
Trainable Sparse Coding with `p-norm-based Regularization

Haoli Zhao

A DISSERTATION

SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN COMPUTER SCIENCE AND ENGINEERING

Graduate Department of Computer and Information Systems

The University of Aizu

2019

c© Copyright by Haoli Zhao, September 2019

All Rights Reserved.

Contents

List of Figures vi

List of Tables x

List of Abbreviations xi

List of Symbols xii

Acknowledgment xiii

Abstract xiv

Chapter 1 Introduction 1
1.1 Sparse Models for Signal Representation . 1
1.2 Related works . 2
1.3 Motivations and Contributions . 5
1.4 Thesis Outline . 6
1.5 Publications . 6

Chapter 2 Background 8
2.1 Sparse Coding . 9
2.2 Dictionary Learning for Sparse Representation 12
2.3 Deep Neural Network structured Sparse Representation 13

Chapter 3 Dictionary Learning for Sparse Representation using Weighted `1 Norm 16
3.1 Introduction . 16
3.2 Problem formulation . 17
3.3 Algorithm . 18
3.4 Numerical Experiments . 20
3.5 Chapter Summary . 25

Chapter 4 Deep Neural Network Structured Sparse Coding for Online Processing 27
4.1 Introduction . 27
4.2 Sparse Coding . 28

4.2.1 ISTA . 29
4.2.2 IHTA . 29
4.2.3 WISTA . 31

4.3 Deep Neural Network structured Sparse Coding 32
4.3.1 Supervised and unsupervised learning 33
4.3.2 DNN-structured IHTA . 34
4.3.3 DNN-structured WISTA . 35

4.4 Experiments . 36
4.4.1 Synthetic data experiments . 36

iv

Performances of sparse coding algorithms 36
Performances of DNN-structured sparse coding algorithms 39

4.4.2 Graphic denoising experiments . 40
Image-denoising experiments . 43
Video-denoising experiments . 46

4.4.3 Discussion . 47
4.5 Chapter Summary . 49

Chapter 5 `p Norm Independently Interpretable Regularization based Sparse Cod-
ing for Highly Correlated Data 51
5.1 Introduction . 51
5.2 Problem Formulation . 53

5.2.1 IILasso . 54
5.2.2 II-ISTA . 55
5.2.3 IIWLasso . 56
5.2.4 Independently Interpretable Proximal Operator (IIPO) 57

5.3 Experiments . 58
5.3.1 Synthetic data experiments . 58

Performance in Gaussian random dictionary D0.15 61
Performance in relatively highly correlated dictionary D0.50 63
Performance in highly correlated dictionary D0.80 66
Performance comparison among different coherence dictionaries 68

5.3.2 Gene Expression Data experiments 69
5.3.3 Discussion . 70

5.4 Chapter Summary . 71

Chapter 6 Deep Neural Network Structured Sparse Coding for Highly Correlated
Data 72
6.1 Introduction . 72
6.2 Problem Formulation . 72

6.2.1 DNN-structured IILasso . 74
6.2.2 DNN-structured II-ISTA . 76
6.2.3 DNN-structured IIWLasso . 77

6.3 Experiments . 78
6.3.1 Synthetic data experiments . 78

6.4 Chapter Summary . 81

Chapter 7 Conclusions 83
7.1 Contributions . 83
7.2 Future Works . 84

References 86

v

List of Figures

Figure 1.1 The architecture of the thesis. 7

Figure 2.1 (a)-(c) Contours of the constraint when g(z) = ‖z‖pp = 1, 2, 3 with z =
[z1, z2] and different p values from left to right; (d) Contours comparison
among the previous 3 cases when g(z) = 1 with z = [z1, z2]; respectively
red straight line for (a) p = 1, blue dot line for (b) p = 0.5 and black dash
line for (c) p = 0.2 . 10

Figure 2.2 (a) Illustration of the ISTA algorithm for sparse coding. The optimal
sparse representation can be obtained by the recursive structure z(k) =
π1(Wx + Hz(k−1), t), where x is the input signal, π1(x, t) is the soft
thresholding function with threshold t, W = 1

αD
T, H = I − 1

αD
TD,

and α is a restriction parameter for ISTA. (b) Network structure of the
supervised learned DNN-ISTA, which is named LISTA, formed from un-
folded ISTA and truncated to a fixed number of iterations (3 here). W, H,
t are trainable parameters in the network to give an approximate sparse
representation on a given dataset. (c) Network structure of the unsuper-
vised learned DNN-ISTA, which is named TISTA. TISTA has a similar
propagation structure to LISTA, and W, H, and t are targeted trainable
parameters. The key difference is that TISTA uses a decoder to output x
as the learning objective, where the original x is the known input. On the
contrary, original z, which is required for supervised learning, is a priori
knowledge. 14

Figure 3.1 Dictionary recovery ratio and mean dictionary distance of proposed algo-
rithm with different p values in a range of λ from data with 20 dB SNR . 22

Figure 3.2 Dictionary recovery ratio and mean dictionary distance of proposed algo-
rithm with different p values in a range of λ from data with 10 dB SNR . 23

Figure 3.3 Reordered learnt Dictionary (a) from 20dB signals compared with the
ground true dictionary (b), present in 4× 5 dimensional subspaces. . . . 23

Figure 3.4 Dictionary recovery ratio, mean dictionary distance and Hoyer sparsity
convergence graph of proposed algorithm with different p values in itera-
tions with optimized parameters from data with 20 dB SNR 24

Figure 3.5 Average dictionary recovery ratio and mean dictionary distance conver-
gence graph of different algorithms in time scale with optimized parame-
ters from data with 20 dB SNR . 25

vi

Figure 4.1 (a) Illustration of the IHTA structure for sparse coding. The optimal
sparse representation can be obtained by the recursive structure z(k) =
π 1

2
(Wx + Hz(k−1), t), where x is the input signal, π 1

2
(x, t) is the half

thresholding operator with threshold t, W = 1
αD

T, H = I− 1
αD

TD and
α is a restriction parameter for IHTA. (b) The network structure of DNN-
IHTA is formed from unfolded IHTA and truncated to a fixed number of
iterations (3 here). W, H, and t are trainable parameters in the network
to provide an approximate sparse representation on a given dataset. The
network can be trained supervisedly with only the encoder and unsuper-
visedly using both encoder and decoder. 30

Figure 4.2 (a) Illustration of the WISTA structure for sparse coding. The optimal
sparse representation can be recursively obtained in two steps: z(k) =
π1(Wx +Hz(k−1), t(k−1)), t(k) = λ

α |z
(k)|p−1, where x is the input sig-

nal, π1(x, t) is the soft thresholding operator with a changing threshold t
during the iterations, W = 1

αD
T, H = I− 1

αD
TD, and α is a restriction

parameter for WISTA. (b) The network structure of DNN-IHTA is formed
from the unfolded WISTA and truncated to a fixed number of iterations (3
here). W, H, and t are trainable parameters in the network to provide an
approximate sparse representation on a given dataset. The network can be
trained supervisedly with only the encoder and unsupervisedly using both
encoder and decoder. 31

Figure 4.3 Average sparse representation errors and Hoyer sparsity convergence graph
of different sparse coding algorithms. 37

Figure 4.4 Index versus value of the recovered sparse representation (blue) compared
with the original one (red) of ISTA, IHTA, WISTA0.9, WISTA0.7, and
WITA0.5 (from top to bottom). 38

Figure 4.5 Average sparse representation accuracies and relative norm errors of dif-
ferent sparse coding algorithms in a range of varing λ. 39

Figure 4.6 Comparison between 15-layer DNN-SC algorithms and the original sparse
coding algorithms in terms of the average sparse representation relative
norm errors and Hoyer sparsity. 41

Figure 4.7 Comparison between the DNN-SC algorithms and the converged results
of their original algorithms in terms of the average sparse representation
relative norm errors and accuracy in a range of number of layers. 42

Figure 4.8 Image-denoising result: (a) Original image; (b) Noised: 20.17 dB; (c)
ISTA: 29.13 dB; (d) WISTA0.9: 29.88 dB; (e) WISTA0.7: 30.79 dB; (f)
WISTA0.5: 31.01 dB; (g) IHTA: 31.00 dB; and (h) OMP: 30.93 dB (from
top left to bottom right) . 44

Figure 4.9 Image-denoising result with DNN-SC algorithms: (a) LISTA: 29.71 dB;
(b) TISTA: 29.37 dB; (c) LWISTA0.9: 29.89 dB; (d) TWISTA0.9: 29.69
dB; (e) LWISTA0.7: 30.45 dB; (f) TWISTA0.7: 30.47 dB; (g) LWISTA0.5:
30.68 dB; (h) TWISTA0.5: 30.76 dB; (i) LIHTA: 30.82 dB; and (j) TI-
HTA: 30.80 dB (from top left to bottom right) 45

Figure 4.10Denoising results of one frame in the video ‘Fire Domino’ from the initial
PSNR of 20.19dB . 47

Figure 4.11Denoising results of one frame in the video ‘Statue of Liberty’ from the
initial PSNR of 20.17dB . 48

vii

Figure 5.1 (a)-(d) Contours of the constraint when dp(z)+hq(z) = ‖z‖pp+(|z|q)TR|z|q =
1, 2, 3 with z = [z1, z2] and R = [0, 0; 0, 0], [0, 0.5; 0.5, 0], [0, 1; 1, 0]
from top to bottom for each row; (e) Contours comparison among the
previous 4 cases when dp(z) + hq(z) = 1 with z = [z1, z2] and R =
[0, 0; 0, 0], [0, 0.5; 0.5, 0], [0, 1; 1, 0] from top to bottom; respectively red
straight line for (a) p = 1, q = 1, black dash line for (b) p = 1, q = 0.7,
blue straight line for (c) p = 0.7, q = 1 and green dash line for (d)
p = 0.7, q = 0.7 . 52

Figure 5.2 Coherence distribution of synthetic generated dictionary: (a) D0.15, (b)
D0.50 and (c) D0.80. 60

Figure 5.3 Average sparse representation errors and Hoyer sparsity convergence graph
of different algorithms with Gaussian random dictionary D0.15. 61

Figure 5.4 Average relative norm errors and support error of different algorithms in
a range of λ with optimized γ and Gaussian random dictionary D0.15. . . 62

Figure 5.5 Well matched recovered sparse representation (blue) compared with orig-
inal one (red) of algorithm Lasso, IILasso, IIWW0.7 in D0.15 (from up to
down). 63

Figure 5.6 Time cost of different algorithms with Gaussian random dictionary D0.15. 64
Figure 5.7 Average sparse representation errors and Hoyer sparsity convergence graph

of different algorithms with highly correlated dictionary D0.50. 64
Figure 5.8 Average relative norm errors and support error of different algorithms in

a range of λ with optimized γ and relatively highly correlated dictionary
D0.50. 65

Figure 5.9 Average sparse representation errors and Hoyer sparsity convergence graph
of different algorithms with highly correlated dictionary D0.80. 66

Figure 5.10Average relative norm errors and support error of different algorithms in
a range of λ with optimized γ and highly correlated dictionary D0.80. . . 67

Figure 5.11Average relative norm errors and support error of different algorithms with
optimized λ and γ in differently correlated dictionaries. 69

Figure 5.1210-fold cross validated Misclassification error of different algorithms in
different gene expression datasets. 70

Figure 6.1 Neurons update diagram comparison between (a) PO, e.g. ISTA, IHTA,
II-ISTA, etc.; and (b) CDA, e.g. Lasso, IILasso, IIWLasso, etc.. 74

Figure 6.2 Illustration comparison of unfolded k-th iteration (part surrounded by black
frame) for z = [z1; z2; z3] between (a) II-ISTA, where the optimal sparse
representation can be recursively obtained in two steps: z(k+1) = π1(b+
Hz(k), t), t = λ + γR|z|(k); and (b) IILasso and IIWLasso, where the
optimal sparse representation can be recursively implementing an iter-
ation with n = 3 steps, and every step contains two sub-steps: ti =

λ + γRi:|z| for IILasso and ti = |z(k)i |p−1(λ + γRi:|z|q) for IIWLasso,
zi = π1(bi + Hi:z, ti). x is the input signal, π1 is the soft thresholding
operator with a changing threshold t during the iterations, W = 1

αD
T,

b = Wx, H = I− 1
αD

TD, α > largest eigenvalue of DTD for II-ISTA
and α = 1 for IILasso and IIWLasso. 75

Figure 6.3 Relative norm errors and support error comparison between converged
results of different independently interpretable algorithms and their DNN-
SC versions in a range of layers with D0.15. 79

Figure 6.4 Average relative norm errors, average Hoyer sparsity and support error
comparison between different independently interpretable algorithms and
their DNN-SC versions with D0.15. 79

viii

Figure 6.5 Relative norm errors and support error comparison between converged
results of different independently interpretable algorithms and their DNN-
SC versions in a range of layers with D0.50. 80

Figure 6.6 Average relative norm errors, average Hoyer sparsity and support error
comparison between different independently interpretable algorithms and
their DNN-SC versions with D0.50. 81

ix

List of Tables

Table 3.1 Performance of different algorithms in various noise condition for 10 trails 25

Table 4.1 Denoising results of the sparse coding algorithms from a 20.17 dB noised
image . 43

Table 4.2 Denoising results of DNN-SC algorithms from a 20.17 dB noised image . 44
Table 4.3 Average denoising results of the DNN-SC algorithms from the first noised

video ‘Fire Domino’ with an initial PSNR of 20.17± 0.02 dB 47
Table 4.4 Average denoising results of DNN-SC algorithms for the noised video

‘Statue of Liberty’ with the initial PSNR of 20.17± 0.01dB 47

Table 5.1 Average relative norm errors and corresponded support error of different
algorithms with optimized parameters and Gaussian random dictionary
D0.15. 64

Table 5.2 Average relative norm errors and corresponded support error of different
algorithms with optimized parameters and relatively highly correlated dic-
tionary D0.50 . 65

Table 5.3 Average relative norm errors and corresponded support error of different
algorithms with optimized parameters and highly correlated dictionary D0.80 67

Table 5.4 abstract of Gene Expression Datasets 68

x

List of Abbreviations

BP Basis Pursuit
CDA the Coordinate Descent Algorithm
CS Compressed Sensing
DCT Discrete Cosine Transform
DNN Deep Neural Network
DNN-SC Deep Neural Network structured Sparse coding
DNN-ISTA DNN-structured ISTA, the same are DNN-IHTA, DNN-

WISTA and so on
LISTA Supervised Learned ISTA, ‘L’ stands for supervised

learning, the same are LIHTA, LWISTA and so on
TISTA Unsupervised Trained ISTA, ‘T’ stands for unsupervised

learning, the same are TIHTA, TWISTA and so on
FOCUSS Focal Underdetermined System Solver
FOCUSSDL FOCUSS based dictionary learning algorithm
HDLWL Hierarchical Dictionary Learning with Weighted `1 norm
II-DNN-SC independently interpretable DNN-SC
IHT Iterative Hard Thresholding
IHTA Iterative Half Thresholding Algorithm
II-ISTA Independently Interpretable ISTA
IILasso Independently Interpretable Lasso
IIWLasso Independently Interpretable Weighted Lasso
IIWL one special case of IIWLasso that choosing p ∈ (0, 1) and q = 1
IIWR one special case of IIWLasso that choosing p = 1 and q ∈ (0, 1)
IIWW one special case of IIWLasso that choosing p = q ∈ (0, 1)
ISTA Iterative Shrinkage Thresholding Algorithm
K-SVD K-means Singular Value Decomposition
Lasso Least Absolute Shrinkage and Selection Operator
MOD Method of Optimal Directions
OMP Orthogonal Matching Pursuit
PDLA The Proximal Dictionary Learning Algorithm
PO Proximal Operator
PSNR Peak Signal-to-Noise Ratio
SNR Signal-to-Noise Ratio
SVD Singular Value Decomposition
WISTA Weighted Iterative Shrinkage Thresholding Algorithm
WISTA0.9 The number 0.9 after WISTA stands for the p value used

in WISTA, The same are the other weighted algorithms
2/3PO the algorithm which use PO to solve ` 2

3
norm regularization

IIPO Independently Interpretable PO
II2/3PO Independently Interpretable 2/3PO

xi

List of Symbols

A Matrix
a Vector
ai The i-th element of vector a
Ai: The i-th row of A
A:j The j-th column of A
AT Transposed matrix of A
A−1 The inverse matrix of the matrix A
Aij The entry at the i-th row and j-th column of A
‖a‖0 `0 norm of a
‖a‖1 `1 norm of a
‖a‖2 `2 norm of a
‖a‖p `p norm of a
‖A‖F Frobenius norm of A
‖A‖1 `1 norm of A (

∑
i,j |Aij |)

R Real numbers
I Identity matrix
D Synthesis dictionary, sized as m× n
x Input data vector, sized as m× 1
X Input data set, sized as m×N , X = (x1, ...,xN)
z Sparse representation vector, sized as n× 1
Z Sparse representation set, sized as n×N , Z = (z1, ..., zN)

z(k) k in the bracket stands for number of iterations or layers in algorithms
R coherence based matrix for regularization, sized as n× n
π1(x, t) Soft thresholding operator, the same is πt(x)
π 1

2
(x, t) Half thresholding operator for ` 1

2
norm regularization

π 2
3
(x, t) ` 2

3
norm regularization proximal operator

xii

Acknowledgment

The completion of this study could not have been possible without the expertise of Professor
Shuxe Ding and Professor Xiang Li, my mentors and supervisors during the doctoral project.
Your guidance, patience, and continuous encouragement help me going through difficulties and
obstacles in this study.

I would also like to use this opportunity to give my thanks and appreciation to the members
of my dissertation committee, Professor Xin Zhu, Professor Yuichi Okuyama and Professor
Konstantin Markov. Thanks for your suggestions and advises for this thesis.

A debt of gratitude is also owed to colleagues at Cognitive Science Laboratory, University
of Aizu, Yujie Li, Zhenni Li, Benyin Tan, Huakun Huang and Lingjun Zhao. Thanks for their
dedicated assistance and infinite support throughout my studies.

Last but not the least, this thesis would not have been possible without the most devoted,
supportive, and caring family. To my parents, Gang Zhao and Zhen Tang, I would like to
send my deepest gratitude, appreciation and affection for the unconditional support, persistent
encouragement, inspirational advice, and endless love. To my dear girlfriend, Tiantian Sun,
thanks for your patience and understanding. You have been a guide, a motivator, a comfort, and
a role model, and for all these and more I am deeply indebted to you.

xiii

Abstract

Sparse representation, which aims at finding appropriate sparse representations of data with
an overcomplete dictionary set, has been proven to be a powerful tool for analysis and processing
of various signals. Performance of sparse representation mainly depends on a well-defined
dictionary and an appropriate sparse constraint for corresponding data.

In this thesis, we concentrate on emphasizing the importance of `p norm (0 < p < 1) in
three different directions in sparse representation to show its potential in enhancing sparsity
and accuracy. At first, we consider a dictionary learning problem with `p norm (0 < p < 1)
regularization. The algorithms use two approximations for `p norm (0 < p < 1) which make
the optimization problem convex and smooth during iterations, and thus we can use gradient
descent to update both dictionary and sparse representation sets. We validate in synthetic data
experiments that the proposed dictionary learning algorithm can recover dictionary to 100%
while obtaining accurate sparse representation set.

Then, we propose to construct a family of `p norm (0 < p < 1) based Deep Neural Network
structured Sparse Coding (DNN-SC) algorithms. DNN-SC uses parameter training method-
ology in Recurrent Neural Network (RNN) to train parameters in a truncated sparse coding
algorithm. The encoder with well-trained parameters can perform as good as converged sparse
coding algorithms while obviously enhancing efficiency. In both synthetic data experiments and
denoising experiments for real images and videos, we show that `p norm (0 < p < 1) based
DNN-SC algorithms can obtain better performances. We also validate that by using unsuper-
vised `p norm (0 < p < 1) based DNN-SC algorithm, it is possible to conduct online video
denoising for 25 frames/s (360× 480 pixels per frame) gray-scaled videos using CPU only.

What is more, we show how a well-posed sparsity constraint can affect performances in
highly correlated data by introducing `p norm (0 < p < 1) into the regularization part of In-
dependently Interpretable Lasso (IILasso). The regularization of IILasso introduces coherence
information in dictionary to implement the strategy of selecting uncorrelated variables which
functions well in various highly correlated data. We show that the new independently inter-
pretable regularization with `p norm (0 < p < 1) can obtain smaller relative norm error and
support error. Furthermore, we construct DNN-SC algorithms based on independently inter-
pretable algorithms. Synthetic data experiments show that DNN-SC can also help enhancing
efficiency of independently interpretable algorithms.

Chapter 1

Introduction

1.1 Sparse Models for Signal Representation

Many natural and measure signals are distributed in a high dimensional space. They can

be modelled using low-dimensional structures and be represented using just a few variables

in an appropriate model [1]. Signal models are the cores of various signal processing tasks,

such as compression, denoising, sampling, classification and so on [2]. Signal models are a

fundamental tool for facilitating the distinctiveness of the interesting signals. A signal model

formulates a mathematical description of the family of interesting signals, which is the guarantee

to distinguish them from the rest of the signal space. Essentially, a signal model is a set of

mathematical properties that the data is believed to satisfy [2]. Moreover, a good signal model

should be simple while matching the signals.

With advancements in mathematics, linear representation methods have been well studied

and have recently received considerable attention [3, 4]. In the past decade, the sparse and

redundant representation model has been proved to be important and useful [5–7]. Sparse repre-

sentation, from the viewpoint of its origin, is directly related to compressed sensing (CS) [8–10],

which is one of the most popular topics recently. In [8], Donoho first proposed the original con-

cept of compressed sensing. CS theory suggests that if a signal is sparse or compressive, the

original signal can be reconstructed by exploiting a few measured values, which are much less

than the ones suggested by the theories used previously. Candès et al. [9], from the mathematical

perspective, demonstrated the rationale of CS theory, i.e. the original signal could be precisely

reconstructed by utilizing a small portion of Fourier transformation coefficients. These litera-

ture [8, 9, 11–13] laid the foundation of CS theory and provided the theoretical basis for future

1

CHAPTER 1. INTRODUCTION

research. What is more, CS theory always includes the three basic components: sparse repre-

sentation, encoding measuring, and reconstructing algorithm. As an indispensable prerequisite

of CS theory, the sparse representation theory is the most outstanding technique used to conquer

difficulties which appear in many fields. Sparse representation has attracted much attention In

the past decade. It has also been proven to be an extraordinary powerful solution to a wide range

of application fields, especially in signal processing, image processing, machine learning, and

computer vision, such as denoising, debluring, inpainting, restoration, super-resolution, visual

tracking, classification and segmentation [14–20].

The goal of sparse representation is to approximate a signal by a linear combination of a

small number of elementary components, called atoms, which are chosen from an overcomplete

dictionary (the number of atoms is greater than the dimension of the signal). Approaches of

sparse representation is conducted by solving the underdetermined linear system,

X = DZ, (1.1)

or

X ≈ DZ, s.t. ‖X−DZ‖2F ≤ ε, (1.2)

where X ∈ Rm×N is the signal set that we are to model and process, D ∈ Rm×n, (m < n), is a

possible dictionary [2]. Since m < n, where it contains n atoms of size m× 1, the dictionary is

column overcomplete, i.e., redundant. Here Z ∈ Rn×N is the representation coefficient matrix.

