determined by the average

number of spikes in an interval time, as (2.1):

vsc =
nspike
Δt (2.1)

where nspike is the spike number counted, Δt is the interval (time window). The

length of Δt depends on neural models used. This coding method has been success-

fully used for experiments involving sensory and motor system.

• Spike Density Rate (Average over several runs): In this coding method, the same

stimulation sequence is repeated K times. From there, the number of spikes nK is

summed over all repetitions. The rate coding method is expressed by (2.2):

vsd =
nK
KΔt (2.2)

where Δt is the period of a repetition. Although this method is not used by biolog-

ical neurons, it is a useful method for evaluating neuron activity.

• Population activity rate (Average over several neurons): In the brain, there are a

24

huge number of neurons. Many of them have the same characteristics and interact

with the same stimuli. Therefore, this method is proposed to measure the firing rate

of a population of neurons, as (2.3):

vpa =
np
NΔt (2.3)

where np is the total number of spike number generated by N neurons, Δt is the

time window.

Temporal Coding (Spike coding)

• Time toFirst Spike: This codingmethod considers the timing of the first spike after

the stimulus onset. In this coding method, a neuron could signal a strong stimula-

tion if it fires shortly after the reference signal, the latter spike becomes weaker.

• Phase: Evidence of the phase coding method was found in the hippocampus of the

rat [76]. The hippocampus and some other areas of the brain have oscillations of

some global variable which are an internal reference signal. From there, the phase

of spikes could be used to encode the information.

• Correlations andSynchrony: This codingmethod comes from the relevance of rank

order of spike patterns and synchrony between neurons which could encode infor-

mation. For example, three neurons that fire with different relative delays might

signal a different stimulus.

2.3.2 Neuron Models

A biological neuron is composed of three main components: dendrites, an axon, and

a cell body. Information is propagated between neurons through chemical or electrical

transmissions (action potentials or spikes). The typical behavior of the neuron can be

described as follows: (1) From dendrites, incoming spikes are accumulated at the cell

body, and this results in a change in the voltage potential across the cell membrane of the

25

Figure 2.5: A comparison of spiking neuron models in terms of implementation cost and
biological plausibility [77].

neuron. (2) When the membrane exceeds a determined threshold, the neuron ”fires” - a

spike is generated. This spike then travels along the axon to other neurons.

SNNs can simulate the high level of biological neurons by using individual spikes. Many

models of spiking neurons have been proposed. Most of them were implemented in a way

to exhibit the same behavior mentioned above. However, they can be different from one

model to another. Choosing the appropriate model depends on the user requirements.

A pool of spiking neural models was discussed regarding the biological plausibility and

computational efficiency in [77].

Hodgkin-Huxley

In the early 1950s, Hodgkin-Huxley neural model was proposed [78]. It presents a

mathematical description of the electric current through the membrane potential v giving

the details of spike generation, as given in (2.4)

dv
dt = (


C)I− gkn(v− Ek)− gNamh(v− ENa)− gL(v− EL) (2.4)

where C is the capacitance of the circuit (Figure 2.6 (a)), I is the external current, conduc-

tances are potassium gk, sodium gNa, and leakage gL. Gating parameters n, m, and h are

determined by (2.5), (2.6), and (2.7), respectively

26

(a)

(b)

(c)

(d)

Figure 2.6: The Hodgkin-Huxley model: (a) the schematic diagram presents the membrane
potential, in which current injection starts at t = 5 ms as (b), while (c) and (d) show the
dependency of the gating variables n, m and h on the membrane potential v [79].

dn
dt = (n∞(v)− n)/τn(v) (2.5)

dm
dt = (m∞(v)− m)/τm(v) (2.6)

dh
dt = (h∞(v)− h)/τh(v) (2.7)

The Hodgkin-Huxley model is the most biological plausible, as shown in Figure 2.5.

However, its complexity with many parameters consumes a huge amount of hardware

resource. It, therefore, is extremely expensive for large scale implementations.

27

Figure 2.7: Known types of the Izhikevich neuron with different values of the parameters
a, b, c, d [80].

Izhikevich

Compared to Hodgkin-Huxley, a less complex model was proposed by Izhikevich [80].

The model is described by the following equations:

dv
dt = .v + v+ − u+ I (2.8)

du
dt = a(bv− u) (2.9)

v← c

u← u+ d
if v ≥ mV (2.10)

where v is the membrane potential of the neuron, u is a membrane recovery variable,

I is the neuron current, a, b, c, d are parameters of the models, in which the various

values of these parameters result in different types of neuron, as shown in Figure 2.7.

When membrane potential v exceeds the threshold (30mV), the membrane potential v

and recovery variable v are reset as 2.10.

28

Figure 2.8: Schematic diagram of the LIF model (soma, the circuit is in the dashed cir-
cle) [13].

Leaky Integrate and fire

Leaky Integrate and Fire (LIF) model is one of the most common used in SNN. This

model is described as the following equations:

dv
dt = I+ a− bv (2.11)

v← c, if v ≥ vth (2.12)

where v is the membrane potential of the neuron, I is the neuron current, a, b, and c are

parameters of the model. When the membrane potential v exceeds a threshold vth, it will

be reset to c.

The basic circuit presenting LIF model is shown in Figure 2.8. It composes of a capac-

itor C and a resistor R that are connected in parallel and driven by a current I(t).

In summary, among the existing spiking models, Hodgkin-Huxley [78], Izhikevich

[80], and Leaky Integrate-and-Fire (LIF) [81] are often used. The Hodgkin-Huxley type

is the best when measurable physiological parameters are highly considered. However, it

29

(a) (b)

Figure 2.9: STDP: (a) Spike-timing window of STDP characterized in hippocampal cul-
tures [86] (b) a minimum complexity digital implementation of STDP [87].

composes of many coefficients. This leads to challenges when implementing large SNNs

because of high cost. In contrast, we can simulate hundreds of thousands of neurons

when using LIF neural model; but, it is incapable of producing rich spiking patterns.

Finally, the Izhikevich exhibits a good compromise in terms of biophysical similarity and

computational cost. It is close to the Hodgkin-Huxley model in biological plausibility

while analogous to the LIF in computational complexity.

2.3.3 Spiking Neural Network Learning Rules

Unsupervised Learning

Spike timing dependent plasticity (STDP) is the most popular learning rule imple-

mented in neuromorphic systems [82–84]. It is Hebbian-based coming from observation

in biological brain [85]. The operation of STDP basically depends on the arrival time of

coming spikes, in which the synaptic weigh will be increased when the spike arrived before

post-synaptic neuron ”fire” and vice versa, as illustrated in Figure 2.9a. It is an unsuper-

vised learning rule and generally implemented on-chip thanks to its friendly hardware

resource, as shown in Figure 2.9b.

30

Supervised Learning

Apart from the majority of STDP, spiking neuromorphic system also adopted super-

vised learning rules. In this case, such systems use a ”teacher” signal during the training

phase. Besides, another work [88] successfully implemented spike-driven synaptic plas-

ticity (SDSP) learning rule. Unlike STDP, this learning rule induces an update each time

a pre-synaptic spike occurs. On the other hand, backpropagation is also adopted for spik-

ing systems [89]. In [90], authors first train an ANN with BP, then convert into SNN

by mapping real-value inputs/activations to average firing rates of Poisson spikes. This

mechanism can be adopted to implement on spiking hardware as an off-chip learning

method.

2.3.4 Communication Network

Communication architectures for spiking neuromorphic systems are responsible for de-

livering spikes between neuro-cores/tiles. They can be categories as intra-chip and inter-

chip. For inter-chip, address event presentation (AER) are commonly employed [91, 92].

In AER, each neuron has a unique address. Whenever a neuron generates a spike, its

address is sent to post-synaptic neurons by a high-speed digital bus. AER is suitable for

SNN implementations since it only needs to be active whenever neurons fire. To scale up

the system, a hierarchical AER as a tree structure was implemented in [93].

On the other hand, network-on-chip (NoC) is commonly implemented for on-chip

communication. In the early stage of the implementation, buses are employed in some

systems [94]. However, works in [23, 95] evaluated and compared four architectures:

bus, tree, point to point, and mesh. The results show that mesh with multicast offers

the highest performance for SNN implementations. Furthermore, AER also is used for

on-chip communication [96, 97].

2.3.5 Existing Architectures

Digital: Full custom ASIC chips have been common platforms for spiking neuromor-

phic implementations. Two well-known examples of this kind of implementation are

31

TrueNorth [16] and SpiNNaker [98]. While TrueNorth only supports the leaky inte-

grate and fire neuron model with no on-chip learning, SpiNNaker offers extreme flexi-

bility in terms of the neuron model, synaptic model, and learning algorithm. However,

TrueNorth benefits energy efficiency consuming 25 pJ per connection, while the figure for

SpiNNaker is 10 nJ per connection, as reported in [99]. Also, FPGAs are commonly used

for implementing spiking neuromorphic systems [100–102]. They can be implemented

an apart of the system and also as final implementations. While FPGAs are considered

to be a great choice for acceleration over software simulations [103], they are not targeted

as platforms for achieving low power.

Analog: There are some characteristics making analog platforms to be suitable for spik-

ing implementations, such as conservation of charge, amplification, thresholding, and in-

tegration. Therefore, there are a large number of implementations [104, 105]. Besides,

analog platforms were also designed to operate in the subthreshold mode [5, 106], and

also a superthreshold mode for the speed-up purpose [107]. On the other hand, field

programmable analog arrays (FPAAs) have been used as other analog platforms [108].

They are also customized for neural network implementation such as field programmable

neural array (FPNA) [109] and Neuro FPAA [110] where they provide programmable

components such as neurons, synapses.

Mixed signal: These platforms are also common for neuromorphic systems [111, 112]

to take advantages of both analog and digital platforms. In these works, weights or some

other parameters are stored in digital memories to enable the system less noisy and more

reliable [113, 114]. Furthermore, inter-chip and intra-chip communication architectures

are also implemented in digital [115]. On the other hand, neurons are generally in the

form of analog. Two well-known systems for this kind of implementation are Neuro-

grid [116] and BrainScales [107].

32

2.4 Conclusion

In this chapter, we overviewed the artificial neural networks including the spiking neu-

ral network as the latest generation and how they are implemented. Compared to con-

ventional approaches, SNNs offer not only the capability of simulating biological neural

networks but also extreme energy efficiency thanks to event-based operations and fewer

operation computations. In the next chapter, we focus on how prior works tried to solve

the interconnect challenge in spiking neuromorphic and faults in neural networks.

33

3
Related Works

I
n this chapter, we first review some state-of-the-art spiking neuromor-

phic systems in both software- and hardware-based SNN implementations.

We then present interconnect architectures proposed for SNN systems; they

are buses, 2D NoCs, and 3D NoCs. Finally, we present works relating to fault tolerance

in neural network systems.

3.1 Spiking Neuromorphic Systems

For software-based simulation, the Blue Brain project [120] is a popular simulation

platform for SNNs, and its approach is similar to several other proposed simulation meth-

ods [121]. The Blue Brain system can simulate up to 108 simple neurons or up to 104 very

35

(a) (b)

(c) (d)

Figure 3.1: (a) TrueNorth: consisting of neurosynaptic cores, tiled in a 2D array: logical
representation (left) and physical implementation (right) [117]. (b)The architecture of the
BrainScaleS wafer-scale hardware system [118]. (c) Neurogrid architecture: software and
hardware [116] (d): SpiNNaker consists of computational units using ARM processors
and a 2D triangular mesh interconnect architecture [119].

36

complex neurons as well as local and global synaptic plasticity rules defined for each neu-

ron. The simulation environment is supported on the IBM Blue Gene/L, a system using

8,192 PowerPC CPUs, each running at 700 MHz and arranged in a torus interconnec-

tion network [120]. However, this approach is expensive in terms of power consumption

which is in the order of hundreds of kilowatts. Besides, this system is considerably slow

(low level of parallelism). Thus, it does not achieve biologic real-time execution on large-

scale networks.

SpiNNaker project [98] proposes a full custom digital and massively parallel system tar-

geted to implement spiking neural network applications. The project is aimed to simulate

up to a billion neurons in real-time and support multiple neural models as well. In order

to reach the targets. the architecture composes of 2D-arranged computational nodes con-

nected via a triangular mesh NoC. In each node, there are 18 ARM968 processing cores,

in which 16 ones are dedicated for implementing spiking neurons (up to 1,000 neurons),

another core is used for monitoring, and the other is kept as a spare for dealing with fault-

tolerance problems. In addition, another NoC system is used to connect the processing

cores. By using embedded core, SpiNNaker will be extremely flexible in neuron mod-

els and learning method. However, it suffers high energy efficiency, at about 10 nJ per

connection [99].

TrueNorth [4] is another well-known hardware-based SNN, a full custom ASIC de-

sign. Each chip contains 4,096 neural cores composing of 256 integrate-and-fire neu-

rons. As a result, the system can simulate one million neurons. Besides, a NoC system

is also used to connect spiking cores. The chip can operate in a partial asynchronous and

synchronous manner. Therefore, TrueNorth chip is able to get better energy efficiency

compared to SpiNNaker, it consumes 25 pJ per connection. However, it has some short-

comings such as fixed neuron model, limited programmable connectivity, and no on-chip

learning.

37

NC

NC NC

NC

(a) Shared bus

NC

NC

NC

NC

(c) Ring

NC NC

R

NC NC

R

R

R

NC

R

NC

R

NC

R

NC

R

R

R

R

(d) 2D Mesh

(b) Tree

Figure 3.2: Interconnect architectures for neuromorphic systems.

3.2 Inter-neuron Communication

Hardware implementations were proposed as alternative solutions to overcome the prob-

lems of the software simulation mentioned above. Such systems require a high-parallelism

scalable interconnect architecture to convey a huge number of spike generated from neuro-

cores. Hierarchical-bus, point-to-point, or NoC interconnect architectures are widely

used, as illustrated in Figure 3.2. In this section, We survey various interconnect platforms

with spike routing methods for spiking neuromorphic systems, as shown in Figure 3.3.

38

R
ou

tin
g
ap
pr
oa
ch
es

fo
rS

N
N
-b
as
ed

sy
st
em

s

So
ftw

ar
e-
ba
se
d
SN

N
s

H
ar
dw

ar
e-
ba
se
d
SN

N
s

W
ith

ou
tf
au
lt-
to
ler
an
ce

Sh
ar

ed
bu

s
2D

N
oC

3D
N

oC

W
ith

fa
ul
t-
to
ler
an
ce

•
X
YZ

ro
ut

in
g[

12
0]

•
E
ve

nt
-d

riv
en

m
ul

-
tic

as
tr

ou
tin

g
[9

8]

•
E
ve

nt
-d

riv
en

br
oa

dc
as

t[
94

]

•
E
xt

en
de

d
A

ER
br

oa
dc

as
t[

12
2]

•
A
da

pt
iv
eX

Y
[1

23
]

•
E
ve

nt
-d

riv
en

X
Y

[1
6]

•
A
da

pt
iv
er

ou
tin

g
[2

2]

•
Tr

ee
ba

se
d

m
ul

tic
as

t[
4]

•
A

ER
M

ul
tic

as
t

[1
03

]

•
K
M

C
R

M
ul

tic
as

t
(th

is
wo

rk
)[

12
4]

•
SP

-K
M

C
R

M
ul

-
tic

as
t(

th
is

wo
rk

)

•
E
m

er
ge

nc
y

ro
ut

in
g

[1
19

]

•
FT

SP
-K

M
C

R
m

ul
-

tic
as

t(
th

is
wo

rk
)

Fi
gu

re
3.
3:

Su
m

m
ar

y
of

SN
N

ro
ut

in
g
m

et
ho

ds
on

va
rio

us
in

te
rc

on
ne

ct
pl

at
fo

rm
s.

39

3.2.1 Hierarchical Bus-based Spike Routing

Low-cost shared-bus based SNN architectures are proposed in [94, 122]. Although

these approaches support multicast and broadcast routing, they suffer from the limitation

of scalability when the network size increases. Other works were proposed in [125, 126].

These architectures boosted the throughput; but, they were limited to small-size neural

networks.

3.2.2 2D Packet-swiched-based spike routing

There aremany ongoing SNN research projects based on 2D-NoC interconnects [4, 21–

23, 99]. Hereafter, we only review a fewwell-known projects. TheNeurogrid project [116]

uses analog computation to emulate ion-channel activity and a digital communication

scheme to support synaptic connections. Themain building block is the neuro-core, which

can accommodate a total of 65,536 quadratic integrate-and-fire neuronmodels, and it uses

an external FPGA and bank of SRAMs for digital communication between neighboring

neuro-cores. TheNeurogrid has a limitation on themaximum number of neurons per layer

(up to 2,175 neurons) that makes it unable to offer biological real time behavior [116].

H-NoC [22] is based on a hierarchical star-mesh topology to connect neurons. The

H-NoC is organized into three layers: module, tile, and cluster. At the bottom, each

module router can connect up to ten neural cells, each of them as a main neural compu-

tation element can host one or multiple neurons. In the same fashion, ten module routers

are connected to a tile router. An attractive work in [127] proposed a combination of hi-

erarchical architecture and mesh routing strategies. The architecture consists of multiple

levels of routers.

In SpiNNaker[98], the interconnection between each node is handled by a NoC using

six links, which is wrapped into a triangular lattice; this lattice is then folded onto a surface

of a toroid. A node composes of processor cores and two NoC routers, in which one

handles the communication between the microprocessors and the peripherals, and the

second controls the communications between processors and neighbor nodes. FACETS

40

[128] uses amixed-signal and high-density hardware neural network architecture based on

a combination of analog neurons and a digital multilayer bus communication scheme; all of

them placed on an uncut wafer. The FACETS hardware model consists of a large number

of ASICs containing the analog neuron and synapse circuits. A full wafer can comprise

384 HICANN chips [128], resulting in a total of 196,608 neurons per wafer. To support

the neurons interconnection, this architecture uses a combination of hierarchical buses for

handling neuron communication inside the wafer, and off-wafer routers implemented on

an FPGA based on a 2D-torus topology. FACETS can offer hardware acceleration with

up to 10 µs inter-spike interval per wafer. However, the architecture consumes a large

amount of power estimated to 1kW per wafer [128].

Another work, named ClosNN, is presented in [21]. The ClosNN system uses a cus-

tomized NoC architecture based on Clos topology for the neural network. It is designed

to overcome with a high diameter of mesh and low bisection bandwidth of a hierarchical

tree. The architecture suffers from wire/router physical limitations.

3.2.3 3D Packet-swiched-based Spike Routing

The work in [129] investigated the architecture and design of a 3D stacked neuro-

morphic accelerator. The architecture targeted processing applications on a CMOS vi-

sion sensor next to the first neural network layer. The authors claimed that only modest

adaptations would be required to use the system for other applications. The 3D stacking

architecture used face-to-face bonding of two 20cm wafers using micro-bumps.

A recent work was presented in [103] about a real-time digital neuromorphic system

for the simulation of large-scale conductance-based SNNs. The architecture was imple-

mented in six Altera Stratix III FPGA boards to simulate one million neurons [103].

An AER multicast routing mechanism was used for inter-neuron communications. Al-

though the NoC architecture meets the requirements of the system, it is hardly deployed

in embedded neuromorphic systems [130].

Apart from the works mentioned above, routing methods for NoC-based SNNs need

41

�

�

�

�

�

�

�

�

	

	�

	�

		

	�

	�

	�

	�

	�

	

�

�

�

�

�

�

�

	

	�

	�

		

	�

	�

	�

	�

	�

	

�

�

�

�

�

�

�

�

	

	�

	�

		

	�

	�

	�

	�

	�

	

��
 ��
 ��

������� �����������

�

Figure 3.4: Multicast routing mechanisms: (a) Unicast-based (b) Path-based (c) Tree-
based.

to be taken into consideration. This is because the spike routing method affects the load

balance across the network and also the spike latency. In general, these works can be

classified as unicast-based [131], path-based [132], and tree-based [133]. A comparison

between these methods is presented in [132]. The basic ideas of these algorithms are

shown in Figure 3.4. Compared to the others, unicast-based [131] is an easy way of

implementing multicast with no hardware overhead. This is because a multicast package

will be replicated at the source node and sent sequentially to destinations. However, a

drawback of this method is that it requires a high start-up latency before injecting the

packet into the network. Besides, it also leads to a large amount of traffic because of the

injection of multiple copies.

In the path-base [132], a routing path is established from source and to each desti-

nation. Before sending, every packet header needs to contain a list of all destinations.

Whenever the packet reaches a target, the information of that destination will be removed

from the header. This helps the packet to be sequentially delivered to all destinations. A

disadvantage of this method is that it requires a long time for the packet preparation at the

source node. Besides, when increasing the size of destination sets (large size of SNNs), it

is not efficient to implement because of a large header size of packets.

Drawbacks of path-based can be overcome by tree-based [133]. In this approach, a

42

”virtual” tree is constructed with the source node as the root and destinations as leafs. The

packets are sent from the source, going along branches, and reaching given destinations.

Apart from advantages, a shortcoming of this method is high congestion in wormhole

networks [134].

3.3 Fault-tolerant Neural Network

There have been many works proposed to solve the fault occurrence in hardware imple-

mentations of neural networks [24]. A taxonomy of fault-tolerant approaches is shown in

Figure 3.5

3.3.1 Learning-based approaches

These methods are based on modified conventional learning rules for dealing with faults

occurring in neural networks systems. In [135], authors presented a fault-tolerant tech-

nique based on temporary injecting faults in hidden neurons during the training process.

In this method, one to three neurons are randomly injected for each input example. An-

other work in [136] presented a modified training rule by adding a regularization term to

the cost function. A work based on the backpropagation was proposed in [137], to dealing

with faults in classification tasks. In this learning method, weights are constrained under

a limited range. In summary, although the modified learning methods do not require any

external interactions afterward, they suffer a significant increase in the computation cost

and take a long time for the training process.

Apart from the methods mentioned above, retraining methods are also wildly used.

