
i

Improving Web Service Clustering and

Recommendation by Specificity-Aware

Ontology Generation

Rupasingha Arachchilage

Hiruni Madhusha Rupasingha

A DISSERTATION

SUBMITTTED IN FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN COMPUTER SCIENCE AND ENGINEERING

Graduate Department of Computer and Information Systems

The University of Aizu, Japan

March 2019

i

© Copyright by Rupasingha Arachchilage Hiruni Madhusha Rupasingha 2019

All Rights Reserved

ii

iii

iv

Preface

This thesis presents my work for the fulfillment of the requirement for the Doctor of

Philosophy in Computer Science and Engineering, Graduate School of Computer

Science and Engineering, the University of Aizu, Japan. The study was carried out in

the period from April 2016 to March 2019.

v

Acknowledgment

I would like to thank everyone, mentioned and unmentioned, who give me valuable

comments, suggestions, encouragement and share inspiring ideas with me.

A special acknowledgement to my supervisor, Professor Incheon Paik, for his

guidance over the past three years. He has guided me on not only just writing and

research, but also on professional expectations of doctors.

I wish to express my thanks to the members at Professor Incheon Paik’s Lab, both

current and past for supporting me during this research, encouraging and bringing me

happiness.

vi

Abstract

The rapid development of the Internet in recent years has led to a vast increase in the

numbers of Web services, which challenges the process of clustering and users’ capability to

find their favorite services quickly and accurately. Clustering Web services based on their

functional features to different domains have started to play a major role in several service

management tasks such as efficient Web service discovery and recommendations. In this

thesis, we present solutions for Web services clustering and recommendations.

In this thesis, first we present a Web service clustering approach that uses novel ontology

learning and a similarity calculation method based on the specificity of an ontology in a

domain with respect to information theory. Instead of using traditional methods, we generate

the ontology using a novel method that considers the specificity and similarity of terms. The

specificity of a term describes the amount of domain-specific information contained in that

term. Although general terms contain little domain-specific information, specific terms may

contain much more domain-related information. The generated ontology is used in the

similarity calculations. New logic-based filters are introduced for the similarity-calculation

procedure. If similarity calculations using the specified filters fail, then Information-Retrieval

(IR)-based methods are applied to the similarity calculations. Finally, an agglomerative

clustering algorithm, based on the calculated similarity values, is used for the clustering.

As a second step we propose a recommendation approach. Among the service

recommendation algorithms, Collaborative Filtering (CF) gives credence to user inputs by

comparing user’s correlations. Although the CF technique is one of the most successful

recommendation system technologies, it suffers from data sparsity and cold-start problems,

which make the incomplete and inadequate information to analyze a user predicament on Web

services. This thesis proposes a CF-based recommendation approach that first alleviates the

sparsity problem using a proposed ontology-based clustering. This clustering approach can

easily and effectively increase the data density of the user-service dataset by assuming blank

user preferences according to the history of user-favored domain(s). Then, we propose a trust-

based user rating prediction by determining the trust value between users by calculating the

correlation of users. Finally, recommendation was based on these predictions.

We achieved highly efficient and accurate results with this clustering approach than other

existing clustering approaches. And the experimental results of recommendation approach

indicate that the proposed approach can effectively alleviate the data sparsity and cold-start

problems with lower prediction error with the best recommendation performance.

vii

Table of Contents

Preface……… ... iv

Acknowledgment ... v

Abstract……. .. vi

List of Figures ... ix

List of Tables ... xi

List of Abbreviation .. xii

Chapter 1 Introduction ... 1

1.1 Improving Web Service Clustering by Specificity-Aware Ontology Generation 4

1.2 Improving Web Service Recommendation by Specificity-Aware Ontology Generation .. 6

1.3 Summary of the Original Contributions ... 8

1.4 Thesis Organization .. 8

Chapter 2 Background and Related Works .. 10

2.1 Overview of the Web services .. 10

 2.1.1. WSDL structure .. 11

2.2 Ontology Learning .. 13

2.3 Calculating Web Service Similarity .. 13

2.4 Web Service Clustering .. 14

 2.4.1. Functionally-based Web service clustering .. 15

 2.4.2. Non functionally-based Web service clustering ... 16

 2.4.3. Social criteria-based Web service clustering .. 16

2.5 Web Service Recommendation ... 16

 2.5.1. CF recommender systems .. 17

 2.5.2. Content-based recommender systems .. 17

2.6 Related Work .. 18

 2.6.1. Ontology learning ... 18

 2.6.2. Similarity calculation ... 19

 2.6.3. Web-service clustering ... 20

 2.6.4. Term specificity .. 20

 2.6.5. CF ... 21

 2.6.6. Challenges of user-based CF algorithms .. 22

viii

Chapter 3 Specificity-Aware Ontology Generation for Improving Web Service Clustering ... 26

