
THE UNIVERSITY OF AIZU

DOCTORAL THESIS

Multimodal Information Fusion
based on Deep Learning

Author:
Jianguo YU

Supervisor:
Prof. Konstantin Markov

A dissertation submitted in partial fulfilment of the requirements for the
degree of Doctor of computer science and engineering

in the

Human Interface Laboratory
Graduate Department of Computer and Information Systems

August 26, 2019

http://www.u-aizu.ac.jp/
http://blog.csdn.net/u010751535/article/details/50759734
http://web-ext.u-aizu.ac.jp/~markov/index.html
http://www.u-aizu.ac.jp/
http://www.u-aizu.ac.jp/

ii

Copyright by Yu Jianguo

All Rights Reserved

v

THE UNIVERSITY OF AIZU

Abstract
Field of Study Applied Information Technologies

Graduate Department of Computer and Information Systems

Doctor

Multimodal Information Fusion based on Deep Learning

by Jianguo YU

To survive in this complex world, we have to constantly obtain infor-
mation about events happening around us. A modality is a particular form
of a signal, from which we can extract information about an event and the
information about the same event can have many modalities. This thesis is
related to deep learning-based multimodal learning approaches.

Chapter 1 describes the motivations and applications of multimodal
learning; What challenges we are facing as well as the basic approaches
and related studies.

Chapter 2 presents the most commonly used representations for differ-
ent modalities, i.e. acoustic information, articulatory information, video
information, image information, and text information as well as their pre-
processing and feature extractions approaches.

Chapter 3 presents the basic knowledge about deep neural networks,
i.e. feedforward neural networks, recurrent neural networks (LSTM and
GRU implementations), convolutional neural networks, autoencoders, cor-
relational neural networks, and word embedding.

Chapter 4 first presents the basic knowledge of ASR systems, i.e. the
GMM-HMM system, and the DNN-HMM hybrid speech recognition sys-
tem, then gives a brief review of related studies of acoustic and articulatory
information integration. After that, the details of our proposed methods
are presented, i.e. acoustic RNN training using generalized distillation and
joint inversion training followed by the experiments, results, and analysis.

Chapter 5 presents the basic knowledge of personality recognition; The
Big Five personality traits, the details of our low-level and high-level fea-
ture extractions, multi-stage training strategy, the formulation of our objec-
tive functions and neural network settings. Then, the experiments, results,
and analysis will be reported.

Chapter 6 summaries the overall principles of multimodal information
fusion, the advantages, and the disadvantages. Then, the directions for
future research will also be discussed.

HTTP://WWW.U-AIZU.AC.JP/
http://www.u-aizu.ac.jp/
http://www.u-aizu.ac.jp/

vii

Acknowledgements
After I finished my master program, I was planning to find a job, but

my supervisor encouraged me to continue the doctoral program and I am
very glad that I’ve taken his advice because, during the process of pursuing
a doctoral degree, I finally found what I want to do. I would like to express
my deepest sense of gratitude to my supervisor. Without his continuous
advice and support, I couldn’t have made it.

I would like to express my very sincere gratitude to Prof. Masahide
Sugiyama who helped me a lot with daily life in Japan.

I am also very thankful to Daria Vazhenina who has been a good senior
and friend.

Finally, I take this opportunity to express my profound gratitude to my
parents.

ix

Contents

Abstract v

Acknowledgements vii

List of Figures xvi

List of Tables xvii

1 Introduction 3
1.1 Applications of Multimodal Learning 4
1.2 Challenges of Multimodal Learning 5
1.3 Methods and Related Studies 6

1.3.1 Feature Fusion . 6
1.3.2 Model Fusion . 7
1.3.3 Decision Fusion . 7
1.3.4 Structure Fusion . 8
1.3.5 Regularization . 10

1.4 Contributions of this Research 11
1.5 Thesis Outline . 12

2 Representation of Modalities 17
2.1 Acoustic Modality . 17

2.1.1 Signal Preprocessing 17
2.1.2 Mel Frequency Cepstral Coefficient 18

2.2 Articulatory Information . 18
2.3 Visual Information . 20

2.3.1 Image representation 20
2.3.2 Video representation 20

2.4 Text Information . 22

3 Deep Neural Networks 27
3.1 Feed-Forward DNN . 27

3.1.1 Data Pre-Processing 30
3.1.2 Non-Linearities . 30
3.1.3 Loss Functions . 31
3.1.4 Updates . 32

3.2 Recurrent DNN . 37
3.2.1 Temporal Sharing . 37
3.2.2 Long Short-Term Memory 41
3.2.3 Gated Recurrent Unit 42
3.2.4 Training . 43
3.2.5 RNN Architectures . 44

3.3 Convolutional DNN . 45
3.3.1 Spatial Sharing . 46
3.3.2 Reception Field . 46

x

3.3.3 Stride and Padding . 48
3.3.4 Convolutional Dimension 49
3.3.5 Pooling Layer . 50

3.4 Auto-Encoder . 50
3.5 Word Embedding . 50

4 Articulatory and Acoustic information integration 57
4.1 Background . 57

4.1.1 Language Modelling 58
4.1.2 Acoustic Modelling . 59

Hidden Markov model 60
GMM-HMM-based . 61
DNN-HMM-based . 61
Phoneme Modelling 62

4.1.3 Decoding . 62
4.1.4 System Evaluation . 62

4.2 Related Studies of Articulatory Information Integration . . . 63
4.2.1 Feature based integration 63
4.2.2 Model based integration 64

4.3 Joint Inversion . 66
4.3.1 Training Procedure . 66
4.3.2 Testing Procedure . 67

4.4 Generalized Distillation . 67
4.4.1 Teacher Training Procedure 68
4.4.2 Student Training Procedure 69
4.4.3 Testing Procedure . 70

4.5 Experiments . 70
4.5.1 Database Description 70
4.5.2 Data Processing . 72
4.5.3 GMM-HMM baseline 72
4.5.4 Common DNN settings 74
4.5.5 DNN-HMM baseline 75
4.5.6 Inversion Baseline . 76
4.5.7 Joint Inversion . 77
4.5.8 Generalized Distillation 78
4.5.9 Discussion . 79

4.6 Summary . 83

5 Multimodal Personality Recognition 87
5.1 Background . 88
5.2 Related Studies . 89
5.3 APR from Text . 90

5.3.1 Word embedding . 90
5.3.2 Network Architecture 90

5.4 APR from speaking style . 92
5.4.1 Neural Style Transfer 93
5.4.2 Automatic Speaking Style Extraction 93
5.4.3 Low Level Feature Extraction 95
5.4.4 Overall Settings . 95

5.5 AAPR from Text, Audio, Video 95
5.5.1 Preprocessing . 95

xi

5.5.2 Single Modality . 95
5.5.3 Multimodal Network Architecture 96
5.5.4 Multistage Training Strategy 98

3 groups of loss functions 98
4 groups of parameters 99
3 stages . 99

5.6 Experiments . 99
5.6.1 Database Description 99

myPersonality . 99
First impressions V2 100

5.6.2 Experimental Results 101
myPersonality . 101
Automatic speaking style extraction 103
Text, audio, video Fusion 104

5.7 Summary . 106
5.7.1 myPersonality . 106
5.7.2 First impressions V2 107

6 Contributions and Conclusions 111
6.1 Contributions . 111
6.2 Conclusions . 111
6.3 Future Work . 112

A Phoneme list 117

B Articulatory Inversion Plots 119

C Distillation Plots 123

Bibliography 129

xiii

List of Figures

1.1 An illustration of early fusion for multimodal learning. 6
1.2 An illustration of model fusion for multimodal learning. 7
1.3 An illustration of late fusion for multimodal learning. 8
1.4 An illustration of structure fusion for multimodal learning. 9
1.5 An illustration of transfer learning. B) is the neural network well

trained on a large dataset and A) is the neural network to be trained.
The first two layers for modality C in A) are transfered from B),
which can either be fixed or fine-tuned using new data. 10

2.1 Pre-processing steps . 17
2.2 MFCC block diagram . 18
2.3 Articulatory information . 19
2.4 the representation of 8-bit RGB images in computer 21
2.5 the representation of a video in computer 21
2.6 Two-stream architecture for video classification [31]. 22
2.7 Video architectures summarization, where K stands for the total

number of frames in a video, whereas N stands for a subset of neigh-
boring frames of the video [32]. 22

2.8 one hot encoding for words. 23
2.9 The goal of word embedding just to learn this hidden layer which

is just a lookup table. 23
2.10 t-SNE visualization of the bilingual word embedding. Green is

Chinese, Yellow is English.[33] 24
2.11 The left side is a matrix of a sentence and the right side is the matrix

of the sentence after word embedding. 24

3.1 simple DNN . 27
3.2 simple case [35] . 28
3.3 After operations of several layers [35] 28
3.4 How a picture of face is composed of pixels 29
3.5 get stuck in local minima . 33
3.6 How the learning rate affects the decay of loss function 33
3.7 With Nesterov momentum we evaluate the gradient at this "looked-

ahead" position. 34
3.8 Underfitting and Overfitting [44]. The dots are samples and the

lines are predictions. 35
3.9 The amount of overfitting can be noticed by analysis train/loss ac-

curacies . 36
3.10 Note: Only apply dropout during training 36
3.11 Early Stopping . 37
3.12 FNN vs RNN for sequence modeling. 37
3.13 An unrolled recurrent neural network 38
3.14 Types of mapping . 39
3.15 Backpropagation Through Time 39

xiv

3.16 Derivative of tanh . 40
3.17 Bidirectional RNN . 40
3.18 Deep Bidirectional RNN . 41
3.19 Illustration of an LSTM memory cell 42
3.20 GRU Gating . 43
3.21 RNN training inputs . 43
3.22 The average loss over all timesteps is the finial loss 44
3.23 Many-To-Many . 45
3.24 A certain mount of historical states to current state 45
3.25 FNN vs CNN for Spatial information modeling. Each circle repre-

sents a pixel, which is a vector with n dimensions, n is the number
of channels (e.g. n is 3 for an RBG image with 3 channels). Blue
box is locating the dimension of the input to the neural network
and the red box points out the shape to be detected. 46

3.26 reception fields with different size 46
3.27 1 by 1 reception field. Each pixel of the original image is represented

as a 3-dimensional vector, which can be adjusted to a 2-dimensional
or a 4 dimensional vector using 1 by 1 reception field 47

3.28 reception field with holes [52] . 48
3.29 Multi-layer Graph Convolutional Network (GCN) with first-order

filters [55]. 48
3.30 Examples of different strides. The dashed circles are the zero padded

pixels . 49
3.31 Illustration of 1D, 2D, 3D convolution. B, H, W represent the size

of kernel along spectral and spatial dimension respectively. M is
the number of feature maps [56] 49

3.32 Illustration of average and max pooling layers 50
3.33 Illustration of an autoencoder. The encoder and decoder could be

several layers of any type of networks 51
3.34 Illustration of CBOW and skip-gram 51
3.35 Visualize Word Vectors . 52
3.36 After embedding, the English word and German word with the

same meaning have similar vectors [58] 52
3.37 Word2vec architecture . 52

4.1 The diagram of a system using articulatory + acoustic modalities.
This task should use articulatory information only during training
and needs to recognize speech without articulatory observations. . 58

4.2 Block diagram of a typical Automatic Speech Recognition System 59
4.3 HMM . 60
4.4 GMM-HMM vs DNN-HMM acoustic models. 61
4.5 Block diagram of the standard inversion and acoustic model

DNN training. 65
4.6 Block diagram of the model based articulatory information

integration. 65
4.7 Block diagram of the joint articulatory inversion and acoustic

model DNN training. 67
4.8 Block diagram of the joint articulatory inversion testing. . . 68
4.9 Student training block diagram. In contrast to hard targets

yi, soft targets si provide information about between class
relations. 69

xv

4.10 Testing with student DNN. No extra cost is required during
the test. 70

4.11 Placement of the 8 pellets on T1,T2,T3,T4,MANm, MANi,UL,LL
points. 71

4.12 Results of speaker JW45 . 73
4.13 Results in speaker independent task 74
4.14 Inversion and acoustic RNN structures. The number of nodes

and the activation function of each layer is given. Note that
the biGRU layer consists of two GRUs layers, so the number
of nodes is for each of them. 75

4.15 The PER results of different acoustic models with and with-
out true articulatory (ART) features. The numbers correspond
to the upper and lower PER bounds for each model. 76

4.16 The predictions of T2_x, T2_y, MI_x, MI_y articulatory move-
ments obtained from the RNN inversion model. 77

4.17 Results of the joint inversion and acoustic model training.
λ = 0 corresponds to the case when the acoustic model uses
MFCC features only but is trained with targets obtained from
the MFCC+ART GMM-HMM. 78

4.18 Results of distillation training. The lower and upper bound
for the PER are shown as teacher and student only results.
λ = 0 corresponds to the case when the student is trained us-
ing hard targets only. “Student+” corresponds to the case
when the acoustic model uses MFCC features only but is
trained with targets obtained from the MFCC+ART GMM-
HMM. 80

4.19 Performance of different methods and two acoustic baseline
models. The “MFCC only” is the PER upper bound result.
The “MFCC+ART” is the lower bound. 80

4.20 Train (green) and test (blue) datasets split for the second fold.
Similarly, for other folds diagonal boxes data are used for
testing. 82

4.21 7-fold CV results when utterances with the same lexical con-
tent are removed. a) PER of the inversion methods, b) PER
of the distillation training. 82

4.22 The results with 95% confidence intervals for all systems that
can be used in practice after removing lexical content effect. 83

5.1 The diagram of a system using text + audio + video modalities
(or any combinations of three). Unlike the articulatory + acoustic
fusion, this task can use any modalities in both training and testing
time. 87

5.2 How the personality traits vary between different people. . . 89
5.3 Illustration of unigram and bigram convolutional filters. . . 91
5.4 Word embedding + convolutional layer for APR. 91
5.5 Network architecture for APR from text 92
5.6 Neural Network architecture used in our system. 94
5.7 Single modality architectures used in our system. 96
5.8 Multistage Training Strategy with Attention 97

xvi

5.9 An example of one image and transcription from a video clip
in test set along with the predictions (also range [0,1]) using
our system. The scores are predictions indicating personality
traits and interview variable, not the evaluation metric (1 -
mean absolute error). 101

5.10 Single modality architecture used in our system. 106
5.11 Standard concatenation architecture used in our system. . . 107
5.12 multistages training architecture used in our system. 108

B.1 feedforward net predictions of articulators UL (upper lip), LL (lower
lip), T1 (ventral tongue), T2 (mid-tongue). The x axis of all plots
is timestep (10ms). The y axis of all plots is the normalized position 119

B.2 feedforward net predictions of articulators T3 (mid-tongue), T4
(dorsal tongue), MANm(mandibular), MANi 120

B.3 rnn net predictions of articulators UL, LL, T1, T2 121
B.4 rnn net predictions of articulators T3, T4, MANm, MANi 122

C.1 distillation results for fold 0 . 123
C.2 distillation results for fold 1 . 124
C.3 distillation results for fold 2 . 124
C.4 distillation results for fold 3 . 125
C.5 distillation results for fold 4 . 125
C.6 distillation results for fold 5 . 126
C.7 distillation results for fold 6 . 126

xvii

List of Tables

3.1 Details of activations . 31

4.1 Task List. 71
4.2 Details of the train, validation, and test sets. 72
4.3 Phone error rates for conventional GMM-HMM system. 74
4.4 Common DNN parameters 75
4.5 Speaker independent inversion results (the 1st and 2nd deriva-

tives are excluded). 76
4.6 7-fold CV results on different data sets with different lan-

guage models. Results are shown for MFCC / MFCC+ART
features. 81

4.7 Details of the train, validation, and test sets when utterances
with the same lexical content are removed. The number in (
) is the percentage of the amount from Table 4.2. 81

5.1 Overall DNN settings . 102
5.2 Classification test results with different features using fully-

connected architecture. 103
5.3 Classification results using convolutional architecture with

average or max pooling . 104
5.4 Classification results for recurrent of architectures 104
5.5 1−MAE results. OPE: openness to experience. CON: consci-

entiousness. EXT: extroversion. AGR: agreeableness. NEU:
(non-)neuroticism. Inter: interview invite variable. Ave: the
average score of 5 traits (interview variable is not included). 105

5.6 Big five traits and interview variable F1 score results for dif-
ferent systems. 105

A.1 Phoneme list . 117

List of Tables 1

3

Chapter 1

Introduction

In order to survive in this complex world, we have to constantly obtain
information about events happening around us. A modality is a particular
form of signal, from which we can extract information about an event and
the information about the same event can have many modalities. Human
evolved many sensory systems that interpret different forms of signals (we
see objects, hear sounds, feel textures, smell odors, taste flavors) in order to
deal with complicated situations, some of which are listed below.

The situation in which some modalities are not available
For example, we know visual information travels very fast, but there is not
enough light for us to see things clearly at night, so we have to rely on our
auditory system to avoid dangers and even generate vague images from
the sound we hear.

The situation in which a single modality is not sufficient
For example, when neither visual information nor acoustic information is
sufficient for making a decision, our brains have the ability to extract infor-
mation complementary to each other from both modalities, which refers to
multimodal.

The situation in which a modality can help to learn another modality
For example, sometimes we have knowledge in forms of visual information
and we can learn knowledge in forms of acoustic information with the help
of the learned visual knowledge.

In order to make progress in Artificial Intelligence, we need to enable ma-
chines to interpret and reason about multimodal information. The goal of
Multimodal Learning is to build machines that can process and relate infor-
mation from multiple modalities.

The rest of this chapter is organized as follows. Section 1.1 describes the mo-
tivations and applications of multimodal learning. Section 1.2 talks about
the challenges we are facing. Section 1.3 briefly introduces the basic ap-
proaches and related studies. Section 1.4 summarizes the main contribu-
tions of this research. Finally, Section 1.5 will outline the structure of this
thesis.

4 Chapter 1. Introduction

1.1 Applications of Multimodal Learning

Multimodal learning attracts many researchers nowadays because the ad-
vances in algorithms, data, and computational power enabled multimodal
learning to have a wide range of applications. The overview of three typical
applications is provided here.

Audio-Visual Speech Recognition
One of the typical multimodal applications is audio-visual speech recogni-
tion (AVSR) [1], which was motivated by the McGurk effect [2] that visual
information can affect the results of speech perception. For example, when
human subjects heard the syllable /ba-ba/ while watching the lips of a per-
son saying /ga-ga/, what they perceived was /da-da/. This drives many
researchers to introduce additional visual information into their automatic
speech recognition systems to improve the robustness of the system. How-
ever, in many scenarios, to use the ASR systems conveniently, people need
to recognize the speech only from the sound signal, which makes the visual
information inaccessible during recognition and limits the systems to only
use visual information for the training propose.

Medical Diagnosis
Multimodal learning plays an indispensable role in medical applications.
Since medical detections usually involve measurements in the form of dif-
ferent modalities such as X-ray, functional MRI (fMRI), CT, ultrasound,
positron emission tomography (PET), etc, each of which has its strengths
and shortcomings. The integrated interpretation for diagnosis of these modal-
ities requires highly trained human experts. Therefore, the ability of learn-
ing from multimodal information will be a key solution to this problem,
which has prompted more and more multimodal learning-based medical
analysis research in recent years such as tissue and organ segmentation [3],
multimodal medical image retrieval [4], multimodal medical image reg-
istration, and computer-aided diagnosis [5] and more information can be
found in [6] [7].

Human Behavior Modeling
Modeling, analysis, and synthesis of human behavior have become less dif-
ficult nowadays because of the vast amounts of data generated by users on
the internet such as images, videos, comments, and views that hold rich
information about the users themselves. Utilizing this multimodal infor-
mation can help us to design better human-human and human-machine
interactions. According to Vinciarelli and Mohammadi [8], any technology
involving understanding, prediction, and synthesis of human behavior is
likely to benefit from personality computing approaches. Personality anal-
ysis from multimodal social information provides a better understanding of
our life choices, well-being, and many other social behaviors, which enables
many important practical applications, such as products, jobs, or services
recommendation [9] [10], word polarity disambiguation, crime forecasting
[11], etc.

1.2. Challenges of Multimodal Learning 5

1.2 Challenges of Multimodal Learning

However, researchers are facing many challenges when building machines
that benefit from multimodal information. Some of the typical challenges
are listed below:

Representation
The first challenge is how to represent multimodal data in a way that ex-
ploits the complementarity and redundancy of multiple modalities and fil-
ters the conflicting ones. Conventionally, techniques like principal compo-
nent analysis (PCA), independent components analysis, and canonical cor-
relation analysis (CCA) can be applied to achieve these objectives. How-
ever, the well-studied representation of one task is not necessarily suit-
able for other tasks, which requires repeated efforts spent on feature selec-
tion. Therefore, the common representation learning framework is badly
needed.

Compensatory Mechanism
The second challenge involves dealing with missing modalities. For exam-
ple, the auditory system can be viewed as an alternative when the visual
information is lacking, it will lose this purpose if machines have to require
both information for decision making. Therefore, researchers need to come
up with systems that are robust enough to compensate for missing modal-
ities during inference. A generative model that maps signals from one
modality to another is often involved to accomplish this objective, which,
however, leads to another machine learning challenges due to the nonlinear
and complex relationship between two spaces of modalities.

Lack of Parallel Data
The third challenge involves the training of the multimodal system. It will
only be a computational power problem if the parallel data of all modali-
ties are present. However, in practice, such parallel datasets are extremely
rare. The data of multiple modalities often come from different datasets
with different numbers of samples. How can we organize the non-parallel
datasets to train a multimodal system for predicting of a specific task and
how can we use the knowledge that is already learned from other tasks to
build the desired multimodal system, which refers to transfer learning, is
also included in the research area of multimodal learning.

Multimodal Fusion
The last challenge is how to combine information from multiple modali-
ties to perform a better prediction. Because the multiple modalities usually
come with different dimensionalities and sampling rates and adding or re-
ducing one particular modality will completely change the distribution of
input space, which consequentially affects the choice of the machine learn-
ing algorithms and architectures.

6 Chapter 1. Introduction

1.3 Methods and Related Studies

Techniques for multimodal learning have long been investigated by the re-
search community [12], [13]. Traditionally, there are two approaches for
combining the signals of multiple sensors.

1.3.1 Feature Fusion

One approach is called early fusion or feature-level fusion. Feature-level fu-
sion involves how to integrate the multiple modalities into a single feature
vector, before being used as input to a machine learning algorithm. For ex-
ample, the simplest form of early fusion involves concatenation of different
multimodal features, as illustrated in Fig.1.1.

FIGURE 1.1: An illustration of early fusion for multimodal learn-
ing.

Most feature-level fusion models make the assumption that there is con-
ditional independence between different modalities, which sometimes may
not be true in practice, as multiple modalities tend to be highly correlated.
But [14] also argues that different streams contain information that is cor-
related to another stream only at a high level, which supports the output
of each modality to be processed independently of the others. However,
feature level fusion still has some disadvantages:

Asynchronicity
Feature-fusion could be quite challenging if the data to be fused is raw due
to the mismatched sampling rate and forms of representation. For example,
a raw video signal is typically a 4D tensor with a sampling rate of 5-30
frames/second while a speech signal is typically a 3D tensor with a much
higher sampling rate. Usually, people apply feature extraction and selection
to get higher-level representations before the feature fusion.

Redundancy
It is easy to contain redundant information when applying feature level

1.3. Methods and Related Studies 7

fusion. Typically, dimensionality reduction techniques like PCA, autoen-
coders are applied to remove these redundancies in the input space.

1.3.2 Model Fusion

Model fusion also combines different modalities, but instead of concatenat-
ing the features of different modalities, it uses the additional modalities to
change the structure or parameters or features of the main modality, as illus-
trated in Fig.1.2. Since it doesn’t treat information from different modalities
as features, it does not require the additional observations during inference.

For example, in [15], a hybrid Bayesian network/HMM acoustic model
incorporates the articulatory data. A relatively new way to incorporate
knowledge into neural networks is the so called Distillation Training, where
an additional loss function with soft targets is also being minimized during
training. In [16], Hinton et al. have shown that soft targets from complex
models can transfer knowledge to small models that are easy to deploy.