In [138], authors proposed a method that performs retraining periodically to improve

fault-tolerance in GPGPUs systems. This method does not require either reprogram-

ming or recompilation. Work in [139] proposed a retraining method for dealing with the

impacts of timing errors in hardware-based neural networks. In this method, the retrain-

ing process is performed when output results are influenced by timing errors. Authors

in [140] presented a new learning rule mimicking self-repair capability of the brain, in

which the learning rule could reestablish the firing rate of neurons when synaptic faults

43

occur.

44

Fa
ul
t-
to
le
ra
nt

A
pp

ro
ac
he
s

Le
ar
ni
ng
-b
as
ed

Ar
ch
ite
ctu

re
-b
as
ed

H
yb
rid

-b
as
ed

N
eu

ro
n

C
on

ne
ct
io

n

•
Fa

ul
ti

nj
ec

tio
n

du
rin

g
tra

in
-

in
g
[1

35
]

•
A
dd

in
g

a
re

gu
lar

iz
a-

tio
n/

pe
na

lty
te

rm
to

th
e

tra
in

in
g
co

st
fu

nc
tio

n
[1

36
]

•
Fa

ul
t-
to

ler
an

t
lea

rn
in

g
m

et
ho

d
[1

37
]

•
R
et

ra
in

in
g
[1

38
,1

39
]

•
R
ed

un
da

nc
y

of
cr

iti
ca

ln
eu

-
ro

ns
[1

41
]

•
A
ug

m
en

ta
tio

n
m

et
ho

d
[1

42
]

•
W

ei
gh

t
sh

ift
-

in
g
[1

43
]

•
W

ei
gh

t
sh

ift
-

in
g
[1

43
]

•
Se

lf-
de

te
ct

an
d

se
lf-

re
pa

ir
m

et
ho

d
fo

rf
au

lty
sy

na
ps

es
[1

44
]

•
E
m

er
ge

nc
y

ro
ut

-
in

g
[1

19
]

•
Tw

o-
ph

as
e

m
et

ho
d

of
se

ns
i-

tiv
ity

m
ea

su
re

an
d

re
du

nd
an

cy
[1

45
]

•
M

od
ify

in
g

tra
in

-
in

g
an

d
us

e
of

ex
pl

ici
t

re
du

n-
da

nc
y
[1

46
]

Fi
gu

re
3.
5:

Ta
xo

no
m

yo
ff

au
lt-

to
ler

an
ta

pp
ro

ac
he

sf
or

ne
ur

al
ne

tw
or

k
ar

ch
ite

ct
ur

es
.

45

3.3.2 Architecture-based approaches

Regarding architecture-based, fault-tolerant methods are mainly based on the redun-

dancy of the architecture. The redundancy is implemented in pre-trained networks in-

cluding hidden neurons and their connections. Work in [141] proposed a fault-tolerant

architecture with the redundancy of certain critical neurons. This reduces the hardware

cost of the system. In this method, multiple sets of weight are stored in a processor,

recomputing neural computations with multiple processors enables the system to detect

and correct the faults in the processor, from there improving fault tolerance. Another

work [142] also presented the redundancy of critical hidden neurons combined with a

simple technique, named augmentation. In the proposed method, the weight of the con-

nections between augmented neurons and ones in the output layer is half of its original

one.

Apart from faulty neurons, faults in the connection between neurons have also been

concerned. In dealing with faults occurring connections and neurons, a method named

weight shipping was proposed in [143]. In this method, when faults appear in some

connections, their weights are shifted to other fault-free connections of the same neu-

ron. Besides, for a faulty neuron, its output connections are examined to be faulty. A

self-repairing hardware architecture was proposed in [144], as shown in Figure 3.6. This

architecture features self-detect and self-repair synaptic faults and maintains the system

performance with a fault rate of 40%. However, the experiment was taken with only two

neurons, and the architecture may suffer a scalability limitation due to its area overhead.

In SpiNNaker [119], an emergency routing was proposed to deal with congested or bro-

ken links in a 2D-NoC torus topology. The algorithm is based on redundancy in the NoC

architecture to automatically redirect a blocked packet through adjacent links to its desti-

nation. This enables the system to avoid the timing violations of SNNs when congestion

or faults occur.

46

Figure 3.6: A self-detect and self-repair mechanism mimicking capability in the human
brain [144]. This mechanism is based on indirect feedback from the astrocyte cell (i.e.,
the most abundant type of glial cell in the brain), by regulating the synaptic transmission
probability of release when faults occur.

3.3.3 Hybrid approaches

Hybrid approaches are based on a combination of the learning-based and architecture-

based methods. In [145], a two-phase method was proposed to considerably improve

the fault tolerance of the system. At the first phase, by feeding input and measuring

the sensitivity, less important hidden neurons are removed. After that, some redundant

neurons are added, the network is then retrained. The evaluation results show a fault-

tolerant improvement of the system for two multiclass classification problems. This work

was then extended in [146]. In this work, the authors proposed three methods: (1) dur-

ing the backpropagation training, weights are restricted to have low magnitudes to avoid

fault-tolerant degradation caused by high magnitude weights. To achieve the desired per-

formance, hidden nodes are automatically added to the network. (2) During the training

process, artificial faults are injected to some neurons and connections. (3) unimportant

neurons are removed, while new neurons are added to share the role of critical neurons

in the network. These methods were evaluated and the results showed better robustness

47

compared to other approaches.

3.4 Conclusion

In summary, we discussed in this chapter some of the important large-scale SNN sys-

tems. We also described some exiting works dealing with faults in the neural networks.

We spent the main part of this chapter reviewing many proposed works for interneuron

architecture. From these, we can find that 3D-NoCs are promising architectures for SNN

implementation, offering high parallelism, scalability, and small footprint. Therefore, it

motivates us to propose algorithms and architectures for spiking neural network systems

based on 3D-NoC in this thesis. In the next chapter, we present a performance assess-

ment model to analyze the performance of the 3DNoC architecture under different SNN

topologies and spike routing methods.

48

4
Comprehensive Analytic Performance

Assessment

F
or hardware implementations of spiking neural networks, an efficient

inter-neuron connection architecture is a major challenge. This comes from

thousands of neurons need to send their spikes to their post-synaptic ones.

Therefore, this chapter presents an assessment method to help designers early understand

and evaluate the advantages and drawbacks of their potential neural network topologies

and spike routing schemes. The assessment method provides an analytic model to analyze

the performance of 3D mesh NoC over variants of two main neural network topologies

and three communication methodologies (i.e., unicast, multicast, and broadcast). In addi-

49

tion, the assessment is performed under both with andwithout connection faults occurring

in the system.

The organization of this chapter is as follows: Section 4.1 presents assumptions for the

analytical model. While Section 4.2 performs analysis of the architecture without fault

injection, Section 4.3 considers injection of faults into the system. Finally, this chapter

presents the summary and discussion in the last section.

4.1 Assumption and Network Model

Theproposedmethodwas inspired by the work performed in [23, 95], where the authors

analyzed different 2D interconnect topologies for neural networks over various spike rout-

ing protocols. Our assessment is also performed for Hopfield NN (HF) and Randomly

Connected NN (RNDC) topologies over unicast (UC), multicast (MC), and broadcast

(BC) routing algorithms. Hopfield and RNDC neural networks represent various con-

nectivity structures of SNN. In Hopfield [147], every single neuron connects to all other

ones in the network. On the other hand, connectivity of RNDC [148] simply repre-

sents varieties of NN model such as feed-forward NN and deep belief NN, in which the

connection probability exponentially decreases with the distance between neurons. Fur-

thermore, the ”O” notation is used to compare the analysis results between the different

spike routing methods.

We consider a system comprising of n PEs and n routers arranged in a 
√
n× 
√
n× 
√
n

3D mesh [149–153], as shown in Figure 4.1. Assuming in this network model that each

PE has one spiking neuron.

The total number of links in a 3D-mesh NoC is given by Equation (4.1)

TLDMesh =  √n(
√
n− ). (4.1)

As in [154], the mean distance between two nodes in 3D-mesh can be determined by

50

L1 Lm+1 LM

! "

! "
Stacked interconnect
with n neural tiles

Spiking neural network

! "

Figure 4.1: 3D mesh NoC architecture with n neural tiles (PEs).

(4.2)

DistDMesh =

√
n − 


√
n . (4.2)

In terms of cost and performance metrics, we also use similar ones in [23, 95]. Effective

bandwidth (BWeff) is performed to evaluate the architecture performance indicating the

parallelism level of the architecture, as (4.3).

BWnn
eff,DMesh,cast =

w.TLDMesh

TotalDistnnDMesh,cast
.fNoC.UNoC, (4.3)

where nn = {HF, RNDC}, cast={UC, MC, BC}, w is the number of wires per link, fNoC

is the link frequency, and UNoC is the link utilization factor for 3D-mesh NoC. In the

case of UNoC = , BWeff reaches the maximum. From this, we can perform the average

spike injection rate of each PE (delivered rate) indicating capability of the architecture in

delivering spikes, as (4.4):

fHF
p,out,cast =

BWnn,DMesh,cast
eff

n . (4.4)

In SNNs, since a neuron cannot emit fire again after the refractory period (Trefractory), the

maximum spike frequency (offered spike rate) of a neuron is /Trefractory. From this, K is

51

defined to determine the level of matching of delivered spike rate and offered spike rate,

as (4.5).

K =
fnnp,out

fnnspike,max
. (4.5)

From (4.5), K >  means that the architecture can deliver all spike injected by the neuron

in each PE corresponding to multiple being accommodated on a single PE, and vice versa.

In terms of hardware complexity, area cost as total wire area and power dissipation as

dynamic power consumed on link and gate capacitance are also estimated (described later).

4.2 Non-faulty System Assessment

4.2.1 Performance Analysis of Hopfield NN Based on a 3D-mesh

In this section, we analyze the performance of the Hopfield neural network (NN) on a

3D-mesh NoC over Unicast, Multicast, and Broadcast based spike routing schemes.

Unicast-based Spike Routing

When a neuron sends a packet (spike) to all the other neurons, the node within the

3D-NoC needs to send n-1 packets to all the others. Therefore, the total number of hops

traversed by a spike is given by Equation (4.6)

TotalDistHF
UC,DMesh = (n− ).DistDMesh =

(n− )(
√
n − )


√
n . (4.6)

From (4.6), the effective bandwidth of a 3D-mesh NoC system is determined by

BWHF
eff,DMesh,UC =

w.TLDMesh

TotalDistHF
DMesh,UC

.fNoC.UNoC =
w

(
√
n+ )(− 

n)
.fNoC.UNoC = O

(


√
n

)
,

(4.7)

where w is the number of wires per link, fNoC is the link frequency, UNoC is the link uti-

lization factor for 3D-mesh NoC. With n PEs, the average spiking rate of a single PE is

52

given by Equation (4.8)

fHF
p,out,DMesh,UC =

BWHF
eff,DMesh,UC

n =
w

n(
√
n+ )(− 

n)
.fNoC.UNoC. (4.8)

Besides, the maximal firing frequency for a unicast based NoC is expressed as (4.9)

fHF
spike,max,UC =


Trefractory

∼=


n.Tcycle
=

fNoC
n , (4.9)

where Trefractory is the period after a spike is generated, during that time the neuron cannot

fire again, Tcycle is the link delay (Tcycle = /fNoC). As mentioned above, in order to send

a spike the source node needs to send n −  packets, it thus takes n.Tcycle (not including

router delay because it is a constant, independent of network size). In this case, we select

Trefractory ∼= n.Tcycle.

From dividing (4.8) by (4.9), we can determine how many neurons may fire at the

maximal rate. This is represented by K, as given in (4.10)

K =
fHF
p,out,DMesh,UC

fHF
spike,max,UC

=
.w.UNoC

(
√
n+ )(− 

n)
= O

(


√
n

)
. (4.10)

Multicast and Broadcast Based Routing Schemes

For these routing methods, since each PE only sends a packet for each spike to the

others, the number of hops is determined by the following formula:

TotalDistHF
MC/BC

∼= n. (4.11)

The efficient bandwidth, the frequencies, and K metric for Multicast and Broadcast are

calculated by the following formulas ((4.12), (4.13), (4.14), (4.15)):

BWHF
eff,MC/BC =

w 
√
n(
√
n− )

n .fNoC.UNoC = w(− 

√
n).fNoC.UNoC = O() (4.12)

53

fHF
p,out,MC/BC =

BWHFeff,MC/BC
n =

w(
√
n− )

n 
√
n .fNoC.UNoC (4.13)

fHF
spike,max,MC/BC =


Trefractory

∼=


TcycleDistDMesh
=


√
n


√
n − 

.fNoC = O
(



√
n

)
(4.14)

K =
fHF
p,out,MC/BC

fHF
spike,max,MC/BC

∼=
w(
√
n − )

n 
√
n .UNoC = O

(



√
n

)
. (4.15)

With the total link TLDMesh and the number of wires per linkw, the area cost of 3D-mesh

architecture can be expressed by

ADMesh = Wp.l.w.TLDMesh = .Wp.l.w.
√n(
√
n− ) = O(n), (4.16)

where Wp is the wire pitch for a given technology, l is the average link length. Dynamic

power dissipation on links and gate capacitance are estimated as shown below:

PDMesh =
V
dd

R.l
.w.TLDMesh =

V
dd

R.l
.w.UNoC.

√n(
√
n− ) = O(n), (4.17)

where V
dd is the supply voltage, R is the wire resistance. Table 4.1 summarize the evalu-

ated metrics for implementing Hopfield NN on a 3D-mesh NoC system. For 3D-mesh,

MC and BC offer better results than UC, at the same power consumption. Regarding

the bandwidth, while MC and BC are independent of the network size, UC suffers from

the scale-up problem. Furthermore, MC and BC provide higher spiking rate compared

to UC, and thus higher throughput as well. In comparison to a 2D counterpart, 3D-mesh

NoC shows higher power efficiency.

54

Table 4.1: 2D mesh NoC [23] vs 3D mesh NoC analyzed for Hopfield NN

Metric 2D Mesh 3D Mesh (This work)
UC MC BC UC MC BC

BWeff O(/
√
n) O() O() O(/ 

√
n) O() O()

Area O(n)
Power O(n)

Spiking frequency O(/n) O(/
√
n) O(/

√
n) O(/n) O(/ 

√
n) O(/ 

√
n)

K O(/
√
n) O(/ 

√
n) O(/ 

√
n) O(/ 

√
n)

4.2.2 Performance Analysis of RNDC NN Based on a 3D-mesh

As in [23], we define the probability (p(a, b)) of having a connection between a neuron

a and a neuron b in a 3D-mesh NN architecture by the formula (4.18):

p(a, b) = C
πλ e

−D(a,b)/λ, (4.18)

where C = Nlinks = ||p(.)|| is the mean number of connections per neurons, λ is a

constant presenting spatial connectivity, and D(a, b) is Euclidean distance from a to b.

From this probability, the mean distance (DistRNDC) between the connected neurons is

determined by the following formula:

DistRNDC
=


πλ

∫∫∫
x,y,z

√
x + y + ze−

√
x+y+z/λdxdydz =

πλ

πλ = λ (4.19)

Unicast Based Routing

We first consider the case of the unicast method where a neuron sends C packets to

post-synaptic ones. Thus, the average hop count is given by:

TotalDistRNDC
DMesh,UC = DistRNDC

.Nlinks = λC. (4.20)

Since the average number of connection C is independent of the NoC dimension, C is

kept the same (C ∼=
√
n) to compare with 2D-mesh fairly. On the other hand, λ is a

55

measure of locality, a small λ means that neuron is connected more locally and vice versa.

For a 2D-mesh NoC, λ ∼= 
√
n leading to optimal performance. Thus, for a 3D-mesh

NoC we can determine λ by the following formula:

λ ∼= 
√
n. (4.21)

As a result, the efficient bandwidth is given by Equation (4.22)

BWRNDC
eff,UC =

w 
√
n(
√
n− )

 
√
n
√
n .fNoC.UNoC =

w 
√
n(
√
n− )


√
n

.fNoC.UNoC = O(
√
n). (4.22)

Furthermore, frequency of a single PE fUCp,out, maximal spiking rate for UC fUCspike,max, and

K ratio are given as below:

fUCp,out =
BWRNDC

eff,UC

n =
w 
√
n(
√
n− )

n 
√
n

.fNoC.UNoC (4.23)

fUCspike,max =


.C.Tcycle
=

fNoC

√
n = O

(
√
n

)
(4.24)

K =
fUCp,out

fUCspike,max
=

w
√
n 
√
n(
√
n− ).fNoC

n 
√
n.fNoC

.UNoC = O
(



√
n

)
. (4.25)

Multicast Based Routing

For the case of multicast, a packet needs to travel along a λ path to reach the first

destination, and then plus one hop for each of the others. With the total of C destination

nodes, the hop count for each packet is therefore determined by

TotalDistRNDC
DMesn,MC = C+DistRNDC

= C+ λ (4.26)

The bandwidth is given by the following formula:

BWRNDC
eff,DMesh,MC

∼=
w 
√
n(
√
n− )√

n+  
√
n .fNoC.UNoC = O(

√
n). (4.27)

56

As a result, the frequency is given by the following equation:

fMC
p,out =

BWRNDC
eff,DMesh,MC

n =
w 
√
n(
√
n− )

n(
√
n+  

√
n) .fNoC.UNoC. (4.28)

With the link delay Tcycle, and average distance between two nodes in the RNDC neural

network DistRNDC, the maximal spiking frequency is expressed as below:

fMC
spike,max =


Tcycle.DistRNDC =

fNoC
λ =

fNoC
 
√
n = O

(


√
n

)
. (4.29)

From (4.28) and (4.29), K ratio is given by following equation:

K =
fMC
p,out

fMC
spike,max

=
w 
√
n(
√
n− ) 

√
n

n(
√
n+  

√
n) .UNoC = O

(


√
n

)
, (4.30)

where UNoC is the link utilization.

Broadcast Based Routing

Since the RNDC system with broadcast based routing is similar to the case of Hop-

field (there is only a difference in network size, C for RNDC, and n for Hopfield), the

performance metrics are similar to the Hopfield NN. Furthermore, the area cost and the

power consumption are also identical to the Hopfield NN’s results. The analyzed results

for RNDC neural network are summarized in Table 4.2.

Table 4.2: 2D-mesh NoC [23] vs 3D mesh NoC performance analysis for RNDC NN
systems.

Metric 2D Mesh 3D Mesh (This work)
UC MC BC UC MC BC

BWeff O(
√
n) O(

√
n) O() O(

√
n) O(

√
n) O()

Area O(n)
Power O(n)

Spiking frequency O(/
√
n) O(/ 

√
n) O(/

√
n) O(/

√
n) O(/ 

√
n) O(/ 

√
n)

K O(/ 
√
n) O(/ 

√
n) O(/

√
n) O(/ 

√
n) O(/ 

√
n) O(/ 

√
n)

In conclusion, the results, shown in Tables 4.1 and 4.2, demonstrate that the 3DNoC-

57

SNN system achieves higher throughput when compared to the 2D-mesh NoC NN with

the same frequency and power dissipation. We also found that, in terms of the rout-

ing method, the Multicast scheme outweighs the other routing methods (Broadcast and

Unicast).

4.3 Faulty System Assessment

This section mainly analyzes the effects of link faults on the performance of 3D-NoC

of spiking neurons architecture. Neural network topologies and communication methods

are also emulated as Section 4.2. Considering faults occurring in the system, we assume

that the system has a link fault rate α with a uniform distribution. With the link fault rate

α, the total number of functional links in a 3D-mesh NoC is given by:

TL = (− α)
√n(
√
n− ). (4.31)

4.3.1 PerformanceAnalysis ofHopfieldNeuralNetworkBased on a 3D-mesh

In this section, we analyze the performance of the Hopfield neural network on a 3D-

mesh NoC over Unicast, Multicast, and Broadcast based spike routing schemes.

Unicast-based Spike Routing

Considering that a neuron sends a packet (spike) to all the other neurons, the node

within a 3D-NoC needs to send n-1 packets to all the others. Therefore, the total number

of hops traversed by a spike is given by:

TotalDistHF
UC = (n− ).Dist

=
(n− )(

√
n − )


√
n

≈ n 
√
n. (4.32)

From equation (4.32), the effective bandwidth of a 3D-meshNoC system is determined

by:

58

BWHF
eff,UC =

w.TL
TotalDistHF

UC
.fNoC.UNoC

=
w(− α)(

√
n− )


√
n

.fNoC.UNoC

= O
(



√
n

)
, (4.33)

where w is the number of wires per link, fNoC is the link frequency, UNoC is the link uti-

lization factor for a 3D-mesh NoC. With n PEs, the average spiking rate of a single PE

is given by:

fHF
p,out,UC =

BWHF
eff,UC

n

=
w(− α)(

√
n− )

n 
√
n

.fNoC.UNoC (4.34)

Besides, the maximal firing frequency for a unicast based NoC is expressed as:

fHF
spike,max,UC =


Trefractory

∼=


n.Tcycle
=

fNoC
n , (4.35)

where Trefractory is the period after which a spike is generated; during that time the neuron

cannot fire again. Tcycle is the link delay (Tcycle = /fNoC). As mentioned above, in order to

send a spike, the source node needs to send n−  packets; thus, it takes n.Tcycle. Here, we

are not including the router delay as it is a constant, independent of the network size. In

our analysis, we assume Trefractory ∼= n.Tcycle, similarly to [95].