3.1 Motivation for New Clustering Approach .. 26

 3.1.1. Motivation for Selecting a Ontology-based Clustering Approach 26

 3.1.2. Motivation from Comparing New Apporach with Previous HTS Apporach 28

 3.1.3. Motivating Example Involving Domain Specificity .. 30

3.2 Proposed New Approach .. 33

 3.2.1. Feature extraction ... 35

 3.2.2. Domain-specificity weight and similarity weight calculations for ontology generation

………………………………………………………………………………………..………38

 3.2.3. Ontology generation ... 46

 3.2.4. Service-similarity calculation in an ontology ... 50

 3.2.5. Web-service clustering ... 55

Chapter 4 Improving Web Service Recommendation by Alleviating the Sparsity with a Novel

Ontology-based Clustering .. 57

4.1 Motivation for Sparsity Reduction ... 57

 4.1.1. Problem identification .. 57

 4.1.2. Choosing a better clustering method .. 59

4.2 Overview of the Proposed Recommendation Approach ... 61

 4.2.1. Collect user-service rating data .. 61

 4.2.2. Alleviate sparsity by the ontology-based clustering approach 62

 4.2.3. Calculation of the similarity between users .. 64

 4.2.4. User’s rating prediction .. 65

 4.2.5. Service recommendation .. 66

Chapter 5 Experiments and Evaluations .. 67

5.1 Experiments and Evaluations on Web Service Clustering Process 67

 5.1.1. Comparison of clustering approach .. 67

 5.1.2. Experiments and evaluations .. 68

5.2 Experiments and Evaluations on Web Service Recommendation Process 77

 5.2.1. Evaluation based on specificity-aware ontology-based clustering 78

 5.2.2. Evaluation based on sparsity-alleviating methods.. 81

Chapter 6 Conclusion and Future work ... 84

References….85

Publications.. . .. 92

ix

List of Figures

Figure 1.1 Summary of the proposed approach ... 4

Figure 1.2 Thesis organization ... 9

Figure 2.1 Web service ... 10

Figure 2.2 Structure of WSDL file .. 12

Figure 2.3 Ontology example .. 13

Figure 2.4 Clustering example .. 14

Figure 2.5 Collaborative Filtering types.. 17

Figure 2.6 CF recommendation example .. 18

Figure 2.7 Selecting a sparsity alleviating method .. 22

Figure 3.1 Motivation to new approach .. 27

Figure 3.2 Examples of incorrectly placed cluster groups in the HTS method 28

Figure 3.3 Part of a generated ontology – HTS ... 29

Figure 3.4 Part of a generated ontology – New ... 29

Figure 3.5 Specificity and similarity relationship for two terms t� and �� 30

Figure 3.6 Term specificity and term similarity differences in a hierarchy 31

Figure 3.7 Clustering example using five domains ... 34

Figure 3.8 The five phases of the new approach .. 34

Figure 3.9 Architecture of the new approach .. 35

Figure 3.10 Part of a WSDL file that shows the structure of NovelAuthorService 36

Figure 3.11 Process of extracting frequently used terms.. 37

Figure 3.12 Steps of calculating domain specificity weight and similarity weight 38

Figure 3.13 Phases of the domain-specificity weight calculation .. 39

Figure 3.14 Example of a service corpus .. 40

Figure 3.15 Ontology example for sibling terms .. 43

Figure 3.16 Phases of similarity weight calculation .. 44

x

Figure 3.17 Ontology example for similar terms clustered around a new term 45

Figure 3.18 Example of the steps in ontology generation ... 46

Figure 3.19 Flow of incremental taxonomy construction ... 47

Figure 3.20 Target area of the existing ontology ... 48

Figure 3.21 Candidate target-area substructures for the example of Figure 3.20.................. 48

Figure 3.22 Screenshot of part of a generated ontology ... 49

Figure 3.23 Example ontology hierarchy ... 51

Figure 4.1 Example of a Web service-user rating graph ... 57

Figure 4.2 Example of the sparsity problem ... 58

Figure 4.3 Example of the cold-start problem ... 58

Figure 4.4 Examples of incorrectly placed cluster groups in the HTS and CAS methods 60

Figure 4.5 Architecture of the proposed method for recommending web services 61

Figure 4.6 Sparsity alleviation example .. 62

Figure 4.7 Alleviating the sparsity of the user-service rating matrix using a clustering process