FIGURE 1.2: An illustration of model fusion for multimodal
learning.

1.3.3 Decision Fusion

The other is called late fusion or decision-level fusion, which refers to the ag-
gregation of decisions from multiple classifiers, each trained on separate
modalities, as illustrated in Fig.1.3.

Decision-level fusion was popular within the machine-learning commu-
nity in the early- to mid-2000s, people favor this fusion approach is because
it doesn’t have the shortcoming of asynchronicity like early fusion, there-
fore, is easier to implement and it doesn’t depend on the representations of
different modalities.

8 Chapter 1. Introduction

FIGURE 1.3: An illustration of late fusion for multimodal learn-
ing.

There are various ways to determine how the decisions from differ-
ent modalities are combined to a single one, which could be max-fusion,
averaged-fusion, Bayes’ rule-based, etc.

Although decision-level fusion is easier to implement, it is not neces-
sarily better than feature level fusion. Because the classifiers (or regressors)
in decision-level fusion are relatively rigid, it is likely to miss information
important for the final decision during the processing of each modality and
the performance of feature level fusion heavily depends on the task.

1.3.4 Structure Fusion

The flexibility of deep neural networks (DNNs) offers an alternative ap-
proach for implementing multimodal learning task, which refers to struc-
ture fusion.

Because the neural network (structure fusion) approach can fuse fea-
tures from different modalities at any layer, as illustrated in Fig.1.4, it could
have both advantages of early fusion and late fusion if the balance is well
adjusted.

Neural networks transform raw inputs to higher-level representations
by mapping the input through consecutive layers, which has many advan-
tages compared to early or late fusion:

Representation learning
Unlike early fusion where exports need to design handcrafted features or
apply feature selection algorithms for each modality, neural networks can
automatically learn a suitable representation for the final objective. Some
specific operation can be inserted as a layer to filter out conflicting informa-
tion.

1.3. Methods and Related Studies 9

FIGURE 1.4: An illustration of structure fusion for multimodal
learning.

Tensor rank adjustment
The basic form of data that flows in a neural network is tensor. The mis-
match caused by different data form can be simply overcome by transform-
ing the tensor from a modality into lower-rank tensor if necessary. For ex-
ample, the 4D tensor of a raw video signal can finally be transformed into
a single vector that can be concatenated with other feature vectors, which
implicitly skips the problem of different sampling rates.

Hybrid structure
Usually, a discriminative model will be trained for prediction and some-
times a generative model will be adopted to compensate for missing modal-
ities during inference. The flexibility of deep neural networks allows us to
implicitly or explicitly combine the two types of models into a hybrid model
for better performance.

Transfer learning
Deep neural networks also allow us to deal with the problem of non-parallel
data because the learned parameters in the hidden layers can be shared
between certain tasks. For example, one can simply take the first several
layers trained on ImageNet dataset to his neural network then fix the pa-
rameters of these layers and finetune other parameters if he doesn’t have
enough data or he can retrain the whole network with a better initializa-
tion, as illustrated in Fig.1.5.

The work in [17] empirically showed that implementing a gradual fu-
sion strategy, by first fusing highly correlated modalities, to less correlated
ones in a progressive manner (e.g., visual modality first, then motion cap-
ture followed by audio), produced state-of-art results for communicative
gesture recognition.

10 Chapter 1. Introduction

FIGURE 1.5: An illustration of transfer learning. B) is the neural
network well trained on a large dataset and A) is the neural net-
work to be trained. The first two layers for modality C in A) are
transfered from B), which can either be fixed or fine-tuned using

new data.

1.3.5 Regularization

The way to train a neural network is to minimize a loss function. In order
to reduce overfitting and improve generalization, one or more regulariza-
tion strategies are employed, often as an additional term added to the loss
function. It could also be beneficial to separate the learning for each modal-
ity and apply regularization constraint based on other modalities. There-
fore, the formulation of cost functions and regularizers is an important con-
sideration for the structural design of neural networks. For example, [18]
proposed a cost function that minimized the variation of information be-
tween modalities, whose intuition behind this formulation is that learning
to maximize the amount of information that one data modality has about
the others would allow models to generate information about the missing
data modality.

The employing of regularizations can also help us to adjust the common
goal that we need the model to achieve. For example, [19] incorporated a
temporal term that grows exponentially in time into their cost function for
a multimodal recurrent neural network (RNN) in order to encourage the
model to fix mistakes as early as it can.

Although deep neural networks indeed offer much more flexibility of im-
plementing multimodal learning and allow us to use a much easier way
to handle challenges aforementioned. The architecture of a neural network
needs to be carefully designed in terms of how, when the outputs of differ-
ent modalities should be fused, which could be very time consuming and
expensive (in terms of computational cost). The optimal structure and for-
mulation of the cost function are more challenging to search and transfer
for new tasks.

1.4. Contributions of this Research 11

1.4 Contributions of this Research

Machine learning is typical task-dependent and there is no best structure
and algorithm for all problems. Therefore, we investigated two different
problems and found some common principles: 1. When automatically ex-
tracting features for different modalities, it is really helpful for the extrac-
tors to know the final objective, which can be done by introducing the fi-
nal loss function to the extractors. 2. The typical way to merge different
modalities using deep learning is to put them into a big single network.
However, because this big network has many parts whose speeds of con-
vergences are different, for example, the parts related to the audio modality
may have already converged, but the parts related to the video modality are
still training, it is hard for this single network to find optimal parameters
for all modalities. One way to tackle this problem is to set the parameters
of particular modalities untrainable and force the other parts to map the
desired modalities to a good latent space first. In other words, constrain the
freedom of deep neural network’s automatic feature extraction.

Here we would like to outline the main contributions of the researches
in this thesis: The new approaches to utilize multimodal learning for Auto-
matic Speech Recognition (ASR) systems and Automatic Personality Recog-
nition (APR) systems, which were developed, studied and evaluated dur-
ing the last three years.

Multimodal automatic speech recognition
In order to make the systems more reliable and robust, researchers have
been trying to utilize articulatory information. However, incorporating such
information is challenging since it is impractical to obtain observations of
articulators movements in real-life speech recognition scenarios. This con-
straint requires ASR systems to utilize articulatory data for training only,
i.e. to be able to recognize without them.

The traditional approach to incorporate articulatory information is fea-
ture based, also called articulatory-to-acoustic inversion, where the missing ar-
ticulatory features are generated from the acoustic signal during recogni-
tion. This, however, is not a simple task since the mapping between acous-
tic and articulatory data spaces is non-linear and not unique.

In order to skip this expensive and difficult articulatory inversion, we
started with the idea of transfer learning and regularization in structure fusion
method mentioned above and adopted Generalized Distillation framework
[20] with the neural network structure of Long short term memory (LSTM)
[21], in which soft targets are transferred from a teacher model trained using
both articulatory and acoustic features to a student model using only acous-
tic features and developed a system that achieved 21.9% PER (phoneme er-
ror rate) reduction and introduces no extra cost during recognition, hence
can be applied in the real situation.

But the flexibility of neural networks also allows us to implicitly em-
bed a generative model into the network and form a hybrid network that
is better than the two models trained separately. Therefore, we followed
this idea, developed another novel hybrid network which is also able to
recognize without articulatory information and achieved the best result of
a 25.3% PER reduction at the expense of increasing the size of the neural
network [22].

12 Chapter 1. Introduction

Multimodal automatic speech recognition
Because more and more social contents generated by users become avail-
able, automatic personality recognition has garnered much interest recently.
However, conventional approaches depend heavily on the data represen-
tation which often is based on hard-coded prior knowledge. Because deep
learning approaches can learn suitable representation automatically, we im-
plemented several deep learning algorithms including fully-connected neu-
ral networks (FC), convolutional neural networks (CNN) and recurrent neu-
ral networks (RNN) in our personality recognition system and evaluated it
on the task from the “Workshop on Computational Personality Recognition
(Shared Task)” [23], in which the facebook status updates are used to pre-
dict the author’s Big-Five personality traits (Openness to Experience, Con-
scientiousness, Extraversion, Agreeableness, and Neuroticism) [24]. Our
experiments showed that CNN with average pooling is better than both
the RNN and FC, which achieved the best results 60.0±6.5%.

After the primary investigation of APR task, we moved to a more chal-
lenge database which contains HD Youtube videos and developed a system
for automatic apparent personality recognition (AAPR) that takes as inputs
any combination of three modalities (text, audio, video) from a video clip
and outputs 5 personality traits (the first impression of other people on this
vlogger) along with an interview variable that recommends whether a job
candidate should be invited for an interview. The system of the winner on
this dataset processed different modalities separately, then combine them.
But these features may not be complementary to each other. However, if we
train them in a single network, the convergence speeds of these modalities
are also different, it doesn’t work well either. To address this problem, we
propose an attention network with multiple training stages.

1.5 Thesis Outline

In this thesis, we are presenting an investigation of multimodal informa-
tion fusion based on deep learning. ASR and APR systems are proposed,
discussed and evaluated.

Chapter 2 presents the most commonly used representations for differ-
ent modalities, i.e. acoustic information, articulatory information, video
information, image information, and text information as well as their pre-
processing and feature extractions.

Chapter 3 presents the basic knowledge about deep neural networks,
i.e. feedforward neural networks, recurrent neural networks (LSTM and
GRU implementations), convolutional neural networks, autoencoders, cor-
relational neural networks, and word embedding.

Chapter 4 first presents the basic knowledge of ASR systems, i.e. the
GMM-HMM system, and the DNN-HMM hybrid speech recognition sys-
tem and gives a brief review of related studies of acoustic and articula-
tory information integration. The details of our proposed methods are pre-
sented, i.e. acoustic RNN training using generalized distillation and joint inver-
sion training followed by the experiments, results, and analysis.

Chapter 5 presents the basic knowledge of personality recognition, the

1.5. Thesis Outline 13

Big Five personality traits, the details of our low-level and high-level fea-
ture extractions, multistage training strategy with attention, the formula-
tion of our objective functions and neural network settings. Then, the ex-
periments, results, and analysis will be reported.

Chapter 6 summaries the overall principles of multimodal information
fusion, the advantages,and the disadvantages. Then, the directions for fu-
ture research will also be discussed.

14 Chapter 1. Introduction

1.5. Thesis Outline 15

17

Chapter 2

Representation of Modalities

In order for machines to make sense of multiple modalities, we need to
quantize and process the data of each modality into a suitable represen-
tation. Hence, this chapter presents the basic common representation of
acoustic, articulatory, image, video, and text information.

The rest of this chapter is organized as follows. Section 2.1 describes the
spectrum presentation of acoustic modality; The Mel Frequency Cepstral
Coefficients (MFCCs) and the standard pipeline of feature extraction, Sec-
tion 2.2 talks about what is articulatory information and how to represent
it.Section 2.3 briefly introduces the basic knowledge about image and video
information in computer and the spatial and temporal representations of
them. Finally, Section 2.4 is about the text information and distributed rep-
resentation.

2.1 Acoustic Modality

The acoustic signal is easy to produce and receive without any extra de-
vices, therefore spoken languages have been the most used way of com-
munication in our daily life. From the Acoustic signal, we can get a lot of
information about the messages the speakers want to send and even the
speakers themselves. In order for a system to obtain information from it,
we need to extract proper features recognizable to the system as the repre-
sentation of the acoustic signal.

2.1.1 Signal Preprocessing

In order to simplify the mathematical analysis, the acoustic signals are usu-
ally converted from the time domain to the frequency domain. Before that,
several steps are needed to pre-process the signal, as illustrated in Fig.2.1.

FIGURE 2.1: Pre-processing steps

1. Pre-emphasis: is a high-pass filter, that boosts the high-frequency en-
ergy.

2. Framing: divides speech signal into small overlapping chunks. Length
is typically 20− 25ms and Shift is typically 10ms or about 50% of the
frame.

18 Chapter 2. Representation of Modalities

3. Windowing: Each frame is multiplied by a window function to min-
imize spectral discontinuities at the frame start/end. The most com-
mon used window is Hamming window.

2.1.2 Mel Frequency Cepstral Coefficient

One of the most popular and reliable features for speech recognition is Mel
Frequency Cepstral Coefficents [25], whose process of extraction is shown in
Fig.2.2.

FIGURE 2.2: MFCC block diagram

1. Power Spectrum: Apply Discrete Fourier Transform to windowed sig-
nal ft(n) to transform the signal from time-domain to frequency-domain
and take of power of it, because in frequency-domain, the signal can
be analysed more consistently and easily.

2. Mel-Scale Filter Bank: This approximates the human auditory sys-
tem’s response

3. Discrete Cosine Transform (DCT): After log-energy, DCT is applied
to map the signal back from the frequency domain into the time do-
main. Instead of Inverse Discrete Fourier Transform (IDFT) use DCT
because log power spectrum is real and symmetric. Usually people
take the first 12 Coefficients.

4. Frame Energy: If we append energy computed from windowed frame,
the dimensions become 13.

5. Velocity and Acceleration: To introduce the information of temporal
changes, velocity and acceleration are often appended, resulting a 39
dimensional vector.

2.2 Articulatory Information

Due to the inherent characteristics of acoustic signals under the noise envi-
ronment, Automatic Speech Recognition systems suffer from acoustic vari-
abilities posed by background noises, reverberations, and recording device,

2.2. Articulatory Information 19

etc. This motivated researchers to use additional signals as complementary
of acoustic signals for modeling.

A simplified form of visual information of speech is articulatory infor-
mation, which is the movements of lips, jaw, and other speech organs when
we are speaking, as shown in Fig.2.3.

FIGURE 2.3: Articulatory information

Articulatory information is especially useful for modeling the coarticu-
lation, which is a speech production effect which results in an assumption
where some sounds have influences on others (e.g. "p" sound in the word "
speed" becomes "b" sound due to "s" sound). The traditional way to model
this phenomenon is to introduce bi-phone or tri-phone (several phones tied
together as one unit) into acoustic models, but this approach assumes that
coarticulation effects only impact neighboring phones which is not always
true, as, in practice, there are many instances where coarticulation effects
extend beyond the immediate neighbors [26] [27].

While articulatory information can model coarticulation effectively since
it doesn’t rely on the "non-overlapping phonetic units" assumption. Here
are some advantages of using articulatory information:

1. Articulatory factors are much less affected by environmental condi-
tions.

2. It can make systems more robust.

3. It can preserve information that tends to be lost during the extraction
of speech acoustic features.

4. It can also help model coarticulation in a more systematic way rather
than using tri- or quin-phone acoustic models.

Articulatory Information is essentially images through time. The repre-
sentation of it can be images, outlines, points. For example, the articulatory

20 Chapter 2. Representation of Modalities

representation in the MOCHA-TIMIT database captured using Electromag-
netic articulography (EMA) is the trajectories of points and the one in the
USC-TIMIT database obtained using Real-time magnetic resonance imag-
ing (rtMRI) is the video of the vocal tract during speaking.

Trajectories of Articulators
Although images naturally contain the maximum information. We can also
reduce the size of data by just looking at the critical points since most of the
information is carried by the critical articulators (tongue, lips, and jaw and
so on) as shown in Fig.4.11. Unfortunately, such absolute measure can be
inconsistent and may suffer from variability.

Tract Variables and Articulatory Gestures
Tract variables and articulatory Gesture [28] representation are relative mea-
sures and hence should be invariant. Articulatory phonology treats each
word as a constellation of vocal tract constriction actions, called gestures
(roughly 1 to 3 gestures for each of the phones in a phonetic transcription).
Although it can model the coarticulation [29] simply and elegantly, there
is no existing database of it. Therefore, it’s usually synthetic data or data
estimated from other databases, such as the procedure described in [30].

2.3 Visual Information

The most common signals to which we access are visual information. Peo-
ple post a large number of images and videos on the internet every day. It is
very useful for machines to be able to interpret information from the visual
signals.

2.3.1 Image representation

Images in computer
A gray image (with only one color representing the lightness) in computers
is typically a matrix of pixels. If it is an 8-bit image, the values in the matrix
are integers in the range [0, 255], where 0 is darkest and 255 is lightest. An
RGB image (with three colors representing red, green, blue intensities) is
a 3D tensor with an extra dimension representing the number of channels
(also called depth), as shown in Fig.2.4.

Spatial features of images
The presentation of an image could be a flatten vector, for example, an
MNIST image with a size of 28 x 28 can be represented as a 784-dimensional
vector. However, this will lose the spatial information of an image, since the
computer does not know the neighboring relationships of pixels. There-
fore, the common way is to represent an image as 3D tensor with a shape
of (width, height, depth).

2.3.2 Video representation

Videos in computer
The video is essentially a sequence of images varying in time and is repre-
sented as a 4D tensor with a shape of (timestep, width, height, channel), as

2.3. Visual Information 21

FIGURE 2.4: the representation of 8-bit RGB images in computer

shown in Fig.2.5.. The commonly used frame rate of videos on the inter-
net is 25-30 frames per second (f/s), which means the uncompressed video
information could be very big for processing, hence will often be downsam-
pled to 10-15 f/s to reduce the size. In addition to spatial information, we
also need to consider how to capture temporal information of a video.

FIGURE 2.5: the representation of a video in computer

Spatial and temporal features of videos
There are three common ways to extract spatial and temporal features using
neural networks. When using 3D convolutional neural networks, the spa-
tial features and temporal features of a video are captured together. When
using a convolutional-recurrent neural network, the convolutional layers
are believed to be able to extract spatial features, which will be feed into the
recurrent layers for temporal feature extraction.

In 2014, the authors [31] proposed to use two separate networks - one for
spatial features (pre-trained), one for temporal features, therefore is called
Two Stream Network, in which images in the temporal network are re-
placed by in stacked optical flow vectors, as shown in Fig.2.6. Though Two
Stream Network improved the performance of the single-stream method by
explicitly capturing local temporal movement, there were still a few draw-
backs and many papers have been published intending to improve these
basic 3 ways mentioned above, which can be summarized in Fig.2.7.

22 Chapter 2. Representation of Modalities

FIGURE 2.6: Two-stream architecture for video classification
[31].

FIGURE 2.7: Video architectures summarization, where K stands
for the total number of frames in a video, whereas N stands for a

subset of neighboring frames of the video [32].

2.4 Text Information

Dislike other types of information, text information is typically represented
as a sequence of word vectors, each of which represents a single word.
There are two types of word representations in deep learning.

One hot representation
If there are 10000 different words in the vocabulary, one hot encoding as-
signs each of these words a unique index and a word will a 10000-dimensional
vector with only the assigned index being 1, the others are 0’s, as shown in
Fig.2.8. However, this means all words are independent, which is not sure
in real situations. For example, we know "girl" and "woman" should have
a relationship that is similar to the one between "boy" and "man". If we can
take into account of this property, we can reduce the number of examples
needed to train all the words, which leads us to the distributed representa-
tion of words.

Distributed representation

The one hot representation of words is high dimensional, sparse, and
orthogonal. However, this can be fixed by learning a mapping f which

2.4. Text Information 23

FIGURE 2.8: one hot encoding for words.

transforms the one hot vector space into a low-dimensional space, as shown
in Fig.2.9, in a way that similar words have similar values, for examples,
the distance between "girl" and "woman" are close to the distance between
"boy" and "man", as shown in Fig.2.10.

FIGURE 2.9: The goal of word embedding just to learn this hid-
den layer which is just a lookup table.

The distributed representation is often achieved by learning a embed-
ding matrix using a method called word embedding, which will be intro-
duced in next chapter. After converting one hot representation of a sentence
into its distributed representation, the dimension of every word vector is
reduced, as shown in Fig.2.11.

24 Chapter 2. Representation of Modalities

FIGURE 2.10: t-SNE visualization of the bilingual word embed-
ding. Green is Chinese, Yellow is English.[33]

FIGURE 2.11: The left side is a matrix of a sentence and the right
side is the matrix of the sentence after word embedding.

2.4. Text Information 25

26 Chapter 2. Representation of Modalities

27

Chapter 3

Deep Neural Networks

Deep Neural Networks (DNNs) have recently achieved breakthrough re-
sults in almost every machine-learning task. They are a set of machine-
learning algorithms inspired by how the brain works. Unlike most tradi-
tional machine-learning algorithms, deep Neural networks perform auto-
matic feature extraction without human intervention [34]. However, it is
still not fully understood why deep learning works so well.

The rest of this chapter is organized as follows. Section 3.1 describes
Feed-Forward DNNs and the basic knowledge about how a DNN is formed
and trained. Section 3.2 talks about recurrent DNN; The motivation of using
this type of layer and its implementations (LSTMs and GRUs) and variants.
Section 3.3 Convolutional DNN; What is the different between a FNN and
a CNN and how to control the operation the a convolutional layer. Section
3.4 is about autoencoder and what it is used for. Section 3.5 presents how
distributed representations of words can be learned by word embedding.

3.1 Feed-Forward DNN

Two perspectives to understand the behavior of DNNs are shared here.

Perspective of linearly separability
A toy DNN shown in Fig.3.1 It is challenging to understand the behavior of

FIGURE 3.1: simple DNN

deep neural networks in general, but it’s much easier to see what’s happen-
ing when the data is passed through a single layer: A mapping from input
space to output space. It is basally linear transformation followed by an
activation function, whose mathematical description is Eq.(3.1), where ~x is
the input, W is weights matrix, ~b is bias, a() is activation function and ~y is
the output of this layer.

~y = a(W · ~x+~b) (3.1)

28 Chapter 3. Deep Neural Networks

If we break down the equation, the single layer actually transforms the
data and create a new representation by the following 5 space operations.

1. Change the dimensionality of the input space.

2. Rotate the input space.

3. Scale the input space.

4. Translate the input space.

5. "bend" the input space.

The first 3 operations are done by W · ~x, the 4th one is provided by ~b,
and the 5th operation is done by a() which gives nonlinearity to the layer.

Take the example of the simple classification case shown as Fig.3.2. It’s
impossible to separate the two curves with a line.

FIGURE 3.2: simple case [35]

If we increase the number of layers, the 5 operations can be applied
again and again so that we can finally find a hyperplane that separates the
two curves in the final representation. Fig.3.2 shows the final representation
after these space operations of several layers.

FIGURE 3.3: After operations of several layers [35]

From this perspective, the parameters of DNN indicate operations ap-
plied to the input space and the learning process of DNN is to make the
input space linearly separable with the interactions of 5 space-operations of
several layers More about what DNNs do: [35].

3.1. Feed-Forward DNN 29

Physical perspective
Another perspective is about how a matter forms. We know that matters
are composed of molecules which are again composed of atoms. Each layer
of DNN can represent a level of matter (such as atom level or molecule
level). If there are a certain amount of different atoms, they can form var-
ious molecules and eventually form a car. We can understand DNN with
the similar concept, then the parameters of DNN indicate how, let’s say, a
car is composed of atoms. Fig.3.4 demonstrates that with the different com-
binations of pixels, we can get various edges, with different combinations
of edges we get noses or ears and eventually we get all kinds of faces. Once
we know how a certain picture forms from pixels, we can tell whether a
combination of new pixels is that picture.

FIGURE 3.4: How a picture of face is composed of pixels

But why this simple idea of "DEEP" neural networks works so well in
reality? Many researchers argued that the success of deep learning could
depend not only on mathematics but also on physics [36].

The well-known universal approximation theorem [37] guarantees that
a neural network with only one hidden layer can approximate arbitrary
functions, provided enough number of hidden nodes, However, this does
not touch upon the algorithmic learnability of those parameters and how
many different examples are needed to achieve this approximation. If the
number of examples needed for learning a function using the shallow neu-
ral network is the same as the one needed when using a lookup table, it
will lose the meaning of learning. However, this could be improved by
"DEEP" neural networks by assuming that instants (examples) share the
same hidden representations in a series of hidden layers and these hidden
representations can be reused by all examples including unseen ones so that
the models can learn better with some amount of training data. Therefore,
the success of Neural Networks could hinge on the ability to disentangle
the factors of variations and learn those factors independently, which al-
lows models to represent an exponentially large number of variations by
learning a linearly large number of factors.[38].

