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1

Chapter 1

Introduction

Virtual Reality (VR) is changing the way we play, learn, and communicate by offering

“immersive experiences”. Immersive experiences stimulate our human senses, draws us in

and take us to another place [1]. With VR, we are able to be anywhere and do anything, with

anyone. Especially, watching videos will be brought to a whole new level with spherical video

capture and playback. You can watch your favorite football game from the best seat in the

stadium while still sitting on your sofa, or can view the game from different viewpoints [3].

VR will take gaming to the next level by making you feel like you are actually a character

inside the game. Education will be revolutionized when students are taught with VR-assisted

materials and lectures [4]. For example, students can take a field trip to Venice, the Great

Pyramid of Giza without ever leaving the classroom [5]. Healthcare, military, manufacturing

training will become more cost-effective and safer with VR. For instance, doctors can learn

everything from surgical procedures to diagnosing a patient though realistic training [6]. VR

can help individuals virtually meet and talk with one another while feeling as if they are

physically located in the same place [7]. VR-assisted storytelling can be much more realistic

and impactful [8].

Truly immersive VR has extreme requirements on three immersion aspects of 1) visual

quality, 2) sound quality, and 3) interactions [1]. The key requirements of VR is summarized

in Fig. 1.1. As the user is free to look around in the virtual world, VR needs to provide a full

360-degree spherical view. In other words, 360-degree video content is required. Furthermore,

the human eyes have a wide FOV and the display in a VR headset is brought close to the eyes.

As a result, an extreme number of pixels are required to eliminate the so-called “screen-door

effect”. According to [9], truly immersion requires 360-degree videos with a resolution of

24K and near-eye display with a monocular resolution of 8Kx8K. Sound is another crucial
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FIGURE 1.1: Requirements for Virtual Reality [1].

component in VR. VR requires 3D audio to provide the sense of presence in virtual world.

Currently, 3D sound production in VR is mainly based on Head-related Transfer Function

(HRTF) that models the Human Audiotory System [10]. One of the biggest challenges for

VR is the amount of time between an input movement and the screen being updated, which is

known as “motion to photon” latency. The motion-to-photon latency must be less than 20 ms

for a excellent experience in VR [1]. In addition, high accuracy position/gesture/eye tracking

are also required to increase the immersive experience in VR.

To satisfy all the extreme requirements of VR, new technologies for the entire VR delivery

chain are needed. A summary of existing VR technologies is shown in Fig. 1.2. Existing

VR technologies can be classified into four main groups, which are 1) near-eye display, 2)

perception and interaction, and 3) rendering processing, and 4) network transmission [9].

The near-eye display technologies focus on improving the visual quality with higher

resolution, higher refresh rate, and wider FOV display [11,12]. The perception and interaction

technologies involve position/eye tracking [13], hand interaction [14, 15], and 3D sound [16,

17]. Rendering processing aims to achieve high quality images, low overhead, and low latency.

Currently, foveated rendering [18,19] and multi-view rendering [20] are the main technologies

for GPU-based rendering. Also, cloud rendering is emerging as an potential technology to

reduce the computation workload on the user devices [21, 22]. The next generation rendering

technology will be based on light field technology [23].

To delivery the bulky VR content over networks with low delay, advanced network

communication technologies are necessary. Next-generation access networks such as 5G [24],
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FIGURE 1.2: Key VR technologies.

Passive Optical Network (PON) [25], and new Wifi [26] that can provide high bandwidth/low

latency access networks to the users are being developed. Another important delay source in

the Virtual Reality delivery chain is caused by congestions at data centers. Thus, effective

congestion control methods are required to enable low-latency data centers [27, 28]. Bearer

networks also should be re-designed to meet the stringent bandwidth and latency requirements

of VR services. Especially, superior VR experience requires customized/agile network that can

support resource reservation [29], resource allocation [30], as well as service isolation [31].

Even with high bandwidth/low-latency networks, the bitrate of VR content is still ex-

tremely high. Also, the representation of VR content is also very different from the conven-

tional content. Thus, new video coding technologies for VR content (especially 360-degree

video) would be essential for storage and transmission of VR content. In terms of standardiza-

tion, the Joint Video Experts Team (JVET) has just started the standardization activities for

Versatile Video Coding (VVC) for 2D/3D Virtual Reality video [32].

In addition, advanced streaming technologies are highly desired to deliver 360 video

over networks in an effective manner. State-of-the-art streaming technologies such as HTTP

Adaptive Streaming are originally designed to provide interruption-free video playback under

varying network conditions [33–36]. For 360 video, the main focus is reducing the bandwidth

requirement using viewport-adaptive streaming [37]. Since 360 video is usually viewed on

Head-Mounted Displays, existing Quality of Experience(QoE) models such as [38–40] cannot
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FIGURE 1.3: Viewing 360-degree video using
Head-Mounted Display.

FIGURE 1.4: Expected bitrates at different
resolutions with Versatile Video Coding (VVC).

be directly applied to 360 video. Thus, QoE evaluation for 360 video is highly required.

This dissertation focuses on viewport-adaptive streaming, which is the key technology for

360-degree video streaming over networks.

1.1 Motivations

360-degree videos (360 video for short) are video recordings where views in every directions

at every time instant are recorded [41]. 360 video is usually viewed on a Head-Mounted

Display (HMD) that puts the user at the center of the sphere as illustrated in Fig. 1.3. The

user can freely change his/her viewing direction while watching. 360 video streaming can be

applied in many applications in entertainment, training, and media. For example, the user can

virtually visit some famous places by watching pre-recorded 360 videos. Using 360 video

as a training environment, companies can get rid of costly training program. Realistic views

provided by 360 video can provide a much better story-telling experience. Due to the limited

field of view of human and the headset, the user can only see a portion of the video at a given

time. The visible area to the user of the 360 video is called viewport.

To provide an excellent immersive experience, 360 video should have extremely high

resolution (i.e., 4K or higher) and high frame rate (i.e., 60 fps or higher) [9]. To improve

the compression efficiency for very high resolution VR content such as 360 video, the Joint

Video Experts Team (JVET) has just started the standardization activity for the next generation

video coding called Versatile Video Coding (VVC) [32]. The VVC is expected to provide

bitrate reduction of about 50% compared to High Efficiency Video Coding (HEVC) [42].

Nevertheless, VCC will still result in very high bitrates, especially at high resolutions as can
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FIGURE 1.5: General architecture of tiling-based viewport-adaptive streaming.

be seen in Fig. 1.4. Such high bitrates are generally much higher than the current network’s

capacity, especially mobile networks. Thus, effective delivery method for 360 video over

networks is necessary for the wide adoption of Virtual Reality applications. It should be

noted that, though the emerging 5G networks can provide much higher bandwidth and lower

latency, effective use of the available network resources is still very important to 1) user

viewing experience and 2) network service providers. Also, the high bandwidth provided by

5G networks can allow the proposed system to support 360 videos with higher resolutions

(quality).

To reduce the high bitrate of 360 video, viewport-adaptive streaming has been proposed.

The general idea is that the viewport is delivered at a high quality level while the remaining

part of the video is delivered at a lower quality level [43]. As only the viewport is visible

to the user, viewport-adaptive streaming can significantly reduce the video bitrate while not

affecting the user experience.

One of the most popular approaches is tiling-based viewport-adaptive streaming [43–46].

The general architecture of tiling-based viewport-adaptive streaming is shown in Fig. 1.5. In

tiling-based viewport-adaptive streaming, a 360 video is spatially divided into small parts

called tiles, each is encoded into multiple versions of different quality levels. Given the

user’s viewing direction and the network status, the most appropriate version of each tile is

selected and delivered to a client running on the user’s device. The client first decodes the

tiles’ versions, and then reconstructs the 360 video. Finally, the viewport corresponding to the

user’s current viewing direction is extracted and displayed [44]. Generally, for tile version

selection, the visible tiles (i.e., tiles overlapping the viewport) are delivered at high quality,
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while the other tiles at low quality.

However, tile version selection is not a simple task because a lot of challenges are needed

to be overcome as follows.

1. In practice, viewport adaptation is sequentially applied to temporal segments called

adaptation intervals or simply segments [47]. Also, the client should buffer some

amount of video data before the video can start to play. The segmentation and client

buffer cause a delay from when the tiles’ versions of a segment are decided until when

the playback of the frames in that segment starts. Thus, in order to decide the tiles’

versions, future viewport positions need to be estimated. Since the user can freely

change his/her viewing direction, errors in viewport estimation are likely to occur.

To deal with viewport estimation errors, the tiles surrounding the estimated viewport

should also be delivered at high quality. Those tiles form the so-called extension

area [37]. The remaining tiles form the so-called background area [37]. As the

likelihood that the user will see the tiles in the background area is low, these tiles are

usually delivered at the lowest quality, just in case there is sudden changes in head

movements. For tile version selection, the two key questions are 1) How big should the

extension area be? and 2) What are the versions of the viewport and extension areas?

In addition, most previous studies (e.g., [48–50]) employ HTTP Adaptive Streaming

(HAS) systems [51] for viewport-adaptive streaming. However, HAS results in a high

delay due to segmentation and client buffering [45] that causes viewport prediction

errors and so low viewport quality. This factor actually has never been investigated in

the existing literature.

2. For client-based adaptation, the existing HAS standards provide little information to

optimize the adaptation of 360 videos. For example in MPEG DASH standard, the

quality of a version is provided as a rank/order, not an actual quality value. Also, as

discussed in our previous work [37], the current HAS standards define the bitrate of

a version as the maximum bitrate of all segments (intervals) in that version. That is

the reason why instant bitrate estimation is shown to be useful to improve adaptation

performance in [50].

As for evaluation, most of the previous studies use bandwidth saving as the key per-

formance metric [49]. However, the bandwidth saving is not able to reflect the quality
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seen by users. In [44], average viewport PSNR is used to demonstrate the effectiveness

of some viewport-adaptive strategies compared to a non-viewport-adaptive strategy.

However, it is not possible to see how the video quality changes throughout a streaming

session with the average PSNR. Note that the system delay is not described in these

studies.

3. In the current literature, typical tiling schemes include 4x3 [45], 6x4 [44], 8x4 [52], and

8x8 [37]. Some studies investigate good tiling schemes from the server’s point of view,

by considering the tradeoff between coding efficiency and the number of tiles [44, 53].

However, no metric to decide the optimal tiling scheme has been considered.

In our opinion, the existing studies on optimal tiling scheme miss two important issues.

First, the optimal tiling scheme should be mainly considered from the client’s point of

view. That is, it should be based on the quality performance measured at the client, not

at the server. Second, a tiling scheme so far is fixed during a whole streaming session.

Intuitively, when the head-moving speed is small, one should use high tiling granularity

(i.e., large number of tiles) as it can reduce the amount of redundant pixels, which are

the pixels belonging to high quality tiles but not in the viewport. Meanwhile, redundant

pixels in case of low tiling granularity (i.e., small number of tiles) can help cope with a

high head-moving speed. Since the user head movement is generally varying throughout

a streaming session, using a fixed tiling scheme as in existing studies might lead to

non-optimal viewport quality.

In this context, it is important to answer some related questions such as "what is the

benefit of adaptive tiling compared to fixed tiling?", "which tiling should be selected

given a speed of head movement?", or "if fixed tiling is preferred in a given context,

what is the best tiling scheme for the client?".

1.2 Limitations

In this part, the scope of this thesis will be presented. First, the methods/frameworks proposed

in this thesis are limited to monoscopic (2D) 360-degree videos. Although stereoscopic

(3D) 360-degree videos are generally required to provide truly immersive experience to the

users, it will make the system become very complex. The task of extending the proposed
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FIGURE 1.6: Three main contributions of this dissertation.

methods/frameworks to support 3D 360 videos is reserved for our future work. As mentioned

above, immsersive audio is another key component in Virtual Reality. However, since our

focus is on delivery of 360-degree video, the generation, delivery, and playback of 3D audio

are not considered in this thesis.

Second, the proposed methods/frameworks presented in this thesis are specific to tiling-

based viewport-adaptive streaming. Although there exist other viewport-adaptive streaming

approaches such as viewport-dependent approach [54], tiling-based approach is the most

popular approach used in the literature. Moreover, according to the results from a recent

study [55], viewport-dependent approach results in in much lower viewport quality than that

of the tiling-based approach.

Third, this thesis focuses on improving the viewing experience for single-user scenario in

which an user watches a 360 video streamed from a server using a Head-Mounted Display.

Multiple-user scenario will not be considered in this thesis. We also assume that the user

head movements contain only rotations in pitch and yaw dimensions. The rotations in the roll

dimension are not considered.

1.3 Main contributions

In this dissertation, the above challenges in tiling-based viewport-adaptive streaming of

360 video over networks will be addressed. The main contributions of this dissertation are

summarized in Fig. 1.6. The details of each contribution is described as follows.

• First, a new server-based adaptation approach for tiling-based viewport-adaptive stream-

ing that can systematically decide the version of each tile according to user head

movements and network conditions is proposed. Compared to existing approaches,

the proposed approach can improve the average viewport quality by up to 3.8 dB and
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reduce the standard deviation of the viewport quality by up to 1.1 dB. This contribution

has been published in [37, 56] and will be presented in Chapter 3.

• Second, a client-based framework for 360 video streaming is proposed. The proposed

framework addresses all the key issues in client-based viewport-adaptive streaming.

Experiment results show that the use of estimated bitrate/quality can help improve the

viewport quality significantly. The improvements were seen in all three tile selection

methods of the framework. Especially, the performance with estimated bitrate/quality

is nearly the same as the performance with full information of bitrate/quality. This

means the complexity of sending full bitrate/quality information of tiles’ versions could

be avoided. This contribution has been published in [57] and will be presented in

Chapter 4.

• Third, a novel solution for adaptive tiling selection is presented. The general problem

for adaptive tiling in 360 video streaming is first formulated. Then, correspondingly a

simple solution to that problem is devised. Experiment results show that adaptive tiling

can improve the average viewport quality by up to 2.3 dB compared to a fixed tiling

solution. It is also found that among fixed tiling schemes, 4x3 tiling achieves the lowest

viewport quality and thus should not be used. This contribution has been published

in [58] and will be presented in Chapter 5.
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Chapter 2

Background

In this chapter, the basic concepts of 360-degree (360 video for short) video delivery over

networks will be presented. Note that, the term “360 video” here refers to “monoscopic”

360 videos. The more complex stereoscopic 360 video is not considered in this dissertation.

360 videos, also known as spherical videos, are video recordings where views in every

directions at every time instant are recorded. Conventional videos, on the other hand, contain

only a single view at a time instant. 360 video allows viewers to freely change their viewing

direction while watching, creating the sense of presence, which is essential to provide the

immersive experiences to users in VR services.

Field of view (FOV) is the extent of the observable environment at any given time. In

Virtual Reality, FOV is dependent on both human eyes and the Head-Mounted Display. Human

eyes have a horizontal monocular field of view between 170-175 degrees. The combination

of the two monocular FOVs of two eyes is called binocular FOV, which is between 200-

220 degrees. Each eye has a vertical FOV of approximately 135 degrees. Existing Head-

Mounted Displays on the market usually have FOVs between 90-110 degrees, which are

generally smaller than human FOV.

A system overview for 360 video delivery chain is shown in Fig. 2.1. The delivery chain

starts with the acquisition of 360 video. Then, projection mapping will be performed to

generate a 2D representation of the original 360 video. The encoding process of the video

should produce an encoded bitstream that allows access to the portions of the encoded video

corresponding to the current viewport. Next, the video data is segmented and encapsulated for

transmission over the network. The process of segmentation/encapsulation is dependent on

which streaming protocol is used. At the receiver side, the video segments are decapsulated

and fed to the video decoding block. The decoder passes the reconstructed video data to the
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FIGURE 2.1: 360 video delivery chain.

(A) Camera rigs (B) Dual-lens cameras. (C) Single len cameras.

FIGURE 2.2: Three typical 360 video capturing devices.

viewport rendering block which generates viewports based on the current viewing direction

and the user device’s capacities.

In the following sections, the key building blocks of content acquisition, projection

mapping, video coding, video delivery, and rendering are described in detail.

2.1 Content Acquisition

360 video is typically recorded using either special camera rigs or dedicated 360 cameras as

shown in Fig. 2.2. Camera rigs such as GoPro’s Odyssey [59] consist of multiple cameras

installed within a frame. Popular handheld 360 cameras such as Ricoh Theta [60] and Samsung

Gear 360 [61] use dual-lens in opposite directions (i.e., front and back) to capture 360 video.

There have also been single spherical len cameras such as Kodak Pixpro SP360 4K [62].

Existing consumer-level 360 cameras typically produce 360 videos at resolutions of 2K-4K

and frame rates of 25-30 fps.
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(A) Equirectangular projection (ERP) (B) Cubemap projection (CMP)

(C) Pyramid projection.

FIGURE 2.3: Three typical projection mapping.

To generate a 360 video, videos from multiple cameras (or lens) are needed to be stitched.

Video stitching process generally involves generation of reference projection, determination of

projection matrix, and generation of blending map [63]. To generate the reference projection,

one camera (len) is taken as reference. The relative rotations and translations of the remaining

cameras (lens) are then estimated. The next step is to estimate the projection matrix that

maps every pixel of the input videos to a projection surface, which is a sphere in case of

360 video. Finally, a blending function is estimated and applied to each video to handle the

exposure difference in the overlapped areas between cameras (lens). Existing video stitching

methods can be divided into two main categories which are 1) deformation-based [64] and

seam-based [65]. As stitching process is performed at pixel level, several fast stitching

techniques have been proposed for real-time scenarios such as using saliency map [63] or

GPU-assisted [66].

2.2 Projection Mapping

To preserve a lot of performance improvements in modern rectangular block-based cod-

ing architecture (e.g., Advanced Video Coding (AVC) [67], High Efficiency Video Coding

(HEVC) [68]), a 360 video should be mapped to a rectangular video by means of projection

mapping before encoding. Various projection surfaces can be used for mapping a sphere

such as cylindrical [69], cubic [70], or pyramid [71]. In addition, given a projection sur-

face, there exists multiple ways to map the sphere on to the chosen surface. Fig. 2.3 shows
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three common projection formats of equirectangular projection (ERP), cubemap projection

(CMP), and pyramid projection. There are two main types of projection formats which are

1) viewport-independent format and 2) viewport-dependent format.