 ... 63

Figure 5.1 Evaluation of domain-specificity weight and similarity weight calculations 70

Figure 5.2 Evaluation of ontology generation ... 72

Figure 5.3 Differences in the ontology hierarchy before and after adding Web-based data . 73

Figure 5.4 Cluster performance of new and existing approaches ... 76

Figure 5.5 Evaluation based on different ontology generation parameters 79

Figure 5.6 Evaluation based on different ontology generation parameters and ontology

generation steps ... 80

Figure 5.7 Evaluation based on sparsity-alleviating methods ... 82

xi

List of Tables

Table 1.1 Summary of issues in current clustering approaches ... 2

Table 2.1 Summary of the existing sparsity alleviating methods .. 24

Table 3.1 Assigned matching filters and weights .. 52

Table 5.1 Comparison of clustering approaches.. 67

Table 5.2 Comparison of ontologies for the previous HTS approach and for the new

approach .. 74

Table 5.3 Experimental values for W� and W� .. 75

Table 5.4 Performance measures for clusters using precision, recall and F-measure 76

xii

List of Abbreviations

IR: Information-Retrieval

KM: Keyword Match

OB: Ontology-Based

CAS: Context-Aware Similarity

SEB: Search Engine-Based

NGD: Normalized Google Distance

CF: Collaborative Filtering

SVD: Singular Value Decomposition

PLSA: Probabilistic Latent Semantic Analysis

WSDL: Web Services Description Language

HTS: Hybrid Term Similarity

SVMs: Support Vector Machines

LSI: Latent Semantic Indexing

PCC: Pearson’s Correlation Coefficient

MAE: Mean Absolute Error

RMSE: Root Mean Square Error

NGD: Normalized Google Distance

XML: eXtensible Markup Language

BN-LFM: Bayesian Nonparametric Latent Factor Model

QoS: Quality of Service

3D: three-Dimensional

2D: two-Dimensional

QASSA: QoS-Aware Service Selection Algorithm

SSM: Simplified Similarity Measure

TF–IDF: Term Frequency–Inverse Document Frequency

SoS: Similarity of Services

SASKS: Spherical Associated Keyword Space

GRNG: Gaussian Random Number Generator

SBT: Social Balance Theory

1

Chapter 1 Introduction

 Web services are reusable software components that allow users to conduct

various tasks such as it provides a method for discover, communicating and execute

transactions between clients all over the world online with minimal human

interaction. As an important innovation in service computing, more and more Web

services are developed and published to the Internet. And also most of the business

organizations interesting and adaptability is growing towards the Web services.

Hence, the number of Web services published on the Web is rapidly increasing day by

day.

However, as the number of services developed by different service providers

grows rapidly, it is essential to have efficient discovery, selection, and

recommendation for Web service complex business processes. As seeking for

efficient web service discovery is the main challenge for researchers, research in

cluster analysis and recommendation of web services has recently gained much

attention.

In the era of service-oriented software engineering, service clustering is used to

organize Web services, and it can help to enhance the efficiency and accuracy of

service discovery and recommendation. Clustering will enable to group Web services

by their similarity and reduces search space. Adequate methods, tools, technologies

for clustering the Web services have been developed. Web services can be clustered

using functional properties such as input, output, precondition, and effect [1],

nonfunctional properties such as cost, reliability and response time [2] or social

properties such as sociability [3]. Most of the current researches mainly focus on

functionally based clustering. In this research, clustered the Web services considering

functional clustering.

 When we consider about the Web service clustering, Web service similarity

computation is a key part of clustering for differentiating cluster groups based on

similarity values. Several methods have been used to compute the Web service

similarity in functionally based clustering approaches. But, there are several problems

encountered in these approaches and Table 1.1 provides the summary of issues that

affect the clustering approaches in existing clustering approaches.

2

Table 1.1 Summary of issues in current clustering approaches

 These problems may lead to low recall and low precision in Web service

clustering. We proposed an ontology-based clustering approach that based on the

specificity and similarity of terms and it could successfully overcome from most of

the existing problems.

 In order to improve the Web service utilization efficiency, service

recommendation techniques are proposed to assist users to find the satisfactory

services. We continue our approach until the recommendation by taking the advantage

of the proposed clustering approach.

Current approaches Problem for clustering performance

IR-based methods (ex.,

Cosine similarity)

− Usually focus on plain text, whereas Web services

contain much more complex structures, often with

very little textual description.