The learning process of DNN is to transform the input space to a linearly
separable space with the interactions of 5 space-operations of several layers.
But how do we train it? First, some data pre-processings are needed to
convert the signals into the ones recognizable to computer.

30 Chapter 3. Deep Neural Networks

3.1.1 Data Pre-Processing

Like other machine learning methods, pre-processing is needed before train-
ing a deep neural network.

Mean Subtraction
Mean subtraction is the most common way which can make it easy for the
network to converge. It’s just subtracting the mean across every individual
feature in the data and it can center the cloud of data around the origin
along every dimension.

Normalization
Normalization refers to normalizing the data dimensions so that they are
of approximately the same scale. There are two common ways of achieving
this:

1. Divide each dimension by its standard deviation, once it has been
zero-centered.

2. Normalize each dimension so that the min and max along the dimen-
sion is -1 and 1

Notes that the outputs should also correspond the activation function of the
output layer. For example, if we use sigmoid activation function, then the
range of outputs should be (0, 1).

One-Hot Vector
If the task is classification, then instead outputting a most likely class, we
also want to know the probabilities being other classes. Then, we need to
convert our labels to one-hot vectors of size number of classes. For exam-
ple, the class with index 12 would be the vector of all 0’s and a 1 at position
12.

3.1.2 Non-Linearities

The Non-linearity of the network is given by activation function. Com-
monly used activation functions are Sigmoid, Tanh, ReLU. Their details
are shown in Table.1 3.1 which one to use depends on the task. For exam-
ple, the gates in a Recurrent Neural Network are a Neural Network with
output layer of Sigmoid, because this network controls how much informa-
tion can flow. Also see how to choose an activation function: [39]

Generally, ReLU is much faster than the other two. It is argued that this
is due to its linear, non-saturating form. Compared to tanh/sigmoid that
involves expensive operations (exponentials, etc.), the ReLU can be imple-
mented by simply thresholding a matrix of activations at zero. Unfortu-
nately, ReLU has the "dying ReLU" problem. For example, a large gradient
flowing through a ReLU neuron could cause the weights to update in such
a way that the neuron will never activate on any datapoint again. If this
happens, then the gradient flowing through the unit will forever be zero
from that point on. By setting learning rate smaller and proper Initializing
of weights can somewhat help to avoid it.

3.1. Feed-Forward DNN 31

TABLE 3.1: Details of activations

Name Plot Equation Range
sigmoid 1/(1 + e−x) (0, 1)

tanh 2/(1 + e−2x)− 1 (−1, 1)

ReLU max(0, x) [0,∞)

Another very important activation function is the softmax function, which
is usually used as the activation function of the output layer for classifica-
tion tasks. It is a generalization of the logistic(sigmoid) function that gives
the probabilities being classes and makes the sum of them equal to 1. The
equation of softmax is given by Eq.(3.2) whereK is the total number of neu-
rons in the layer. This activation function gets applied row-wise (the sum
of the row is 1 and each single value is in [0, 1]).

φ(x)j =
exj

K∑
k=1

exk

(3.2)

3.1.3 Loss Functions

We train a network by minimizing the error the current network makes.
Therefore, first, we need to define the error. The function that measures the
error is called the loss function.

Classification
For the multi-class classification tasks, crossentropy and softmax output ac-
tivation function come with the pair. It’s given by Eq.(3.3)

Li = −
∑
j

ti,j log(pi,j) (3.3)

Regression
For the regression tasks, we hope the predictions and targets are as close as
possible, therefore, the loss function can be any type of distance between
them, like squared error(SE), which is given by given by Eq.(3.4)

L = |t− p|2 (3.4)

32 Chapter 3. Deep Neural Networks

3.1.4 Updates

Once we have the loss function, we can update the parameters of DNN by
minimizing the error got from loss function.

Backpropagation
Backpropagation is the game changer that makes training deep models
computationally trainable. The earliest deep-learning-like algorithms that
had multiple layers of non-linear features can be traced back to Ivakhnenko
and Lapa in 1965 and the earliest convolutional networks were used by
Fukushima in 1979. However, backpropagation was lacking at this point.
Although it was derived already in the early 1960s but in an inefficient and
incomplete form. Backpropagation can make training with gradient de-
scent as much as ten million times faster. Backpropagation is essentially
the chain rule that starts backward from the error. It’s just a technique for
calculating derivatives quickly. The real difference it made is that it enables
us to train a model within a week than many years.

Gradient Descent
The method used in conjunction with Backpropagation for finding the min-
imum of loss function is Gradient descent. Generates update expressions
of Eq.(3.5). It takes steps proportional to the negative of the gradient as ,
because we want to minimize the loss function.

param = param− learningrate ∗ gradient (3.5)

Depending on the Size of examples in each iteration, the name will also
change:

1. Stochastic Gradient Descent (SGD): one example from training set
in each iteration.

2. Mini-batch gradient descent: m examples from training set in each
iteration and the gradient will be averaged over m examples.

Unlike vanilla Gradient descent that runs through all samples in the train-
ing set to do a single update for a parameter in a particular iteration, SGD
often converges much faster. Note that sometimes people use the term SGD
even when referring to mini-batch gradient descent. The size of the mini-
batch is a hyperparameter but it is not very common to cross-validate it. It
is usually based on memory constraints. We use powers of 2 in practice be-
cause many vectorized operation implementations work faster when their
inputs are sized in powers of 2. The smaller size tends to give more gener-
alization because it will not fit the training set too well in each iteration.

Gradient Descent also has a problem. Because it is a first-order opti-
mization algorithm that finds a local minimum of a function, it can get stuck
in local minima and fail to reach the global minima as shown in Fig.3.5.

Learning Rate
The learning rate determines to what extent the parameters will update
(also called step size). A learning rate of 0 will not learn anything. The
learning rate is also a hyperparameter. Fig.3.6 shows how the learning rate

3.1. Feed-Forward DNN 33

FIGURE 3.5: get stuck in local minima

affects the decay of loss function. Higher learning rates will decay the loss
faster, but they get stuck at worse values of loss (green line). This is be-
cause there is too much "energy" in the optimization and the parameters
are bouncing around chaotically, unable to settle in a nice spot in the opti-
mization landscape.

FIGURE 3.6: How the learning rate affects the decay of loss func-
tion

Therefore, it’s useful to decay the learning rate during training. How-
ever, this can be tricky because decay it slowly and you’ll be wasting com-
putation bouncing around chaotically with little improvement for a long
time. But decay it too aggressively and the system will cool too quickly,
unable to reach the best position it can.

Momentum
Another technique that can help the network out of local minima is the use
of a momentum term. Momentum simply adds a fraction m of the previ-
ous weight update to the current one. When the gradient keeps pointing
in the same direction, this will increase the size of the steps taken towards
the minimum. It is therefore often necessary to reduce the global learning
rate when using a lot of momentum (momentum close to 1). If you combine

34 Chapter 3. Deep Neural Networks

a high learning rate with a lot of momentum, you will rush past the mini-
mum with huge steps. This is different from the GD update shown above,
where the gradient directly integrates the position. Instead, the physics
view suggests an update in which the gradient only directly influences the
velocity,Eq.(3.6, 3.7) which in turn has an effect on the position. The pa-
rameter momentum is usually set to values such as [0.5, 0.9, 0.95, 0.99] and
velocity is initialized as 0.

velocity = momentum ∗ velocity − learningrate ∗ gradient (3.6)

param = param+ velocity (3.7)

Nesterov Momentum
Nesterov Momentum is a slightly different version of the momentum up-
date has recently been gaining popularity. Fig.3.6 shows the difference from
the momentum update. It generates update in a way described as Eq.(3.8,
3.9). Also see [40] for further reading.

FIGURE 3.7: With Nesterov momentum we evaluate the gradient
at this "looked-ahead" position.

velocity = momentum ∗ velocity − learningrate ∗ gradient (3.8)

param = param+momentum ∗ velocity − learningrate ∗ gradient (3.9)

Adaptive Updates
A bunch of update methods that adapt the learning rate and use momen-
tum exist now. New update methods are also coming to us. Some of them
are Adagrad, Adadelta, RMSprop, Adam [41], Hessian-free [42]. Which opti-
mizer to use? In practice Adam is currently recommended as the default
algorithm to use, and often works slightly better than RMSProp. However,
it is often also worth trying SGD+Nesterov Momentum as an alternative.
A good blog that is worth reading: [43]

Initialization
Before we can begin to train the network we have to initialize its param-
eters. One thing we should not do is to set all the initial weights to zero.
Because if every neuron in the network computes the same output, then
they will also all compute the same gradients during backpropagation and
undergo the exact same parameter updates. In other words, there is no

3.1. Feed-Forward DNN 35

source of asymmetry between neurons if their weights are initialized to be
the same. The right way to do it instead is to initialize weights randomly
with small values. There are many ways to do this as well. The recom-
mended heuristic is to initialize each neuron’s weight vector as Eq.(3.10,
where n is the dimension of the input to current layer.

w =
N(0, µ)
√
n

(3.10)

Overfitting
Deep neural networks with a large number of parameters are very power-
ful machine learning systems. However, overfitting is a serious problem in
such networks, which means the system not only learns the pattern of train-
ing set, but also the noise of it and such case, the system can only give good
predictions for the training set, but worse for test set. Fig 3.8 demonstrates
underfitting and overfitting, where degree 1 is underfitting and degree 15
is overfitting.

FIGURE 3.8: Underfitting and Overfitting [44]. The dots are
samples and the lines are predictions.

Train/Validation Losses
A common way to see whether the model actually overfits is to split an
additional set called validation set and calculate the accuracy for validation
set as well. The gap between the training and validation accuracy indicates
the amount of overfitting as shown in Fig 3.9

Add Noise To Training Set
Since overfitting means the model fits the training set too well and give
worse results for test data, one way to reduce this bad effect is to add noise
to the training set.

L2 regularization
Another common method is L2 regularization. If a deep neural network
has a large number of parameters it’s hard to guarantee that all param-
eters(nodes) have contribution to predictions. L2 regularization has the
appealing property of encouraging the network to use all of its inputs a
little rather than using only some of its inputs a lot. We do it by adding
a penalty 1/2λw2 to the loss function, where λ is the strength and adding
1/2 is just for easy derivative calculation. Using the L2 regularization ul-
timately means that every weight is decayed linearly to zero. Because of

36 Chapter 3. Deep Neural Networks

FIGURE 3.9: The amount of overfitting can be noticed by analysis
train/loss accuracies

this phenomenon, L2 regularization is also commonly referred to as weight
decay.

Dropout
Dropout is an extremely effective, simple and recently introduced regular-
ization technique by Srivastava et al. in[45]. The key idea is to randomly
drop units (along with their connections) from the neural network during
training as shown in Fig 3.10. This prevents units from co-adapting too
much. While training, dropout is implemented by only keeping a neuron
active with some probability p (a hyperparameter), or setting it to zero oth-
erwise.

FIGURE 3.10: Note: Only apply dropout during training

Early Stopping
Another straightforward way is Early Stopping, which just simply stops
training once some bad conditions happens. Fig 3.11. For example, stop the
training if the validation loss function increases for 3 epochs.

3.2. Recurrent DNN 37

FIGURE 3.11: Early Stopping

3.2 Recurrent DNN

However, FNNs are general architecture for all tasks and do not have any
preferred structure. Without enough training data, deeper FNNs easily
tend to take into account those factors that only exist in the training set, re-
sulting in overfitting. There are two basic types of neural networks address-
ing this problem by introducing parameter-sharing mechanism: recurrent
networks (RNNs) and convolutional neural networks (CNNs).

3.2.1 Temporal Sharing

FIGURE 3.12: FNN vs RNN for sequence modeling.

38 Chapter 3. Deep Neural Networks

Suppose that we want to model temporal information of a speech. When
using FNNs, we will choose a window size and concatenate all the vectors
inside the window to take into account the past and future information.
It needs a lot of different training examples to train such a FNN and will
result in a very long vector even though many dimensions are redundant.
However, if we assume that each output is calculated by the same function
f(xt;Whh,Wxh), in other words, the parameters Whh,Wxh are shared at
every timestep, the same amount of training examples can be used to train
a better model, as shown in Fig.3.12.

Recurrent neural networks are networks with loops allowing informa-
tion to persist. Consider what happens if we unroll the loop: Fig.3.13.

FIGURE 3.13: An unrolled recurrent neural network

The hidden state and output mathematical descriptions are Eq.(3.11)
and Eq.(3.12). Compared to Feed-Forward Network, Recurrent Neural Net-
work has "memory" (~st) which contains information about what happened
in the previous time steps. The output at step ~ot is calculated solely based
on the memory at time t.

~st = tanh(Wih · ~x+Whh · ~st−1 +~b) (3.11)

~ot = a(Who · ~st +~b) (3.12)

From the equations we can also see that even the RNN has different
structure, the basic linear transformation followed by an activation function
remains. In other words, the basic idea behind every Neural Network is
mappings between spaces.

With this structure, RNN can further allow us to map spaces between
sequences of vectors, or in the most general case shown in Fig.3.14.

Backpropagation Through Time
Recurrent networks rely on an extension of backpropagation called back-
propagation through time (BPTT). As shown in Fig.3.15, to calculate gradi-
ent for x3 we also need to apply chain rule to backpropagate gradients all
the way to t = 0.

Vanishing and Exploding Gradients
The idea of Vanilla recurrent network is beautiful, but it has problems in

3.2. Recurrent DNN 39

FIGURE 3.14: Types of mapping

FIGURE 3.15: Backpropagation Through Time

practice: Vanishing and Exploding Gradients. The vanishing gradient prob-
lem was originally discovered by Sepp Hochreiter in 1991. The gradient for
E3 in Fig.3.15 is calculated as: Eq.3.13, from which we can see that there
are two factors that affect the magnitude of gradients: the weights and the
derivatives of their activation functions. If either of these factors is smaller
than 1.0, the other gradients in previous layers will be driven towards 0.
Thus, with small values in the matrix and multiple matrix multiplications
the gradient values are shrinking exponentially fast, eventually vanishing
completely after a few time steps. The information at those steps doesn’t
contribute to what you are learning. The fact is that you end up not learn-
ing long-range dependencies. Conversely, if the weights in this matrix are
large it can lead to a situation where the gradient signal is so large that it
can cause learning to diverge. This is often referred to as exploding gradients.
For detailed explanation[46].

∂E3

∂W
=

3∑
k=0

∂E3

∂ŷ3

∂ŷ3

∂s3

 3∏
j=k+1

∂sj

∂sk

 ∂E3

∂W
(3.13)

On the other hand, the derivatives of activation functions like Tanh/sigmoid
are smaller than 1.0 for all inputs except 0 as shown in Fig.3.16.

Vanishing gradients also happen in deep Feedforward Neural Networks.
It’s just that RNNs tend to be very deep (as deep as the timesteps), which

40 Chapter 3. Deep Neural Networks

FIGURE 3.16: Derivative of tanh

makes the problem a lot more common.
One way to reduce the effect of vanishing gradients is proper initializa-

tion of the Weight matrix. A more preferred solution is to use ReLU, since
the ReLU derivative is a constant of either 0 or 1. But the most popular way
is to use Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU).

Bidirectional RNNs
Bidirectional RNNs are based on the idea that the output at time t may not
only depend on the previous elements in the sequence, but also future ele-
ments. For example, if we predict a missing word in a sentence like "How (
) you been?", we consider both "How" and "you been?". Bidirectional RNNs
are quite simple. They are just two RNNs stacked on top of each other. The
output is then computed based on the hidden state of both RNNs(such as
the sum of outputs of both directions at a particular timestep) Fig.3.17.

FIGURE 3.17: Bidirectional RNN

Deep RNNs
We can also stack multi-layers in RNN architecture, which gives us higher
learning capacity, but we also need a lot of training data and the model is
easy to overfit. Fig 3.18.

3.2. Recurrent DNN 41

FIGURE 3.18: Deep Bidirectional RNN

3.2.2 Long Short-Term Memory

LSTMs are explicitly designed to avoid the long-term dependency problem.
LSTM model introduces a new structure called a memory cell. A memory cell
is composed of four main elements that serve to modulate the interactions
between the memory cell itself and its environment:

1. input gate: One allows incoming signal to alter the state of the mem-
ory cell or block it, whose equation is Eq.3.14

it = sigmoid(Wxi · xt +Whi · ht−1 + bi) (3.14)

2. forget gate: One allows the state of the memory cell to have an effect
on other neurons or prevent it, whose equation is Eq.3.15

ft = sigmoid(Wxf · xt +Whf · ht−1 + bf) (3.15)

3. output gate: One modulates the memory cell’s self-recurrent connec-
tion, allowing the cell to remember or forget its previous state, as
needed, whose equation is Eq.3.16

ot = sigmoid(Wxo · xt +Who · ht−1 + bo) (3.16)

4. self-recurrent: One has a weight of 1.0 and ensures that, barring any
outside interference, the state of a memory cell can remain constant
from one timestep to another. The current cell is calculated by using
all the gates and previous cell together as Eq.3.17. � is elementwise
multiplication and the it�tanh(Wxc·xt+Whc·ht−1+bc) is the candidate

42 Chapter 3. Deep Neural Networks

state value filtered by input gate it.

ct = ft � ct−1 + it � tanh(Wxc · xt +Whc · ht−1 + bc) (3.17)

i, f, o are just vanilla neural networks with sigmoid function. They have
the same equation but different parameters corresponding physical mean-
ings. LSTM cell can also be thought as a combination of filters learned by
several neural networks that all take current input xt and previous hidden
stateht−1 as inputs. Finally, the current hidden state is calculated as Eq.3.18,
where the output activation function tanh can be changed to ReLU or else.
Fig.3.19 Illustrates how a LSTM cell combats vanishing gradients through
a gating mechanism.

ht = ot � tanh(ct−1) (3.18)

FIGURE 3.19: Illustration of an LSTM memory cell

Several excellent articles on LSTMs [47][48].

3.2.3 Gated Recurrent Unit

Another popular gating mechanism based method is Gated Recurrent Unit,
introduced by[49]. The idea behind a GRU layer is quite similar to that of
a LSTM layer. The structure is illustrated in Fig.3.20. It only has two gates,
the reset gate and an update gate that combines the forget and input gates.
It also merges the cell state and hidden state. The resulting model is lighter
than standard LSTM models.

1. reset gate: One determines how to combine the new input with the
previous memory, whose equation is Eq.3.19

rt = sigmoid(Wxr · xt +Whr · ht−1 + br) (3.19)

2. forget gate: One defines how much of the previous memory to keep
around, whose equation is Eq.3.20

ut = sigmoid(Wxu · xt +Whu · ht−1 + bu) (3.20)

3.2. Recurrent DNN 43

FIGURE 3.20: GRU Gating

3. self-recurrent: The current cell is calculatedas Eq.3.21.

ct = tanh(Wxc · xt + rt � (Whc · ht−1) + bc) (3.21)

4. hidden state: The current hidden state is calculatedas Eq.3.22.

ht = (1− ut)� ht−1 + ut � ct (3.22)

Which to use
According to empirical evaluations in [50] and [51], in many tasks both ar-
chitectures perform similarly. But GRUs have fewer parameters and may
train a bit faster or need less data to generalize. On the other hand, if you
have enough data, the greater expressive power of LSTMs may lead to bet-
ter results.

3.2.4 Training

FIGURE 3.21: RNN training inputs

44 Chapter 3. Deep Neural Networks

Because the RNNs also look at the previous information, therefore the
ways we process the data for training and loss function are a little different.

Data preprocessing
We need to introduce anther dimension timestep for RNNs training. The
input of each example is on longer a vector ~x, but a sequence of vectors,
which makes it matrix whose first dimension is timestep. If we use Mini-
batch gradient descent to train the model, then the input data will become
a 3D tensor with a shape of [batch size, timestep, vector dimension] as il-
lustrated in Fig.3.21.

FIGURE 3.22: The average loss over all timesteps is the finial loss

Loss function
Depending on the type of mapping shown in Fig.3.14, the loss function also
varies. If it’s many-to-one mapping, the network will just minimize loss for
one step. If it’s many-to-one mapping such as language model, then the
finial loss can be the average over all timesteps as Fig.3.22.

3.2.5 RNN Architectures

As mentioned in Fig.3.14, Feed Forward Neural Network can do the one-
to-one mapping and Recurrent Neural Network extend it to many-to-many
or many-to-one mapping, both of which can be used in Distillation and Ar-
ticulatory Inversion tasks and lead to different RNN architectures. I listed
3 architectures I used in my experiments below.

Many-To-Many
Many-To-Many mapping is commonly used in language model task and

3.3. Convolutional DNN 45

can also be used in here. The two sequences to be mapped in my experi-
ments have the same length and the architecture is shown in Fig.3.23. The
final loss is the average over all timesteps.

FIGURE 3.23: Many-To-Many

Many-To-One
Depending on which state the model predicts, the architecture also changes
a bit. The idea of this one is to use historical information to predict the last
state. The architecture is shown in Fig.3.24 and the final loss is just the loss
of last state.

FIGURE 3.24: A certain mount of historical states to current
state

3.3 Convolutional DNN

Another neural network introducing parameter-sharing mechanism is con-
volutional neural networks. Consider the situation in Fig.3.25 where we
want to detect whether an "L" shape exists. When using FNN shown as
Fig.3.25 A), there are 16× n parameters (n is the number of channels) to be
learned. A "L" shape appearing at left-down corner and a "L" shape appear-
ing at top-right corner are different for FNN, since they are detected with
different parameters. In order to train a good enough model, we need a lot
of examples with "L" at different locations, But why do we have to learn the
same thing many times?

46 Chapter 3. Deep Neural Networks

3.3.1 Spatial Sharing

The property that we want a neural network to have is called translation
invariance, which can be achieved by using a "smaller" network at different
local many times. As shown in Fig.3.25 B), the assumption that a function
for detecting "L" can be shared at different locations is true, we only need
to train a small neural network with 4 × nparameters, which reduces the
amount of the training example required.

FIGURE 3.25: FNN vs CNN for Spatial information modeling.
Each circle represents a pixel, which is a vector with n dimensions,
n is the number of channels (e.g. n is 3 for an RBG image with 3
channels). Blue box is locating the dimension of the input to the
neural network and the red box points out the shape to be detected.

3.3.2 Reception Field

Now we can choose the size and the shape of the reception field or kernel size,
which is the partial area of the image the "smaller" network (CNN) can see
at each glance. If we set the kernel size of a CNN as the whole image, then
it is equivalent to a FNN.

FIGURE 3.26: reception fields with different size

3.3. Convolutional DNN 47

n by m reception field
The standard size of a reception field is (n by m), for example, the kernel
sizes of (2 by 2), (2 by 3) or (3 by 3) shown in Fig.3.26. The output dimension
of the "smaller" network is determined by "the number of filters". Unlike
FNN, a 2D-CNN each time actually transforms a vector x ∈ Rn×m×d inside
the input tensor into the y ∈ Rk, where k is the number of filters, d is the
number of channels, and (n,m) is the kernel size. A CNN keep doing the
transformation until it have seen the whole image and keep the structure of
all the outputs to form a new tensor.

1 by 1 reception field
The special type of n by m size is 1 by 1. Although it does not take into
account the spatial information, it can be used to adjust the dimensions of
each pixel, as shown in Fig.3.27.

FIGURE 3.27: 1 by 1 reception field. Each pixel of the original
image is represented as a 3-dimensional vector, which can be ad-
justed to a 2-dimensional or a 4 dimensional vector using 1 by 1

reception field

Dilated reception field
The reception field has not necessarily to be a rectangle, for example, it can
be a rectangle with holes (also called Dilated), as shown in Fig.3.28. This
type of convolutional layer was proposed in [52] which intend to reduce
the redundant parameters in different layers. When using multiple succes-
sive convolutional layers, dilated reception field can still support exponen-
tial expansion of the receptive field without loss of resolution or coverage.
(a) F1 is produced from F0 by a 1-dilated convolution; each element in F1
has a receptive field of 3 by 3. (b) F2 is produced from F1 by a 2-dilated
convolution; each element in F2 has a receptive field of 7 by 7. (c) F3 is
produced from F2 by a 4-dilated convolution; each element in F3 has a re-
ceptive field of 15 by 15. The number of parameters associated with each

48 Chapter 3. Deep Neural Networks

layer is identical. The receptive field grows exponentially while the number
of parameters grows linearly.