In the model of sparse representation, it is assumed that we can use few atoms to represent

every signal in X, thus the representation Z is supposed to be sparse, that is, most elements are

0-valued. The name “synthesis” comes from the relation (1.1), with the interpretation that the

model describes a way to use D and Z to synthesize signals X [21].

1.2 Related works

Since D is overcomplete, this signal reconstruction task is ill-posed with infinite solutions if

there is no restriction on Z. Assuming that we have an appropriate dictionary, to find a sparsest

one in the infinite solutions can be a meaningful mode and can make the problem well-posed,

which is the essence of sparse coding. Therefore, the optimization problem is commonly used

2

1.2. RELATED WORKS

to search for the optimal solution of the underdetermined linear system,

min
Z
g(Z) subject to ‖X−DZ‖2F ≤ ε, (1.3)

where g(Z) functions as the sparsity constraint. g(Z) = ‖Z‖pp is the most commonly used

sparse regularization. The sparsest solution can be guaranteed when using the `0 norm, p = 0,

where the regularization counts the number of nonzero entries in Z. Orthogonal matching pur-

suit (OMP) is successful sparse coding algorithm with `0 norm [21], which can always find

sufficiently sparse solutions. Though OMP is not computationally prohibited with large data

size, it still faces the problem of high computational complexity. By accepting relaxation on the

sparse constraint, we have the the `1 norm, p = 1, which is often selected as the sparsity con-

straint for its reasonable sparsity-pursuing ability and convex property, for example, the Iterative

Shrinkage Thresholding Algorithm (ISTA) [22], Least Absolute Shrinkage and Selection Oper-

ator (Lasso) using CDA [23, 24], Basis Pursuit (BP) [25] and FOCal Underdetermined System

Solver (FOCUSS) [26]. While searching for a sparser and more accurate representations, the

`p norm, where p ∈ (0, 1), can be an alternative choice as a relaxation approach. Although the

`p norm (0 < p < 1) makes the optimization problem nonconvex, it has proven its possibility

in enhancing the sparsity and accuracy of solutions compared to the `1 norm. For example, the

`1/2 norm regularization [27,28], `2/3 norm regularization [28,29], weighted approximation for

`p norm (0 < p < 1) [30–34]. Except the most commonly used sparse regularization, there

are some other sparse reglarizations which use different functions to define the sparsity of the

coefficient matrix. For example, one can use the combination of logarithm and the absolute

value function to define the sparsity constraint, g(Z) =
∑N

j=1

∑n
i=1 log(1 + |Zij |/δ) [35, 36],

where δ is a positive constant. The log-regularizer functions well as a sparsity constraint but it

is also nonconvex and nonsmooth.

However, the above sparse regularization only consider low coherence conditions of data,

and typical theoretical supports are also based on small correlation assumptions such as re-

stricted eigenvalue condition [37, 38]. When signals are highly correlated, the coefficient also

tends to be jointly correlated. Consequently, sparse coding with normal sparse regularization

cannot provide efficient evidence for judging independent variable contribution and interpreting

the highly correlated model. The process of interpreting models is named as ”decomposability”

in [39], representing for the ability of how a model can be decomposed into several parts and

3

CHAPTER 1. INTRODUCTION

its components can be interpreted separately. In 2018, Takada et al. propose a new regular-

ization, named Independently Interpretable Lasso (IILasso), which is composed with coherence

between dictionary columns to enhance the ability of choosing uncorrelated variables in sparse

coding [40]. IILasso has proven to be efficient in highly correlated data and provides smaller

misclassification error than several other sparse coding algorithms. However, IILasso has the

same problem as the other `1 norm based regularization that its result is not sparse and accurate

enough.

To ensure the effectiveness of the model, the dictionary D is supposed to fit the signal set X

well, whereas we can hardly use few atoms to represent signals. Building dictionary D can be

generally divided into two categories. One is choosing a prespecified matrix as dictionary, for

example, the discrete cosine transform for JPEG, the discrete wavelet transform for JPEG2000

and the discrete Fourier transform [41, 42]. Another one considers learning a self-adaptive

dictionary based on signal set during procedure, which can usually result in better matching

to the contents of the signals and then result in better performance in sparsity and accuracy.

Dictionary learning is a classical methodology to train signal-adaptive parameter for sparse

coding, and the optimization problem becomes,

min
D,Z

g(Z) subject to ‖X−DZ‖2F ≤ ε, (1.4)

Dictionary learning is usually achieved by alternatively updating sparse representation set and

dictionary, that is, a iteration in dictionary learning algorithms usually contain a sparse coding

stage and a dictionary learning stage. K-means Singular Value Decomposition (K-SVD) [43,

44] and the Method of Optimal Directions (MOD) [45] are two classical dictionary learning

algorithms which both utilize OMP for their sparse coding stage, but use different method for

their dictionary updating. FOCUSS-CNDL [26] is a `1 norm based dictionary learning example.

Moreover, the Proximal Dictionary Learning Algortihm (PDLA) [36] use the log-regularizer as

the sparsity constraint.

To further enhance efficiency of obtaining sparse representations based on the sparse model,

it is possible to use the DNN structure and corresponding learning procedure in sparse coding

based the structure similarity between iterative shrinkage sparse coding algorithms and Recur-

rent Neural Network (RNN). Deep Neural Network structured Sparse Coding (DNN-SC) is a

methodology which aims at training a encoder from a truncated sparse coding algorithm to

4

1.3. MOTIVATIONS AND CONTRIBUTIONS

approximate converged performance of the original algorithm. In 2010, Gregor and LeCun in-

troduced the idea with ISTA, where the learned DNN encoder can perform nearly 10 times faster

than the original sparse coding algorithm, i.e., ISTA [46]. In 2015, Sprechmann et al. showed

that it is possible to learn the DNN without requiring the true answers to serve as the training

labels, i.e., the unsupervised learning is possible [47]. Furthermore, the methodology of DNN-

SC have been applied in different sparse coding algorithms with similar structure as ISTA, for

example, Iterative Hard Thresholding (IHT) [48], Approximate Message Passing (AMP) [49]

and so on.

1.3 Motivations and Contributions

As mentioned above, studies on sparse representation model have led to several directions

for optimizing sparse representation algorithms, namely developing new sparsity constraints,

developing new dictionary learning algorithms, and developing DNN-SCs. `1 norm is attractive

and have been implemented in the three directions. However, `1 norm regularizations usually

have the problem that results are not sparse and accurate enough. Therefore, we try to address

importance of `p norm (0 < p < 1) in the three directions for optimizing sparse representation

algorithms.

In Chpater 3, we presented a dictionary learning algorithm to train a data adaptive dictio-

nary with `p norm (0 < p < 1) regularization. The algorithm utilizes two approximations in

the regularization, namely weighted `1 norm for `p norm and a smoothed approximation for

the absolute value, to make it possible to use gradient descent method to update both sparse

coefficient set and dictionary.

In Chapter 4, we proposed to implement parameter training methods of RNN in `p norm

(0 < p < 1) based iterative shrinkage algorithms. We show how we can formulate `p norm

(0 < p < 1) based DNN-SCs by unfolding truncated iterations of their original algorithms.

Moreover, we present how we can train DNN-SCs supervisedly or unsupervisedly. Furthermore,

we validate that DNN-SCs are possible to conduct online video denoising in experiments.

In Chapter 5, we introduce `p norm (0 < p < 1) to the coherence related regularization

of IILasso for processing highly correlated data. To efficiently solve the non-convex problem

brought by `p norm (0 < p < 1), we use CDA with weighted `1 norm and the Proximal Operator

(PO) to solve the optimization problem with the new regularization. Moreover, we validate that

5

CHAPTER 1. INTRODUCTION

our proposed algorithm can interpret the “decomposability” of highly correlated gene expression

datasets and thus present reasonable suggestions for diseases and developmental stages on gene

expression.

In Chapter 6, we further enhance efficiency of different independently interpretable algo-

rithms. We present how to build the structures and train parameters for independently inter-

pretable DNN-SC algorithms.

1.4 Thesis Outline

We start by providing a more detailed introduction about sparse coding, dictionary learning,

DNN-SC in Chapter 2. In this Chapter, we mainly review some methods and techniques that

can be used for sparse coding, dictionary learning and DNN-SC. In Chapter 3, we present a

dictionary learning algorithm with `p norm (0 < p < 1). In Chapter 4, we propose to construct

`p norm (0 < p < 1) based DNN-SCs for online processing. In Chapter 5, we introduce `p

norm (0 < p < 1) in the regularization part of IILasso for processing highly correlated data.

In Chapter 6, we further construct DNN-SCs for algorithms in Chapter 5 to enhance efficiency

of algorithms. In Chapter 7 we summarize our contributions in the thesis and present some

directions for further research. A brief thesis structure diagram is present in Figure 1.1.

1.5 Publications

The following papers have been published or submitted and currently under review in peer

reviewed journals and conferences. Most of the results presented in Chapter 3, 4 and 5 are

published in these works.

Journals

[1] Haoli Zhao, Shuxue Ding, Xiang Li and Huakun Huang, ”Deep Neural Network Struc-

tured Sparse Coding for Online Processing,” IEEE Access, 6, pp.74778-74791, 2018.

[2] Haoli Zhao, Shuxue Ding, Xiang Li and Lingjun Zhao, ”`p Norm Independently In-

terpretable Regularization based Sparse Coding for Highly Correlated Data,” IEEE Access, 7,

pp.53542-53554, 2019.

[3] Huakun Huang, Haoli Zhao, Xiang Li, Shuxue Ding, Lingjun Zhao and Zhenni Li,

”An Accurate and Efficient Device-Free Localization Approach Based on Sparse Coding in

Subspace,” IEEE Access, 6, pp.61782-61799, 2018.

6

1.5. PUBLICATIONS

Figure 1.1: The architecture of the thesis.

[4] Yujie Li, Shuxue Ding, Benying Tan, Haoli Zhao and Zhenni Li, ”Sparse Representation

Based on the Analysis Model With Optimization on the Stiefel Manifold,” IEEE Access, 7,

pp.8385-8397, 2019.

[5] Lingjun Zhao, Huakun Huang, Xiang Li, Shuxue Ding, Haoli Zhao and Zhaoyang Han,

”Accurate and Robust Approach of Device-Free Localization with Convolutional Autoencoder,”

IEEE Internet of Things Journal, accepted, 2019.

Conferences

[1] Haoli Zhao, Shuxue Ding, Yujie Li, Zhenni Li and Xiang Li, ”Dictionary Learning for

sparserepresentation using weighted `1 norm,” in 2016 IEEE Global Conference on Signal and

Information Processing (GlobalSIP), pp. 292-296, 2016.

[2] Yujie, Li, Shuxue Ding, Benying TanXiang Li Zhenni Li and Haoli Zhao, ”Nonnegative

sparse representation based on the determinant measure,” in 2016 IEEE International Confer-

ence on Digital Signal Processing (DSP), pp. 599-603, 2016.

7

Chapter 2

Background

Situated at the heart of signal and image processing, data models are fundamental for stabi-

lizing the solution, and enabling other tasks, such as signal compression, denoising, sampling,

classification and so on [50]. A model is a set of mathematical relations that the data is believed

to satisfy. Models are central in signal processing. How to choose a highly simple and reliable

model is an essential task. Among the many ways, the sparse-based model has been proved to be

important and useful. Development of sparse representation for signals is driven by the fact that

a great deal of real world signals and data can be represented by a linear combination of a few

representative elements from a dictionary base in certain signal models and hence the efficiency

and capacity can be enhanced during processing. Reviewing the object of sparse representation,

one is required to recover a sparse estimation z ∈ Rn from a lower-dimensional measured signal

x ∈ Rm, n > m, in the following linear relationship,

x = Dz+ v, (2.1)

where D ∈ Rm×n is a dictionary matrix, and v ∈ Rm is the measurement noise. Since D

is overcomplete, this signal reconstruction task is ill-posed with infinite solutions if there is no

restriction on z. In various applications, to find a sparse one in the infinite solutions can be a

meaningful mode and can make the problem well-posed, which is the essence of sparse coding.

Therefore, the optimization problem is commonly used to search for the optimal solution of the

linear signal model,

min
z
g(z) subject to ‖x−Dz‖22 ≤ ε, (2.2)

where g(z) functions as the sparsity constraint.

8

2.1. SPARSE CODING

Building appropriate D for sparse representation is a key issue in the optimization problem,

which can be generally divided into two categories. One is choosing a prespecified matrix as

dictionary, thus the optimization problem only concentrate on obtaining sparse and accurate

coefficient Z, namely it is a sparse coding problem. The second category considers designing a

self-adaptive dictionary based on signal examples during learning procedure, which can usually

result in better matching to the contents of the signals and then result in better performance

in sparsity and accuracy. The methodology of building a self-adaptive dictionary is named as

dictionary learning for sparse coding, which can be regard as a way to train better parameter for

sparse coding.

Furthermore, there is an another methodology to train parameters for sparse coding, which

is based on the similar structure between iterative shrinkage sparse coding algorithms and Re-

current Neural Network (RNN). A typical RNN receives features and subjects them to a deep

structure of many layers for processing, where each layer consists of a linear transformation fol-

lowed by a component-wise nonlinearity transformation. The structure of one layer in a typical

RNN is similar to that of one iteration in iterative shrinkage sparse coding algorithms, which

provides the possibility of using gradient-based learning methods in RNNs to train parameters

in truncated sparse coding algorithms. This methodology is called Deep Neural Network struc-

tured Sparse Coding (DNN-SC) algorithm.

In the following sections of this chapter, we will discuss in detail about sparse coding in

Section 2.1, dictionary learning in Section 2.2, and DNN-SC in Section 2.3.

2.1 Sparse Coding

Reviewing sparse coding, we tend to find a proper approach to obtain an optimal sparse

solution z ∈ Rn from given noisy data x ∈ Rm based on the following optimization problem,

min
z
L(z) =

1

2
‖x−Dz‖22 + λg(z), (2.3)

where D ∈ Rm×n is an given overcomplete dictionary matrix with n > m, and g(z) func-

tions as the sparsity regularization. Effectiveness of sparse regularization can directly influence

performance of sparse coding algorithms.

9

CHAPTER 2. BACKGROUND

-3 -2 -1 0 1 2 3

Z1

-3

-2

-1

0

1

2

3

Z
2

p=1.0

(a)

-10 -5 0 5 10

Z1

-10

-8

-6

-4

-2

0

2

4

6

8

10

Z
2

p=0.5

(b)

-200 -100 0 100 200

Z1

-250

-200

-150

-100

-50

0

50

100

150

200

250

Z
2

p=0.2

(c)

-1 -0.5 0 0.5 1

Z1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Z
2

(d)

Figure 2.1: (a)-(c) Contours of the constraint when g(z) = ‖z‖pp = 1, 2, 3 with z = [z1, z2] and
different p values from left to right; (d) Contours comparison among the previous 3 cases when
g(z) = 1 with z = [z1, z2]; respectively red straight line for (a) p = 1, blue dot line for (b)
p = 0.5 and black dash line for (c) p = 0.2 .

The most commonly used sparse regularization setting is,

g(z) = ‖z‖pp, (2.4)

Based on the sparse regularization, the sparsest solution can be guaranteed when using the

`0 norm, namely p = 0, that the regularization counts the number of nonzero entries in z.

However, this is a combinatorial optimization problem, where searching for an accurate sparse

representation with large n is computationally prohibited. [42]. One typical alternative method

is using a greedy algorithm to find the most related variables such as OMP [21, 51], which can

always find sufficiently sparse solutions. Though OMP is not computationally prohibited with

large data size, it still faces the problem of high computational complexity.

Another idea to solve the optimization problem relies on relaxation-based approaches. For

example, the `1 norm, where p = 1, shown in Figure 2.1(a), is often selected as the sparsity

constraint for the optimization problem, e.g., the FOCal Underdetermined System Solverthe

(FOCUSS) [26] using gradient descent method by assuming the existence of a gradient factor-

ization of g(z), Iterative Shrinkage Thresholding Algorithm (ISTA) [22] using PO and Least

Absolute Shrinkage and Selection Operator (Lasso) using CDA [23, 24]. The `1 norm is attrac-

tive because it is a convex problem and can achieve reasonable performance.

While searching for sparser and more accurate representations, the `p norm, where p ∈

(0, 1), shown in Figure 2.1, can be an alternative choice as a relaxation approach. The contours

is getting more concave with smaller p value, indicating that using `p norm regularization tends

to choose fewer variables and thus enhancing sparsity. Although the `p norm (0 < p < 1) makes

the optimization problem nonconvex, it has proven its possibility in enhancing the sparsity and

accuracy of solutions compared to the `1 norm. For example, we can solve `p norm (0 < p <

10

2.1. SPARSE CODING

1) regularization by PO, e.g., the `1/2 norm regularization [27, 28], `2/3 norm regularization

[28,29]; and we can also use weighted `1 norm to approximate the effect of `p norm (0 < p < 1)

[30–34].

Furthermore, we can also use different functions to define the sparsity of the coefficient

matrix. By combine logarithm and the absolute value functions, we can use the log-regularizer

to define the sparsity,

g(Z) =
N∑
j=1

n∑
i=1

log(1 + |Zij |/δ), (2.5)

where δ is a positive constant. To solve the nonconvex and nonsmooth optimization problem

with log-regularizer, we can again use the proximal operator, e.g., the iterative log thresholding

[35].

However, the above sparse regularizations in equation (2.4) mainly focus on low coherence

conditions of data, and typical theoretical supports are also based on small correlation assump-

tions such as restricted eigenvalue condition [37, 38]. When signals are highly correlated, the

coefficient also tends to be jointly correlated. Consequently, sparse coding with normal sparse

regularization cannot provide efficient evidence for judging independent variable contribution

and interpreting the highly correlated model. The process of interpreting models is named as

”decomposability” in [39], representing for the ability of how a model can be decomposed

into several parts and its components can be interpreted separately. To resolve the problem

with correlated data, there are several sparse coding methods have been proposed based on the

idea of selecting uncorrelated variables, and thus obtain decomposability. Uncorrelated Lasso

(ULasso) [52] intends to construct a model with uncorrelated variables and form the regulariza-

tion with coherence related parameter R,

g(z) = ‖z‖1 + zTRz. (2.6)

However, the regularization still tends to select “negatively” correlated variables and hence the

correlation problem is not resolved. Exclusive Group Lasso (EGLasso) [53] is proposed to

solve correlated problem by defining groups with high coherence beforehand and gives the

group-related regularization,

g(z) = ‖z‖1 +
K∑
k=1

‖zk‖21, (2.7)

11

CHAPTER 2. BACKGROUND

whereK is the number of groups. This regularization can be effective for correlated data when it

is properly grouped, but it is necessary to group correlated variables over a determined threshold

beforehand, which makes this algorithm unstable. IILasso reforms the regularization of ULasso

by z with its absolute value,

g(z) = ‖z‖1 + |z|TR|z|, (2.8)

where |z| stands for using absolute value vector of z. This change successfully makes it efficient

in selecting uncorrelated variables and perform better than ULasso and EGLasso in experiments.

However, IILasso still suffers the same problem as the other `1 norm based regularizations that

its result is usually not sparse and accurate enough.

2.2 Dictionary Learning for Sparse Representation

Reviewing the object of dictionary learning for sparse representation, we tend to find a

proper approach to obtain both an optimal overcomplete dictionary matrix D ∈ Rm×n with

n > m and corresponding sparse solution set Z ∈ Rn×N from given noisy data set X ∈ Rm×N

based on the following optimization problem,

min
D,Z

L(D,Z) =
1

2
‖X−DZ‖2F + λg(Z), (2.9)

where g(Z) functions as the sparsity regularization.

The most commonly used methodology for solving dictionary learning problem is usually

separated into two stages:

1. Sparse coding stage: assuming that the dictionary D is known, find the proper sparse

representation set Z by using the data set X;

2. Dictionary learning stage: assuming that the proper sparse representation set Z is known,

use the data set X to find the most satisfied dictionary D.

In the sparse coding stage, we use updated dictionary from previous iteration to update

sparse representation set Z with sparse coding algorithms mentioned in the previous section.

While in the dictionary learning stage, the optimization problem is,

min
D

L(D) =
1

2
‖X−DZ(k−1))‖2F , (2.10)

12

2.3. DEEP NEURAL NETWORK STRUCTURED SPARSE REPRESENTATION

where k stands for iteration number. Since the sub-optimization problem for dictionary learning

is convex, it is possible to directly use gradient descend method to update dictionary, which

is employed in FOCUSS-CNDL [26] with FOCUSS in its sparse coding stage. Moreover, an-

other classical dictionary learning algorithm is the Method of Optimal Directions (MOD) [45],

which updates the overall set of atoms simultaneously by optimizing a least squares problem,

but facing the problem that its convergence could not be guaranteed. Furthermore, singular

value decomposition (SVD) is also a possible route for updating dictionary, which is employed

in K-SVD [43, 44]. K-SVD updates columns of dictionary one by one using corresponding

largest singular vector, which can usually learn a good dictionary and improve the convergence.

However, SVD is computationally expensive in high dimension data. What is more, by in-

troducing a coherence related term in the dictionary learning stage, PDLA use the proximal

operator to update dictionary columns based on the assumption that dictionary columns are not

correlated [36].

2.3 Deep Neural Network structured Sparse Representation

DNN-structured sparse representation algorithms are based on the idea of unfolding an it-

erative algorithm with shared parameters through specific layers based on the processing sim-

ilarity between the iterative algorithm and the Recurrent Neural Network (RNN), which was

developed by Domke and applied to the tree-reweighted belief propagation and mean-field in-

ference [54, 55]. Gregor and LeCun were the first to implement this idea in the sparse coding

algorithm [46]. They unfolded the structure of ISTA, as shown in Figure. 2.2(a), to form a feed-

forward neural network named Learned ISTA (LISTA), which is illustrated in Figure. 2.2(b).

LISTA is a supervised learned neural network that requires inputting a dataset of signals and

corresponding sparse representations (as labels for training) pairs to a truncated unfolded ISTA

structure to train the weights and bias. The learned DNN from LISTA has proven its efficiency

in estimating spare representations of other signals besides the ones used in training, which can

reach the converged result standard of ISTA with much fewer layers than the number of ISTA

convergent iterations. Sprechmann et al. proposed the unsupervised Trained ISTA (TISTA) [47].

TISTA has a similar neural network structure to LISTA because both of them form from a trun-

cated unfolded ISTA structure, as shown in Figure. 2.2(c), but TISTA changes the learning

procedure by adding a decoder at the end of the network. By requiring the output as close as

13

CHAPTER 2. BACKGROUND

(a)

(b)

(c)

Figure 2.2: (a) Illustration of the ISTA algorithm for sparse coding. The optimal sparse rep-
resentation can be obtained by the recursive structure z(k) = π1(Wx + Hz(k−1), t), where
x is the input signal, π1(x, t) is the soft thresholding function with threshold t, W = 1

αD
T,

H = I− 1
αD

TD, and α is a restriction parameter for ISTA. (b) Network structure of the super-
vised learned DNN-ISTA, which is named LISTA, formed from unfolded ISTA and truncated
to a fixed number of iterations (3 here). W, H, t are trainable parameters in the network to give
an approximate sparse representation on a given dataset. (c) Network structure of the unsuper-
vised learned DNN-ISTA, which is named TISTA. TISTA has a similar propagation structure to
LISTA, and W, H, and t are targeted trainable parameters. The key difference is that TISTA
uses a decoder to output x as the learning objective, where the original x is the known input.
On the contrary, original z, which is required for supervised learning, is a priori knowledge.