The ERP is the most simple viewport-independent projection format which uses a constant

spacing of longitudes. In the ERP, each latitude is stretched to the width of the rectangular. As

a result, this projection causes a lot of redundant pixels at the two poles that in turns reduces

the compression efficiency. Another drawback of ERP is that straight line motions are curved,

making the projected video become harder to encode.

The CMP is another popular viewport-independent format which places the sphere at

the center of a cube [55]. Each face of the cube is generated by a rectilinear projection with

a 90-degree field of view. The six faces of the cube are then rearranged into a rectangular

as shown in Fig. 2.3b. The CMP projection can eliminate the severe stretching at the two

poles in the ERP projection. As a result, the CMP projection have lower number of redundant

pixels compared to ERP. Yet, this projection still results in a sampling density that varies

over each face of the cube. Several CMP-variant projections have also been proposed such

as Equi-Angular Cubemap (EAC) [72], Hybrid Equi-Angular Cubemap (HEC) [2]. Those

projections adjust the mapping functions to make the distribution of the sampling points on

the sphere more uniform for compression enhancement.

Different from viewport-independent formats such as ERP and CMP, viewport-dependent

projection formats like the pyramid projection are composed of two areas: primary area and

secondary area. The primary area is the visible area corresponding to a pre-defined viewport

and has high quality. The secondary area is the region outside the primary area and has

lower quality. In case of the pyramid projection (i.e., Fig. 2.3c), the base of the pyramid

is the primary area while the sides of the pyramid composed of the secondary area. Other

viewport-depedent formats are truncated square pyramid projection [73] and compact-based

cube projection [54]. A key problem of viewport-indepedent formats is that a lot of versions

corresponding to a set of pre-defined viewports must be generated in advanced to support

viewport adaptation, which requires significant storage requirement.
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FIGURE 2.4: Face boundaries and discontinuity in cube map projection with 3x2 frame packing.

(A) Geometric Padding (B) Motion Estimation

FIGURE 2.5: Geometry padding and motion estimation in 360 video coding [2].

FIGURE 2.6: Seam artifacts in a rendered viewport [2].
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2.3 Video Encoding

Spherical continuity is one of the special properties of 360 video. Yet, projection mapping

from spherical domain to plane domain causes face discontinuities and face boundaries in the

projected video as can be seen in Fig. 2.4. Thus, conventional coding tools were modified to

consider the correct spherical neighborhood.

For inter prediction, the repetitive padding is replaced with geometry padding when

the reference pixels are located outside the frame boundary or across the discontinuous

edges [2, 74]. For example, as shown in Fig. 2.5a, a pixel qb outside the bottom face is padded

by its corresponding pixel on the sphere qa locating on the front face. Conventionally, the

search area to find the motion vector of a coding unit (CU) is centered around the location

of the CU [67]. However, when a coding unit is located beside the frame boundary or the

discontinuous edge, the search area should consider the spherical neighboring CUs [2]. An

example is shown in Fig. 2.5b where the current CU in the bottom face has a spherical

neighboring CU located in the front faces.

In conventional coding systems, in-loop deblocking filters are applied to decoded video

frames to mitigate the block artifacts [75]. Yet, applying conventional filters to 360 video may

result in the seam artifact that can significantly reduce the perceptual quality. Fig. 2.6 shows

an example of the seam artifact appeared in a rendered viewport. In [2], four advanced filters,

namely de-blocking filter, sample adaptive offset (SAO) filter, adaptive loop filter (ALF), non

local mean filter (ALF), and convolution network (CNN) filter, are proposed and found to

be effective in eliminating the seam artifact. In [74], a face discontinuity handling (FDH)

is proposed in which information from a frame packed neighbor block is used to code the

current block only when the frame packed neighbor block is also a spherical neighbor block

of the current block.

2.4 360-degree Video Delivery

Though advanced coding technologies can significantly reduce the bitrate of 360 video,

delivery 360 video over networks is still a challenging task due to limitations in network

resources, as well as constraints imposed by end-user devices. Therefore, cost-effective

delivery technology is necessary for the wide adoption of VR/AR applications.
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FIGURE 2.7: Tiling-based viewport-adaptive streaming approach.

For effective streaming of 360 video over networks, viewport-adaptive streaming has been

introduced. The basic idea is to deliver a viewport, which is the visible part according to

current the user’s viewing direction, at high quality, whereas the other parts are delivered at

lower quality [37]. There are two main approaches for Viewport-Adaptive Streaming, which

are 1) tiling-based approach and 2) viewport-dependent approach.

2.4.1 Tiling-based Viewport-adaptive Streaming

Tiling-based is the most popular approach to enable viewport-adaptive streaming where a

360 video is spatially divided into small parts called tiles [37, 44, 52]. The resulting tiles are

independently encoded at multiple quality levels (or versions). Given a user viewport position

and network conditions, the system decides the most appropriate version of each tile and

delivers the selected tiles to the client. Generally, high quality versions will be selected for the

visible tiles (i.e., tiles overlapping the viewport), low quality versions for the other tiles. At

the client, the tiles are firstly decoded, then combined to reconstruct the 360 video. Finally,

the viewport is extracted and shown to the user.

Tiling Scheme

In most previous studies, 360 video is divided into equal-sized, non-overlapping tiles by a

grid. Various tiling schemes have been proposed such as 6x4 (ERP) [44], 8x8 (ERP) [76],

12x6 (ERP) [77], 2x2 (CMP) [53, 78], and 4x4 (CMP) [78]. Some variable-sized tiling

schemes have also been proposed, utilizing the user viewing behaviors [43,79–81], the content

characteristics [79,82], or the visual attention model [83]. The tiles can also be overlapping as

proposed in [84]. The tile scheme can be the same for all video segments [44] or variable per

video segment [79].
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(A) Non-overlapping, equal-sized tiling
scheme

(B) Non-overlapping, variable-sized
tiling scheme

(C) Overlapping, equal-size tiling
scheme.

FIGURE 2.8: Three typical tiling schemes for the ERP projection format.

Tile Selection

Method

Estimation-based

Baseline [44]
Area Level [37,

81, 92]

Tile Level [65,

76, 80, 93]

History-

based [94]

FIGURE 2.9: A classification of existing tile selection methods.

Tile Version Selection Methods

In the literature, adaptation methods for conventional video have been extensively studied [85–

90]. However, the main goal of these adaptation methods is to provide smooth video playback

under varying network conditions. In contrast, viewport-adaptive streaming aims to reduce

the bandwidth requirement by delivering visible tiles at high bitrate.

If future viewport positions can be estimated accurately, a simple method that selects the

highest possible versions for the visible tiles should be sufficient. However, it is found that

errors in viewport position estimation are not trivial, especially for long-term estimation [49,

91]. Thus, in addition to the visible tiles, some invisible tiles should also be delivered to

deal with viewport estimation errors. In practice, it is required that all invisible tiles must

be delivered at least at the lowest version. Invisible tiles surrounding the viewport are called

extension tiles. The existing methods differ in 1) the selection of the extension tiles and 2) the

versions assigned to the visible and extension tiles.
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(A) Estimation-based: Tiles’ versions gradually de-
crease from the estimated viewport position.

(B) History-based: Tiles’ versions are dependent on
past users’ viewing preferences.

FIGURE 2.10: Examples of tiles’ versions of the Estimation-based and History-based methods.

(A) Invisible tiles are divided into 2
groups [81, 92].

(B) Invisible tiles are divided into N
groups [37].

FIGURE 2.11: Different classification schemes for the invisible tiles. The visible tiles are marked
by yellow color.

The simplest tile selection method is to select the highest possible version for the visible

tiles and a low version for all invisible tiles. This method is denoted as Baseline. The Baseline

method is simple but may result in fluctuating viewport quality, especially when viewport

estimation errors are high [37]. A number of tile selection methods have been proposed to

address the problem of the Baseline method such as [37,65,76,80,81,92–94]. A classification

of existing tile selection methods is shown in Fig. 2.9. Specifically, existing methods can be

classified into two groups, namely Estimation-based and History-based. In Estimation-based

methods, tiles closer to the estimated viewport position are assigned higher versions. As a

result, the tiles’ versions will be gradually decreasing from the estimated viewport position as

illustrated in Fig. 2.10a. Note that, the Baseline method also belongs to the Estimation-based

group. In History-based methods, the version of a tile is decided based on how that tile has

been viewed by past users. If a tile has been watched by the majority of the users, that tile will

be assigned a high version. In contrast, those tiles that have been rarely watched will have

lower versions. Fig. 2.10b shows an example of the selected versions of tiles of a history-based

method.

Estimation-based methods first estimate the viewport position when the playback of the
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segment starts. Then, it assigns higher quality versions for tiles that are closer to the estimated

viewport position. The selection of tiles’ versions can be done at either area level [37, 81, 92]

or tile level [65, 76, 80, 93].

In [37, 81, 92], the invisible tiles are divided into several areas or groups. Tiles in the same

group have the same version. In [81,92], two groups, namely extension group and background

group are considered. Note that, the extension and background groups are respectively called

adjacent group and outside group in [81]. In the method of [81] and the EXT-1 method of [92],

the extension group consists of the invisible tiles that are adjacent to the visible tiles (called

the adjacent tiles). Similar to the EXT-1 method, the extension group in the EXT-2 method

of [92] includes the adjacent tiles and the invisible tiles that are adjacent to the adjacent tiles.

In [37], the invisible tiles are divided into N groups, depending on the total number of tiles.

The classification schemes for the invisible tiles are illustrated in Fig. 2.11.

For tile version selection, the EXT-1 and EXT-2 methods select the same version for the

visible and extension tiles. In contrast, the method of [81] selects the highest possible version

for the extension tiles after choosing the highest possible version for the visible tiles. As a

result, the extension tiles usually have much lower version than that of the visible tiles. In [37],

the tiles’ versions are selected so as to minimize a weighted sum of versions’ distortions. The

weight of a tile is calculated as the ratio of the overlapped area of that tile and the estimated

viewport. In addition, the last viewport estimation error is also considered in the calculation

of the expected viewport distortion.

The methods of [65, 76, 80, 93] decide the versions of individual tiles. For that purpose,

each tile is assigned a weight. Basically, the higher the weight of a tile is, the higher the

version of that tile would become. These methods are different in the way the weights of

tiles are calculated. In [80], the weight of a tile is calculated as a reciprocal function of the

distance between the tile’s center point and that of the estimated viewport position. Meanwhile,

Gaussian functions are employed in [65, 76, 93]. The tiles’ weights thus conform a bell shape

centered at the estimated viewport position. The difference between the methods of [65,76,93]

is the value of the standard deviation, which controls the width of the “bell”. In [65, 76], the

standard deviation is calculated as s×d where s is the user’s head movement speed and d is

the network delay [76] or the segment duration [65]. In [93], the standard deviation of past

estimation errors is used.

In history-based methods, the weights of tiles are determined based on the viewing
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(A) Tile versions are delivered seprately to the client.

(B) Tile versions are combined at the server first, then delivered to the client.

(C) Tile versions are delivered separately to an edge server, which renders and
delivers the viewport to the client.

FIGURE 2.12: Three typical tile delivery options.

preferences of past users watching the same video. Specifically, the tiles that have been

watched by the majority of the users will have higher weights than those of rarely watched

tiles. In [94], the weight of a tile of a user is calculated as the fraction of the surface area of

that tile occupied by the viewport as seen by that user. Then, the weights of individual users

are aggregated to obtain the final weight of that tile. The tiles’ versions are then chosen so as

to minimize a weighted sum of versions’ distortions.

Existing tile selection methods use Viewport PSNR (V-PSNR) as the performance met-

rics [37]. To provide satisfactory user experience, QoE-related factors should be taken into

account [95–97].

Tile Delivery Options

There are several options to deliver the selected tiles’ versions from the server to the client.

Fig. 2.12 shows three typical tile delivery options. The most popular option is to deliver the
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FIGURE 2.13: Viewport-dependent streaming approach.

selected tiles’ versions separately to the client [44, 46, 77, 81, 98–100]. Furthermore, the tiles

versions can be delivered in either sequential manner [44, 77, 81] or parallel manner [98].

Traditionally, each of the tiles’ versions is delivered using one HTTP request-response transac-

tion [44], which may results in high request overhead and low bandwidth utilization. Various

features of HTTP/2 protocol [101] have been utilized to address the problems of HTTP-based

delivery [102–104]. Specifically, HTTP/2’s server push feature, which allows the server to

push multiple responses given a single client’s request, has been used to reduce the request

overhead [81, 105]. HTTP/2’s stream priority feature has been utilized to specify the delivery

order of the tiles’ versions, so that more important tiles will be delivered first [99, 100]. More-

over, delivery of tiles that will likely miss their playout deadline can be canceled on-the-fly

using HTTP/2’s stream termination feature [98].

In the second delivery option (see Fig. 2.12b), the tiles’ versions are combined into a single

video first. The combined video is then delivered to the client [37]. Since the combination of

the tiles’ versions into a single file is a resource-intensive task, this option should be used in

server-based approach.

The third delivery option is illustrated in Fig. 2.12c. In the third option, an edge server

located between the client and the server is responsible for receiving the tile’ versions,

rendering the viewport, and delivering the viewport to the client [21,106,107]. This option can

help reduce the bandwidth usage and computational workload on HMD devices, especially

for those with limited computational resources.

2.4.2 Viewport-dependent Streaming

This approach makes use of the viewport-dependent projection formats such as pyramid

projection [71] and truncated square pyramid projection [73]. Specifically, multiple versions
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of a 360 video is generated, each corresponds to a pre-defined viewport. For each video

version, the primary area (i.e., the visible area corresponding to the associated viewport) will

have higher quality than the remaining area. Each version is further encoded into multiple

representations of different bitrates. Given the user’s viewing direction and the network

conditions, the most suitable representation will be selected and delivered to the client. At the

client, the representation is decoded and the viewport is extracted and displayed on the user

device’s screen [54]. Fig. 2.13 shows an example of viewport-dependent approach where three

versions corresponding to three different viewports are available. Typically, the version whose

the associated viewport is the closest to the user current viewing direction will be selected [54].

In previous studies, various version numbers have been used such as six [54] or thirty [71].

It can be noted that the key difference between this approach and the tiling-based approach

is the way the video is prepared on the server. In the viewport-dependent approach, the system

can only support a pre-defined number of viewports. The tiling-based approach can support

every viewport. Thus, the tiling-based approach has higher scalability than the viewport-

dependent approach. Also, viewport-dependent approach does not have the flexibility to

deal with viewport estimation errors. The main advantage of this approach is that it requires

minimal changes to the existing system. For example, MPEG-DASH based systems can

be used by adding viewport-related information of each version to the metadata. Yet, this

approach usually requires a large number of versions to cover all possible viewports, which

can effectively increase the storage cost [108].

2.5 360-degree Video Rendering

To provide real-time VR experience to the user, the rendering process must produce high image

quality with low delay. Even with advances in graphic hardware, computational resources

required for real-time rendering are growing faster than ever. Especially, new Head-Mounted

Displays for Virtual Reality have very high display resolutions and target refresh rate. Also,

effective rendering methods are especially necessary to support low-power devices such as

small phones and tablets.

Foveated rendering is a popular method to reduce the computational resources [18]. This

method exploits the fact that human visual acuity decreases significantly from the retina

center (i.e., the fovea) to the eye’s periphery. Foveated rendering decreases rendering quality
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toward the periphery while maintaining high quality in the fovea [109]. It has been found that

temporal stability and contrast preservation are key requirements for foveated renderers [18].

Another method to increase rendering speed is mipmapping [110]. A mipmap is a sequence

of textures, each of which is a progressively lower resolution representation of the same image.

Mipmapping can improve the rendering quality by using high-resolution mipmap for objects

that are close to the viewer. Lower resolution are used as the objects appear farther away. A

drawback of this method is that the mipmaps need to be prepared in advance, which increases

memory usage.

To enable real-time stereoscopic rendering, multi-view rendering technology has been

proposed [20]. The basic idea of multi-view rendering is that the similar information of images

for left and right eyes is reused. To provide high quality rendering on lightweight devices, the

rendering task can be offloaded to powerful cloud servers. The rendered images are then sent

to the user devices. This technology is called cloud-based rendering [21].

In addition to Head-Mounted Display, another popular approach for viewing 360 video

is projecting 360 video on full-dome screens. The full-dome screens can be very effective

in a wide range of applications such as astronomical simulations [111] and earth science

simulations [112].

2.6 Quality Metric

Conventionally, Peak Signal to Noise Ratio (PSNR) is the most popular objective metric to

measure the video quality. PSNR measures the mean squared error between the compressed

video and the original one. Firstly, the mean squared error (MSE) between the original and

compressed videos is calculated by

MSE =
1

M×N

M

∑
i=1

N

∑
j=1

(A(i, j)−A0(i, j))2. (2.1)

Here, M and N are respectively the width and height of the video in pixels. A and A0

respectively denotes the compressed video and original video. A(i, j) is the value of pixel

(i, j). The PSNR is computed from the MSE as follows.

PSNR = 10log10(
255×255

MSE
) (2.2)
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It should be noted that the higher the PSNR is, the higher the video quality becomes. For

good video quality, PSNR should be equal to or higher than 35 dB [96]. Because the user can

only see the viewport when watching 360 video, we are interested in evaluating the quality

of the viewport. Specifically, in this thesis, the performance of the proposed methods are

evaluated using viewport PSNR (V-PSNR) metric, which is the PSNR value calculated on the

viewport pixels.
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Chapter 3

Server-based Adaptation Framework

3.1 Introduction

There have been some previous studies proposing methods for tile version selection. A simple

method, which selects the highest possible version for the visible tiles and the lowest version

for other tiles, is used in previous work [43–46]. The tile versions may be different in

resolution [43, 45, 46] or Quantization Parameters [44]. However, this method may suffer

significant quality degradations due to viewport estimation errors, which is unavoidable due

to the randomness of the user head movements [49, 113]. To deal with viewport estimation

errors, some previous studies propose to further deliver the tiles surrounding the viewport

area at high quality [49, 80, 81]. However, no specific algorithm for selecting tiles’ versions is

given in [49]. Though two tile selection algorithms are presented in [80,81], they use constant

values for some important parameters such as the extension width [81] and the portion of

bandwidth allocated for the visible tiles [80]. Such constant values make it difficult to apply

these algorithms in different scenarios.