FIGURE 3.28: reception field with holes [52]

Graph reception field
However, all the structures of reception fields mentioned above are Eu-
clidean Structure. CNNs with this reception field don’t perform well on
datasets coming in the form of graphs or networks: social networks, knowl-
edge graphs, protein-interaction networks. In the last couple of years, a
number of papers re-visited this problem of generalizing neural networks
called graph convolutional network, as shown in Fig.3.29, to work on arbi-
trarily structured graphs, such as works in [53] [54].

FIGURE 3.29: Multi-layer Graph Convolutional Network
(GCN) with first-order filters [55].

3.3.3 Stride and Padding

The next thing we need to consider is how to slide this small network so
that it can see all the pixels in an image. The number of pixels by which the
reception field slide is called stride. For example, the blue box in Fig.3.30
represents the first step and red box represents the second step, if the stride
is 2, then it moves to the second step by two pixels. We keep this operation
until it slide the whole image.

3.3. Convolutional DNN 49

However, this will get a output with a size smaller than the input. Zero
padding can be used to control the size of output as shown by Fig.3.30 C).

FIGURE 3.30: Examples of different strides. The dashed circles
are the zero padded pixels

3.3.4 Convolutional Dimension

Depending on the rank of the input tensor, we can allow the convolutional
layer to slide along 1 or 2 or 3 dimenson, resulting in 1D or 2D or 3D convo-
lutional layer, as shown in Fig.3.31. 1D convolutional layer is usually used
for sequence modeling, since it is essentially windowing. For example, a 1D
convolutional layer with kernel size 2 is essentially a bigram model capable
of learning weights automatically.

FIGURE 3.31: Illustration of 1D, 2D, 3D convolution. B, H, W
represent the size of kernel along spectral and spatial dimension

respectively. M is the number of feature maps [56]

50 Chapter 3. Deep Neural Networks

3.3.5 Pooling Layer

The output of a convolutional layer is still a tensor with the same rank as
the input tensor, We can use pooling layer to down-sample or up-sample
tensors, as shown in Fig.3.32.

FIGURE 3.32: Illustration of average and max pooling layers

3.4 Auto-Encoder

Usually the input and output of a neural network are different, i.e. the in-
put is the observation and the output is the prediction or target while there
is a speical type of neural network called autoencoder whose input and the
output are basically same, as shown in Fig.3.33. The aim of an autoencoder
is to reconstruct the input. Although this structure is quite simple, but the
hidden representation (aslo called “bottleneck”) between the encoder and
the decoder has many good properties. Autoencoders can be used for di-
mension reduction and its compressed representation of the input data will
be used for other machine learning tasks. An autoencoders can be used as
a generative model and .

3.5 Word Embedding

Currently, word embedding has become a standard component for the DNN
based natural language processing. It converts the one-hot representation
of the word to a distributed representation [57], which has many benefits
and allows to map words with similar meaning to similar values: the learn-
ing of one word can indirectly help the learning of the other words with
similar meaning. This is especially helpful for tasks with small training
data.

3.5. Word Embedding 51

FIGURE 3.33: Illustration of an autoencoder. The encoder and
decoder could be several layers of any type of networks

Word embedding achieves the by learning a projection matrix convert-
ing words into distributed representation, either using context to predict
a target word (a method known as continuous bag of words, or CBOW),
or using a word to predict a target context, which is called skip-gram, as
shown in Fig.3.34.

FIGURE 3.34: Illustration of CBOW and skip-gram

After learning a word embedding with CBOW or skip-gram, the dis-
tribution representation transformed from original input are more “mean-
ingful” in terms of describing the relationship between words. The vectors
obtained by subtracting two related words sometimes express a meaningful
concept such as gender or verb tense, as shown in Fig.3.35 and Fig.3.36

There are some popular methods that are used for implementing word
embedding.

Google’s Word2vec
Word2vec is a method of computing vector representations of words in-
troduced by a team of researchers at Google led by Tomas Mikolov [59].
The algorithm has been subsequently analysed and explained by other re-
searchers. Embedding vectors created using the Word2vec algorithm have
many advantages compared to earlier algorithms and it is typically a shal-
low network with only one hidden layer that takes as its input a large

52 Chapter 3. Deep Neural Networks

FIGURE 3.35: Visualize Word Vectors

FIGURE 3.36: After embedding, the English word and German
word with the same meaning have similar vectors [58]

corpus of text and produces a vector space, typically of several hundred
dimensions, with each unique word in the corpus being assigned a corre-
sponding vector in the space, as shown in Fig.3.37.

FIGURE 3.37: Word2vec architecture

3.5. Word Embedding 53

However, the problem of is neural network is that there are so many
parameters to update, for example, if the vocabulary is 10000 and word
dimension is 300, then it will need 10000 × 300 parameters to be updated.
The authors of Word2Vec addressed these issues in [60].

There are three innovations in this second paper:

1. Treating common word pairs or phrases as single “words” in their
model.

2. Subsampling frequent words to decrease the number of training ex-
amples.

3. Modifying the optimization objective with a technique they called
“Negative Sampling”, which causes each training sample to update
only a small percentage of the model’s weights and is not only re-
duced the compute burden of the training process, but also improved
the quality of their resulting word vectors.

FastText
FastText is an extension to Word2Vec proposed by Facebook in 2016 [61]. In-
stead of feeding individual words into the Neural Network, FastText breaks
words into several sub-words. The word embedding vector for apple will
be the sum of all these sub-words and rare words can be properly repre-
sented since it is highly likely that some of their sub-words also appears in
other words.

54 Chapter 3. Deep Neural Networks

3.5. Word Embedding 55

57

Chapter 4

Articulatory and Acoustic
information integration

The Automatic Speech Recognition (ASR) technology as an ideal substitute
for traditional user interfaces has been an important research topic since the
70s. Because the voice user interface is the most appropriate way to manip-
ulate machines for human and has an inherent advantage in the situations
where our eyes or hands are fully occupied on other things and is the only
choice for pocket-sized devices such as Google Glass, Watch Phones which
tend to be too small to hold buttons or touchscreen for user input.

Nowadays ASR technology is becoming good enough to enable many
exciting applications, yet current ASR systems still suffer from acoustic
variabilities such as background noises, speakers, accents, recording con-
ditions, etc. In order to make the systems more reliable and robust, re-
searchers have been trying to utilize additional information such as articu-
latory organs (lips, tongue, velum, etc.) movements, which is more suitable
to model the coarticulation effects [62]. The modalities we are going to fuse
for this task are illustrated in Fig.4.1.

The rest of this chapter is organized as follows. Section 4.1 describes the
basic knowledge of automatic speech recognition system; The different be-
tween conventional GMM-HMM-based acoustic modeling and DNN-HMM-
based acoustic modeling as well as the decoding and evaluation of them.
Section 4.2 talks about the motivation of integration articulatory informa-
tion, feature based vs model based integration and their related studies.
Section 4.3 presents the proposed joint inversion method as well as its train-
ing and testing procedure. Section 4.4 presents generalized distillation as
well as its training and testing procedure. Section 4.5 reports the experi-
ments we did; The database, settings, results as well as some discussions.
Finally, section 4.6 will be a summary of this chapter.

4.1 Background

A typical structure of ASR systems is illustrated in Fig.4.2.
Speech signal first will be converted into a sequence of fixed size acous-

tic vectors o = o1, o2, ...on and the decoder tries to find the most probable
sequence of words w = w1, w2, ...wm given the sequence of acoustic vectors.
Eq.4.1.

ŵ = arg max
w

P (w|o) (4.1)

58 Chapter 4. Articulatory and Acoustic information integration

FIGURE 4.1: The diagram of a system using articulatory + acous-
tic modalities. This task should use articulatory information only
during training and needs to recognize speech without articula-

tory observations.

However, arg maxw P (w|o) is difficult to find directly. Here, Bayes’ Rule
is applied to transform Eq.4.1 into the equivalent Eq.4.2.

ŵ = arg max
w

P (o|w)P (w) (4.2)

Then, the likelihood P (o|w) is found by an acoustic model and the prior
probability P (w) is found by a language model.

The basic unit of speech represented in a standard acoustic model is
called phoneme (For example, the word “bad” is composed of three phones
/b/ /ae/ /d/). For any word w, its acoustic model is the combination of
several phoneme models, which is defined in a pronunciation dictionary.

4.1.1 Language Modelling

The prior probability P (w) of a sequence of words w = w1, w2, ...wK is
given by Eq.4.3, where N is typically in the range 2 − 4. This is called N-
gram Language Model. It gives the probability of a word based on previous

4.1. Background 59

FIGURE 4.2: Block diagram of a typical Automatic Speech Recog-
nition System

N − 1 words.

P (w) =

K∏
k=1

P (wk|wk−1, wk−2, ..., wk−N+1) (4.3)

The N-gram probabilities are estimated from training texts by counting N-
gram occurrences to form maximum likelihood (ML) parameter estimates.
ML estimates uni-gram, bi-gram, tri-gram respectively: Eq.4.4,Eq.4.5,Eq.4.6,
where C() the occurrences of word or word sequence in the training texts.

P (wn) ≈
C(wk)

C(ALL)
(4.4)

P (wn|wn−1) ≈
C(wk−1, wk)

C(wk)
(4.5)

P (wn|wn−2, wn−1) ≈
C(wk−2, wk−1, wk)

C(wk−1, wk)
(4.6)

However, in practice there never be enough data to estimate all possi-
ble probabilities and the probability of unseen word estimated in this way
will become 0. to avoid zero probability events, probability estimates are
smoothed. Several smoothing methods are listed below:

1. Back-off: If an N-gram doesn’t exist, back-off to smaller order [63].

2. Laplace smoothing: Assume that N-grams occur one more time than
they actually do.

3. Model interpolation: Interpolate with lower order N-grams.

4. Good-Turing discounting: Redistribute probability mass from "seen"
events to "unseen" events by discounting counts.

5. Class N-gram models: Cluster the similar words together.

4.1.2 Acoustic Modelling

Modern speech recognition systems are mainly based on Hidden Markov
Models for finding the likelihood P (o|w).

60 Chapter 4. Articulatory and Acoustic information integration

Hidden Markov model

The speech that a ASR system detects is generated from the internal physi-
cal changes in the human body. The internal physical changes are hidden,
but the resulting sounds are observable. Hidden Markov Model (HMM)
[64] is used to estimate the sequence of internal physical changes by know-
ing the sequence of resulting sounds.

An HMM model in ASR task is characterized by the following 5 com-
ponents (2 sets of states and 3 sets of probabilities):

1. Hidden States: The internal hidden physical changes in human body.

2. Observable States: The resulting sounds generated by the internal
physical changes.

3. Initial State Probabilities: A vector π of the initial state probabilities
at time t = 1.

4. Transition Probabilities: matrix A storing every hidden state proba-
bility given the previous hidden state.

5. Emission Probabilities: matrixB storing every probability of observ-
ing a particular observable state given that the hidden model is in a
particular hidden state.

The hidden state of the model depends only upon the previous n hidden
states of the model. and each probability in A and B are time independent.

A left-to-right HMM for acoustic modelling looks like Fig.4.3.

FIGURE 4.3: HMM

Using left-to-right topology is because speech is time-evolving, non-
stationary signal. Paths from current state to previous state are not exist-
ing in ASR task neither. The joint probability that o is generated by an
HMM model M moving through the hidden state sequence w is calculated
as the product of transition probabilities and emission probabilities, which
is Eq.4.7.

P (o, w|M) = a12b2(o1)a22b2(o1)a23b3(o3)... (4.7)

Given w is hidden, the likelihood of P (o|M) is computed by summing all
possible state sequences w = w(1), w(2), ..., w(T), that is Eq.4.8 and can be

4.1. Background 61

approximated by only considering the most likely state sequence, that is
Eq.4.9.

P (o|M) =
∑
w

aw(0)aw(1)

T∏
t=1

bw(t)(ot)aw(t)aw(t+1) (4.8)

P (o|M) = max
w

{
aw(0)aw(1)

T∏
t=1

bw(t)(ot)aw(t)aw(t+1))

}
(4.9)

Mi is a Hidden Markov Model of word i. Since, P (o|wi) = P (o|Mi), the
P (o|wi) can be found by computing P (o|Mi).

The HMM is trained by using Baum–Welch algorithm[65].

GMM-HMM-based

In GMM-HMM-based Modelling, the bw(t)(ot) is found by a Gaussian Mix-
ture Model (GMM) [66] that computes probability density function (pdf)
over a continuous space of input feature vectors.

DNN-HMM-based

Traditional ASR systems represent speech as a sequence of non-overlapping
phonetic units while implicitly assuming that speech can be decomposed
into disjoint acoustic segments, which limits the acoustic model’s ability to
properly learn the underlying variations in spontaneous or conversational
speech. Such systems suffer from acoustic variabilities posed by the varia-
tions in different speaking styles, talkers, contexts.

But these variations have been well handled by DNNs. In the so-called
DNN-HMM hybrid systems [67], [68], big performance boosts were achieved
by replacing GMMs by a feedforward Neural Network (FNN) which takes
a window of several frames as input and produces posterior probabilities
over HMM states as illustrated in Fig.4.4.

FIGURE 4.4: GMM-HMM vs DNN-HMM acoustic models.

In DNN-HMM hybrid systems, the bw(t)(ot) is replaced withP (o|h) found
by a Deep Neural Network calculated using Eq.4.10, where ht is a particu-
lar hidden state of a Hidden Markov Model of a word and ot is observable

62 Chapter 4. Articulatory and Acoustic information integration

vector.

P (ot|ht) =
P (ht|ot)P (ot)

P (ht)
(4.10)

The prior probability of hidden state P (ht) is calculated from (occur-
rences of) the training set, and p(ot) can be assigned a constant since the
observation feature vectors are regarded as independent of each other.

The DNN-HMM Training Procedure is listed below:

1. Train a standard GMM-HMM based recognizer.

2. Use force alignment to get the corresponding target label ht of hidden
state in the recognizer for every vector ot as the DNN training data.

3. Count occurrences of hidden states in the training set to compute the
prior probability of every hidden state P (ht).

4. Train a DNN that maps spaces ot –> ht (classification task of ot).

5. With P (ht|ot) got from the trained DNN model and P (ht compute
P (ot|ht) using Eq.4.10.

6. Use Eq.4.9 and Eq.4.2 to get the recognition results.

Phoneme Modelling

If using phoneme modelling, then every HMM represents a phoneme in-
stead of a word.

4.1.3 Decoding

In decoding, the acoustic score and language model score are combined
together to determine the most likely word sequence given observation se-
quence. However, there is often a significant mismatch between the dy-
namic range of the two scores. The dynamic range of the acoustic likeli-
hood can be excessively high, which makes the effect of language model
relatively small. Therefore, the language scores are often scaled, then the
fundamental formula of speech recognition can be modified as:Eq.4.11 and
the solution is given by the Viterbi algorithm[69].

ŵ = arg max
w

P (o|w)P (w)s (4.11)

where s is language model scale (lm scale) factor.

4.1.4 System Evaluation

The metrics for speech recognizers are word/phone error rate (WER/PER)
and the accuracy, that tells how the results recognized by the system differs
from the orthographic transcripts. The word/phone error rate and accuracy
are defined as follows: Eq.4.12 and Eq.4.13

WER/PER =
S +D + I

N
(4.12)

4.2. Related Studies of Articulatory Information Integration 63

where S is the number of substitutions, D is the number of deletions,
I is the number of insertions and N is the total number of words in the
reference.

ACC = 1−WER/PER =
N − (S +D + I)

N
=
H − I
N

(4.13)

where H is N − (S +D), the number of correctly recognized words.

4.2 Related Studies of Articulatory Information Inte-
gration

Although the ability of DNNs for modeling complex mappings addresses
variations in different speaking styles, talkers, contexts and DNN-HMM
based ASR systems perform fairly well for clearly articulated speech in
“controlled” conditions, they still suffer from background noises, differ-
ences in recording devices etc. This motivated many researchers to incor-
porate the articulatory information into ASR systems.

A lot of prior studies like [62], [15], [70], [71], [72] have proved that
articulatory information can improve the ASR performance and increase
the robustness against noise contamination and speaker variation. How-
ever, incorporating such information is challenging since it is impractical to
obtain observations of articulators movements in real-life speech recogni-
tion scenarios. This constraint requires ASR systems that are able to handle
missing articulatory information during recognition and utilize articulatory
information only during the training phase.

4.2.1 Feature based integration

One approach to incorporate the articulatory information is to utilize it at
the feature level, which I call feature based approach.

The most straightforward and widely used implementation of this ap-
proach is the articulatory-to-acoustic inversion, where the missing artic-
ulatory features are generated from the acoustic signal. This, however,
is not a simple task since the mapping between acoustic and articulatory
data spaces is non-linear and not unique [73]. Various machine-learning
methods haven been applied to model this mapping, for example, Hid-
den Markov Model (HMM) [74], Gaussian Mixture Model (GMM) [75], and
Mixture Density Networks (MDN) [76]. The Canonical Correlation Analy-
sis (CCA) used in [77] and its deep learning extension DCCA [78] are also
the feature based approaches where transformations of the acoustic features
are learned such that they become maximally correlated with the articula-
tory data. Since the Deep Neural Networks have become the new state-
of-the-art tool in a wide range of application domains, multiple studies [79]
[80] [81] have shown that DNNs’ ability to learn highly non-linear and com-
plex functions results in better prediction of articulatory trajectories from
acoustic speech data. Several Deep Autoencoder (DAE) architectures for
articulatory inversion are also investigated in [82].

In the conventional feature based approach (Standard Inversion), the
articulatory inversion model and the acoustic model are trained separately.

64 Chapter 4. Articulatory and Acoustic information integration

Articulatory features are first generated using the inversion model and then
combined with the acoustic features for acoustic model training. The same
procedure is applied during recognition. We present the training and test-
ing procedures of standard inversion using deep recurrent nerual network
below.

Training Procedure
Given the training data {(xi, ai)}ni=1, we would like to learn a mapping
fINV from the acoustic space to the articulatory space by minimizing a
mean squared error (MSE) loss function L with some form of regulariza-
tion

fINV = arg min
finv∈FINV

1

n

n∑
i=1

L(finv(xi), ai) + Ω(||finv||) (4.14)

L(finv(xi), ai) =
1

q

q∑
j=1

(finv(xi)j − aij)2. (4.15)

Here, xi ∈ Rp and ai ∈ Rq are the acoustic and articulatory feature vectors,
FINV is a space of mapping functions from Rp to Rq and Ω is L2 norm
regularizer.

The acoustic model fAC maps concatenated feature vectors into HMM
state probabilities through a softmax function and is trained by minimizing
the categorical cross entropy loss function H :

fAC = arg min
fac∈FAC

1

n

n∑
i=1

H(σ(fac(x
∗
i)), yi) + Ω(||fac||) (4.16)

H(yi, σ(fac(x
∗
i))) = −

c∑
j=1

yij log σ(fac(x
∗
i)j) (4.17)

where, x∗i = concat(xi, fINV (xi)) ∈ Rp+q is the concatenated vector of
acoustic and reconstructed articulatory features, yi ∈ ∆c is a vector rep-
resenting target HMM states, ∆c is the c-dimensional space of probability
vectors, FAC is a class of functions from Rd to Rc, σ : Rc → ∆c is the
softmax function.

Testing Procedure
During testing, the inversion model is used to generate the articulatory fea-
tures which are concatenated with the acoustic features and used as input
to the acoustic model. The overall diagram is shown in Fig.4.5.

4.2.2 Model based integration

Another way to integrate articulatory information in the ASR systems is
the model based approach, where the articulatory data are used to adjust
the parameters and optionally the structure of the acoustic model in a way
that does not require articulatory observations during testingas shown in
Fig.4.6.

4.2. Related Studies of Articulatory Information Integration 65

FIGURE 4.5: Block diagram of the standard inversion and
acoustic model DNN training.

FIGURE 4.6: Block diagram of the model based articulatory
information integration.

Obviously, in this case no articulatory inversion is necessary. In [15], a
hybrid Bayesian network/HMM acoustic model incorporates the articula-
tory data.

A relatively new way to incorporate knowledge into neural networks
is the so called Distillation Training, where an additional loss function with
soft targets is also being minimized during training. In [16], Hinton et al.
have shown that soft targets from complex models can transfer knowledge
to small models that are easy to deploy.

66 Chapter 4. Articulatory and Acoustic information integration

Recently, the learning using privileged information [83] and the distilla-
tion methods have been combined into a Generalized Distillation framework
[20] which utilizes the strengths of both methods. Knowledge is transferred
through soft targets from a “teacher” model trained with additional fea-
tures to a “student” model with no access to those features. In our previ-
ous work [84], we applied Generalized Distillation in a feedforward DNN-
HMM system. The results showed that soft targets can transfer knowledge
from the teacher trained with both articulatory and acoustic data to the stu-
dent model learned from acoustic data only. In [85], the effectiveness of
RNN models pretrained with soft targets was also investigated and com-
pared with the distillation method. Both approaches lead to models that
have higher generalization abilities.

4.3 Joint Inversion

The recognition result of standard inversion depends on the outputs of the
inversion model. However, the inversion model is only trained to minimize
its MSE loss with respect to the articulatory vector and does not have any
knowledge about how its outputs will be used later. It would be helpful to
tell the inversion model what the final goal is. Thus, we train the inversion
model and the acoustic model as a single network so that the parameters of
the two models are trained to minimize the final objective jointly.

The joint training procedure and the network structure are illustrated
in Fig.4.7. The acoustic vector xi is passed through the inversion DNN
finv to calculate the MSE loss with respect to the articulatory vector ai us-
ing Eq.(4.15). In addition, xi concatenated with the inversion DNN output
finv(xi) (which is expected to have a physical meaning of articulatory fea-
ture) and the vector concat(xi, finv(xi)) (denoted as x∗i) is passed through
the acoustic model DNN fac followed by a softmax output function σ to cal-
culate the categorical cross entropy loss with respect to HMM state labels yi
using Eq.(4.17).

4.3.1 Training Procedure

During the training the entire network is trained by minimizing the weighted
average of the two loss functions controlled by λ ∈ [0, 1) using Eq.(4.18)

fINV , fAC = arg min
finv∈FINV ,fac∈FAC

1

n

n∑
i=1

[(1− λ)

H(σ(fac(x
∗
i)), yi) + λL(finv(xi), ai)

+Ω(||fac||+ ||finv||)] (4.18)

We have to note that the weight λ which controls the contribution of
each loss function in the weights update cannot be set to 1, because this
will eliminate the HMM states as targets and destroy the acoustic model.
On the other hand, λ = 0 means that articulatory targets are eliminated and
no articulatory information is integrated.

4.4. Generalized Distillation 67

FIGURE 4.7: Block diagram of the joint articulatory inver-
sion and acoustic model DNN training.

4.3.2 Testing Procedure

During testing, the HMM state probabilities obtained from the joint model
are fed to the HMM decoder as shown in Fig.4.8. The only input data in this
case are the acoustic features as in any articulatory inversion based system.

Joint Inversion allows the ideas of hybrid network and regularization
of multimodal learning, though it is very simple and straightforward, its
performance is very good, as we will see in the experiment section.

4.4 Generalized Distillation

Generalized distillation method has been proposed in [20] to combine two
techniques - Hinton’s distillation [16] and Vapnik’s privileged information
[83] which enables machines to learn from other machines. In this frame-
work, an “intelligent teacher” is incorporated into machine learning and

68 Chapter 4. Articulatory and Acoustic information integration

FIGURE 4.8: Block diagram of the joint articulatory inver-
sion testing.

the training data is formed by a collection of triplets

(x1, x
∗
1, y1), . . . , (xn, x

∗
n, yn) ∼ Pn(x, x∗, y),

where (xi, yi) is a feature-label pair and x∗i represents a privileged informa-
tion about xi provided by an intelligent teacher and is supposed to have
higher discriminating power than xi itself. The teacher is assumed to de-
velop a language that effectively communicates information to help the stu-
dent come up with better representation and to enable to it learn character-
istics about the decision boundary which are not contained in the student
training data. In our task, combined acoustic and articulatory feature vec-
tors are regarded as privileged information source, x∗i = concat(xi, ai).