14

2.3. DEEP NEURAL NETWORK STRUCTURED SPARSE REPRESENTATION

possible to the input, it becomes possible to directly learn the weights and bias from the loss

function of the original sparse representation problem. Consequently, TISTA avoids using the

true sparse representations for a separated training and enables the online network learning and

processing procedure simultaneously. The unfolded ISTA also shows that DNN-SC can help

learning the optimal nonlinear threshold functions for iterative sparse coding to achieve better

performances in known datasets [56, 57]. Kamilov and Mansour [56] proposed to learn the

nonlinear activation function, which is modeled using cubic B-splines through DNN-structured

ISTA. The learned nonlinear threshold can result in better accuracy than ISTA. Mahapatra et

al. [57] proposed a more parsimonious representation of the thresholding function using a linear

expansion of thresholds during learning. Furthermore, the DNN can be applied to other itera-

tive spare coding algorithms such as Iterative Hard Thresholding (IHT) [48] and Approximate

Message Passing (AMP) [49]. Both IHT and AMP have the similar structure as ISTA: all func-

tions in these sparse coding algorithms are continuous and overall differentiable throughout;

thus, they can be unfolded, and the parameters in their structures can be learned as a DNN.

Moreover, Moreau and Bruna presented mathematical explanations about the acceleration of

DNN-structured algorithms by analyzing the specific matrix factorization in the Gram kernel of

dictionaries [58]. The findings show that the learning procedure in DNN-SC attempts to diag-

onalize the kernel with a basis, which produces a small perturbation of the original `1 space,

and the learning may fail if there is no factorization. Efforts are also made to combine sparse

coding algorithms with different DNN structures. The convolutional neural networks (CNN),

which have proven its superiority in image processing tasks, have been widely combined with

sparse coding algorithms for image classification [59–61] and image restoration [62–64]. These

deep learning architectures are significantly different from DNN-SC since they are not truncated

iterative SC algorithms but using sparse coding structure to reconstruct signal for specific tasks.

A notable difference is that the output signal is, e.g., class labels in the general deep learning

architectures. In this paper, the output signal is z, since the purpose is to present signal x with a

sparse z.

15

Chapter 3

Dictionary Learning for Sparse

Representation using Weighted `1

Norm

3.1 Introduction

Dictionary learning is a classical methodology to enhance performance of sparse coding.

Based on the signal model (2.1), we tend to use few variables in dictionary to represent signals,

thus an appropriate dictionary which fit data well can directly help improve performance of

sparse coding. In this chapter, we propose to employ the `p norm (0 < p < 1) as sparsity

constraint in the dictionary learning problem. To solve the problem brought by the nonconvex

property of the the `p norm (0 < p < 1), we introduce the weighted `1 norm to convexly

approximate `p norm (0 < p < 1) and combined with the hierarchically alternating update

strategy [65] which is an idea firstly applied in dictionary learning for nonnegative signals with

the other sparsity constraints. To further solve the problem that the absolute value function is not

derivable at zero, we propose to use logarithm and hyperbolic function to approximate absolute

value function. We present an efficient algorithm for learning dictionary with the weighted

`1 norm as sparsity constraint, including two alternating phases: sparse coding and dictionary

update. This algorithm presents good robustness to noise when signal-to-noise ratio (SNR) is

higher than 10 dB that dictionaries can be recovered to nearly 100%.

The remainder of this chapter is organized as follows. The formulation of our algorithm is

presented in Section 3.2. This section describes details of the targeted minimization problem, the

16

3.2. PROBLEM FORMULATION

weighted `1 norm and formation of the hierarchically alternating update strategy. In section 3.3,

the idea and structure of the algorithm are shown. Procedure of the algorithm throughout one

iteration is presented. Then we present results of numerical experiments conducted in section

3.4 to evaluate the algorithms ability of recovering dictionary and finding sparse representation,

then comparison with the other classical algorithms are shown to present the potential advantage

of this algorithm. Finally, chapter summary is drawn in Section 3.5.

3.2 Problem formulation

The algorithm we present in this chapter is for learning a proper dictionary, which aims at

representing data sparsely. The algorithm is based on the signal model as follow,

X = DZ+V, (3.1)

where X = (x1, ...,xN) ∈ Rm×N is the given data set. During procedure of the algo-

rithm, we try to approach to a dictionary D ∈ Rm×n which can perform the best possible

sparse representation based on the given data and the chosen sparsity constraint in this study.

Those corresponding sparse representation set is labeled as Z = (z1, ..., zN) ∈ Rn×N and

V = (v1, ...,vN) ∈ Rm×N is corresponding Gaussian distributed noise. The problem is recon-

structed as the following problem using maximum a posteriori estimation [26],

(DMAP,ZMAP) = argmax
D,Z

P (D,Z|X) = argmin
D,Z

L(D,Z), (3.2)

L(D,Z) =
1

2
‖X−DZ‖2F + λdp(Z), (3.3)

where λ > 0 is a tuning parameter to adjust the effect of the sparse constraint dp(z), which is a

`p norm (0 < p < 1) regularization formulated as follow,

dp(z) = ‖z‖pp =
n∑
i=1

|zi|p. (3.4)

We choose `p norm (0 < p < 1) regularization because of its property in pursuing good

sparsity and accuracy, but this choice makes the optimization problem a non-convex one, which

means the problem may have multiple local minimum. Thus, we propose to use weighted `1

17

CHAPTER 3. DICTIONARY LEARNING FOR SPARSE REPRESENTATION USING WEIGHTED `1 NORM

norm to approximate the `p norm (0 < p < 1) regularization, which can be reformed as follows,

dp(z) = ‖z‖pp ≈
n∑
i

|z(k−1)i |p−1|zi|, (3.5)

where k represents the number of iterations. Benefited from the approximation, the regulariza-

tion becomes convex, while the absolute value of zi is still a barrier to calculate the loss function

directly because it is not derivable at zero. To solve this problem, we proposed to introduce a

smoothed approximation for the absolute value,

|z| = 1

c
log cosh (cz), (3.6)

where higher value of the constant cmakes the approximation more similar to the absolute value

function. With this approximation, the sparsity constraint function is derivable in any points.

For the reason of finding results more accurately and efficiently, the hierarchically alternat-

ing update strategy is employed. This procedure is detailed as column-wisely updated dictionary

D; correspondingly, the sparse representation set Z is updated row-wisely. Thereby the problem

should be reconstructed as below,

min
D:i,Zi:

L(D:i,Zi:) =
1

2
‖(X−

n∑
j=1,j 6=i

D:jZj:)−D:iZi:‖2F + λdp(Zi:)

=
1

2
‖X̂i −D:iZi:‖22 + λdp(Zi:),

(3.7)

where D:i is ith column of the dictionary D and Zi: is ith row of the coefficient matrix Z.

3.3 Algorithm

This iterative dictionary learning algorithm is inspired by MOD, in which the learning pro-

cedure is separated into two independent stages, sparse coding phase for sparse vector selection

and dictionary update phase for dictionary learning. This can be summarized as:

1. Sparse coding phase: assume that the dictionary D is known and use the data set X, to

find the proper sparse representation set Z;

2. Dictionary learning phase: assume that the proper sparse representation set Z is known

and use the data set X to find the most satisfied dictionary D.

18

3.3. ALGORITHM

The difference is that we update D column-wisely and Z row-wisely, namely the hierarchi-

cally alternating update strategy, rather than update them entirely as in MOD. In the proposed

algorithm, the updating at each iteration uses the local optimal. During sparse coding stage, the

dictionary D is supposed to be known, so the derivative of every entry of Z based on the loss

function L(D:i,Zi:) is,

∂Zi:L(Zi:) =
N∑
j=1

((D:iZij − X̂i(:, j))
TD:i + λ∂Zijdp(Zij)), (3.8)

where Zij locates at i row and j column in sparse solution set Z. To obtain the minimum of

L(Zij), the equation below which represents for ∂ZijL(Zij) = 0 should be solved.

f(Zij) = DT
:iD:iZij −DT

:iX̂i(:, j) + λ|Z(k−1)
ij |p−1 tanh(cZij) = 0, (3.9)

where the solution represents for the local minimum of the loss function. However, it is not easy

to directly obtain the solution from the combination of a hyperbolic function and a line function,

thus we use the Newton method to obtain the approximate solution by repeating,

Zij ← Zij −
f(Zij)

f ′(Zij)
, (3.10)

where f ′(Zij) is,

f ′(Zij) = DT
:iD:i + cλ|Z(k−1)

ij |p−1(1− tanh2(cZij)), (3.11)

In the dictionary update phase, the sparse representation set Z is assumed known, thus up-

dating D is only affected by the `2 norm error and the derivative of the loss function is,

∂D:iL(D:i) = (D:iZi: − X̂i)
TD:i. (3.12)

Therefore, the update rule of D:i can be directly obtained by calculating ∂D:iL(D:i) = 0,

D:i ←
X̂iZ

T
i:

Zi:ZT
i:

. (3.13)

Furthermore, it should be aware that updating dictionary D should be bounded in a certain

19

CHAPTER 3. DICTIONARY LEARNING FOR SPARSE REPRESENTATION USING WEIGHTED `1 NORM

region to avoid bad scale of its value and enforce the algorithm to converge to a local minimum.

In this algorithm, we use column normalization to restrict values in D as follows,

D ∈ {D|‖D:i‖22 = 1, i = 1, ..., n,D ∈ Rm×n}. (3.14)

Algorithm 3.1: HDLWL
Input: data set X, proper positive parameters λ and c.
Initialization: initialize D(0), Z(0), k = 0.
Main iteration: increment k by 1
• Spare representation phase
use the Newton method to solve the following equation by repeating equation (3.10) to
converge.
DT

:iD:iZi: −DT
:iX̂i + λ|Z(k−1)

i: |p−1 tanh(cZi:) = 0, i = 1, ..., n
• Dictionary learning phase

D:i ←
X̂iZ

T
i:

Zi:ZT
i:

, i = 1, ..., n

Stopping rule: stop if D(k) and Z(k) have converged
Output: D = D(k) and Z = Z(k)

In summary, the algorithm proposed in this chapter is present in specific steps principally in

Algorithm 3.1, named as Hierarchical Dictionary Learning with Weighted `1 norm (HDLWL).

3.4 Numerical Experiments

In this section, we present the results of the experiments for evaluating the proposed al-

gorithms. From the experiments we tested whether this algorithm can recover the grand true

dictionary. All experiments were performed via Matlab R2018b, and programs were run on a

PC with a 2.7 GHz Intel core and 12G RAM.

In the synthetic data simulation experiments, we first formed the dictionary Dorig, which

is sized as a 20 × 50 matrix, generated by randomly drawing value from a normal distribution

N(0, 1) and finally column-normalized. In every sparse representation vector, non-zero values

were set in 3 random positions. There were 1000 ground-truth generated sparse representation

vectors for learning dictionary Zorig = (zorig1, ..., zorig1000) in the experiments. Correspond-

ingly, data set Xorig had 1000 samples, which were generated by Dorig and Zorig based on

equation (3.1). The noise set V were added to generate input data set X based on Gaussian

random entries with various SNR levels. To evaluate the anti-noise performance and robustness

of our proposed algorithm, experiments were conduct in 3 noise situations with SNR level of 10

20

3.4. NUMERICAL EXPERIMENTS

dB, 20 dB and no noise. For different SNR level, 10 trials were conducted during experiments.

To finish the initialization before the algorithm started, the first n data vectors were used to

form the initial dictionary Dinit,

Dinit = [X:1, ...,X:n], {‖Dinit(:, i)‖22 = 1, i = 1, ..., n}. (3.15)

The sparse representation set Zinit was initialized by the pseudo inverse of initial dictionary

Dinit and data set X,

Zinit =
DT
init

DinitDT
init

X. (3.16)

For measuring performances of learnt dictionary in the synthetic data experiments, we used

recovery ratio and mean dictionary distance for evaluation by comparing with the ground true

dictionary Dorig. The ith column of learnt dictionary D(:, i) was counted as a recovered one if

it can find a close match to one column in the original dictionary, which means,

{1−
|D(:, i)TDorig(:, j)|
‖D(:, i)‖‖Dorig(:, j)‖

≤ 0.01, j = 1, ..., n}, (3.17)

and each column in Dorig will not be count again after finding a matched column in D. When

all columns in learnt dictionary D are paired with the original dictionary Dorig, we can calculate

dictionary distances between matched pairs,

Mean dictionary distance =
1

n

n∑
i=1

({1−
|D(:, i)TDorig(:, l(i))|
‖D(:, i)‖‖Dorig(:, l(i))‖

), (3.18)

where l is label set of paired columns in Dorig for corresponding columns in D.

Sparsity measurement used Hoyer sparsity measure [66] based on the relationship between

the `1-norm and the `2-norm, which can give a well defined sparsity. The Hoyer sparsity mea-

sure is formulated as following,

Hoyer sparsity(z) =
√
n− (

∑
|zi|)/

√∑
zi2√

n− 1
, (3.19)

where n represents the dimension of z, and when the value of the equation is closer to 1, the z

vector is approaching to a sparser vector.

Figure 3.1 shows performance of proposed algorithm HDLWL in a range of λ with different

p settings for 20 dB SNR data. Except p = 0.9, the other p settings can all recover the dic-

21

CHAPTER 3. DICTIONARY LEARNING FOR SPARSE REPRESENTATION USING WEIGHTED `1 NORM

10-3 10-2

lambda

80

85

90

95

100

D
ic

tio
na

ry
 r

ec
ov

er
y

ra
tio

HDLWL0.1
HDLWL0.3
HDLWL0.5
HDLWL0.7
HDLWL0.9

10-3 10-2

lambda

10-4

10-2

M
ea

n
di

ct
io

na
ry

 d
is

ta
nc

e HDLWL0.1
HDLWL0.3
HDLWL0.5
HDLWL0.7
HDLWL0.9

Figure 3.1: Dictionary recovery ratio and mean dictionary distance of proposed algorithm with
different p values in a range of λ from data with 20 dB SNR

tionary to 100% in a range of varying lambda with good mean dictionary distances. In detail,

HDLWL0.3 and HDLWL0.5 can obtain relatively the best mean dictionary distances with 100%

dictionary recovery ratio. We further present performance of proposed algorithm HDLWL for

10 dB SNR data in Figure. 3.2. We can see that only HDLWL0.5 obtain 100% dictionary re-

covery ratio in this case with 10 dB. We also notice obvious narrowing in the lambda range for

obtaining 100% dictionary recovery ratio compared with performances in 20 dB. A more intu-

itive comparison between reordered learnt dictionary and the ground true original dictionary is

shown in Figure 3.3. We can see the learnt dictionary can fit the ground true dictionary for every

atom.

Dictionary recovery ratio, mean dictionary distance and Hoyer sparsity convergence graph

of proposed algorithm with different p value is shown in Figure 3.4. In general, HDLWL with

these p settings can converge at 100% dictionary recovery ratio in 20dB with small mean dictio-

nary distance. Moreover, HDLWL with these p settings can also converge at the Hoyer sparsity

near to the ground true one. In detail, we can see slight differences in convergence speed among

different p settings that reducing p tend to increase iteration numbers before convergence. Fur-

thermore, smaller p values also result in closer converged Hoyer sparsity to the original one.

Based on previous experimental results, we choose p = 0.5 for HDLWL to compare with

22

3.4. NUMERICAL EXPERIMENTS

10-2 10-1

lambda

0

20

40

60

80

100

D
ic

tio
na

ry
 r

ec
ov

er
y

ra
tio

HDLWL0.3
HDLWL0.5
HDLWL0.7
HDLWL0.9

10-2 10-1

lambda

10-2

M
ea

n
di

ct
io

na
ry

 d
is

ta
nc

e HDLWL0.3
HDLWL0.5
HDLWL0.7
HDLWL0.9

Figure 3.2: Dictionary recovery ratio and mean dictionary distance of proposed algorithm with
different p values in a range of λ from data with 10 dB SNR

Reordered learnt Dictionary, Recovery ratio 100.0 %

(a)

Original Dictionary

(b)

Figure 3.3: Reordered learnt Dictionary (a) from 20dB signals compared with the ground true
dictionary (b), present in 4× 5 dimensional subspaces.

the other classical dictionary learning algorithms. Dictionary recovery ratio and mean dictionary

distance convergence graph of different algorithms in time scale is shown in Figure 3.5. In

general, all algorithms can converge in reasonable time scale. We can see that HDLWL0.5

can converge at higher dictionary recovery ratio with similar computation time compared with

KSVD, MOD and PDLA. Compared with FOCUSSDL, HDLWL0.5 can converge faster with

smaller mean dictionary distance.

Detail performance comparison between different algorithm in different noise condition for

10 trails is shown in Table 3.4. In general, recovery ratio and mean dictionary distance of all

23

CHAPTER 3. DICTIONARY LEARNING FOR SPARSE REPRESENTATION USING WEIGHTED `1 NORM

algorithms tend to worsen with higher noise with one exception that performances of K-SVD in

no noise and 20dB condition are similar. In detail, HDLWL0.5 can obtain best recovery ratios

and mean dictionary distances in different noise conditions among all algorithms. Moreover,

convergence time of HDLWL0.5 is reasonable good that it is similar with KSVD, MOD and

PDLA when noise level is higher than 20dB and far smaller than FOCUSSDL in all noise

condition. The reason that convergence time for HDLWL0.5 and FOCUSSDL in noiseless

condition is longer than the other cases with noise is that optimized λ for noiseless condition is

usually much smaller than the others and smaller λ tend to have higher convergence iteration

numbers.

0 100 200 300 400 500 600 700

Iteration

0

20

40

60

80

100

D
ic

tio
na

ry
 r

ec
ov

er
y

ra
tio

HDLWL0.3
HDLWL0.5
HDLWL0.7

0 100 200 300 400 500 600 700

Iteration

10-2

100

M
ea

n
di

ct
io

na
ry

 d
is

ta
nc

e

HDLWL0.3
HDLWL0.5
HDLWL0.7

0 100 200 300 400 500 600 700

Iteration

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 H
oy

er
 S

pa
rs

ity

HDLWL0.3
HDLWL0.5
HDLWL0.7
 Orig

Figure 3.4: Dictionary recovery ratio, mean dictionary distance and Hoyer sparsity convergence
graph of proposed algorithm with different p values in iterations with optimized parameters
from data with 20 dB SNR

24

3.5. CHAPTER SUMMARY

10-2 10-1 100 101 102 103

Time (s)

0

20

40

60

80

100

D
ic

tio
na

ry
 r

ec
ov

er
y

ra
tio

HDLWL0.5
 KSVD
 MOD
FOCUSSDL
 PDLA

10-2 10-1 100 101 102 103

Time (s)

10-4

10-2

100
M

ea
n

di
ct

io
na

ry
 d

is
ta

nc
e

HDLWL0.5
 KSVD
 MOD
FOCUSSDL
 PDLA

Figure 3.5: Average dictionary recovery ratio and mean dictionary distance convergence graph
of different algorithms in time scale with optimized parameters from data with 20 dB SNR

Table 3.1: Performance of different algorithms in various noise condition for 10 trails

Algorithms
Recovery ratio (%) Mean dictionary distance Convergence time (s)

no noise 20 dB 10 dB no noise 20 dB 10 dB no noise 20 dB 10 dB
HDLWL0.5 100.0±

0.0
100.0±
0.0

95.8 ±
4.7

2.16 ±
0.63

3.24 ±
0.29

7.15 ±
2.42

26.7 ±
8.4

9.5 ±
2.7

14.2 ±
4.0

×10−6 ×10−4 ×10−3

K-SVD 90.2 ±
3.8

91.4 ±
3.8

79.8 ±
8.08

1.30 ±
0.48

1.18 ±
0.54

2.04 ±
0.58

8.8 ±
2.0

8.9 ±
2.7

16.0 ±
3.4

×10−2 ×10−2 ×10−2

MOD 92.0 ±
4.2

92.4 ±
3.4

79.6 ±
9.7

1.10 ±
0.59

1.02 ±
0.44

1.70 ±
0.59

5.2 ±
1.2

5.4 ±
1.4

8.1 ±
1.9

×10−2 ×10−2 ×10−2

FOCUSSDL 100.0±
0.0

100.0±
0.0

85.8 ±
4.0

3.97 ±
1.61

4.76 ±
0.49

1.59 ±
0.35

157.5±
31.2

103.9±
44.7

119.7±
36.0

×10−5 ×10−4 ×10−2

PDLA 96.2 ±
4.2

92.2 ±
6.3

72.4 ±
7.3

5.29 ±
6.10

1.26 ±
0.77

2.70 ±
0.65

5.02 ±
2.48

5.79 ±
2.66

7.84 ±
1.95

×10−3 ×10−2 ×10−2

3.5 Chapter Summary

In conclusion of this chapter, we present a dictionary learning algorithm with the `p norm

(0 < p < 1) as sparsity constraint in this paper. To solve the complex nonconvex optimization

problem caused by the `p norm, we have successfully applied the combination of hierarchi-

cally alternating update strategy and weighted `1 norm method. The algorithm was validated

to be effective in synthetic data, for training an overcomplete dictionary which suits a set of

given signals by numerical experiments. Three contributions can be summarized here. Firstly,

25

CHAPTER 3. DICTIONARY LEARNING FOR SPARSE REPRESENTATION USING WEIGHTED `1 NORM

the algorithm proposed in this paper can recover dictionary to nearly 100% in finite iterations

for data having a SNR higher than 10 dB. Secondly, the weighted `1 norm is valid to reduce

sparseness when reduce value of p. Furthermore, the good robustness of this algorithm has been

confirmed in numerical experiments in comparison with the other three conventional dictionary

learning algorithms. In the furture, we will employ the proposed algorithm for image denoising,

inpainting and other applications.

26

Chapter 4

Deep Neural Network Structured

Sparse Coding for Online Processing

4.1 Introduction

Sparse coding has proven its effectiveness in various signal processing applicaions, such as

image denoising [43, 44, 67], inpainting [42, 68], super-resolution [69, 70], etc.. However, the

efficiency and capacity of the current sparse coding algorithms have not reached the requirement

of certain missions that require fast processing, such as real-time video denoising; thus, we

propose our sparse coding algorithms, which use the DNN structure and corresponding learning

procedure in sparse coding to achieve the goal.

Deep neural network structured sparse coding (DNN-SC) is a methodology to train param-

eters for enhancing efficiency of sparse coding, which have been developed in recent years.

Building DNN-SC bases on the structure similarity between iterative shrinkage sparse coding

algorithms and the Recurrent Neural Network (RNN). In 2010, Gregor and LeCun introduced

the idea with Iterative Shrinkage Thresholding Algorithm (ISTA), where the learned DNN can

perform nearly 10 times faster than the original sparse coding algorithm, i.e., ISTA [46]. How-

ever, its learning procedures require one to know the true answers of the sparse representation.