By dividing (4.34) by (4.35), we can determine how many neurons may fire at the max-

imal rate. This is represented by K, as given in (4.36):

KHF
UC =

fHF
p,out,UC

fHF
spike,max,UC

= O
(



√
n

)
. (4.36)

59

Multicast and Broadcast Based Routing Schemes

For these routing methods, since each PE only sends a single packet for each spike

which is propagated to the other neurons, the number of hops is determined by:

TotalDistHF
MC/BC

∼= n. (4.37)

The efficient bandwidth, the average spiking rate of a single PE, the maximal firing

frequency, and the K metric for Multicast and Broadcast are calculated by the equations

(4.38), (4.39), (4.40), (4.41), respectively:

BWHF
eff,MC/BC =

w(− α)(
√
n− )


√
n .fNoC.UNoC

= O() (4.38)

fHF
p,out,MC/BC =

BWHFeff,MC/BC
n

=
w(− α)(

√
n− )

n 
√
n .fNoC.UNoC (4.39)

fHF
spike,max,MC/BC =


Trefractory

∼=


TcycleDist

=

√
n


√
n − 

.fNoC (4.40)

KHF
MC/BC =

fHF
p,out,MC/BC

fHF
spike,max,MC/BC

= O
(



√
n

)
. (4.41)

In summary, equations (4.33), (4.36), (4.38), and (4.41) demonstrate the effect of the

60

fault rate on the architecture performance (i.e., in terms of efficient bandwidth and spike

rate which a given architecture can maintain) when Hopfield neural network is run on.

Compared to UC, MC and BC offer higher bandwidth and the number of neurons can

fire at the maximum rate.

4.3.2 Performance Analysis of RNDC Neural Network Based on a 3D-mesh

Unicast based Routing

From (4.18), (4.19), (4.20), and (4.21), the efficient bandwidth can be represented as:

BWRNDC
eff,UC =

w(− α)

√
n(
√
n− )

 
√
n
√
n .fNoC.UNoC

=
w(− α)


√
n(
√
n− )


√
n

.fNoC.UNoC

= O(
√
n). (4.42)

Furthermore, the average spiking rate of a single PE (fUCp,out), the maximal spiking rate

(fUCspike,max), and the K ratio for UC can be depicted as:

fUCp,out =
BWRNDC

eff,UC

n

=
w(− α)


√
n(
√
n− )

n 
√
n

.fNoC.UNoC (4.43)

fUCspike,max =


.C.Tcycle
=

fNoC

√
n = O

(
√
n

)
(4.44)

K =
w(− α)

√
n 
√
n(
√
n− ).fNoC

n 
√
n.fNoC

.UNoC

= O
(



√
n

)
. (4.45)

61

Multicast and Broadcast Based Routing Schemes

For the case of multicast, a packet needs to travel along a λ path to reach the first

destination, and then plus one hop for each of the remaining. With a total ofC destination

nodes, the hop count for each packet is therefore determined by:

TotalDistRNDC
DMesn,MC = C+DistRNDC

= C+ λ (4.46)

Therefore, the efficient bandwidth can be formulated as:

BWRNDC
eff,MC

∼=
w(− α)


√
n(
√
n− )√

n+  
√
n .fNoC.UNoC

= O(
√
n). (4.47)

Moreover, the average spike rate for each PE is given by:

fMC
p,out =

BWRNDC
eff,MC

n

=
w(− α)(

√
n− )


√
n(
√
n+  

√
n) .fNoC.UNoC. (4.48)

With a link delay Tcycle, and average distance between two nodes in the RNDC neural

network DistRNDC, the maximal spiking frequency is expressed as:

fMC
spike,max =


Tcycle.DistRNDC =

fNoC
λ

=
fNoC
 
√
n = O

(


√
n

)
. (4.49)

From (4.48) and (4.49), the K ratio is given by the following equation:

K =
fMC
p,out

fMC
spike,max

=
w(− α)(

√
n− ) 

√
n


√
n(
√
n+  

√
n) .UNoC

= O
(



√
n

)
(4.50)

62

For the case of broadcast, the RNDC system is similar to the case of Hopfield. The only

difference is in the network size: C for RNDC, and n for Hopfield. Consequently, the

performance metrics are similar to the Hopfield neural network.

In summary, for the RNDC running on the architecture with a link fault rate α, MC

offer higher spiking frequency compared to UC and BC. From the assessment analysis

for both Hopfield and RNDC neural network topologies, we can see that the link fail-

ure causes performance degradation in the communication architecture. This may lead

to timing violations of spikes. Therefore, a low-latency fault-tolerant routing method is

imperative to deal with this issue.

4.4 Conclusion and Discussion

This chapter presented a performance analytical model of 3D-mesh based spiking neu-

romorphic systems. In fact, since the design and implementation of such neuromorphic

systems take a long time, this model aims to help designers to earlier evaluate the system

before the actual design. The model was performed under different spike routingmethods,

two kinds of spiking neural network topologies covering different levels of connectivity,

and with and without link-fault injection.

From the analyzed results, we can see that multicast spike routing method shows better

results compared to unicast-based multicast and broadcast. Besides, the 3D-mesh inter-

connect architecture performed better 2D-counterpart which was concluded to be the

most suitable architecture compared to tree, shared bus, and point-to-point ones [23, 95].

These motivate us to propose efficient multicast spike routings in Chapter 5: two novel

multicast routing methods and a new fault-tolerant multicast routing algorithm dealing

with inter-neuron connection faults. Furthermore, the implementation and evaluation of

the proposed system are presented in Chapters 6 and 7 to validate the analytical model

presented in this chapter.

63

5
K-means Based Multicast Spike Routing

Algorithms

I
n this chapter, spike routing algorithms are presented. We firstly present

our first proposed K-means based MultiCast Routing algorithm (KMRC).

We demonstrate its key features and advantages and also discuss its weak

point. From this, we then present an improvement of KMCR, named Shortest Path K-

means based MultiCast Routing (SP-KMCR). This aims to deal with the drawback of

KMCR that is high congestion in centroids. In the last subsection, we propose a fault-

tolerant multicast routing algorithm based on SP-KMCR, named FTSP-KMCR. This

algorithm is proposed to solve interneuron connection faults in NoC based SNN systems.

65

5.1 K-meansBasedMulticast SpikeRoutingAlgorithm (KMCR)

In this section, we present our K-means clustering based multicast spike routing for

the 3DNoC-SNN system. As mentioned above, the 3D-mesh NoC is suitable for stack-

ing multiple 2D NN layers together in a scalable fashion to create large-scale networks.

In SNN, one neuron is typically connected to many others. Thus, there is a significant

amount of one-to-many communications between neuron processing cores.

5.1.1 The Proposed Routing Algorithm (KMCR)

The proposed routing algorithm is based on a combination of the K-means clustering

method and the tree-based routing [124, 155]. The tree-based [134] is a popular method

used in multicast communication. In this routing mechanism, a destination group is par-

titioned from the source node to form a ”tree” routing path of messages. One major

drawback of the tree-based method is high traffic contention due to the high probabil-

ity of packet blocking at intermediate nodes [134]. To deal with this problem, we adopt

the K-means for partitioning a destination set. Employing the K-means comes from the

observation that post-synaptic neurons are often neighbors of each other; previous work

[156] indicated that SNNs have high inter-neuron communication locality. This enables

a neuron group located within the same region to share incoming spikes. Hence, when

mapped onto a 3D-NoC system, neurons in a layer are distributed in one core or nearby

ones. This enables taking full advantage of K-means to get an effective partition resulting

in overall traffic load balance. Besides, K-means also guarantees the smallest number of

hops from each destination to its centroids.

The flow chart of the proposed routing algorithm is shown in Figure 5.1. The algorithm

firstly partitions destinations into several subgroups. We adopt the K-means clustering

mechanism to find a centroid of each subgroup and its labeled targets, in which the cen-

troid is a node with minimal mean distance to all the others in that subgroup. From this,

the first part of the routing tree is formed from source nodes to the centroids, and the

66

Begin

Number of
subsets: k

Initial centroids by
random assignment

Assign destinations to a
closest centroid subset

Form “tree” routes from
sources to centroids

Form “tree” routes from
centroids to its destinations

End

Update centroids by mean
distance of its subset

Centroids not
changed?

False

Calculate distances from
sources to centroids

True

Figure 5.1: Flowchart of the proposed routing algorithm.

67

other part is a spanning sub-tree from the centroids to their destinations.

To determine the centroids, the algorithm first randomly selects them from the available

targets. Then, the algorithm computes the following steps:

• The distances from each destination to the centroids are calculated using the Man-

hattan distance as shown in line 10 of Algorithm 1.

• Based on these distances, the destinations are, then, assigned to a subgroup which

has the nearest centroid.

• Finally, after the subgroups are temporarily formed, the position of the centroids

are updated by taking the mean of all its elements. The iteration does not end until

centroids are not changed after updating.

The pseudo-code of the implemented algorithm is shown in Algorithm 1.

After determining the centroids, routing paths from source nodes to their targets are

formed in two stages. At the first stage, we employ Dimension Order Routing (DOR

- a common method for NoCs [20]) to determine routes from each source to the cen-

troids. From here, same routes from a given source to centroids are merged. This leads to

a reduction in the numbers of spike packets that need to be transmitted from the source

compared to the unicast-based method. Using a particular kind of DOR depends on ap-

plication mapping method, which will ensure an optimized and balanced traffic (explained

more in an example, shown in Figure 5.2). At the end of this stage, a part of ”tree” from

the source to centroids is formed. Second, the similar routing calculations in the first stage

are computed to establish the other part of ”tree” from centroids to its destinations. After

the two stages, the ”tree” route from a given source node to its destination is constructed,

and the computed routing information is used to update the routing tables attached to

routers.

For an easy explanation and to better understand the algorithm, we show in Figure 5.2

an example of 18×18 fully connected SNN application mapped onto a 6×3×2 3DNoC-

SNN system. As shown in the figure, the nodes in L1 (source nodes) send their outputs

68

Algorithm 1: KMCR multicast routing pseudo-code
/* Input and output */
Input: // Source node address (S), destination node addresses (T), and the

number of centroid nodes (k)
1 S = {s(x, y, z), s(x, y, z),...,sn(xn, yn, zn)}
2 T = {t(x, y, z), t(x, y, z),...,tm(xm, ym, zm)}
3 k
Output: // Routing paths from S to T

4 P = {p(s → T), p(s → T), ...pn(sn → T)}

/* Centroid node assignment */
// Initial centroid nodes by randomly select from T

5 foreach ci ∈ C do
6 ci ← tj ∈ T
7 end
// Evaluate centroid nodes

8 do
// Calculate the distance between ti ∈ T to cj ∈ C

9 foreach ti ∈ T do
10 d(ti, cj) = |xi − xj|+ |yi − yj|+ |zi − zj|
11 end

// Assign each destination to its centroid by minimum distance
12 foreach ti ∈ T do
13 l(ti)← argmind(ci, tj)
14 end

// Update centroid
15 foreach ci ∈ C do
16 ci ← update(mean(tij))
17 end
18 while C != const;

/* Creating routing tree from each source to centroids */
19 foreach si ∈ S do
20 p(si, cj)← DOR_based_tree(si, cj)
21 end

/* Creating routing tree from each centroid to its destinations */
22 foreach ci ∈ C do
23 p(ci, tj)← DOR_based_tree(ci, tj)
24 end

69

25 26 27 28 29 30

24 23 22 21 20 19

13 14 15 16 17 18

12 11 10 9 8 7

1 2 3 4 5 6

36 35 34 33 32 31

25 26 27 28 29 30

24 23 22 21 20 19

13 14 15 16 17 18

12 11 10 9 8 7

1 2 3 4 5 6

36 35 34 33 32 31

25 26 27 28 29 30

24 23 22 21 20 19

13 14 15 16 17 18

12 11 10 9 8 7

1 2 3 4 5 6

36 35 34 33 32 31 3

22 26

23

25

27

35
27

(a) (b)

(c) (d)

L1

L2

L1

L2

L1

L2

Source Destination Centroid

22

24

34

36

29

20

28

30

32

19

21

31

33

28

Figure 5.2: Example of the proposed routing algorithm for a 6×3×2 3DNoC-SNN system,
where nodes in L1 send spike packets to all nodes in L2: (a) destinations are partitioned by
adopting K-means clustering with centroids 26 and 29, (b) the formation of the first path
of the tree from a given source (node 3) to centroids, (c) the second part of the tree from
centroids to its destinations, (d) the routing tree from the given source to destinations.

70

to all neurons in L2 (destination nodes). In a particular case, the source node 3 in layer L1

needs to send spike packets to all nodes in layer L2. With the number of clusters k = 2, the

destination set is partitioned into two subsets with 26 and 29 as centroids (Figure 5.2 (a)).

The ”tree” route from the source to both centroids is then determined as shown in Figure

5.2 (b). In this mapping method, the ZYX version of the DOR is selected. This enables

alleviating traffic contention of the intermediate nodes in the first layer. If either XYZ or

YXZ would be used, the source nodes need to send spikes to centroids via 11 and 8 leading

to high traffic congestion in these intermediate nodes. After the centroid-to-destination

routes are computed, the routing ”tree” is formed as shown in Figure 5.2(c, d).

5.1.2 Selection of the Optimal Number of Clusters

As we mentioned, the number of clusters (k) needs to be determined before the pro-

posed routing algorithm (KMCR) is applied. Intuitively, when k is small, the destination

set is partitioned into big subsets. This may lead to high congestion in the intermediate

nodes like the centroids resulting in high congestion in the network. On the other hand,

when k is large, each source node may send multiple copies of a given packet to the cen-

troids. This may also result in high latency. When k equals the number of destinations,

our routing algorithm becomes unicast-based multicast. It is important to mention that

selection of k mainly depends on the distribution of destination nodes resulted by mapping

methods.

Fortunately, there are several good observations that can be taken to select the optimal

k. First, as mentioned above, SNNs have a high inter-neuron communication locality.

This leads to a situation where neurons in the same group (layer) are mapped onto nearby

neural processing cores. This enables k-means clustering algorithm to work efficiently.

Second, the number of destination nodes for a typical SNN applications is not large. In

fact, the number of neurons in a layer can be hundreds to thousands (efficiency of deep

learning based on the multiple-layer model instead of a very large number of neurons

in some-layer model), so they can be accommodated in tens of cores (a core contains

71

hundreds of neurons [16], our target for SNPC is 256). Therefore, after mapping the

SNN application, the number of clusters can be determined by visualizing the destination

distribution. However, in order to select the optimal k for a particular case, it is necessary

to evaluate the performance of the system under other different values of k.

Based on the observations mentioned above, the optimal k can be determined by the

two following steps:

• Step 1: After mapping SNN application, find the number of clusters by visualizing

the destination set.

• Step 2: Evaluate the system varying the values of k (including the number of clusters

found in step 1, and some other values) to choose the best case.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Values of k

0

20

40

60

80

100

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

3x3x2
5x5x2
7x7x2

Figure 5.3: Average latency under varying the values of k

As a case study, we evaluated our system performance with different network sizes under

variations of k to find the optimal value of k. These experiments are designed to simulate

SNNs with two layers, each of which is mapped into separate layers (layer-to-layer map-

ping). All nodes in the first NoC layer send packets to all the ones in the second layer,

as shown in Figure 5.2. This mapping method is a considerable mapping method to take

full advantages of the 3DNoC. Furthermore, we can consider that whether an observed

72

cluster should be continuously partitioned or not. Three network sizes are considered:

3×3×2, 5×5×2, and 7×7×2 corresponding to maximal neuron numbers of 2304, 6400,

and 12544 in a layer respectively (with 256 neurons/core). For this mapping method, it is

easy to find that the number of clusters equals 1 (3×3, 5×5, 7×7 areas).

Figure 5.3 shows the average latency of the systems under different values of k. The

evaluation results show that k = 1 is optimal (equal the number of clusters observed). The

increase of k leads to high average latency thanks to multiple copies of a given packet (to

centroids) injected to networks. This also means that k should be smaller than the number

of clusters observed. However, these experiments are special cases, in which destination

sets have a nice shape. In other cases, with different SNN architectures and mapping

methods, we need to evaluate the system under different k to select the best choice.

5.1.3 Weakpoint

In the KMCR, the source node sends spike packets to centroids which then deliver the

spikes to destinations. The use of centroids is to guarantee that the overall distance from

them to the destinations is minimum. However, this may cause traffic congestion on the

link to the centroids since the traffic from different sources is concentrated there.

5.2 Shortest PathK-meansBasedMulticastRoutingAlgorithm

(SP-KMCR))

To deal with drawback of KMCR, we propose a new routing method, named Short-

est Path K-means based MultiCast Routing algorithm (SP-KMCR) [157, 158]. In the

KMCR, the source node sends spike packets to centroids which then deliver the spikes

to destinations. The use of centroids is to guarantee that the overall distance from them

to the destinations is minimum. On the other hand, in SP-KMCR, after destination

subsets are determined by adopting K-means, from a given source, we first calculate the

numbers of hops from the source to all the nodes in the subsets. For each subset, we then

select a node which has the shortest path to the source (e. g., nodes 22 and 21 in Figure

73

5.4 (a)). Contrary to the KMCR, the source sends its spike packets to the shortest path

node of each subset instead of the centroid node to form the first part of the routing tree,

therefore named SP-KMCR. The other part of the routing tree is formed from SP nodes

to its destinations, as shown in Figure 5.4 (c). Furthermore, it is worth mentioning that

our new method requires more computations for finding the shortest path compared to

the KMCR. However, the computations in both KMCR and SP-KMCR are executed

off-line. Therefore, the runtime overhead is the same for both algorithms.

5.3 Fault-tolerant Shortest PathK-meansBasedMulticastRout-

ing Algorithm (FTSP-KMCR)

5.3.1 Proposed Fault-tolerant Routing Algorithm

The shortest path fault-tolerantmulticast routing algorithm is based on the SP-KMCR [159,

160]. The basic idea of the FTSP-KMCR is as follows: (1) off-line computations of a pri-

mary routing tree from a given source node to its destinations and backup routing branches

are performed. (2) After the off-line calculation, the routing tables are configured.

The illustration of the primary and backup routing branches is shown in Figure 5.5.

When a faulty primary branch is detected, some pre-planned backup branch(es) is (are)

used to bypass the faulty links. The SP-KMCR mechanism is used to calculate the

branches (red) in the primary tree. On the other hand, the backup branches are alterna-

tive routes of the primary ones. For a considered router (i.e., ”son”), the backup branches

(green) are computed for the cases of faults occurring in primary connections. For ex-

ample, when the father-to-son primary connection is faulty (i.e., pb), bb and bb are the

backup branches used for maintaining the traffic between the ”father” and ”son”. This is

the same for the case where both pb and pb are faulty.

In our proposed algorithm, the computations of primary and backup routes are critical

computational tasks. These calculations are performed off-line. This allows to reduce the

runtime overhead of the proposed routing algorithm; hence avoiding any possible timing

violations in SNNs. As presented in algorithm 3, the source and destination addresses

74

25 26 27 28 29 30

24 23 22 21 20 19

13 14 15 16 17 18

12 11 10 9 8 7

1 2 3 4 5 6

36 35 34 33 32 31

25 26 27 28 29 30

24 23 22 21 20 19

13 14 15 16 17 18

12 11 10 9 8 7

1 2 3 4 5 6

36 35 34 33 32 31

25 26 27 28 29 30

24 23 22 21 20 19

13 14 15 16 17 18

12 11 10 9 8 7

1 2 3 4 5 6

36 35 34 33 32 31 3

22

(a) (b)

(c) (d)

L1

L2

L1

L2

L1

L2

Source Destination Centroidx

y

intra-layer route inter-layer route

SP node

23 24

26 2527

35 3634

21 20 19

29 3028

32 3133

Figure 5.4: Example of SP-KMCR for a 6×3×2 3DNoC-SNN system, where nodes in
L1 send spike packets to all nodes in L2: (a) destinations are partitioned by adopting K-
means clustering with centroids 26 and 29, (b) the formation of the first path of the tree
from a given source (node 3) to shortest path node of each subgroup (SP node), (c) the
second part of the tree from SP nodes to its destinations, (d) the routing tree from the
given source to destinations.

75

Algorithm 2: SP-KMCR multicast routing algorithm.
/* Input and output */
Input: // Source node address (S), destination node addresses (T), and the number of subsets (k)

1 S = {s(x, y, z), s(x, y, z),...,sn(xn, yn, zn)}
2 T = {t(x, y, z), t(x, y, z),...,tm(xm, ym, zm)}
3 k
Output: // Routing tree from each of source node to the destinations

4 P = {p(s → T), p(s → T), ...pn(sn → T)}

/* Partion the destination set (T) into k subsets */
// Initial centroid nodes by randomly select from T

5 foreach ci ∈ C do
6 ci ← tj ∈ T
7 end

// Evaluate centroid nodes and their labeled nodes
8 do

// Calculate the distance between ti ∈ T to cj ∈ C
9 foreach ti ∈ T do
10 d(ti, cj) = |xi − xj|+ |yi − yj|+ |zi − zj|
11 end

// Assign each destination to its centroid by minimum distance
12 foreach ti ∈ T do
13 l(ti)← argmind(ci, tj)
14 end

// Update centroid
15 foreach ci ∈ C do
16 ci ← update(mean(tij))
17 end
18 while C != const;

/* Finding k shortest-path nodes (SP nodes) for every single source node */
19 foreach si ∈ S do
20 foreach ti ∈ Tk do
21 d(si, tj) = |xi − xj|+ |yi − yj|+ |zi − zj|
22 end
23 spi ← min(d(si, tj))
24 end

/* Creating routing path from each source node to its SP nodes */
25 foreach si ∈ S do
26 p(si, spj)← DOR_based_tree(si, spj)
27 end

/* Creating routing tree from each SP node to its destinations */
28 foreach spi ∈ SP do
29 p(spi, tj)← DOR_based_tree(spi, tj)
30 end

76

Algorithm 3: Off-line calculations of the primary and backup branches.
/* Input and output */
Input: // Source node address (S), destination node addresses (T), and the number of subsets (k)

1 S = {s(x, y, z), s(x, y, z),...,sn(xn, yn, zn)}
2 T = {t(x, y, z), t(x, y, z),...,tm(xm, ym, zm)}
3 k
Output: //Primary (pr) and backup (bk) branches from S to T

4 Ppr = {ppr,(s → T), ppr,(s → T), ...ppr,n(sn → T)}
5 Pbk = {pbk,(s → T), pbk,(s → T), ...pbk,n(sn → T)}

/* Centroid node assignment */
// Initial centroid nodes by randomly select from T

6 foreach ci ∈ C do
7 ci ← tj ∈ T
8 end

// Evaluate centroid nodes
9 do

// Calculate the distance between ti ∈ T to cj ∈ C
10 foreach ti ∈ T do
11 d(ti, cj) = |xi − xj|+ |yi − yj|+ |zi − zj|
12 end

// Assign each destination to its centroid by minimum distance
13 foreach ti ∈ T do
14 l(ti)← argmind(ci, tj)
15 end

// Update centroid
16 foreach ci ∈ C do
17 ci ← update(mean(tij))
18 end
19 while C != const;

/* Finding the shortest paths */
20 foreach si ∈ S do
21 foreach ti ∈ Tk do
22 d(si, tj) = |xi − xj|+ |yi − yj|+ |zi − zj|
23 end
24 spi ← min(d(si, tj))
25 end

/* Creating primary and backup branches */
// from each source to SP node

26 foreach si ∈ S do
27 ppr(si, spj)← DORv._based_tree(si, spj)
28 pbk(si, spj)← DORv.̸=_based_tree(si, spj)
29 end

// from each SP node to its destinations
30 foreach spi ∈ SP do
31 ppr(spi, tj)← DORv._based_tree(spi, tj)
32 pbk(spi, tj)← DORv.̸=_based_tree(spi, tj)
33 end

77

son

father

grandfather

!"#$

!"