In addition, most of previous studies employ HTTP Adaptive Streaming (HAS) for video

data delivery [43, 44, 49, 80]. Yet, HAS results in a high delay due to its long segment

duration and large client buffer [114]. So far, the impact of the delay on the performances

of tile selection methods has never been investigated [43, 44, 49, 80]. However, a majority

of 360 video streaming applications require very low latency. For example, telepresence

applications require an end-to-end delay lower than 5 ms [115]. In such a case, server driven

adaptation is a better choice as the client-based approaches would result in unacceptable high

latency.

Furthermore, most of the previous studies use bandwidth saving as the key performance
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metric [43, 44, 49]. However, the bandwidth saving cannot accurately reflect the quality

perceived by the user. In [44], the average viewport PSNR is additionally used to demonstrate

the effectiveness of a viewport-adaptive approach compared to conventional approaches.

However, it is not possible to see how the video quality changes throughout a streaming

session with the average viewport PSNR.

In this chapter, a new adaptation approach for tiling-based viewport-adaptive streaming

that can systematically decide the version of each tile according to user head movements and

network conditions is proposed. The proposed framework has the following key features:

• The tile selection problem is formulated as an optimization problem with a new quality

objective that is based on the visible portion of each tile.

• Viewport estimation errors and user head movements in each adaptation interval are

jointly considered in the optimization problem.

• Two solution options for the problem are devised.

• The experiments are carried out with an actual test-bed.

• The behaviors of the proposed and reference methods are analyzed under different

user’s head movement patterns.

• The impact of the segment duration on the performances of tile version selection

methods is investigated. It is found that the proposed method outperforms the reference

methods when the delay increases.

Experimental results show that the proposed approach can effectively adapt to the user

head movements and varying bandwidth conditions. The proposed approach can improve the

average viewport quality by up to 3.8 dB and reduce the standard deviation of the viewport

quality by up to 1.1 dB compared to reference approaches. In addition, it is found that long

segment durations and large buffer sizes cause severe impacts on the performances of tile

selection methods.

The remainder of this chapter is structured as follows. The related work is presented in

Section 3.2. The proposed framework is given in Section 3.3. The proposed approach is

described in Section 3.4. The evaluations and discussions are drawn in Section 3.5. Finally,

the chapter is summarized in Section 3.6.
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FIGURE 3.1: System architecture.

FIGURE 3.2: System data flows.

3.2 Related Work

In 360 video streaming, a 360 video is first projected onto a plane. In tile-based streaming, this

projected video is then divided into tiles which are further encoded into multiple versions. In

order to choose the optimal version of each tile, future viewport positions are estimated. Then,

the selected tiles are transmitted to the client. Finally, some metrics are used to evaluate the

performance of 360 video streaming. In this section, the related work to 360 video streaming

is presented in detail.

Currently, typical planar formats for 360 videos include Cubemap (CMP), Equirectangular

(ERP), Equal-Area (EAP), and Pyramid [116]. Those formats are different in size and the

number/shape of faces [116]. Some previous studies have compared the performances of

different projection formats. It is found that the EAP format yields around 8.3% bitrate saving

relative to the ERP format [117], and the ERP and CMP formats outperform the Pyramid

format [118]. Also, [54] suggests that the CMP format is better than the ERP and Pyramid

formats. Nowadays, the ERP and CMP formats are the most widely used in practice [119].

In tiling-based approaches, a 360 video is spatially divided into tiles. The most popular

tiling method is to partition every face of the video into tiles of equal size using a P×Q
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grid, such as 6×4 (ERP) [44], 8×8 (ERP) [76], 12×6 (ERP) [77], 2×2 (CMP) [53, 78], and

4×4 (CMP) [78]. In [79], the optimal tiling scheme is determined for each segment based

on the user viewing behaviors. Also, some non-uniform tiling schemes have been used to

exploit the content characteristics [82] and/or the user access preferences [43, 80, 81]. Each

tile is then encoded into multiple versions of different bitrates [76, 80], QP values [44, 45], or

resolutions [46].

So far, some encoding techniques for 360 video have been proposed such as region adaptive

distortion calculation [120], adaptive QP selection [121], weighted-based rate control [122],

spherical geometry padding [123], and fast intra estimation [124]. In addition, evaluation

frameworks for 360 video coding have been designed in [117, 125].

In the literature, several viewing direction estimation methods have been proposed, such

as average-based [49], linear regression-based [49], and neural network-based [113, 126]. It

is found that future viewing direction can be predicted well (accuracy of more than 80%)

within the next 1sec [49, 113, 126]. Yet, the estimation accuracy drops significantly for longer

estimation window [49].

With respect to tile version selection, one of the simplest methods is to select the highest

possible version for the visible tiles and the lowest version for the other tiles according to

the estimated viewport [43–46]. Alternatively, utilizing Scalable Video Coding, the client

fetches the base layers of all tiles, whereas only the visible tiles’ enhancement layers are

further fetched to enhance the viewport quality [53]. This method, however, suffers significant

quality degradations due to estimation errors, which are unavoidable due to the randomness

of head movements [49]. Moreover, a problem formulation has not been presented in [43].

In [113], the authors propose to trim each video frame according to the predicted viewport.

The trimmed frame is then transmitted to the client. This method is actually not a tiling-based

method.

To cope with viewport estimation errors, some previous studies propose to deliver the other

tiles rather than the visible tiles at high quality [49,80,81]. However, no specific algorithm for

selecting tiles’ versions is given in [49]. Two tile selection algorithms are presented in [81]

and [80]. Yet, these algorithms use the constant values of some important parameters such as

the extension width [81] and the portion of bandwidth allocated for the visible tiles [80].

Another method is to use the tiles’ viewing probabilities to assist tile selection [77].

Yet, [77] is only tested under idealistic scenarios where 1) the head movements are assumed
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to be constant at a given angular speed and 2) the network delay and head movement speed

are known beforehand. In addition, some tiles may not be delivered to the client. Thus the

user will experience blank block within the viewport if those tiles turn out to be visible tiles.

Such cases can severely impact the user experience.

Although the work of [94] and our proposed method use the same idea to calculate the

objective quality (or expected quality), the method for calculating the objective quality in

our method is different from that of [94]. Specifically, in our proposed method, the viewport

quality at each frame is first calculated given the estimated viewport position at that frame.

Then, the objective quality is calculated a function of the frames’ viewport quality. Meanwhile,

in [94], the expected quality is calculated for the whole segment. In addition, the weights of

the tiles are obtained from the viewing preferences of other viewers watching the same video.

Though the results in [94] also show the viewport PSNR values over time, the streaming

test-bed used to produce those results was not described. In addition, the performances of tile

selection methods under different user’s head movement patterns have not been analyzed. In

this work, an analysis of the behaviors of the proposed and reference methods when 1) the

viewport positions are static and 2) the viewport positions change frequently is presented. It is

shown that the considered methods behave differently under the two head movement patterns.

Note that, such an analysis has not been performed in previous studies. The work in [94] has

been extended to study the live 360 multicast in [127].

To deliver the tiles’ versions over the networks in an efficient manner, important tiles can

be rerouted to congestion-free network links using Software Defined Network [128] or first

sent by the server using HTTP/2’s priority feature [99]. Also, HTTP/2’s server-push feature

can be used to increase achieved throughput in high RTT networks [81].

In most previous studies, bandwidth saving is used as the key performance metric [43–46,

126]. Yet, the bandwidth saving cannot accurately reflect the video quality perceived by users.

In [117], a new metric called viewport PSNR (V-PSNR) has been proposed. Some recent

studies have employed V-PSNR for evaluation such as [44, 54, 77, 80, 94, 127]. Yet, only the

average V-PSNR values of the entire video [44, 77] or the segments [80] are reported.
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3.3 Proposed Framework

3.3.1 System Architecture

Fig. 3.1 shows the general architecture of our proposed system where a server streams a 360

video to a client running on the user’s device. The server includes a preprocessing module, a

decision engine module, and a sender module. The preprocessing module first converts the

input 360 video into a planar format using the ERP format [116]. Then, it spatially divides

the converted video into multiple tiles of equal size. The preprocessing module then encodes

each tile into multiple versions. The bitrate/quality information of the tiles’ versions and

other description information are stored in the metadata, which is used by the decision engine.

Given the metadata and the client’s feedbacks, the decision engine makes decisions on the

tiles’ versions. The sender delivers the selected tiles’ versions to the client. For low delay, the

tiles of each frame are sent at the same time.

The client includes a receiver module, a player module, and a system monitor module.

The receiver module receives and decodes the tiles’ versions, then stitches the decoded

tiles’ versions to reconstruct the 360 video. The player extracts and displays the viewport

corresponding to the user’s current viewing direction. The system monitor is responsible for

two tasks, which are 1) monitoring the network status (e.g., throughput) and the user viewing

directions, and 2) periodically sending feedbacks to the server.

Fig. 3.2 shows the data flows in the proposed system. Similar to cloud gaming [129],

the server sends video data to the client on frame basis. The adaptation is executed every

adaptation interval (segment) that consists of L frames and contains τ seconds of the video.

Segment k (k ≥ 1) is transmitted at time

ts
k = (k−1)× τ . (3.1)

To ensure that the determinations of tiles’ versions of segment k are available before its

transmission time, the decision engine decides the versions of the tiles of segment k at time

td
k = ts

k−δ t, (3.2)

where δ t is the maximum amount of time for making decisions, which depends on the server’s
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processing speed as well as the complexity of the tile selection algorithm. At the client, as

soon as the first B frames have completely received, the client starts playing the video. For

every displayed video frame, the client (i.e., the system monitor) sends a feedback containing

1) the instant download throughput and 2) the user’s current viewing direction (viewport

position) to the server.

3.3.2 Problem Formulation

Suppose that, at a given time, the server needs to adapt a segment consisting of L frames

to meet a bitrate constraint Rc. The segment is composed of M tiles, each is available in

N versions where version 1 (N) has the lowest (highest) quality. Denote Vl the viewport

position when the user watches the lth(1≤ l ≤ L) frame of the segment. Let vm denote the

version selected for tile m (1≤ m≤M). The version vm has a bitrate Rm and a distortion Dm.

Note that, the bitrate and distortion are computed as the average values over all frames of the

segment. The tile selection problem can be formulated as an optimization problem as follows.

Find {v1,v2, ...,vM} to maximize a quality objective VQ which is a function of {Dm}1≤m≤M

and {Vl}1≤l≤L

VQ = f (D1,D2, ...,DM,V1,V2, ...,VL) (3.3)

and satisfy
M

∑
m=1

Rm ≤ Rc. (3.4)

To solve the above problem, our solution consists of the following aspects.

• Estimation of the bitrate constraint Rc (or throughput) and the viewport positions

Vl(1≤ l ≤ L). Note that in fact, any throughput and viewport estimation methods can

be used in our framework.

• Computation of the quality objective VQ.

• Decision on the optimal version of each tile.

In the following section, each of these aspects will be addressed.
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3.4 Proposed Approach

In this section, the proposed approach to determine tiles’ versions is described. Note that,

the decision engine on the server is responsible for all important tasks, including throughput

estimation, viewport estimation, and tile version selection. The solution below is for adapting

a segment k at the server. It is assumed that, at the decision making time, the server has just

received the feedback of the lth
last frame of the segment klast < k.

3.4.1 Estimations of Throughput and Future Viewport Position

The estimated throughput T e(k) of the segment k is simply set to the throughput reported in

the last client’s feedback Tfb(klast, llast), i.e., T e(k) = Tfb(klast, llast). The bitrate constraint Rc

is then computed from T e(k) by

Rc = (1−α)×T e(k), (3.5)

where the safety margin α is in range [0,0.5] as shown in our previous work [130].

In this work, a linear regression method is used for viewport estimations. Different

from [49], the estimation errors of past frames are taken into account. As mentioned above,

the server needs to estimate the viewport position of each frame in segment k. Let V e(k, l)

denote the estimated viewport position of the lth (1≤ l ≤ L) frame of the segment k. Let E(k)

denote the estimated viewport error of the segment k, which is set equal to the estimation error

of the first frame of the segment klast. Specifically, the value of E(k) is given by

E(k) = V e(klast,1)−V (klast,1). (3.6)

Let Savg(k) denote the user’s average head movement speed over the last L frames. The value

of Savg(k) is given by

Savg(k) =
V (klast, llast)−V (klast−1, llast)

τ
. (3.7)

Note that, the values of V (klast, llast) and V (klast − 1, llast) are obtained from the client’s

feedbacks. The estimated viewport position V e(k, l) of the lth frame of the segment k is
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computed as follows.

V e(k, l) = V (klast, llast)+ (l−1)× τ

L
×Savg(k)+

l−1
L−1

E(k). (3.8)

3.4.2 Computation of Viewport Quality

In this part, the viewport quality value VQ(k, l) of each frame of the segment k given the

distortions {Dm(k)} (1≤m≤M) and the estimated viewport positions {V e(k, l)} (1≤ l ≤ L)

are computed.

As the user only watches a portion of the full 360 video (i.e., the viewport) at each time

instant, the contribution of a tile to the viewport quality is dependent on how that tile overlaps

the viewport. Thus, the viewport quality distortion value VD(k, l) of the lth frame (1≤ l ≤ L)

is computed as a weighted sum of the distortion values of all tiles as follows.

VD(k, l) =
M

∑
m=1

wm(V e(k, l))×Dm(k). (3.9)

Here, wm(V ) is the weight of tile m given the viewport position V . wm(V ) is calculated as

the fraction of the overlapped area of tile m to the viewport area given the viewport position

V . If tile m does not overlap the viewport, then wm(V ) = 0. In this work, the distortion is

measured in terms of the Mean Square Error (MSE), so the viewport quality value VQ(k, l) of

the lth frame (1≤ l ≤ L) is converted into PSNR as follows.

VQ(k, l) = 10× log10

(
2552

VD(k, l)

)
. (3.10)

The quality objective V Q in the above problem formulation can be computed from the obtained

values of VQ(k, l) (1≤ l ≤ L).

3.4.3 Tile Selection Method

In this part, methods to select the version of each tile will be presented. The basic idea is to

extend the viewport to deal with viewport estimation errors. However, different from previous

studies, the proposed method can systematically decide 1) the coverage of the extension area

and 2) the versions of the viewport and extension areas. Note that, the tiles in the background

area always have the lowest version.
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(A) Option 1: Extending in all directions. (B) Option 2: Extending according to the predicted viewport
positions.

FIGURE 3.3: Illustrations of two options for extending the viewport area.

If the user head movements are very difficult to estimate (or estimation error is high), the

viewport should be extended in all directions so that any estimation errors could be tolerated.

However, when the user head movements are highly predictable, extending the viewport in

all directions will waste the available bandwidth since only a part of the extension area is

actually useful. In this work, two options for extending the viewport area are considered, as

illustrated in Fig. 3.3. In the following, the method to decide the versions of tiles for each

option is described.

Option 1

In this option, the viewport will be extended in all directions. The width of the extension area

should be dependent on the viewport estimation error. The higher the estimation error is, the

wider the extension area should be. An extension area with the width of I (1≤ I ≤ Imax) is

formed by extending the viewport area by I tiles in all directions. Note that, the extension

area does not include the tiles of the viewport area. The maximum width of the extension

area Imax is dependent on the tiling scheme. The extension area of the width of I is divided

into I ranges. Specifically, Range 1 is identical to the extension area with the width of 1 tile.

Range i (2≤ i≤ I) contains tiles that are in the extension area with the width of i but not in

the extension area with the width of (i−1). All tiles belonging to the same range have the

same version.

Given the expected viewport quality value of every frame, the overall quality value of

the segment can be estimated. As the viewport quality will change over the segment due to

user head movements, the quality objective VQ(k) is computed as the average of the viewport
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quality values of the first and last frames as follows.

V Q(k) =
1
2
× (V Q(k,1)+V Q(k,L)). (3.11)

Let v0 be the version selected for the visible tiles, vi the version selected for extension

range i(1≤ i≤ I). Note that, vi can take values from 1 (lowest quality) to N (highest quality).

The general procedure to decide the tiles’ versions can be summarized as follows.

• Step 1

– Compute bitrate constraint Rc using Eq. (3.5).

– Compute the estimated viewport positions {V e
k (l)}1≤l≤L using Eqs.(3.6)(3.7)(3.8).

• Step 2

For each extension width I(1≤ I ≤ Imax)

For each set of (v0,v1, ...,vI) so that v0 ≥ v1 ≥ ...≥ vI

1. Compute the quality objective VQ(k) using Eqs. (3.9)(3.10)(3.11).

2. Compute the total bitrate of all tiles including that in the background area.

• Step 3: Select the extension width I and the set of (v0,v1, ...,vI) that result in the highest

quality objective VQ(k) and satisfy the condition in Eq. (3.4).

In the above algorithm, the viewport area is always ensured to have the highest quality. For the

extension ranges, the version is gradually decreasing when moving away from the viewport

center. When the width of the extension area is equal to Imax, there is no background area.

Option 2

Similar to the option 1, the extension area is first formed by extending the viewport in all

directions. However, each range of the extension area is further divided into a number of

sub-areas. Fig. 3.4 shows an example where every extension range is divided into 4 sub-areas.

The tiles belonging to the same sub-area will have the same version. Let v0 the version selected

for the visible tiles, vi, j the version selected for the sub-area j(1≤ j≤ Ji) of range i(1≤ i≤ I)

where Ji denotes the number of sub-areas of the extension range i.
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FIGURE 3.4: An example of the sub-areas.

If the number of sub-areas is high, searching over all possible selections of sub-areas’

versions could be so time-consuming that is not feasible for real-time adaptation. Thus, we

add two constraints regarding the version of each sub-area in order to reduce the processing

time. First, the viewport area always has the highest possible version. Second, the tile version

of any sub-area of an extension range i is higher than that of any sub-area of the range (i+ 1).

The two constraints are mathematically defined by equations (3.12) and (3.13).

v0 ≥ vi, j, for all i, j 6= 0 (3.12)

vi, j ≥ vi+1, j′ for all i, j, j
′

(3.13)

These two constraints ensure that the quality is gradually decreasing from the viewport

center to the periphery.

As for the objective quality, it is computed as the average of the estimated viewport quality

values of all video frames of the segment k as follows.

V Q(k) =
1
L
×

L

∑
l=1

V Q(k, l). (3.14)

The general procedure to decide the versions of tiles can be summarized as follows.

• Step 1

– Compute bitrate constraint Rc using Eq. (3.5).

– Compute the estimated viewport positions {V e
l }1≤l≤L using Eqs. (3.6)(3.7)(3.8).

• Step 2 For each set of {vi, j}1≤i≤Imax,1≤ j≤J satisfying the constraints in Eqs. (3.12)(3.13)(3.4)
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TABLE 3.1: Descriptions of five 360 videos used in the experiments.