In 2015, Sprechmann et al. showed that it is possible to learn the DNN without requiring the

true answers to serve as the training labels, i.e., the unsupervised learning is possible [47]. With

unsupervised network learning, the DNN-SC algorithms can be more suitable for online pro-

cessing without prior training when the network can be efficiently and quickly learned online to

make the processing enjoy the acceleration introduced by the DNN structure.

27

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

In this chapter, we propose to build `p norm (0 < p < 1) regularization based DNN-SCs

to obtain better sparsity and accuracy compared to existed `1 norm regularization based DNN-

SCs. The remainder of this chapter is organized as follows. In section 4.2, we first describe

problem formulation and original sparse coding algorithms. In section 4.3, we show how to

unfold IHTA and WISTA to form a feed-forward neural networks, where the parameters can be

learned by back-propagation. Both unfolded WISTA and IHTA have similar structures to ISTA

and the recurrent neural network, where each layer is comprised by a differentiable combination

of linear and nonlinear operators. For the setting of the loss function, all DNN-SC algorithms

can be learned through supervised and unsupervised schemes (section 4.3.1). The unsupervised

learning procedure is the key to apply DNN-SC in online learning processing.

Subsequently, we give an experimental validation of proposed algorithms in section 4.4.

Synthetic data experiments (section 4.4.1) present a performance comparison in terms of the

relative norm error and accuracy among the sparse coding algorithms ISTA, IHTA and WISTA

and their DNN-structured versions.

Real-world graphic experiments are shown in section 4.4.2. Both image and video denois-

ing experiments concentrate on the acceleration of the DNN-SC algorithm in denoising while

maintaining reasonably good performances. Benefiting from the acceleration of the DNN struc-

tured processing, we show that DNN-SC algorithms can conduct real-time video denoising with

only CPU for 25 frames per second (FPS) 360× 480-pixel gray-scaled videos.

4.2 Sparse Coding

The paper considers a sparse representation problem, where we tend to find a proper ap-

proach to obtain an optimal sparse solution z ∈ Rn from given noisy data x ∈ Rm based on the

linear signal model described in the following equation:

x = Dz+ v, (4.1)

where D ∈ Rm×n is an overcomplete dictionary matrix with n > m, and v ∈ Rm is an additive

white Gaussian distributed noise vector. The above equation (4.1) defines an underdetermined

linear system. Because the dictionary in the equation is supposed to be a full row-rank matrix,

this model should have infinite solutions. To achieve the required sparse answer, the sparse

constraint is introduced. Therefore, the general minimization model with the square data fitting

28

4.2. SPARSE CODING

error and a sparse constraint is applied to solve the linear signal model,

min
z
f(z) = ‖x−Dz‖22 + λdp(z), (4.2)

where λ > 0 is a tuning parameter to adjust the effect of the sparse constraint; the function

dp(z) is a sparse penalty term formulated as follows,

dp(z) = ‖z‖pp =
n∑
j=1

|zj |p, (4.3)

4.2.1 ISTA

Algorithm 4.1: ISTA
Input: data x, dictionary D, proper parameters λ and α.
Restriction: α > largest eigenvalue of DTD

Initialization: t = λ
α , z(0) = 0, k = 0.

Main iteration: increment k by 1
z(k) = π1(z

(k−1) − 1
αD

T(Dz(k−1) − x), t)

Stopping rule: stop if z(k) has converged
Output: z = z(k)

ISTA [22] is one of the best known iterative algorithms to solve the sparse linear problem.

The q value in equation (4.2) of ISTA is 1, i.e., this is a convex problem where a local minimum

is the global minimum. The detail of ISTA is shown in Algorithm 4.1, and the diagram is

presented in Figure 2.2(a). For input vector x, ISTA iterates the following recursive equation to

approach the optimal:

z(k) = π1(Wx+Hz(k−1), t), (4.4)

where W = 1
αD

T, H = I− 1
αD

TD and α is a restriction parameter, which should be larger than

the largest eigenvalue of DTD. The operator π1(x, t) is a nonlinear soft thresholding operator,

which is defined in equation (4.5).

[π1(x, t)]j = sign(xj)max {|xj | − t, 0} (4.5)

4.2.2 IHTA

IHTA [27] concentrates on the nonconvex and nonsmooth optimization model, where the q

value of equation (4.2) is 0.5. The detail of IHTA is shown in Algorithm 4.2, and the diagram is

presented in Figure 4.1(a).

29

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

(a)

(b)

Figure 4.1: (a) Illustration of the IHTA structure for sparse coding. The optimal sparse rep-
resentation can be obtained by the recursive structure z(k) = π 1

2
(Wx + Hz(k−1), t), where

x is the input signal, π 1
2
(x, t) is the half thresholding operator with threshold t, W = 1

αD
T,

H = I− 1
αD

TD and α is a restriction parameter for IHTA. (b) The network structure of DNN-
IHTA is formed from unfolded IHTA and truncated to a fixed number of iterations (3 here). W,
H, and t are trainable parameters in the network to provide an approximate sparse represen-
tation on a given dataset. The network can be trained supervisedly with only the encoder and
unsupervisedly using both encoder and decoder.

Algorithm 4.2: IHTA
Input: data x, dictionary D, proper parameters λ and α.
Restriction: α > largest eigenvalue of DTD

Initialization: t = λ
α , z(0) = 0, k = 0.

Main iteration: increase k by 1
z(k) = π 1

2
(z(k−1) − 1

αD
T(Dz(k−1) − x), t)

Stopping rule: stop if z(k) has converged
Output: z = z(k)

In Algorithm 4.2, π 1
2
(x, t) is the half thresholding operator, which is the key difference of

IHTA compared to ISTA. Applying p = 0.5 may cause a convergence issue since it is noncon-

vex, whereas the lower p ∈ (0, 1) value tends to more rapidly and efficiently achieve a sparser

representation, meanwhile, the algorithm IHTA can lead to a converged result when λ is suffi-

ciently small, and dictionary D satisfies a certain concentration assumption [71]. By applying

the `0.5 norm sparsity constraint, the half thresholding operator π 1
2
(x, t) can be formulated as

an analytical expression of the well-defined resolvent operator on its loss function [27], which

30

4.2. SPARSE CODING

(a)

(b)

Figure 4.2: (a) Illustration of the WISTA structure for sparse coding. The optimal sparse
representation can be recursively obtained in two steps: z(k) = π1(Wx + Hz(k−1), t(k−1)),
t(k) = λ

α |z
(k)|p−1, where x is the input signal, π1(x, t) is the soft thresholding operator with a

changing threshold t during the iterations, W = 1
αD

T, H = I− 1
αD

TD, and α is a restriction
parameter for WISTA. (b) The network structure of DNN-IHTA is formed from the unfolded
WISTA and truncated to a fixed number of iterations (3 here). W, H, and t are trainable pa-
rameters in the network to provide an approximate sparse representation on a given dataset.
The network can be trained supervisedly with only the encoder and unsupervisedly using both
encoder and decoder.

is defined in (4.6).

[
π 1

2
(x, t)

]
j
=
2

3
xj(1 + cos (

2π

3
− 2

3
arccos(

t

8
(
|xj |
3

)−1.5)))

sign(|xj | −
3
√
54

4
t
2
3)

(4.6)

4.2.3 WISTA

The proposed Weighted Iterative Shrinkage Thresholding Algorithm (WISTA) in this paper

also concentrates on the nonconvex and nonsmooth `p regularization (p ∈ (0, 1)) optimization

model considering the benefit in sparsity-inducing and efficiency. The word ‘weighted’ refers

to the idea of restraining the `1 sparsity constraint with information from the previous itera-

tion, which can approximately function as an `p norm. Namely, the sparsity constraint can be

reformed as follows:

λ‖z‖pp = λ
n∑
i

|zi|p ≈ λ
n∑
i

|z(iteration−1)
i |p−1|zi|. (4.7)

31

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

Because the component-wise weighted part from the previous iteration can be considered con-

stant during the iterations, the algorithm is transformed to a sequence of weighted `1 minimiza-

tion problems from the `p minimization problem [32], which is convex for the calculation. The

detail of WISTA is shown in Algorithm 4.3, and the diagram is presented in Figure 4.2(a).

Algorithm 4.3: WISTA
Input: data x, dictionary D, proper parameters λ and α.
Restriction: α > largest eigenvalue of DTD

Initialization: t = λ
α1, z(0) = 0, k = 0.

Main iteration: increase k by 1
z(k) = π1(z

(k−1) − 1
αD

T(Dz(k−1) − x), t)

t = λ
α |z

(k)|p−1
Stopping rule: stop if z(k) has converged
Output: z = z(k)

Different from [32, 33], where the gradient descent method is applied for the optimization,

the proximal operator is applied in WISTA. Based on the difference in the sparse constraint, the

form of soft thresholding operator π1(x, t) in WISTA is slightly different from the one in ISTA,

in which the input vector z is handled with vector t component-wise during the iterations, as

defined in equation (4.8).

[π1(x, t)]j = sign(xj)max {|xj | − tj , 0} (4.8)

4.3 Deep Neural Network structured Sparse Coding

In the conventional deep learning [72], the training data, which comprise of pairs of feature

and label, are used to learn the parameters of a deep neural network to predict unknown labels

using the new given features. Typically, a Recurrent Neural Network (RNN) receives features

and subjects them to a deep structure of many layers for processing, where each layer con-

sists of a linear transformation followed by a component-wise nonlinearity transformation. The

unfolded ISTA is shown in Figure 2.2 with unfolded IHTA (Figure 4.1) and unfolded WISTA

(Figure 4.2); they hold similar structures to RNN, which enables the use of the parameter train-

ing methods in deep learning to train a DNN-SC algorithm. However, we should be clear about

the differences between the two structures. The deep neural networks can be divided into two

main types by their purposes, classification and regression. In a classification DNN, labels are

generally discrete, e.g., when features are images, the labels will be their classes {dog, cat, ...

, chicken}. In a contract, for a regression DNN and DNN-SC, the labels are numerical values,

32

4.3. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING

which are genearlly continuous and high-dimensional.

For the objective of building a DNN-SC algorithm, it is essential to ensure that all functi-

nos in the encoders are continuous and overall differentiable throughout the network structure,

which provides the possibility of using gradient-based learning methods to train network param-

eters. For example, an overall differentiable structure ensure that back-propagation can provide

gradients throughout.

In this paper, we would like to propose two novel DNN-SC algorithms: DNN-structured

IHTA (DNN-IHTA) and DNN-structured WISTA (DNN-WISTA), which can be trained to com-

pute approximate sparse codes. The two algorithms are based on IHTA and WISTA. We have

applied two training modes in our proposed encoders: supervised and unsupervised.

4.3.1 Supervised and unsupervised learning

To train a DNN that is formed from a truncated sparse coding algorithm, referring to Figure

2.2(b), with training data x as the input, the encoder outputs z after the defined depth of the

DNN. We use the gradient decent to train the parameters to minimize the loss function L(z),

which is defined as the squared error between the predicted code z from the DNN forward-

propagation result and the corresponding optimal code z∗ [46], as shown in equation (4.9). In

practice, z∗ can be obtained from the converged results of the corresponding sparse coding

algorithms.

L(z) = ‖z− z∗‖22 (4.9)

Therefore, as the true answer z∗ is functioned as training label, the loss function results in a

supervised learning procedure. Then, for a T -layer DNN-SC, the gradient of z(T) in supervised

learning is

δz(T) =
∂L(z(T))

∂z
= z(T) − z∗. (4.10)

In comparison, unsupervised learning aims at training the parameters in the DNN without

requiring the true answers to serve as the training labels, i.e., optimal code z∗ in DNN-SC. By

adding a decoder in the network, as shown in Figure 2.2(c), we change the output of the DNN

to x̂ = Dz. Therefore, we can use the general sparse representation loss function to avoid using

z∗ [47]. The loss function of unsupervised learning and the corresponding gradient of z(T) is

shown below.

L(z) = ‖x−Dz‖22 + λdp(z) (4.11)

33

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

δz(T) =
∂L(z(T))

∂z
= DT(Dz(T) − x) + λ

∂dp(z
(T))

∂z
(4.12)

Between two learning procedures resulted from different loss function settings, the key dif-

ference concerns that prior training is essential in supervised learning, which makes it difficult

to implement the supervised DNN-SC in online processing and applications without training

labels. On the contrary, by avoiding using z∗, unsupervised learning enables the learned DNN

for online processing when the learned DNN is efficient and learning procedure is fast enough.

4.3.2 DNN-structured IHTA

By unfolding the iterations of IHTA from Algorithm 4.2, we can construct neural network

structures. The algorithm can be rewritten as a network structure as follows, and the unfolded

network structure is shown in Figure 4.1(b).

Algorithm 4.4: DNN-IHTA Forward propagation
Input: data x, dictionary D, proper parameters λ and α, network layer T .
Restriction: α > largest eigenvalue of DTD

Initialization: t = λ
α1, z(0) = 0, H = I− 1

αD
TD, W = 1

αD
T, B = Wx.

For k = 1 to T
c(k−1) = B+Hz(k−1)

z(k) = π 1
2
(c(k−1), t)

End
Output: C = {c(0), ..., c(T−1)}, Z = {z(0), ..., z(T)}

Algorithm 4.5: DNN-IHTA Back propagation
Input: x, D, δz(T), Z, C, B, H, t, λ and α.
Initialization: δt(T) = 0, δB(T) = 0, δH(T) = 0.
For k = T − 1 down to 0

δt(k) = δt(k+1) +
∂π 1

2
((c)(k),t)

∂t δz(k+1)

δc(k) =
∂π 1

2
((c)(k),t)

∂c δz(k+1)

δB(k) = δB(k+1) + δc(k)

δH(k) = δH(k+1) + δc(k)z(k)
T

δz(k) = HTδc(k)

End
δW = δB(0)xT

Output: δW, δH(0), δt(0)

In the network, W, H, and t are parameters to train. After forward propagating with

determined network layer T , C and Z of each layer in the IHTA network are saved for the

back-propagation parameter training. The gradient-based parameter learning schedules of the

network are shown in Algorithm 4.5. The learning procedure can be either adapted to super-

34

4.3. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING

vised or unsupervised learning by respectively choosing δz(T) from equation (4.10) or equation

(4.12).

4.3.3 DNN-structured WISTA

Using the schedule in the previous section, by unfolding the iterations of WISTA from

Algorithm 4.3, we can also construct a neural network structure with linear transformations and

a simple nonlinear transformation in each layer, as shown in Figure 4.2(b).

Algorithm 4.6: DNN-WISTA Forward propagation
Input: data x, dictionary D, proper parameters λ and α, network layer T .
Restriction: α > largest eigenvalue of DTD

Initialization: t(0) = λ
α1, z(0) = 0, H = I− 1

αD
TD, W = 1

αD
T, B = Wx.

For k = 1 to T
c(k−1) = B+Hz(k−1)

z(k) = π1(c
(k−1), t(k−1))

t(k) = λ
α |z

(k)|p−1
End
Output: C = {c(0), ..., c(T−1)}, Z = {z(0), ..., z(T)}

Algorithm 4.7: DNN-WISTA Back propagation
Input: x, D, δz(T), Z, C, B, H, T, λ and α.
Initialization: δB(T) = 0, δH(T) = 0.
For k = T − 1 down to 0

δt(k) = ∂π1((c)(k),t(k))
∂t δz(k+1)

δc(k) = ∂π1((c)(k),t(k))
∂c δz(k+1)

δB(k) = δB(k+1) + δc(k)

δH(k) = δH(k+1) + δc(k)z(k)
T

δz(k) = HTδc(k) + λ(p−1)|z(k)|p−2sign(z(k))
α δt(k)

End
δW = δB(0)xT

Output: δW, δH(0), δt(0)

In this network, W, H, and t are targeted trainable parameters. After forward propagating

with determined network layer T , C and Z of each layer in the WISTA network are saved for

the back-propagation parameter training. The gradient-based parameter learning schedules of

the two networks are shown in Algorithm 4.7. The learning procedure can be either adapted to

supervised learning by defining δz(T) as equation (4.10) or unsupervised learning referring to

equation (4.12).

35

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

4.4 Experiments

4.4.1 Synthetic data experiments

In this section, we present our experiment results of the proposed algorithms in finding

the ground truth sparse representations. Synthetically generated data were used throughout the

experiments, which were built by randomly generated ground true dictionaries. All experiments

were performed with Matlab R2016a, and the programs were run on a PC with a 3.4 GHz Intel

core and 64 G of RAM.

There are two main parts that we would like to show in synthetic data experiments: com-

parison of performances among the ISTA, IHTA and WISTA and the performances of different

DNN-SC algorithms. In the synthetic data simulation experiments, we first formed the dictio-

nary Dorig, which is sized as a 250 × 500 matrix, generated by randomly drawing value from

a normal distribution N(0, 1) and finally column-normalized. In every sparse representation

vector, non-zero values were set in random positions determined by the Bernoulli distribution of

possibility 0.05. The random values were selected from the normal distribution N(0, 1). There

were 100 ground truth-generated sparse representation vectors Zorig = (zorig1, ..., zorig100) in the

experiments. Correspondingly, data set Xorig had 100 samples, which were generated by Dorig

and Zorig based on equation (4.1), The noise vectors v were added based on Gaussian random

entries with 20 dB SNR.

Performances of sparse coding algorithms

The sparsity measurement used the Hoyer measure [66] based on the relationship between

the `1-norm and the `2-norm, which can provide a well-defined sparsity. Hoyer sparsity measure

is formulated as follows:

Hoyer sparsity(z) =
√
n− (

∑
|zi|)/

√∑
zi2√

n− 1
, (4.13)

where n is the dimension of z; when the value of the equation is closer to 1, the z vector

approaches a sparse vector.

Figure 4.3 and Figure 4.4 show the ability of recovering accurate sparse representations

using the three sparse coding algorithms. Three p values are used in our proposed algorithm

WISTA, which is referred by the number after WISTA. The sparse representation error use the

36

4.4. EXPERIMENTS

(a)

(b)

Figure 4.3: Average sparse representation errors and Hoyer sparsity convergence graph of dif-
ferent sparse coding algorithms.

relative norm error compared to Zorig, which is defined in equation (4.14).

Relative norm error(zi) =
‖zorigi − zi‖22
‖zorigi‖22

(4.14)

Figure 4.3 shows that all algorithms can achieve convergence results with small error and

high sparsity in reasonable iterations. ISTA tends to converge most rapidly with a larger relative

norm error than the other algorithms. With decreasing p, WISTA converges slower and result

in a smaller relative error. When p = 0.7, WISTA surpasses IHTA in both converge speed

and relative error. Figure 4.4 shows that all algorithms can generally find accurate and sparse

representations but ignore several small values compared to the ground true representation (red).

ISTA has the largest amount of small value mistakes, so it has a larger relative error than the

other algorithms. For WISTA, the number of support mistakes, where the blue points do not

overlap with the red ones, tend to diminish when p decreases from 0.9 to 0.7, while one small

37

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

-0.5

0

0.5

V
al

ue

ISTA Acc: 97.8% Err:0.0168

-0.5

0

0.5

V
al

ue

WISTA0.9 Acc: 98.6% Err: 0.0054

-0.5

0

0.5

V
al

ue

WISTA0.7 Acc: 99.2% Err: 0.0025

-0.5

0

0.5

V
al

ue

WISTA0.5 Acc: 99.0% Err: 0.0022

0 250 500

Index of sparse representation

-0.5

0

0.5

V
al

ue

IHTA Acc: 99.0% Err: 0.0022

Figure 4.4: Index versus value of the recovered sparse representation (blue) compared with the
original one (red) of ISTA, IHTA, WISTA0.9, WISTA0.7, and WITA0.5 (from top to bottom).

mistake in support reappears in WISTA0.5, which indicates that an appropriate lower p value

can help finding sparser and more accurate results.

Figure 4.5 shows the performance variation in a range of varing λ values. The sparse rep-

resentation accuracy is defined in equations (4.15) and (4.16), which can indicate how accurate

the sparse coding algorithms can recover the positions of those non-zero values.

S = Support{z} (4.15)

Accuracy(z) =
|Sorig ∩ S|

n
× 100% (4.16)

The definition of support is a set containing information of zero and non-zero positions in z.

Therefore, the accuracy is the percentage of how a given z meets the ground truth considering

whether the values are zero. In the two figures, different algorithms have different ranges of

effective λ. While deciding the optimal λ regions, we find that the λ value with the smallest

relative norm error is always smaller than the λ with highest accuracy for all algorithms. In

detail, ISTA has the worst performance in dislocating the optimal regions. The accuracy is

smaller than 90% when ISTA reaches the lowest relative norm error, which results from the

38

4.4. EXPERIMENTS

those support mistakes with small values in Figure 4.4. Again, all other algorithms tend to

perform better than ISTA in finding more accurate sparse representations. WISTA surpasses

IHTA in both relative norm error and accuracy when p = 0.7 and 0.5. With decreasing p,

WISTA tends to achieve smaller relative errors, whereas p = 0.7 results in the highest accuracy.

(a)

(b)

Figure 4.5: Average sparse representation accuracies and relative norm errors of different sparse
coding algorithms in a range of varing λ.

Performances of DNN-structured sparse coding algorithms

In the synthetic data experiment of DNN-SC algorithms, the DNN structures with various

layers are used in different algorithms to show the performance of the combination of the sparse

representation and DNN.

Figure 4.6 shows the performances of different original sparse coding algorithms and their

DNN-structured versions when there are 15 layers. The initial letter ‘L’ refers to supervised

learned DNN, and the initial letter ‘T’ refers to unsupervised learned DNN. In general, except

39

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

the DNN-structured IHTA, all other DNN-structured algorithms can reach similar performances

to the converged results of their original sparse coding algorithms, which indicates that those

learned DNN can accelerate 5-10 times in this experiment. Similar to the previous sparse cod-

ing experiment results, DNN-structured WISTA can perform better than DNN-structured ISTA

when there are 15 layers.

Figure 4.7 shows the result convergence performances of different original sparse coding

algorithms and their DNN-structured versions in a range of DNN layers. In general, we find

four points. 1) Except DNN-structured IHTA, all DNN-structured algorithms can nearly reach

converged performances of their original algorithms when there are more than 13 layers in

this simulation; 2) the performances of the DNN-structured algorithms tend to improve with

the increase in number of layers; 3) DNN-structured WISTA can perform better than DNN-

structured ISTA; and 4) the supervised DNN tends to obtain better relative norm error than the

corresponding unsupervised ones.

Specifically, LISTA and TISTA have the best robustness against the decrease in number

of layer in this data simulation. Through the selected range of number of layer, both LISTA

and TISTA can reach similar relative norm errors compared to the converged ISTA, and LISTA

and TISTA have better accuracy than ISTA when there are more than 15 layers. For WISTA,

decreasing p in the DNN-structured WISTA algorithms tends to increase their minimum layer

requirement to have similar performances to the converged WISTA, which may indicate that a

smaller p value increases the difficulty to learn an appropriate network. Although supervised

WISTAs have equivalent or better relative norm error than the unsupervised ones, the unsu-

pervised versions have obvious advantages in finding more accurate positions in sparse repre-

sentations, which implies that the supervised DNN can hardly avoid small support mistakes in

sparse representations, which do not greatly affect the relative norm error but reduce the position

accuracy.