− Lack of up-to-date knowledge

− Failed to identify synonyms or variations of terms

IR-based methods (ex.,

WordNet)

− Fixed, lack of up-to-date knowledge

One-to-one and Structure

Matching

− Lack of up-to-date knowledge

− Failed to identify synonyms or variations of terms

− Consider terms only at the syntactic level

Ontology-Based (OB)

method

− Shortage of high quality ontology (defining high-

quality ontologies is a major challenge)

− Didn’t get the advantage of the domain specificity of

terms

− Lack of up-to-date knowledge

Search-Engine-Based

(SEB) (ex., Normalized

Google Distance (NGD))

− Do not encode fine grained information. Only uses

page-counts of words and ignores the context in which

the words appear.

3

 Based on how recommendations are made the recommender systems are classified

into the three categories, content-based, Collabarative Filtering (CF) and hybrid

approaches [4]. Content-based systems [5] recommend an item to a user based on the

item’s descriptions and a profile of the user’s interests. Here consider the user’s taste

and behavior and compares the items that are already positively rated by the user with

the items negatively rated or didn’t rate. CF [6] is based on the other users in a

community that share same appreciations. It recommended items that people with

similar tastes and preferences liked in the past. Hybrid approach [7] is combine

content-based and collaborative methods.

 In our approach we used CF methods for the recommendation. CF can be generally

categorized into two classes: memory-based and model-based. Memory-based CF

algorithms, specially neighborhood-based algorithms [8] compute the similarity

between two users or items, and a weighted aggregate of their ratings is use to

produces a prediction for the user. There are three types of neighborhood-based

algorithms such as user-based, item-based and hybrid. In user-based approach ratings

provided by similar users to a target user and item-based approach depends on the

most similar items to target item. Hybrid approach is work with combining both user-

based, item-based approaches. Model-based [9] techniques such as bayesian

networks, Singular Value Decomposition (SVD), and Probabilistic Latent Semantic

Analysis (PLSA) based on correlations between either users or items and it present

using matrix factorization and it characterizes both items and users by vectors of

factors inferred from item rating patterns. Our approach is user-based neighborhood

methods CF algorithms, that ratings measured by similar users to a target user and it

used to make recommendations. We calculate the similarity between users as a trust

weight and assign new ratings based on the user similarities. Figure 1.1 shows the

summary of the proposed clusering and recommendation both approaches.

4

Figure 1.1 Summary of the proposed approach

1.1 Improving Web Service Clustering by Specificity-Aware

Ontology Generation

 Web services are self-contained, self-describing, modular applications that enable

users to conduct various tasks online with minimal human interaction [10]. The rapid

evolution of Web services has brought problems, with a variety of providers

producing many different Web services for customers. In particular, selecting optimal

Web services according to their functional or nonfunctional properties to satisfy user

needs has become a challenging and time-consuming task. Therefore, effective Web-

service discovery and recommendation tools are now being used to help identify

groups of similar services. Clustering similar services by considering their

characteristics has become a hot topic in both industry and research.

 Web service clustering is used to generate service groups within a large-scale

group by considering similar characteristics and functionalities [11,12]. Existing

clustering approaches can be classified in terms of the properties used in the

clustering process and include functionally-based [1], nonfunctionally-based [2] and

social-criteria-based [3] clustering. Here, we propose a new clustering approach based

on functional properties, which is the most popular research approach. Our approach

is based on extracting the service name, operation name, port name, input message

5

and output message features expressed in Web Services Description Language

(WSDL) [13].

 Existing clustering approaches use several methods to compute Web service

similarity based on functional properties. These have included IR methods such as

cosine similarity [14,15], SEB methods [16] and Keyword Match [11]. In addition,

ontology-based methods such as the Hybrid Term Similarity (HTS) method [17,18]

used an existing ontology or used their own method to generate the ontology. The

CAS method [19] used Support Vector Machines (SVMs) in its similarity

calculations. Existing approaches have provided encouraging results, but they still

suffer from several drawbacks.

 IR-based methods are inadequate for the fine-grained measuring of semantic

similarity between services because of the loss of the machine-interpretable

semantics. Furthermore, their calculations are best suited to plain text, with the

complex structures and ambiguous words of Web services preventing fine-grained

improvements. Existing approaches have also failed because of using obsolete

knowledge in identifying the latest relationships and words in a corpus. The HTS

method generates an ontology without considering domain-specific information,

which plays a key role when classifying information than general terms. The CAS

method ignores some term relationships when calculating similarities.

 We propose a new clustering approach based on a novel ontology-generation

method that uses text-mining techniques. It calculates the similarity between services

by using newly proposed logic filters, with clustering being achieved via an

agglomerative clustering algorithm, based on the cluster centroid method [17], which

compares calculated similarity values. This approach helps to overcome the various

problems associated with existing approaches.