Video Name YouTubeID Start offset Content
Description

#1 Yakitori pQyt6H7GlcY 40s
Exploring night streets in Tokyo. Medium moving camera.

No main focus

#2 Diving 2OzlksZBTiA 40s
Diving scene. Slowly moving camera, no clear horizon.

No main focus expected within the sphere.

#3 RollerCoaster 8lsB-P8nGSM 65s
Rollercoaster.

Fast moving camera fxed in front of a moving roller-coaster.
Strong main focus following the rollercoaster trail.

#4 Timelapse CIw8R8thnm8 0s
Timelapse of city streets.

Fixed camera, clear horizon with a lot of fast moving
people/cars, many scene cuts. Focus expected along the equator line.

#5 Venice s-AJRFQuAtE 0s
Virtual aerial reconstruction of Venice. Slowly moving camera.

No main focus expected within the sphere.

(A) Video #1. (B) Video #2. (C) Video #3. (D) Video #4. (E) Video #5.

FIGURE 3.5: The head movement traces of the five videos.

1. Compute the quality objective VQ(k) using Eqs. (3.9)(3.10)(3.14).

2. Compute the total bitrate of all tiles including that in the background area.

• Step 3: Select the set of (v0,v1, ...,vImax∗J) that results in the highest quality objective

VQ(k).

The above algorithm is implemented using nested for loops, each for a sub-area. Compared

to the full-search approach, the proposed algorithm can reduce the computation time by

approximately 99%. In this experiment, the processing time of the above algorithm is always

less than 1msec on an Ubuntu 14.04 LTS 64bit machine with 8 GB RAM, Intel Core i5-2500

CPU 3.3GHz.

3.5 Evaluation

3.5.1 Experiment Settings

For experiments, five 360 videos from Youtube with different content types are used. Table 3.1

summarizes the content features of the four videos. The considered videos have 1792 frames,

a resolution of 3840×1920 (4K), and a frame rate of 30 fps. The Field of View (FoV) of the

viewport is 90 degrees both horizontally and vertically. The video is divided into M = 64 tiles

(i.e., 8×8 tiling) as in [76], each has a resolution of 480×240. The maximum width of the

extension area Imax is 3. Each tile is encoded into N = 7 versions corresponding to 7 QP
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FIGURE 3.6: The used bandwidth trace.

values of 24, 28, 32, 36, 40, 44, and 48 using HEVC format. To enable fast processing time,

the low-delay B profile with the Group of Picture (GoP) size of 4 frames is used. According to

the previous study of [130], the value of the safety margin should be in [0, 0.5] range. In this

work, the safety margin α in Eq. (3.5) is set to 0.2 according to [130]. Each streaming session

lasts for 59.7 s. Each segment contains L = 32 frames. As aforementioned, the processing

time of the proposed method is always less than 1 ms. Thus, in order to use the latest feedback

information from the client, the value of δ t in Eq. (3.2) is set to 33 ms, which is equal to

the playback duration of one video frame at the frame rate of 30 fps. In the option 2 of the

proposed method, the value of J is set to 4 to cover four main changes in viewing direction of

left, right, top, and bottom. In the future work, other values of J will be considered. The buffer

size B is set to 1. That means the client starts playing after it has fully received the first frame.

The proposed system is implemented based on Gaming Anywhere, an open-source cloud

gaming platform [129]. The client is written in C++ and running on a Ubuntu 14.04 LTS

64bit machine with 4 GB RAM, Intel Core i5-3210M CPU 2.5 GHz. The server is running on

another Ubuntu 14.04 LTS 64bit machine with 8 GB RAM, Intel Core i5-2500 CPU 3.3 GHz.

The client is connected to the server via a router. The network conditions are emulated using

DummyNet [131] in which the Round-Trip Time delay is set to 50 ms. Two head movement

traces are used, one contains the periods of steady movements while the other has a lot of

changes in moving directions. The used head movement traces are plotted in Fig. 3.5. One

head movement trace is used for each video of the five videos. Here, the viewport position

at a given time is determined by a (pitch, yaw) pair in degrees with −180≤ pitch≤ 180 and

−90≤ yaw≤ 90 [116]. During a streaming session, the selected version of each tile and the

corresponding viewport position are logged. After the streaming session finishes, the tiles’

versions are combined to reconstruct the 360 video. Then the viewport is extracted, and the
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(A) Frames’ V-PSNR values(dB). (B) Frames’ V-PSNR values(dB).

(C) Frames’ V-PSNR valuse(dB).

FIGURE 3.7: V-PSNR values and viewport positions of video frames #416−896 of all considered
methods when the network bandwidth is 8 Mbps under the head trace #1 (Video #1).

actual viewport PSNR (V-PSNR) of each frame is calculated.

The proposed approach is compared to five reference approaches. The first approach,

denoted ROI (i.e., [43–45]), selects the lowest version for the background area and the highest

possible version for the viewport area; no extension area is considered. The second approach,

denoted EQUAL, selects the same version for all tiles. The third method, denoted Petran-

gli2017, classifies the tiles into three groups, namely viewport, adjacent, and outside [81].

Different from our proposed method, the viewport group in this method consists of the visible

tiles corresponding to not only the estimated viewport postion but also the current viewport

position. As the name suggests, the adjacent group consists of tiles that are adjacent to the

viewport. It can be noted that the adjacent group is a special case of the extension area in our

method when the extension width is one tile. This method always tries to maximize the version

of the viewport group. The remaining bandwidth will be used to improve the version of the

adjacent group, then the outside group. The fourth method, denoted Jacob2018, selects the

versions of tiles so as to minimize a weighted sum of the distortions of tiles. The distortions of

tiles are measured using the MSE metric. The weights of tiles are calculated from the viewing

history [94]. In our implementation, five head traces from five different users watching the
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(A) Video #1 (B) Video #2. (C) Video #3. (D) Video #4. (E) Video #5.

FIGURE 3.8: Average V-PSNR values of the proposed and four reference methods at three
bandwidth values.

(A) Video #1 (B) Video #2. (C) Video #3. (D) Video #4. (E) Video #5.

FIGURE 3.9: Std.dev V-PSNR values of the proposed and four reference methods at three
bandwidth values.

same video are used to calculate the weights of tiles. The fifth approach, denoted VDP, is an

viewport-dependent approach with 36 pre-defined viewport locations. Given the estimated

viewport position, the version with the associated viewport cloest to the estimated viewport

will be selected. The two options of the proposed method are respectively denoted by OPT-1

and OPT-2. For fairness, the reference approaches of ROI, EQUAL, VDP, and Petrangli2017

are implemented using the same viewport estimation method as that used in the proposed

method.

3.5.2 Constant Bandwidth Cases

In this part, the performances of the proposed method and the four reference methods under

constant bandwidth scenarios will be investigated. Specifically, three bandwidth values of

6 Mbps, 8 Mbps, and 10 Mbps are considered.

Fig. 3.7 shows the V-PSNR values of the video frames #416-896 of the considered

methods under the head trace #1 of video #1 when the network bandwidth is 8 Mbps.

It can be seen that when the viewport positions are quite static (i.e., frames #416−576),

the V-PSNR values of the ROI, Petrangli2017, OPT-1, and OPT-2 methods are similar. This is

because that the viewport positions can be well estimated during this interval (i.e., Fig. 3.7b).

As a result, the proposed method (both two options) behaves like the ROI method by selecting
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TABLE 3.2: Average performance improvements of the proposed method compared to the four
reference methods V-PSNR at different bandwidth values in terms of average V-PSNR (dB).

(A) The OPT-1 option.
BW=6 Mbps BW=8 Mbps BW=10 Mbps

Video EQUAL ROI Petrangli2017 Jacob2018 VDP EQUAL ROI Petrangli2017 Jacob2018 VDP EQUAL ROI Petrangli2017 Jacob2018 VDP
#1 2.5 0.2 -0.1 1.9 1.4 2.4 0.3 -0.2 2.1 1.6 2.3 0.1 -0.3 2.3 1.3
#2 2.4 0.1 0.3 0.7 0.4 2.7 0.4 0.2 1.1 0.2 2.9 0.2 0.3 0.6 0.3
#3 2.3 0.0 0.2 1.0 0.9 2.1 0.1 0.1 0.9 1.1 2.2 0.2 0.1 1.0 1.0
#4 1.5 0.1 0.1 1.1 -0.1 1.8 0.3 0.1 1.5 0.0 2.1 0.4 0.1 1.8 0.1
#5 2.0 0.2 1.0 1.5 0.2 2.3 0.1 0.3 1.6 0.0 2.7 0.1 1.0 2.0 0.3

Average 2.1 0.1 0.3 1.2 0.6 2.3 0.2 0.1 1.4 0.6 2.4 0.2 0.2 1.5 0.6
Max 2.5 0.2 1.0 1.9 1.4 2.7 0.4 0.3 2.1 1.6 2.9 0.4 1.0 2.3 1.3

(B) The OPT-2 option.
BW=6 Mbps BW=8 Mbps BW=10 Mbps

Video EQUAL ROI Petrangli2017 Jacob2018 VDP EQUAL ROI Petrangli2017 Jacob2018 VDP EQUAL ROI Petrangli2017 Jacob2018 VDP
#1 2.7 0.4 0.1 2.1 1.6 3.0 0.9 0.4 2.7 2.2 3.0 0.8 0.4 3.0 2
#2 2.7 0.4 0.6 1.0 0.6 2.7 0.4 0.2 1.1 0.5 3.4 0.7 0.8 1.1 0.5
#3 2.5 0.2 0.4 1.2 1.2 2.4 0.4 0.4 1.2 1.1 2.4 0.4 0.3 1.2 1.5
#4 1.5 0.1 0.1 1.1 -0.1 1.5 0.0 -0.1 1.2 -0.3 1.9 0.2 -0.1 1.6 -0.1
#5 1.8 0.0 0.8 1.3 0.0 2.3 0.1 0.2 1.6 0.0 2.6 0.1 1.0 1.9 0.3

Average 2.2 0.2 0.4 1.3 0.7 2.4 0.4 0.2 1.6 0.7 2.7 0.4 0.5 1.8 0.8
Max 2.7 0.4 0.8 2.1 1.6 3.0 0.9 0.4 2.7 2.2 3.4 0.8 1.0 3.0 1.3

TABLE 3.3: Average performance improvements of the proposed method compared to the four
reference methods V-PSNR at different bandwidth values in terms of std.dev V-PSNR (dB).

(A) The OPT-1 option.
BW=6 Mbps BW=8 Mbps BW=10 Mbps

Video EQUAL ROI Petrangli2017 Jacob2018 VDP EQUAL ROI Petrangli2017 Jacob2018 VDP EQUAL ROI Petrangli2017 Jacob2018 VDP
#1 -0.6 1.1 0.4 0.8 0.6 -0.7 1.7 0.5 1.2 1 -1.1 1.0 0.2 1.2 0.6
#2 -0.7 0.7 0.0 0.9 0.4 -0.9 0.9 0.0 0.9 0.5 -1.0 0.8 0.2 0.9 0.3
#3 -0.8 -0.1 0.2 -0.1 0.8 -0.6 -0.3 0.1 0.1 0.8 -0.1 -0.3 0.2 0.2 0.9
#4 -0.4 0.6 0.2 -0.1 0.6 -0.5 0.8 0.0 0.0 0.5 -0.7 0.5 0.2 -0.2 0.4
#5 -0.5 0.0 -0.4 -0.4 0.2 -0.6 0.0 -0.3 -0.3 0.4 -0.8 0.0 -0.4 -0.5 0.3

Average -0.6 0.4 0.1 0.2 0.5 -0.7 0.6 0.1 0.4 0.6 -0.7 0.4 0.1 0.3 0.5
Max -0.4 1.1 0.4 0.9 0.8 -0.5 1.7 0.5 1.2 1.0 -0.1 1.0 0.2 1.2 0.9

(B) The OPT-2 option.
BW=6 Mbps BW=8 Mbps BW=10 Mbps

Video EQUAL ROI Petrangli2017 Jacob2018 VDP EQUAL ROI Petrangli2017 Jacob2018 VDP EQUAL ROI Petrangli2017 Jacob2018 VDP
#1 -0.7 1.0 0.3 0.7 0.5 -0.8 0.6 -0.1 0.8 0.8 -0.8 -0.1 0.2 -0.1 0.5
#2 -0.8 0.6 -0.1 0.8 0.4 -0.8 -0.1 0.2 -0.1 0.4 -0.9 0.1 -0.3 -0.6 0.1
#3 -0.8 -0.1 0.2 -0.1 0.7 -0.9 0.1 -0.3 -0.6 0.6 -0.4 0.0 -0.3 -0.3 0.7
#4 -0.9 0.1 -0.3 -0.6 0.1 -0.4 0.0 -0.3 -0.3 -0.3 0.0 0.0 0.0 0.0 -0.1
#5 -0.4 0.0 -0.3 -0.3 0.3 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 -0.3

Average -0.7 0.3 0.0 0.1 0.4 -0.6 0.1 -0.1 0.0 0.4 -0.4 0.0 -0.1 -0.2 0.2
Max -0.4 1.0 0.3 0.8 0.7 0.0 0.6 0.2 0.8 0.8 0.0 0.1 0.2 0.0 0.7

the highest possible version for the visible tiles and the lowest version for the extension

tiles. The current and estimated viewport positions will be very close to each other when

the viewport positions are stable. Consequently, the viewport group of the Petrangli2017

method and the viewport area of the proposed method will be almost identical. Meanwhile, the

EQUAL method has significantly lower V-PSNR values since it selects the same version for all

tiles. As a significant amount of bandwidth is consumed by the invisible tiles, the versions of

the visible tiles are significantly reduced. It can be noted that the Jacob2018 method results in

the same V-PSNR curve as that of the EQUAL method for frames #416-544. This is because

that none of the reference traces starts those segments at the same tile as that of the considered

trace. Thus, it is not possible to determine the navigation likelihood of tiles using the reference

traces. In this case, all tiles are assigned the same weight. As a result, the Jacob2018 method
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selects the same version for all tiles. From frame #544 to frame #575, it can be seen that the

frame V-PSNR of the Jacob2018 method is only slightly lower than that of the OPT-1 option

of the proposed method. This is because that the user looks at a similar viewing direction

to those of the reference traces. This result indicates that the performance of the Jacob2018

method is strongly dependent on the reference traces. Especially, it seems that this method

does not work well with a small number of reference traces.

When the viewport positions start changing quickly (i.e., frames #576-896), the ROI

method experiences drastic viewport quality reductions within each segment. The V-PSNR

values are usually high at the beginning of each segment, but decrease significantly later. This

can be explained as follows. As can be seen in Fig. 3.7b, the viewport estimation error are very

small at the beginning of each segment. Yet, it increases significantly during each segment.

The high viewport estimation errors cause some invisible tiles, which is associated with the

estimated viewport position, become visible. Because the ROI method selects the lowest

version for those tiles, the viewport quality is reduced significantly. It can be seen that the

Petrangli2017 method can achieve similar frame V-PSNR values to that of the OPT-1 option

of the proposed method for most of the frames. Yet, the frame V-PSNR of this method drops

drastically during segment #25 (frames #800-831) and segment #27 (frames #864-895).

It can be seen that, similar to the ROI method, the VDP method also results in drastic

viewport quality fluctuations throughout the session. It is because that this method cannot cope

with high viewport estimation errors. Even when the viewport positions are very stable, the

performance of the VDP method is still very low. This results indicate that viewport-dependent

approach is not effective for 360 video streaming. Of course, one can use a huge number of

pre-defined viewports to improve the performance of this method. Yet, this would require a

huge amount of data storage at the server side.

Meanwhile, the proposed method can provide much more stable V-PSNR values than

those of the ROI method. This indicates that our proposed method is effective in dealing with

the viewport estimation errors. It can also be noted that, the OPT-2 option achieves higher

and more stable V-PSNR values than those of the OPT-1 option for most of the segments.

This is because that the viewport position can be well predicted in this case (i.e., Fig. 3.7c).

In addition, there are some segments in which the OPT-1 option is comparable or better than

the OPT-2 option (e.g., segment #20 (frames #640-671) and segment #26 (frames #832-863)).

This is due to the fact that the head movement direction suddenly changes at those segments.
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As a result, the estimated viewport positions are very inaccurate as can be seen in Fig. 3.7c. In

such a case, the OPT-2 option suffers from significant quality degradations since it chooses the

extension tiles according to the estimated viewport. Meanwhile, the OPT-1 option can tolerate

the errors as the viewport is extended in all directions, thereby achieving higher V-PSNR.

Fig. 3.8 and Fig. 3.9 compare the proposed method with the reference methods, in terms

of average and standard deviation (std.dev) V-PSNR, using five videos and at three different

bandwidth values of 6 Mbps, 8 Mbps, and 10 Mbps. It can be seen that the proposed method

always achieve the highest V-PSNR values while providing stable viewport quality. This result

indicates that the proposed method is effective in improving the viewport quality for various

types of content in different network conditions.

Table 3.2 and Table 3.3 summarize the improvements of the proposed method over the

four reference methods. The last two rows in Table 3.2 and Table 3.3 show the average

and maximum gains over all videos at each bandwidth value. In particular, the OPT-1 of

the proposed method can improve the average V-PSNR by up to 2.9 dB compared to the

EQUAL method, up to 0.4 dB compared to the ROI method, up to 1.0 dB compared to the

Petrangli2017 method, and up to 2.3 dB compared to the Jacob2018 method. The OPT-2

option can improve the average V-PSNR by up to 3.4 dB compared to the EQUAL method,

0.9 dB compared to the ROI method, 1dB compared to the Petrangli2017 method, and 3.0 dB

compared to the Jacob2018 method. As shown in Table 3.3, the proposed method can reduce

the std.dev V-PSNR compared to all reference methods except for the EQUAL method. Note

that, despite of having the lower std.dev V-PSNR values than the proposed method, the EQUAL

method results in very low average V-PSNR values. It can be noted that the OPT-2 option

has a slightly higher performance than the OPT-1 option in terms of average V-PSNR, but

has lower improvement in terms of std.dev V-PSNR. The reason is that the OPT-1 extends

the viewport area in all directions, whereas the viewport area is extended in only one specific

direction in the OPT-2 option.