4.4.1 Teacher Training Procedure

The training procedure is as follows:

1. Learn teacher fT ∈ FT using {(x∗i , yi)}ni=1.

fT = arg min
f t∈FT

1

n

n∑
i=1

l(yi, σ(f t(x∗i))) + Ω(||f t||) (4.19)

4.4. Generalized Distillation 69

FIGURE 4.9: Student training block diagram. In contrast
to hard targets yi, soft targets si provide information about

between class relations.

where, x∗i ∈ Rd, d is the total dimension of acoustic and articula-
tory features, yi ∈ ∆c , FT is a class of functions from Rd to Rc,
σ : Rc → ∆c is a softmax function, l is a loss function (in our case,
it is the categorical cross entropy from Eq.(4.17)). The paramters of
teacher model are then fixed.

2. Compute teacher soft labels {si}ni=1 using temperature parameter T ,
where si = σ(fT (x∗i)/T) ∈ ∆c. T is normally set to 1. We use a higher
value for T to soften the probability distribution over classes.

3. Learn student fS ∈ FS from Eq.(4.20) using {(xi, yi, si)}ni=1 and imi-
tation parameter λ ∈ [0, 1]. Because the magnitudes of the gradients
produced by the soft targets scale as 1/T 2, multiplying the second loss
by T 2 is necessary [16].

fS = arg min
fs∈FS

1

n

n∑
i=1

[(1− λ)l(yi, σ(f s(xi)))

+ T 2λl(si, σ(fs(xi)/T))] (4.20)

4.4.2 Student Training Procedure

The student DNN training procedure is illustrated in Fig.4.9. The outputs
of the teacher DNN softened by the temperature parameter T are used as
soft targets si and together with the hard targets yi act as arguments of the
student DNN loss function as in Eq.(4.20). The input training data for the
student DNN consists of acoustic features only. The corresponding con-
catenated acoustic and articulatory features, are given to the teacher DNN
input in order to calculate the soft targets. However, only the student DNN
parameters are updated during this procedure.

70 Chapter 4. Articulatory and Acoustic information integration

FIGURE 4.10: Testing with student DNN. No extra cost is
required during the test.

4.4.3 Testing Procedure

During testing, only the student DNN is used and the state probability pre-
dictions from the “hard” output, i.e. the output that was compared with
the hard targets during training, are fed to the HMM decoder as shown in
Fig.4.10. Student DNN model trained using this method does not need ar-
ticulatory feature nor extra computational resources during testing and is
as fast as the standard DNN acoustic model.

4.5 Experiments

4.5.1 Database Description

We experimented with the University of Wisconsin X-ray microbeam database
(XRMB) [86] which consists of simultaneously recorded acoustic and artic-
ulatory measurements from 47 American English speakers (22 males, 25
females). Each speaker’s recordings comprise at most 118 tasks whose type
can be number sequence, TIMIT sentences, isolated word sequence, para-
graph as well as non-speech oral motor. The order and content of records
was the same for all speakers.

Task list
Task list is shown in Table.4.1. Only normal speed sentences and number
sequence tasks were used in the experiments for now.

1. Word type: seven words selected randomly from the full list of cita-
tion words.

2. Sentence type: three different examples selected from the sentence
list.

3. Long passages of connected speech: were partitioned(the last and first
sentences of each contiguous subdivision were repeated).

4.5. Experiments 71

TABLE 4.1: Task List.

Record type Number

word: standard 40
word-like: vcv, cvc, vseq, v 4
sentence: normal 36
sentence: fast and slow 6
sentence: clear 1
sentence: emphasis 2
paragraph 6
swallow 10
diadochokinetic 3
counting (1-20) 1
number sequences 5
oral gym: wag and protrude 4

Data Forms
There are three forms of data in XRMB database:

1. Orthographic transcripts of the spoken utterance.

2. Digitized waveforms of the recorded speech(sample rate: 21.74 kHz).

3. Simultaneous 2D articulators’ trajectories ([n, 16]), where row is time,
sampled every 6.866 milliseconds and column is x and y-coordinate
history for 8 pellets on the tongue, lips, and jaw as shown in Fig.4.11.

FIGURE 4.11: Placement of the 8 pellets on
T1,T2,T3,T4,MANm, MANi,UL,LL points.

Pronouncing Dictionary
In my experiments, the pronouncing Dictionary is the Carnegie Mellon Uni-
versity (CMU) Pronouncing Dictionary without stress [87]. The CMU dic-
tionary is an open-source machine-readable pronunciation dictionary for
North American English that contains over 134,000 words and their pro-
nunciations. The current phoneme set has 39 phonemes, not counting varia
due to lexical stress. Along with silence, there are 40 phonemes in my sys-
tems, which are listed in A.

72 Chapter 4. Articulatory and Acoustic information integration

TABLE 4.2: Details of the train, validation, and test sets.

Train Test Validation Total (Unique)
Speakers 32 6 4 42
Female 17 3 2 22
Male 15 3 2 20

Sentences 2652 491 295 3438 (81)
Words 24632 4105 2506 31243 (213)

Phonemes 86067 13407 8220 107694 (39)
Hours 2:12:46 0:22:8 0:14:6 2:49:0

4.5.2 Data Processing

Acoustic Data Processing
We downsampled the acoustic signal from 21.74 kHz to 16 kHz, and my
acoustic features are 13-dimensional mel-frequency cepstral coefficients (MFCCs)
computed every 10ms over a 25ms window, along with their first and sec-
ond derivatives, resulting in 39 dimensional frames.

Articulatory Data Processing
We also down-sampled articulatory data from the original rate of 145.7Hz
to 100Hz to match the frame rate (10ms) of acoustic features and use the x,y
coordinates of the 8 articulators along with their first and second deriva-
tives as articulatory feature vectors of 48 dimensions. Including the first
and second derivatives of the articulatory data is helpful since the move-
ment itself can’t tell apart speech pause from other phones.

Data Cleaning
Due to limitations in the recording technologies, articulatory measurements
contain missing data when individual pellets are mistracked. Though there
are methods to reconstruct missing data [88], we decided to use only com-
plete data samples. Phoneme alignment was done using the Penn Pho-
netics Lab Forced Aligner [89] and the missing entries, as well as speech
data which are not consistent with their orthographic transcripts, were re-
moved. Utterances are split into files, each containing only one sentence
with silence parts at the beginning and end reduced to 150 ms. After ex-
cluding the speakers who had only few utterances left, our dataset was
reduced to about 3 hours, while the whole database has 19 hours in total.
All experimental results are obtained from a 7-fold cross validation with 6
speakers for testing, 4 speakers for validation and 32 speakers for training
in each fold. Unlike many other studies, this makes our models as speaker-
independent as possible. Table 4.2 summarizes the details about our data
sets.

4.5.3 GMM-HMM baseline

The global information about systems used in the experiments is listed be-
low:

1. HMM model: standard 3-state left-to-right monophone model

4.5. Experiments 73

2. Phoneme language mode: a simple bi-gram trained on data transcrip-
tions including the paragraph task

3. HMM states: 120 states

Speaker Dependent
To see how recognizers using the data in XRMB preforms, four conven-
tional GMM-HMM recognizers were built using HTK Toolkits:

1. only use acoustic features (39D)

2. use MFCCs and features of T1,T2,T3,T4 articulators (39+24D)

3. use MFCCs and features of T1, T2, T3, T4, UL, LL articulators (39+36D)

4. use MFCCs and features of all articulators (39+48D)

The phoneme error rate (PER) of speaker JW45 (102 utterances) when using
different number of Gaussian components are collected in Fig.4.12. The re-

FIGURE 4.12: Results of speaker JW45

sults verified as well that with articulatory information, the ASR can achieve
much better preference. However, the recognizer with all articulators is not
as good as the one with T1, T2, T3, T4, UL, LL articulators. This is prob-
ability due to the lack of data and also indicate the pattern of articulators
MANm, MANi is not as clear as others.

Speaker independent
The recognizers above also were also trained in speaker independent (Ta-
ble.4.2) task and the results are collected in Fig.4.13. This time, with more
data, the articulatory information gives big improvement. The systems
with more than 38 Gaussian components don’t give clear improvement,
therefore the system with 38 Gaussian components was chosen to be the
baseline.

After optimized the language model’s weight/penalty, the final results
decoded using Julius are summarized in Table.4.3. Frame level DNN train-
ing targets were generated from this GMM-HMM system.

74 Chapter 4. Articulatory and Acoustic information integration

FIGURE 4.13: Results in speaker independent task

TABLE 4.3: Phone error rates for conventional GMM-HMM
system.

LM weight/penalty MFCC MFCC+ART
0/0 29.95 12.01

7.0/2.0 18.85 9.67
7.0/1.0 18.73 9.72

4.5.4 Common DNN settings

In our experiments, we used RNN for both the acoustic and inversion mod-
els. DNNs have a lot of hyper parameters, such as number of layers, num-
ber of nodes, activation function type, etc. In a series of preliminary experi-
ments, we tried various RNN structures and parameters in order to achieve
the best possible baseline performance. Finally, we chose two biGRU layers
stacked in between feedforward dense layers which showed the best per-
formance. Similar findings are reported in [90] [91]. Although in principle
a DNN with more recurrent layers should be able to provide similar per-
formance, yet it takes much longer to propagate the information through
the recurrent layers than feedforward layers and deeper RNNs easily be-
come over-fitted after several epochs of training. Thus, most DNNs in our
experiments have following hidden layers: 2 feedforward (F) layers with
ReLU activation followed by 2 biGRU (B) layers on top of which there are
another 2 ReLU feedforward layers. This structure is denoted as FFBBFF
and is shown in Fig.4.14 for both the acoustic and inversion DNNs. The
other common settings are summarized in Table. 4.4.

For regularization, a dropout layer with 30% dropout rate is inserted
after every feedforward layer and biGRU layer and L2 regularizations of
feedforward layers with a rate of 1e-3 are also added to the final loss, which
is 10−3

∑
(‖θ‖2)/2 and θ is the weights of a layer.

For the training, a gradient clipping norm of 10.0 is set to prevent the
exploding gradient and the weights of gates in GRU layers are initialized
using orthogonal matrix initialization [92], which we found important for

4.5. Experiments 75

TABLE 4.4: Common DNN parameters

Regularization dropout (30%), L2 (1e-3)
Regression loss function MSE

Regression Output activation Linear
Classification loss function Categorical Cross-entropy

Classification Output activation SoftMax
Hidden feedforward activation ReLU

Hidden feedforward nodes 2048 per layer
GRU (per direction) nodes 1024 per layer

Update Adam

FIGURE 4.14: Inversion and acoustic RNN structures. The
number of nodes and the activation function of each layer
is given. Note that the biGRU layer consists of two GRUs

layers, so the number of nodes is for each of them.

the training. Finally, all DNNs were first trained with 9e-5 learning rate and
fine-tuned with 5e-6 learning rate once the validation data losses did not go
down for 3 epochs.

4.5.5 DNN-HMM baseline

Settings
As a baseline, we adopt a system where the inversion model and acoustic
model are trained separately. The inversion model architecture is FFBFF
illustrated in Fig.4.14-a. The inputs and outputs are the MFCC (39dim) and
articulatory feature (48dim) vectors respectively.

Results
Our acoustic model architecture is FFBBFF and is shown in Fig.4.14-b. The
train data x∗i are concatenated acoustic and generated articulatory vectors
(87dim) and the “hard” targets yi are one-hot vectors (120dim) where the

76 Chapter 4. Articulatory and Acoustic information integration

component corresponding to the target state is 1 and all other components
are set to 0.

Although impractical, it is possible to train and evaluate the system per-
formance using the true articulatory data. This would give us the maxi-
mum achievable performance, or in terms of phoneme error rate, the PER
lower bound. On the other hand, performance of the system trained on
acoustic data only would serve as the PER upper bound. Any PER in be-
tween those bounds would show improvement, but the goal is to get as
close as possible to the lower PER bound.

Figure 4.15 shows those bounds for the GMM-HMM and RNN-HMM
acoustic models. Previously, we have built an DNN-HMM model with
feedforward layers only, and its results are also shown as FNN-HMM.

Obviously, models using the articulatory features are always better than
those without them. As the model becomes more and more powerful, i.e.
GMM→FNN→RNN (whose numbers of parameters are about 0.8, 20, 42.4
millions respectively), the gap between the upper and lower bounds re-
duces significantly.

FIGURE 4.15: The PER results of different acoustic mod-
els with and without true articulatory (ART) features. The
numbers correspond to the upper and lower PER bounds

for each model.

TABLE 4.5: Speaker independent inversion results (the 1st
and 2nd derivatives are excluded).

Inversion & acoustic Model RMSE r PER(%)
FNN 0.632±0.021 0.770±0.029 7.35±1.04
RNN 0.618±0.023 0.923±0.006 3.15±0.59

4.5.6 Inversion Baseline

First, we investigated how our models perform the acoustic-to-articulatory
mapping. Table 4.5 shows the inversion results for a 5 hidden layers feed-
forward network (FNN) with input window size of 17 frames and the RNN

4.5. Experiments 77

FIGURE 4.16: The predictions of T2_x, T2_y, MI_x, MI_y
articulatory movements obtained from the RNN inversion

model.

(from Fig.4.14a) in terms of Root Mean Squared Error (RMSE) and the Pear-
son correlation coefficient r computed using the true articulatory data. In
Fig.4.16 plots of predicted trajectories for several articulatory features us-
ing the RNN inversion model are given. The predictions from the RNN
inversion model are smooth enough even without any post-processing as
mentioned in [93]. This indicates that RNN accounts for the previous and
future information quite well. When inversion model predictions are used
as articulatory features in the corresponding DNN-HMM acoustic models,
clear error reduction is observed as shown in PER(%) column.

4.5.7 Joint Inversion

Settings
The architectures of inversion and acoustic RNN in the joint training ex-
periment are the same as in baseline system. The difference is that the two
models are trained jointly as illustrated in Fig.4.7.

In the first series of experiments, we initialized weights of the RNNs
randomly. However, since the number of model parameters has doubled,
finding a good initialization strategy is essential for the success of the train-
ing. Here, we use a pretraining strategy to help the network to start from a
good position. In this case, the weights of the network are initialized with
the weights from well trained inversion model and acoustic model of the
baseline system. This initialization reduced 2 to 3 times the number of iter-
ations necessary to train the models.

78 Chapter 4. Articulatory and Acoustic information integration

FIGURE 4.17: Results of the joint inversion and acoustic
model training. λ = 0 corresponds to the case when the
acoustic model uses MFCC features only but is trained with

targets obtained from the MFCC+ART GMM-HMM.

During training, the joint loss function parameter λ was varied from 0
to 0.9 in steps of 0.1. As we explained above, λ = 1.0 is meaningless with
respect to the training goal.

Results
The joint inversion + acoustic model results are summarized in Fig.4.17,
where Fig.4.17-a shows the results for the test set and Fig.4.17-b gives the
results for the validation set, the blue dashed line and green dashed line
represent the upper and lower bounds respectively and the red dashed line
is the inversion baseline result. The “Joint Inv” curve shows the results
of jointly trained model with different λ. The “Joint Inv+Pre” denotes the
results with pretraining, i.e when networks are initialized with the weights
from the separately trained inversion and acoustic DNNs as explained in
Section V.C-2.

When the RNN networks are randomly initialized, the joint training
gives slight improvement for several values of λ. However, the effect of the
pretraining is obvious.

From the figure we can see that the test set and validation set both
achieve best results with λ = 0.2. Because the validation data was used
to tune the DNN parameters and to train the GMM-HMM systems, the re-
sults are better than the ones on test set. The best joint training result with
λ = 0.2 is 2.80±0.49%, which is very close to the lower bound of 2.68%.

4.5.8 Generalized Distillation

Settings
In a similar way to our previous work [84], we applied the Generalized Dis-
tillation framework, but this time for RNN training. The teacher model in

4.5. Experiments 79

this case is the same as the acoustic RNN used in the articulatory inversion
baseline system. However, here it is used only to obtain the soft targets for
the student RNN model training which has the same architecture, except
for the input layer. It takes only acoustic feature vectors (39 dim).

The two hyper-parameters of the distillation training, the temperature
T and the imitation parameter λ were changed as follows. T was set to 1,
2, and 5, and λ was varied from 0 to 1 with steps of 0.2. Note that λ =
0 reduces the distillation training to conventional training, with the only
difference that the hard targets are obtained from the GMM-HMM model
trained with both the acoustic and articulatory features. On the other hand,
λ = 1 means that the training is done using only the soft targets.

Results
The RNN distillation training results in terms of PER are summarized in
Fig.4.18, Fig.4.18-a and Fig.4.18-b show the results on test and validation
sets respectively. The blue dashed line represents the result of the stu-
dent when trained alone which corresponds to the upper PER bound. The
teacher’s result is the lower bound distilled student can achieve. As can be
seen, for T = 2 and λ = 0.8, both sets achieve the best results. The distilla-
tion result of 2.93±0.52% PER is 21.9% better than the result of the student
alone. When λ = 0, the distillation training is reduced to standard train-
ing with MFCC features using hard targets provided by the GMM-HMM
trained on MFCC+ART vectors, which is already much better than training
without any articulatory information. On the other hand, λ = 1 means the
model is trained using the soft targets only and is even better than training
with hard targets from the teacher. This suggests that soft targets provide a
more informative objective than the hard targets alone.

Finally, we compare the best performances from all the different meth-
ods in Fig.4.19. Here, the most left and most right bars show the upper and
lower performance bounds respectively. The best articulatory information
fusion result is 2.80±0.49% obtained from the joint inversion and acoustic
model pretraining method. Distillation training result is little bit worse,
but network size in this case is two times smaller and consequently faster
to train and operate.

4.5.9 Discussion

The XRMB data were collected by asking all the speakers perform the same
tasks. This makes the lexical content of the speech data the same for all the
speakers. While the focus of this study is the acoustic and articulatory in-
formation fusion, we cannot ignore the fact that lexically the training and
test data are the same. With respect to the phoneme language model, this
would mean that it is a closed set LM and may have a boosting effect on
all the results. In addition, the RNNs input consists of full utterances, so
they may learn not only the acoustic dependencies, but the linguistic ones
as well, which in turn can lead to biased performance. To check this hy-
pothesis we performed a series of additional experiments.

The closed set language model effect
To explore the effect of the LM on our results, we did tests without LM
as well as with a LM trained on the TIMIT database transcriptions which

80 Chapter 4. Articulatory and Acoustic information integration

FIGURE 4.18: Results of distillation training. The lower and
upper bound for the PER are shown as teacher and student
only results. λ = 0 corresponds to the case when the stu-
dent is trained using hard targets only. “Student+” corre-
sponds to the case when the acoustic model uses MFCC
features only but is trained with targets obtained from the

MFCC+ART GMM-HMM.

FIGURE 4.19: Performance of different methods and two
acoustic baseline models. The “MFCC only” is the PER up-
per bound result. The “MFCC+ART” is the lower bound.

can be considered as a “general purpose” LM for this task. The results of
the upper and lower PER bounds for the GMM, FNN and RNN acoustic
models are summarized in Table 4.6. In these experiments, we excluded 5
utterances (per speaker) with the same lexical content across the speakers,
so the results are slightly different from those from Fig 4.15.

Table 4.6 shows that the closed set XRMB LM has big effect on the GMM

4.5. Experiments 81

TABLE 4.6: 7-fold CV results on different data sets with
different language models. Results are shown for MFCC /

MFCC+ART features.

Language Model Train Test
GMM acoustic model

NO LM 19.3 / 7.44 30.9 / 11.1
TIMIT LM 17.1 / 7.67 25.1 / 10.3
XRMB LM 13.3 / 6.35 19.5 / 8.92

FNN acoustic model
NO LM 2.90 / 2.16 9.82 / 5.12

TIMIT LM 2.75 / 2.04 9.54 / 4.82
XRMB LM 2.67 / 1.88 9.06 / 4.50

RNN acoustic model
NO LM 1.46 / 1.17 4.23 / 2.99

TIMIT LM 1.38 / 1.11 4.02 / 2.85
XRMB LM 1.33 / 0.97 3.87 / 2.66

TABLE 4.7: Details of the train, validation, and test sets
when utterances with the same lexical content are removed.
The number in () is the percentage of the amount from Table

4.2.

Train Test Validation Total
Sentences 1394 (53) 66 (13) 155 (53) 1515 (44)

Words 14532 (59) 691 (17) 1615 (64) 16838 (54)
Phonemes 41393 (48) 1945 (15) 4599 (56) 47937 (45)

Hours 1:05:12 (49) 0:02:59 (13) 0:07:15 (51) 1:15:26 (45)

model performance, but less effect on the DNN acoustic models. Further-
more, even without LM their performance is quite good. This suggests that
DNN may have learned some lexical information as well.

The lexical content effect on DNN training
Although the utterances in the test set are from different speakers, they
contain words and word sequences seen in the training set. For the neu-
ral network based acoustic models this could be significant since the input
context in NNs is much larger (the whole utterance in RNNs) and the long
span dependencies learned during training to some extend would match
those in the test data.

To check this assumption, we repeated all joint inversion and distillation
training experiments using an updated setting. This time we split the data
into seven folds in terms of both speaker and sentence ids, so we got a two
dimensional split with 49 sets as shown in Fig.4.20 and we used the 7 sets
on the diagonal that are unique in both speakers and sentences for testing.
All sets from the rows and columns other than those of the test set are used
for training. This reduced the amount of data by more than half. Table
4.7 summarizes the details about the new dataset. We used the same DNN
hyperparameters and XRMB language model.

82 Chapter 4. Articulatory and Acoustic information integration

FIGURE 4.20: Train (green) and test (blue) datasets split for
the second fold. Similarly, for other folds diagonal boxes

data are used for testing.

FIGURE 4.21: 7-fold CV results when utterances with the
same lexical content are removed. a) PER of the inversion

methods, b) PER of the distillation training.

The RNN-HMM inversion and distillation results are summarized in
Fig.4.21 and results for all usable systems are summarized in Fig.4.22. As
can be seen, both proposed methods work in this case as well. The absolute
values of the PERs, however, are about ten times higher. Since the pres-
ence of the same lexical material in both train and test data and both the
acoustic and inversion models are better suited for such test data, the re-
sults show less improvement using the proposed methods when utterances
with the same lexical content are removed. Nevertheless, the same perfor-
mance pattern can be observed in this case: the pretrained joint inversion is
the best; the joint inversion is better than the distillation training, which in
turn is better than the standard inversion. The optimized hyperparameters

4.6. Summary 83

FIGURE 4.22: The results with 95% confidence intervals for
all systems that can be used in practice after removing lexi-

cal content effect.

for the distillation training still are T = 2.0 and λ = 0.8, while the opti-
mized hyperparameter for the joint inversion is λ = 0.4. Although λ = 0
means no articulatory information is integrated in the joint inversion, it is
introduced by the pretraining, which is the reason that the pretrained joint
inversion in this case is still better than MFCC only.

It is difficult to directly compare our results with results from other stud-
ies because the experimental conditions vary significantly. The closest ex-
perimental settings are the ones reported in [94] [95] where DCCA method
showed significant improvements.

4.6 Summary

In this work, we proposed two methods to integrate articulatory informa-
tion into ASR systems. One method utilizes the Generalized Distillation
framework to build a biGRU-RNN based acoustic model which is trained
with the guidance of the soft targets from a teacher biGRU-RNN learned
from “rich” data which include articulatory features. The other method
combines the inversion model and acoustic model into a single neural net-
work which is trained jointly. When properly initialized, it achieves signif-
icant improvements.