 Some existing clustering approaches [17, 18] use an ontology-based clustering

method that generates ontology based on the characteristics of general terms.

However, domain-specific information is a significant factor in ontology generation

and helps to improve the performance of the clustering process. Specific terms have

the ability to supply more domain-specific information than do general terms. We

propose a novel ontology-generation method using two types of specific information,

namely self-information and context-information. Self-information measures the

specificity based on the modifiers in a compound term, which have the ability to

describe the domain characteristics included in a term. Context-information can cover

6

areas not addressed by self-information via the composition of multiword terms. It

can be measured based on the entropy of the probabilistic distribution of modifiers for

the term [20]. For the similarity calculations, we introduce new machine filters by

comparing generated ontology relationships. If similarity calculations using these

filters fail, we use IR-based methods such as thesaurus-based term similarity and SEB

methods. Finally, clustering is performed using an agglomerative clustering algorithm

based on the calculated similarity values.

 Our new approach helps to address the issues associated with previous approaches

by improving the clustering performance. Experimental results indicate that our novel

ontology-generation-based clustering approach is effective.

1.2 Improving Web Service Recommendation by

Specificity-Aware Ontology Generation

 Web services are software modules that provide interoperable communication over

the Internet [21]. With the rapidly increasing number of Web services on the Internet,

target users face the growing challenge of selecting preferred Web services. There is

thus an urgent need for Web service recommendations that help users discover

services effectively and efficiently.

 Among the three types of recommender systems, recently the CF technique (such

as memory-based CF, model-based CF, and hybrid CF) [22]-[24] has become the most

widely used method for service recommendation by improving the profits of service

providers. The proposed approach is a memory-based CF algorithm such as the user-

based neighborhood method, in which user ratings are measured by similar users to a

target user and are then used to make recommendations.

 However, some major problems limit the usefulness of CF; these include data

sparsity and cold-start problems, system scalability, synonymy, and shilling attack, all

of which need to be addressed. In this approach, we address the data sparsity [25, 26]

and cold-start [27, 28] problems. These problems occur due to insufficient prior

transactions and available feedback data that make it difficult to identify similar users

(neighbors).

 Many attempts have been made to alleviate the sparsity and cold-start problems.

Transitive association-based methods [29–31], clustering-based methods [32, 33],

7

which reduce the dimensionality using Latent Semantic Indexing (LSI) [34], binary

preference-based methods [35], and correlation and cosine-based techniques [36] give

good performance for recommendations while reducing sparsity. In our proposed

approach, we address these issues of recommender systems by applying a clustering-

based method that successfully and effectively decreases the data sparsity of the user

rating dataset. It does this by assuming the nonrated data based on the previously

preferred clustering groups of users and services.

 In clustering-based methods, applying clustering results to Web services with high

precision is affected by the performance of sparsity reduction. Although several

clustering methods are available, instead of using a simple algorithm, we used a

specificity-based novel ontology generation method as a clustering approach to

identify the service cluster groups [37–39] and decrease the data sparsity based on

clustering results.

 Existing approaches used general terms for their approches. However, general

terms contain little domain-related information, which is inadequate for fulfilling the

domain information when generating the ontology hierarchy. In our approach, we

successfully dealt with this problem and generated ontology by taking advantage of

specific terms rather than using general terms. This helps to produce efficient and

accurate cluster results.

 The amount of domain-specific information included in the term is identified as a

specificity of the term [37]. We consider two types of information: self-information

and context-information when generating the ontology. Self-information describes the

internal structure of terms considering a set of modifiers of the term. Context-

information helps cover the issues that cannot be covered by the term modifier

structure. After generating the ontology, the similarity calculation is performed based

on the generated ontology hierarchy relationships and Information Retrieval (IR)

methods. Finally, clustering is performed using an agglomerative clustering algorithm

based on the calculated similarity values. Of note, this clustering result shows higher

performance than existing approaches and it is used to identify the service domains

and successfully alleviate the sparsity problem in the user-service dataset.

 After applying the clustering method, a new low-sparsity matrix is used for further

calculation. Pearson’s Correlation Coefficient (PCC) is used to calculate the similarity

between user u and user v. The Calculated similarity value is assigned as a trust

weight value between the two users. Then the new rating prediction is based on the

8

new low-sparsity matrix and calculated trust weight values. Finally, top services are

recommended to the users based on the predicted ratings.