!"#%

primary branch
backup branch

!&#$ on-backup

'($

'(%
)($

)(%

Figure 5.5: Primary and backup branches.

(S,T) and the number of subsets (clusters) (k) are pre-defined as inputs, while output

parts are a primary tree (Ppr) from each source to destinations and backup branches (Pbk).

After that, the routing computation is done according to the following steps:

• Step 1: from destination addresses, destination subsets are determined by adopting

k-means, as shown in lines 6-19.

• Step 2: finding the shortest path from each source to a node (named spi ∈ SP) in

each subset (with k subsets Tk, a given source node has k SP nodes), as depicted in

lines 20-25.

• Step 3: the first part of the primary tree is formed from the source node to SP ones.

This is done by adopting dimension order routing (DOR) algorithm [161] from

the source to each SP node, then merge with the same route. Alternative variations

of the DOR are then adopted to calculate backup branches in order to guarantee

that backup branches are separated from the primary routes. For example, if the

formation of the primary tree uses DOR of ZYX, the backup branches use other

variations of the DOR such as YZX or XZY.

78

• Step 4: following the same computation in step 2, the second part of the primary

tree from SP nodes to their destinations in the same group and backup branches are

calculated.

After the primary and backup routes are defined, they are used to configure the routing

tables in routers. The pre-defined primary and backup routes are suitable for deploying

SNN applications since the SNNs are also pre-defined and mapped into the SNN system.

Furthermore, this guarantees that the computation overhead of backup branches does not

affect the recovery time of the proposed routing algorithm, and also reduces the required

hardware cost of the system.

5.3.2 Fault Management Algorithm

After the routing information is configured, the fault-management algorithm is im-

plemented to handle incoming packets, as shown in Figure 5.6. For a given incoming

packet, fault_flag_val is extracted to indicate whether the packet is in the primary or

backup branch. At the same time, the source address is also used to compute its ex-

pected primary output port. In the case where fault_flag_val = 0 (i.e., the router plays

the role of ”father” or ”grandfather”), the calculated output_port is then determined to be

faulty or not. If it is not faulty, the packet is forwarded to the calculated output port

in the primary branch. Otherwise, output_port is switched to use a backup_branch, and

the fault_flag_val is also initiated to inform the next on-backup routers that this packet

is on the backup branch. In the case where fault_flag_val ̸= 0 (i.e., the router role is as

a on-backup or ”son” router), the output_port is routed through the backup route, and

fault_flag_val is also decreased by one.

79

B
e

gi
n

Fo
r

an
 in

co
m

in
g

p
ac

ke
t:

-
Ex

tr
ac

t
fa
u
lt
_f
la
g
_v
a
l

-
o
u
tp
u
t_
p
o
rt

=
p

ri
m

a
ry

_t
re

e(
)

fa
u
lt
_f
la
g
_v
a
l

==
 0

o
u
tp
u
t_
p
o
rt

!=
 f

a
u

lt
-
o
u
tp
u
t_
p
o
rt

=
b

a
ck

u
p

_t
re

e(
)

-
fa
u
lt
_f
la
g
_v
a
l

-=
 1

En
d

F

F

T T
-
o
u
tp
u
t_
p
o
rt

=
b

a
ck

u
p

_t
re

e(
)

-
In

it
ia

lf
a
u
lt
_f
la
g
_v
a
l

-
A

tt
ac

h
 f
a
u
lt
_f
la
g
_v
a
l

to
 t

h
e

p
ac

ke
t

-
Fo

rw
ar

d
 t

h
e

p
ac

ke
t

Fi
gu

re
5.
6:

Fa
ul

t-
m

an
ag

em
en

ta
lg
or

ith
m

ap
pl

ie
d

fo
r”

so
n”

,o
n-

ba
ck

up
,”

fa
th

er
”a

nd
”g

ra
nd

fa
th

er
”r

ou
te

rs
.

80

5.4 Conclusion

In summary, this chapter has presented spike routing algorithms for the 3DNoC-SNN

system. All the routing algorithms are based on tree-based multicast routing combined

with k-means clustering. They are two multicast routing algorithms, named KMCR and

SP-KMCR, and a fault-tolerant multicast routing algorithm, named FTSP-KMCR. In

the next chapter, we will present the overall 3DNoC-SNN architecture and its main com-

ponents, where the proposed routing algorithms are integrated.

81

6
Towards Scalable Spiking Neuromorphic

Architecture

I
n this chapter, we present the proposed architecture for spiking neural

network systems based on 3D-NoC. We first describe the proposed sys-

tem architecture. After that, two main components of the system are pre-

sented; they are a spiking neural processing core (SNPC) and a multicast 3D router (MC-

3DR). Finally, considerations of application deployment including application mapping

and practical encoding methods are also discussed.

83

MC-3DR SNPCAER input AER Output

AER Input AER Output

Computer
(Serial interface)

Configuration Unit

SPI

SPI

Figure 6.1: Block diagram of system architecture.

6.1 System Architecture

We firstly describe the proposed 3DNoC-SNN architecture which is based on low-

latency multicast routing schemes for spike traffic routing. The high-level view of the

system architecture is shown in Figure 6.1. As shown in Figure 6.1, The system consists

of several stacked 2D layers of spiking neural tiles (×  2D layers of spiking neural tiles

stacked together are shown as an example) and is based on our earlier 3D-NoC archi-

tecture [162–166]. A spiking neural tile composes of a spiking neural processing core

(SNPC) and a multicast router (MC-3DR). In the context of SNN, a spiking neuron

refers to a SNPC, the inter-neuron connectivity is implemented in the form of transmit-

ting spikes (packets) via the scalable 3D-NoC, and the topology refers to the way the

neurons are interconnected within the network. Each SNPC within the 3DNoC-SNN is

responsible for processing incoming spikes by using an array of spiking neurons (right side

of Figure 6.2). In the remaining parts of this chapter, we describe the main components

84

of the 3DNoC-SNN system.

6.1.1 Topology

In our architecture, we employ 3D-Mesh topology because of scalability and high per-

formance. In [23, 95], authors analyzed different 2D interconnect architecture (i.e., mesh

NoC, tree, shared bus, and point-to-point) for neural networks over various spike rout-

ing protocols. The results showed that 2D mesh NoC with multicast routing is the most

suitable for SNNs. As presented in Chapter 4, 3D-mesh architecture outweighs 2D coun-

terpart. This is also verified under experiments in the next chapter.

6.1.2 System interface

The proposed system uses two interface blocks to connect outside. First, we adopt

address-event presentation (AER) buses to handle input and output events. AER is a

popular four-phase handshake communication protocol, considered to be a standard for

SNNs [125, 167]. While AER input is used to feed input spikes into the system, AER

output is used for monitoring output or connect to other chips in the case of large-scale

SNN implements.

Second, the configuration unit is dedicated to system configuration purpose. It receives

configuration information from the computer via a serial interface. This information is

then sent to neuron tile for configuration via SPI.The information configuration composes

of two main parts:

• The first part is the routing path which is for configuring routing tables. This infor-

mation is the result of the off-line computation of the proposed multicast routing

algorithms (see Chapter 5).

• The second part is for the configuration of SNPC.This information contains config-

uration relating to the synapse and neuron model. The configuration information is

mainly: (1) the content of the LUT, used in the decoder. It defines the topology of

SNNs. (2) for configuration of memories: bit-lines are configured for the synapse

85

De
co

de
r

Synapse_crossbar

Synapse_memory

Neuron_memory

En
co

de
r

Control Unit

256-
LIF

(256^2 bits = 8kB SRAM)

(256^2 x 5bits = 40kB SRAM)

(256 x 32bits = 1kB SRAM)

28 28From
router

To
router

Input type [0] Synaptic strength [1:4]

Membrane potential [0:7] Threshold [8:15] Leaky value [16:23] Reset value [24:31]

5bits synapse register format

32bits neuron register format

Figure 6.2: Spiking Neuron Processing Core (SNPC) architecture.

crossbar. Synaptic weights in syn_mem for the case of off-chip learning implemen-

tations. Neural parameters such as membrane potential of neurons, the threshold,

leaky value, and refractory period.

6.2 Spiking Neuron Processing Core (SNPC)

The Spiking Neuron Processing Core (SNPC), depicted in Figure 6.2, is the primary

processing unit in the 3DNoC-SNN system. The core composes of several main modules:

• Decoder determines post-synaptic neurons for each incoming spike (packet). After

arriving the destination neural tile, the incoming spike is forwarded to local SNPC

by the local router. Based on ”neuron ID” extracted from the spike packet, the de-

coder looks up in a LUT to determine the post-synaptic neurons. This information

is sent to the Control Unit for neural computation.

• Control Unit is designed to control the overall operation of the neural core. It con-

trols both configuration and operation modes of the neural core. It guarantees to

86

update neurons during a single time step.

• Synapse Crossbar includes a cross-point array of synapses. Each synapse stores a bit

which is able to read, set, or reset, presenting a connection (synapse) between a row

(axon) and a column (dendrite). It is read for neural computation and written to

after the decode is completed.

• Syn_mem (Synaptic memory) stores synaptic information which is used for config-

uration of the crossbar and synaptic strengths. It is updated in training phase and

read in inference operation.

• Neu_mem (Neural memory) is used for neural parameters. The parameters are read

for neural computations. After the computations, they are updated to store the

current status of neurons.

• LIFArray is themain computation unit of the neuron core where neural calculations

are performed. Data read from the synaptic crossbar, syn_mem, and neu_mem are

computed in this unit. Here, multiple leaky-integrate and fire (LIF) neurons are

implemented. More precisely, a physical LIF computation unit is implemented

while multiple neurons are performed in a sequential manner. This not only takes

advantage of the highspeed operation of digital logic but also reduces area cost and

power consumption.

• Encoder is designed to pack spikes generated from LIF array. After neural compu-

tation, if the membrane potential of a neuron exceeds a given threshold, it fires - a

spike is generated. This spike is sent to the encoder where the spike is packed into

a packet before injecting to the network via the local router.

• Configuration information is used for the configuration of the neural core. This in-

formation contains configuration relating to the synapse and neuron model. The

configuration information is mainly: (1) the content of the LUT, used in the de-

coder. It defines the topology of SNNs. (2) for configuration of memories: bit-lines

87

Type [Fault_Flag] XYZ
s Timestamp Neuron ID

- Type: ’00’: configuration; ‘11’-spike.
- [Fault_Flag]: flag for fault-tolerant spike routing algorithm
- XYZ

s
: source node address

- Timestamp: the fired time.
- Neuro ID: Identifier of the fired neuron.

2-bits 9-bits 6-bits 8-bits3-bits

Figure 6.3: Spike packet format.

are configured for the synapse crossbar. Synaptic weights in syn_mem for the case of

off-chip learning implementations. Neural parameters such as membrane potential

of neurons, the threshold, leaky value, and refractory period. The configuration is

performed during application mapping before system operates, in which the topol-

ogy and the parameters of SNNs are determined.

Incoming spikes are first decoded to get the pre-synaptic neural identifiers. Through a

crossbar-based synapses, the weight values are accumulated at an array of Leaky Integrate-

and-Fire (LIF) neurons [13]. Our choice of this spiking neuron model comes from the

trade-off between a design that features most of the biological computational power versus

the silicon area and design complexity. The SNPC is based on our recently designed

LIF neuron-core prototype [14]. A LIF neuron model is described using five operations

namely, synaptic integration, leak integration, threshold, spike firing and reset. From a

hardware perspective, its simplicity helps us achieve low area and power consumption.

6.3 Spike packet format

When a neuron fires, a spike packet is transferred to the destination neuron tile through

the network. The spike packet format is described as Figure 6.3. It should be mentioned

that the packet format is configurable.

• Type: It is the header of the packet indicating this packet is either for configuration

or spike. If it is ’00’, this packet is used for system configuration. In this case, the

88

packet body stores configuration data (see Section 6.2). When Type = ’11’, it means

this is a spike packet. The other values of Type are used for future purpose.

• Fault_Flag: This is only used for the fault-tolerant multicast routing algorithm (see

Section 5.3). It indicates to the router that the packet arrived via the primary path or

backup path. By default, fault_flag = . It is initialized at the begin of the backup

path (i.e., at node such as ”father” or ”grandfather”. From there, the fault_flag value

will be decreased by one after every single hop on the backup path and gets to zero

at the end (i.e., ”son”).

• XYZs: It is the address of the source neuron tile. It is used for spike routing to

guarantee that the spike packet is able to reach the destination tile. When a spike

packet arrives the input buffer of a router, the address will be extracted for routing

computation (i.e., looking up the routing table, see Chapter 5).

• Timestamp: In spiking neuron network, the time of the generated spike is used

to encode the information (see Section 2.3.1). Whenever the source neuron fires,

its spike packet contains Timestamp information of the spike. From there, the

information is decoded into the presise time slot of the input spike. This informa-

tion plays an integral role in Hebbian-based learning rules. For example, in STDP

learning rule (Section 2.3.3), the arrival time of the input spike is compared with

the spike time of post-synaptic neuron to change the synaptic strength.

• Neuron ID: this is the identifier of the pre-synaptic neuron. After a spike packet is

delivered to its destination neuron tile, by using a XYZs. At this time, Neuron ID

is used to determine which are post-synaptic neurons. This process is taken place in

the decoder of SNPC. From here, it should be mentioned that the combination of

XYZs and Neuron ID makes a unique address for each neuron in the whole system.

89

down input port

up input port

south input port

north input port

local input port

west input port

east input port

fault_manager

BYPASS LINK 1

BYPASS LINK 2

SA monitor

S
E

R
 M

a
n
a
g
e

r

Arbiter
Stall/Go

Controller

Input Buffer

RAB

Input Port Manager

FTSP-KMCR A
R

Q
 B

u
ff
e
r

request sw
_g

ra
nt

sw
_r

eq
ue

st

ECC

down-in

arq-out

stop-out

data-out

arq-in

stop-in

next_nodeprev_node

up-in

west-in

south-in

east-in

north-in

local-in

Figure 6.4: Multicast Spike 3D Router architecture (MC-3DR).

6.4 Router Architecture

The multicast 3D router (MC-3DR) architecture is represented in Figure 6.4. Since

each neuron can be connected to thousands of other neurons, the MC-3DR supports the

proposed multicast routing methods for efficient spike delivery. The MC-3DR is based on

our earlier proposed adaptive 3D router architecture (SHER-3DR) [164, 165, 168]. Since

the spike times are used to encode information, the MC-3DR should have extremely low

latency. Each router in the system has a maximum of 7-input, and 7-output ports, where

six input/output ports are dedicated for the neighboring routers and one input/output

port is used to connect the switch to the SNPC, the MC-3DR contains seven Input-

port modules for each direction in addition to the Switch-Allocator, and the Crossbar

module which handles the transfer of spikes to the next SNPC. An Input-port module is

composed of two main elements: an input-buffer and a multicast routing module.

The router is designed with four pipeline stages: buffer writing (BW), routing calcu-

lation (RC), switch arbitration (SA), and crossbar traversal (CT). At the first stage, an

incoming spike (packet) is stored in the Input Buffer before being processed. Next, the

90

XYZs
Output Port

|D|U|W|S|E|N|L|
000_000_000 0000100
001_000_000 0000100

011_000_000 0100000

XYZs
Output Port

|D|U|W|S|E|N|L|
000_000_000 0000100
001_000_000 0000100

011_000_000 0000010

9 7
XYZs

Fault_flag
Ouput_port
_fault

Primary routing table Backup routing table

DM
UX

 1
:2

M
UX

 2
:1

011_000_000

0 0

Up

1 1
North

3
1

7

7

9

9

0

31

0

31

1

Or

Figure 6.5: Block diagram of routing table architecture. D, U, W, S, E, N, L stand for
Down, Up, West, South, East, North, Local respectively.

source address of the packet (Xs, Ys,Zs) is extracted and computed to determine which

is the output port. After routing computation, a request (sw_request signal) is sent to

Switch-Allocator in order to use the selected output port. The Switch-Allocator consists

of two main components: Stall/Go flow control (the most common use in systems [20])

and Matrix-arbiter scheduler. Here, the Matrix-arbiter with least recently served priority

is employed since it provides fast computation, inexpensive implementation, and strong

fairness [20]. Finally, after granted (via sw_grant signal), the packet is sent to desired

output port passing the crossbar.

6.4.1 Spike routing table

In MC-3DR, one of the main components is the routing computation unit which is

also a major concern of this dissertation. As early presented in Chapter 5, routing paths

are firstly computed off-line. This aims to not only reduce area cost but also avoid the

timing violation caused by extra computation. After the off-line computation, results are

used for configuring spike routing tables in routers.

Figure 6.5 described the routing table architecture. After arrived the input buffer, source

91

node address, XYZs, is extracted from the input spike packet. The address is then used

for determining the desired output port by looking up at routing tables. In the case both

fault_flag and output_port_fault are equal to zero, the desired output port is decided from

the primary routing table, and vice versa.

6.4.2 Hard fault tolerance

The proposed router relies on sophisticated recovery techniques based on system recon-

figuration with redundant structural resources to handle hard faults in the input-buffers,

crossbar, and links [164, 165]These mechanisms aim to alleviate faults occurring in the

system.

Fault-tolerant buffer

We inherited a mechanism, named Random Access Buffer (RAB) [164], to solve the

deadlock problem in the input buffers. RAB block diagram is described in Figure 6.6.

RAB uses a timer for detecting the spike packet being the reason for the deadlock. When

the deadlock is detected, the request of the flit will be dropped and RAB then looks for

another flit which can be granted. Therefore, RAB is able to recover from transient,

intermittent, and permanent faults in the input buffers.

Fault-tolerant crossbar:

In order to deal with faults occurs in the crossbar, we employed our previous work,

called Bypass-Link-on-Demand (BLoD) [164]. As shown in Figure 6.7, BLoD is based

on providing additional escape channels. When a fault occurs in one or several crossbar

links, the links will be disabled, and an appropriate number of the additional links (bypass

channels) are enabled.

Fault-tolerant TSV

In our system, we use TSVs [169] as vertical connections between layers of neural tiles.

However, because of the high defect rate and clustering distribution, fault-tolerance in

TSVs has become a major concern in commercial TSV-based architecture. We, therefore,

92

Figure 6.6: Block diagram of Random Access Buffer (RAB) [164].

Figure 6.7: Block diagram of Bypass-Link-on-Demand [164].

93

adopt our previous work which is an architecture sharing TSV clusters [165]. When a

TSV cluster defects, the router will borrow a healthy one from its neighbor. This enables

our system can handle TSV defect without redundancy of TSVs. As shown in Figure 6.8,

each router has TSV clusters and additional supporting modules that perform the sharing

algorithm.

6.5 Application deployment

6.5.1 Application mapping methods

It should be mentioned that the mapping strategy of SNNs onto NoC based system

plays an important role in deploying SNN applications. It affects not only the overall

performance but also the power consumption of the whole system. In [170], the authors

proposed two mapping methods: (1) a relatively conventional approach that puts highly

communicating tasks together, and (2) an approach based on active degrees of neurons.

In this work, we mapped SNNs onto the proposed system in a layer-to-layer fashion to

take full advantage of the proposed routing algorithm and the 3D mesh NoC topology,

as shown in Figure 7.3. In this mapping method, the neurons in the same network layer

are placed in the same system layer, and neurons only send their spike to the ones in

the next layer. This approach offers multiple parallel connections between layers (vertical

connections), less congestion, and low spike latency when compared to the 2D integration

method [165].

6.5.2 Input-data-to-spike conversion methods

Unlike conventional artificial neural network, input data needs to be converted/encoded

into spike trains before fed into the spiking neuromorphic systems. In this section, we

present widely used conversion methods which can be categorized into two groups: (1)

converting from original data sets (2) using converters. Several examples of conversion

methods are shown in Figure 6.10.

94

R(1,1,1)

UP

D
O

W
N

Data In
(N,E,S,W,L)

Data Out
(N,E,S,W,L)

D
O

W
N

UP

S-UP

S-DOWN

CR
down-in

CR
down-out

CR
up-in

CR
up-out

...