The main findings of this study are:

1. Using deep RNNs as acoustic and inversion models provides big per-
formance boost compared to the deep FNNs.

2. An RNN acoustic model trained using generalized distillation frame-
work leads to up to 21.9% PER reduction having the same number of
parameters as standard MFCC AM.

3. The PER is reduced by 25.3% using the joint inversion training strat-
egy at the expense of increasing the size of the neural network.

4. The long term dependency learning capabilities of the RNNs are pow-
erful enough to learn not only the temporal acoustic but also lexical
information. As our experiments showed, this however may lead to

84 Chapter 4. Articulatory and Acoustic information integration

biased results when the data set is rather small and the train and test
data are lexically similar.

In the future work, we are going to investigate how much reduction in
the network size is possible by the joint inversion training. We also plan
to experiment with bigger databases which don’t provide articulatory mea-
surements and try to integrate the available articulatory data based on our
joint training approach.

4.6. Summary 85

86 Chapter 4. Articulatory and Acoustic information integration

87

Chapter 5

Multimodal Personality
Recognition

Social networks such as Facebook, Twitter, and Weibo have become essen-
tial components of everyday life and hold rich sources that reflect individ-
ual’s personality. Our personality affects our life choices, well-being, and
many other behaviors. During the social interaction, people have to inter-
act with unknown individuals. In order to achieve effective cooperation,
it is important to predict the preferences and behaviors of the people we
deal with. Such predictions can be found everywhere in the daily life and
are often based on the personality of that person. For example, interview-
ers also consider whether the interviewee’s personality is suitable for their
company. A girl may consider marriage based on her boyfriend’s personal-
ity. It is very useful for the systems to take into account of all the modalities
and to fill missing ones given only those that are observed. In this chapter,
we will describe Automatic personality recognition (APR) and Apparent
Automatic Personality Recognition (AAPR) systems based on multimodal
learning. The modalities we are going to fuse for this task are illustrated in
Fig.5.1.

FIGURE 5.1: The diagram of a system using text + audio + video
modalities (or any combinations of three). Unlike the articulatory
+ acoustic fusion, this task can use any modalities in both training

and testing time.

88 Chapter 5. Multimodal Personality Recognition

The rest of this chapter is organized as follows. Section 5.1 describes the
motivation and applications of APR and AAPR as well as how the person-
ality is represented and evaluated in the systems. Section 5.2 talks about
the related studies of two problems. Section 5.3 introduces the multimodal
learning based on deep neural networks. Section 5.4 reports the experi-
ments and results of this research. Finally, section 5.5 will be a summary of
this chapter.

5.1 Background

Automatic personality recognition (APR) from his/her social network ac-
tivities allows to make predictions about preferences across contexts and
environments [96] and has many important practical applications, such as
products, jobs, or services recommendation [9] [10], word polarity disam-
biguation, mental health diagnosis, etc. For example, Fei-Fei Li ’s team has
analyzed millions of publicly available images on Google Street View and
use this knowledge to determine the political leanings of a given neighbor-
hood just by looking at the cars on the streets.

However, the complexity of the personality formation makes it hard
for automatic recognition [97]. One way to handle this issue is to predict
the first impression (Apparent Automatic Personality Recognition (AAPR))
instead. The first impression also plays a very important role during social
interaction like during an interview and is based on a lot of information
such as physical appearance, voices, body language, facial expression, and
the surrounding environment, which comes from different modalities.

APR and AAPR usually use the same model for personality representa-
tion, which is called Big Five Model.

Big Five Model
Big Five Model is formally described by five dimensions known as the Big-
Five personality traits [24], whose examples can be seen in Fig.5.2:

• EXTraversion vs. Introversion (sociable, assertive, playful vs. aloof,
reserved, shy).

• NEUroticism vs. Emotional stability (calm, unemotional vs. insecure,
anxious).

• AGReeableness vs. Disagreeable (friendly, cooperative vs. antagonis-
tic, faultfinding).

• CONscientiousness vs. Unconscientious (self-disciplined, organised
vs. inefficient, care-less).

• OPEness to experience (intellectual, insightful vs. shallow, unimagi-
native).

Automatic recognition of personality typically involves binary classi-
fications or regressions of which trait types an user belongs to given the
content generated by him/her. The goal of APR is to predict the true per-
sonality traits of a person and the true labels are usually obtained by self-
assessment questionnaire [98]. The goal of AAPR is to predict how the other
people’s impression on a person and the labels are usually tagged by aver-
aging many reviewers’ impressions.

5.2. Related Studies 89

FIGURE 5.2: How the personality traits vary between dif-
ferent people.

5.2 Related Studies

Automatic personality recognition
A variety of approaches have been proposed for this task utilizing different
classifiers and feature spaces. Until recently, most of the models were based
on shallow learning approaches such as Support Vector Machine (SVM) [99]
[100], Naive Bayes classifier (NB) [101], K-Nearest Neighbors (kNN) [102],
and Logistic Regression (LR) [103]. In the early studies, text features were
typically extracted by tools like Linguistic inquiry and word count (LIWC)
[104] and good results were usually achieved by selecting features from a
very large feature space like [105], which achieved a very high classifica-
tion performance on the myPersonality task using ranking algorithms for
feature selection and SVMs and Boosting as learning algorithms.

However, the performance of these approaches depends heavily on the
data representation which often is based on hard-coded prior knowledge.
Recently, deep learning approaches have obtained very high performance
across many different natural language processing (NLP) tasks. Unlike tra-
ditional methods, deep learning approaches can learn suitable represen-
tation automatically. Deep learning based method was also proposed in
[106] recently, where convolutional neural networks are applied to extract
n-gram information from stream-of-consciousness essays [107].

Apparent Automatic Personality Recognition
As mentioned above, automatic personality recognition is difficult, since
the subject himself may not know his own personality traits. Therefore, re-
searchers tend to focus on the less difficult apparent automatic personality
recognition. For example, in 2016, ChaLearn Looking at People First Im-
pression Challenge [108] released a dataset of HD Youtube videos with an-
notations of Big Five impression personality traits. All three winners [109]
[110] [111] of this challenge used deep learning based systems, where audio
and video modalities were used. In 2017, the organizers also released a new

90 Chapter 5. Multimodal Personality Recognition

first impression dataset [112] with an additional interview variable label to
help the analysis of job candidate screening.

5.3 APR from Text

Deep neural networks can be used for a wide range of problems, this section
will introduce the ways that we used for personality recognition problem.

Text carries potential information about the author, hence, when the ob-
servations involve text information, word embedding will be adopted.

5.3.1 Word embedding

Currently, word embedding has become a standard component for the DNN
based natural language processing. It converts the one-hot representation
of the word to a distributed representation [57], which has many benefits
and allows to map words with similar meaning to similar values: the learn-
ing of one word can indirectly help the learning of the other words with
similar meaning. This is especially helpful for tasks with small training
data.

In order to utilize the statistical knowledge of the text, we pre-train the
word embedding matrix with the text data using the skip-gram method
[113]. We didn’t use Google pre-trained word2vec because the statuses
contain internet-slang, emoticons (e.g., :-D), acronyms (e.g., BRB-be right
back) and various shorthand notations, which carry rich information about
personality, but are not included in the Google model.

5.3.2 Network Architecture

In our neural networks, the first several layers are intended to automatically
extract features from the raw text. Then, extracted features can be concate-
nated with other features and fed to the output layer for final classification.
These are the main components of our networks:

• Inputs: our network takes input pairs of the form {(xi, ai)}ni=1, where
n is the number of statuses. The text input xi ∈ RW×V contains W
one-hot vectors of words with V vocabulary size. The ai ∈ RA is
nonverbal information data of A dimensions.

• Target: learning targets {ti}ni=1 are binary classification labels for one
trait (there are five traits in total) and ti ∈ R2 is represented as 2 di-
mensional one-hot vector.

• Embedding layer: the text input xi is be transformed by the embed-
ding matrix WE to a distributed representation ei = WE · xi, where
WE ∈ RV×E and E is the dimension of word embedding.

• Convolution layer: multiple convolutional filters extract n-gram in-
formation from ei as shown in Fig.5.3. The green box represents a
bigram CNN filter which considers two words each time and slides
over all words to create a feature map.

A convolutional filter of size n × E is applied on status ei ∈ RW×E

to extract the n-gram features, where n =1, 2, 3 for the unigram, bi-
gram, and trigram. In every convolutional layer, K filters are applied

5.3. APR from Text 91

FIGURE 5.3: Illustration of unigram and bigram convolu-
tional filters.

to each status ei producing a matrix F conv
n ∈ RK×n×E to which bias

Bconv
n ∈ RK is added, resulting in FM conv

n ∈ RK×(W−n+1)×1. A Recti-
fied Linear Unit (ReLU) function is then applied on FM conv

n to intro-
duce non-linearity.

• Avg / max pooling layer: it performs a max or average pooling op-
eration on the convolutional layer output FM conv to obtain a feature
vector PFMn ∈ RK . All n-grams CNN feature maps will be con-
catenated into PFMall ∈ R(K×n). It seems that max pooling extracts
the most important information from the status but doesn’t take into
account how many times such information appears in a status while
average pooling does the opposite. The diagram of combination of
embedding layer and convolutional layer is illustrated in Fig.5.4.

FIGURE 5.4: Word embedding + convolutional layer for
APR.

• Non-lexical features: recognition of personality which depends only
on text features could be misleading since words meanings vary in
different contexts. Therefore, it is beneficial to use other non-lexical
features, if such are available. This can be done by concatenating
the text features PFMall ∈ R(K×n) extracted using convolutional nets

92 Chapter 5. Multimodal Personality Recognition

with the non-lexical features ai ∈ RA, resulting in concat(PFMall, ai) ∈
R(K×n+A).

• Fully connected layer: to transform the combined features concat(PFMall, ai)
to higher-level representation which may be shared across different
samples, we added several fully-connected layers. The activation
function of these layers is also ReLU. The output of two fully-connected
layers is computed as:

xfc1 = σ(Wfc1 · concat(PFMall, ai) + bfc1) (5.1)

xfc2 = σ(Wfc2 · xfc1 + bfc2) (5.2)

where W fc1 ∈ R(K×n+A)×F , W fc2 ∈ RF×F , and σ is max(x, 0).

• Output layer: a softmax output layer is added to maximize the prob-
abilities of the trait being yes and no. It’s output is obtained from:

yi = σ(Wo · xfc2 + bo) (5.3)

where Wo ∈ RF×2, and σ is the softmax function.

• Loss function: we use cross entropy (5.4) as the loss function to min-
imize:

H(ti, yi) = −
2∑

j=1

tij log yij (5.4)

We can also replace the convolutional layers with other type of layers,
illustrated as Fig.5.5.

FIGURE 5.5: Network architecture for APR from text

5.4 APR from speaking style

The personality traits can be inferred based on many types of observations,
such as text [114, 115, 116], audio [117, 118], video [119, 109], or any com-
bination of them, each of which has its own applications, depending on

5.4. APR from speaking style 93

the availability of observations in different situations. For example, the au-
dio based AAPR is very useful for the producers who make education or
explainer videos since the audiences’ first impression on their voices can
largely affect the trustiness and attractiveness of the videos.

The conventional methods of AAPR from audio typically use a large
pool of potentially prosody features (e.g. Mel Frequency Cepstral Coef-
ficients, pitch, energy, and their 1st/2nd order temporal derivatives) and
“Interspeech 2012 Speaker Trait Challenge” [120] is the first, rigorous com-
parison of different approaches over the same data and using the same
experimental protocol for audio based AAPR, where the performances of
most approaches depend heavily on careful feature selection [121, 122, 123,
124]. Many of those features are included in the open-source openSMILE
tool [125] and can serve as baseline for audio based AAPR. For example, the
winner in the ChaLearn 2017 Job Candidate Screening Competition also
used the openSMILE feature configuration that served as challenge base-
line in the INTERSPEECH 2013 Computational Paralinguistics Challenge,
which is 6373-dimensional feature set and was found to be the most ef-
fective acoustic feature set among others for personality trait recognition
[126]. In order to learn useful features automatically, deep learning based
methods have also been proposed for audio based AAPR. The audio model
baseline provided by the organizer is a variant of the original ResNet18
model [112], which was trained on random 3s crops of the audio data and
tested on the entire audio data. However, since the general network archi-
tecture is not specifically designed for AAPR, it doesn’t appear to clearly
outperform the conventional methods.

5.4.1 Neural Style Transfer

The neural style transfer became popular after the paper [127], where the
style representation of an image is described as the correlation between dif-
ferent filter responses given by the Gram matrix. The basic idea was de-
veloped to classify image style in work [128], where the VGG-19 network
[129] trained on the ImageNet dataset was used to obtain filter responses
at different layers whose Gram matrix is calculated and transformed into a
style vector, which is then classified by an SVM (support vector machine)
classifier.

But the characteristics of audio signals are different from those of the im-
ages, e.g. speech is a sequential signal while the image is a 3D-tensor, and
the duration varies for different utterances. Moreover, the Gram matrix rep-
resenting styles is usually calculated from pre-trained networks and might
not hold the best features for the desired task. In this work, we propose a
system that automatically captures speaking styles for apparent personality
recognition.

5.4.2 Automatic Speaking Style Extraction

The proposed system evaluates a speech signal and returns 6 scores for the
5 personality traits and an interview variable (whether a candidate will be
invited for a job interview).

94 Chapter 5. Multimodal Personality Recognition

In our neural network, the Gram matrix is not calculated from any pre-
trained networks. Everything is jointly learned from scratch. The overall
architecture is illustrated in Fig.5.6.

FIGURE 5.6: Neural Network architecture used in our sys-
tem.

• Input: the input x ∈ Rt×d to our network contains d-dimensional
speech features obtained at t timesteps.

• Target: the learning target t ∈ R6 is a 6-dimensional vector (repre-
senting five traits and the interview variable), whose range is [0,1].

• Convolutional layer: the input x is first fed to a convolutional layer
with f number of filters, k × d kernel size, 1 stride, and “same” zero
padding, resulting in a feature map h ∈ Rt×f . This is intended to au-
tomatically filter out the silence and extract useful features for com-
puting the speaking styles. A Rectified Linear Unit (ReLU) activation
function is then applied to introduce non-linearity.

• Gram layer: Gram matrix g is then calculated from the feature map
h, where g = hTh. The lower (or upper) triangular matrix and diag-
onal are flattened into a vector g∗ ∈ R(f+1)∗f/2 for the next layer. A
Gram layer actually represents the speaking styles as the correlations
between different channels of the feature maps from the previous con-
volutional layer.

• Batch norm layer: since the norms of values in g∗ are very big, a batch
normalization layer with a ReLU activation function is added to solve
this issue, resulting in a vector s that represents the speaking styles.

• Fully connected layers: the style vector s is then fed to one or more
fully connected layers (dense layers) with ReLU activation function
that further transforms s to higher level features.

• Output layer: finally, an output layer without activation function fol-
lows the dense layer(s) to produce an output o with 6 dimensions.

• Loss function: We tackle this task as a regression problem, so the
mean squared error (MSE) is used as loss function.

5.5. AAPR from Text, Audio, Video 95

5.4.3 Low Level Feature Extraction

16kHz audio signals are extracted from the video clips and 13 dimensional
Mel frequency cepstral coefficients (MFCCs) are computed every 10ms over
a 25ms window, along with their first and second derivatives and used
for our acoustic feature vector x ∈ R1528×39, where 1528 is the number of
timesteps.

5.4.4 Overall Settings

In all the networks to be trained, every hidden dense layer has 512 nodes
and is followed by a dropout layer with a drop rate of 40%. The kernel
size of every convolutional layer is 3. Each network was trained by 300
epochs using Adam [130] update method with a learning rate of 1e-4 and a
batch size of 16. We chose 300 epochs because the networks after 300 epochs
perform fairly well on the validation set. The L2 regularization with a rate
of 1e-4 is also added to the final loss, which is 10−4

∑
(‖θ‖2)/2 and θ is the

weights vector of a layer.

5.5 AAPR from Text, Audio, Video

This task takes a short video clip of a single person with three modalities
(text, audio, video) and returns 6 scores for the 5 personality traits and the
interview variable.

The typical fusion method is to process different modalities separately,
then combine them together. But the processed features may not be com-
plementary to each other. So we can train all modalities in a single net-
work, but the convergence speeds of different modalities are also different,
it doesn’t work well either. To address this problem, we propose an atten-
tion network with multiple training stages.

The purpose of our method is to divide the multimodal learning task
into two sub-tasks: 1. An attention network which learns how to change the
scales of different modalities depending on their correlations. 2. A network
that takes the outputs of the attention network to predict the targets.

5.5.1 Preprocessing

From each video clip, we extract low-level features for each text, audio, and
video modality and form matrices with a shape of (timesteps, channels),
resulting in a dataset {(Ti, Ai, Vi, li)}Ni=1, where Ti ∈ Rst×ct ,Ai ∈ Rsa×ca ,
Vi ∈ Rsv×cv stand for text, audio, and video respectively, st, sa, sv are the
number of timesteps and can vary among different clips, li ∈ R6 is the
labels vector and N is the number of sample clips.

5.5.2 Single Modality

Three 1D-convolutional networks are trained individually for each modal-
ity as illustrated in Fig.5.7. They all have the same architecture: one or more
convolutional layer(s) followed by a global average pooling layer (kernel
size is the maximum length). Each network is trained by minimizing the
mean squared error (MSE) between the predictions and the corresponding

96 Chapter 5. Multimodal Personality Recognition

labels. Once the network is trained, we fix its parameters and take the out-
put of the global average pooling layer as our final representation for each
modality. The reason we use neural networks for feature extraction is that
we don’t know which features are good for predicting personality traits and
we let neural networks to automatically extract them. It is possible to use
different architectures to extract better features, but here we focus on the
joint multimodal learning using correlational networks.

FIGURE 5.7: Single modality architectures used in our sys-
tem.

After the feature extractions, 2D-array data is reduced into 1D-array and
our dataset becomes {(ti, ai, vi, li)}Ni=1, where t ∈ Rdt , a ∈ Rda , v ∈ Rdv with
dimensions determined by the number of filters in the last convolutional
layer of the corresponding CNN.

In order to utilize the statistical knowledge of the text, we pre-train the
word embedding matrix with the text data using the skip-gram method
[113]. We didn’t use Google pre-trained word2vec because the statuses
contain internet-slang, emoticons (e.g., :-D), acronyms (e.g., BRB-be right
back) and various shorthand notations, which carry rich information about
personality, but are not included in the Google model.

5.5.3 Multimodal Network Architecture

After computed ti, ai, vi from their own networks mentioned above, we
fuse ti, ai, vi using the proposed architecture shown in Fig.5.8.

• Higher feature extraction To give the network some spaces to change
different modalities’ representations for the fusion, the architecture
first maps all modalities into high-level spaces th, ah, vh respectively
using formula Eq.5.5, where d() denotes a dense layer, θ is the param-
eters of the dense layer.

5.5. AAPR from Text, Audio, Video 97

FIGURE 5.8: Multistage Training Strategy with Attention .

th = d(t, θct)

ah = d(a, θca)

vh = d(v, θcv)

(5.5)

• Attention weights Then the network computes the attention weights
at, aa, av that change the corresponding modalities into suitable scales
using formula Eq.5.6. The attention weight of each modality is based
on the relationship between this modality and video modality be-
cause video modality holds the most information and we want to
make other modalities complementary to video modality.

st = tanh(Wt · t+Wv · v)

sa = tanh(Wa · a+Wv · v)

sv = tanh(Wv · v +Wv · v)

at =
est

est + esa + esv

aa =
esa

est + esa + esv

av =
esv

est + esa + esv

(5.6)

98 Chapter 5. Multimodal Personality Recognition

• Common representation space the modalities will be scaled by their
corresponding attention weights and summed into a common repre-
sentation space that holds all modalities information Eq.5.7.

t′ = th ⊗ at
a′ = ah ⊗ aa
v′ = vh ⊗ av
h = t′ + a′ + v′

(5.7)

• Big5 predictions our network predict the big5 scores big5∗ for the
given inputs using formula Eq.5.8.

h2 = d(h, θh)

big5∗ = d(h2, θo)
(5.8)

• Auto-encoder our network also has 3 outputs for predicting each modal-
ity t∗, a∗, v∗ using formula Eq.5.9.

t∗ = d(h, θt)

a∗ = d(h, θa)

v∗ = d(h, θv)

(5.9)

5.5.4 Multistage Training Strategy

Since we divide the task into two sub-tasks, we need different lost functions
for each of them. The whole network is trained end to end, but with some
parameters fixed in certain stage.

3 groups of loss functions

We used many loss functions, to make it clear, we summarize them into 3
groups.

• Auto-encoder losses as described in Eq.5.10, where model() denotes
our network, concat() means concatenation and 0 stands for the tensor
with the same shape of that modality.

mse(model(t, 0, 0), concat(t, a, v))

mse(model(0, a, 0), concat(t, a, v))

mse(model(0, 0, v), concat(t, a, v))

(5.10)

• Lack modality losses as described in Eq.5.11.

mse(model(t, 0, 0), big5)

mse(model(0, a, 0), big5)

mse(model(0, 0, v), big5)

(5.11)

5.6. Experiments 99

• Big5 loss as described in Eq.5.12.

mse(model(t, a, v), big5) (5.12)

4 groups of parameters

We also summarize the parameters into 4 groups:

• content parameters: θct , θca, θcv.

• Attention parameters: Wt,Wa,Wv.

• Auto-encoder parameters: θt, θa, θv.

• big5 parameters: θh, θo.

3 stages

Then we train the network for 3 times with different loss function and pa-
rameters.

• Higher feature extraction stage

minimize: (auto-encoder losses)*0.8 + (lack modality losses + big5
losses)*0.2

trainable: contents parameters, weights parameters, auto-encoder pa-
rameters

non-trainable: big5 parameters

• Attention weights learning

minimize: lack modality losses*0.8 + big5 losses*0.2

trainable: weights parameters, auto-encoder parameters

non-trainable: contents parameters, big5 parameters

• Big5 prediction training

minimize: big5 losses

trainable: big5 parameters

non-trainable: contents parameters, weights parameters, auto-encoder
parameters

5.6 Experiments

5.6.1 Database Description

myPersonality

Workshop on Computational Personality Recognition (Shared Task) The
dataset used in our experiments is a subset (250 users with 9917 status up-
dates) of the database released by organizers of the “Workshop on Com-
putational Personality Recognition (Shared Task)” [23]. It contains Face-
book statuses in raw text, author information (network size, betweenness,

100 Chapter 5. Multimodal Personality Recognition

nbetweenness, density, brokerage, nbrokerage, and transitivity) and gold
standard Big-5 personality labels (obtained using self-assessments ques-
tionnaire). The personality labels have both scores and classes. Classes
have been derived from scores with a median split. In this work, we focus
on personality classification.

It is suggested in the shared task guidelines to split the data as train
(66%) and test (33%). Because each author has multiple statues in this
dataset, the train set can see all examples from 250 authors if randomly
splitting 9917 statuses into train/test sets. So we divided 250 authors into
3 parts, each of which contains about 3300 statuses. We used 3-fold cross
validation (CV) for our performance evaluation.

During tokenization, we treat each internet-slang word as an unique
word and map all web addresses to the same word “*URL”. Such process-
ing was also applied to digit numbers, time and currency. This way, we
got about 15000 unique words and maximum word length of a single sta-
tus was 78. We set the vocabulary size to 4400, which is the number of
words appearing more than 2 times in the data. Uncommon words then
are replaced by “UNK”. We concatenated a zero-likes vector z ∈ R1×V to
embedding matrix WE which is not trainable as shown in Fig.5.5, and pad
all statuses to the length of 78 with 4401 index.

We trained the embedding matrixWE learning in advance from the raw
text of this dataset using skip-gram. The skip window was set to 1 and
embedding size to 128 dimensions. The embedded matrix is kept fixed
during the network training.