 We conducted comparative experiments on the user-service dataset using well-

known statistical accuracy metrics, Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE), on several parameters to generate ontology and other sparsity

reduction methods. Significant improvement in recommendation performance is

shown by giving the lowest error rate on MAE and RMSE compared with existing

service recommendation mechanisms.

1.3 Summary of the Original Contributions

 We proposed two reserach approaches by introducing specificity-aware ontology

generation method. Main original contributions for Web service clustering and

recommendation to increase the performance have been made in the work as follows.

1. Specificity-aware ontology generation method has been proposed to

calculate the Web service similarity to improve the accuracy of Web service

clustering.

2. Proposed novel clustering apprach is used to ovecome the sparsity and cold-

start problem by alleviaing the saprsity of web service-user ratings. Then

recommendation method has been proposed to recommmend Web services to users

based on their domain preference.

1.4 Thesis Organization

 The thesis mainly consists of five parts as shown in Figure 1.2.

Section 1: Background and Related Work

In the chapter 2, the background and related work of the study will be presented. First, we

give an explanation of Web service, ontology learning, similarity calculation, clustering

and recommendation. Then, we discuss the work related to ontology learning, similarity

calculation and Web service clustering. Next, we focus on term specificity, existing CF

and challenges of user-based CF algorithms such as the sparsity problem and the cold-

start problem.

9

Figure 1.2 Thesis organization

Section 2: Specificity-Aware Ontology Generation for Improving Web Service

Clustering

In chapter 3, first discuss about the of specificity-aware ontology generation. Then

explain about the proposed clustering approach based on ontology generation.

Section 3: Improving Service Recommendation by Alleviating the Sparsity with a

Novel Ontology-based Clustering

In chapter 4, first, discuss the sparsity alleviating using novel specificity-aware ontology

generation. Then explain about the proposed recommendation approach using the updated

user-service matrix.

Section 4: Experiments and Evaluations

In chapter 5, experiments and evaluations of our proposed clustering approach and

recommendation approach are presented. Experimental results show that our proposed

specificity-aware ontology generation approach can improve the Web service clustering

and recommendation by addressing the issue of previous approaches.

Section 5: Conclusion and Future Works

In chapter 6, the thesis is concluded and the future works are presented.

10

Chapter 2 Background and Related

Work

 In this chapter, first we present overview of the Web services. Then, we describe

ontology learning, similarity calculation, Web service clustering, recommendation and

give the brief description of existing approaches.

2.1. Overview of the Web Services

 A Web service is a set of related application functions that can be programmatically

invoked over the Internet. It allows buyers and selers all over the world to discover

each other, connect dynamically and execute transactions in real time with minimal

human interaction.

A Web Service is can be defined by following ways:

− is a client server application or application component for communication.

− method of communication between two devices over network.

− is a software system for interoperable machine to machine communication.

− is a collection of standards or protocols for exchanging information between

two devices or application.

Figure 2.1 Web service

11

 As you can see in the Figure 2.1, Java, .net or PHP applications can communicate

with other applications through web service over the network. For example, Java

application can interact with Java, .Net and PHP applications. So web service is a

language independent way of communication.

 Web service describes a collection of operations that are network accessible

through standardized eXtensible Markup Language (XML) messaging. XML is used

to encode all communications to a Web service. For an example, a client invokes a

Web service by sending an XML message, and then he waits for a corresponding

XML response. Because all communication is in XML, Web services are not tied to

any one operating system or programming language and hides the implementation

details of the service.

 A Web service is described using a standard, formal XML notion, called its service

description. The WSDL is an XML-based interface definition language that is used for

describing the functionality offered by a web service. WSDL document describes all

the details necessary to interact with the service, including message formats, transport

protocols and location. Web services fulfill a specific task or a set of tasks. Web

services share business logic, data and processes through a programmatic interface,

represent an important way for businesses to communicate with each other and with

clients. They can be used alone or with other Web services to carry out a complex

aggregation or a business transaction as we discussed in introduction part. The

concept of Web services has therefore become a widely applied paradigm in research

and industry.

2.1.1. WSDL structure

 There are many industrial and academic standards for Web service descriptions,

including WSDL [13], OWL-S [40] and Web service modeling ontology [41]. WSDL

is an XML-based language used to describe the services a business offers and to

provide a way for individuals and other businesses to access those services

electronically. WSDL represents the most fundamental form for standard-of-service

APIs.

 We use the structure of WSDL to cluster services and we translate material

retrieved in other formats into WSDL. Figure 2.2 represents the part of WSDL file of

cheapcar_price_service.