3.5.3 Variable bandwidth case

In this subsection, the performance of our proposed method under a real bandwidth trace will

be evaluated. For that purpose, a bandwidth trace recorded using a mobile client under 4G

network [132] is used. The bandwidth trace is shown in Fig. 3.6. Here, only the Video #1 is
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(A) Average V-PSNR (dB). (B) Std.dev V-PSNR (dB).

FIGURE 3.10: A comparison of the considered methods under a real bandwidth trace (Video #1).

TABLE 3.4: Performance improvements of the proposed method under a real bandwidth trace
(Video #1).The gains in case of the trace #1 are of the OPT-2 option. The gains in case of the

trace #2 are of the OPT-1 option.

Trace Metrics EQUAL ROI Petrangli2017 Jacob2018 OPT-1 OPT-2
Value (dB) 39.7 42.4 43.2 41 43.1 43.5Average V-PSNR Gain (dB) +3.8 +1.1 +0.3 +2.5 - -
Value (dB) 1.5 3.8 3.5 3.1 2.8 3Trace #1

Std.dev V-PSNR Gain (dB) -1.5 +0.8 +0.5 +0.1 - -
Value (dB) 39.6 42 42.7 40 42.7 42.7Average V-PSNR Gain (dB) +3.1 +0.7 0.0 +2.7 - -
Value (dB) 1.3 4.1 3.4 3.6 3 3.6Trace #2

Std.dev V-PSNR Gain (dB) -1.7 +1.1 +0.4 +0.6 - -

considered. Beside the head movement trace shown in Fig. 3.5, an additional head movement

trace of the Video #1 is used. The two head movement traces used in this experiment are

shown in Fig. 3.11 The average V-PSNR and std.dev V-PSNR values of the proposed and

four reference methods are shown in Fig. 3.10. Similar to the constant bandwidth cases, the

OPT-2 option achieves the highest average V-PSNR value under the head trace #1, whereas

the OPT-1 option performs the best under the head trace #2. The performance improvements

of the proposed method are summarized in Table 3.4. Under the head trace #1, the OPT-2

option can increase the average V-PSNR by up to 3.8 dB. Also, it can reduce the std.dev

V-PSNR by 0.8 dB compared to the ROI method. The gains in terms of average V-PSNR

compared to the Petrangli2017 and Jacob2018 methods are respectively 0.3 dB and 2.5 dB.

Under the head trace #2, the OPT-1 option achieves the highest average V-PSNR value, which

is 3.1 dB higher than that of the EQUAL method. Besides, the OPT-1 option can reduce the

std.dev V-PSNR by 1.1 dB compared to the ROI method. These results indicate that the prosed

method outperforms the reference methods under the variable bandwidth trace.
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(A) Trace #1. (B) Trace #2.

FIGURE 3.11: The two head movement traces of Video #1.

3.5.4 Impacts of Content Characteristics

In this subsection, the impacts of content characteristics to the performance of the proposed

method will be investigated.

It can be seen that different content types have different head movement characteristics

that in turn affect the performances of the proposed and reference methods. Specifically,

the proposed method can clearly improve the viewport quality for Video #2 and Video #3.

However, the improvement gains compared to the reference methods become smaller in case

of Video #4 and Video #5. This can be explained as follows. As shown in Fig. 3.5, the user

usually changes the viewing directions while watching Videos #2 and Video #3. Thus, it is

necessary to deliver a number of extension tiles at high quality. As a result, the two options of

the proposed method can improve the viewport quality compared to that of the ROI method

that does not consider any extension tiles. Moreover, it can be seen that the OPT-2 option

achieves higher average V-PSNR than the OPT-1 option for all the cases except when the

bandwidth is 8 Mbps with Video #2. It is interesting to see that the Petrangli2017 method has

lower average V-PSNR values than that of the ROI method when the bandwidth is 6 Mbps

and 10 Mbps with Video #2. In addition, the average V-PSNR of the Jacob2018 method is the

second lowest among the considered methods/options. This is because that the Jacob2018

method calculates the navigation likelihood of the tiles using prior navigation traces. As a

consequence, this method does not work well under the head movement traces that contain a

significant number of new viewing directions.

On the other hand, the performances of the ROI method, the OPT-1 and OPT-2 options of

the proposed method are comparable under Video #5 as shown in Fig. 3.8d. The reason is that
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(A) Trace #1, ∆V-PSNRavg. (B) Trace #1, ∆V-PSNRstd .

(C) Trace #2, ∆V-PSNRavg. (D) Trace #2, ∆V-PSNRstd .

FIGURE 3.12: The impacts of the buffer size and the segment duration when L = 4 frames (Video
#1).

the user’ viewing directions are mostly stable throughout the viewing session of this video as

can be seen in Fig. 3.5d. Thus, the ROI method can achieve good performance since there is

almost no need for the extension tiles. This also explains why the two options of the proposed

methods have very similar performances. In contrast, it can be noted that the Petrangli2017

method has quite lower average V-PSNR values than those of the ROI method for all three

bandwidth values though the viewport area of this method is very similar to that of the ROI

method. The lower performance of the Petrangli2017 method is caused by the fact that this

method requires all tiles in the viewport area must have the same version. This may cause a

significant amount of bandwith be unnecessarily allocated to the adjacent area. It can be seen

that the OPT-1 option of the proposed method achieves higher average V-PSNR values than

the OPT-2 option for Video #4. This result is similar to that of the head trace #2 of Video #1.

Again, that the reason is that the head movement trace of Video #4 contains many changes in

viewing directions that results in high viewport estimation errors.
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(A) Trace #1, ∆V-PSNRavg. (B) Trace #1, ∆V-PSNRstd .

(C) Trace #2, ∆V-PSNRavg. (D) Trace #2, ∆V-PSNRstd .

FIGURE 3.13: The impacts of the buffer size and the segment duration when L = 16 frames
(Video #1).

3.5.5 Impacts of Segment Duration and Buffer Size

In this part, the performances of the proposed, Petrangli2017, Jacob2018 and ROI methods

under the different settings of segment durations and buffer sizes will be investigated. For

that purpose, 3 segment durations of 4, 16, and 32 frames, and 5 buffer sizes of 1, 4, 8, 16,

and 32 frames are considered. Note that, the EQUAL method is not affected by viewport

estimation errors. Thus, its performance will be independent of the segment duration and the

buffer size. Again, the two head movement traces shown in Fig. 3.11 are used for the Video #1.

To clearly show the results, two performance metrics namely 1) delta average V-PSNR and

2) delta std.dev of V-PSNR are used. The delta average V-PSNR, denoted by ∆V-PSNRavg, is

the difference in the average V-PSNR between a given option/method and the EQUAL method.

The delta std.dev V-PSNR, denoted by ∆V-PSNRstd , is the difference in the std.dev V-PSNR

between a given option/method and the EQUAL method.
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(A) Trace #1, ∆V-PSNRavg. (B) Trace #1, ∆V-PSNRstd .

(C) Trace #2, ∆V-PSNRavg. (D) Trace #2, ∆V-PSNRstd .

FIGURE 3.14: The impacts of the buffer size and the segment duration when L = 32 frames
(Video #1).

Fig. 3.12, Fig. 3.13, and Fig. 3.14 show the ∆V-PSNRavg and ∆V-PSNRstd values at

different settings of segment durations and buffer sizes of the proposed and ROI methods

when the bandwidth is 8 Mbps under the two head movement traces. It can be seen that,

given a segment duration, the higher the buffer size is, the lower the ∆V-PSNRavg value would

become. Also, the ∆V-PSNRstd values tend to increase with the buffer size. This can be

explained that, longer buffer size leads to higher delay, that in turn increases the viewport

estimation errors. It can also be noted that, the ROI method experiences the strongest quality

degradation as the buffer size increases. For L = 16 and L = 32 cases, the ∆V-PSNRavg values

of the ROI method become lower than zero when B = 32 frames. Hence, the ROI method is

likely worse than the EQUAL method as it has much higher variations as shown in Fig. 3.13b,

Fig. 3.13d, Fig. 3.14b, and Fig. 3.14d. Meanwhile, the two options of the proposed method can

still achieve higher average V-PSNR values than those of the EQUAL method (i.e., Fig. 3.13a

and Fig. 3.14a)
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(A) Video #2.
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(B) Video #3.
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(C) Video #4.
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(D) Video #5.

FIGURE 3.15: The impacts of the buffer size and the segment duration when L = 4 frames of
Videos #2, #3, #4, and #5.

The results of videos #2, #3, #4, and #5 are shown in Fig. 3.15, Fig. 3.16, and Fig. 3.17.

Similar to the Video #1, the trend is that the higher the buffer size is, the lower the ∆V-PSNRavg

becomes. It can be seen that when the buffer size increases the ∆V-PSNRavg reduces quickly

in case of Video #2. This is because the user frequently changes the viewing direction while

watching this video. This makes the estimation errors increase rapidly when the delay (buffer

size) increases. On the other hand, the ∆V-PSNRavg decreases very slowly in case of Video #5.

The reason is that the estimation errors are small across different buffer sizes, thanks to the

stable viewport potions during the head movement trace. It can also be seen that the proposed

method outperforms the reference methods when the delay increases for most of the cases.

In this study, a server-based scenario in which the bitrate and quality information of all

tile versions are available to the decision engine beforehand is considered. In HAS paradigm,

the decision engine resides at the client. At the beginning of a streaming session, the client

retrieves a metadata containing tile description information from the server. Thus, the proposed

algorithm can work seamlessly in HAS paradigm if the bitrate and quality information of
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(C) Video #4.
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(D) Video #5.

FIGURE 3.16: The impacts of the buffer size and the segment duration when L = 16 frames of
Videos #2, #3, #4, and #5.

all tiles versions is provided in the metadata. In [77], the authors propose to include bitrate

and quality information of tiles’ versions in the metadata. Otherwise, the bitrate and quality

information can be estimated at the client as proposed in [50]. In this case, the models for

bitrate and quality estimation must be sent to the client in advance, e.g., in the metadata.

3.6 Summary

In this chapter, a low-delay system for viewport-adaptive streaming of 360-degree videos is

proposed. Our proposed approach decides the versions of tiles based on estimation errors

and user head movements during each segment duration. Though experiments, it is found

that the proposed approach can provide not only high but also stable quality. Specifically, the

proposed approach can improve the average viewport quality by up to 3.8 dB while reducing

the standard deviation by up to 1.1 dB compared to the two reference approaches when the

segment duration is 32 frames. The impacts of the segment duration and buffer size on the
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FIGURE 3.17: The impacts of the buffer size and the segment duration when L = 32 frames of
Videos #2, #3, #4, and #5.

performance of the proposed approach is also investigated. It is found that the performance of

the proposed approach decreases as the segment duration and the buffer size increases.
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Chapter 4

Client-based Adaptation Framework

4.1 Introduction

For client-based adaptation, the existing HAS standards provide little information to optimize

the adaptation of 360 videos. For example in MPEG DASH standard, the quality of a version

is provided as a rank/order, not an actual quality value. Also, as discussed in our previous

work [37], the current HAS standards define the bitrate of a version as the maximum bitrate of

all segments (intervals) in that version. That is the reason why instant bitrate estimation is

shown to be useful to improve adaptation performance in [50].

As for evaluation, most of the previous studies use bandwidth saving as the key perfor-

mance metric [49]. However, the bandwidth saving is not able to reflect the quality seen

by users. In [44], average viewport PSNR is used to demonstrate the effectiveness of some

viewport-adaptive strategies compared to a non-viewport-adaptive strategy. However, it is not

possible to see how the video quality changes throughout a streaming session with the average

PSNR. Note that the system delay is not described in these studies.

For client-based viewport-adaptive streaming, the key research issues in our opinion are

as follows.

• How to represent the bitrate information of tiles.

• How to represent the quality information of tiles.

• How to make decisions on tiles’ quality levels based on the obtained bitrate and quality

information.

• How to evaluate the performance of a streaming method.
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In this chapter, a client-based framework for 360 video streaming is proposed. To the best

of our knowledge, this is the first work that addresses all the above key issues in client-based

viewport-adaptive streaming. The basic option of the framework is compatible with the

existing metadata of HAS, which is used by a client to make decisions on tiles’ quality levels.

Moreover, our framework supports some advanced features. First, instant values of bitrate and

quality of each tile’s versions could be estimated and used in a similar manner to [50]. Second,

a set of adaptation methods (and their options) is defined to support different usage scenarios.

Then, experiments are carried out with an actual test-bed to measure viewport PSNR values

over time, which has not been provided in most previous studies. The experimental results

show that, using either 1) estimated bitrate or 2) both estimated bitrate and estimated quality,

the adaptation performance could be significantly improved. In fact, the performance is nearly

the same as the case of knowing all bitrates and quality values in advance. Moreover, the

impacts of buffering delay and projection formats in 360 video streaming are also investigated.

It should be noted that the bitrate estimation related aspect in this work is different from

that of [50] in some points. First there are many tiles in a 360 video, while there is only one

"tile" in [47]. Second, the use of bitrate in the adaptation problem of this work is new. And

finally the coding format considered here is HEVC rather than AVC [50].

The rest of this chapter is organized as follows. Related work is given in Section 4.2.

Section 4.3 presents the proposed adaptation framework in detail. The evaluation and its

results are described in Section 4.4. Finally, the chapter is summarized in Section 4.5.

4.2 Related Work

In [49], key issues and potential solutions for tile-based viewport-adaptive streaming of

360 videos over cellular networks are discussed. To implement viewport-adaptive streaming,

most previous studies use the so-called tiling-based approach in which a 360 video is spatially

divided into non-overlapping tiles [37, 44]. Each tile is then encoded into different versions

corresponding to different quality levels. Given a user viewport position, high quality versions

will be selected for tiles overlapping the viewport while lower quality versions will be selected

for the other tiles. In [43], a 360 video is divided into six parts, each is encoded into 4 versions

corresponding to four different resolutions. In [44], an end-to-end tiling-based viewport-

adaptive streaming system of 360 videos over HTTP is presented. For content preparation, the
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authors suggest that 6x4 tiling scheme should be used for the best tradeoff between encoding

overhead and adaptability. Yet, other studies employ different tiling schemes such as 8x4 [49],

8x8 [37], and 12x6 [52]. Thus, it is still unclear which tiling scheme is the best one. In [45],

an HEVC-compliant tile encoding method for 360 videos is proposed, where the main goal

is to support a single decoder of thin clients. In [76], an ROI-like delivery mechanism is

presented for 360 videos. This study focuses on server-based approaches and employs JPEG

image format for content coding.

In [54], the authors propose to encode an entire 360 video into different versions, each

corresponds to a specific viewing direction. For each version, the video parts corresponding

to its associated viewing direction are encoded at high quality while the remaining parts are

encoded at lower quality. In adaptation, the version that is the closest to the current viewing

direction is selected for transmission.

As 360 videos are delivered to the user over the Internet, there is a delay from when the

system makes decisions until the viewport is displayed on a user device. Hence viewport-

adaptive streaming systems have to estimate future viewport positions. In [49], the authors

investigate three viewport estimation methods and find that future viewport positions in near-

term (i.e., less than 1sec) could be effectively estimated with accuracy of more than 90%. A

neuron network-based viewport estimation method is proposed in [126]. This method takes

into account not only viewer orientations but also video characteristics when estimating future

viewport positions. Experiment results show that their method can achieve prediction accuracy

of more than 80%.

For content delivery, most of the existing studies use HTTP as the transport protocol [44].

In [37], a server-based method for viewport-adaptive streaming that employs push protocols

of RTP/UDP has been proposed.

As conventional video encoders cannot encode 360 videos directly, 360 videos must be

converted into the planar type using some projection formats such as Cubemap, Equirectan-

gular, and Pyramid [116]. Some previous studies have compared performance of different

projection formats for 360 videos. In [117], it is found that Equal-area projection format yields

around 8.3% bitrate saving relative to Equirectangular projection format. In [118], the authors

show that Cubemap and Equirectangular outperform Pyramidal projection format. The work

in [54] reveals that Cubemap projection format is the best choice for representing 360 videos.

Nowadays, Equirectangular and Cubemap projection formats are the most popular in practice.
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In most previous studies, bandwidth saving is used as the key performance metric for

viewport-adaptive streaming systems. Nevertheless, the bandwidth saving is not able to reflect

the video quality perceived by users. [44] is the first study that uses viewport PSNR to compare

the video quality of various delivery strategies. Yet, only average viewport PSNR values

are presented. Also, in these studies, it is not clear 1) which type of bitrate (e.g. average or

maximum) is used in making decisions and 2) how buffering delay is set. In the proposed

system, for performance evaluation, the instant PSNR value of the viewport is measured for

every video frame. This is the actual quality perceived by the user over time, which has not

been provided in previous studies.

Compared to the previous studies, the contributions of this chapter are as follows.

• A client-based adaptation framework for viewport-adaptive streaming that can support

different application scenarios, of which the basic scenario (i.e. using maximum bitrates

and no quality information) is similar to the existing setting of HAS, is proposed.

• Instant bitrate of a version could be estimated by the client and then used instead of the

maximum bitrate specified by the server.

• Version instant quality could be estimated and used together with estimated bitrates.

• A set of adaptation methods and their various options are presented and evaluated to

show the benefits of bitrate/quality estimation.

• Experiments are carried out with an actual low-delay test-bed and results are shown by

viewport PSNR values of all frames in streaming sessions. This provides insights into

the actual behaviors of adaptation methods.

• Especially, the impacts of some VR-specific settings such as buffering delay and projec-

tion formats (Cubemap and Equirectangular) are investigated. Such an investigation has

never been done in previous work.
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FIGURE 4.1: Tile-based viewport-adaptive streaming architecture.

FIGURE 4.2: An example of the viewport-adaptive streaming.

4.3 Client-based Adaptation Framework for Viewport-adaptive

Streaming

4.3.1 Overview

Figure 4.1 shows the general architecture of the proposed client-based framework for viewport-

adaptive streaming. The server includes a content preparation module, a sender module, and a

model preparation module. At the content preparation module of the server, a 360 video is first

converted into a planar format using a mapping method such as Equirectangular map and Cube

map [116]. Then, the converted video in the planar format is spatially divided into multiple

non-overlapping tiles. Each tile, which is equivalent to a video in HAS, is further encoded at

multiple quality versions. In practice, each version is divided, either physically or logically,

into short temporal intervals. In HAS, an interval is called a segment [47]. This is also called

an adaptation interval as an adaptation decision is made for a whole interval. The model

preparation module is responsible for calculating the bitrate and quality estimation models

which are used for decision making at the client. The sender is responsible for delivering

1) the tiles’ versions requested by the client and 2) the metadata containing tile description

information and the bitrate/quality estimation models to the client. In the proposed system,

the tile description structure has three levels. The first level includes the basic information

of the 360 video, such as projection format and the spatial size of the planar format. The
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FIGURE 4.3: System data flows.

second level describes the tile arrangement, such as location and size of each tile. The third

level describes the characteristics, such as may look different and coding parameters, of each

tile version. In general, the first and second levels can be described by MPEG-DASH Spatial

Relation Description (SRD) [133], and the third level can be described by the MPEG-DASH

Media Presentation Description (MPD) [47]. In addition, the bitrate and quality estimation

models are included in the first description level, and full information of bitrates and quality

values (the third option in the following) are included in the third level. However, these special

data are represented by our proprietary metadata.