4.4.2 Graphic denoising experiments

In this section, we present the performance of our proposed algorithms with real-world

data. There are two main parts. First, we want to show the performance of the algorithms in

the image-denoising task. Then, we present the potential of applying DNN-SC algorithms in

real-time video-denoising tasks.

40

4.4. EXPERIMENTS

(a)

(b)

Figure 4.6: Comparison between 15-layer DNN-SC algorithms and the original sparse coding
algorithms in terms of the average sparse representation relative norm errors and Hoyer sparsity.

41

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

(a)

(b)

Figure 4.7: Comparison between the DNN-SC algorithms and the converged results of their
original algorithms in terms of the average sparse representation relative norm errors and accu-
racy in a range of number of layers.

42

4.4. EXPERIMENTS

Table 4.1: Denoising results of the sparse coding algorithms from a 20.17 dB noised image
Algorithms PSNR (dB) Denoising time (s)
ISTA 29.13 187.89
WISTA0.9 29.88 260.74
WISTA0.7 30.79 335.24
WISTA0.5 31.01 339.84
IHTA 31.06 445.65
OMP 30.93 77.94

Image-denoising experiments

To present the denoising performance, we applied the aforementioned algorithms in image

denoising in comparison with sparse coding algorithm OMP [21, 43], which performs well in

this task. The details of the image-denoising experiment are described below. We selected the

image named ‘Lena’ as the target, which is a 512 × 512-pixel gray-scaled portrait photograph.

Random white noise was added to the image to generate a noised image of Peak signal-to-noise

ratio (PSNR) 20.17 dB. Referring to the signal model in equation (4.1), we generate a 144×256

overcomplete Discrete Cosine Transform (DCT) distributed dictionary for the denoising task.

The image was separated into 12×12-pixel small patches with an interval of 2 between patches

to form the input data set X ∈ R64×62009. All DNN-SC algorithms use 10-layer network

structures in this experiment. The denoising results of the original sparse coding algorithms and

their DNN-structured versions are presented below.

Table 4.1 and Figure 4.8 show that all sparse coding algorithms can recover the noised

image from 20.17 dB to approximately 30 dB, whereas all iterative shrinkage sparse coding

algorithms tend to have several times higher computation time than OMP. In detail, IHTA and

WISTA0.5 obtain the highest PSNR among these algorithms with PSNR over 31 dB. In this

image-denoising task, we observe an obvious increase in PSNR and denoising time when p

decreases among all iterative shrinkage sparse coding algorithms, which may indicate that a

smaller p value is more suitable for the overcomplete sparse denoising model. To resolve the

excessive computation cost of the iterative shrinkage sparse coding algorithms, the DNN-SC

algorithm can be a solution that the learned DNN has shown 5∼10 times acceleration in the

previous synthetic data simulation.

First, Table 4.2 and Figure 4.9 show that all DNN-SC algorithms can recover the noised

image from 20.17 dB to approximately 30 dB, which is the same level of their original sparse

coding algorithms. Furthermore, the learned DNNs can accelerate the denoising procedure, the

sum of denoising and DNN learning time remains at least 45 times faster than the denoising

43

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.8: Image-denoising result: (a) Original image; (b) Noised: 20.17 dB; (c) ISTA: 29.13
dB; (d) WISTA0.9: 29.88 dB; (e) WISTA0.7: 30.79 dB; (f) WISTA0.5: 31.01 dB; (g) IHTA:
31.00 dB; and (h) OMP: 30.93 dB (from top left to bottom right)

Table 4.2: Denoising results of DNN-SC algorithms from a 20.17 dB noised image
Algorithms PSNR (dB) Denoising time (s) Learning time (s)
LISTA 29.71 2.52 0.05
TISTA 29.37 2.50 0.02
LWISTA0.9 29.89 5.82 0.03
TWISTA0.9 29.69 6.01 0.03
LWISTA0.7 30.45 5.90 0.03
TWISTA0.7 30.47 5.79 0.03
LWISTA0.5 30.68 5.84 0.03
TWISTA0.5 30.76 5.88 0.03
LIHTA 30.82 9.17 0.16
TIHTA 30.80 9.26 0.07

44

4.4. EXPERIMENTS

(a) LISTA (b) TISTA (c) LWISTA0.9 (d) TWISTA0.9

(e) LWISTA0.7 (f) TWISTA0.7 (g) LWISTA0.5 (h) TWISTA0.5

(i) LIHTA (j) TIHTA

Figure 4.9: Image-denoising result with DNN-SC algorithms: (a) LISTA: 29.71 dB; (b) TISTA:
29.37 dB; (c) LWISTA0.9: 29.89 dB; (d) TWISTA0.9: 29.69 dB; (e) LWISTA0.7: 30.45 dB;
(f) TWISTA0.7: 30.47 dB; (g) LWISTA0.5: 30.68 dB; (h) TWISTA0.5: 30.76 dB; (i) LIHTA:
30.82 dB; and (j) TIHTA: 30.80 dB (from top left to bottom right)

45

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

time cost of their corresponding sparse coding algorithms. In detail, the unsupervised learned

DNNs have similar PSNR values to their supervised versions, which proves that unsupervised

learning can function in the graphic denoising task. Among all DNNs, DNN-structured WISTA

and IHTA are better than the others: the PSNRs of the denoised image using their original sparse

coding algorithms are approximately 0.25 dB slightly better, but the results remain reasonably

good because DNN-structured WISTA0.5 can be over 10 times faster than OMP.

Video-denoising experiments

In this section, we propose a procedure to apply the DNN-SC algorithm to real-time video

denoising. The details of the video-denoising experiment are described below. We selected two

videos from the dataset created by Gygli et al. [73] to test the denoising performance. The first

video, which is named ‘Fire Domino’, is a 360×480-pixel gray-scaled video captured by a fixed

camera; ‘Fire Domino’ is composed of 1612 frames at a rate of 25 frames/s (FPS). The second

video, which is named ‘Statue of Liberty’, is a 360 × 480-pixel gray-scaled video captured by

people in daily life; ‘Statue of Liberty’ has 1500 frames in total at a rate of 25 FPS. Random

white noise was added to the two videos to generate noised videos with PSNR of approximately

20 dB. Referring to the signal model in equation (4.1), we generated a 225× 256 overcomplete

DCT distributed dictionary for this video-denoising task. Each video frame was separated into

15 × 15-pixel small patches with an interval of 10 between patches to form the input data set

X ∈ R225×1645. All DNN-SC algorithms used 4-layer network structures in this experiment.

Video streaming was inputed into the DNN frame by frame, which implies that the DNNs learn

from one frame and finish denoising before processing the next frame. The denoising results of

unsupervised DNN-SC algorithms are presented below.

Table 4.3, Table 4.4, Figure 4.10 and Figure 4.11 show that all unsupervised DNN-SC al-

gorithms can successfully recover noised video streaming from 20 dB to approximately 30 dB

with reasonable fast denoising time. More importantly, both TISTA and TWISTA can restrict the

sum of denoising and DNN learning time to 0.04 s/frame, which implies that these two DNN-

SC algorithms can conduct real-time video denoising for a 25-FPS 360× 480-pixel gray-scaled

video. In detail, we observe that TISTA continues being the fastest algorithm in processing, but

its PSNR is relatively the worst. TIHTA achieves the highest PSNR among these algorithms, but

its processing time is nearly twice that of TWISTA. TWISTA0.5 is the best algorithm, which re-

strains the processing time in the frame internal of a 25-FPS video. Furthermore, the denoising

46

4.4. EXPERIMENTS

Table 4.3: Average denoising results of the DNN-SC algorithms from the first noised video ‘Fire
Domino’ with an initial PSNR of 20.17± 0.02 dB

Algorithms PSNR(dB) Denoising time(s) Learning time(s)
TISTA 30.35± 1.06 0.015± 0.009 0.004± 0.001

TWISTA0.9 31.15± 1.23 0.036± 0.021 0.004± 0.001

TWISTA0.7 31.74± 1.25 0.036± 0.021 0.004± 0.001

TWISTA0.5 31.83± 1.30 0.036± 0.021 0.004± 0.001

TIHTA 31.45± 1.06 0.071± 0.043 0.014± 0.005

(a) Noised:20.19dB (b) TISTA:31.35dB (c) TWISTA0.9:32.00dB

(d) TWISTA0.7:32.71dB (e) TWISTA0.5:32.89dB (f) TIHTA:32.44dB

Figure 4.10: Denoising results of one frame in the video ‘Fire Domino’ from the initial PSNR
of 20.19dB

time of the video with identical resolution may vary depending on the video; thus, the average

denoising time of different algorithms for the second video is approximately 75% compared to

the time cost for the first video.

4.4.3 Discussion

Throughout the conducted experiments, there are two points for discussion.

1. DNN-IHTA, which fails in giving a close approximation of the converged IHTA in syn-

Table 4.4: Average denoising results of DNN-SC algorithms for the noised video ‘Statue of
Liberty’ with the initial PSNR of 20.17± 0.01dB

Algorithms PSNR (dB) Denoising time (s) Learning time (s)
TISTA 28.70± 1.53 0.012± 0.006 0.004± 0.001

TWISTA0.9 29.12± 1.58 0.029± 0.013 0.004± 0.001

TWISTA0.7 29.38± 1.63 0.028± 0.013 0.004± 0.001

TWISTA0.5 29.47± 1.71 0.028± 0.013 0.004± 0.002

TIHTA 29.81± 1.52 0.055± 0.025 0.008± 0.003

47

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

(a) Noised:20.17dB (b) TISTA:27.80dB (c) TWISTA0.9:28.24dB

(d) TWISTA0.7:28.48dB (e) TWISTA0.5:28.54dB (f) TIHTA:29.00dB

Figure 4.11: Denoising results of one frame in the video ‘Statue of Liberty’ from the initial
PSNR of 20.17dB

thetic data experiments, can function well in graphic denoising experiments.

In Figure 4.7, DNN-IHTA can hardly approach the results of IHTA in synthetic data ex-

periments for all tested DNN layers, but Table 4.2, Table 4.3 and Table 4.4 show that

TIHTA can work well and achieve similar results to the converged results of IHTA. The

key difference is the data set. In the synthetic data experiments, data were randomly gen-

erated and obey the normal distribution N(0, 1), but in denoising experiments, the data

were extracted small patches from an image or a video, i.e., the data may have certain

continuity and dependence among the data columns. Figure 4.7 also shows that DNN-

structured WISTA requires more DNN layers to achieve the converged results of WISTA

as p decreases, whereas DNN-structured ISTA does not have this problem. One possibil-

ity is that the problem is caused by the nonconvex feature in IHTA and WISTA, which

makes the back-propagation failed in finding the global optimal in random meaningless

data set.

2. In both image and video denoising, the DNN learning time is small.

Table 4.2, Table 4.3 and Table 4.4 show that all DNN-SC algorithms only require tens of

millisecond to complete their learning procedure, which ensures that the DNN update is

sufficiently fast for online processing. The reason is that the DNNs in these experiments

only use a small number of patches from the image until the learning procedure converges,

48

4.5. CHAPTER SUMMARY

which is not possible for the learning procedure of synthetic data experiments. In the

synthetic data experiments, the DNN learning should pass several epochs of all input data

to make the learned DNN converge and effective. The possible answer may again be the

difference in data set. All image patches have identical standard white noise levels on a

continuous and repeating graphic signal, whereas the synthetic data put white noises on

random generated signals, which are also the Gaussian distribution. Thus, the denoising

procedure for each patch may have certain similarities that the learned DNN from a small

number of patches can stand for the entire image.

4.5 Chapter Summary

In this chapter, we have proposed two DNN-SC algorithms. The first algorithm applies deep

learning approaches to WISTA, which is a modified sparse coding algorithm of ISTA proposed

in this paper. WISTA considers to approximate the `p norm sparse coding problem by joining the

information of the sparse representation from the previous iteration. The ‘weighted’ idea enables

one to enjoy the advantages of the `p norm sparse constraint while maintaining the convex

optimization model. The second approach combines IHTA [27] with deep learning, which is

an `0.5 norm sparse coding algorithm. We state the differences between two DNN learning

schedules for DNN-SC algorithms: supervised and unsupervised. The benefit of unsupervised

DNN learning is that it does not require input signals associated with labels, which enables one

to apply DNN-SC algorithms to image denoising, video denoising and other applications that

lack paired training samples.

The synthetic data experiments show that WISTA can outperform both ISTA and IHTA in

terms of the relative norm error and accuracy. In addition, WISTA can retain the advantages of

supervised and unsupervised DNN versions. We also find that unsupervised DNNs can achieve

similar performance to their corresponding supervised ones. However, DNN-IHTA can hardly

learn the appropriate parameters to yield a close approximation of the converged IHTA in syn-

thetic data. Furthermore, it is difficult for DNN-WISTA to train the parameters when there

are few layers, but all DNN-WISTAs can function well with at least 15 layers, which remains

reasonable.

Then, we have applied the proposed algorithms to image and video denoising, which benefit

from the unsupervised learning procedure and fast DNN learning time for graphic processing.

49

CHAPTER 4. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR ONLINE PROCESSING

The denoising results show that the DNN-SC algorithms can accelerate the denoising procedures

at least 45 times while maintaining reasonably good performances from 20 dB to approximately

30 dB. Then, we conducted denoising experiments on two videos. Using TISTA and TWISTA,

the total processing time for each frame can be restricted to 0.04 s/frame, which indicates that

TISTA and our proposed TWISTA can be applied in real-time video denoising for a 25-FPS

video with good denoising results. Although we only conduct experiments for 25-FPS 360 ×

480-pixel gray-scaled videos, the future work may extend to higher FPS, higher resolution and

colored videos.

50

Chapter 5

`p Norm Independently Interpretable

Regularization based Sparse Coding

for Highly Correlated Data

5.1 Introduction

Reviewing the procedure of sparse coding, which concentrates on presenting sparse esti-

mations from underdetermined linear measurements, based on predefined overcomplete vector

sets. Utilizing sparse coding can perform parameter estimation and feature selection simul-

taneously, making it a powerful tool in processing high dimensional data, which is commonly

appeared in biology, economy and industry [74–78]. Choosing appropriate sparse regularization

to implement sparse coding is the guarantee for obtaining results efficiently and accurately.

However, commonly used sparse regularizations only consider low coherence conditions of

data. When signals are highly correlated, sparse coding with normal sparse regularization can-

not efficiently interpret the decomposability of model. In 2018, Takada et al. propose a new

regularization, named Independently Interpretable Lasso (IILasso), which is composed with co-

herence between dictionary columns to enhance the ability of choosing uncorrelated variables

in sparse coding [40]. IILasso has proven to be efficient in highly correlated data and provides

smaller misclassification error than several other sparse coding algorithms. However, IILasso

has the same problem as the other `1 norm based regularization that its result is not sparse and

accurate enough. In this paper, we propose to introduce `p norm (0 < p < 1) into the regu-

larization of IILasso, which can enhance performance both in sparsity and accuracy. However,

51

CHAPTER 5. `P NORM INDEPENDENTLY INTERPRETABLE REGULARIZATION BASED SPARSE
CODING FOR HIGHLY CORRELATED DATA

-4 -2 0 2 4
Z1

-4

-2

0

2

4

Z
2

p=1.0, q=1.0, R
12

= 0.0

-4 -2 0 2 4
Z1

-4

-2

0

2

4

Z
2

R
12

= 0.5

-4 -2 0 2 4
Z1

-4

-2

0

2

4

Z
2

R
12

= 1.0

(a)

-4 -2 0 2 4
Z1

-4

-2

0

2

4

Z
2

p=1.0, q=0.7, R
12

= 0.0

-4 -2 0 2 4
Z1

-4

-2

0

2

4

Z
2

R
12

= 0.5

-4 -2 0 2 4
Z1

-4

-2

0

2

4

Z
2

R
12

= 1.0

(b)

-5 0 5
Z1

-5

0

5

Z
2

p=0.7, q=1.0, R
12

= 0.0

-5 0 5
Z1

-5

0

5

Z
2

R
12

= 0.5

-5 0 5
Z1

-5

0

5

Z
2

R
12

= 1.0

(c)

-5 0 5
Z1

-5

0

5

Z
2

p=0.7, q=0.7, R
12

= 0.0

-5 0 5
Z1

-5

0

5

Z
2

R
12

= 0.5

-5 0 5
Z1

-5

0

5

Z
2

R
12

= 1.0

(d)

-1 -0.5 0 0.5 1
Z1

-1

-0.5

0

0.5

1

Z
2

R
12

= 0.0

-1 -0.5 0 0.5 1
Z1

-1

-0.5

0

0.5

1

Z
2

R
12

= 0.5

-1 -0.5 0 0.5 1
Z1

-1

-0.5

0

0.5

1

Z
2

R
12

= 1.0

(e)

Figure 5.1: (a)-(d) Contours of the constraint when dp(z) + hq(z) = ‖z‖pp + (|z|q)TR|z|q =
1, 2, 3 with z = [z1, z2] and R = [0, 0; 0, 0], [0, 0.5; 0.5, 0], [0, 1; 1, 0] from top to bottom for
each row; (e) Contours comparison among the previous 4 cases when dp(z) + hq(z) = 1 with
z = [z1, z2] and R = [0, 0; 0, 0], [0, 0.5; 0.5, 0], [0, 1; 1, 0] from top to bottom; respectively red
straight line for (a) p = 1, q = 1, black dash line for (b) p = 1, q = 0.7, blue straight line for
(c) p = 0.7, q = 1 and green dash line for (d) p = 0.7, q = 0.7 .

introducing `p norm (0 < p < 1) regularization makes the regularization nonconvex and hard

to solve, regarding to this, we propose to use the Coordinate Descent Algorithm (CDA) with

weighted `1 norm and the Proximal Operator (PO) to solve the optimization problem with the

new regularization.

The remainder of this chapter is organized as follows. In section 5.2, problem formula-

tion and details of proposed algorithms are shown. we have shown how to introduce `p norm

(0 < p < 1) into the regularization part of IILasso and how it may have effect on the contours of

regularization. We also show that the optimization problem with the new regularization can be

solved both by CDA and PO to find a local optimum. Subsequently, we give experimental vali-

dations of proposed algorithms in section 5.3. Synthetic data experiments (section 5.3.1) present

a performance comparison with different algorithms in terms of the relative norm error and sup-

port error. Real-world data experiments are shown in section 5.3.2 using highly correlated gene

expression data. We present that our proposed algorithm can obtain smaller misclassification

error in different gene expression datasets.

52

5.2. PROBLEM FORMULATION

5.2 Problem Formulation

The paper considers a sparse coding problem, in which we are finding a proper approach to

obtain an optimal sparse solution z ∈ Rn from a given noisy data x ∈ Rm based on the linear

signal model described in the following equation,

x = Dz+ v, (5.1)

where D ∈ Rm×n is an overcomplete dictionary matrix with n > m, and v ∈ Rm is an additive

white Gaussian distributed noise vector. The above equation (5.1) defines an underdetermined

linear system. As the dictionary in the equation is supposed to be a full row-rank matrix, this

model should have infinite solutions. To achieve the required sparse solution, sparse constraints

are introduced. Therefore, the general minimization model with the square data fitting error and

a sparse constraints are applied to solve the linear signal model,

min
z
L(z) =

1

2
‖x−Dz‖22 + λdp(z) + γhq(z), (5.2)

where {λ ≥ 0, γ ≥ 0, λ + γ 6= 0} are tuning parameters to adjust the effect of the sparse

constraints. The function dp(z) is a sparse penalty term formulated as follow,

dp(z) = ‖z‖pp =
n∑
k=1

|zk|p. (5.3)

Furthermore, hq(z) which introduces the coherence between dictionary columns formulated as

follows,

hq(z) =
1

2
(|z|q)TR|z|q = 1

2

n∑
j=1

n∑
k=1

Rjk|zj |q|zk|q. (5.4)

In the equation (5.4), R ∈ Rn×n is a symmetric matrix whose component Rjk ≥ 0 repre-

sents for the coherence between dictionary columns Dj and Dk, the definition of R is shown as

follow,

Rjk =

|DT

jDk| ,j 6= k

0 ,j = k.

(5.5)

In the original IILasso, the regularization has p = 1 and q = 1. By reducing p and q value,

contours graph of the constraint will be more concave. In Figure 5.1, we can observe the effect

53

CHAPTER 5. `P NORM INDEPENDENTLY INTERPRETABLE REGULARIZATION BASED SPARSE
CODING FOR HIGHLY CORRELATED DATA

of changing p and q value. In general, high value inR representing high coherence, both smaller

p and smaller q value can modify contours to be more concave. In the first row where dictionary

columns are orthogonal , hq(z) has no effect on the contours and they are the same as original `p

norm contours. With coherence increasing, all settings of p and q value gradually result in more

concave contours, indicating effects of hq(z) is strengthening. Furthermore, reducing p and q

simultaneously will help changing the contours to be more concave and reducing p value is more

effective than reducing q value. The last column of contours shows a more intuitive comparison

between different settings and we can see the effects of changing value of p, q and R more

clearly. These contours suggest that properly setting p and q value can help getting sparser and

thus more accurate results. However, reducing p and q value also means the loss function are

no longer convex and hard to solve. Therefore, we propose to use CDA with weighted `1 norm

and the proximal splitting method to solve the problem in the following sections.

5.2.1 IILasso

IILasso [40] firstly introduce the coherence between dictionary columns into the sparse con-

straint function, and use `1 norm sparse constraint d1(z), and h1(z) in the objective function

(5.2).

To solve (5.2), CDA, which was originally proposed for Lasso [23,24], is applied. CDA op-

timize the objective function by updating z element-wisely. Therefore, the optimization problem

is changed to the following one,

min
zi

L(zi) =
1

2
(x̂i −D:izi)

T(x̂i −D:izi) + λ|zi|+ γ|zi|Ri:|z|, (5.6)

where D:i is ith column of the dictionary D, zi is ith element of the coefficient vector z, x̂i =

x −
∑n

j=1,j 6=i djzj) and Ri: is ith row of R. Therefore, the update equation can be easily

derived from the differential of the reformed objective function L(zi),

∂ziL(zi) = −D:i
T(x̂i −D:izi) + (λ+ γRi:|z|)sign(zi). (5.7)

Because of the definition of R that Rii = 0, zi does not affect Ri:|z|. Eventually, we can

obtain the update rule by solving ∂ziL(zi) = 0,

zi ←
1

D:i
TD:i

π1(D:i
Tx̂i, (λ+ γRi:|z|)), (5.8)

54

5.2. PROBLEM FORMULATION

where π1(z, t) is a soft thresholding operator defined in equation (5.9). The detail of IILasso is

summarized in Algorithm 5.1.

[π1(z, t)]j = sgn(zj)max {|zj | − tj , 0} (5.9)

Algorithm 5.1: IILasso
Input: data x, dictionary D, proper positive parameters λ and γ.
Initialization: z(0) = 0, k = 0.
Main iteration: increment k by 1
for i = 1, ..., n

z
(k)
i ←

1
D:i

TD:i
π1(D:i

Tx̂i, (λ+ γRi:|z|)),
end for
Stopping rule: stop if z(k) has converged
Output: z = z(k)

5.2.2 II-ISTA

Independently Interpretable Iterative Shrinkage Thresholding Algorithm (II-ISTA) has the

same objective function as IILasso, namely d1(z) and h1(z). The only difference is II-ISTA use

the proximal splitting method to solve the objective function.