First impressions V2

The first impressions data set (2017) [112] comprises of 10,000 clips (with an
average duration of 15s) extracted from more than 3,000 different YouTube
high-definition (HD) videos of people facing a camera and speaking in En-
glish. People in videos have different gender, age, nationality, and ethnicity.
Each clip is labeled for the Big Five personality traits scores along with an
interview variable score that recommends whether a job candidate should
be invited for an interview or not. The range of scores is [0,1]. We use
5992 videos for training, tune networks using 2000 videos and test on 2000
videos. This dataset division is the same as used by the CVPR 2017 [112]
workshop participants. Fig.5.9 shows an example of one image and tran-
scription from a video clip.

For each of the five traits and the interview variable, the performance
was evaluated by the Mean Absolute Error subtracted from 1, which is for-
mulated as follows:

1−
∑N

i=1 |targeti − predictedi|
N

(5.13)

The score varies between 0 (worst case) and 1 (best case).

In all the networks to be trained, each hidden layer is followed by a dropout
layer with drop rate of 50%. Each network was trained using Adam [130]
update method with a learning rate of 1e-4. We choose the epoch that per-
forms best on the validation set. The feature extraction network for text has

5.6. Experiments 101

FIGURE 5.9: An example of one image and transcription
from a video clip in test set along with the predictions (also
range [0,1]) using our system. The scores are predictions
indicating personality traits and interview variable, not the

evaluation metric (1 - mean absolute error).

1 convolutional layer with kernel size 1 and 256 filters. The feature extrac-
tion network for audio has 2 convolutional layers with kernel size 3 and 512
filters (all layers use the same setting). While the feature extraction network
for video has 4 convolutional layer with kernel size 2 and 1024 filters.

5.6.2 Experimental Results

myPersonality

In our experiments, each network was trained by 100 epochs using Adam
[130] update method with a learning rate of 1e-4. Then, using their predic-
tions on the test data we calculated the classification accuracy and F1 score
metrics results for test set.

Each of our architectures can be seen as three consecutive parts: embed-
ding part (embedding layer), feature extraction part and classification part
(one fully connected layer). We experimented feature extraction part with
Convolutional architecture (Fig.5.5-A), bidirectional recurrent architecture
(Fig.5.5-B) and fully-connected architecture where the module in the dot-
ted box is replaced one fully-connected layer. Convolutional architectures
are also tested with max pooling and average pooling layers. The output
of feature extraction part is also concatenated with 7 dimensional author
information. The Overall DNN settings are shown in Table 5.1. All results
are given as mean and standard deviation of 3-fold cross validation experi-
ments.

• Fully-connected architecture

Table 5.2 shows the accuracy and F1 score results when the module in
the dotted box (Fig.5.5) is replaced one fully-connected layer.

When using a fully-connected layer for feature extraction, it overfits
heavily. The help of dropout is tiny. We also tested models that use

102 Chapter 5. Multimodal Personality Recognition

TABLE 5.1: Overall DNN settings

Length of status 78
Embedding size 128

loss function Categorical Cross-entropy
Output activation SoftMax
hidden activation ReLU
Nodes of FC layer 32

CNN filters per n-gram 32
GRU (per direction) nodes 32

only text or author information as input. The results using author
information were tested on author level (250 examples).

The results shows that it gives better results to combine both text and
author information as input. However, models with only text input
didn’t perform well. So the following results are all models with both
text and author information.

We tried to initialize embedding matrix randomly and learn it during
the training of classification task. We also used the embedding matrix
pre-trained on Wikipedia using FastText [131]. But both were worse
than the embedding pre-trained using test from this dataset. Perhaps,
the expression people use for chatting is quite different from the one
for writing.

• Convolutional architecture

Table 5.3 shows the accuracy and F1 score results when using a uni-
gram convolutional layer with average pooling. We tuned the L2 reg-
ularization and drop out rates to get better results for each trait.

We found that no improvement was achieved when the combination
of unigram, bigram, trigram CNN filters was used, but it did enhance
the learning capacity. We also found that max pooling can learn faster
than average pooling, but overfits heavily. Convolutional architecture
with average pooling achieved the best results 60.0±6.5%, which is
better than competition results of F1 58.6% from two teams [101] [102]
on myPersonality shared task in 2013.

• Recurrent architecture

With this architecture, we replaced the module in the dotted box by
a bi-directional GRU layer[131] where forward GRU and backward
GRU are summed up in the output of this layer. The RNN result is
listed in Table 5.4.

The RNN results showed that recurrent architecture is able to extract
some sequential meanings from the text for personality recognition,
but still not as good as convolutional layer with average pooling. It
seems that the selection of words reflects more personality than the
meaning itself.

5.6. Experiments 103

TABLE 5.2: Classification test results with different features
using fully-connected architecture.

Trait ACC% F1%
Author Information Only
EXT 68.4±3.0 63.3±2.7
NEU 62.4±1.7 55.5±5.1
ARG 57.6±3.6 55.8±3.6
CON 52.0±4.3 49.8±4.2
OPN 70.4±4.2 42.5±2.5

Overall 61.7±7.4 52.5±7.7
Text Only

EXT 51.8±1.6 49.9±1.6
NEU 53.0±1.7 49.3±1.3
ARG 49.7±1.4 49.4±1.3
CON 49.8±1.6 49.3±1.7
OPN 64.5±5.7 49.1±0.5

Overall 53.8±6.0 49.3±1.1
Author+Text

EXT 59.5±0.2 58.0±1.3
NEU 60.7±4.8 55.6±3.5
ARG 53.8±2.8 53.0±2.0
CON 51.4±0.9 51.2±1.4
OPN 72.4±8.5 53.1±3.4

Overall 59.6±8.2 53.8±3.1

Automatic speaking style extraction

Here, we present the APR results based on speaking style. In order to verify
whether the performance improvement is provided by the speaking styles
captured by the Gram matrix, we also trained networks without it. We tried
recurrent networks with GRU (Gated Recurrent Unit) cell [50] and found
they are not as good as convolutional networks for this task. The networks
with max pooling layer or more than one convolutional layers didn’t show
improvement either. We found the best network architecture without Gram
layer is the network with one 1D-convolutional layer, one average pooling
layer over all timesteps, one dense layer, and the output layer.

The experimental results of testset in terms of 1−MAE are summarized
in Table 5.5. The column "System" denotes different DNN configurations.
Thus, C(32) stands for a convolutional layer with 32 filters, P - an average
pooling layer over all timesteps, B - a batch normalization layer with ReLU
activation and D - a dense layer (2D means 2 consecutive dense layers).

Because it is hard to keep the numbers of parameters in the baseline and
proposed architectures the same, we tried many hyper-parameter combi-
nations and found that C(32)+P+2D was the best one among architectures
without speaking styles. From the results, we can see that batch normal-
ization layer didn’t show any improvement in these cases and could not
outperform the ResNet18. However, when the Gram layer along with a

104 Chapter 5. Multimodal Personality Recognition

TABLE 5.3: Classification results using convolutional archi-
tecture with average or max pooling

Big-5 Average pool Max pool
Trait ACC% F1% ACC% F1%
EXT 65.8±4.9 65.2±5.0 59.7±2.4 58.6±1.8
NEU 67.9±2.1 62.7±4.7 59.0±3.1 54.9±3.8
ARG 59.8±4.9 57.0±3.4 51.9±0.3 51.4±0.6
CON 53.7±1.1 53.3±1.1 52.8±1.0 52.6±1.2
OPN 74.0±12.2 61.3±11.1 64.9±5.4 54.0±4.6

Overall 64.2±8.7 60.0±6.5 55.4±5.4 54.1±3.4

TABLE 5.4: Classification results for recurrent of architec-
tures

Trait ACC% F1%
EXT 60.9±0.3 59.8±0.9
NEU 61.1±4.5 55.5±3.1
ARG 54.3±3.7 53.7±3.0
CON 50.9±0.2 50.6±0.3
OPN 70.6±7.9 56.4±9.1

Overall 59.6±7.6 55.2±4.8

batch normalization layer is used, all configurations shows significant per-
formance increase with the C(128)+G+B+2D achieving the best audio based
AAPR results.

Table 5.6 shows the Big-Five traits and the interview score classification
results. The ground truth labels and the system predictions were binarized
based on the training set mean scores. If a given score is above the corre-
sponding mean, the label or the prediction is considered positive, otherwise
- negative. The accuracy results also show that our proposed architecture
brings significant improvements for both the personality traits and inter-
view variable.

We also noticed that the Gram layer cannot be jointly trained without
a batch normalization layer (e.g. C(32)+G+D didn’t converge). The reason
might be that the values of the Gram matrix are changing dramatically for
each batch when the Gram matrix is not calculated from the pre-trained
(fixed) convolutional layer, but from a convolutional layer that is also being
trained.

Text, audio, video Fusion

Finally, the APR results of all modalities will be presented. First, all three
feature extraction networks are trained separately using only one modality
as illustrated in Fig.5.7.

• Single modality the results are summarized in Fig.5.10. We can see
that the video modality holds the most information.

5.6. Experiments 105

TABLE 5.5: 1−MAE results. OPE: openness to experience.
CON: conscientiousness. EXT: extroversion. AGR: agree-
ableness. NEU: (non-)neuroticism. Inter: interview invite
variable. Ave: the average score of 5 traits (interview vari-

able is not included).

System Ave OPE CON EXT AGR NEU Inter
Published Results

ResNet18 [112] 0.9004 0.9024 0.8966 0.8994 0.9034 0.9000 0.9032
OS_IS13 [132] 0.8996 0.9022 0.8919 0.8980 0.9065 0.8991 0.8999

Models without Speaking Style
C(256)+B+P+D 0.8996 0.9017 0.8981 0.8980 0.9034 0.8968 0.9013
C(32)+B+P+2D 0.8999 0.9021 0.8970 0.8984 0.9038 0.8981 0.9017

C(32)+P+2D 0.9004 0.9023 0.8964 0.9005 0.9047 0.8983 0.9020
C(128)+P+2D 0.8993 0.9027 0.8948 0.8983 0.9040 0.8967 0.9013
C(256)+P+2D 0.9001 0.9022 0.8967 0.8994 0.9043 0.8979 0.9022

Models with Speaking Style
C(32)+G+B+D 0.9013 0.9025 0.9008 0.9004 0.9035 0.8993 0.9044
C(128)+G+B+D 0.9050 0.9055 0.9054 0.9040 0.9063 0.9038 0.9083
C(256)+G+B+D 0.9053 0.9058 0.9055 0.9049 0.9068 0.9037 0.9078
C(128)+G+B+2D 0.9061 0.9062 0.9072 0.9049 0.9073 0.9049 0.9101

TABLE 5.6: Big five traits and interview variable F1 score
results for different systems.

System Ave OPE CON EXT AGR NEU Inter
Published Results

OS_IS13 [133] 67.93 - - - - - 69.25
Models without Speaking Style

C(32)+P+2D 68.35 70.15 69.90 68.50 64.79 68.40 69.30
Models with Speaking Style

C(128)+G+B+2D 70.92 70.45 74.16 70.50 66.44 73.05 72.20

106 Chapter 5. Multimodal Personality Recognition

FIGURE 5.10: Single modality architecture used in our sys-
tem.

• Standard concatenation Next, all modalities are combined using the
standard concatenation method as illustrated in Fig.5.11.

• Multistages training For comparison, we also trained the network
with our proposed architecture shown in Fig.5.8 by only minimizing
big5 loss function once (without multiple training stages). The state
of the art (SOTA), Standard concatenation (concat), without multiple
training stages (only structure) and our proposed multistages training
(3 stages) results are summarized in in Fig.5.12.

Yellow one is the state-of-the-art system. Green one is simple con-
catenation of these 3 modalities. Blue one is the system that keeps the
architecture but only trained in standard way. The black one is the
system that trained using our proposed method. We can see only that
the structure itself doesn’t give much improvement. But train it in the
proposed method, it even become comparable with state-of-the-art
system.

5.7 Summary

5.7.1 myPersonality

In this work, we applied deep learning approaches including convolutional
neural networks and recurrent neural networks on the shared task from
“Workshop on Computational Personality Recognition (Shared Task)” [23].

The results showed that FC models with only text are worse than the
ones with author information. DNN with both text and author informa-
tion achieves the best results. CNN, RNN and FC are able to automati-
cally extract useful features for personality recognition and the best result
of 60.0±6.5% F1 score was obtained using CNN with average pooling. We

5.7. Summary 107

FIGURE 5.11: Standard concatenation architecture used in
our system.

found that Bi-gram, tri-gram and recurrent architecture didn’t get better
results. It may indicate that words chosen by the author tell more about au-
thor’s personality than the meaning author expresses. We also noticed that
applying regularization barely restrains the overfitting, the network learns
the patterns that only exist in the training set. This may be improved by col-
lecting more data or by transforming the text into a representation which is
stable for personality by external knowledge.

In the future work, we plan to apply unsupervised learning on the text
data and use external knowledge about personality to cluster the text.

5.7.2 First impressions V2

In this work, we applied convolutional neural networks for high-level fea-
ture extraction and multistages training for multimodal learning fusito build
an automatic apparent personality recognition system that is capable to
make good predictions even some modalities are missing.

The experimental results showed that our multistage training strategy
with attention can significantly improve improved the AAPR result from
0.9158 to 0.9175 (the state of the art result is 0.9173).

We are focusing on the multimodal learning in this work, but many
parts of our current system can be improved and combined with other tech-
niques, such as increasing the sampling rate of images, improving the ar-
chitectures of feature extraction networks. In the future work, we plan to
apply techniques from action detection to improve the deep learning based

108 Chapter 5. Multimodal Personality Recognition

FIGURE 5.12: multistages training architecture used in our
system.

high-level feature extraction part and try to learn the common representa-
tions between (T,A, V) directly instead of (t, a, v).

5.7. Summary 109

110 Chapter 5. Multimodal Personality Recognition

111

Chapter 6

Contributions and Conclusions

6.1 Contributions

Here we listed our contributions:

1. Proposed an ASR system that use acoustic and articulatory informa-
tion as a regularization to guide training of a model using only acous-
tic features.

2. Proposed an ASR system that jointly train a hybrid model combining
inversion model and the acoustic model.

3. Proposed a system to automatically learn the text representation for
APR, which is combined with author information.

4. Proposed an architecture that automatically captures speaking styles
for AAPR.

5. Proposed a training strategy that deals with the different convergence
speeds of multiple modalities.

6.2 Conclusions

From our ASR work we can observed that:

1. The conventional GMM-HMM system using only acoustic feature gets
the PER of 20.05±3.05%. When real articulatory measurements are
also used, the system got the PER of 10.06±1.82%. This is a relative
PER reduction of 49.8%, which also confirmed that articulatory infor-
mation is very helpful for ASR system.

2. When replacing the GMM with feedforward neural network for acous-
tic modelling, MFC-feature system got a PER of 8.23±1.49%, MFC+ART
feature system got a PER of 4.74±0.55%. Both systems got a big per-
formance boost compared to the conventional GMM-HMM systems.

3. The ASR system based feedforward neural network without any help
of articulatory information have the PER of 8.23±1.49. Surprisingly,
when the hard targets during training of student DNN model are pro-
vided from the GMM-HMM baseline containing both acoustic and ar-
ticulatory feature, about 8.5% PER reduction can be achieved. This is
a very simple but effective way to utilize articulatory information.

112 Chapter 6. Contributions and Conclusions

4. Furthermore, about 14.6% PER reduction can be observed when dis-
tillation training are also applied. Distillation training using soft-
targets provided by a "rich" informative teacher model provides the
relationships between classes in output space and can be treated as a
very good regularization method or pre-training method.

5. The articulatory inversion method based on feedforward neural net-
work is the best system that achieves 20% PER reduction. Dislike dis-
tillation method, inversion method provides more more informative
input representation that helps system to distinguish different classes.
However inversion method requires doubled computational cost and
time than distillation method, since it has another DNN model that
learns the mapping between acoustic and articulatory feature spaces.
Although it is the most accurate ASR system, but it is also the most
expensive ASR system.

6. The same conclusions can also be observed when replacing the feed-
forward neural network with the Recurrent neural network. Recur-
rent neural network acoustic model using only acoustic feature can
achieve the performance that MFC+ART-feature feedforward neural
network gets and don’t need to pre-defined the window-size, since it
can learn which input is important or irrelevant.

From both works we can observed that:

1. When automatically ex-tracting features for different modalities, it is
really helpful for the extrac-tors to know the final objective, which can
be done by introducing the fi-nal loss function to the extractors.

2. The typical way to merge differentmodalities using deep learning is
to put them into a big single network.However, because this big net-
work has many parts whose speeds of con-vergences are different,
for example, the parts related to the audio modalitymay have already
converged, but the parts related to the video modality arestill train-
ing, it is hard for this single network to find optimal parametersfor
all modalities. One way to tackle this problem is to set the param-
etersof particular modalities untrainable and force the other parts to
map thedesired modalities to a good latent space first. In other words,
constrain thefreedom of deep neural network’s automatic feature ex-
traction.

6.3 Future Work

In this work, all systems preform as good as expected, but many parts can
also be improved as below:

1. The articulatory feature used in this work is only the movements of
articulators, which is very simple. However potential articulatory in-
formation can be lost in such representation. The next attempt is to
use images of vocal tract through time. The dimension can be reduced
using convolutional autoencoder.

6.3. Future Work 113

2. There also are other issues to be investigated within this framework
including the effect of the teacher performance on training set, more
sophisticated ways of "teaching", not just linear combination of loss
functions.

3. Recurrent neural network preforms extremely good, but its computa-
tional cost prevents it from widely using in practice. My next experi-
ment could be transferring information from RNN to DNN model.

4. articulatory inversion based RNN is the best ASR system among the
proposed ones, but it has to learn the mapping between acoustic and
articulatory feature spaces, then learns the posterior probabilityP (o|w),
which seems to be redundant. Because neural network is a good tech-
nique for regression, I could learn the mapping between acoustic fea-
ture and the representation transformed from MFC+ART feature di-
rectly.

114 Chapter 6. Contributions and Conclusions

6.3. Future Work 115

117

Appendix A

Phoneme list

TABLE A.1: Phoneme list

Phoneme Example Translation Phoneme Example Translation

AA odd AA D L lee L IY
AE at AE T M me M IY
AH hut HH AH T N knee N IY
AO ought AO T NG ping P IH NG
AW cow K AW OW oat OW T
AY hide HH AY D OY toy T OY
B be B IY P pee P IY
CH cheese CH IY Z R read R IY D
D dee D IY S sea S IY
DH thee DH IY SH she SH IY
EH Ed EH D T tea T IY
ER hurt HH ER T TH theta TH EY T AH
EY ate EY T UH hood HH UH D
F fee F IY UW two T UW
G green G R IY N V vee V IY
HH he HH IY W we W IY
IH it IH T Y yield Y IY L D
IY eat IY T Z zee Z IY
JH gee JH IY ZH seizure S IY ZH ER
K key K IY

119

Appendix B

Articulatory Inversion Plots

FIGURE B.1: feedforward net predictions of articulators UL (up-
per lip), LL (lower lip), T1 (ventral tongue), T2 (mid-tongue).
The x axis of all plots is timestep (10ms). The y axis of all plots is

the normalized position

120 Appendix B. Articulatory Inversion Plots

FIGURE B.2: feedforward net predictions of articulators T3 (mid-
tongue), T4 (dorsal tongue), MANm(mandibular), MANi

Appendix B. Articulatory Inversion Plots 121

FIGURE B.3: rnn net predictions of articulators UL, LL, T1, T2

122 Appendix B. Articulatory Inversion Plots

FIGURE B.4: rnn net predictions of articulators T3, T4, MANm,
MANi

123

Appendix C

Distillation Plots

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Imitation parameter

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

P
E
R
%

5.56

5.93

3.56

tea stu T=1 T=2

FIGURE C.1: distillation results for fold 0

124 Appendix C. Distillation Plots

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Imitation parameter

4

5

6

7

8

P
E
R
%

7.02
7.37

4.73

tea stu T=1 T=2

FIGURE C.2: distillation results for fold 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Imitation parameter

4

5

6

7

8

P
E
R
%

6.91

7.52

4.59

tea stu T=1 T=2

FIGURE C.3: distillation results for fold 2

Appendix C. Distillation Plots 125

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Imitation parameter

3

4

5

6

7
P
E
R
%

5.47

6.1

3.87

tea stu T=1 T=2

FIGURE C.4: distillation results for fold 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Imitation parameter

5

6

7

8

9

10

P
E
R
%

8.65

9.15

5.65

tea stu T=1 T=2

FIGURE C.5: distillation results for fold 4

126 Appendix C. Distillation Plots

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Imitation parameter

5

6

7

8

9

P
E
R
%

8.16

8.61

5.29

tea stu T=1 T=2

FIGURE C.6: distillation results for fold 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Imitation parameter

5

6

7

8

9

P
E
R
%

7.47

8.15

5.48

tea stu T=1 T=2

FIGURE C.7: distillation results for fold 6

Appendix C. Distillation Plots 127

129

Bibliography

[1] Ben P Yuhas, Moise H Goldstein, and Terrence J Sejnowski. “Integra-
tion of acoustic and visual speech signals using neural networks”.
In: IEEE Communications Magazine 27.11 (1989), pp. 65–71.

[2] Harry McGurk and John MacDonald. “Hearing lips and seeing voices”.
In: Nature 264.5588 (1976), p. 746.

[3] Ryan Kiros et al. “Stacked multiscale feature learning for domain in-
dependent medical image segmentation”. In: International workshop
on machine learning in medical imaging. Springer. 2014, pp. 25–32.

[4] Pengcheng Wu et al. “Online multimodal deep similarity learning
with application to image retrieval”. In: Proceedings of the 21st ACM
international conference on Multimedia. ACM. 2013, pp. 153–162.

[5] Siqi Liu et al. “Multimodal neuroimaging feature learning for mul-
ticlass diagnosis of Alzheimer’s disease”. In: IEEE Transactions on
Biomedical Engineering 62.4 (2015), pp. 1132–1140.

[6] Polina Mamoshina et al. “Applications of deep learning in biomedicine”.
In: Molecular pharmaceutics 13.5 (2016), pp. 1445–1454.

[7] Dhanesh Ramachandram and Graham W Taylor. “Deep multimodal
learning: A survey on recent advances and trends”. In: IEEE Signal
Processing Magazine 34.6 (2017), pp. 96–108.

[8] Alessandro Vinciarelli and Gelareh Mohammadi. “A survey of per-
sonality computing”. In: IEEE Transactions on Affective Computing 5.3
(2014), pp. 273–291.

[9] Lukasz Piwek et al. “The rise of consumer health wearables: promises
and barriers”. In: PLoS Medicine 13.2 (2016), e1001953.

[10] Martyn Denscombe. The good research guide: for small-scale social re-
search projects. McGraw-Hill Education (UK), 2014.

[11] Chung-Hsien Yu et al. “Crime forecasting using data mining tech-
niques”. In: 2011 IEEE 11th international conference on data mining
workshops. IEEE. 2011, pp. 779–786.

[12] Pradeep K Atrey et al. “Multimodal fusion for multimedia analysis:
a survey”. In: Multimedia systems 16.6 (2010), pp. 345–379.

[13] Bahador Khaleghi et al. “Multisensor data fusion: A review of the
state-of-the-art”. In: Information fusion 14.1 (2013), pp. 28–44.

[14] Nicu Sebe et al. Machine learning in computer vision. Vol. 29. Springer
Science & Business Media, 2005.

[15] Konstantin Markov, Jianwu Dang, and Satoshi Nakamura. “Inte-
gration of articulatory and spectrum features based on the hybrid
HMM/BN modeling framework”. In: Speech Communication 48.2 (2006),
pp. 161–175.

130 BIBLIOGRAPHY

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowl-
edge in a neural network”. In: arXiv preprint arXiv:1503.02531 (2015).

[17] Natalia Neverova et al. “Moddrop: adaptive multi-modal gesture
recognition”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 38.8 (2016), pp. 1692–1706.

[18] Kihyuk Sohn, Wenling Shang, and Honglak Lee. “Improved multi-
modal deep learning with variation of information”. In: Advances in
Neural Information Processing Systems. 2014, pp. 2141–2149.