The client includes a decision engine, a receiver, a player, and four estimation modules. At

the client, the available throughput and the user’s viewing direction (or viewport position) are

estimated for bitrate adaptation by the throughput and viewport position estimation modules,

respectively. Tiles’ information (such as bitrate and quality of the versions) is either provided

by the server via the metadata or estimated by the bitrate and quality estimation modules

of the client. Note that, the bitrate/quality estimation modules obtain information about the

bitrate/quality models from the metadata sent by the server. Based on the information of

throughput, viewing direction, and tiles’ bitrates and quality levels, the decision engine of the

client will decide the most appropriate version for each tile in the next adaptation interval.

Then, the client will send a request for the selected tiles to the server. Upon receiving a request,

the sender module of the server sends the corresponding tiles to the receiver module of the

client. The receiver module receives the tiles’ versions from the server and forwards them to

the player. The player module decodes the received tiles and then reconstructs the 360 video.

According to the current viewing direction, a viewport is extracted and displayed to the user.

In video streaming, buffering delay is a big problem as analyzed in [134]. To avoid this

big delay, currently the framework is designed for low-delay mode. Specifically, the media

data is sent on frame basis, where a frame contains data of all component tiles. Also, the
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client will start playout as soon as it has completely received the first frame from the server.

For content delivery, the proposed system uses two separate connections, one for signaling

metadata and one for video data.

Fig. 4.2 shows an example of the viewport-adaptive streaming. At the server, the planar

format of a 360 video is spatially divided into 9 (i.e., 3x3) tiles. Each tile is encoded at three

quality versions, where version 3 (red color) means the highest quality. At the client, the

quality versions of tiles are adaptively decided. In this example, the highest-quality tile is

at the center of the frame in the first interval, and then at the top of the frame in the second

interval.

In our framework, the bitrate information of a version can be either

1. only the maximum bitrate (as in HAS)

2. instantly estimated by the client, or

3. a full bitrate set of all intervals, which is provided by the server in advance.

Also, the quality information of a version can be either

1. unavailable (as in HAS),

2. instantly estimated by the client, or

3. a full set of quality values for all intervals, provided by the server.

Note that the case of having full information about bitrate/quality needs very complex meta-

data sent from the server to the client, so it is usually not enabled in client-based approaches.

In fact, this case can be considered as the benchmark for the other cases. Interestingly, as

shown in the experiments, the performance with estimated bitrate/quality is nearly the same

as the performance with full information of bitrate/quality.

In the next subsections, the details of the proposed framework will be presented. Specifi-

cally, the following items will be described:

• A problem formulation for determining tiles’ versions in the decision engine.

• Estimation of bitrate and quality of versions of tiles.

• Methods for deciding the optimal version of each tile.
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TABLE 4.1: Notations and definitions.

Notation Definition
V The number of available tile versions
M The number of tiles
L The number of frames in an adaptation interval
τ The duration of an interval

SV P The number of pixels in the viewport

Nm
The number of pixels in the viewport sampled
from tile m

td
k

The time when the client makes decision for
interval k

ts
k

The time when the server starts to transmit in-
terval k

Pe The estimated viewport position for the next
interval

P(td
k )

The viewport position at the time of making
decision td

k

vs
k,m

The index of the version which is chosen for
tile m of interval k

Errcur
V P The viewport position estimation error

Errthr
V P The threshold of position estimation error

FoV v
ori The actual vertical Field of View of a user

FoV h
ori The actual horizontal Field of View of a user

FoV v The vertical Field of View used in adaptation
algorithm to avoid viewport estimation errors

Rmax(m,v) The maximum bitrate of version v of tile m for
all intervals.

4.3.2 Adaptation problem formulation

Fig. 4.3 shows the data flows in the proposed system. The server sends sequentially video

frames to the client. The video is adapted every adaptation interval that consists of L frames

corresponding to τ seconds of video.

The data of the kth interval (k ≥ 1) is transmitted at time ts
k given by

ts
k = (k−1)× τ . (4.1)

Suppose that the client needs to make decisions for next adaptation interval k+ 1 to meet

a bitrate constraint Rc. To ensure that the decision of tile versions is available before the server

starts sending the video data of interval k+ 1, the client should make a decision at time td
k+1

given by

td
k+1 = ts

k+1−δ t. (4.2)
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The value of δ t will depend on 1) the time required to make decisions on tiles’ versions and

2) the time required to send the decisions to the server.

Suppose that there are totally M tiles. Each tile is available in V versions, where version

1 (V ) has the lowest (highest) quality. Denote R(k+ 1,m,v) and D(k+ 1,m,v) the bitrate and

the distortion of version v of tile m of interval k+1, with (1≤ v≤V ,1≤m≤M). Also denote

vs
k+1,m the selected version for tile m for the next interval. The version selection problem can

be formulated as an optimization problem as follows.

Find the set {vs
k+1,m|1≤m≤M} to minimize the overall distortion V D which is a function

of {D(k+ 1,m,vs
k+1,m)} while satisfying the bitrate constraint

M

∑
m=1

R(k+ 1,m,vs
k+1,m) ≤ Rc. (4.3)

To solve this problem, the system should estimate the throughput and viewing direction.

The throughput measure is computed as the ratio of a given segment’s data size over the

transport duration of that segment [6]. In addition, the bitrate and quality of tiles’versions are

required. Existing studies estimate only future viewport positions and network throughputs,

while the bitrate and quality information of tiles’ versions is available in advance. As our

focus is on adaptation methods with bitrate and quality estimations, currently the estimated

throughput and viewing direction are simply based on the latest measurements during a session

to avoid making the problem complex. Anyway, the use of last measurements as the estimates

of throughput and viewport position have been shown to be effective in [37, 135]. Advanced

viewport position and throughput estimation methods will be investigated in our future work.

Specifically, the estimated throughput T e(k+ 1) for the (k+ 1)th adaptation interval is

simply set to the measured throughput of the latest τ seconds of the receiver. The throughput

measure is computed as the ratio of a given segment’s data size over the transport duration of

that segment [47]. The bitrate constraint Rc is then computed from T e(k+ 1) by

Rc = (1−α)×T e(k+ 1), (4.4)

where α is a safety margin that takes a value in the range [0,0.5] [130].

Also, the viewport position for the next interval Pe is simply estimated using the current

viewport position P(td
k+1) at the time of making decision td

k+1. Advanced viewport position
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and throughput estimations will be investigated in our future work.

4.3.3 Estimations of tiles’ bitrate and quality

In this subsection, methods to estimate bitrates and quality values of versions of tiles will be

presented, when such information for all tiles is not sent to the client. In the literature, there

exists several metrics for video quality such as SSIM and PSNR. According to our recent

work [96], SSIM is shown to be not the best for assessing quality of 360 video. In contrast,

PSNR achieves a little better performance than SSIM. Also, PSNR is adopted as the evaluation

metric in JVET’s common test conditions for 360 videos [136]. Thus, the quality metric in

this work is PSNR. Let PSNR(k,m,v) denote the PSNR of version v of tile m of interval k. It

is assumed that that each tile version is encoded using a quantization parameter (QP) value

[25]. Also, the information of bitrate/quality is included in the header of every media interval

of each version. Within each interval, given a received version, this quality/bitrate information

will be used to estimate the quality/bitrate of any other versions.

The estimations of bitrate and quality are divided into two parts, namely intra-interval

estimation and inter-interval estimation. The former means estimating the bitrates and quality

values in the same interval across different versions of a tile. The later indicates estimating the

bitrates and quality values of a tile in the next interval within the same version. The estimation

models presented below are specific to HEVC (High Efficient Video Coding) [51] that is

used in our streaming system. Although HEVC is more complex than its predecessor such as

AVC (Advanced Video Coding), HEVC has the highest coding efficiency needed to reduce

the bitrates of 360-degree videos. In addition, the computing power of consumer devices is

increasing rapidly. Thus, HEVC is expected to be widely supported in the near future [51].

In video encoding, the bitrate and PSNR measure of an encoded video stream are well

related to the quantization parameter QP. Regarding the bitrate model, it is well-known

that encoded video bitrate is roughly halved as QP increases by 6-unit [50]. In this part, a

generalized form of the model in the previous work [50] is used. The normalized bitrate of

version v of tile m is estimated using the following model.

R(k,m,v)
R(k,m,V )

= a1×2b1×(
QPv−QPV

6 )+ c1, (4.5)

where QPv denotes the QP of version v (1≤ v≤V ), and a1,b1, c1 are model parameters.
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When receiving the tile with selected version vs
k,m, the client knows the bitrate R(k,m,vs

k,m),

so the estimated bitrates of other versions of tile m can be computed from Eq. (4.5) as follows.

Re(k,m,v) = R(k,m,vs
k,m)×

a1×2b1×(
QPv−QPV

6 )+ c1

a1×2b1×(
QPvs

k,m
−QPV

6 )+ c1

. (4.6)

Similar to the bitrate, the PSNR values of versions of a tile are estimated as follows. First,

the normalized PSNR value of a version is estimated using the following model.

PSNR(k,m,v)
PSNR(k,m,V )

= a2×
QPv

QPV
+ b2. (4.7)

where a2 and b2 are model parameters.

The estimated PSNR value of version v of tile m is therefore given by

PSNRe(k,m,v) = PSNR(k,m,vs
k,m)×

a2× QPv
QPV

+ b2

a2×
QPvs

k,m
QPV

+ b2

. (4.8)

The model parameters (a1,b1,c1,a2,b2) are obtained by minimizing the squared error

between the modeled values and measured values. Some other functional forms, including

linear, logarithmic, power, and exponential functions are also tried. It was found that the

above functions yielded the least fitting error. Especially, the bitrate and QP values of the tiles’

versions are used to obtain the parameters of the bitrate model. As for the PSNR estimation

model, the PSNR and QP values of the tiles’ versions are used. In practice, as bitrate and

quality information is available after video encoding, these two models can be obtained at the

server for each video in advance and then sent to any client requesting that video.

Because two adjacent intervals usually have similar characteristics, the bitrate/quality of

the current interval can be used as the estimated bitrate/quality of the next interval as follows.

Re(k+ 1,m,v) =

 R(k,m,v) if v = vs
k,m

Re(k,m,v) if v 6= vs
k,m

. (4.9)

PSNRe(k+ 1,m,v) =

 PSNR(k,m,v) if v = vs
k,m

PSNRe(k,m,v) if v 6= vs
k,m

. (4.10)

In a long video, scenes may have very different characteristics over time. So the model

parameters may need to be recomputed and updated to the client accordingly. Obviously, the
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update mechanism should depend on the availability of the bitrate and quality of tile versions.

In case of on-demand streaming, the model parameters in different scenes (i.e., MPEG-

DASH periods) can be computed in advance and updated each period. As for live streaming,

using some methods such as machine learning, the model parameters for a period could

be calculated on the fly and sent to the client during a streaming session. In our current

system, the estimation models are updated as in the on-demand case. Detailed mechanisms

for updating the estimation models are reserved for our future work.

4.3.4 Version Selection Methods

Given a specific viewport position, the objective of a version selection method is to select the

version of each tile so as to maximize the quality for the user. It can be seen that the proposed

framework is rather complicated with various options of bitrate and quality information. So, to

1) understand clearly the benefits of bitrate and quality estimations and also 2) avoid making

the investigation too complex, in our current framework, three version selection methods,

called Equal, ROI, and Weighted methods, are deployed. The Equal and ROI methods are

basic methods employed in previous work, and are now enhanced with bitrate estimation.

The Weighted method is an improved ROI method when having quality information to show

the benefits of both bitrate and quality estimations. Note that, the estimated information can

actually be used to improve any existing or future version selection methods at the client. As

the method names imply, the Equal method treats all tiles equally, the ROI method emphasizes

the tiles overlapping the viewport, and the Weighted method assigns different weights to

different tiles in the viewport. Note that the basic idea of the ROI method has long been

used in ROI-based or panoramic image/video viewing. The new point here is the use of

estimated/specified instant bitrates in making decisions.

Equal method

As mentioned, in the Equal method, all tiles have the same quality version. The selected

version is the highest level while the sum of tiles’ bitrates is still not greater than the bitrate

constraint. The advantages of this method include implementation simplicity and effectiveness

in coping with viewport position variations.
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ROI method

In this method, visible tiles (i.e., tiles overlapping the viewport) are all assigned the same

highest possible version, while the other (invisible) tiles are assigned a low quality level

which is allowed by the bitrate constraint. This method is investigated in various studies

such as [43, 44]. An implementation of this version selection method can be specified by two

general steps as follows.

• Step 1: The version of invisible tiles is set to 1. Find the highest quality version for all

visible tiles, while still satisfying the bitrate constraint.

• Step 2: Find the highest quality version for all invisible tiles, while still satisfying the

bitrate constraint.

Obviously, no quality information should be considered in the two methods above. In

either the Equal method or the ROI method, there are three options of bitrate information for a

version, namely 1) only the maximum bitrate (i.e. basic scenario), 2) estimated instant bitrate

at the client, and 3) a full set of bitrates provided by the server. In the first option, the bitrate

of a version in any interval is simply set to the maximum bitrate Rmax(m,v) of that version.

R(k,m,v) = Rmax(m,v) ∀k. (4.11)

Weighted method

It can be seen that the Equal method treats all tiles equally, and the ROI method treats visible

tiles equally. However, the contribution of a tile to the viewport quality will be mainly

dependent on how the tile overlaps the viewport. In particular, if only a small part of a tile is

actually in the viewport, the contribution of that tile in the viewport quality is small, and so

selecting a low quality level for that tile does not affect the viewport quality much. Therefore,

in this method the quality level of a tile is decided according to the contribution (weight) of

that tile.

In order to take into account the contribution of a tile, the objective V D for optimization

is proposed as follows. Because only a portion (i.e., viewport) of the entire 360 video is

actually watched by viewers, rectilinear projection is used to obtain a viewport given a

viewport position (φ ,θ ) with φ being the latitude and θ being the longitude. By this way,
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Algorithm 1: Weighted version selection method

Input: M,SV P,V ,D(k,m,vs
k,m),Nm,R(k,m,vs

k,m),Errcur
V P ,Errthr

V P
Output: vs

k+1,m
1: Estimate D(k+ 1,m,v),R(k+ 1,m,v) using Eqs.(4.6), (4.8)∼(4.10);
2: T Rs← ∑

M
m=1 Rk+1,m,1 # Total bitrate corresponding to vs

k+1,m

3: vs
k+1,m← 1 ∀m ∈ [1,M];

4: f lag← 1;
5: if Errcur

V P > Errthr
V P then # Extending the Field of View

6: FoV h← FoV h
ori +∆FoV ;

7: FoV v← FoV v
ori +∆FoV ;

8: Update Nm based on FoV h and FoV v;
9: end if

10: while f lag = 1 do # Deciding tiles’ selected versions.
11: Initialize: D̂opt , mopt , T Ropt , f lag← 0
12: for m = 1 to M do
13: if vs

k+1,m + 1≤V then
14: Calculate ∆D, ∆R, and D̂ using Eqs.(4.13)(4.14)(4.15);
15: if D̂≥ D̂opt and ∆R≤ Rc−T Rs then
16: D̂opt ← D̂;
17: T Ropt ← T Rs +∆R;
18: mopt ← m;
19: f lag← 1;
20: end if
21: end if
22: end for
23: if f lag = 1 then
24: vs

k+1,mopt ← vs
k+1,mopt + 1;

25: T Rs← T Ropt ;
26: end if
27: end while

the number of pixels {Nm|1≤ m≤M} in the viewport which are sampled from tile m can be

determined. Nm is then used as the weight of tile m in the overall distortion. Note that the

sum of ∑
M
m=1 Nm is equal to the viewport’s total number of pixels SV P =WV P×HV P with HV P

being the viewport’s height and WV P being the viewport’s width.

Given vs
k+1,m the version selected for tile m of interval k+ 1, the overall distortion V D at

interval k+ 1 is calculated by

V D =
∑

M
m=1 D(k+ 1,m,vs

k+1,m)×Nm

SV P
. (4.12)

So, this version selection method can be based on the optimization problem of Subsection

4.3.2. In each interval, the distortion value of a version D(k+ 1,m,vs
k+1,m) is the MSE value,

which is obtained from the estimated or received PSNR value of that version.
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When there are too many combinations of versions and tiles, a full search to find opti-

mal versions for all tiles could be time-consuming. To deal with this, an efficient loop of

determining optimal versions is conducted as follows.

Assume that the version vk+1,m of tile m increases by 1 each time, then the overall distortion

value consequently decreases by

∆D =
(D(k+ 1,m,vk+1,m)−D(k+ 1,m,vk+1,m + 1))×Nm

SV P
. (4.13)

Correspondingly, the total bitrate of all tiles is increased by

∆R = R(k+ 1,m,vk+1,m + 1)−R(k+ 1,m,vk+1,m). (4.14)

Denote by

D̂ =
∆D
∆R

(4.15)

the decrease degree of the overall distortion value per a bitrate unit. Hence, to minimize the

overall distortion while meeting the bitrate constraint, the optimal version increase should have

the highest D̂ and meet the bitrate constraint. The process to determining optimal versions

is repeated until it is impossible to find any version increase for all tiles while meeting the

bitrate constraint.

As user head may be continously moving, the predicted viewport positions may not be

the same as the actual viewport position, resulting in prediction errors. To cope with this

problem, one may extend the viewport to compensate prediction errors. Firstly, the prediction

error is computed by the prediction error of the last playout frame. Assume that at the time

of making decision td
k+1, the last playout frame is the lth frame, and the estimated and actual

corresponding viewport positions are Pe
l = (φ e

l ,θ e
l ) and Pa

l = (φ a
l ,θ a

l ) respectively. The

prediction error is obtained by

Errcur
V P = Pe

l −Pa
l

=
√
(φ e

l −φ a
l )

2 +(θ e
l −θ a

l )
2.