CR(2,1,1)

W/4321

CR(1,1,1)

6

6

1

1

W/4

W/4

1 1 1 1

1 1 1 1
S-UP

 (1,1,1)

S-DOWN
(2,1,1)

R(2,1,0)
W/4

1
R(2,1,1)

R(1,1,0)

1

W/4
R(1,1,1)

Top Layer

Bottom Layer

 TSV
Cluster
1:W/4

Sharing
Circuit

Vertical
connection’s
TSVs

(a)

(b)

4

4

R(1,0,1)

R(1,1,2)

R(1,2,1)

R(1,1,0)

R(2,0,1)

R(2,1,2)

R(2,2,1)

R(2,1,0)

 W

 W

 To R(1,1,0)
 To R(1,1,2)
 To R(1,0,1)
 To R(1,2,1)

W

From R(1,1,0)

W/4

W/4

W/4

W/4

W/4

From R(1,1,2)
W/4

From R(1,0,1)
W/4

From R(1,2,1)
W/4

UP
OUT

 To R(1,1,0)
 To R(1,1,2)
 To R(1,0,1)
 To R(1,2,1)

W

From R(1,1,0)

W/4

W/4

W/4

W/4

W/4

From R(1,1,2)
W/4

From R(1,0,1)
W/4

From R(1,2,1)
W/4

DOWN
OUT

UP
IN

To R(1,1,0)
To R(1,1,2)
To R(1,0,1)
To R(1,2,1)

From R(1,1,0)
From R(1,1,2)
From R(1,0,1)
From R(1,2,1) W/4

W/4
W/4
W/4

W/4

W/4

W/4

W/4

DOWN
IN

To R(1,1,0)
To R(1,1,2)
To R(1,0,1)
To R(1,2,1)

From R(1,1,0)
From R(1,1,2)
From R(1,0,1)
From R(1,2,1) W/4

W/4
W/4
W/4

W/4

W/4

W/4

W/4

From Neighbours
(Weights, Control)

 To Neighbours
(Weights, Control)

From Neighbours
(Weights, Control) To Neighbours

(Weights, Control)

Figure 6.8: Fault-tolerant TSV architecture: (a) router wrapper (b) sharing TSV architec-
ture with TSV cluster (red rectangles) and sharing arbitrators (S-UP, S-DOWN) [165].

95

L1 Lm+1 LM

3DNoC-SNN system

Spiking neural network

Figure 6.9: Layer-to-layer mapping method.

Converting from original data sets

Since collecting data is very time-consuming, this conversion method benefits from the

available data sets.

• Poisson encoding: This is the most common method in converting image data sets

into spike trains. In this method, each pixel is converted into a Poisson spike train

that its spike rate is proportional to the pixel’s density, as shown in Figure 6.10 (A).

• Intensity-to-latency encoding: In this method, pixel intensity is proportional to

spike delay. This means that if the intensity of a given pixel is higher, the spike will

be generated earlier, as shown in Figure 6.10 (B). Contrary to the Poisson encoding,

each pixel is converted into a single spike. This results in a lower spike rate and faster

response time.

Using converters

In this method, a converter is employed to convert input data into spikes. In image

processing, Dynamic Vision Sensors (DVS) have been used in many works. A setup of

using DVS is illustrated in Figure 6.11. When using DVS, it is placed in front of an LCD

monitor or a screen. Input images are then displayed slowly during a period (e.g., from

96

Figure 6.10: 2-D histograms and raster plots for different encoding schemes and neuro-
morphic data sets. (A) Poisson 28 × 28 input size sample. (B) Latency 28 × 28 input size
sample. (C) MNIST-DVS 128 × 128 input size sample. (D) N-MNIST 34 × 34 input
size sample. (E) Fast-Poker DVS 32 × 32 input size sample. (F) Slow-Poker DVS 128 ×
128 input size sample [171].

97

Figure 6.11: Conversion using a DVS camera, captured from [172]. In this setup, two
different classes of images (here motorbikes or cars) are displayed on a screen with a small
jitter applied at 10Hz. A random subset of the spikes is emitted by the DVS.

hundred milliseconds to tens of seconds). The DVS will record and output spike, as shown

in Figure 6.10 (C-F).

98

7
Design and Evaluation

T
his chapter is dedicated to implement and evaluate the performance and

also hardware complexity of the proposed system. Our proposed systemwas

designed in Verilog-HDL, and synthesized with commercial CAD tool.

We first explain how to evaluate the proposed system. After that, we present the evaluation

results of each proposed routing method.

7.1 Methodology

The proposed system was implemented in Verilog-HDL . First, we evaluate the max-

imum spike injection rate supported by a single MC-3DR router. Second, we use both

realistic and synthetic benchmarks to study the performance in terms of average latency

99

and throughput of the proposed system. Spike Generators (SGs) and Spike Counters

(SCs) were used in the analysis to inject different spike traffic loads into the 3DNoC-

SNN system over different network sizes ( ×  × ,  ×  × , and  ×  × ). These

network sizes were carefully selected according to the investigated application require-

ments. The nodes communication within our 3DNoC-SNN system is in the form of

continuous spike streams, where information is coded in the relative timing of spikes.

We have to note that different SNN topologies can be created by configuring connec-

tions between the 3DNoC-SNN components. Finally, we synthesize the system by using

NANDGATE 45nm library [173] to explore the hardware complexity of the proposed

system.

The MC-3DR is based on our previous 3D router architectures (SHER-3DR) [164,

165, 168]. The SHER-3DR relies on sophisticated recovery techniques based on system

reconfiguration with redundant structural resources to handle hard faults in the input-

buffers, crossbar, and links [164, 165], in addition to soft errors in the routing pipeline

stages [168]. Similarly to our previous work [165], we also useNCSUFreePDKTSV [174],

with TSV size of 4.06µm × 4.06µm, pitch size of 10µm, and Keep-out Zone of 15µm

for prototyping. However, during the evaluation of the 3DNoC-SNN system, all the

fault-tolerance techniques which are found in the previous SHER-3DR are disabled.

7.2 Evaluation Results

7.2.1 Spike Injection Rate Analysis

This experiment aims to explore the highest spike injection rate serviced by a given

router. As shown in Figure 7.1, the router R[1,1,1] is used for forwarding incoming spike

packets to their output ports of opposite direction except the spikes injected from SG7.

For example, the spikes generated from SG1 after passing through the R[1,2,1] arrive

to the ”North” input port of the R[1,1,1]. After being forwarded to the ”South” output

port of the R[1,1,1], they traverse the R[1,0,1] before reaching SC3. The experiment is

conducted under various number of router NoC paths (RNPs) and injection rates (the

100

neuron functionality is not active in this experiment).

Figure 7.2 shows a comparison result between the proposed 3DNoC-SNN architecture

R[111]

SG7

SG1 => R[1,2,1]

SG2 => R[1,1,2]

SG3 => R[1,0,1]

SG4 => R[1,1,0]

SG5 => R[0,1,1]

SG6 => R[2,1,1]

R[1,1,2] => R[1,2,2] => SC8

R[1,0,1] => SC3

R[1,1,0] => SC4

R[1,2,1] => SC2

R[1,1,2] => SC2

R[2,1,1] => SC6

R[0,1,1] => SC5

Figure 7.1: Setup for SIR evaluation.

and the work presented in [175] regarding the spike packet loss ratio (SPLR). From this

experiment result, we Figure that the proposed method outperforms the previous work.

In case of the EMBRACE router, the packet loss begins from the injection rates of 1/32,

1/24, and 1/16 with 4, 3, and 2 RNPs, respectively. Besides, the proposed MC-3DR

router can service six RNPs with incoming spikes at every cycle. With seven RNPs, the

highest injection rate is 1/2. This result is because EMBRACE router used an eight-state

round-robin scheme (five for input ports and three for housekeeping tasks [175]),making

the router unable to service high contention traffic (when injection rate andRNP increase).

Conversely, our design takes full advantages of a fast and strong-fair Matrix-arbiter, as

described in Section 6.

7.2.2 K-means Based Multicast Routing Algorithm Evaluation

Performance Evaluation Under Realistic Benchmarks

To evaluate the performance of the proposed routing method, we selected two well-

known applications: (1) Inverted Pendulum and (2) Wisconsin Data-set. These appli-

cations are selected because they are suitable for evaluating hardware-based SNNs [176,

177]. The Inverted Pendulum is a standard benchmark for control purpose. The Wiscon-

sin Data-set is an image classifier using Wisconsin Breast Cancer data-set. Our system’s

101

1/40 1/32 1/24 1/16 1/8 1/2 1
Spike Injection Rate (in number of clock cycles)

0

20

40

60

80

100

Sp
ik

e
Pa

ck
et

 L
os

s P
er

ce
nt

ag
e

EMBRACE 2-RNP
EMBRACE 3-RNP
EMBRACE 4-RNP
MCN 2-RNP
MCN 3-RNP
MCN 4-RNP
MCN 5-RNP
MCN 6-RNP
MCN 7-RNP

Figure 7.2: Router acceptance rate (RAR) comparison when varying the number of router
RNP and SIRs.

configuration parameters for both benchmarks, including the training and testing samples,

are inspired by the work in [176]. These applications enable us to evaluate the proposed

routing algorithm in real traffic patterns. For the performance metrics, we evaluate the

proposed routing regarding latency and throughput. The latency here is defined as the

number of clock cycles from when the first bit of a spike packet enters the source terminal

until the last bit of the packet arrives at all the destination nodes. The applications were

mapped onto the 3DNoC-SNN system in a layer-to-layer manner, as shown in Figure 7.3.

In this mapping method, neurons in the same NN layer were placed in the same 3DNoC-

SNN layer. This leads to taking full advantages of 3D integration such as reducing the

number of hops as well as the overall spike latency when compared to the 2D integration

method [165]. Since our main focus in this work is on the network performance, we used

Spiking Generator/Counter units (SGC) attached to each multicast router, as shown in

Figure 7.3 (a). To make a performance comparison with the proposed algorithm, we

also implemented a unicast-based multicast (Section 4.2.1),), named XYZ-UB. XYZ is

one of the variations of dimension order routing (DOR). This is a simple algorithm, easy

102

Active Centroid Inactive

(b)

(c)
SNNs

3D-NoC layers
L1 L2 L3

R

SGC

(a)

R

SGC

R

SGC

Figure 7.3: Layer-to-layer application mapping: (a) block diagram of a node in each layer
(b) Inverted pendulum (c) Wisconsin data-set.

Table 7.1: Realistic simulation configuration.

Parameter/System XYZ-UB KMCR (this work)

NoC size 2×2×3 (3D), 4×3(2D)
3×3×3 (3D), 9×3 (2D)

Buffer depth 4
Switching Wormhole

Flow control Stall-go
Scheduling Matrix-Arbiter
Routing Unicast-based multicast Multicast

103

to implement, and free of deadlock and lifelock [161]. Moreover, both multicast routing

mechanisms are implemented in 2D and 3D systems. For a fair comparison, the config-

uration parameters are kept similar for both routing algorithms, as shown in Table 7.1.

Latency evaluation:

The average communication latency as a function of SIR is shown in Figure 7.4 and

7.5. The evaluation results show that the proposed algorithm demonstrates lower average

latency and higher throughput when compared to the XYZ-UB routing method in both

2D and 3D based system configurations. For the Inverted Pendulum application, the

3DNoC-SNN system shows almost a similar average latency in both XYZ-UB and our

proposed routing method (see Figure 7.4a). This is because the number of destinations

is small (6 destinations/neurons in total), which means low traffic. However, the pro-

posed algorithm enables the system to keep the latency at 25% higher injection rate when

compared to XYZ-UB. As shown in Figure 7.4b, the average latency evaluation result for

the 2D system configuration is almost similar to the 3D configuration due to the small,

realistic NN benchmark.

For Wisconsin Data-set benchmark, the increase of the network size causes a higher

latency when compared to the Inverted Pendulum application. The latency also increases

with the increase of the injection rate. For 3D systems (Figure 7.5a), the unicast-based

system suffers higher latency compared to the other, at about 14.43% at SIR = 1/11. Fur-

thermore, it can only support a lower injection rate compared to the other one which is less

than about 22.22% of SIR. For 2D architectures, while system supporting unicast-based

routing algorithm cannot maintain SNN traffic, proposed one still works with a little bit

higher latency compared to 3D (Figure 7.5b); this shows that the proposed routing mech-

anism is not only efficient for 3D, but also for 2D systems.

Throughput Evaluation:

Figure 7.6 and 7.7 shows the evaluation and comparison results regarding the average

throughput. The results show that the proposed routing algorithm achieves 24.5% and

22% higher throughput when compared XYZ-UB mechanism over the Inverted Pendu-

104

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Spike Injection Rate (spike/node/cycle)

0

10

20

30

40

50

60

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

XYZ-UB
KMCR

(a)

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Spike Injection Rate (spike/node/cycle)

0

10

20

30

40

50

60

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

XYZ-UB
KMCR

(b)

Figure 7.4: Average latency over various SIRs for Inverted Pendulum in: (a) 3D Domain
(b) 2D Domain.

105

0.06 0.07 0.08 0.09 0.10 0.11 0.12
Spike Injection Rate (spike/node/cycle)

0

10

20

30

40

50

60

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

XYZ-UB
KMCR

(a)

0.06 0.07 0.08 0.09 0.10 0.11 0.12
Spike Injection Rate (spike/node/cycle)

0

10

20

30

40

50

60

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

KMCR

(b)

Figure 7.5: Average latency over various SIRs for Wisconsin Data-set in: (a) 3D domain
(b) 2D Domain.

106

lum and Wisconsin Data-set benchmarks on 3D domain, respectively.

Performance Evaluation Under Synthetic Benchmark

To further explore the performance of our proposed 3DNoC-SNN system, we used

larger benchmarks to study again the throughput and latency performance. We compared

the performance of the proposed system to other NoC based systems, named Dragon-

fly [178], H-NoC [22], and Cmesh [179].

In this experiment, we used a NN benchmark with 128 neurons in which each neuron

sends its output to all other neurons. The simulation parameters are summarized in Ta-

ble 7.2. For a fair comparison, we select the same number of neurons per router (N/R ratio

= 4) as in Cmesh [179] system. Based on the NN size and the N/R ratio, the network-

on-chip size for each system is determined. For our 3DNoC-SNN, the size is × × 

in which none of the neurons is mapped to the centroid node. This configuration leads to

steady traffic between the different network layers.

Table 7.2: Synthetic simulation setup.

Parameter Dragonfly H-NoC Cmesh 3DNoC-SNN (this work)
N/R ratio 8 8 4 4
NoC size 8×2 8×2 8×4 3×3×4
Flit size 32-bits 32-bits 32-bits 31-bits

Buffer deep 8-flits 8-flits 8-flits 8-flits
Routing Multicast Multicast Multicast Multicast

As shown in Figure 7.8, the latency of the proposed 3DNoC-SNN system is almost

unchanged for low spike injection rates (SIRs), while the average latency of the other sys-

tems (CMesh, H-NoC, andDragonfly) increases with the increase of the SIRs. This result

also proves that our proposed 3DNoC-SNN system can efficiently handle higher spike

injection rates. For example, at an injection rate of . spike/node/cycle, the Dragon-

fly system experiences almost × latency when compared to the proposed 3DNoC-SNN

system. Furthermore, the 3DNoC-SNN system can maintain high SIR before satura-

tion point (8.7% compared to the Dragonfly, thanks to our 3D domain topology and the

107

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
Spike Injection Rate (spike/node/cycle)

0.00

0.05

0.10

0.15

0.20

0.25

Th
ro

ug
hp

ut
 (

sp
ik

e/
no

de
/c

yc
le

)

XYZ-UB
KMCR

(a)

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
Spike Injection Rate (spike/node/cycle)

0.00

0.05

0.10

0.15

0.20

0.25

Th
ro

ug
hp

ut
 (

sp
ik

e/
no

de
/c

yc
le

)

XYZ-UB
KMCR

(b)

Figure 7.6: Average throughput in NoC systems over various SIRs for Inverted Pendulum
in: 3D Domain, (b) 2D Domain.

108

0.06 0.07 0.08 0.09 0.10 0.11
Spike Injection Rate (spike/node/cycle)

0.00

0.05

0.10

0.15

0.20

0.25

Th
ro

ug
hp

ut
 (

sp
ik

e/
no

de
/c

yc
le

)

XYZ-UB
KMCR

(a)

0.06 0.07 0.08 0.09 0.10 0.11
Spike Injection Rate (spike/node/cycle)

0.00

0.05

0.10

0.15

0.20

0.25

Th
ro

ug
hp

ut
 (

sp
ik

e/
no

de
/c

yc
le

)

KMCR

(b)

Figure 7.7: Average throughput in NoC systems over various SIRs for Wisconsin Data-set
in: (a) 3D Domain, (b) 2D Domain.

109

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Spike Injection Rate (spike/node/cycle)

0

20

40

60

80

100

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

)

CMesh
H-NoC
Dragonfly
3DNoC-SNN

Figure 7.8: Average latency evaluation and comparison over various SIRs.

low-latency multicast routing algorithm.

The throughput of the 3DNoC-SNN system under the synthetic benchmark was also

evaluated. Since the average throughput of CMesh, H-NoC, and Dragonfly are not re-

ported in [178], these results are omitted from Figure 7.9. As shown in the figure, there

is an increase in the average throughput when increasing injection rate; it reaches 0.0313

spike/node/cycle before the saturation point.

Hardware Complexity Analysis

Table 7.3 compares a single MC-3DR with several other proposed routers for SNN

systems regarding area cost and power consumption. The routing table size influences the

hardware complexity evaluation result. However, it depends on the selected SNN appli-

cation. In this experiment, we choose each table having 32 entries (equal to the number of

nodes in the synthetic benchmark presented in Section 7.2.2); this is the maximal number

of entries which a table may have. In the synthetic evaluation, the entry count is much

smaller compared to the maximal number. As shown in table 7.3, the hardware com-

plexity of our design is acceptable. In terms of area cost, the proposed router is about

40.9% higher compared to H-NoC cluster router, while smaller around 2.3× than Clos-

110

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Spike Injection Rate (spike/node/cycle)

0.00

0.02

0.04

0.06

0.08

0.10

T
h

ro
u

g
h

p
u

t
(s

p
ik

e
/n

o
d

e
/c

y
c
le

)

3DNoC-SNN

Figure 7.9: Average throughput under the synthetic benchmark over various SIRs.

NoC spine switch. However, it should be mentioned that the hardware complexity of

our router does not include the cost of our previous fault-tolerant techniques which are

used to handling hard faults in the input buffers, crossbar, and links and also soft errors in

the routing pipeline stage. Besides, since the extra computation for finding the shortest-

path nodes in each subset is off-line, the SP-KMCR method does not add extra hardware

resource compared to the KMCR mechanism.

Table 7.3: MC-3DR Hardware Complexity Evaluation and Comparison.

System Topology Area Power
(mm) (mW)

EMBRACE router [123], 90nm 2D Mesh 0.056 1.72
HANA tile router [180], 90nm 2D Mesh 0.156 28.12

H-NoC cluster router [181], 65nm Star-Mesh 0.022 1.19
Clos-NoC spine switch [21], 45nm Custom Clos 0.076 -
Clos-NoC leaf switch [21], 45nm Custom Clos 0.061 -
MC-3DR router, 45nm (this work) 3D Mesh 0.031 1.66

Furthermore, we also evaluated the total power consumption of the 3D systems, as

shown inTable 7.4. For the Inverted Pendulum, XYZ-UB andKMCRconsume 10.41mW

and 10.13mW respectively, while the figures for the Wisconsin dataset are 35.26mW and

111

34.20mW respectively (thanks to the larger network size). This result is due to the pro-

posed routing algorithm which reduces the number of packets injected into the network.

Table 7.4: Power consumption of UCB-XYZ and KMCR under realistic benchmarks.

System XYZ-UB KMCR (this work)
Inverted Pendulum Wisconsin Inverted Pendulum Wisconsin

Power (mW) 10.41 35.26 10.13 34.2

From the performance analytical model, we discovered that the MC routing performs

better than UC based routing in both topologies. From the evaluations, the results also

prove that the MC based routing performs better than UC in terms of spike injection rate

(25%), latency (14.43%), throughput (24.5%), power consumption (3%). This proves that

our posed performance analytical model is an accurate and efficient method for earlier

performance assessment.

7.2.3 Shortest Path K-means Based Multicast Routing Algorithm Evalua-

tion

For SP-KMCR, we also use realistic benchmarks to exploire the performance of the

proposed system. The experiments are also conducted in both 3D and 2D domains. We

compare the SP-KMCR with the previous KMCR and the XYZ-UB in terms of aver-

age latency and throughput. The average communication latency as a function of Spike

Injection Rate (SIR) is shown in Figure 7.10 and 7.11.

For the Inverted Pendulum application in 3D domain, the KMCR show almost the

same average latency as XYZ-UB before reaching its saturation point at SIR = 0.2, as

shown in Fig 7.10. However, the SP-KMCR and KMCR sustain almost the same latency

while providing 25% higher SIR, when compared to XYZ-UB. This can be explained by

the fact that XYZ-UB needs to send multiple copies of a given spike, resulting in high

traffic contention. These results mean that the proposed system can maintain high SNN

traffic such as fast and bursting operation modes of spiking neurons [13].

On the other hand, SP-KMCR reduces the latency by 12.2%when compared toKMCR

before it reaches the saturation point, even with a small network size such as the one used

112

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Spike Injection Rate (spike/node/cycle)

0

10

20

30

40

50

60

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

XYZ-UB
KMCR
SP-KMCR

(a)

0.06 0.07 0.08 0.09 0.10 0.11 0.12
Spike Injection Rate (spike/node/cycle)

0

10

20

30

40

50

60

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

XYZ-UB
KMCR
SP-KMCR

(b)

Figure 7.10: Average latency over various SIRs in 3D domain: (a) Inverted Pendulum (b)
Wisconsin Data-set.

113

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Spike Injection Rate (spike/node/cycle)

0

10

20

30

40

50

60

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

XYZ-UB
KMCR
SP-KMCR

(a)

0.06 0.07 0.08 0.09 0.10 0.11 0.12
Spike Injection Rate (spike/node/cycle)

0

10

20

30

40

50

60

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

KMCR
SP-KMCR

(b)

Figure 7.11: Average latency over various SIRs in 2D domain: (a) Inverted Pendulum (b)
Wisconsin Data-set.

114

for the Inverted Pendulum application. This is due to the fact that source nodes in the

SP-KMCR send spikes to their shortest path node instead of centroid node in KMCR;

resulting in alleviating the congestion in the intermediate node like the centroid. The

evaluation results also demonstrate that the SP-KMCR enables systems, running SNN

applications with a smaller timestep, to improve their acceleration potential. As shown

in Figure 7.11a, the average latency evaluation result for the 2D system configuration is

almost similar to the 3D configuration due to the small, realistic NN benchmark.