The proximal splitting method use constant step size to pursuit the minimum of objective

function, with circular iterations,

z(k) = π1(z
(k−1) − 1

α
DT(Dz(k−1) − x), t), (5.10)

where π1(z, t) = argminu∈Rm
1
2‖u− z‖22 + λd1(z) + γh1(z) denotes to use soft thresholding

operator as the proximal operator to solve the regularization. Reviewing the regularization part,

since Rii = 0,

λd1(z) + γh1(z) =
n∑
i=1

|zi|(λ+ γ
n∑

j=1,j 6=i
|zj |Rij). (5.11)

Therefore, the regularization can regarded as a weight on `1 norm during optimization and

the ith value of threshold t is defined in equation (5.12). The update rules of II-ISTA are

summarized in Algorithm 5.2.

55

CHAPTER 5. `P NORM INDEPENDENTLY INTERPRETABLE REGULARIZATION BASED SPARSE
CODING FOR HIGHLY CORRELATED DATA

ti = λ+ γ
n∑

j=1,j 6=i
|zj |Rij . (5.12)

Algorithm 5.2: II-ISTA
Input: data x, dictionary D, proper positive parameters λ, γ and α.
Restriction: α > largest eigenvalue of DTD

Initialization: z(0) = 0, k = 0.
Main iteration: increment k by 1
t = λ+ γR|z(k−1)|
z(k) = π1(z

(k−1) − 1
αD

T(Dz(k−1) − x), t)

Stopping rule: stop if z(k) has converged
Output: z = z(k)

5.2.3 IIWLasso

For Independently Interpretable Weighted Lasso (IIWLasso), we have p ∈ (0, 1] and q ∈

(0, 1] that `p norms are introduced in the regularization which makes the optimization non-

convex but more sparsity-pursuing. The word ’weighted’ refers to the idea to restrain the `1

sparsity constraint with information from previous iteration which can function approximately

as an `p norm, namely, the regularization part is formulated as,

dp(z) = ‖z‖pp ≈
n∑
i

|z(k−1)i |p−1|zi|, (5.13)

hq(z) =
1

2

n∑
i

n∑
j=1,j 6=i

|z(k−1)i |q−1|z(k−1)j |q−1|zi||zj |Rij , (5.14)

where k refers to iteration number. Since we can consider the component-wise weighted part

from the previous iteration as constant during iterations, the sparse constraint is still an `1

norm structure in each iteration and we can still use CDA to obtain the update rule by solving

∂ziL(zi) = 0 in equation (5.15) and (5.16). The update rules of IIWLasso can be summarized

as Algorithm 5.3.

∂ziL(zi) =−D:i
T(x̂i −D:izi)

+ (λ|z(k−1)i |p−1 + γ|z(k−1)i |q−1Ri:|z|q)sign(zi).
(5.15)

zi ←
1

D:i
TD:i

π1(D:i
Tx̂i, λ|z(k−1)i |p−1 + γ|z(k−1)i |q−1Ri:|z|q), (5.16)

56

5.2. PROBLEM FORMULATION

Algorithm 5.3: IIWLasso
Input: data x, dictionary D, proper positive parameters λ and γ.
Initialization: z(0) = 0, k = 0.
Main iteration: increment k by 1
for i = 1, ..., n

z
(k)
i ←

1
D:i

TD:i
π1(D:i

Tx̂i, λ|z(k−1)i |p−1+
γ|z(k−1)i |q−1Ri:|z|q),

end for
Stopping rule: stop if z(k) has converged
Output: z = z(k)

5.2.4 Independently Interpretable Proximal Operator (IIPO)

In this section, we intend to solve a condition that p = q = 2
3 using the proximal operator

inspired from the closed-form thresholding formulas ` 2
3

regularization [28,29]. By applying the

proximal splitting method, we pursuit the minimum of the objective function by repeating

z(k) = πp(z
(k−1) − 1

α
DT(Dz(k−1) − x), t), (5.17)

where πp(z, t) = argminu∈Rm
1
2‖u− z‖22 + λdp(z) + γhp(z). Following the same derivation

process in II-ISTA, since we known Rii = 0,

λdp(z) + γhp(z,D) =

n∑
i=1

|zi|p(λ+ γ

n∑
j=1,j 6=i

|zj |pRij). (5.18)

Therefore, the regularization can regarded as a weight on `p norm during optimization and

the threshold t is defined as follow,

ti = λ+ γ

n∑
j=1,j 6=i

|zj |pRij , i = 1, ..., n. (5.19)

The reason of choosing p = q = 2
3 is that the proximal operator πp for p = l

s is obtained by

solving the 2s− l degree polynomial equation [28],

x2s−l − zxs−l + l

s
u = 0, x > 0. (5.20)

Since then, other from p ∈ {12 ,
2
3}, the degree of the polynomial is higher than 4 and it

is hard to have a closed-form formula, however, we can still obtain approximate solution of

57

CHAPTER 5. `P NORM INDEPENDENTLY INTERPRETABLE REGULARIZATION BASED SPARSE
CODING FOR HIGHLY CORRELATED DATA

equation (5.20) by using the Newton method [28]. Because the ` 2
3

norm regularization performs

better than the ` 1
2

norm regularization, we only present p = 2
3 in this paper. ` 2

3
norm is a good

regularization for achieving a sparser representation more efficiently, meanwhile its converged

result can be obtained when λ is small enough and dictionary D satisfies a certain concentration

assumption [29,71]. The closed-form formulas for the proximal operators π 2
3
(z, t) are given in

equation (5.21) and (5.22). The update rules of II2/3PO with ` 2
3

norm based regularization are

summarized in Algorithm 5.4.

[
π 2

3
(z, t)

]
j
=
1

8
(
√

2vj +

√
2|zj |√
2vj
− 2vj)

3

sign(zj max{|zj | − 2(
2

3
tj)

3
4 , 0}),

(5.21)

where

vj = (
z2j
16

+

√
z4j
256
−

8t3j
729

)
1
3 + (

z2j
16
−

√
z4j
256
−

8t3j
729

)
1
3 . (5.22)

Algorithm 5.4: II2/3PO
Input: data x, dictionary D, proper positive parameters λ, γ and α.
Restriction: α > largest eigenvalue of DTD

Initialization: z(0) = 0, k = 0.
Main iteration: increment k by 1
t = λ+ γR|z(k−1)|p
z(k) = π 2

3
(z(k−1) − 1

αD
T(Dz(k−1) − x), t)

Stopping rule: stop if z(k) has converged
Output: z = z(k)

5.3 Experiments

5.3.1 Synthetic data experiments

In this section, we present our experiments results of proposed algorithms in finding an

optimal solution to the ground truth of sparse representations. Synthetically generated data were

used throughout experiments, which was built by using ground true dictionaries generated with

Gaussian random values. All experiments were performed via Matlab R2018b, and programs

were run on a PC with a 2.7 GHz Intel core and 12GB RAM.

In the synthetic data experiments, to valid the effects of regularization in highly correlated

Data, we formed three dictionaries Dc with different coherence, where the subscript c stands for

mean coherence used in experiments. All dictionaries were sized as 30×50 matrices and column

58

5.3. EXPERIMENTS

normalized after generating value. D0.15 was generated by drawing value randomly from the

normal distribution N(0, 1). The Gaussian random dictionary usually have a mean coherence

around (0.10, 0.20), and in this experiments its mean coherence is 0.15. The coherence of two

vectors with the same scale is defined as follow,

coherence(Dj ,Dk) = |
DT
jDk

‖Dj‖‖Dk‖
|. (5.23)

The other two high coherence dictionaries were generated by adding a small normal distributed

vector to a baseline vector generated from the normal distribution N(0, 1), namely D0.50 with

mean coherence 0.50 and D0.80 with mean coherence 0.80. The coherence distribution of the

three dictionary is shown in Figure 5.2. The diagram counts numbers of coherence between

every two columns in the dictionary, so it has a total number (n − 1)n/2. The quantity of

ground true sparse representation vectors Zorig = (zorig1, ..., zorig100) was 100 in experiments.

Correspondingly, data set Xorig had 100 sample size which was generated by Dc and Zorig based

on the equation (5.1), The noise vectors v were added based on Gaussian random entries with

20dB SNR.

Sparsity measurement used Hoyer sparsity measure [66] based on the relationship between

the `1-norm and the `2-norm, which can give a well defined sparsity. The Hoyer sparsity mea-

sure is formulated as following,

Hoyer sparsity(z) =
√
n− (

∑
|zi|)/

√∑
zi2√

n− 1
, (5.24)

where n represents the dimension of z, and when the value of the equation is closer to 1, the z

vector is approaching to a sparser vector.

Fig.5.3 shows the ability of recovering accurate sparse representations using three sparse

coding algorithms with dictionary D0.15. Sparse representation error use the relative norm error

compared to Zorig, defined in equation (5.25).

Relative norm error(z) =
‖zorig − z‖22
‖zorig‖22

. (5.25)

Fig.5.4 shows the performance variation in a range of λ values with dictionary D0.15. Sparse

representation accuracy is compared using support error, which is defined in equations (5.26)

59

CHAPTER 5. `P NORM INDEPENDENTLY INTERPRETABLE REGULARIZATION BASED SPARSE
CODING FOR HIGHLY CORRELATED DATA

D0.15 columns coherence distribution

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

(a)

D0.50 columns coherence distribution

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

(b)

D0.80 columns coherence distribution

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

(c)

Figure 5.2: Coherence distribution of synthetic generated dictionary: (a) D0.15, (b) D0.50 and
(c) D0.80.

60

5.3. EXPERIMENTS

0 5 10 15 20 25 30 35

Iteration

10-3

10-2

10-1

100

R
el

at
iv

e
no

rm
 e

rr
or

 Lasso

IILasso

IIWW0.7

0 5 10 15 20 25 30 35

Iteration

0.5

0.6

0.7

0.8

0.9

1
A

ve
ra

ge
 H

oy
er

 S
pa

rs
ity

 Lasso
IILasso
IIWW0.7
 Orig

Figure 5.3: Average sparse representation errors and Hoyer sparsity convergence graph of dif-
ferent algorithms with Gaussian random dictionary D0.15.

and (5.27),

S = Support{z}, (5.26)

Support error(z) =
max{|Sorig|, |S|} − |Sorig ∩ S|

max{|Sorig|, |S|}
. (5.27)

The definition of support is a set containing information of non-zero positions in z. There-

fore, support error can show how given z meets the ground true one considering both non-zero

positions and zero positions and it is more sensitive to the accuracy of finding non-zero posi-

tions.

In the rest of this section, we intend to compare algorithms proposed in this paper, namely

II-ISTA, II2/3PO and IIWLasso, to their original algorithms, namely ISTA, 2/3PO, Lasso and

IILasso. In detail, we subdivided IILasso into three special cases, namely IIWL0.7 with p = 0.7

and q = 1, IIWR0.7 with p = 1 and q = 0.7, IIWW0.7 with p = 0.7 and q = 0.7. The

reason of only choosing p = 0.7 is that weighted `1 norm tends to obtain its best performance

in experiments when p = 0.7, which is also validated in our previous paper [34].

Performance in Gaussian random dictionary D0.15

From Figure 5.3, we can see all three algorithms can achieve convergent results with small

error and high sparsity closed to the ground truth in small numbers of iteration with Gaussian

61

CHAPTER 5. `P NORM INDEPENDENTLY INTERPRETABLE REGULARIZATION BASED SPARSE
CODING FOR HIGHLY CORRELATED DATA

10-3 10-2 10-1

lambda

10-3

10-2

10-1

R
el

at
iv

e
no

rm
 e

rr
or

 Lasso
IILasso
IIWW0.7

10-3 10-2 10-1

lambda

0

0.2

0.4

0.6

0.8

1

S
up

po
rt

 e
rr

or

 Lasso
IILasso
IIWW0.7

Figure 5.4: Average relative norm errors and support error of different algorithms in a range of
λ with optimized γ and Gaussian random dictionary D0.15.

random dictionary D0.15. In detail, we can find IIWW0.7 can reach smallest error with smallest

iterations, and its converged result can best fit the original sparsity. From Figure 5.4, we can see

when `1 norm based Lasso and IILasso reach their smallest relative norm error, their support

errors are usually not good which indicate that their results contain many small values in wrong

positions. On the contrary, curve trends of relative norm error and support error are more similar

in `p norm (0 < p < 1) based IIWW0.7, indicating `p norm (0 < p < 1) can obtain smaller

relative norm error and support error simultaneously. Furthermore, we can notice the curve

of IILasso in relative norm error tends to be straight when lambda is small, which means the

coherence based regularization itself can also obtain sparse and accurate result in certain degree.

Performances of the other algorithms with D0.15 are summarized in Table 5.1. IIWR0.7 and

IIWL0.7 refer to different p and q choices in Figure 5.1. IIWR0.7 represents for p = 1 and

q = 0.7 and IIWL0.7 represents for p = 0.7 and q = 1. In general, we can see that all indepen-

dently interpretable algorithms, namely those which add coherence related regularization hq(z),

can obtain smaller relative norm error than their original algorithms. Except II2/3PO, the other

independently interpretable algorithms also obtain smaller support error than their original algo-

rithms. Meanwhile, we can figure out `p norm (0 < p < 1) based algorithms can obtain better

results both in relative norm error and support error. In detail, IIWW0.7 presents the smallest

relative norm error with relatively small support error.

Figure 5.5 shows that all three algorithms can generally find accurate and sparse representa-

62

5.3. EXPERIMENTS

10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

V
al

ue

 Lasso Support Err: 7.39e-01 Relative Err: 5.64e-03

10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

V
al

ue

IILasso Support Err: 7.07e-01 Relative Err: 4.73e-03

10 20 30 40 50 60 70 80 90 100

Index of sparse representation

-1

-0.5

0

0.5

1

V
al

ue

IIWW0.7 Support Err: 3.85e-02 Relative Err: 1.73e-03

Figure 5.5: Well matched recovered sparse representation (blue) compared with original one
(red) of algorithm Lasso, IILasso, IIWW0.7 in D0.15 (from up to down).

tions but having several small values in wrong positions compared to the ground true representa-

tion (red). Lasso has the largest amount of small value mistakes, so it has a larger relative norm

error than the other algorithms. IILasso performs slightly better than Lasso in both relative norm

error and support error, which indicates its regularization may help enhancing performance but

still can hardly remove small values in wrong positions. For IIWW0.7, the number of support

mistakes is only one in these two cases which results in small support error, indicating `p can

help increasing accuracy of sparse representation significantly.

Figure 5.6 shows time cost of different algorithms with Gaussian random dictionary D0.15.

Although IILasso and II-ISTA converge at similar relative norm error, II-ISTA converges fastest

in computation time because of that PO update coefficient as a whole while CDA update ele-

ment by element. We can also notice that PO is not always converge faster than CDA comparing

II2/3PO to the others which is caused by complexity of the closed-form formulas for the proxi-

mal operators π 2
3
(z, t).

Performance in relatively highly correlated dictionary D0.50

From Figure 5.7, we can see all three algorithms can achieve convergent results with small

error and high sparsity in relatively small numbers of iteration with relative highly correlated

63

CHAPTER 5. `P NORM INDEPENDENTLY INTERPRETABLE REGULARIZATION BASED SPARSE
CODING FOR HIGHLY CORRELATED DATA

Table 5.1: Average relative norm errors and corresponded support error of different algorithms
with optimized parameters and Gaussian random dictionary D0.15.

Algorithm Relative Norm Error Support Error
Lasso 5.64× 10−3 7.39× 10−1

IILasso 4.73× 10−3 7.07× 10−1

IIWR0.7 2.35× 10−3 2.68× 10−1

IIWL0.7 1.84× 10−3 3.85× 10−2

IIWW0.7 1.65× 10−3 4.15× 10−2

ISTA 5.71× 10−3 7.41× 10−1

II-ISTA 4.79× 10−3 7.02× 10−1

2/3PO 1.79× 10−3 3.23× 10−2

II2/3PO 1.69× 10−3 4.15× 10−2

10-3 10-2 10-1 100

time (s)

10-3

10-2

10-1

100

R
el

at
iv

e
no

rm
 e

rr
or

 Lasso
IILasso
IIWW0.7
II-ISTA
II2/3PO

Figure 5.6: Time cost of different algorithms with Gaussian random dictionary D0.15.

0 10 20 30 40 50 60 70 80 90 100

Iteration

10-3

10-2

10-1

100

R
el

at
iv

e
no

rm
 e

rr
or

 Lasso

IILasso

IIWW0.7

0 10 20 30 40 50 60 70 80 90 100

Iteration

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 H
oy

er
 S

pa
rs

ity

 Lasso

IILasso

IIWW0.7

 Orig

Figure 5.7: Average sparse representation errors and Hoyer sparsity convergence graph of dif-
ferent algorithms with highly correlated dictionary D0.50.

64

5.3. EXPERIMENTS

10-4 10-3 10-2 10-1

lambda

10-3

10-2

10-1

R
el

at
iv

e
no

rm
 e

rr
or

 Lasso
IILasso
IIWW0.7

10-4 10-3 10-2 10-1

lambda

10-2

10-1

100

S
up

po
rt

 e
rr

or

 Lasso
IILasso
IIWW0.7

Figure 5.8: Average relative norm errors and support error of different algorithms in a range of
λ with optimized γ and relatively highly correlated dictionary D0.50.

Table 5.2: Average relative norm errors and corresponded support error of different algorithms
with optimized parameters and relatively highly correlated dictionary D0.50

Algorithm Relative Norm Error Support Error
Lasso 1.67× 10−2 7.57× 10−1

IILasso 1.53× 10−2 7.01× 10−1

IIWR0.7 3.22× 10−3 7.69× 10−1

IIWL0.7 3.30× 10−3 7.41× 10−2

IIWW0.7 2.83× 10−3 4.46× 10−2

ISTA 2.47× 10−2 7.08× 10−1

II-ISTA 2.46× 10−2 6.81× 10−1

2/3PO 1.33× 10−2 1.54× 10−1

II2/3PO 1.32× 10−2 1.42× 10−1

65

CHAPTER 5. `P NORM INDEPENDENTLY INTERPRETABLE REGULARIZATION BASED SPARSE
CODING FOR HIGHLY CORRELATED DATA

0 50 100 150 200 250 300 350

Iteration

10-2

10-1

100

R
el

at
iv

e
no

rm
 e

rr
or

 Lasso

IILasso

IIWW0.7

0 50 100 150 200 250 300 350

Iteration

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 H
oy

er
 S

pa
rs

ity

 Lasso
IILasso
IIWW0.7
 Orig

Figure 5.9: Average sparse representation errors and Hoyer sparsity convergence graph of dif-
ferent algorithms with highly correlated dictionary D0.80.

dictionary D0.50. Iteration numbers for reaching convergence of all algorithms have increased

compared to D0.15. In detail, we can find that IIWW0.7 can still reach smallest relative norm

error, and its converged result can also fit the original sparsity best. From Figure 5.8, we can

see the similar trend of Lasso and IILasso about the dislocation between relative norm error and

support error. Furthermore, we can observe a larger optimal lambda range for IIWW0.7 in D50

than that in D15, which may be caused that effect of coherence based regularization hq(z) is

strengthening with increase of coherence.

Performances of the other algorithms are summarized with D0.50 in Table 5.2. In this case,

we can still observe the trend that all independently interpretable algorithms can obtain smaller

relative norm error and support error than their original algorithms, while IIWW0.7 presents

both the smallest relative norm error and support error.

Performance in highly correlated dictionary D0.80

From Figure 5.9, we can also see that all three algorithms can achieve convergent results

with small error and high sparsity in reasonable numbers of iteration with highly correlated

dictionary D0.80. Iteration numbers for reaching convergence of all algorithms is nearly 10

times compared to D0.15. In detail, we can find that IIWW0.7 can still reach smallest relative

norm error, and its converged result also have the relatively best performance to fit the original

sparsity. Furthermore, although IILasso can obtain smaller relative norm error compared to

66

5.3. EXPERIMENTS

10-4 10-3 10-2 10-1

lambda

10-2

10-1

R
el

at
iv

e
no

rm
 e

rr
or

 Lasso
IILasso
IIWW0.7

10-4 10-3 10-2 10-1

lambda

10-1

100

S
up

po
rt

 e
rr

or

 Lasso
IILasso
IIWW0.7

Figure 5.10: Average relative norm errors and support error of different algorithms in a range of
λ with optimized γ and highly correlated dictionary D0.80.

Table 5.3: Average relative norm errors and corresponded support error of different algorithms
with optimized parameters and highly correlated dictionary D0.80

Algorithm Relative Norm Error Support Error
Lasso 6.54× 10−2 7.87× 10−1

IILasso 5.65× 10−2 7.26× 10−1

IIWR0.7 2.79× 10−2 2.20× 10−1

IIWL0.7 2.70× 10−2 3.30× 10−1

IIWW0.7 2.68× 10−2 2.05× 10−1

ISTA 1.38× 10−1 7.50× 10−1

II-ISTA 1.12× 10−1 6.42× 10−1

2/3PO 1.40× 10−1 6.62× 10−1

II2/3PO 1.31× 10−1 4.23× 10−1

67

CHAPTER 5. `P NORM INDEPENDENTLY INTERPRETABLE REGULARIZATION BASED SPARSE
CODING FOR HIGHLY CORRELATED DATA

Table 5.4: abstract of Gene Expression Datasets

dataset name sample number dimension label number mean coherence
alon 62 2000 2 0.80
shipp 77 7129 2 0.88
gravier 168 2905 2 0.41
christensen 217 1413 3 0.95

Lasso, its convergence curve has a strange rebound in relative norm error after 100 iterations

which may indicate that in highly correlated data, the strategy of choosing uncorrelated data

may also result in certain inappropriate updating consequence.

From Figure 5.10, we can see the similar trend of Lasso and IILasso about the dislocation

between relative norm error and support error. Furthermore, we can observe the relative norm

error of IILasso is getting smaller gradually with smaller lambda and we found that when lambda

is 0, IILasso may obtain the smallest relative norm error in this case, which may indicate that

only h1(z) itself can function as a good sparse regularization in highly correlated data and d1(z)

may result in obstruction.

Performances of the other algorithms are summarized with D0.80 in Table 5.3. In this case,

we can still observe the trend that all independently interpretable algorithms can obtain smaller

relative norm error and support error than their original algorithms, and again IIWW0.7 presents

both the smallest relative norm error and support error.

Performance comparison among different coherence dictionaries

A more intuitive comparison of different independently interpretable algorithms in differ-

ent coherence conditions is shown in Figure 5.11. In general, we can figure that all algorithms

experience increase in relative norm error with increase in coherence of dictionary. Moreover,

all cases of IIWLasso, namely IIWR0.7, IIWL0.7 and IIWW0.7, can obtain better performances

both in relative norm error and support error compared with IILasso. In detail, IIWW0.7 can ob-

tain smallest relative norm error in all coherence conditions, and IIWW0.7 also obtain smallest

support error among all algorithms with coherence increase. Furthermore, we notice perfor-

mance of II-ISTA and II2/3PO falls quickly with the increase in coherence which indicates PO

may not be suitable for high coherence condition.