(4.16)

Currently, to cope with this prediction error, a simple solution is employed. Specifically,

if the prediction error of the last playout frame exceeds a predefined threshold Errthr
V P, the

FoV of the viewport will be extended by ∆FoV (degree) both horizontally and vertically. It
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FIGURE 4.4: The used head movement trace.

should be noted that this change of FoV is just for computing the weights of tiles, not for

content display. The details of the Weighted method are shown in Algorithm 1. Firstly, the

bitrate and distortion of tile versions of the next interval are estimated using the birate and

quality estimation models described in Subsection 3.3, i.e., line 1. Then, the lowest quality

version is assigned for every tile and the total bitrate of all tiles is computed, i.e., lines 2-3.

Next, the field of view is extended by ∆FoV if the last estimation error exceeds the threshold

Errthr
V P, i.e., lines 5-9. Finally, in lines 10-27, the version of each tile is determined as follows.

The algorithm first determines the tile of which the decrease degree of the overall distortion

value per a bitrate unit D̂ is highest, i.e., lines 12-22. Then, the version of that tile is increased

by one if there is enough unallocated throughput, i.e., lines 23-26. Essentially, this version

selection step increases the version of the tile that has the highest contribution in the overall

quality. This process is repeated over all tiles. In our test-bed, the processing time of this

method is always less than 1 ms.

Finally, in this method, two options are considered. The first option, called Weighted-full,

is that the bitrate and quality information of versions is fully available at the client. The second

option, called Weighted-estimate, is that the bitrate and quality information of versions is

estimated at the client as described in the previous subsection.

4.4 Evaluation

4.4.1 Experimental Settings

The proposed framework is implemented based on Gaming Anywhere, an open-source cloud

gaming platform [129]. The client is written in C++ and running on a Ubuntu 14.04 LTS

64bit machine with 4 GB RAM, Intel Core i5-3210M CPU 2.5 GHz (4 cores). The server
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FIGURE 4.5: The time-varying bandwidth trace.

is running on another Ubuntu 14.04 LTS 64bit machine with 8 GB RAM, Intel Core i5-

2500 CPU 3.3 GHz (4 cores). The client is connected to the server via a router. During a

streaming session, the selected quality level of each tile and the viewport position are logged.

After a streaming session finishes, video tiles are combined to reconstruct a 360 video using

FFMPEG [137], then the viewport is extracted and the actual viewport PSNR is calculated. The

horizontal and vertical Field of Views (FoV) (i.e., FoV h
ori and FoV v

ori) are both set to 90 degrees.

The viewport has a resolution of 960×960. The 360Lib software [138] is used to convert

the projection formats of 360 videos. An adaptation interval contains L = 16 (frames). The

values of δ t,α ,Errthrr
V P and ∆FoV are respectively set to 50 ms, 0.2, 8 degrees, and 30 degrees.

Network conditions are emulated using DummyNet [131] where the round-trip time delay is

set to 20 ms. A real head movement trace shown in Fig. 4.4 is used in the experiment. The

head movement trace is obtained by using OpenTrack [139] to record viewport positions of a

user watching the videos.

4.4.2 Estimation accuracy

In this part, the proposed bitrate and PSNR estimation models presented in Subsection 4.3.3

will be evaluated. For tiling, two popular projection formats, namely Equirectangular (ERP)

and Cubemap (CUBE) are employed. In the experiment, three videos from YouTube: Tokyo’s

Yakitori Alley: Shinjuku 3601 , Dust Meat Bots2 and Roller Coaster3 with different content

characteristics are used. Video #1 is a 30s-long video about a reporter traveling bustling streets

in Tokyo. Video #2 is a 10s-long video of the game CounterStrike. Video #3 is a 30s-long

video recording a ride on a rollercoaster. These videos have a frame rate of 30 fps and a

1https://www.youtube.com/watch?v=pQyt6H7GlcY, 80s-110s
2https://www.youtube.com/watch?v=jWbLLKdO7k4, 40s-50s
3https://www.youtube.com/watch?v=8lsB-P8nGSM, 0s-30s
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TABLE 4.2: Parameters of the bitrate estimation model (Eq.4.6).

Parameters Video #1 Video #2 Video #3
CUBE ERP CUBE ERP CUBE ERP

a1 8.19 6.74 10.00 9.30 10.0 10.0
b1 -0.18 -0.17 -0.20 -0.19 -0.13 -0.14
c1 -0.014 0.005 -0.006 -0.014 -0.02 0.04

TABLE 4.3: Performances of the bitrate estimation model.

Metric Video #1 Video #2 Video #3
CUBE ERP CUBE ERP CUBE ERP

PCC 0.99 0.99 0.99 0.99 0.98 0.97
RMSE 20.02 19.19 12.57 11.73 40.7 52.9

resolution of 3840x1920 in the original ERP projection format. For ERP, each video is divided

into M = 64 tiles (i.e., 8×8 tiles). For CUBE, each face of a video is divided into 9 tiles

(i.e., 3×3 tiles), resulting in a total of M = 54 tiles (i.e., 6 faces × 9 tiles). Using HEVC, each

tile is encoded into V = 6 versions corresponding to 6 QP values of 28, 32, 36, 40, 44, 48,

which are similar to the QP value range used in [44]. The low-delay B profile with Group of

Picture (GoP) size of 4 is used. The model parameters of bitrate and PSNR estimation models

are determined by means of curve-fitting for each pair of video and projection format.

The values of model parameters and the performance of bitrate estimation model (4.6)

are respectively shown in Table 4.2 and Table 4.3. Here, two performance metrics, namely

Pearson Correlation Coefficient (PCC) and Root Mean Square Error (RMSE) are considered.

Generally, the higher the value of PCC or the lower the value of RMSE is, the more accurate

the model becomes. Fig. 4.6 shows the scatter diagram of the estimated and actual tile bitrates.

As shown in Table 4.3, PCC values are very high (i.e., ≥ 0.97) for all cases. Also, RMSE

values are also very small (i.e., less than 53 kbps). These results imply that the proposed

model can predict well the bitrates of tiles of three considered videos with both projection

formats.

FIGURE 4.6: Scatter diagram of estimated and actual tile bitrates.
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FIGURE 4.7: Scatter diagram of estimated and actual tile PSNR values.

It can be seen that though the PCC values in all cases are similar, the RMSE values of

Video #1 are always higher than those of Video #2, whereas the RMSE values of Video #3 are

highest. Also, the model parameters of each (video, projection format) pair are different from

the others as shown in Table 4.2. This can be explained that the characteristics of a video have

impacts on the prediction performance of the bitrate model. Specifically, Video #1 is a real

video that has higher complexity and thus more difficult to predict than Video #2 which is

a computer-generated video. In addition, Video #3 has a much higher camera motion than

Video #1.

TABLE 4.4: Parameters of the PSNR estimation model (4.8).

Parameters
Video #1 Video #2 Video #3

CUBE ERP CUBE ERP CUBE ERP

a2 -0.22 -0.22 -0.17 -0.19 -0.33 -0.34

b2 1.22 1.22 1.18 1.19 1.33 1.34

TABLE 4.5: Performances of the PSNR estimation model.

Metric
Video #1 Video #2 Video #3

CUBE ERP CUBE ERP CUBE ERP

PCC 0.99 0.99 0.97 0.96 0.98 0.98

RMSE 1.23 1.42 1.12 1.45 1.5 1.37

Table 4.4 and Table 4.5 respectively show the model parameters and estimation perfor-

mance of the PSNR estimation model (4.8). The scatter diagram of the estimated and actual

tile PSNR values is shown in Fig. 4.7. From Table 4.5, it can be seen that the proposed

PSNR estimation model has very high PCC values (i.e., 0.96 or higher) and low RMSE values

(i.e., 1.5 dB) for all three videos and both projection formats. This means that the PSNR

values of tiles can be accurately predicted using the proposed model.
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(A) ROI. (B) Equal.

(C) Average Viewport PSNR (dB)

FIGURE 4.8: Comparisons of three options of the Equal and ROI methods under a constant
bandwidth of 6 Mbps (CUBE).

It can also be noted that the PCC values of Video #1 are slightly higher than that of Video

#2 and Video #3. And, for Video #1 and Video #2, the RMSE value of ERP is a little higher

than that of CUBE. On the other hand, the RMSE of CUBE is a little higher than that of ERP

in case of Video #3. From Table 4.4, it can be seen that there is only a small difference of

the model parameters in the six cases. This implies that the prediction performance of the

PSNR estimation model is only slightly affected by the content characteristics and projection

formats.

4.4.3 Benefits of bitrate estimation

In this subsection, the benefits of bitrate estimation will be investigated. For that purpose,

the Equal and ROI methods are considered. From now on, only Video #1 is used to evaluate

the proposed framework. The total maximum bitrates of the whole video (i.e. composed

of all tiles) are shown in Table 4.6. The length of each streaming session is 54 intervals,

or 864 frames. The setting of content preparation is the same as described in the previous

subsection.

As mentioned, three options of bitrate information are considered. The first option, called

Max, uses the maximum bitrate as the representative bitrate of a version. The second option,
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(A) ROI (B) Equal.

(C) Average Viewport PSNR (dB)

FIGURE 4.9: Comparisons of three options of the Equal and ROI methods under a constant
bandwidth of 6 Mbps (ERP).

TABLE 4.6: Maximum bitrate of versions.

Version QP Max bitrate (kbps)
CUBE ERP

#1 48 2832 3294
#2 44 3682 4220
#3 40 6034 6792
#4 36 9393 10431
#5 32 14405 15900
#6 28 22352 24346

called Estimate, uses estimated bitrates at the client. The third option, called Full, uses actual

bitrates as fully provided by the server. In current client-based methods, the client currently

knows only the version ranking and max bitrate of each version. Though there are a number

of client-based methods (i.e., [43–45]) in the literature, they are actually the ROI method with

the Max option.

To clearly explain client behavior under each of these options, the experiment is firstly run

under a constant bandwidth of 6 Mbps. Fig. 4.8(a) and Fig. 4.8(b) respectively show frames’

viewport PSNR values of the three options of the ROI and Equal methods when using the

CUBE format. Fig. 4.8(c) compares the average viewport PSNR of the three options of each

method.
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(A) ROI (viewport PSNR) (B) Equal (viewport PSNR) (C) ROI (bitrate)

(D) Equal (bitrate) (E) Average Viewport PSNR (dB)

FIGURE 4.10: Comparisons of three options of the Equal and ROI methods under a real bandwidth
trace (CUBE)

It can be seen that, interestingly, the viewport PSNR of the Estimate option is almost

identical to that of the Full option. This implies that the proposed bitrate estimation can enable

the client to behave as if it knows all information about tiles’ bitrates.

With the Max option, the client decides tiles’ versions based on the maximum bitrates of

versions. Meanwhile, when bitrate estimation is enabled (i.e., the Estimate option), the client

can dynamically switch between versions depending on the estimated bitrate. This results in

significantly higher viewport quality than that of the Max option. Specifically, the average

viewport PSNR increases by 3.8 dB and 6.7 dB for the Equal and ROI methods, respectively.

Fig. 4.9 shows the results when using the ERP format. Similar to the results of the

CUBE format, bitrate estimation can help the client improve considerably the viewport quality

compared to using the maximum bitrates. In particular, the average PSNR gains for the Equal

and ROI methods are respectively 2.9 dB and 8.1 dB. Also, the viewport PSNR of the Estimate

option is very similar to that of the Full option. It can also be noted that the resulting viewport

PSNR using ERP is similar to that using CUBE.

Next, a time-varying bandwidth trace is used to see how bitrate estimation can help the

client in this case. The used bandwidth trace is shown in Fig. 4.5. As this trace’s duration

is 58 seconds while the obtained video is only 30 s long, the whole video is repeated in this

experiment. The viewport PSNR values of the three options of the Equal and ROI methods

are shown in Fig. 4.10. It can be seen that selecting tile versions based on bitrate estimation
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(A) ERP.

(B) CUBE.

FIGURE 4.11: Frame Viewport PSNR of two options of the Weighted method under a constant
bandwidth.

results in similar viewport quality as that of the Full option. It can be noted that the Estimate

option has a slightly higher average viewport PSNR than that of the Full option in case of

the Equal method. The reason is that at the 55th segment (frames 848−863), the estimated

bitrates of tiles’ versions are lower than their actual values. As a result, the Estimate option

selects version 3 for all tiles. Meanwhile, the Full option can only select version 2 for all

tiles. Consequently, the viewport PSNR values of the Estimate option are higher than those of

the Full option for frames 848−863. In addition, the Estimate option achieves significantly

higher viewport quality compared to that of the Max option for both Equal and ROI methods.

Specifically, the average viewport PSNR is improved by 6 dB and 3.7 dB for the ROI and

Equal methods, respectively. Also, the advantage of bitrate estimation is significant across the

entire range of bandwidth. As the PSNR value under time-varying bandwidth is much more

fluctuating, constant bandwidth will be used for comparing adaptation methods.
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(A) ERP.

(B) CUBE.

FIGURE 4.12: Average Viewport PSNR of two options of the Weighted method and the Max
option of the ROI and Equal methods under a constant bandwidth.

4.4.4 Benefits of both bitrate and quality estimations

In this subsection, the advantage of both bitrate and quality estimations will be investigated

using the Weighted method, which decides tiles’ versions based on bitrate and PSNR infor-

mation. In server-based methods, the server has full information about quality and bitrate of

each version [37]. So, though the context is different, the Full option is somewhat similar

to server-based methods. Fig. 4.11 compares the Estimate and Full options of the Weighted

method under a constant bandwidth of 6 Mbps for two projection formats. It can be seen that,

the frame viewport PSNR of the Estimate option is again almost similar to that of the Full

option. This means that the proposed bitrate and PSNR estimation models are very effective,

so that the version selection method can determine tiles’ versions as if it fully knows the

bitrate and PSNR values of tiles.

Fig. 4.12 compares the average viewport PSNR of the two options of the Weighted method

and the Estimate and Max options of the ROI and Equal methods under a constant bandwidth

of 6 Mbps. As for the Weighted method, the average viewport PSNR of the Estimate option is

only 0.1−0.2 dB lower than that of the Full option. Compared to the ROI and Equal method,
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(A) Frame Viewport PSNR

(B) Average Viewport PSNR

FIGURE 4.13: Viewport PSNR of two options of the Weighted method under a real bandwidth
trace (CUBE).

the Weighted method with the Estimate option results in significantly higher average viewport

PSNR. Specifically, the average viewport PSNR is respectively improved by 10.2 dB and

10.3 dB compared to the Max options of the ROI and Equal methods in case of ERP projection.

In case of CUBE projection, the Weighted method increases the average viewport PSNR by

7.5 dB and 9.3 dB compared to the Max options of the ROI and Equal methods, respectively.

Fig. 4.13 shows the results under a real bandwidth trace using the CUBE projection.

Similar to the constant bandwidth case, the proposed bitrate and quality estimation can

help achieve similar viewport quality compared to the Full option and significantly improve

viewport quality compared to the ROI and Equal methods. Specifically, the average viewport

PSNR of the Estimate option is 0.2 dB lower than that of the Full option. Meanwhile, the

Weighted method with the Estimate option can improve the average viewport PSNR by 7.2 dB

and 9.6 dB compared to the ROI and Equal methods, respectively.

4.4.5 Discussion on system-related settings

In this subsection, the impacts of some important settings on the performance of the proposed

framework will be discussed. For simplicity, only the Estimate option is used.
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(A) Weighted method (B) ROI method. (C) Equal method

FIGURE 4.14: Comparisons of CUBE and ERP for the three methods.

FIGURE 4.15: Impact of client buffering on the performance of the Weighted method under a
constant bandwidth (CUBE).

Regarding the impact of projection formats, Fig. 4.14 compares the viewport PSNR values

of CUBE and ERP for all three methods under the constant bandwidth of 6 Mbps. It can be

seen that, with the Weighted method, the viewport PSNR values when using CUBE are mostly

higher than that using ERP. Yet, the average difference is small (about 0.4 dB). With the ROI

method, ERP and CUBE also perform similarly. However, with the Equal method, using

CUBE results in significant higher viewport PSNR than using ERP. This is because CUBE

always requires less bitrate than ERP does. Consequently, given the same network bandwidth,

the client can select higher quality version when using CUBE. Specifically, in this example,

the client selects mostly version #3 when using CUBE, while it selects mostly version #2

when using ERP.

As mentioned above, client buffering as in HAS could be a big problem in 360 video

streaming. In the proposed framework, the client starts playout right after having received the

first frame. For this factor, an additional experiment is carried out where the client buffer is set

to 2 s. Fig. 4.15 compares the viewport PSNR of the Weighted method in two cases 1) without

client buffering and 2) with a client buffering of 2 s. It can be seen that the viewport PSNR is

drastically reduced under the presence of the client buffering, especially when the viewport

position changes quickly due to user head movements. The viewport PSNR is even lower than
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that of the Equal method, which may greatly reduce the viewing experience of users.

The negative impact of client buffering can be explained as follows. The delay from

when the client decides the versions of tiles until the corresponding viewport is displayed

will be increased because the frames should wait (for 2 s in this experiment) in the client

buffer. The longer the client buffering is, the longer the delay becomes. A long delay may

lead to significant difference between the estimated and actual viewports if the user moves

his/her head quickly. As a result, the viewport quality may be reduced significantly. This

result indicates that using large client buffers as in DASH for viewport-adaptive streaming

may severely impact user experience. In case long buffering is unavoidable, obviously the

Equal method should be the best choice.

Currently, the transport layer of the proposed framework is based on that of cloud gaming,

which employs UDP/TCP to directly deliver media data. This is because VR services need a

very low response delay. A recent trend in low-delay HAS is using the server-push feature of

the new HTTP/2 protocol [140]. Using the server-push feature, very short media segments can

be used without reducing bandwidth utilization and increasing the number of client requests.

In the future work, the use of HTTP/2 to support the low-delay requirement of VR services

will be investigated.

4.5 Summary

In this chapter, a client-based adaptation framework for viewport-adaptive streaming of

360 videos is proposed. In the proposed framework, a problem formulation for tile version

selection was presented as the basis for designing adaptation methods. Especially, two

estimation models that could effectively estimate instant bitrate and quality of video tiles were

proposed. From the above experimental results and discussions, some conclusions can be

summarized as follows.

• The use of estimated bitrate/quality can help improve the viewport quality significantly.