For Wisconsin Data-set benchmark in 3D domain, the increase of the network size

causes a higher latency when compared to the Inverted Pendulum application, as shown

in Fig 7.10. The latency also increases with the increase of SIR. The unicast-based system

suffers higher latency compared to the KMCR by about 14.43%, at SIR = 11%. Further-

more, KMCR can support a higher SIR reaching up to 22.22% when compared to the

unicast-based. Compared to the KMCR, the SP-KMCR reduces the average latency by

9.5%, at the highest injection rate. The improvement of SP-KMCR is also kept in 2D

domain (see in Fig 7.11b).

Figure 7.12 and 7.13 show the evaluation and comparison results regarding the average

throughput. The average throughput of both KMCR and SP-KMCR is similar since they

keep the same spike injection rate. The results show that the proposed routing algorithms

achieve 24.5% and 22% higher throughput when compared XYZ-UB mechanism over the

Inverted Pendulum andWisconsinData-set benchmarks on 3D domain, respectively. The

evaluation results also show the proposed multicast routing benefits in terms of efficient

bandwidth when running SNN applications.

In Section 7.2.2, we evaluated and compared the KMCR with three other existing

works: Dragonfly [178], H-NoC [22], and Cmesh [179]. The evaluation results showed

that KMCR can maintain a higher SIR before saturation point, by about 8.7% when

compared to the best algorithm (i.e., Dragonfly) among the three considered works. This

allows us to further believe that the proposed SP-KMCR in this research shows better

performance when compared to Dragonfly, H-NoC, and Cmesh.

115

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
Spike Injection Rate (spike/node/cycle)

0.00

0.05

0.10

0.15

0.20

0.25

Th
ro

ug
hp

ut
 (

sp
ik

e/
no

de
/c

yc
le

)

XYZ-UB
KMCR
SP-KMCR

(a)

0.06 0.07 0.08 0.09 0.10 0.11
Spike Injection Rate (spike/node/cycle)

0.00

0.05

0.10

0.15

0.20

0.25

Th
ro

ug
hp

ut
 (

sp
ik

e/
no

de
/c

yc
le

)

XYZ-UB
KMCR
SP-KMCR

(b)

Figure 7.12: Average throughput over various SIRs in 3D domain: (a) Inverted Pendulum
(b) Wisconsin Data-set.

116

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
Spike Injection Rate (spike/node/cycle)

0.00

0.05

0.10

0.15

0.20

0.25

Th
ro

ug
hp

ut
 (

sp
ik

e/
no

de
/c

yc
le

)

XYZ-UB
KMCR
SP-KMCR

(a)

0.06 0.07 0.08 0.09 0.10 0.11
Spike Injection Rate (spike/node/cycle)

0.00

0.05

0.10

0.15

0.20

0.25

Th
ro

ug
hp

ut
 (

sp
ik

e/
no

de
/c

yc
le

)

KMCR
SP-KMCR

(b)

Figure 7.13: Average throughput over various SIRs in 2D domain: (a) Inverted Pendulum
(b) Wisconsin Data-set.

117

0% 5% 10% 20%
Fault rate

0

10

20

30

40

50

Av
er

ag
e

la
te

nc
y

(c
yc

le
)

KMCR
SP-KMCR
FT-KMCR
FTSP-KMCR

(a)

0% 5% 10% 20%
Fault rate

0

10

20

30

40

50

Av
er

ag
e

la
te

nc
y

(c
yc

le
)

KMCR
SP-KMCR
FT-KMCR
FTSP-KMCR

(b)

Figure 7.14: Average latency over various fault rates: (a) Inverted Pendulum (b) Wisconsin
Data-set.

118

To further explore the improvement of SP-KMCR, we evaluate both KMCR and SP-

KMCR with larger network sizes (× × , × × , and × × ). Here, all nodes in

the first layer send packets to all the other nodes in the second layer. Fig. 7.15 compares

the performance of KMCR and SP-KMCR in terms of average latency. The evaluation

result shows that the SP-KMCR achieves lower average latency compared to KMCR,

at about 10.29%, 16.86%, and 23.57% with 3DNoC sizes of  ×  × ,  ×  × , and

 ×  × , respectively. It means that the proposed SP-KMCR improves the average

latency, especially for large network sizes.

3x3x2 4x4x2 5x5x2
Network size

0

10

20

30

40

50

Av
er

ag
e

la
te

nc
y

(c
yc

le
)

KMCR
SP-KMCR

Figure 7.15: Average latency comparison of KMCR and SP-KMCR over different network sizes.

7.2.4 Fault-tolerant K-means Based Multicast Routing Algorithm Evalua-

tion

In this evaluation, we explore the fault-tolerance potential of the proposed algorithm.

In this experiment, the fault-tolerant mechanism was added to both KMCR and SP-

KMCR baselines, denoted as FT-KMCR and FTSP-KMCR, respectively. We also used

realistic benchmarks for the evaluations. The experiments are taken under variation of

fault injection rate.

119

Performance Evaluation

Latency evaluation:

The average latency as a function of fault rate is shown in Figure 7.14. As represented in

this figure, the FT-KMCR and FTSP-KMCR keep the same latency compared to their

baseline systems when no fault is injected. This is because both fault-tolerant systems

and their baseline use the same routing tree. There is also a slight increase in the average

latency of the FT-KMCR and FTSP-KMCR when increasing the fault rate. This comes

from the fact that the fault-tolerant architectures use backup branches resulting in high

traffic at the remaining healthy links. For Inverted Pendulum, the average latency of the

FT-KMCR increases by about 6.67%, 15.33% and 26.67% at 5%, 10%, and 20% fault

rates, respectively, compared to the KMCR. Here, the maximum spike injection rate is

0.25 spike/node/cycle. Figures for FTSP-KMCR are lower: about 5.61%, 15.10%, and

25.34%. The increase of average latency results in the system running in a longer timestep;

however, the system can correctly run SNN applications at a higher fault rate.

For Wisconsin Data-set, the average latency of FTSP-KMCR increases by 1.27%,

5.77%, and 16.23% when compared to its SP-KMCR baseline system. These evalua-

tion results show that the proposed FTSP-KMCR has lower average latency compared to

the FT-KMCR in both applications. The latency reduction is due to two main reasons:

first, as explained above, the source nodes in FTSP-KMCR send packets to their shortest

path node instead of centroid. Second, since backup routing computations are performed

off-line, the runtime overhead of the proposed fault-tolerant technique is the same as its

baseline. This helps the system to better reduce the effect of timing violations in SNNs

caused by the long latency of recovery mechanisms.

Throughput evaluation:

Figure 7.16 compares the throughput of the proposed and the baseline systems. For

the Inverted Pendulum, the architectures show similar average throughput results when

increasing the fault rate. This is thanks to the redundancy of the architecture used for

120

0% 5% 10% 20%
Fault rate

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (

sp
ik

e/
no

de
/c

yc
le

)

KMCR
SP-KMCR
FT-KMCR
FTSP-KMCR

(a)

0% 5% 10% 20%
Fault rate

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (

sp
ik

e/
no

de
/c

yc
le

)

KMCR
SP-KMCR
FT-KMCR
FTSP-KMCR

(b)

Figure 7.16: Average throughput over various fault rates: (a) Inverted Pendulum (b) Wis-
consin Data-set.

121

backup routing paths. For example, as shown in the right side of Figure 5.4 (b), when the

ZYX version of the DOR is used for determining the primary tree, all intra-layer links in

the first layer (L) are not used. These links can be used as potential backup branches. This

allows the proposed fault-tolerant architecture to maintain the communication traffic at

the highest spike injection rate (i.e., the rate before the saturation point at 0% fault rate).

This is the reason why the throughput is unchanged, while the average latency increases

when raising the fault rate due to the larger hop count of the backup branches. On the

other hand, there is a decrease in the average throughput of the proposed system under

Wisconsin Data-set benchmark when increasing the fault rate. This is caused by the larger

number of neurons used in this application resulting in higher contention in primary and

backup branches. Therefore, the proposed architecture is not able to keep the same spike

injection rate when increasing the fault rate, as it was the case for the Inverted Pendulum

application. At a fault rate of 20%, the throughput of FT-KMCR and FTSP-KMCR

decreases by 49.5% (i.e., the spike injection rate of 0.056 spike/node/cycle) compared to

the system without fault. Nevertheless, the proposed algorithm was capable of correctly

delivering all the spikes to their destinations despite this high fault rate. The evaluation

results also show that a higher fault rate leads to reduction in the spiking frequency, as

analyzed in Chapter 4.

Hardware Complexity Evaluation:

We also evaluated the hardware complexity in terms of area cost and total power con-

sumption of the KMCR and FTSP-KMCR architectures (i.e., the entire network) to

observe the extra hardware resources necessary for the proposed fault-tolerant method, as

shown in Table 7.5. Regarding the area cost, the FTSP-KMCR uses more area than the

KMCR system (about 5.88% and 5.49% for the Inverted Pendulum and the Wisconsin

dataset, respectively). This is also consistent with the power consumption results, in which

the FTSP-KMCR consumes a higher amount of power (about 5.03% and 4.97% for the

Inverted Pendulum and the Wisconsin dataset, respectively). This hardware overhead is

122

Table 7.5: Power consumption of the KMCR and FTSP-KMCR under the benchmarks.

System KMCR FTSP-KMCR
Inv. Pen. Wis. Inv. Pen. Wis.

Area (mm) 0.102 0.346 0.108 0.365
Power (mW) 10.13 34.20 10.64 35.92

mainly due to the extra hardware needed for the backup branches.

Discussion:

We validated the reliability of the proposed architecture to sustain correct inter-neural

communication even at a 20% fault rate, while ensuring small hardware complexity and

graceful performance degradation. Nevertheless, a couple of points need to be discussed

in order to exploit the full potential of the proposed architecture. Hereafter, we address

these challenges and highlight the possible solutions.

The first point to be addressed is the improvement of the proposed fault-tolerant multi-

cast routing algorithm to deal with multiple faults. In particular, when successive multiple

faults occur in the primary branches. In the current implementation, the proposed algo-

rithm should forward spike packets through backup branches for every single faulty link.

In Figure 5.5, for example, if both pb and pb are faulty, incoming spikes from ”grand-

father” are firstly forwarded to ”father” through backup branches, then from ”father” to

”son”. However, this leads to increased latency due to the additional unnecessary hop

travel. This issue can be tackled by using direct backup paths from ”grandfather” (or an-

other ancestor) to ”son”. On the other hand, this method requires that ”grandfather” (or

another ancestor) has to know the status of the primary branches to ”son”. To do so, ”son”

can be continuously monitoring the status of the upstream link. Once detecting a fault

there, the ”son” should start notifying this information to all the routers on its backup

path. In this fashion, whenever and wherever any fault occurs, our algorithm will be able

to reconfigure the network to deliver multicast packets as long as the routing table size

allows it.

The second challenge to be discussed is the implementation capability of large neural

123

networks. Although the neural network size used in the current experiments is relatively

small compared to the popular neural networks, it should be noted that we assumed that

each SNPC has one neuron to evaluate the performance of the proposed communication

architecture. In the final system, after SNPCs are integrated, each of them will contain

256 neurons. At that time, the system can accommodate almost 7000 neurons with a

3D-NoC network size of 3×3×3, as used in the current evaluation. This is a plausible

scenario since, when setting the operation frequency of our 3DFT-SNN to 100MHz, it

takes an average of 2.02ns to deliver a spike at a fault rate of 20%. With 256 neurons in

an SNPC, it takes 517.12ns. This means that the network architecture can still perform

1,933.8× faster than the real-time requirement of SNNs; that is 1ms (spike rate up to

1KHz) [13]. For further applications require hundred thousands or even millions of neu-

rons, our 3DFT-SNN chips are connected together. This is a common design manner of

other SNN systems.

124

8
Conclusions and Future Work

I
n this thesis, we presented algorithms and architectures for spiking neu-

ral network systems based on 3D-NoC, named 3DNoC-SNN. The pro-

posed system shows essential characteristics, such as low latency, high through-

put, high reliability, and low power footprint that make it suitable for large-scale SNN-

based embedded artificial intelligence (AI) implementations.

Before designing and implementing the 3DNoC-SNN, we presented a performance

assessment method to early explore the performance of the 3D mesh-based inter-connect

architecture. The assessment model is taken under different spiking neural network pat-

terns and spike routing method (i. e., unicast (UC), multicast (MC), and broadcast (BC)).

The analyzed results show that multicast is the most suitable for implementing SNNs.

125

Furthermore, we also analyzed the effect of connection faults over the 3DNoC-SNN sys-

tem. As analyzed in the model, faults occurring connections lead to the degradation of

system performance in terms of efficient bandwidth, delivered spike rate and the number

of neurons that can be accommodated in each neural tile. As a result, the system demands

a fault-tolerant technique to deal with this issue, and from there, avoid timing violation

of spiking neuromorphic systems.

To deal with the interconnection challenge of SNN hardware implementations, we pro-

posed a 3D-mesh interconnect architecture and spike multicast routing algorithms. The

routing methods are based on the combination of K-means clustering and the tree-based

multicast routing method. Adopting k-means as a partition method, helps to get over-

all balanced traffic and then improve system performance as well. Furthermore, to deal

with connection faults, we also proposed a new fault-tolerant multicast routing algorithm

that pre-defines primary and backup routing paths. When faults appear in the primary

route, routers switch incoming spike packages via the backup path. This reduces recovery

overhead, average latency, and enabling the system to avoid timing violation of SNNs.

From the performance evaluation, the results have shown the efficiency of the pro-

posed architecture and algorithms. SNN topologies used in the evaluations are consistent

to topologies analyzed in the assessment model, where realistic benchmarks belong to the

randomly connected neural network (RNDC), and the synthetic benchmark is presented

for Hopfield neural network (HF). While k-means based multicast routing algorithm

(KMCR) have shown better result compared to XYZ unicast-based multicast (XYZ-UB)

in terms of spike injection rate (25%), latency (14.43%), throughput (24.5%), shortest-

path k-means based multicast routing algorithm (SP-KMCR) reduced latency of 12.2%

than KMCR. These evaluation results are consistent with the analytical model. Further-

more, both KMCR and SP-KMCR also have good results in the 2D domain and the

proposed system achieved better results compared to other 2D architectures (i.e., CMesh,

H-NoC, Dragonfly), about 8.7% of higher injection rate and lower almost × of latency

compared to Dragonfly. This also proves the results in the analytical model. Regarding

126

fault tolerance, the proposed fault-tolerant multicast routing algorithm enables the system

to sustain correct traffic communication with a fault rate up to 20%, while only suffering

16.23% longer latency and 5.49% extra area cost when compared to the baseline architec-

ture. These evaluation results mentioned above have shown consistency in the analytical

model.

In conclusion, this dissertation has presented algorithms and architectures for spiking

neuromorphic systems. It provided a comprehensive set of analytical assessment, spike

routing algorithms, and architectures for 3D neuromorphic systems. Furthermore, a fault-

tolerant approach also presented to dealing with faults occurring in connections between

neural tiles.

Though, there are still other several issues that need to be addressed. The first one is

how to map spiking neural networks onto the system because it influences the overall

performance of the interconnect architecture. In this thesis, we used the layer-to-layer

mapping method, however, a comprehensive mapping method should be investigated.

The second one is learning implementation which makes impacts on system performance

and hardware complexity as well. Furthermore, the reliability of neuromorphic systems

also needs to be investigated. In this work, we focused on connection faults, but other

parts such as neurons, memories of the system also need to be concerned.

127

List of Publications

Refereed Journals

1. TheH. Vu, Yuichi Okuyama, and Abderazek Ben Abdallah, “Comprehensive An-

alytic Performance Assessment and K-means based Multicast Routing Algorithm

and Architecture for 3D-NoC of Spiking Neurons”, ACM Journal on Emerging

Technologies in Computing Systems, 2019, (in press). doi:10.1145/3340963.

2. TheH.Vu, O. M. Ikechukwu, and Abderazek Ben Abdallah, ”Fault-Tolerant Spike

Routing Algorithm and Architecture for Three Dimensional NoC-Based Neuro-

morphic Systems,” in IEEEAccess, vol. 7, pp. 90436-90452, 2019. doi: 10.1109/AC-

CESS.2019.2925085.

3. The H. Vu, Yuichi Okuyama, and Abderazek Ben Abdallah, “Analytical perfor-

mance assessment and high-throughput low-latency spike routing algorithm for

spiking neural network systems”, The Journal of Supercomputing (2019), (in press).

doi:10.1007/s11227-019-02792-y.

Refereed International Conferences

1. The H. Vu and Abderazek Ben Abdallah, “A Low-latency Tree-based Multicast

Spike Routing for Scalable Multicore Neuromorphic Chips”, ACM 5th Interna-

129

tional Conference ofComputing for Engineering and Sciences, Hammamet, Tunisia,

2019.

2. The H. Vu and Abderazek Ben Abdallah, “Low-Latency K-Means Based Mul-

ticast Routing Algorithm and Architecture for Three Dimensional Spiking Neu-

romorphic Chips,” 2019 IEEE International Conference on Big Data and Smart

Computing (BigComp), Kyoto, Japan, 2019, pp. 1-8. (Best Paper Award Runner-

Up).

3. TheH.Vu, YujiMurakami, andAbderazek BenAbdallah, ””Graceful Fault-Tolerant

On-Chip Spike Routing Algorithm for Mesh-Based Spiking Neural Networks,”

2019 2nd International Conference on Intelligent Autonomous Systems (ICoIAS),

Singapore, Singapore, 2019, pp. 76-80.

4. The H. Vu, R. Murakami, Yuichi Okuyama, and Abderazek Ben Abdallah, ”Ef-

ficient Optimization and Hardware Acceleration of CNNs towards the Design of

a Scalable Neuro inspired Architecture in Hardware,” 2018 IEEE International

Conference on Big Data and Smart Computing (BigComp), Shanghai, 2018, pp.

326-332.

130

References

[1] S. A. McKee, “Reflections on the memory wall,” in Proceedings of the 1st Conference
on Computing Frontiers, ser. CF ’04. New York, NY, USA: ACM, 2004, pp.
162–. [Online]. Available: http://doi.acm.org/./.

[2] M. D. Hill, S. V. Adve, L. Ceze, M. J. Irwin, D. R. Kaeli, M. Martonosi,
J. Torrellas, T. F. Wenisch, D. A. Wood, and K. A. Yelick, “21st century
computer architecture,” CoRR, vol. abs/1609.06756, 2016. [Online]. Available:
http://arxiv.org/abs/.

[3] R. Courtland, “Transistors could stop shrinking in 2021,” IEEE Spectrum, vol. 53,
pp. 9–11, 2016.

[4] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo,
S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk,
R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with
a scalable communication network and interface,” Science, vol. 345, no. 6197, pp.
668–673, 2014.

[5] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE, vol. 78,
no. 10, pp. 1629–1636, Oct 1990.

[6] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015. [Online]. Available: https://doi.org/./
nature

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’12.
USA: Curran Associates Inc., 2012, pp. 1097–1105. [Online]. Available:
http://dl.acm.org/citation.cfm?id=.

131

http://doi.acm.org/10.1145/977091.977115
http://arxiv.org/abs/1609.06756
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://dl.acm.org/citation.cfm?id=2999134.2999257

[8] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with deep
recurrent neural networks,” CoRR, vol. abs/1303.5778, 2013. [Online]. Available:
http://arxiv.org/abs/.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available: http:
//arxiv.org/abs/.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer Vi-
sion (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[11] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean,
and A. Y. Ng, “Building high-level features using large scale unsupervised
learning,” in Proceedings of the 29th International Coference on International
Conference on Machine Learning, ser. ICML’12. USA: Omnipress, 2012, pp.
507–514. [Online]. Available: http://dl.acm.org/citation.cfm?id=.

[12] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks
for energy-efficient object recognition,” Int. J. Comput. Vision, vol. 113, no. 1, pp.
54–66, May 2015.

[13] W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons, Populations,
Plasticity. Cambridge University Press, 2002.

[14] K. Suzuki, Y. Okuyama, and A. B. Abdallah, “Hardware design of a leaky integrate
and fire neuron core towards the design of a low-power neuro-inspired spike-based
multicore soc,” in Information Processing Society Tohoku Branch Conference, February
2018.

[15] J. H Goldwyn, N. S Imennov, M. Famulare, and E. Shea-Brown, “Stochastic dif-
ferential equation models for ion channel noise in hodgkin-huxley neurons,” in
Phys. Rev. E, vol. 83, no. 1, 2011, pp. 4190–4208.

[16] F. A. et. al., “Truenorth: Design and tool flow of a 65 mw 1 million neuron pro-
grammable neurosynaptic chip,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537–1557, Oct 2015.

[17] P. Hasler and L. A. Akers, “Vlsi neural systems and circuits,” in Ninth Annual
International Phoenix Conference on Computers andCommunications. 1990Conference
Proceedings, March 1990, pp. 31–37.

132

http://arxiv.org/abs/1303.5778
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://dl.acm.org/citation.cfm?id=3042573.3042641

[18] J. . Lee and B. J. Sheu, “Parallel digital image restoration using adaptive vlsi neu-
ral chips,” in Proceedings., 1990 IEEE International Conference on Computer Design:
VLSI in Computers and Processors, Sep. 1990, pp. 126–129.

[19] L. Tarassenko, M. Brownlow, G. Marshall, J. Tombs, and A. Murray, “Real-time
autonomous robot navigation using vlsi neural networks,” in Proceedings of the 3rd
International Conference on Neural Information Processing Systems, ser. NIPS’90.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990, pp. 422–428.
[Online]. Available: http://dl.acm.org/citation.cfm?id=.

[20] A. Ben Abdallah, Advanced Multicore Systems-On-Chip Architecture, On-Chip Net-
work, Design. Springer, 2017.