68

5.3. EXPERIMENTS

10 20 30 40 50 60 70 80

Mean coherence of dictionary

10-3

10-2

10-1

R
el

at
iv

e
no

rm
 e

rr
or IILasso

IIWR0.7

IIWL0.7

IIWW0.7

II-ISTA

II2/3PO

10 20 30 40 50 60 70 80

Mean coherence of dictionary

0

0.2

0.4

0.6

0.8

S
up

po
rt

 e
rr

or
IILasso

IIWR0.7

IIWL0.7

IIWW0.7

II-ISTA

II2/3PO

Figure 5.11: Average relative norm errors and support error of different algorithms with opti-
mized λ and γ in differently correlated dictionaries.

5.3.2 Gene Expression Data experiments

In this subsection, we intend to present the performance of our proposed algorithms in real-

world data. We applied out methods in various gene expression datasets, which are highly

‘alon’ [74] (colon cancer), ‘shipp’ [75] (lymphoma), ‘gravier’ [76] (breast cancer) and ‘chris-

tensen’ [77] (Tissue-Specific DNA Methylation). All these datasets are provided by R package

datamicroarray. Detail of these datasets are shown in Table 5.4. All datasets are small-sample

high-dimensional and highly correlated DNA microarray data. We use 10-fold cross-validation

and softmax classifier in this experiment to evaluate misclassification errors of different algo-

rithms.

Gene expression data is usually obtained from oligonucleotide arrays which consist of col-

lections of microscopic single-stranded DNA sequences. An oligonucleotide array can measure

the expression levels of large numbers of genes simultaneously. Properly processed gene ex-

pression data can stand for effects of certain treatments, diseases, and developmental stages on

gene expression. However, gene expression data is usually highly correlated and hard to be

interpreted. Obtaining small misclassification errors in this experiment can indicate that corre-

sponded algorithms can interpret the “decomposability” of datasets and thus give suggestions

about new gene expression data on treatments, diseases, and developmental stages on gene ex-

pression with appropriate database.

From Figure 5.12, we can see that tendencies of misclassification errors between different

69

CHAPTER 5. `P NORM INDEPENDENTLY INTERPRETABLE REGULARIZATION BASED SPARSE
CODING FOR HIGHLY CORRELATED DATA

Lasso IILasso IIWL0.7 IIWR0.7 IIWW0.7 II-ISTA II2/3PO
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C
ro

ss
 v

al
id

at
ed

 m
is

cl
as

si
fic

at
io

n
er

ro
r

 alon

 shipp

 gravier

christensen

Figure 5.12: 10-fold cross validated Misclassification error of different algorithms in different
gene expression datasets.

datasets are similar. IIWW0.7 always obtain the smallest or at least the same misclassification

error compared with the other algorithms. IIWL0.7 and IIWR0.7 tend to have similar perfor-

mance in these experiments and perform better than or equivalent to IILasso. This experiments

also indicate that PO is not quite suitable for high coherence condition. IIWW0.7 performs well

in the dataset ”shipp”, ”christensen” and ”alon” for classification in cross-validation with mis-

classification error smaller than 0.06, whereas slightly weakens in ”gravier”, which indicates

that IIWW0.7 can present reasonable suggestions for certain diseases and developmental stages

on gene expression.

5.3.3 Discussion

Throughout the conducted experiments, there are two points for discussion.

1. Field of using independently interpretable regularization is not restricted in highly corre-

lated data

Throughout synthetic experiments in dictionaries with different coherence conditions, we

can notice algorithms with independently interpretable regularization all perform better

than their original algorithms, not restricted in highly correlated data. These results in-

dicate that the strategy of selecting uncorrelated variables is effective in enhancing the

performance of algorithms in different coherence conditions. Further researches may

70

5.4. CHAPTER SUMMARY

consider using independently interpretable regularization not only in highly correlated

data.

2. Advantage of II-ISTA

In both highly correlated synthetic data and gene expression data, we can notice PO with

independently interpretable regularization can not function well, but II-ISTA still has the

advantage in smaller computation time while obtaining similar relative norm error com-

pared with IILasso in Gaussian random synthetic dictionary. We may suggest to use

II-ISTA where time cost is more essential.

5.4 Chapter Summary

In this chapter, we have proposed an approach that introduces `p norm (0 < p < 1) into the

regularization of IILasso to form a new regularization for sparse coding with highly correlated

data. The original regularization of IILasso which introduces the coherence term has shown

good performance in highly correlated data but it has the same problem as the other `1 norm

based regularization that its result is not sparse and accurate enough. Through introducing `p

norm (0 < p < 1), the regularization can be more sparsity-pursuing while fitting highly corre-

lated data. We use CDA and PO to solve the optimization problem with the new regularization.

In CDA, we use weighted `1 norm to approximate `p norm sparse coding problem by using

information of sparse representation from the previous iteration. The ’weighted’ idea makes it

possible to enjoy advantages of `p norm sparse constraint while keeping the convex property. In

PO, we applied the PO of ` 2
3

norm regularization in the new regularization.

In synthetic data experiments, three dictionaries were generated with mean coherence 0.15,

0.50 and 0.80. We have shown that IIWW0.7 can outperform the other algorithms both in rela-

tive norm error and support error in different coherence condition. Furthermore, how different

coherence condition may have effect on the results of different algorithms is shown in synthetic

experiments.

We then applied proposed algorithms in gene expression datasets, which are small-sample

high-dimensional and highly correlated. 10-fold cross-validation results have shown that IIWW0.7

can obtain the relatively best performance for misclassification errors among all algorithms in

different datasets, which suggests that IIWW0.7 can present reasonable suggestions for diseases

and developmental stages on gene expression.

71

Chapter 6

Deep Neural Network Structured

Sparse Coding for Highly Correlated

Data

6.1 Introduction

In this chapter, we still concentrate on processing highly correlated data with the strategy of

selecting uncorrelated variables. We show that it is possible to construct DNN-SC versions of

proposed algorithms in the previous chapter to further enhance efficiency of those algorithms.

Following similar methodology in Chapter 4, we can build and train an effective encoder for

highly correlated data from independently interpretable algorithms in Chapter 5.

The outline of this chapter is as follows. We state the problem formulation and present how

to build encoders and train parameters in section 6.2, We then validate performance of proposed

algorithms in section 6.3. Finally, chapter summary are drawn in Section 6.4.

6.2 Problem Formulation

This chapter considers a sparse coding problem, in which we are finding a proper approach

to obtain an optimal sparse solution z ∈ Rn from a given noisy data x ∈ Rm based on the linear

signal model described in the following equation,

x = Dz+ v, (6.1)

72

6.2. PROBLEM FORMULATION

where D ∈ Rm×n is an overcomplete dictionary matrix with n > m, and v ∈ Rm is an additive

white Gaussian distributed noise vector. The above equation (6.1) defines an underdetermined

linear system. As the dictionary in the equation is supposed to be a full row-rank matrix, this

model should have infinite solutions. To achieve the required sparse solution, sparse constraints

are introduced. Therefore, the general minimization model with the square data fitting error and

a sparse constraints are applied to solve the linear signal model,

min
z
L(z) =

1

2
‖x−Dz‖22 + λdp(z) + γhq(z), (6.2)

where {λ ≥ 0, γ ≥ 0, λ + γ 6= 0} are tuning parameters to adjust the effect of the sparse

constraints. The function dp(z) is a sparse penalty term formulated as follow,

dp(z) = ‖z‖pp =
n∑
k=1

|zk|p. (6.3)

Furthermore, hq(z) which introduce the coherence between dictionary columns formulated as

follow,

hq(z) =
1

2
(|z|q)TR|z|q = 1

2

n∑
j=1

n∑
k=1

Rjk|zj |q|zk|q. (6.4)

In the equation (5.4), R ∈ Rn×n is a symmetric matrix whose component Rjk ≥ 0 repre-

sents for the coherence between dictionary columns Dj and Dk, the definition of R is shown as

follow,

Rjk =

|DT

jDk| ,j 6= k

0 ,j = k.

(6.5)

The key element for building a DNN-SC algorithm from a sparse coding algorithm is that

the encoders are continuous and overall differentiable throughout its whole process. In the

following sections, we would like to propose three DNN-SCs relatively based on IILasso, II-

ISTA and IIWLasso. The origin for training their network parameters is the same as discussed

in Chapter 3, namely supervised learning using equation (4.10) and unsupervised learning using

equation (4.12).

73

CHAPTER 6. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR HIGHLY CORRELATED
DATA

(a)

(b)

Figure 6.1: Neurons update diagram comparison between (a) PO, e.g. ISTA, IHTA, II-ISTA,
etc.; and (b) CDA, e.g. Lasso, IILasso, IIWLasso, etc..

6.2.1 DNN-structured IILasso

By unfolding the iterations of IILasso from Algorithm 5.1, we can construct neural network

structures. The algorithm can be rewritten as a network structure as follows, its neuron update

diagram is shown in Figure 6.1 (b) and the unfolded network structure is shown in Figure 6.2 (b).

Since IILasso use CDA to update elementwisely, we can figure that the network of IILasso is

also element-wise which is key difference between DNN-IILasso and those DNN-SC algorithms

using PO.

Algorithm 6.1: DNN-IILasso Forward propagation
Input: data x, column normalized dictionary D, proper parameters λ and γ, network
layer T .
Initialization: z(0) = 0, H = I−DTD, W = DT, b = Wx.
For k = 1 to T

for i = 1 to n
c
(k−1)
i = bi +Hz(k−1)

t
(k−1)
i = λ+ γRi:|z|
z
(k)
i = π1(c

(k−1)
i , t

(k−1)
i)

end for
End For
Output: C = {c(0), ..., c(T−1)}, Z = {z(0), ..., z(T)}

In the network, W, H, and t are still parameters to train. Comparing forward structure with

the previous DNN-SCs in Chapter 4, we can figure that the process is very similar that the se-

74

6.2. PROBLEM FORMULATION

(a)

(b)

Figure 6.2: Illustration comparison of unfolded k-th iteration (part surrounded by black frame)
for z = [z1; z2; z3] between (a) II-ISTA, where the optimal sparse representation can be recur-
sively obtained in two steps: z(k+1) = π1(b + Hz(k), t), t = λ + γR|z|(k); and (b) IILasso
and IIWLasso, where the optimal sparse representation can be recursively implementing an it-
eration with n = 3 steps, and every step contains two sub-steps: ti = λ + γRi:|z| for IILasso
and ti = |z(k)i |p−1(λ+γRi:|z|q) for IIWLasso, zi = π1(bi+Hi:z, ti). x is the input signal, π1
is the soft thresholding operator with a changing threshold t during the iterations, W = 1

αD
T,

b = Wx, H = I− 1
αD

TD, α > largest eigenvalue of DTD for II-ISTA and α = 1 for IILasso
and IIWLasso.

Algorithm 6.2: DNN-IILasso Back propagation
Input: x, D, δz(T), Z, C, b, H, t, λ and γ.
Initialization: δt(T) = 0, δb(T) = 0, δH(T) = 0.
For k = T − 1 down to 0

for i = n down to 1
δt

(k)
i = δt

(k+1)
i + ∂tπ1(c

(k)
i , t

(k)
i)δz

(k+1)
i

δc
(k)
i = ∂cπ1(c

(k)
i , t

(k)
i)δz

(k+1)
i

δb
(k)
i = δb

(k+1)
i + δc

(k)
i

δH
(k)
i: = δH

(k+1)
i: + δc

(k)
i: zT

δz
(k)
i = HTδc

(k)
i + ∂zt

(k)
i δt

(k)
i

end for
End For
δW = δb(0)xT

Output: δW, δH(0), δt(0)

quence is constructed by connecting linear transformations and non-linear transformations. The

difference is that there is only one pair of linear transformation and non-linear transformation

75

CHAPTER 6. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR HIGHLY CORRELATED
DATA

in one layer of previous DNN-SCs, while there are n pairs in DNN-IILasso. After the forward

propagation with determined network layer T , C and Z of each layer in the IILasso network

are saved for the back-propagation parameter training. The gradient-based parameter learning

schedules of the network are shown in Algorithm 6.2. The learning procedure can be either

adapted to supervised or unsupervised learning by respectively choosing δz(T) from equation

(4.10) or equation (4.12).

6.2.2 DNN-structured II-ISTA

By unfolding the iterations of IILasso from Algorithm 5.2, we can construct neural network

structures for II-ISTA. The algorithm can be rewritten as a network structure in Algorithm 6.3,

its neuron update diagram is shown in Figure 6.1 (a) and the unfolded network structure is shown

in Figure 6.2 (a). II-ISTA has similar structure as WISTA that their thresholds have a weight

part compared to original ISTA, the difference is that weight fro II-ISTA based on coherence of

dictionary.

Algorithm 6.3: DNN-II-ISTA Forward propagation
Input: data x, dictionary D, proper parameters λ and α, network layer T .
Restriction: α > largest eigenvalue of DTD

Initialization: z(0) = 0, H = I− 1
αD

TD, W = 1
αD

T, b = Wx.
For k = 1 to T

c(k−1) = b+Hz(k−1)

t(k−1) = λ+ γR|z|(k−1)
z(k) = π1(c

(k−1), t(k−1))
End For
Output: C = {c(0), ..., c(T−1)}, Z = {z(0), ..., z(T)}

Algorithm 6.4: DNN-II-ISTA Back propagation
Input: x, D, δz(T), Z, C, b, H, t, λ and α.
Initialization: δt(T) = 0, δb(T) = 0, δH(T) = 0.
For k = T − 1 down to 0

δt(k) = δt(k+1) + ∂π1(c(k),t(k))
∂t δz(k+1)

δc(k) = ∂π1(c(k),t(k))
∂c δz(k+1)

δb(k) = δb(k+1) + δc(k)

δH(k) = δH(k+1) + δc(k)z(k)
T

δz(k) = HTδc(k)

End For
δW = δb(0)xT

Output: δW, δH(0), δt(0)

In the network, W, H, and t are still parameters to train. After the forward propagation

76

6.2. PROBLEM FORMULATION

with determined network layer T , C and Z of each layer in the II-ISTA network are saved

for the back-propagation parameter training. The gradient-based parameter learning schedules

of the network are shown in Algorithm 6.4. The learning procedure can be either adapted to

supervised or unsupervised learning by respectively choosing δz(T) from equation (4.10) or

equation (4.12).

6.2.3 DNN-structured IIWLasso

By unfolding the iterations of IIWLasso from Algorithm 5.3, we can construct neural net-

work structures. The algorithm can be rewritten as a network structure as follows, its neuron

update diagram is shown in Figure 6.1 (b) and the unfolded network structure is shown in Figure

6.2 (b). IIWLasso also update elementwisely using CDA, so it has similar structure as IILasso.

Algorithm 6.5: DNN-IIWLasso Forward propagation
Input: data x, column normalized dictionary D, proper parameters λ and γ, network
layer T .
Initialization: z(0) = 0, H = I−DTD, W = DT, b = Wx.
For k = 1 to T

for i = 1 to n
c
(k−1)
i = bi +Hz(k−1)

t
(k−1)
i = |z(k−1)i |p−1(λ+ γRi:|z|q)
z
(k)
i = π1(c

(k−1)
i , t

(k−1)
i)

end for
End For
Output: C = {c(0), ..., c(T−1)}, Z = {z(0), ..., z(T)}

Algorithm 6.6: DNN-IIWLasso Back propagation
Input: x, D, δz(T), Z, C, b, H, t, λ and γ.
Initialization: δt(T) = 0, δb(T) = 0, δH(T) = 0.
For k = T − 1 down to 0

for i = n down to 1
δt

(k)
i = δt

(k+1)
i + ∂tπ1(c

(k)
i , t

(k)
i)δz

(k+1)
i

δc
(k)
i = ∂cπ1(c

(k)
i , t

(k)
i)δz

(k+1)
i

δb
(k)
i = δb

(k+1)
i + δc

(k)
i

δH
(k)
i: = δH

(k+1)
i: + δc

(k)
i: zT

δz
(k)
i = HTδc

(k)
i + ∂zt

(k)
i δt

(k)
i

end for
End For
δW = δb(0)xT

Output: δW, δH(0), δt(0)

In the network, W, H, and t are still parameters to train. Comparing with DNN-IILasso,

the difference is the existence of an additional weight part to approximate `p norm (0 < p < 1).

77

CHAPTER 6. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR HIGHLY CORRELATED
DATA

After the forward propagation with determined network layer T , C and Z of each layer in

the IIWLasso network are saved for the back-propagation parameter training. The gradient-

based parameter learning schedules of the network are shown in Algorithm 6.6. The learning

procedure can be either adapted to supervised or unsupervised learning by respectively choosing

δz(T) from equation (4.10) or equation (4.12).

6.3 Experiments

6.3.1 Synthetic data experiments

Experiments settings in the synthetic data experiments are the same as those in Chapter

5, namely, dictionaries Dc ∈ R30×50 are generated from gaussian distributed values. D0.15

was generated by drawing value randomly from the normal distribution N(0, 1). D0.50 was

generated by adding a small normal distributed vector to a baseline vector generated from the

normal distribution N(0, 1). Coherence distribution of the two dictionary have been shown in

Figure 5.2 in Chapter 5. The quantity of ground true sparse representation vectors Zorig =

(zorig1, ..., zorig100) was 100 in experiments. Correspondingly, ground true data set Xorig had

100 sample size which was generated by Dc and Zorig based on the equation (6.1), The noise

vectors v were added based on Gaussian random entries with 20dB SNR. Thus we have the

signal set X ∈ R30×100 to train DNN.

Experimental results are compared in terms of relative norm error, support error and Hoyer

sparsity with the same definition in Chapter 5. We present supervised learnt DNN in this chapter.

Both IIWW and DNN-IIWW were set as p = 0.7 and q = 0.7.

Figure 6.3 shows relative norm errors and support error of different independently inter-

pretable DNN-SC (II-DNN-SC) algorithms in a range of layers with D0.15. In general, we can

see that with appropriate layer numbers for different II-DNN-SC algorithms, all these II-DNN-

SC algorithms can obtain equivalent or smaller relative norm errors and support error compared

to converged results of their original sparse coding algorithm. Except DNN-IILasso, increase

of layers can result in obvious decrease in relative norm errors and support error of II-DNN-SC.

Relative norm error and support error of DNN-IILasso rebound to converged results of IILasso

after 2 layers, indicating that it might not be good to construct a too deep neural network for

supervised trained DNN-IILasso which may learn too much from the original sparse coding

structure. Moreover, we can see that DNN-II-ISTA can obtain both smaller relative norm error

78

6.3. EXPERIMENTS

1 2 3 4 5 6 7 8 9 10

Layers

10-3

10-2

10-1

R
el

at
iv

e
no

rm
 e

rr
or

 II-ISTA
DNN-II-ISTA
 IILasso
DNN-IILasso
 IIWW
DNN-IIWW

1 2 3 4 5 6 7 8 9 10

Layers

0

0.2

0.4

0.6

0.8

S
up

po
rt

 e
rr

or

 II-ISTA
DNN-II-ISTA
 IILasso
DNN-IILasso
 IIWW
DNN-IIWW

Figure 6.3: Relative norm errors and support error comparison between converged results of
different independently interpretable algorithms and their DNN-SC versions in a range of layers
with D0.15.

100 101 102 103

Iteration

10-3

10-2

10-1

100

R
el

at
iv

e
no

rm
 e

rr
or II-ISTA

DNN-II-ISTA
 IILasso
DNN-IILasso
 IIWW
DNN-IIWW

100 101 102 103

Iteration

0.4

0.6

0.8

1

A
ve

ra
ge

 H
oy

er
 s

pa
rs

ity

 II-ISTA
DNN-II-ISTA
 IILasso
DNN-IILasso
 IIWW
DNN-IIWW
 Original

100 101 102 103

Iteration

0

0.5

1

S
up

po
rt

 e
rr

or

 II-ISTA
DNN-II-ISTA
 IILasso
DNN-IILasso
 IIWW
DNN-IIWW

Figure 6.4: Average relative norm errors, average Hoyer sparsity and support error compari-
son between different independently interpretable algorithms and their DNN-SC versions with
D0.15.

79

CHAPTER 6. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR HIGHLY CORRELATED
DATA

5 10 15 20 25 30

Layers

10-3

10-2

10-1

R
el

at
iv

e
no

rm
 e

rr
or

 II-ISTA
DNN-II-ISTA
 IILasso
DNN-IILasso
 IIWW
DNN-IIWW

5 10 15 20 25 30

Layers

10-2

10-1

100

S
up

po
rt

 e
rr

or

 II-ISTA
DNN-II-ISTA
 IILasso
DNN-IILasso
 IIWW
DNN-IIWW

Figure 6.5: Relative norm errors and support error comparison between converged results of
different independently interpretable algorithms and their DNN-SC versions in a range of layers
with D0.50.

and support error when layer is over 8. Furthermore, DNN-IIWW can obtain the best perfor-

mance in all II-DNN-SC algorithm benefited from good performance of its original algorithm.

We then present performances of 5 layer DNN-II-ISTA, 2 layer DNN-IILasso and 4 layer

DNN-IIWW, compared with the convergence graph of their original sparse coding algorithms

with D0.15 in Figure 6.4. We can see that well trained II-DNN-SC algorithms can accelerate

about 10 times compared their original sparse coding algorithms with equivalent relative norm

errors, Hoyer sparsity and support error.

Figure 6.5 shows relative norm errors and support error of different independently inter-

pretable DNN-SC (II-DNN-SC) algorithms in a range of layers with D0.50. In general, we can

see that with appropriate layer numbers for different II-DNN-SC algorithms, all these II-DNN-

SC algorithms can obtain equivalent or smaller relative norm errors and support error compared

to converged results of their original sparse coding algorithm. Increase of layers can result in

obvious decrease in relative norm errors for all II-DNN-SC algorithms. Moreover, we can ob-

serve obvious increase in layers for obtaining good performances in all II-DNN-SC algorithms

with D0.50, which is caused by increase in convergence iteration number of their original sparse

coding algorithms which was shown in Chapter 5. Furthermore, we can see that DNN-IIWW

can obtain smallest relative norm error among all II-DNN-SC algorithms and smallest support

80

6.4. CHAPTER SUMMARY

100 101 102 103

Iteration

10-2

100

R
el

at
iv

e
no

rm
 e

rr
or

 II-ISTA
DNN-II-ISTA
 IILasso
DNN-IILasso
 IIWW
DNN-IIWW

100 101 102 103

Iteration

0.4

0.6

0.8

1
A

ve
ra

ge
 H

oy
er

 s
pa

rs
ity

 II-ISTA
DNN-II-ISTA
 IILasso
DNN-IILasso
 IIWW
DNN-IIWW
 Original

100 101 102 103

Iteration

10-1

100

S
up

po
rt

 e
rr

or

 II-ISTA
DNN-II-ISTA
 IILasso
DNN-IILasso
 IIWW
DNN-IIWW

Figure 6.6: Average relative norm errors, average Hoyer sparsity and support error compari-
son between different independently interpretable algorithms and their DNN-SC versions with
D0.50.

error in all sparse coding algorithms when layer is larger than 23.

We then present performances of 40 layer DNN-II-ISTA, 10 layer DNN-IILasso and 15 layer

DNN-IIWW, compared with the convergence graph of their original sparse coding algorithms

with D0.50 in Figure 6.6. We can see that well trained II-DNN-SC algorithms can accelerate

about 10 times compared their original sparse coding algorithms with equivalent relative norm

errors, Hoyer sparsity and support error.