12

 Figure 2.2 Structure of WSDL file

 WSDL file provides definitions grouped into the following sections:

• <definitions>: The root element of a WSDL document. The attributes of this element

specify the name of the WSDL document, the document’s target namespace and the

shorthand definitions for the namespaces referenced in the WSDL document.

• <types>: The XML Schema definitions for the data units that form the building

blocks of the messages used by a service.

• <messages>: The section that contains the description of the messages exchanged

during invocation of a service operation.

• <portType>: The most important WSDL element. It defines a Web service, the

operations that can be performed and the messages that are involved.

• <binding>: The section that defines the message format and communication protocol

details for each port. It links the port type to a transport method.

• <service>: The section that defines port elements that specify where requests should

be sent.

13

In the past few years there are numerous researches has been done in the field of

Web services. Ontology learning, similarity calculation, Web service clustering, , and

recommendation are four related research topics with this new approach.

2.2. Ontology Learning

 Ontology is a formal naming and definition of the types, properties, and

interrelationships of the entities that really or fundamentally exist for a

particular domain. There is, however, no general agreement on which requirements

the formal representation needs to satisfy in order to be appropriately be called an

ontology. Depending on the particular point of view, ontologies can be simple

dictionaries, taxonomies, thesauri, or richly axiomatized top-level formalisations.

Ontology learning is a subtask of information extraction. Figure 2.3 shows the

ontology example.

Figure 2.3 Ontology example

2.3. Calculating Web Service Similarity

 Cosine similarity [42] is used to calculate the similarity of features. It measures the

similarity between two sentences or documents. But, for a complex Web terms it

makes difficult. To discover related Web services [16], clustered services using the

four types of features based on the tree-traversing ant algorithm. They similarity

computed using the NGD. However, NGD is not to consider the context of the terms

occurs.

14

 Based on the Web service semantics and clustering research work [44] presented a

Web service discovery approach. They computed similarity values of Web services

using WordNet and ontologies. In [43], used similarity computation methods such as

Web-Jaccard, Web-Dice, Web Overlap and Web-PMI as a Web based measuring

methods. In [14], researches used cosine similarity as IR based methods to similarity

calculation of features. IR techniques like cosine similarity mainly focus on plaintext,

for more complex terms in Web services it is very problematic.

Eg:

get_traffic_information, get_car_information, get_book_information

• get_traffic_information, get_car_information – similarity is high

• get_traffic_information, get_book_information – similarity is low

2.4. Web Service Clustering

 Service clustering, which can greatly reduce the search space of service discovery, is

an efficient approach to increasing the discovery performance. The idea is to organize

semantically similar services into one group. As we mentioned in introduction section,

service clustering can be categorized as functionally-based, non-functionally-based and

social criteri-based clustering. Figure 2.4 shows the clustering example.

Figure 2.4 Clustering example

15

2.4.1. Functionally-based Web service clustering

 Functional based clustering approaches use functional attributes of Web services

such as service name, operation name, port name, input and output message in

clustering process. Liu et al. [16] used tree-traversing ant algorithm to cluster the

services and in similarity calculating of Web service features, they used the corpus-

based method based on Normalized Google Distance (NGD). They extracted four

features for their clustering approach namely host name, context, content and name

from WSDL documents. Sometimes different services published by the same host.

Because of this, considering context and the host name do not make better way to the

clustering services. Elgazzar et al. [11] used Quality-threshold clustering algorithm

for clustering and extracted features as messages, complex data types and ports with

content and service names. For a similarity calculation, they used KM technique and

structure matching; it helps to decide the number of similar matches between Web

services. They only consider the pair wise matches and did not consider semantic

patterns of complex data types.

 Chen et al. [14] proposed WordNet-VSM model to calculate the feature similarity

by generating vectors of service name, operation and message. They used

unsupervised neural networks based on a kernel cosine-similarity measure instead of

using traditional clustering algorithms.

 Research work [44] presented WordNet-based similarity calculation approach to

measure the similarity between service name and text description and similarity

calculation method using an input and output parameters based on domain ontology.

OWL-S files are used to extract the semantic information and service similarity

calculates through it. Kmedoids is used as the clustering algorithm. In [45],

association rule is used to identify relationships between clustering parameters using

Web application description language documents. They proposed combination method

to empower RESTful semantic Web services using a learning ontology and Web

application description language. In [46], researches proposed post-filtering method to

increase the performance of clusters. It used CAS based approach and rearranging the

incorrect Web services. In [47], proposed a machine learning method to understand

the service space through number of latent functional factors and Bayesian

Nonparametric Latent Factor Model (BN-LFM) for clustering and service

16

representation.