[21] R. Hojabr, M. Modarressi, M. Daneshtalab, A. Yasoubi, and A. Khonsari, “Cus-
tomizing clos network-on-chip for neural networks,” IEEE Transactions on Com-
puters, vol. 66, no. 11, pp. 1865–1877, Nov 2017.

[22] S. Carrillo, J. Harkin, L. J. McDaid, F. Morgan, S. Pande, S. Cawley, and
B. McGinley, “Scalable hierarchical network-on-chip architecture for spiking neu-
ral network hardware implementations,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 24, no. 12, pp. 2451–2461, Dec 2013.

[23] D. Vainbrand and R. Ginosar, “Scalable network-on-chip architecture for
configurable neural networks,” Microprocess. Microsyst., vol. 35, no. 2, pp. 152–166,
Mar. 2011. [Online]. Available: http://dx.doi.org/./j.micpro...

[24] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural networks: A
review,” IEEE Access, vol. 5, pp. 17 322–17 341, 2017.

[25] P. M. Furth and A. G. Andreou, “On fault probabilities and yield models for vlsi
neural networks,” IEEE Journal of Solid-State Circuits, vol. 32, no. 8, pp. 1284–
1287, Aug 1997.

[26] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing,” in
2015 International Joint Conference onNeural Networks (IJCNN), July 2015, pp. 1–8.

[27] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Opportunities and
challenges,” Frontiers in Neuroscience, vol. 12, p. 774, 2018. [Online]. Available:
https://www.frontiersin.org/article/./fnins..

133

http://dl.acm.org/citation.cfm?id=2986766.2986823
http://dx.doi.org/10.1016/j.micpro.2010.08.005
https://www.frontiersin.org/article/10.3389/fnins.2018.00774

[28] M. Wofgang, “Networks of spiking neurons: The third generation of neural
network models,” Trans. Soc. Comput. Simul. Int., vol. 14, no. 4, pp. 1659–1671,
Dec. 1997. [Online]. Available: http://dl.acm.org/citation.cfm?id=.

[29] M. Wolfgang, “On the relevance of time in neural computation and learning,”
in Proceedings of the 8th International Conference on Algorithmic Learning Theory,
ser. ALT ’97. London, UK, UK: Springer-Verlag, 1997, pp. 364–384. [Online].
Available: http://dl.acm.org/citation.cfm?id=.

[30] Broomhead, D. S., and D. Lowe, “Radial basis functions, multi-variable func-
tional interpolation and adaptive networks,” Royal Signals and Radar Establishment
Malvern (United Kingdom), 1988.

[31] H. J. J., “Neurocomputing: Foundations of research,” J. A. Anderson and
E. Rosenfeld, Eds. Cambridge, MA, USA: MIT Press, 1988, ch. Neural
Networks and Physical Systems with Emergent Collective Computational
Abilities, pp. 457–464. [Online]. Available: http://dl.acm.org/citation.cfm?id=
.

[32] H. G. E. and T. J. Sejnowski, “Parallel distributed processing: Explorations in
the microstructure of cognition, vol. 1,” D. E. Rumelhart, J. L. McClelland,
and C. PDP Research Group, Eds. Cambridge, MA, USA: MIT Press, 1986,
ch. Learning and Relearning in Boltzmann Machines, pp. 282–317. [Online].
Available: http://dl.acm.org/citation.cfm?id=.

[33] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–
211, 1990.

[34] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1998.

[35] T. H. Vu, R. Murakami, Y. Okuyama, and A. B. Abdallah, “Efficient optimization
and hardware acceleration of cnns towards the design of a scalable neuro inspired
architecture in hardware,” in 2018 IEEE International Conference on Big Data and
Smart Computing (BigComp), Jan 2018, pp. 326–332.

[36] Y. Berg, R. L. Sigvartsen, T. S. Lande, and A. Abusland, “An analog
feed-forward neural network with on-chip learning,” Analog Integrated Circuits
and Signal Processing, vol. 9, no. 1, pp. 65–75, Jan 1996. [Online]. Available:
https://doi.org/./BF

134

http://dl.acm.org/citation.cfm?id=281543.281637
http://dl.acm.org/citation.cfm?id=647715.735598
http://dl.acm.org/citation.cfm?id=65669.104422
http://dl.acm.org/citation.cfm?id=65669.104422
http://dl.acm.org/citation.cfm?id=104279.104291
https://doi.org/10.1007/BF00158853

[37] I. Bayraktaroglu, A. S. Ogrenci, G. Dundar, S. Balkir, and E. Alpaydin, “Annsys
(an analog neural network synthesis system),” in Proceedings of International Con-
ference on Neural Networks (ICNN’97), vol. 2, June 1997, pp. 910–915 vol.2.

[38] G. Carvajal, M. Figueroa, D. Sbarbaro, and W. Valenzuela, “Analysis and compen-
sation of the effects of analog vlsi arithmetic on the lms algorithm,” IEEE Trans-
actions on Neural Networks, vol. 22, no. 7, pp. 1046–1060, July 2011.

[39] M. . Choi and F. M. A. Salam, “Implementation of feedforward artificial neural
nets with learning using standard cmos vlsi technology,” in 1991., IEEE Interna-
tional Sympoisum on Circuits and Systems, June 1991, pp. 1509–1512 vol.3.

[40] J. Fieres, K. Meier, and J. Schemmel, “A convolutional neural network tolerant
of synaptic faults for low-power analog hardware,” in Artificial Neural Networks
in Pattern Recognition, F. Schwenker and S. Marinai, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 122–132.

[41] J. Fieres, J. Schemmel, and K. Meier, “Training convolutional networks of thresh-
old neurons suited for low-power hardware implementation,” in The 2006 IEEE
International Joint Conference on Neural Network Proceedings, July 2006, pp. 21–28.

[42] K. Madani, P. Garda, and F. Devos, “Two analog counters for neural networks im-
plementation,” in ESSCIRC ’90: Sixteenth European Solid-State Circuits Conference,
vol. 1, Sep. 1990, pp. 233–236.

[43] C. C. Lu, C. Y.Hong, andH.Chen, “A scalable and programmable architecture for
the continuous restricted boltzmann machine in vlsi,” in 2007 IEEE International
Symposium on Circuits and Systems, May 2007, pp. 1297–1300.

[44] C. R. Schneider and H. C. Card, “Analog cmos deterministic boltzmann circuits,”
IEEE Journal of Solid-State Circuits, vol. 28, no. 8, pp. 907–914, Aug 1993.

[45] S. Kumar, K. Forward, and M. Palaniswami, “Performance evaluation of a risc
neuro-processor for neural networks,” in Proceedings of 3rd International Conference
on High Performance Computing (HiPC), Dec 1996, pp. 351–356.

[46] K. Ben Khalifa, B. Girau, F. Alexandre, and M. H. Bedoui, “Parallel fpga imple-
mentation of self-organizing maps,” in Proceedings. The 16th International Confer-
ence on Microelectronics, 2004. ICM 2004., Dec 2004, pp. 709–712.

[47] H. Tamukoh and M. Sekine, “A dynamically reconfigurable platform for self-
organizing neural network hardware,” in Neural Information Processing. Models and

135

Applications, K. W. Wong, B. S. U. Mendis, and A. Bouzerdoum, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 439–446.

[48] S. P. Adhikari, H. Kim, R. K. Budhathoki, C. Yang, and L. O. Chua, “A circuit-
based learning architecture for multilayer neural networks with memristor bridge
synapses,” IEEETransactions onCircuits and Systems I: Regular Papers, vol. 62, no. 1,
pp. 215–223, Jan 2015.

[49] Y. Dong, S. Bagga, and W. Serdijn, “An inherently linear cmos multiplier,” in
Proceedings of the program for research on integrated systems and circuits, 01 2004, pp.
483–486.

[50] A. R. Omondi and J. C. Rajapakse, FPGA Implementations of Neural Networks,
1st ed. Springer Publishing Company, Incorporated, 2010.

[51] V. Salapura, M. Gschwind, and O. Maischberger, “A fast fpga implementation of
a general purpose neuron,” in Proceedings of the 4th International Workshop on Field-
Programmable Logic and Applications: Field-Programmable Logic, Architectures,
Synthesis and Applications, ser. FPL ’94. Berlin, Heidelberg: Springer-Verlag,
1994, pp. 175–182. [Online]. Available: http://dl.acm.org/citation.cfm?id=
.

[52] A. Muthuramalingam, S. Himavathi, and E. Srinivasan, “Neural network imple-
mentation using fpga: Issues and application,” Int. J. Inform. Technol., vol. 4, pp.
2–12, 11 2007.

[53] J. Shawe-Taylor, P. Jeavons, and M. Van Daalen, “Probabilistic bit stream neural
chip: Theory,” Connection Science, vol. 3, pp. 317–328, 01 1991.

[54] M. Skrbek and M. Snorek, “Shift-add neural architecture,” in ICECS’99. Proceed-
ings of ICECS ’99. 6th IEEE International Conference on Electronics, Circuits and
Systems (Cat. No.99EX357), vol. 1, Sep. 1999, pp. 411–414 vol.1.

[55] H. P. Graf, L. D. Jackel, R. E. Howard, B. Straughn, J. S. Denker,
W. Hubbard, D. M. Tennant, and D. Schwartz, “Vlsi implementation of a
neural network memory with several hundreds of neurons,” in AIP Conference
Proceedings 151 on Neural Networks for Computing. Woodbury, NY, USA:
American Institute of Physics Inc., 1987, pp. 182–187. [Online]. Available:
http://dl.acm.org/citation.cfm?id=.

136

http://dl.acm.org/citation.cfm?id=647921.740703
http://dl.acm.org/citation.cfm?id=647921.740703
http://dl.acm.org/citation.cfm?id=24140.24167

[56] A. J. Agranat, C. F. Neugebauer, and A. Yariv, “A ccd based neural network inte-
grated circuit with 64k analog programmable synapses,” in 1990 IJCNN Interna-
tional Joint Conference on Neural Networks, June 1990, pp. 551–555 vol.2.

[57] T. Morishita, Y. Tamura, and T. Otsuki, “A bicmos analog neural network with
dynamically updated weights,” in 1990 37th IEEE International Conference on Solid-
State Circuits, Feb 1990, pp. 142–143.

[58] Eberhard, Duong, and Thakoor, “Design of parallel hardware neural network sys-
tems from custom analog vlsi ’building block’ chips,” in International 1989 Joint
Conference on Neural Networks, 1989, pp. 183–190 vol.2.

[59] Holler, Tam, Castro, and Benson, “An electrically trainable artificial neural network
(etann) with 10240 ’floating gate’ synapses,” in International 1989 Joint Conference
on Neural Networks, 1989, pp. 191–196 vol.2.

[60] B. M. Wilamowski, J. Binfet, and O. Kaynak, “Vlsi implementation of neural net-
works,” International journal of neural systems, vol. 103, pp. 191–197, 2000.

[61] C. Mead, Analog VLSI and Neural Systems. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1989.

[62] M. Bohrn, L. Fujcik, and R. Vrba, “Field programmable neural array for feed-
forward neural networks,” in 2013 36th International Conference on Telecommunica-
tions and Signal Processing (TSP), July 2013, pp. 727–731.

[63] M. D. Corp., Md1220 neural bit slice. data sheet, lake Mary, 1990.

[64] D. Kim, H. Kim, H. Kim, G. Han, and D. Chung, “A simd neural network proces-
sor for image processing,” in Advances in Neural Networks – ISNN 2005, J. Wang,
X.-F. Liao, and Z. Yi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 665–672.

[65] N. Bruels, “Ma16 - programmable vlsi array processor for neuronal networks and
matrix-based signal processing, user description,” in Tech. Rep. 1.3. Siemens AG,
Cor- porate Research and Development Division, Munich, Germany, 1993.

[66] M. Glesner and W. Pochmuller, Neurocomputers: An overview of Neural Networks
in VLSI. Chapman and Hall, London, 1994.

[67] P. Ienne, “Digital hardware architectures for neural networks,” n SPEEDUP Jour-
nal, vol. Vol. 9, No. 1, pp. 18–25, 1995.

137

[68] D. Yiping and W. Takahiro, “High performance noc architecture for two hidden
layers bp neural network,” in 2008 International SoCDesign Conference, vol. 01, Nov
2008, pp. I–269–I–272.

[69] S. Rueping, K. Goser, and U. Rueckert, “A chip for self-organizing feature maps,”
in Proceedings of the Fourth International Conference on Microelectronics for Neural
Networks and Fuzzy Systems, Sep. 1994, pp. 26–33.

[70] A. A. Dibazar, A. Bangalore, , S. George, W. Yamada, and T. W. Berger, “Hard-
ware implementation of dynamic synapse neural networks for acoustic sound recog-
nition,” inThe 2006 IEEE International Joint Conference on Neural Network Proceed-
ings, July 2006, pp. 2015–2022.

[71] M. Gschwind, V. Salapura, and O. Maischberger, “Space efficient neural net im-
plementation,” in Proc. of the Second ACM Workshop on Field-Programmable Gate
Arrays. CONCLUSION, 1994.

[72] M. Krips, T. Lammert, and A. Kummert, “Fpga implementation of a neural net-
work for a real-time hand tracking system,” in Proceedings First IEEE International
Workshop on Electronic Design, Test and Applications ’2002, Jan 2002, pp. 313–317.

[73] F. Yang and M. Paindavoine, “Implementation of an rbf neural network on embed-
ded systems: real-time face tracking and identity verification,” IEEE Transactions
on Neural Networks, vol. 14, no. 5, pp. 1162–1175, Sep. 2003.

[74] J. Liu, M. A. Brooke, and K. Hirotsu, “A cmos feedforward neural-network chip
with on-chip parallel learning for oscillation cancellation,” IEEE Transactions on
Neural Networks, vol. 13, no. 5, pp. 1178–1186, Sep. 2002.

[75] B. E. Brown, X. Yu, and S. L. Garverick, “Mixed-mode analog vlsi continuous-
time recurrent neural network,” 01 2004, pp. 398–403.

[76] J. O’Keefe, “Hippocampus, theta, and spatial memory,” Current Opinion
in Neurobiology, vol. 3, no. 6, pp. 917 – 924, 1993. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S

[77] E.M. Izhikevich, “Whichmodel to use for cortical spiking neurons?” IEEETrans-
actions on Neural Networks, vol. 15, no. 5, pp. 1063–1070, Sept 2004.

[78] A. Hodgkin and A. Huxley, “A quantitative description of membrane current and
its application to conduction and excitation in nerve,” The Journal of Physiology, vol.
117, pp. 500–544, 1952.

138

http://www.sciencedirect.com/science/article/pii/095943889390163S

[79] T. Pfeil, “Exploring the potential of brain-inspired computing,” 2015. [Online].
Available: http://archiv.ub.uni-heidelberg.de/volltextserver/id/eprint/

[80] E. M. Izhikevich, “Simple model of spiking neurons,” IEEETransactions on Neural
Networks, vol. 14, no. 6, pp. 1569–1572, Nov 2003.

[81] N. Burkitt, “A review of the integrate-and-fire neuron model: I. homogeneous
synaptic input,” Biol. Cybern., vol. 95, no. 1, pp. 1–19, Jun 2006.

[82] Y. Dan and M. ming Poo, “Spike timing-dependent plasticity of neural circuits,”
Neuron, vol. 44, no. 1, pp. 23–30, sep 2004.

[83] and A. Murray, F. Worgotter, K. Cameron, and V. Boonsobhak, “A neuromor-
phic depth-from-motion vision model with stdp adaptation,” IEEE Transactions
on Neural Networks, vol. 17, no. 2, pp. 482–495, March 2006.

[84] X. Jin, A. Rast, F. Galluppi, S. Davies, and S. Furber, “Implementing spike-
timing-dependent plasticity on spinnaker neuromorphic hardware,” in The 2010
International Joint Conference on Neural Networks (IJCNN), July 2010, pp. 1–8.

[85] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through
spike-timing-dependent synapticplasticity,” Nature Neuroscience, vol. 3, no. 9, pp.
919–926, sep 2000.

[86] G.-Q. Bi and H.-X. Wang, “Temporal asymmetry in spike timing-dependent
synaptic plasticity,” Physiology & Behavior, vol. 77, no. 4, pp. 551 –
555, 2002. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S

[87] A. Cassidy, A. G. Andreou, and J. Georgiou, “A combinational digital logic ap-
proach to stdp,” in 2011 IEEE International Symposium of Circuits and Systems (IS-
CAS), May 2011, pp. 673–676.

[88] C. Frenkel, M. Lefebvre, J. Legat, and D. Bol, “A 0.086-mm 12.7-pj/sop 64k-
synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-
nm cmos,” IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 1, pp.
145–158, Feb 2019.

[89] S. Yin, S. K. Venkataramanaiah, G. K. Chen, R. Krishnamurthy, Y. Cao,
C. Chakrabarti, and J. Seo, “Algorithm and hardware design of discrete-time
spiking neural networks based on back propagation with binary activations,” CoRR,
vol. abs/1709.06206, 2017. [Online]. Available: http://arxiv.org/abs/.

139

http://archiv.ub.uni-heidelberg.de/volltextserver/id/eprint/18258
http://www.sciencedirect.com/science/article/pii/S0031938402009332
http://www.sciencedirect.com/science/article/pii/S0031938402009332
http://arxiv.org/abs/1709.06206

[90] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing,” in
2015 International Joint Conference onNeural Networks (IJCNN), July 2015, pp. 1–8.

[91] P. Merolla, J. Arthur, R. Alvarez, J. Bussat, and K. Boahen, “A multicast tree router
for multichip neuromorphic systems,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 61, no. 3, pp. 820–833, March 2014.

[92] K. A. Boahen, Communicating Neuronal Ensembles between Neuromorphic
Chips. Boston, MA: Springer US, 1998, pp. 229–259. [Online]. Available:
https://doi.org/./----_

[93] J. Park, T. Yu, C. Maier, S. Joshi, and G. Cauwenberghs, “Live demonstration:
Hierarchical address-event routing architecture for reconfigurable large scale neu-
romorphic systems,” in 2012 IEEE International Symposium on Circuits and Systems,
May 2012, pp. 707–711.

[94] A. Mortara, E. A. Vittoz, and P. Venier, “A communication scheme for analog vlsi
perceptive systems,” IEEE Journal of Solid-State Circuits, vol. 30, no. 6, pp. 660–
669, June 1995.

[95] D. Vainbrand and R. Ginosar, “Network-on-chip architectures for neural net-
works,” in 2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip,
May 2010, pp. 135–144.

[96] S. R. Deiss, R. J. Douglas, and A. M. Whatley, “Pulsed neural networks,”
W. Maass and C. M. Bishop, Eds. Cambridge, MA, USA: MIT Press, 1999, ch.
A Pulse-coded Communications Infrastructure for Neuromorphic Systems, pp.
157–178. [Online]. Available: http://dl.acm.org/citation.cfm?id=.

[97] F. Sargeni and V. Bonaiuto, “An interconnection architecture for integrate and fire
neuromorphic multi-chip networks,” in 2009 52nd IEEE International Midwest
Symposium on Circuits and Systems, Aug 2009, pp. 877–880.

[98] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[99] S. Furber, “Large-scale neuromorphic computing systems,” Journal of Neural En-
gineering, vol. 13, no. 5, p. 051001, 2016.

[100] A. Jiménez-Fernández, E. Cerezuela-Escudero, L. Miró-Amarante, M. J.
Domínguez-Morales, F. de Asís Gómez-Rodríguez, A. Linares-Barranco, and

140

https://doi.org/10.1007/978-0-585-28001-1_11
http://dl.acm.org/citation.cfm?id=296533.296540

G. Jiménez-Moreno, “A binaural neuromorphic auditory sensor for fpga: A spike
signal processing approach,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 28, no. 4, pp. 804–818, April 2017.

[101] J. A. Bailey, P. R. Wilson, A. D. Brown, and J. Chad, “Behavioural simulation
and synthesis of biological neuron systems using vhdl,” in 2008 IEEE International
Behavioral Modeling and Simulation Workshop, Sep. 2008, pp. 7–12.

[102] T. S. T. Mak, G. Rachmuth, K. Lam, and C. Poon, “A component-based fpga
design framework for neuronal ion channel dynamics simulations,” IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 4, pp. 410–418,
Dec 2006.

[103] S. Yang, J. Wang, B. Deng, C. Liu, H. Li, C. Fietkiewicz, and K. A. Loparo,
“Real-time neuromorphic system for large-scale conductance-based spiking neural
networks,” IEEE Transactions on Cybernetics, pp. 1–14, 2018.

[104] T. Kaulmann, M. Ferber, U. Witkowski, and U. Rückert, “Analog vlsi
implementation of adaptive synapses in pulsed neural networks,” in Proceedings
of the 8th International Conference on Artificial Neural Networks: Computational
Intelligence and Bioinspired Systems, ser. IWANN’05. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 455–462. [Online]. Available: http://dx.doi.org/.
/_

[105] R. A. Nawrocki, S. E. Shaheen, and R. M. Voyles, “A neuromorphic architecture
from single transistor neurons with organic bistable devices for weights,” in The
2011 International Joint Conference on Neural Networks, July 2011, pp. 450–456.

[106] T. Yu and G. Cauwenberghs, “Analog vlsi neuromorphic network with pro-
grammable membrane channel kinetics,” in 2009 IEEE International Symposium
on Circuits and Systems, May 2009, pp. 349–352.

[107] J. Schemmel, A. Grübl, S. Hartmann, A. Kononov, C. Mayr, K. Meier, S. Millner,
J. Partzsch, S. Schiefer, S. Scholze, R. Schüffny, and M. Schwartz, “Live demon-
stration: A scaled-down version of the brainscales wafer-scale neuromorphic sys-
tem,” in 2012 IEEE International Symposium on Circuits and Systems, May 2012,
pp. 702–702.

[108] S. Nease, S. George, P. Hasler, S. Koziol, and S. Brink, “Modeling and imple-
mentation of voltage-mode cmos dendrites on a reconfigurable analog platform,”

141

http://dx.doi.org/10.1007/11494669_56
http://dx.doi.org/10.1007/11494669_56

IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 1, pp. 76–84, Feb
2012.