6.4 Chapter Summary

In this chapter, we propose to build DNN-SC algorithms for highly correlated data by un-

folding independently interpretable algorithms and training approximate encoders for them. We

form three new II-DNN-SC algorithms from IILasso, II-ISTA and IIWLasso. Synthetic data ex-

periments have been conducted to validate performances of proposed algorithms. We show that

proposed II-DNN-SC algorithms can obtain equivalent or smaller relative norm error and sup-

port error in different coherence condition, while trained encoder can be about 10 times faster

81

CHAPTER 6. DEEP NEURAL NETWORK STRUCTURED SPARSE CODING FOR HIGHLY CORRELATED
DATA

than their original sparse coding algorithms.

82

Chapter 7

Conclusions

In this chapter, we conclude the dissertation by summarizing our contributions and present-

ing directions for further research.

7.1 Contributions

This thesis makes contributions in the area of sparse representation of signals. We now

highlight the main contributions of the dissertation of each chapter.

In Chapter 3, we presented a dictionary learning algorithm to train a data-adaptive dictio-

nary with `p norm (0 < p < 1) regularization. The algorithm utilizes two approximations in

the regularization, namely weighted `1 norm for `p norm and a smoothed approximation for the

absolute value, to make it possible to use gradient descent method to update both sparse coeffi-

cient set and dictionary. We validated our algorithm in synthetic data experiments with different

noise level. A remarkable advantage of the proposed dictionary learning algorithm HDLWL is

its robustness to noise that it can recover synthetic dictionary to nearly 100% when SNR level

is higher than 10 dB where classical dictionary learning algorithms may fail.

In Chapter 4, we proposed to implement parameter training methods of RNN in `p norm

(0 < p < 1) based iterative shrinkage algorithms. We show how we can formulate `p norm

(0 < p < 1) based DNN-SCs by unfolding truncated iterations of their original algorithms.

Moreover, we present how we can train DNN-SCs supervisedly or unsupervisedly. In the syn-

thetic data experiments, we show our proposed algorithms can effectively enhance performance

in efficiently finding sparse and accurate representations. In image denoising experiments, we

show that all DNN-SCs can accelerate the denoising procedures at least 45 times while obtaining

83

CHAPTER 7. CONCLUSIONS

equivalent performances compared to their original algorithms. Among all algorithms, DNN-

WISTA0.5 and DNN-IHTA can obtain the best results from 20.0 dB to approximately 30.8 dB.

Finally, in video-denoising experiments, we use unsupervised learnt DNN-SCs to realize the

goal of video online denoising. We show acceleration brought by DNN-SC can help reducing

the processing time for denoising to the interval between frames of 25-FPS 360 × 480-pixel

gray-scaled videos using only CPU, indicating that TISTA and our proposed TWISTA can be

applied in real-time video denoising for a 25-FPS video with good denoising results.

In Chapter 5, we introduce `p norm (0 < p < 1) to the coherence related regularization

of IILasso for processing highly correlated data. To efficiently solve the non-convex problem

brought by `p norm (0 < p < 1), we use CDA with weighted `1 norm and the Proximal Operator

(PO) to solve the optimization problem with the new regularization. In synthetic data experi-

ments, we show our proposed algorithms can obtain smaller relative norm error and support

error in various coherence condition. We then validate performance of our algorithms in highly

correlated gene expression datasets by conducting 10-fold cross-validation. Our proposed algo-

rithm IIWW0.7 can obtain the best misclassification errors in various gene expression datasets

indicating the algorithm can interpret the “decomposability” of datasets and thus present rea-

sonable suggestions for diseases and developmental stages on gene expression.

In Chapter 6, we further enhance efficiency of proposed algorithms in Chapter 5 to form their

DNN-SC versions. Details of how to train parameters of these DNN-SCs are shown. In synthetic

data experiments, we show these independently interpretable DNN-SCs can obtain equivalent

performance in relative norm error and support error while obviously reducing computation

time.

7.2 Future Works

Choice of the regularization parameter

A very important issue in the methods presented in above chapters is the choice of the regular-

ization parameters. λ in regularization part of all algorithm helps balancing effects of norm error

to signals with sparse constraint. c in Chapter 3 helps approximate the absolute function. Al-

though larger c makes the approximation closer to the absolute function, it is not a good choice

to use too large c in HDLWL. In Chapter 5, λ and γ help balancing effects of classical sparse

constraint ‖z‖pp with the coherence-induced independently interpretable regularization. We can

84

7.2. FUTURE WORKS

notice that best λ and γ change with increasing of coherence. In the future, we require to de-

velop an automatic method for the choice of the regularization parameters as in [79] in order to

obtain the optimal solution and reduce iterations as far as possible.

Applications

In Chapter 3 and 6, we validate performance of our algorithms in synthetic data experiments,

more experiments for real world data remain to be done. Moreover, DNN-SC has proven its

ability in performing online denoising, more online processing applications can be considered

for DNN-SC algorithms. The same situation are independently interpretable algorithms, which

is not restricted in gene expression datasets. In the future, we will further explore potentials of

our proposed algorithms in different suitable areas.

85

References

[1] R. Baraniuk, V. Cevher, and M. B. Wakin, “Low-dimensional models for dimensionality
reduction and signal recovery: A geometric perspective,” Proceedings of the IEEE, vol. 98,
no. ARTICLE, pp. 959–971, 2010.

[2] M. Elad, Sparse and Redundant Representations From Theory to Applications in Signal
and Image Processing. NewYork: Springer, 2010.

[3] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM journal on com-
puting, vol. 24, no. 2, p. 227C234, 1995.

[4] M. Huang, W. Yang, J. Jiang, Y. Wu, Y. Zhang, W. Chen, Q. Feng, A. D. N. Initiative et al.,
“Brain extraction based on locally linear representation-based classification,” Neuroimage,
vol. 92, pp. 322–339, 2014.

[5] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: A strategy
employed by v1?” Vision research, vol. 37, no. 23, pp. 3311–3325, 1997.

[6] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of
equations to sparse modeling of signals and images,” SIAM review, vol. 51, no. 1, pp.
34–81, 2009.

[7] J. Mairal, G. Sapiro, and M. Elad, “Learning multiscale sparse representations for image
and video restoration,” Multiscale Modeling & Simulation, vol. 7, no. 1, pp. 214–241,
2008.

[8] D. L. Donoho et al., “Compressed sensing,” IEEE Transactions on information theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[9] R. G. Baraniuk, “Compressive sensing,” IEEE signal processing magazine, vol. 24, no. 4,
2007.

[10] Y. Wang, J. Zeng, Z. Peng, X. Chang, and Z. Xu, “Linear convergence of adaptively it-
erative thresholding algorithms for compressed sensing,” IEEE Transactions on Signal
Processing, vol. 63, no. 11, pp. 2957–2971, 2015.

[11] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling [a sensing/sam-
pling paradigm that goes against the common knowledge in data acquisition],” IEEE signal
processing magazine, vol. 25, no. 2, pp. 21–30, 2008.

[12] Y. Tsaig and D. L. Donoho, “Extensions of compressed sensing,” Signal processing,
vol. 86, no. 3, pp. 549–571, 2006.

[13] E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse
problems, vol. 23, no. 3, p. 969, 2007.

[14] M. Elad, M. A. Figueiredo, and Y. Ma, “On the role of sparse and redundant representa-
tions in image processing,” Proceedings of the IEEE, vol. 98, no. 6, pp. 972–982, 2010.

86

REFERENCES

[15] M. G. Jafari and M. D. Plumbley, “Fast dictionary learning for sparse representations of
speech signals,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 5, pp.
1025–1031, 2011.

[16] M.-J. Fadili, J.-L. Starck, and F. Murtagh, “Inpainting and zooming using sparse represen-
tations,” The Computer Journal, vol. 52, no. 1, pp. 64–79, 2009.

[17] A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, and M. D. Plumbley, “Audio in-
painting,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 3,
pp. 922–932, 2011.

[18] C. F. Caiafa and A. Cichocki, “Computing sparse representations of multidimensional sig-
nals using kronecker bases,” Neural computation, vol. 25, no. 1, pp. 186–220, 2013.

[19] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over
learned dictionaries,” IEEE Transactions on Image processing, vol. 15, no. 12, pp. 3736–
3745, 2006.

[20] W. Dong, L. Zhang, and G. Shi, “Centralized sparse representation for image restoration,”
in 2011 International Conference on Computer Vision. IEEE, 2011, pp. 1259–1266.

[21] J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE Trans-
actions on Information Theory, vol. 50, no. 10, pp. 2231–2242, Oct 2004.

[22] I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding algorithm for lin-
ear inverse problems with a sparsity constraint,” Communications on Pure and Applied
Mathematics, vol. 57, no. 11, pp. 1413–1457, 2004.

[23] J. Friedman, T. Hastie, H. Höfling, R. Tibshirani et al., “Pathwise coordinate optimization,”
The annals of applied statistics, vol. 1, no. 2, pp. 302–332, 2007.

[24] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear
models via coordinate descent,” Journal of statistical software, vol. 33, no. 1, p. 1, 2010.

[25] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,”
SIAM Review, vol. 43, no. 1, pp. 129–159, 2001. [Online]. Available: https:
//doi.org/10.1137/S003614450037906X

[26] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and T. J. Sejnowski,
“Dictionary learning algorithms for sparse representation,” Neural computation, vol. 15,
no. 2, pp. 349–396, 2003.

[27] Z. Xu, X. Chang, F. Xu, and H. Zhang, “l 1
2

regularization: A thresholding representation
theory and a fast solver,” IEEE Transactions on Neural Networks and Learning Systems,,
vol. 23, no. 7, pp. 1013–1027, 2012.

[28] F. Chen, “Composite minimization: Proximity algorithms and their applications,” Disser-
tations - ALL, 2015.

[29] W. Cao, J. Sun, and Z. Xu, “Fast image deconvolution using closed-form thresholding
formulas of lq (q= 12, 23) regularization,” Journal of Visual Communication and Image
Representation, vol. 24, no. 1, pp. 31–41, 2013.

[30] M. A. T. Figueiredo and R. D. Nowak, “A bound optimization approach to wavelet-
based image deconvolution,” in IEEE International Conference on Image Processing 2005,
vol. 2, Sept 2005, pp. II–782.

87

https://doi.org/10.1137/S003614450037906X
https://doi.org/10.1137/S003614450037906X

REFERENCES

[31] M. A. T. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak, “Majorization-minimization
algorithms for wavelet-based image restoration,” IEEE Transactions on Image Processing,
vol. 16, no. 12, pp. 2980–2991, Dec 2007.

[32] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted l1
minimization,” Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 877–905,
Dec 2008. [Online]. Available: https://doi.org/10.1007/s00041-008-9045-x

[33] H. Zhao, S. Ding, Y. Li, Z. Li, X. Li, and B. Tan, “Dictionary learning for sparse represen-
tation using weighted l1-norm,” in 2016 IEEE Global Conference on Signal and Informa-
tion Processing (GlobalSIP), Dec 2016, pp. 292–296.

[34] H. Zhao, S. Ding, X. Li, and H. Huang, “Deep neural network structured sparse coding for
online processing,” IEEE Access, vol. 6, pp. 74 778–74 791, 2018.

[35] D. Malioutov and A. Aravkin, “Iterative log thresholding,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014, pp.
7198–7202.

[36] Z. Li, S. Ding, T. Hayashi, and Y. Li, “Incoherent dictionary learning with log-regularizer
based on proximal operators,” Digital Signal Processing, vol. 63, pp. 86–99, 2017.

[37] P. Bühlmann and S. Van De Geer, Statistics for high-dimensional data: methods, theory
and applications. Springer Science & Business Media, 2011.

[38] P. J. Bickel, Y. Ritov, A. B. Tsybakov et al., “Simultaneous analysis of lasso and dantzig
selector,” The Annals of Statistics, vol. 37, no. 4, pp. 1705–1732, 2009.

[39] Z. C. Lipton, “The mythos of model interpretability,” arXiv preprint arXiv:1606.03490,
2016.

[40] M. Takada, T. Suzuki, and H. Fujisawa, “Independently interpretable lasso: A new
regularizer for sparse regression with uncorrelated variables,” in Proceedings of the
Twenty-First International Conference on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, A. Storkey and F. Perez-Cruz, Eds., vol. 84.
Playa Blanca, Lanzarote, Canary Islands: PMLR, 09–11 Apr 2018, pp. 454–463.
[Online]. Available: http://proceedings.mlr.press/v84/takada18a.html

[41] I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree complex wavelet
transform,” IEEE signal processing magazine, vol. 22, no. 6, pp. 123–151, 2005.

[42] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing, 1st ed. Springer-Verlag New York, 2010.

[43] M. Aharon, M. Elad, A. Bruckstein et al., “K-svd: An algorithm for designing over-
complete dictionaries for sparse representation,” IEEE Transactions on signal processing,
vol. 54, no. 11, p. 4311, 2006.

[44] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over
learned dictionaries,” IEEE Transactions on Image Processing, vol. 15, no. 12, pp. 3736–
3745, Dec 2006.

[45] E. K., A. S. O., and H. J. H., “Method of optimal directions for frame design,” in IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 1999,
pp. 2443–2446.

88

https://doi.org/10.1007/s00041-008-9045-x
http://proceedings.mlr.press/v84/takada18a.html

REFERENCES

[46] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in
Proceedings of the 27th International Conference on International Conference on
Machine Learning, ser. ICML’10. USA: Omnipress, 2010, pp. 399–406. [Online].
Available: http://dl.acm.org/citation.cfm?id=3104322.3104374

[47] P. Sprechmann, A. M. Bronstein, and G. Sapiro, “Learning efficient sparse and low rank
models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9,
pp. 1821–1833, 2015.

[48] Z. Wang, Q. Ling, and T. S. Huang, “Learning deep `0 encoders,” CoRR, vol.
abs/1509.00153, 2015. [Online]. Available: http://arxiv.org/abs/1509.00153

[49] M. Borgerding and P. Schniter, “Onsager-corrected deep networks for sparse
linear inverse problems,” CoRR, vol. abs/1612.01183, 2016. [Online]. Available:
http://arxiv.org/abs/1612.01183

[50] R. R., P. T., and E. M., “Analysis k-svd: A dictionary-learning algorithm for the analysis
sparse model,” IEEE Trans. on Signal Processing, vol. 61, no. 3, pp. 661–677, 2013.

[51] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition,” in Proceedings of
27th Asilomar conference on signals, systems and computers. IEEE, 1993, pp. 40–44.

[52] S.-B. Chen, C. Ding, B. Luo, and Y. Xie, “Uncorrelated lasso,” in Twenty-seventh AAAI
conference on artificial intelligence, 2013.

[53] D. Kong, R. Fujimaki, J. Liu, F. Nie, and C. Ding, “Exclusive feature learning on arbitrary
structures via l1,2-norm,” in Advances in Neural Information Processing Systems, 2014,
pp. 1655–1663.

[54] J. Domke, “Parameter learning with truncated message-passing,” in CVPR 2011, June
2011, pp. 2937–2943.

[55] ——, “Learning graphical model parameters with approximate marginal inference,” IEEE
transactions on pattern analysis and machine intelligence, vol. 35, no. 10, pp. 2454–2467,
2013.

[56] U. Kamilov and H. Mansour, “Learning optimal nonlinearities for iterative thresholding
algorithms,” IEEE Signal Process Letters, vol. 23, no. 5, pp. 747–751, 2016.

[57] D. Mahapatra, S. Mukherjee, and C. S. Seelamantula, “Deep sparse coding using
optimized linear expansion of thresholds,” CoRR, vol. abs/1705.07290, 2017. [Online].
Available: http://arxiv.org/abs/1705.07290

[58] T. Moreau and J. Bruna, “Understanding Trainable Sparse Coding via Matrix Factoriza-
tion,” ArXiv e-prints, Sep. 2016.

[59] L. Guo and C. Guo, “A deep sparse coding method for fine-grained visual categorization,”
in 2016 International Joint Conference on Neural Networks (IJCNN), July 2016, pp. 632–
639.

[60] S. Zhang, J. Wang, X. Tao, Y. Gong, and N. Zheng, “Constructing deep sparse
coding network for image classification,” Pattern Recognition, vol. 64, pp. 130
– 140, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0031320316303466

89

http://dl.acm.org/citation.cfm?id=3104322.3104374
http://arxiv.org/abs/1509.00153
http://arxiv.org/abs/1612.01183
http://arxiv.org/abs/1705.07290
http://www.sciencedirect.com/science/article/pii/S0031320316303466
http://www.sciencedirect.com/science/article/pii/S0031320316303466

REFERENCES

[61] X. Sun, N. M. Nasrabadi, and T. D. Tran, “Supervised multilayer sparse coding
networks for image classification,” CoRR, vol. abs/1701.08349, 2017. [Online]. Available:
http://arxiv.org/abs/1701.08349

[62] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser prior
for image restoration,” CoRR, vol. abs/1704.03264, 2017. [Online]. Available:
http://arxiv.org/abs/1704.03264

[63] J. Zhang and B. Ghanem, “Ista-net: Iterative shrinkage-thresholding algorithm inspired
deep network for image compressive sensing,” CoRR, vol. abs/1706.07929, 2017.
[Online]. Available: http://arxiv.org/abs/1706.07929

[64] J. R. Chang, C. Li, B. Póczos, B. V. K. V. Kumar, and A. C. Sankaranarayanan, “One
network to solve them all - solving linear inverse problems using deep projection models,”
CoRR, vol. abs/1703.09912, 2017. [Online]. Available: http://arxiv.org/abs/1703.09912

[65] N. Gillis and F. Glineur, “Accelerated multiplicative updates and hierarchical als algo-
rithms for nonnegative matrix factorization,” Neural computation, vol. 24, no. 4, pp. 1085–
1105, 2012.

[66] P. Hoyer, “Non-negative matrix factorization with sparseness constraints,” Journal of ma-
chine learning research,, vol. 5, no. 11, pp. 1457–1469, 2004.

[67] X. Hu, F. Heide, Q. Dai, and G. Wetzstein, “Convolutional sparse coding for rgb+nir imag-
ing,” IEEE Transactions on Image Processing, vol. 27, no. 4, pp. 1611–1625, April 2018.

[68] M. Hanif, A. Tonazzini, P. Savino, and E. Salerno, “Sparse representation based inpainting
for the restoration of document images affected by bleed-through,” Proceedings, vol. 2,
no. 2, 2018. [Online]. Available: http://www.mdpi.com/2504-3900/2/2/93

[69] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse represen-
tation,” IEEE Transactions on Image Processing, vol. 19, no. 11, pp. 2861–2873, Nov
2010.

[70] J. Jiang, J. Ma, C. Chen, X. Jiang, and Z. Wang, “Noise robust face image super-resolution
through smooth sparse representation,” IEEE Transactions on Cybernetics, vol. 47, no. 11,
pp. 3991–4002, Nov 2017.

[71] J. Zeng, S. Lin, Y. Wang, and Z. Xu, “l 1
2

regularization: Convergence of iterative half
thresholding algorithm,” IEEE Transactions on Signal Processing, vol. 62, no. 9, pp. 2317–
2328, 2014.

[72] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016.

[73] M. Gygli, H. Grabner, H. Riemenschneider, and L. Van Gool, “Creating summaries from
user videos,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014, pp. 505–520.

[74] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine,
“Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays,” Proceedings of the National Academy of
Sciences, vol. 96, no. 12, pp. 6745–6750, 1999.

[75] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. Aguiar, M. Gaasen-
beek, M. Angelo, M. Reich, G. S. Pinkus et al., “Diffuse large b-cell lymphoma out-
come prediction by gene-expression profiling and supervised machine learning,” Nature
medicine, vol. 8, no. 1, p. 68, 2002.

90

http://arxiv.org/abs/1701.08349
http://arxiv.org/abs/1704.03264
http://arxiv.org/abs/1706.07929
http://arxiv.org/abs/1703.09912
http://www.mdpi.com/2504-3900/2/2/93

REFERENCES

[76] E. Gravier, G. Pierron, A. Vincent-Salomon, N. Gruel, V. Raynal, A. Savignoni,
Y. De Rycke, J.-Y. Pierga, C. Lucchesi, F. Reyal et al., “A prognostic dna signature for t1t2
node-negative breast cancer patients,” Genes, chromosomes and cancer, vol. 49, no. 12,
pp. 1125–1134, 2010.

[77] B. C. Christensen, E. A. Houseman, C. J. Marsit, S. Zheng, M. R. Wrensch, J. L. Wiemels,
H. H. Nelson, M. R. Karagas, J. F. Padbury, R. Bueno et al., “Aging and environmental
exposures alter tissue-specific dna methylation dependent upon cpg island context,” PLoS
genetics, vol. 5, no. 8, p. e1000602, 2009.

[78] H. Huang, H. Zhao, X. Li, S. Ding, L. Zhao, and Z. Li, “An accurate and efficient device-
free localization approach based on sparse coding in subspace,” IEEE Access, vol. 6, pp.
61 782–61 799, 2018.

[79] K. S.J., K. K., L. M., B. Stephen, and G. Dimitry, “An interior-point method for large-scale
`1-regularized least squares,” IEEE Journal of Selected Topics in Signal Processing, vol. 1,
no. 4, pp. 606–617, 2007.

91

	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Acknowledgment
	Abstract
	Chapter Introduction
	Sparse Models for Signal Representation
	Related works
	Motivations and Contributions
	Thesis Outline
	Publications

	Chapter Background
	Sparse Coding
	Dictionary Learning for Sparse Representation
	Deep Neural Network structured Sparse Representation

	Chapter Dictionary Learning for Sparse Representation using Weighted 1 Norm
	Introduction
	Problem formulation
	Algorithm
	Numerical Experiments
	Chapter Summary

	Chapter Deep Neural Network Structured Sparse Coding for Online Processing
	Introduction
	Sparse Coding
	ISTA
	IHTA
	WISTA

	Deep Neural Network structured Sparse Coding
	Supervised and unsupervised learning
	DNN-structured IHTA
	DNN-structured WISTA

	Experiments
	Synthetic data experiments
	Performances of sparse coding algorithms
	Performances of DNN-structured sparse coding algorithms

	Graphic denoising experiments
	Image-denoising experiments
	Video-denoising experiments

	Discussion

	Chapter Summary

	Chapter p Norm Independently Interpretable Regularization based Sparse Coding for Highly Correlated Data
	Introduction
	Problem Formulation
	IILasso
	II-ISTA
	IIWLasso
	Independently Interpretable Proximal Operator (IIPO)

	Experiments
	Synthetic data experiments
	Performance in Gaussian random dictionary D0.15
	Performance in relatively highly correlated dictionary D0.50
	Performance in highly correlated dictionary D0.80
	Performance comparison among different coherence dictionaries

	Gene Expression Data experiments
	Discussion

	Chapter Summary

	Chapter Deep Neural Network Structured Sparse Coding for Highly Correlated Data
	Introduction
	Problem Formulation
	DNN-structured IILasso
	DNN-structured II-ISTA
	DNN-structured IIWLasso

	Experiments
	Synthetic data experiments

	Chapter Summary

	Chapter Conclusions
	Contributions
	Future Works

	References