[19] Ashesh Jain et al. “Recurrent neural networks for driver activity
anticipation via sensory-fusion architecture”. In: 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE. 2016,
pp. 3118–3125.

[20] David Lopez-Paz et al. “Unifying distillation and privileged infor-
mation”. In: ICLR. 2016.

[21] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-
ory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

[22] Jianguo Yu, Konstantin Petrov Markov, and Tomoko Matsui. “Artic-
ulatory and Spectrum Information Fusion Based on Deep Recurrent
Neural Networks”. In: IEEE/ACM Transactions on Audio, Speech, and
Language Processing (2019).

[23] Fabio Celli et al. “Workshop on computational personality recogni-
tion (shared task)”. In: Proceedings of the Workshop on Computational
Personality Recognition. 2013.

[24] Lewis R Goldberg. “The structure of phenotypic personality traits.”
In: American psychologist 48.1 (1993), p. 26.

[25] Steven Davis and Paul Mermelstein. “Comparison of parametric rep-
resentations for monosyllabic word recognition in continuously spo-
ken sentences”. In: IEEE transactions on acoustics, speech, and signal
processing 28.4 (1980), pp. 357–366.

[26] Dan Jurafsky et al. “What kind of pronunciation variation is hard for
triphones to model?” In: 2001 IEEE International Conference on Acous-
tics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221).
Vol. 1. IEEE. 2001, pp. 577–580.

[27] Vikramjit Mitra et al. “Gesture-based dynamic Bayesian network for
noise robust speech recognition”. In: 2011 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2011,
pp. 5172–5175.

[28] Vikramjit Mitra et al. “Recognizing articulatory gestures from speech
for robust speech recognition”. In: The Journal of the Acoustical Society
of America 131.3 (2012), pp. 2270–2287.

[29] William J Hardcastle and Nigel Hewlett. Coarticulation: Theory, data
and techniques. Cambridge University Press, 2006.

[30] Hosung Nam et al. “A procedure for estimating gestural scores from
speech acoustics”. In: The Journal of the Acoustical Society of America
132.6 (2012), pp. 3980–3989.

BIBLIOGRAPHY 131

[31] Karen Simonyan and Andrew Zisserman. “Two-stream convolutional
networks for action recognition in videos”. In: Advances in neural in-
formation processing systems. 2014, pp. 568–576.

[32] Joao Carreira and Andrew Zisserman. “Quo vadis, action recogni-
tion? a new model and the kinetics dataset”. In: proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 6299–
6308.

[33] Will Y Zou et al. “Bilingual word embeddings for phrase-based ma-
chine translation”. In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. 2013, pp. 1393–1398.

[34] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”.
In: Neural Networks 61 (2015), pp. 85–117.

[35] Christopher Olah. “NN-Manifolds-Topology”. In: (). URL: http://
goo.gl/yA7kUW.

[36] Henry W Lin, Max Tegmark, and David Rolnick. “Why does deep
and cheap learning work so well?” In: Journal of Statistical Physics
168.6 (2017), pp. 1223–1247.

[37] George Cybenko. “Approximation by superpositions of a sigmoidal
function”. In: Mathematics of control, signals and systems 2.4 (1989),
pp. 303–314.

[38] Guido F Montufar et al. “On the number of linear regions of deep
neural networks”. In: Advances in neural information processing sys-
tems. 2014, pp. 2924–2932.

[39] Hrushikesh Narhar Mhaskar and Charles A Micchelli. “How to choose
an activation function”. In: Advances in Neural Information Processing
Systems (1994), pp. 319–319.

[40] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pas-
canu. “Advances in optimizing recurrent networks”. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing. IEEE.
2013, pp. 8624–8628.

[41] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[42] James Martens. “Deep learning via Hessian-free optimization”. In:
Proceedings of the 27th International Conference on Machine Learning
(ICML-10). 2010, pp. 735–742.

[43] Sebastian Ruder. “An overview of gradient descent optimization al-
gorithms”. In: (). URL: http://goo.gl/MYZmxA.

[44] Bert Moons, Daniel Bankman, and Marian Verhelst. “Embedded Deep
Neural Networks”. In: Embedded Deep Learning. Springer, 2019, pp. 1–
31.

[45] Nitish Srivastava et al. “Dropout: a simple way to prevent neural
networks from overfitting.” In: Journal of Machine Learning Research
15.1 (2014), pp. 1929–1958.

[46] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the diffi-
culty of training recurrent neural networks.” In: ICML (3) 28 (2013),
pp. 1310–1318.

http://goo.gl/yA7kUW
http://goo.gl/yA7kUW
http://goo.gl/MYZmxA

132 BIBLIOGRAPHY

[47] Christopher Olah. “Understanding LSTMs”. In: (). URL: http://
goo.gl/hwG4OC.

[48] Andrej Karpathy. “The Unreasonable Effectiveness of Recurrent Neu-
ral Networks”. In: (). URL: https://goo.gl/hwPVkF.

[49] Kyunghyun Cho et al. “Learning phrase representations using RNN
encoder-decoder for statistical machine translation”. In: arXiv preprint
arXiv:1406.1078 (2014).

[50] Junyoung Chung et al. “Empirical evaluation of gated recurrent neu-
ral networks on sequence modeling”. In: arXiv preprint arXiv:1412.3555
(2014).

[51] Wojciech Zaremba. “An empirical exploration of recurrent network
architectures”. In: (2015).

[52] Fisher Yu and Vladlen Koltun. “Multi-scale context aggregation by
dilated convolutions”. In: arXiv preprint arXiv:1511.07122 (2015).

[53] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Con-
volutional neural networks on graphs with fast localized spectral
filtering”. In: Advances in neural information processing systems. 2016,
pp. 3844–3852.

[54] Thomas N Kipf and Max Welling. “Semi-supervised classification
with graph convolutional networks”. In: arXiv preprint arXiv:1609.02907
(2016).

[55] Thomas N. Kipf. “GRAPH CONVOLUTIONAL NETWORKS”. In:
(). URL: https://tkipf.github.io/graph-convolutional-
networks.

[56] Mingyi He, Bo Li, and Huahui Chen. “Multi-scale 3D deep convo-
lutional neural network for hyperspectral image classification”. In:
2017 IEEE International Conference on Image Processing (ICIP). IEEE.
2017, pp. 3904–3908.

[57] Joseph Turian, Lev Ratinov, and Yoshua Bengio. “Word representa-
tions: a simple and general method for semi-supervised learning”.
In: Proceedings of the 48th annual meeting of the association for compu-
tational linguistics. Association for Computational Linguistics. 2010,
pp. 384–394.

[58] Thang Luong, Hieu Pham, and Christopher D Manning. “Bilingual
word representations with monolingual quality in mind”. In: Pro-
ceedings of the 1st Workshop on Vector Space Modeling for Natural Lan-
guage Processing. 2015, pp. 151–159.

[59] Tomas Mikolov et al. “Efficient estimation of word representations
in vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

[60] Tomas Mikolov et al. “Distributed representations of words and phrases
and their compositionality”. In: Advances in neural information pro-
cessing systems. 2013, pp. 3111–3119.

[61] Armand Joulin et al. “FastText.zip: Compressing text classification
models”. In: arXiv preprint arXiv:1612.03651 (2016).

[62] Simon King et al. “Speech production knowledge in automatic speech
recognition”. In: The Journal of the Acoustical Society of America 121.2
(2007), pp. 723–742.

http://goo.gl/hwG4OC
http://goo.gl/hwG4OC
https://goo.gl/hwPVkF
https://tkipf.github.io/graph-convolutional-networks
https://tkipf.github.io/graph-convolutional-networks

BIBLIOGRAPHY 133

[63] Slava Katz. “Estimation of probabilities from sparse data for the lan-
guage model component of a speech recognizer”. In: IEEE transac-
tions on acoustics, speech, and signal processing 35.3 (1987), pp. 400–401.

[64] Sean R Eddy. “Hidden markov models”. In: Current opinion in struc-
tural biology 6.3 (1996), pp. 361–365.

[65] Lloyd R Welch. “Hidden Markov models and the Baum-Welch al-
gorithm”. In: IEEE Information Theory Society Newsletter 53.4 (2003),
pp. 10–13.

[66] Jeff A Bilmes et al. “A gentle tutorial of the EM algorithm and its ap-
plication to parameter estimation for Gaussian mixture and hidden
Markov models”. In: (1998).

[67] George E Dahl et al. “Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition”. In: IEEE Trans-
actions on Audio, Speech, and Language Processing 20.1 (2012), pp. 30–
42.

[68] Geoffrey Hinton et al. “Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups”.
In: IEEE Signal Processing Magazine 29.6 (2012), pp. 82–97.

[69] G David Forney. “The viterbi algorithm”. In: Proceedings of the IEEE
61.3 (1973), pp. 268–278.

[70] Karen Livescu et al. “Articulatory feature-based methods for acous-
tic and audio-visual speech recognition: Summary from the 2006
JHU summer workshop”. In: Acoustics, Speech and Signal Process-
ing, 2007. ICASSP 2007. IEEE International Conference on. Vol. 4. IEEE.
2007, pp. IV–621.

[71] Katrin Kirchhoff, Gernot A Fink, and Gerhard Sagerer. “Combin-
ing acoustic and articulatory feature information for robust speech
recognition”. In: Speech Communication 37.3 (2002), pp. 303–319.

[72] Joe Frankel et al. “An automatic speech recognition system using
neural networks and linear dynamic models to recover and model
articulatory traces”. In: (2000).

[73] Korin Richmond. “Estimating articulatory parameters from the acous-
tic speech signal”. PhD thesis. University of Edinburgh, 2002.

[74] Le Zhang and Steve Renals. “Acoustic-articulatory modeling with
the trajectory HMM”. In: IEEE Signal Processing Letters 15 (2008),
pp. 245–248.

[75] Tomoki Toda, Alan W Black, and Keiichi Tokuda. “Acoustic-to-articulatory
inversion mapping with Gaussian mixture model.” In: INTERSPEECH.
2004.

[76] Korin Richmond. “Trajectory mixture density networks with mul-
tiple mixtures for acoustic-articulatory inversion”. In: International
Conference on Nonlinear Speech Processing. Springer. 2007, pp. 263–
272.

[77] Rajkumar Arora and Karen Livescu. “Multi-view CCA-based acous-
tic features for phonetic recognition across speakers and domains”.
In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on. IEEE. 2013, pp. 7135–7139.

134 BIBLIOGRAPHY

[78] Weiran Wang et al. “Unsupervised learning of acoustic features via
deep canonical correlation analysis”. In: Acoustics, Speech and Sig-
nal Processing (ICASSP), 2015 IEEE International Conference on. IEEE.
2015, pp. 4590–4594.

[79] Benigno Uria, Steve Renals, and Korin Richmond. “A deep neural
network for acoustic-articulatory speech inversion”. In: NIPS 2011
Workshop on Deep Learning and Unsupervised Feature Learning. 2011.

[80] Benigno Uria et al. “Deep Architectures for Articulatory Inversion.”
In: INTERSPEECH. 2012, pp. 867–870.

[81] Vikramjit Mitra et al. “Articulatory features from deep neural net-
works and their role in speech recognition”. In: 2014 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2014, pp. 3017–3021.

[82] Leonardo Badino et al. “Integrating articulatory data in deep neural
network-based acoustic modeling”. In: Computer Speech & Language
36 (2016), pp. 173–195.

[83] Vladimir Vapnik and Rauf Izmailov. “Learning Using Privileged In-
formation: Similarity Control and Knowledge Transfer”. In: Journal
of Machine Learning Research 16 (2015), pp. 2023–2049.

[84] Jianguo Yu, Konstantin Markov, and Tomoko Matsui. “Articulatory
and spectrum features integration using generalized distillation frame-
work”. In: Machine Learning for Signal Processing (MLSP), 2016 IEEE
26th International Workshop on. IEEE. 2016, pp. 1–6.

[85] Zhiyuan Tang, Dong Wang, and Zhiyong Zhang. “Recurrent neural
network training with dark knowledge transfer”. In: 2016 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2016, pp. 5900–5904.

[86] J Westbury. “X-RAY MICROBEAM SPEECH PRODUCTION DATABASE
USER’S HANDBOOK. 1994”. In: Waisman Center, University of Wis-
consin: Madison, USA (), pp. 1–100.

[87] Carnegie Mellon University. “The CMU dictionary”. In: (). URL: http:
//goo.gl/xW7VAM.

[88] Weiran Wang, Raman Arora, and Karen Livescu. “Reconstruction
of articulatory measurements with smoothed low-rank matrix com-
pletion”. In: Spoken Language Technology Workshop (SLT), 2014 IEEE.
IEEE. 2014, pp. 54–59.

[89] Jiahong Yuan and Mark Liberman. “Speaker identification on the
SCOTUS corpus”. In: Journal of the Acoustical Society of America 123.5
(2008), p. 3878.

[90] Pengcheng Zhu, Lei Xie, and Yunlin Chen. “Articulatory Movement
Prediction Using Deep Bidirectional Long Short-Term Memory Based
Recurrent Neural Networks and Word/Phone Embeddings”. In: Six-
teenth Annual Conference of the International Speech Communication As-
sociation. 2015.

[91] William Chan and Ian Lane. “Deep Recurrent Neural Networks for
Acoustic Modelling”. In: CoRR abs/1504.01482 (2015).

http://goo.gl/xW7VAM
http://goo.gl/xW7VAM

BIBLIOGRAPHY 135

[92] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. “Exact
solutions to the nonlinear dynamics of learning in deep linear neural
networks”. In: CoRR abs/1312.6120 (2013).

[93] Peng Liu et al. “A deep recurrent approach for acoustic-to-articulatory
inversion”. In: Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on. IEEE. 2015, pp. 4450–4454.

[94] Weiran Wang et al. “On deep multi-view representation learning”.
In: International Conference on Machine Learning. 2015, pp. 1083–1092.

[95] Qingming Tang, Weiran Wang, and Karen Livescu. “Acoustic Fea-
ture Learning Using Cross-Domain Articulatory Measurements”. In:
2018 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP) (2018), pp. 4849–4853.

[96] Alessandro Vinciarelli and Gelareh Mohammadi. “A survey of per-
sonality computing”. In: IEEE Transactions on Affective Computing 5.3
(2014), pp. 273–291.

[97] Heysem Kaya and Albert Ali Salah. “Continuous mapping of per-
sonality traits: A novel challenge and failure conditions”. In: Pro-
ceedings of the 2014 Workshop on Mapping Personality Traits Challenge
and Workshop. ACM. 2014, pp. 17–24.

[98] Paul T Costa Jr and Robert R McCrae. “Domains and facets: Hier-
archical personality assessment using the Revised NEO Personality
Inventory”. In: Journal of personality assessment 64.1 (1995), pp. 21–50.

[99] Tim Polzehl, Sebastian Moller, and Florian Metze. “Automatically
assessing personality from speech”. In: Semantic Computing (ICSC),
2010 IEEE Fourth International Conference on. IEEE. 2010, pp. 134–140.

[100] Ben Verhoeven, Walter Daelemans, and Tom De Smedt. “Ensemble
methods for personality recognition”. In: Proceedings of the workshop
on computational personality recognition. 2013, pp. 35–38.

[101] Firoj Alam, Evgeny A Stepanov, and Giuseppe Riccardi. “Personal-
ity traits recognition on social network-facebook”. In: WCPR (ICWSM-
13), Cambridge, MA, USA (2013).

[102] Golnoosh Farnadi et al. “Recognising personality traits using Face-
book status updates”. In: Proceedings of the workshop on computational
personality recognition (WCPR13) at the 7th international AAAI confer-
ence on weblogs and social media (ICWSM13). AAAI. 2013.

[103] Marc T Tomlinson, David Hinote, and David B Bracewell. “Predict-
ing conscientiousness through semantic analysis of facebook posts”.
In: Proceedings of WCPR (2013).

[104] James W Pennebaker, Martha E Francis, and Roger J Booth. “Lin-
guistic inquiry and word count: LIWC 2001”. In: Mahway: Lawrence
Erlbaum Associates 71.2001 (2001), p. 2001.

[105] Dejan Markovikj et al. “Mining facebook data for predictive person-
ality modeling”. In: Proceedings of the 7th international AAAI confer-
ence on Weblogs and Social Media (ICWSM 2013), Boston, MA, USA.
2013, pp. 23–26.

136 BIBLIOGRAPHY

[106] Navonil Majumder et al. “Deep Learning-Based Document Model-
ing for Personality Detection from Text”. In: IEEE Intelligent Systems
32.2 (2017), pp. 74–79.

[107] James W Pennebaker and Laura A King. “Linguistic styles: language
use as an individual difference.” In: Journal of personality and social
psychology 77.6 (1999), p. 1296.

[108] Víctor Ponce-López et al. “Chalearn lap 2016: First round challenge
on first impressions-dataset and results”. In: European Conference on
Computer Vision. Springer. 2016, pp. 400–418.

[109] Chen-Lin Zhang et al. “Deep bimodal regression for apparent per-
sonality analysis”. In: European Conference on Computer Vision. Springer.
2016, pp. 311–324.

[110] Arulkumar Subramaniam et al. “Bi-modal first impressions recog-
nition using temporally ordered deep audio and stochastic visual
features”. In: European Conference on Computer Vision. Springer. 2016,
pp. 337–348.

[111] Yağmur Güçlütürk et al. “Deep impression: Audiovisual deep resid-
ual networks for multimodal apparent personality trait recognition”.
In: European Conference on Computer Vision. Springer. 2016, pp. 349–
358.

[112] Hugo Jair Escalante et al. “Explaining First Impressions: Modeling,
Recognizing, and Explaining Apparent Personality from Videos”.
In: arXiv preprint arXiv:1802.00745 (2018).

[113] Tomas Mikolov et al. “Efficient estimation of word representations
in vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

[114] François Mairesse et al. “Using linguistic cues for the automatic recog-
nition of personality in conversation and text”. In: Journal of artificial
intelligence research 30 (2007), pp. 457–500.

[115] Navonil Majumder et al. “Deep learning-based document modeling
for personality detection from text”. In: IEEE Intelligent Systems 32.2
(2017), pp. 74–79.

[116] Jianguo Yu and Konstantin Markov. “Deep learning based person-
ality recognition from Facebook status updates”. In: Awareness Sci-
ence and Technology (iCAST), 2017 IEEE 8th International Conference on.
IEEE. 2017, pp. 383–387.

[117] Tim Polzehl, Sebastian Moller, and Florian Metze. “Automatically
assessing personality from speech”. In: 2010 IEEE Fourth Interna-
tional Conference on Semantic Computing. IEEE. 2010, pp. 134–140.

[118] Gelareh Mohammadi and Alessandro Vinciarelli. “Automatic per-
sonality perception: Prediction of trait attribution based on prosodic
features”. In: IEEE Transactions on Affective Computing 3.3 (2012), pp. 273–
284.

[119] Fabio Pianesi et al. “Multimodal recognition of personality traits in
social interactions”. In: Proceedings of the 10th international conference
on Multimodal interfaces. ACM. 2008, pp. 53–60.

BIBLIOGRAPHY 137

[120] Björn Schuller et al. “The interspeech 2012 speaker trait challenge”.
In: Thirteenth Annual Conference of the International Speech Communi-
cation Association. 2012.

[121] Clément Chastagnol and Laurence Devillers. “Personality traits de-
tection using a parallelized modified SFFS algorithm”. In: Thirteenth
Annual Conference of the International Speech Communication Associa-
tion. 2012.

[122] Alexei Ivanov and Xin Chen. “Modulation spectrum analysis for
speaker personality trait recognition”. In: Thirteenth Annual Confer-
ence of the International Speech Communication Association. 2012.

[123] Claude Montacié and Marie-José Caraty. “Pitch and Intonation Con-
tribution to Speakers’ Traits Classification”. In: Thirteenth Annual Con-
ference of the International Speech Communication Association. 2012.

[124] Michelle Hewlett Sanchez et al. “Multi-system fusion of extended
context prosodic and cepstral features for paralinguistic speaker trait
classification”. In: Thirteenth Annual Conference of the International Speech
Communication Association. 2012.

[125] Florian Eyben, Martin Wöllmer, and Björn Schuller. “Opensmile:
the munich versatile and fast open-source audio feature extractor”.
In: Proceedings of the 18th ACM international conference on Multimedia.
ACM. 2010, pp. 1459–1462.

[126] Furkan Gürpinar, Heysem Kaya, and Albert Ali Salah. “Multimodal
fusion of audio, scene, and face features for first impression esti-
mation”. In: 2016 23rd International Conference on Pattern Recognition
(ICPR). IEEE. 2016, pp. 43–48.

[127] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “A neural
algorithm of artistic style”. In: arXiv preprint arXiv:1508.06576 (2015).

[128] Wei-Ta Chu and Yi-Ling Wu. “Image style classification based on
learnt deep correlation features”. In: IEEE Transactions on Multimedia
20.9 (2018), pp. 2491–2502.

[129] Karen Simonyan and Andrew Zisserman. “Very deep convolutional
networks for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[130] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[131] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. “An empir-
ical exploration of recurrent network architectures”. In: Proceedings
of the 32nd International Conference on Machine Learning (ICML-15).
2015, pp. 2342–2350.

[132] Heysem Kaya, Furkan Gürpınar, and Albert Ali Salah. “Multi-modal
Score Fusion and Decision Trees for Explainable Automatic Job Can-
didate Screening from Video CVs”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops. 2017,
pp. 1–9.

[133] Heysem Kaya and Albert Ali Salah. “Multimodal Personality Trait
Analysis for Explainable Modeling of Job Interview Decisions”. In:
Explainable and Interpretable Models in Computer Vision and Machine
Learning. Springer, 2018, pp. 255–275.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Applications of Multimodal Learning
	Challenges of Multimodal Learning
	Methods and Related Studies
	Feature Fusion
	Model Fusion
	Decision Fusion
	Structure Fusion
	Regularization

	Contributions of this Research
	Thesis Outline

	Representation of Modalities
	Acoustic Modality
	Signal Preprocessing
	Mel Frequency Cepstral Coefficient

	Articulatory Information
	Visual Information
	Image representation
	Video representation

	Text Information

	Deep Neural Networks
	Feed-Forward DNN
	Data Pre-Processing
	Non-Linearities
	Loss Functions
	Updates

	Recurrent DNN
	Temporal Sharing
	Long Short-Term Memory
	Gated Recurrent Unit
	Training
	RNN Architectures

	Convolutional DNN
	Spatial Sharing
	Reception Field
	Stride and Padding
	Convolutional Dimension
	Pooling Layer

	Auto-Encoder
	Word Embedding

	Articulatory and Acoustic information integration
	Background
	Language Modelling
	Acoustic Modelling
	Hidden Markov model
	GMM-HMM-based
	DNN-HMM-based
	Phoneme Modelling

	Decoding
	System Evaluation

	Related Studies of Articulatory Information Integration
	Feature based integration
	Model based integration

	Joint Inversion
	Training Procedure
	Testing Procedure

	Generalized Distillation
	Teacher Training Procedure
	Student Training Procedure
	Testing Procedure

	Experiments
	Database Description
	Data Processing
	GMM-HMM baseline
	Common DNN settings
	DNN-HMM baseline
	Inversion Baseline
	Joint Inversion
	Generalized Distillation
	Discussion

	Summary

	Multimodal Personality Recognition
	Background
	Related Studies
	APR from Text
	Word embedding
	Network Architecture

	APR from speaking style
	Neural Style Transfer
	Automatic Speaking Style Extraction
	Low Level Feature Extraction
	Overall Settings

	AAPR from Text, Audio, Video
	Preprocessing
	Single Modality
	Multimodal Network Architecture
	Multistage Training Strategy
	3 groups of loss functions
	4 groups of parameters
	3 stages

	Experiments
	Database Description
	myPersonality
	First impressions V2

	Experimental Results
	myPersonality
	Automatic speaking style extraction
	Text, audio, video Fusion

	Summary
	myPersonality
	First impressions V2

	Contributions and Conclusions
	Contributions
	Conclusions
	Future Work

	Phoneme list
	Articulatory Inversion Plots
	Distillation Plots
	Bibliography