[109] E. Farquhar, C. Gordon, and P. Hasler, “A field programmable neural array,” in
2006 IEEE International Symposium on Circuits and Systems, May 2006, pp. 4 pp.–
4117.

[110] M. Liu, H. Yu, and W. Wang, “Fpaa based on integration of cmos and nanojunc-
tion devices for neuromorphic applications,” inNano-Net, M. Cheng, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 44–48.

[111] R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S.
Seung, “Digital selection and analogue amplification coexist in a cortex-inspired
silicon circuit,” Nature, vol. 405, no. 6789, pp. 947–951, jun 2000.

[112] S. Han, “Biologically plausible vlsi neural network implementation with asyn-
chronous neuron and spike-based synapse,” in Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005., vol. 5, July 2005, pp. 3244–3248 vol. 5.

[113] D. Del Corso and L. M. Reyneri, “Mixing analog and digital techniques for silicon
neural networks,” in IEEE International Symposium on Circuits and Systems, May
1990, pp. 2446–2449 vol.3.

[114] S. Satyanarayana, Y. P. Tsividis, and H. P. Graf, “A reconfigurable vlsi neural net-
work,” IEEE Journal of Solid-State Circuits, vol. 27, no. 1, pp. 67–81, Jan 1992.

[115] G. Charles, C. Gordon, and W. E. Alexander, “An implementation of a biological
neural model using analog-digital integrated circuits,” in 2008 IEEE International
Behavioral Modeling and Simulation Workshop, Sep. 2008, pp. 78–83.

[116] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. M.
Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid:
A mixed-analog-digital multichip system for large-scale neural simulations,” Pro-
ceedings of the IEEE, vol. 102, no. 5, pp. 699–716, May 2014.

[117] J. S. et. al., “Truenorth ecosystem for brain-inspired computing: Scalable systems,
software, and applications,” in SC ’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, Nov 2016, pp.
130–141.

[118] M. A. Petrovici, B. Vogginger, P. Müller, O. Breitwieser, M. Lundqvist, L. Muller,
M. Ehrlich, A. Destexhe, A. Lansner, R. Schüffny, J. Schemmel, and K. Meier,

142

“Characterization and compensation of network-level anomalies in mixed-signal
neuromorphic modeling platforms,” PLOS ONE, vol. 9, no. 10, pp. 1–30, 10
2014. [Online]. Available: https://doi.org/./journal.pone.

[119] J. Wu and S. Furber, “A multicast routing scheme for a universal spiking neural
network architecture,”TheComputer Journal, vol. 53, no. 3, pp. 280–288, Apr 2009.

[120] M. Henry, “The blue brain project,” Nature Reviews Neuroscience, vol. 2, no. 7, pp.
153–159, 2006.

[121] F. Naveros, N. R. Luque, J. A. Garrido, R. R. Carrillo, M. Anguita, and E. Ros,
“A spiking neural simulator integrating event-driven and time-driven computation
schemes using parallel cpu-gpu co-processing: A case study,” IEEETransactions on
Neural Networks and Learning Systems, vol. 26, no. 7, pp. 1567–1574, July 2015.

[122] J. Lazzaro and J. Wawrzynek, “A multi-sender asynchronous extension to the aer
protocol,” in Proceedings Sixteenth Conference on Advanced Research in VLSI, Mar
1995, pp. 158–169.

[123] S. Carrillo, J. Harkin, L. McDaid, S. Pande, S. Cawley, B. McGinley, and F. Mor-
gan, “Advancing interconnect density for spiking neural network hardware im-
plementations using traffic-aware adaptive network-on-chip routers,” Neural Net-
works, vol. 33, pp. 42 – 57, 2012.

[124] T. H. Vu, Y. Okuyama, and A. B. Abdallah, “An efficient k-means based multicast
routing algorithm and architecture for spiking neural network systems,” in 2019
IEEE International Conference on Big Data and Smart Computing (BigComp), vol.
in press, Fab 2019.

[125] K. A. Boahen, “Point-to-point connectivity between neuromorphic chips using
address events,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 47, no. 5, pp. 416–434, May 2000.

[126] S. Liu, J. Kramer, G. Indiveri, T. Delbrück, T. Burg, and R. J. Douglas,
“Orientation-selective avlsi spiking neurons,” Neural Networks, vol. 14, no. 6-7,
pp. 629–643, 2001.

[127] S.Moradi, N.Qiao, F. Stefanini, andG. Indiveri, “A scalablemulticore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous
processors (dynaps),” IEEE Transactions on Biomedical Circuits and Systems, vol. 12,
no. 1, pp. 106–122, Feb 2018.

143

https://doi.org/10.1371/journal.pone.0108590

[128] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog neural
networks,” in 2008 IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence), June 2008, pp. 431–438.

[129] B. Belhadj, A. Valentian, P. Vivet, M. Duranton, L. He, and O. Temam, “The
improbable but highly appropriate marriage of 3d stacking and neuromorphic ac-
celerators,” in 2014 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), Oct 2014, pp. 1–9.

[130] M. A. Ehsan, Z. Zhou, and Y. Yi, “Modeling and analysis of neuronal membrane
electrical activities in 3d neuromorphic computing system,” in 2017 IEEE Interna-
tional Symposium on Electromagnetic Compatibility Signal/Power Integrity (EMCSI),
Aug 2017, pp. 745–750.

[131] D. Xiang and K. Shen, “A new unicast-based multicast scheme for network-on-
chip router and interconnect testing,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 21, no. 2, pp. 24:1–24:23, Jan. 2016.

[132] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, J. Flich, and H. Tenhunen,
“Path-based partitioning methods for 3d networks-on-chip with minimal adaptive
routing,” IEEETransactions onComputers, vol. 63, no. 3, pp. 718–733, March 2014.

[133] F. A. Samman, T. Hollstein, and M. Glesner, “Adaptive and deadlock-free tree-
based multicast routing for networks-on-chip,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 18, no. 7, pp. 1067–1080, July 2010.

[134] X. Lin and L. M. Ni, “Multicast communication in multicomputer networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 10, pp. 1105–
1117, Oct 1993.

[135] C.H. Sequin and R.D. Clay, “Fault tolerance in artificial neural networks,” in 1990
IJCNN International Joint Conference on Neural Networks, June 1990, pp. 703–708
vol.1.

[136] T. Poggio and F. Girosi, “Networks for approximation and learning,” Proceedings of
the IEEE, vol. 78, no. 9, pp. 1481–1497, Sep. 1990.

[137] Naihong Wei, Shiyuan Yang, and Shibai Tong, “A modified learning algorithm
for improving the fault tolerance of bp networks,” in Proceedings of International
Conference on Neural Networks (ICNN’96), vol. 1, June 1996, pp. 247–252 vol.1.

144

[138] A. Hashmi, H. Berry, O. Temam, and M. Lipasti, “Automatic abstraction and
fault tolerance in cortical microachitectures,” in 2011 38th Annual International
Symposium on Computer Architecture (ISCA), June 2011, pp. 1–10.

[139] J. Deng, Y. Rang, Z. Du, Y. Wang, H. Li, O. Temam, P. Ienne, D. Novo, X. Li,
Y. Chen, and C. Wu, “Retraining-based timing error mitigation for hardware
neural networks,” in 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), March 2015, pp. 593–596.

[140] M. Naeem, L. J. McDaid, J. Harkin, J. J. Wade, and J. Marsland, “On the role of
astroglial syncytia in self-repairing spiking neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 26, no. 10, pp. 2370–2380, Oct 2015.

[141] L. . Chu and B. W. Wah, “Fault tolerant neural networks with hybrid redundancy,”
in 1990 IJCNN International Joint Conference on Neural Networks, June 1990, pp.
639–649 vol.2.

[142] M. D. Emmerson and R. I. Damper, “Determining and improving the fault toler-
ance of multilayer perceptrons in a pattern-recognition application,” IEEE Trans-
actions on Neural Networks, vol. 4, no. 5, pp. 788–793, Sep. 1993.

[143] C. Khunasaraphan, K. Vanapipat, and C. Lursinsap, “Weight shifting techniques
for self-recovery neural networks,” IEEE Transactions on Neural Networks, vol. 5,
no. 4, pp. 651–658, July 1994.

[144] J. Liu, J. Harkin, L. P. Maguire, L. J. McDaid, and J. J. Wade, “Spanner: A
self-repairing spiking neural network hardware architecture,” IEEETransactions on
Neural Networks and Learning Systems, vol. 29, no. 4, pp. 1287–1300, April 2018.

[145] S. Piche, “Robustness of feedforward neural networks,” in [Proceedings 1992]
IJCNN International Joint Conference on Neural Networks, vol. 2, June 1992, pp.
346–351 vol.2.

[146] Ching-Tai Chin, K. Mehrotra, C. K. Mohan, and S. Rankat, “Training techniques
to obtain fault-tolerant neural networks,” in Proceedings of IEEE 24th International
Symposium on Fault- Tolerant Computing, June 1994, pp. 360–369.

[147] R. Rojas, Neural Networks: A Systematic Introduction. Berlin, Heidelberg:
Springer-Verlag, 1996.

145

[148] R. Legenstein and W. Maass, “Edge of chaos and prediction of computational
performance for neural circuit models,” Neural Netw., vol. 20, no. 3, pp. 323–334,
Apr. 2007. [Online]. Available: http://dx.doi.org/./j.neunet...

[149] D. K. Nam, M. Michael, O. Yuichi, and A. A. Ben, “A low-overhead
soft–hard fault-tolerant architecture, design and management scheme for reliable
high-performance many-core 3d-noc systems,” The Journal of Supercomputing,
vol. 73, no. 6, pp. 2705–2729, Jun 2017. [Online]. Available: https:
//doi.org/./s---

[150] A. B. Ahmed and A. B. Abdallah, “Graceful deadlock-free fault-tolerant
routing algorithm for 3d network-on-chip architectures,” Journal of Parallel and
Distributed Computing, vol. 74, no. 4, pp. 2229 – 2240, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S

[151] A. Ben Ahmed and A. Ben Abdallah, “Architecture and design of high-
throughput, low-latency, and fault-tolerant routing algorithm for 3d-network-on-
chip (3d-noc),” The Journal of Supercomputing, vol. 66, no. 3, pp. 1507–1532, Dec
2013. [Online]. Available: https://doi.org/./s---

[152] A. B. Ahmed and A. B. Abdallah, “La-xyz: Low latency, high throughput look-
ahead routing algorithm for 3d network-on-chip (3d-noc) architecture,” in 2012
IEEE6th International Symposium onEmbeddedMulticore SoCs, Sep. 2012, pp. 167–
174.

[153] ——, “Low-overhead routing algorithm for 3d network-on-chip,” in 2012 Third
International Conference on Networking and Computing, Dec 2012, pp. 23–32.

[154] B. Parhami, “Exact formulas for the average internode distance in mesh and binary
tree networks,” Computer Science and Information Technology, vol. 1, pp. 165–168,
2013.

[155] T. H. Vu, Y. Okuyama, and A. B. Abdallah, “Analytical performance assessment
and high-throughput low-latency spike routing algorithm for spiking neural net-
work systems,” The Journal of Supercomputing, 2019, (in press).

[156] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, pp.
268–276, mar 2001. [Online]. Available: https://doi.org/.%F

[157] T. H. Vu, Y. Okuyama, and A. B. Abdallah, “Comprehensive analytic performance
assessment and k-means based multicast routing algorithm and architecture for

146

http://dx.doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1007/s11227-016-1951-0
https://doi.org/10.1007/s11227-016-1951-0
http://www.sciencedirect.com/science/article/pii/S0743731514000045
https://doi.org/10.1007/s11227-013-0940-9
https://doi.org/10.1038%2F35065725

3d-noc of spiking neurons,” ACM Journal on Emerging Technologies in Computing
Systems, 2019, (in press).

[158] T. H. Vu, Y. Murakami, and A. B. Abdallah, “A low-latency tree-based multi-
cast spike routing for scalable multicore neuromorphic chips,” in ACM 5th Inter-
national Conference of Computing for Engineering and Sciences, Hammamet, Tunisia,
July 2019.

[159] T. H. Vu, O. M. Ikechukwu, and A. B. Abdallah, “Fault-tolerant spike routing al-
gorithm and architecture for three dimensional noc-based neuromorphic systems,”
IEEE Access, vol. 7, pp. 90 436–90 452, 2019.

[160] T. H. Vu, Y. Murakami, and A. B. Abdallah, “Graceful fault-tolerant on-chip spike
routing algorithm for mesh-based spiking neural networks,” in 2019 2nd Interna-
tional Conference on Intelligent Autonomous Systems (ICoIAS), Singapore, February
2019.

[161] C.-H. Chao, K.-Y. Jheng, H.-Y. Wang, J.-C. Wu, and A.-Y. Wu, “Traffic- and
thermal-aware run-time thermal management scheme for 3d noc systems,” in
Proceedings of the 2010 Fourth ACM/IEEE International Symposium on Networks-
on-Chip, ser. NOCS ’10. Washington, DC, USA: IEEE Computer Society,
2010, pp. 223–230. [Online]. Available: http://dx.doi.org/./NOCS..

[162] A. B. Ahmed, A. B. Ahmed, and A. B. Abdallah, “Deadlock-recovery support
for fault-tolerant routing algorithms in 3d-noc architectures,” in 2013 IEEE 7th
International Symposium on Embedded Multicore Socs, Sep. 2013, pp. 67–72.

[163] A. B. Ahmed, T. Ochi, S. Miura, and A. B. Abdallah, “Run-time monitoring
mechanism for efficient design of application-specific noc architectures in multi/-
manycore era,” in 2013 Seventh International Conference on Complex, Intelligent, and
Software Intensive Systems, July 2013, pp. 440–445.

[164] B. A. Akram and B. A. Abderazek, “Adaptive fault-tolerant architecture and rout-
ing algorithm for reliable many-core 3d-noc systems,” J. Parallel Distrib. Comput.,
vol. 93, no. C, pp. 30–43, Jul. 2016.

[165] K. N. Dang, A. B. Ahmed, Y. Okuyama, and B. A. Abderazek, “Scalable design
methodology and online algorithm for tsv-cluster defects recovery in highly reliable
3d-noc systems,” IEEE Transactions on Emerging Topics in Computing, pp. 1–1,
2017.

147

http://dx.doi.org/10.1109/NOCS.2010.32

[166] K. N. Dang, A. Ben Ahmed, X. Tran, Y. Okuyama, and A. Ben Abdallah, “A
comprehensive reliability assessment of fault-resilient network-on-chip using an-
alytical model,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 11, pp. 3099–3112, Nov 2017.

[167] A. Mortara and E. A. Vittoz, “A communication architecture tailored for analog
vlsi artificial neural networks: intrinsic performance and limitations,” IEEETrans-
actions on Neural Networks, vol. 5, no. 3, pp. 459–466, May 1994.

[168] K. N. Dang, M. Meyer, Y. Okuyama, and A. B. Abdallah, “Reliability assessment
and quantitative evaluation of soft-error resilient 3d network-on-chip systems,” in
2016 IEEE 25th Asian Test Symposium (ATS), Nov 2016, pp. 161–166.

[169] D. N. Khanh, A. A. Ben, A. A. Ben, and T. X. T, “Tsv-ias: Analytic analysis and
low-cost non-preemptive on-line detection and correction method for tsv defects,”
in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2019.

[170] Y. Ji, Y. Zhang, H. Liu, and W. Zheng, “Optimized mapping spiking neural net-
works onto network-on-chip,” Algorithms and Architectures for Parallel Processing,
pp. 38–52, 2016.

[171] E. Stromatias, M. Soto, T. Serrano-Gotarredona, and B. Linares-Barranco, “An
event-driven classifier for spiking neural networks fed with synthetic or dynamic
vision sensor data,” Frontiers in Neuroscience, vol. 11, p. 350, 2017.

[172] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and
G. Indiveri, “A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128k synapses,” Frontiers in Neuroscience, vol. 9, p.
141, 2015.

[173] NanGate Inc., “Nangate Open Cell Library 45 nm,” http://www.nangate.com/,
(accessed 2019.02.25).

[174] NCSU Electronic Design Automation, “FreePDK3D45 3D-IC process de-
sign kit,” http://www.eda.ncsu.edu/wiki/FreePDKD:Contents, (accessed
2019.02.25).

[175] S. Pande, F. Morgan, S. Cawley, B. McGinley, S. Carrillo, J. Harkin, and L. Mc-
Daid, “Embrace-sysc for analysis of noc-based spiking neural network architec-
tures,” in 2010 International Symposium on System on Chip, Sept 2010, pp. 139–145.

148

http://www.nangate.com/
http://www.eda.ncsu.edu/wiki/FreePDK3D45:Contents

[176] S. Cawley, F. Morgan, B. Mcginley, S. Pande, L. Mcdaid, S. Carrillo, and
J. Harkin, “Hardware spiking neural network prototyping and application,” Ge-
netic Programming and Evolvable Machines, vol. 12, no. 3, pp. 257–280, Sep. 2011.

[177] E. Pasero and M. Perri, “Hw-sw codesign of a flexible neural controller through a
fpga-based neural network programmed in vhdl,” in 2004 IEEE International Joint
Conference on Neural Networks (IEEE Cat. No.04CH37541), vol. 4, July 2004, pp.
3161–3165 vol.4.

[178] N. Akbari and M. Modarressi, “A high-performance network-on-chip topology
for neuromorphic architectures,” in 2017 IEEE International Conference on Compu-
tational Science and Engineering (CSE) and IEEE International Conference on Em-
bedded and Ubiquitous Computing (EUC), vol. 2, July 2017, pp. 9–16.

[179] Y. Dong, C. Li, Z. Lin, and T. Watanabe, “Multiple network-on-chip model for
high perfor- mance neural network,” Journal of Semiconductor Technology and Science,
vol. 10, 2010.

[180] J. Liu, J. Harkin, L. P. Maguire, L. J. McDaid, J. J. Wade, and G. Martin, “Scal-
able networks-on-chip interconnected architecture for astrocyte-neuron networks,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12, pp.
2290–2303, Dec 2016.

[181] S. Carrillo, J. Harkin, L. J. McDaid, S. Pande, S. Cawley, B. McGinley, and
F. Morgan, “Hierarchical network-on-chip and traffic compression for spiking
neural network implementations,” in 2012 IEEE/ACM Sixth International Sym-
posium on Networks-on-Chip, May 2012, pp. 83–90.

149

	Introduction
	Brain-inspired Computing: Towards a New Computation Paradigm
	Von Neumann Architecture
	Brain-inspired Computing

	Motivation: Power, Scaling, and Reliability Challenges
	Dissertation Goals and Contributions
	Dissertation Organization

	Neural Network Architecture: Background
	Neural Network
	Overview
	Neural Network Topologies

	Artificial Neural Network
	Learning Rules
	Supervised Learning
	Unsupervised Learning

	Fundamental Implementation
	Existing Architectures

	Spiking Neural Network
	Neural Coding Methods
	Rate Coding
	Temporal Coding (Spike coding)

	Neuron Models
	Hodgkin-Huxley
	Izhikevich
	Leaky Integrate and fire

	Spiking Neural Network Learning Rules
	Unsupervised Learning
	Supervised Learning

	Communication Network
	Existing Architectures

	Conclusion

	Related Works
	Spiking Neuromorphic Systems
	Inter-neuron Communication
	Hierarchical Bus-based Spike Routing
	2D Packet-swiched-based spike routing
	3D Packet-swiched-based Spike Routing

	Fault-tolerant Neural Network
	Learning-based approaches
	Architecture-based approaches
	Hybrid approaches

	Conclusion

	Comprehensive Analytic Performance Assessment
	Assumption and Network Model
	Non-faulty System Assessment
	Performance Analysis of Hopfield NN Based on a 3D-mesh
	Unicast-based Spike Routing
	Multicast and Broadcast Based Routing Schemes

	Performance Analysis of RNDC NN Based on a 3D-mesh
	Unicast Based Routing
	Multicast Based Routing
	Broadcast Based Routing

	Faulty System Assessment
	Performance Analysis of Hopfield Neural Network Based on a 3D-mesh
	Unicast-based Spike Routing
	Multicast and Broadcast Based Routing Schemes

	Performance Analysis of RNDC Neural Network Based on a 3D-mesh
	Unicast based Routing
	Multicast and Broadcast Based Routing Schemes

	Conclusion and Discussion

	K-means Based Multicast Spike Routing Algorithms
	K-means Based Multicast Spike Routing Algorithm (KMCR)
	The Proposed Routing Algorithm (KMCR)
	Selection of the Optimal Number of Clusters
	Weakpoint

	Shortest Path K-means Based Multicast Routing Algorithm (SP-KMCR))
	Fault-tolerant Shortest Path K-means Based Multicast Routing Algorithm (FTSP-KMCR)
	Proposed Fault-tolerant Routing Algorithm
	Fault Management Algorithm

	Conclusion

	Towards Scalable Spiking Neuromorphic Architecture
	System Architecture
	Topology
	System interface

	Spiking Neuron Processing Core (SNPC)
	Spike packet format
	Router Architecture
	Spike routing table
	Hard fault tolerance
	Fault-tolerant buffer
	Fault-tolerant crossbar:
	Fault-tolerant TSV

	Application deployment
	Application mapping methods
	Input-data-to-spike conversion methods
	Converting from original data sets
	Using converters

	Design and Evaluation
	Methodology
	Evaluation Results
	Spike Injection Rate Analysis
	K-means Based Multicast Routing Algorithm Evaluation
	Performance Evaluation Under Realistic Benchmarks
	Performance Evaluation Under Synthetic Benchmark
	Hardware Complexity Analysis

	Shortest Path K-means Based Multicast Routing Algorithm Evaluation
	Fault-tolerant K-means Based Multicast Routing Algorithm Evaluation
	Performance Evaluation
	Hardware Complexity Evaluation:
	Discussion:

	Conclusions and Future Work
	References