The improvements were seen in all three tile selection methods of the framework.

• The performance with estimated bitrate/quality is nearly the same as the performance

with full information of bitrate/quality. This means the complexity of sending full

bitrate/quality information of tiles’ versions could be avoided.
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• The presented estimation solutions and adaptation methods can be applied to both

Equirectangular and Cube projection formats.

• Among these two popular projection formats, the latter provides a little better perfor-

mance.

• Long client buffering could have severe impacts on the visual quality in VR. In this

context, ultra low-delay solutions are necessary, which is in line with the new trend of

Tactile Internet.
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Chapter 5

Adaptive Tiling Selection

5.1 Introduction

Tiling-based approach is the most popular approach for realizing viewport-adaptive stream-

ing [37, 44]. In tiling-based viewport-adaptive streaming, the original video is spatially

partitioned into regions called tiles. Each tile is further encoded into several versions of

different quality levels. Given the user’s viewport, the tiles overlapping the viewport (called

visible tiles) are streamed at high quality while the other tiles at lower quality [37]. Fig. 5.1

shows a tiling example and the visible tiles corresponding to a specific viewport.

In the current literature, typical tiling schemes include 4×3 [45], 6×4 [44], 8×4 [52], and

8×8 [37]. Some studies investigate good tiling schemes from the server’s point of view, by

considering the tradeoff between coding efficiency and the number of tiles [44, 53]. However,

no metric to decide the optimal tiling scheme has been considered.

In our opinion, the existing studies on optimal tiling scheme miss two important issues.

First, the optimal tiling scheme should be mainly considered from the client’s point of view.

That is, it should be based on the quality performance measured at the client, not at the server.

Second, a tiling scheme so far is fixed during a whole streaming session. Intuitively, when the

head-moving speed is small, one should use high tiling granularity (i.e., large number of tiles)

as it can reduce the amount of redundant pixels, which are the pixels belonging to high quality

tiles but not in the viewport. Meanwhile, redundant pixels in case of low tiling granularity

(i.e., small number of tiles) can help cope with a high head-moving speed. Since the user head

movement is generally varying throughout a streaming session, using a fixed tiling scheme as

in existing studies might lead to non-optimal viewport quality.

In this context, it is important to answer some related questions such as "what is the benefit
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FIGURE 5.1: Illustrations of tiling scheme, viewport, and visible tiles.
of adaptive tiling compared to fixed tiling?", "which tiling should be selected given a speed

of head movement?", or "if fixed tiling is preferred in a given context, what is the best tiling

scheme for the client?".

For that purpose, a general problem for adaptive tiling in 360 video streaming is fist

formulated. Then, correspondingly a simple solution to that problem is devised. Experiment

results show that adaptive tiling can improve the average viewport quality by up to 2.3 dB

compared to a fixed tiling solution. It is also found that among fixed tiling schemes, 4×3

tiling achieves the lowest viewport quality and thus should not be used.

The remainder of the chapter is organized as follows. Related work is given in Section 5.2.

Section 5.3 presents the proposed method. The proposed method is evaluated in Section 5.4.

Finally, the chapter is summarized in Section 5.5.

5.2 Related work

In the literature, 360 video is usually divided into equal-sized, non-overlapping tiles by a

grid. Various tiling schemes have been used such as 6×4 (ERP) [44], 8×8 (ERP) [76], 12×6

(ERP) [77], 2×2 (CMP) [53, 78], and 4×4 (CMP) [78]. Typically, the tiles are independently

encoded. However, this will require multiple decoders at the receiver side. In [46], motion-

constrained HEVC tiles are utilized to allows usage of a single decoder instance on the user

device. In addition, some variable-sized tiling schemes have been proposed, utilizing the user

viewing behaviors [43, 79–81], the content characteristics [79, 82], and the visual attention

model [83]. The tiles can also be overlapping as proposed in [84]. In previous studies, tiling

schemes are usually selected based on either coding efficiency [44] or content feature [79].
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5.3 Adaptive Tiling Selection Method

In this section, the problem formulation of adaptive tiling selection is first presented. Based

on that, a solution to the problem is described.

5.3.1 General Problem Formulation

In tiling-based viewport-adaptive streaming system, the tiling scheme is decided every adapta-

tion interval. Each adaptation interval consists of L video frames. The original 360 video is

represented as a rectangular video with a width of W (pixels) and a height of H (pixels) using

Equirectangular projection [116]. There are K available tiling schemes. The tiling scheme

Ck(1≤ k ≤ K) is defined as a grid partition of Tk = Mk×Nk equally sized tiles (i.e. Nk rows

and Mk columns). Each rectangular tile has a width of W /Mk and a height of H/Nk. Ck is

also denoted by Mk×Nk. Each tile is encoded into V versions. Version v (1 ≤ v ≤ V ) of

tile t (1≤ t ≤ Tk) of tiling scheme Ck (1≤ k ≤ K) of the lth frame (1≤ l ≤ L) has a bitrate

of Rk
t (v, l) and a distortion of Dk

t (v, l). In this study, the distortion is measured by the Mean

Square Error (MSE). MSE and bitrate values of tiles can be provided as metadata [37]. It

should be noted that, as shown in the previous study of [96], PSNR (which is convertible

from/to MSE) is still very effective to represent the viewport quality for users.

Suppose that, at a given time, the server needs to adapt an adaptation interval to meet a

bandwidth constraint Rc. Denote P the set of the viewport positions when the user watches the

frames of the considered adaptation interval. The tiling selection problem can be formulated

as follows.

Find a tiling scheme Ck and a version vt of each tile t so as to minimize the quality

objective V Q which is a function of tiles’ distortions and viewport positions.

V Q = f ({Dk
t (v, l),1≤ t ≤ Tk,1≤ l ≤ L},P) (5.1)

and satisfy the bitrate constraint

L

∑
l=1

Tk

∑
t=1

Rk
t (vt , l) ≤ Rc. (5.2)
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5.3.2 Optimal Solution

In the following, the computation of the quality objective and the method to decide the tiling

scheme and the version of each tile will be described. The quality objective V Q is computed

as follows. First, the viewport distortion V Q(l) of the lth frame (1≤ l ≤ L) is calculated as

the weighted average distortion of the visible tiles as follows.

V Q(l) =
Tk

∑
t=1

wt(l)×Dk
t (vt , l). (5.3)

Here, the weight wt(l) indicates how much tile t (1≤ t ≤ Tk) overlaps the viewport at the lth

frame. Denote N(t, l) the area of the overlapped area of tile t and Nvp the total area of the

viewport, the value of wt(l) is computed as follows.

wt(l) =
N(t, l)

Nvp
. (5.4)

It can be note that the value of wt(l) depends on the head-moving speed. The quality objective

VQ is then computed as the average viewport distortion over all frames of the adaptation

interval as follows.

V Q =
1
L

L

∑
l=1

V Q(l). (5.5)

For selecting the version of each tile, a simple tile selection procedure is applied. Basically,

the procedure selects the lowest version for the invisible tiles, and selects the highest possible

version for visible tiles. Here, the invisible tiles are also delivered to the client because we

have found that some users suddenly changes his/her viewing direction (to the left/right or the

back). If the invisible tiles are not sent, the user might experience blank blocks in the viewport.

Currently, similar to the previous studies of [44, 45], the visible tiles are determined using the

viewport at the first frame of the adaptation interval.

As the problem space is small, a full-search procedure is used to find the optimal tiling

scheme as follows.

• Step 1: For each tiling scheme

– Classifying visible tiles and non-visible tiles of the interval.

– Assigning the lowest version to all non-visible tiles.
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– Finding the highest possible version for all visible tiles that is permitted by the

bandwidth constraint Rc.

– Caclulating the quality objective V Q using (5.3)(5.4)(5.5).

• Step 2:

– Selecting the tiling scheme that achieves the lowest quality objective.

– Recording the tile versions decided in Step 1 for that tiling scheme.

With the current implementation, the average calculation time of the proposed method is

less than 1 ms. Thus, it is able to apply in real-time adaptation.

5.4 Experimental Results

In this experiment, a 360-degree video named Timelapse, which is provided in [141], is

considered. The video is of Equirectangular format, having a duration of 60 seconds, a

resolution of 3840×1920 (4K), and a frame rate of 24 fps. The Field of View (FoV) of

the viewport is 90 horizontal degrees × 90 vertical degrees. K = 4 tiling schemes of 4×3,

6×4, 8×4, and 8×8 are considered. Each tile is encoded into 7 versions corresponding to 7

quantization parameter values of 24, 28, 32, 36, 40, 44, and 48 using HEVC. The adaptation

interval and the buffer size are both set to 1 second. Ten head movement traces which are

recorded from 10 different users watching the considered video [141] are used. The CDFs of

the angular speed per interval of each trace are shown in Fig. 5.2. It can be seen that the head

movements vary among the users. To clearly see the effect of tiling, it is assumed that the

viewport positions during each adaptation interval are known in advance. Also, the network

bandwidth is constant during each streaming session. Three bandwidth values of 2 Mbps,

4 Mbps, and 6 Mbps are used. The network delay is set to 10 ms.

The proposed method is compared to the conventional method (essentially Step 1 above)

in which the tiling scheme is fixed during the streaming session. As PSNR has been proved

as most suitable metric for evaluating 360 video [96], viewport PSNR, which measures the

quality of a rendered viewport in the sphere domain, is adopted as the performance metric

in this study. It is calculated as the PSNR between the rendered viewport and the original

viewport. Besides, it is possible that the boundaries between tiles might be visible and cause

negative impacts to user experience. This issue will be reserved for future work.
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FIGURE 5.2: CDFs of the angular speed per interval of 10 head traces.

FIGURE 5.3: Selected tiling schemes ( 1: 4×3, 2: 6×4, 3: 8×4, 4: 8×8) of the proposed method
under trace #6 when the bandwidth is 4 Mbps.

Fig. 5.3 shows the selected tiling schemes and the average angular speeds of 7th−55th

adaptation intervals of the proposed method under trace #6 when the bandwidth is 4 Mbps. It

can be seen that the proposed method can dynamically adapt the tiling scheme. Specifically, a

higher number of tiles is selected when the user head movement speed decreases (e.g., 7th−

10th intervals). On the other hand, a small number of tiles is used when the head movement

speed is high. Fig. 5.4 shows the percentage of tiling schemes decided by the proposed

method with the 10 head traces when the bandwidth is 4 Mbps. It can be seen that the selected

tiling schemes are strongly correlated to the movement of each trace. For example, 4×3

tiling is not selected in case of traces #10 and #2 as these traces have very low movement

speed. Meanwhile, in case of trace #6 where the angular speed is mostly in the range of

30− 70 (degree/sec), 6×4 tiling is the most selected scheme. When the movement speed

spreads out evenly between 0 and 90 (degree/sec) as in case trace #9, the portions of the tiling

schemes are very similar.

Tables 5.1, 5.2, and 5.3 show the gain of adaptive tiling compared to fixed tilings when

the bandwidth is 2 Mbps, 4 Mbps, and 6 Mbps respectively. Note that the last two rows in

these tables summarize the average and maximum values of improvement among the 10 traces.
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FIGURE 5.4: Percentage of each selected tiling scheme of the proposed method when the
bandwidth is 4 Mbps.

TABLE 5.1: Quality gain of adaptive tiling over fixed tiling when the bandwidth is 2 Mbps. The
last two rows summarize the average and max values of improvement.

Trace Quality gain (dB)
vs. 4×3 vs. 6×4 vs. 8×4 vs. 8×8

#1 1.6 0.7 0.6 0.3
#2 1.6 0.7 0.3 0.4
#3 1.2 0.7 0.4 0.4
#4 0.9 0.7 0.3 0.4
#5 1.4 0.5 0.5 0.6
#6 1.1 0.3 0.4 0.6
#7 1.3 0.5 0.5 0.6
#8 1.9 0.5 0.5 0.8
#9 1.4 0.7 0.5 0.6

#10 1.9 0.5 0.5 0.4
Average 1.4 0.6 0.4 0.5

Max 1.9 0.7 0.6 0.8
TABLE 5.2: Quality gain of adaptive tiling

over fixed tiling when the bandwidth is 4 Mbps.

Trace Quality gain (dB)
vs. 4×3 vs. 6×4 vs. 8×4 vs. 8×8

#1 1.9 0.9 0.7 0.3
#2 2.1 0.8 0.4 0.3
#3 1.6 1.0 0.6 0.4
#4 1.2 0.8 0.4 0.4
#5 1.8 0.6 0.8 0.7
#6 1.3 0.4 0.7 0.9
#7 1.7 0.8 0.8 0.9
#8 2.2 0.6 0.7 0.8
#9 1.6 0.8 0.7 0.7
#10 2.3 0.8 0.4 0.2

Average 1.8 0.8 0.6 0.5
Max 2.3 1.0 0.8 0.9

TABLE 5.3: Quality gain of adaptive tiling
over fixed tiling when the bandwidth is 6 Mbps.

Trace Quality gain (dB)
vs. 4×3 vs. 6×4 vs. 8×4 vs. 8×8

#1 1.5 0.8 0.6 0.2
#2 1.9 0.8 0.4 0.3
#3 1.2 0.8 0.5 0.4
#4 1.0 0.6 0.3 0.4
#5 1.5 0.5 0.7 0.7
#6 1.2 0.3 0.7 0.8
#7 1.3 0.7 0.7 0.8
#8 1.6 0.5 0.5 0.6
#9 1.2 0.7 0.6 0.6
#10 1.9 0.9 0.3 0.1

Average 1.4 0.7 0.5 0.5
Max 1.9 0.9 0.7 0.8

Figure 5.5 shows the average viewport PSNR of adaptive tiling and fixed tilings, where the

average is computed over the three bandwidth values.

It can be seen that, by adapting the tiling scheme during a streaming session, the proposed

method always achieves higher viewport quality than the conventional method. Especially,

the improvement is consistent over all three bandwidth values. In general, the improvement

compared to 4×3 tiling is highest, while improvements compared to 6×4, 8×4, and 8×8

tilings are similar. As seen in Table 5.2, the proposed method can improve the average

viewport PSNR by up to 2.3 dB compared to 4×3 tiling, and up to 0.8 − 1.0 dB compared to

other tilings.
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FIGURE 5.5: Average viewport PSNR per trace of the proposed method and the conventional
method (averaged over three bandwidth values).

TABLE 5.4: Number of traces in which a fixed tiling scheme achieves the highest performance
compared to other fixed tilings.

Tiling Scheme 4×3 6×4 8×4 8×8
Number of Traces 0 3 3 4

Table 5.4 shows the number of head movement traces in which a fixed tiling scheme

achieves the highest performance compared to the other fixed tilings. It can be noted that,

though having the highest coding efficiency, 4×3 tiling scheme does not achieve the highest

viewport PSNR for any traces. This suggests that 4×3 tiling is not effective and thus should

not be used. This finding in fact cannot be found if the tiling is considered from the server’s

point of view. It can also be seen that the tiling schemes of 6×4, 8×4, and 8×8 have similar

number of traces where they achieve the highest viewport PSNR. From this result, 6×4 tiling

seems to be the best choice of fixed tiling, due to its high PSNR value and lowest number

of tiles. A related tiling approach is using overlapped tiles (e.g. [142]) to cope with user

head movements. Here, one may adjust both the size and the overlapped parts of tiles. This

approach is reserved for our future work.

5.5 Summary

In this chapter, an adaptation method for viewport-adaptive streaming of 360 video is presented

that is able to dynamically adapt the tiling scheme based on the user’s head movements and

the network bandwidth. It was shown that adaptive tiling can improve the average viewport

quality by up to 2.3 dB. For future work, optimal tiling selection scheme when applying other

tile selection methods will be investigated.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, three key aspects of tiling-based viewport-adaptive streaming over net-

works which are 1) server-based adaptation, 2) client-based adaptation, 3) adaptive tiling

selection have been investigated.

First, in Chapter 3, a server-based adaptation framework is proposed. The proposed

approach decides the tiles’ versions based on viewport estimation errors and user head

movements within each video segment. Experimental results show that the proposed approach

can achieve high and stable viewport quality. Especially, the average viewport quality is

improved by up to 3.8 dB and the standard deviation viewport quality is reduced by up to

1.1 dB when the segment duration is 32 frames. In addition, the impacts of the client buffer

size and segment duration is also investigated. It is found that long segment duration and large

buffer size negatively impact the performance of the proposed approach.

Second, in Chapter 4, a client-based adaptation framework for tiling-based viewport-

adaptive streaming of 360 video is proposed. The proposed framework can support different

adaptation scenarios. Especially, two estimation models that can effectively estimate instant

bitrate and quality of tiles’ versions were proposed. It is found that the proposed bitrate/quality

estimation models can help improve the viewport quality significantly. Especially, the per-

formance with estimated bitrate/quality is nearly the same as the performance with full

bitrate/quality information. Thus, the complexity of sending full bitrate/quality information

could be avoided.

Third, in Chapter 5, a novel adaptation method for viewport-adaptive streaming of 360

video that can dynamically adapt the tiling scheme according to the user’s head movements
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is proposed. Experimental results show that the proposed method can enhance the average

viewport quality by up to 2.3 dB compared to the conventional fixed-tiling-based methods.

6.2 Future work

In future work, performance improvements for the proposed frameworks/method will be

investigated. For the server-based adaptation framework, the proposed tile version selection

methods will be enhanced to better cope with high viewport estimation errors. In the current

framework, tiles belonging to the same area have the same version. As the contribution of

each tile to the viewport quality is different, it may be better if tile version selection is done

for individual tiles.

The current client-based framework still suffers from significant quality degradation

under long delay settings. To deal with this issue, advanced methods for long-term viewport

estimation are highly desired. In the literature, Recurrent Neural Network (RNN) such as

Long-Short Term Memory (LSTM) is found to be effective for long-term estimation [143].

Combination of RNN networks with content features such as saliency map will be considered

to improve viewport estimation accuracy.

To improve the performance in client-based adaptation, another approach is to use Scalable

Video Coding [53], which can reduce the buffer size to as low as one segment duration while

still achieving smooth playback under varying network conditions. SVC can also be combined

with new protocol such as HTTP/2 to improve network resource utilization and viewport

quality.

As aforementioned, the current work only considers monscopic 360 video, which is

the most simple form of immersive video. Other immersive content such as stereoscopic

360 video [144] and volumetric video [145] have much higher bitrate and different character-

istics. Thus, effective adaptation/transmission methods for other immersive content types will

be another topic in our future work.
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