2.4.2. Non functionally-based Web service clustering

 There are only limited research works related with the Non functional-based and

social criteria-based clustering. In Non functional-based clustering approaches, Web

services’ attribute is used for clustering process namely Quality of Service (QoS). In

[48], researches proposed Web service clustering based on QoS properties with

genetic algorithm to improve the efficiency of service discovery. According to

research work [2], the service selection algorithm also plays a significant role. They

proposed a new algorithm, called QSSAC, for the solution as a service selection

problem. It used for the service clustering and it can cluster a large number of Web

services into an identified small groups using their different QoS properties.

Algorithm is capable to covenant the near-optimal Web service selection procedure

and reduce the execution time. Research work [49], QASSA used to resolves QoS-

aware services using clustering techniques such as K-Means algorithm. They did

service clustering in a novel way according to QOS values. Chen Wu et al. [50]

proposed new credibility-aware QoS prediction approach with two-phase K-means

clustering for improve the prediction accuracy through decreasing the unreliable data.

2.4.3. Social criteria-based Web service clustering

 Research works [3] and [51] proposed social criteria based clustering method and

service composition approach respectively. As social properties they considered

sociability preference in generating the global social service network. They proposed

it by connecting isolated service islands to increase the sociability on a global scale of

services. It is help to improve the discovery and composition. However, in this new

approach, only consider the functionally based clustering.

2.5. Web Service Recommendation

 Recently, recommendation systems are attracting a lot of attention since it helps

users to deal with information overloading on the Web, recommendation algorithms

have been used to recommend books and CDs at Amazon.com, movies at Netflix.com

17

and lot of other things. With the exponential growth of Internet in recent years, Web

service recommendation is also become a significat task.

2.5.1. CF recommender systems

 “Recommend items that similar users liked.” CF recommender systems are basic

forms of recommendation engines. In this type of recommendation engine, filtering

items from a large set of alternatives is done collaboratively by users' preferences.

 The basic assumption in a CF recommender system is that if two users shared the

same interests as each other in the past, they will also have similar tastes in the future.

If, for example, user A and user B have similar movie preferences, and user A recently

watched Titanic, which user B has not yet seen, then the idea is to recommend this

unseen new movie to user B. The movie recommendations on Netflix are one good

example of this type of recommender system.

 Figure 2.5 shows the collaborative Filtering types and Figure 2.6 shows the CF

recommendation example.

Figure 2.5 Collaborative Filtering types

2.5.2. Content-based recommender systems

“Recommend items that are similar to those the user liked in the past.” Content-based

recommendation systems analyze item descriptions to identify items that are of

particular interest to the user. Content-based recommendation systems may be used

in a variety of domains ranging from recommending web pages, news articles,

restaurants, television programs, and items for sale.

18

Figure 2.6 CF recommendation example

2.6. Related Work

 With the exponential growth of Web applications in recent years, various

approaches have been proposed for Web-service clustering, discovery and

recommendation. In this section, we describe several representative works related to

ontology learning, similarity calculation, Web-service clustering, term specificity, CF,

and challenges of user-based CF algorithms.

2.6.1. Ontology learning

 Previous ontology-based HTS clustering approaches [17,18] extract relevant

features from WSDL documents, namely service name, domain name, operation

name, input message and output message. An ontology is then generated via the

hidden semantic patterns of the extracted features. This is achieved by splitting

complex terms into individual words before generating the ontology. An ontology

hierarchy is generated through two types of relations, namely concept hierarchy

(Subclass–Superclass) and triples (Subject–Predicate–Object). Similarity calculation

and clustering are achieved by comparing generated ontology relationships.

 Fang et al. [52] proposed an agility-oriented and fuzziness-embedded cloud-

service ontology model, which adopted agility-centric design. The model enabled

19

comprehensive service specification by capturing cloud concept details and their

interactions. Utilizing the model as a knowledge base, a service-recommendation

system prototype was developed. In Xie et al. [53], a domain-ontology hierarchy was

defined to describe the conceptual semantic information. They used a weighted

domain-ontology method to calculate functional similarity using input and output

parameters. A domain ontology was developed using semantic dictionaries and

existing ontologies from the Internet. Xia and Yoshida [54] proposed Web-service

recommendation via an ontology-based similarity measure. By proposing a similarity

assessment model, they visualized a Web-service recommendation framework.

However, this method could not capture the real semantics existing among Web

services, and therefore did not address search-space issues.

2.6.2. Similarity calculation

 Kumara et al. [17] used ontology-based similarity calculations that involved

proposed filter values to identify the ontology relationships. By assigning different

weights to the filters, they calculated similarity via edge-count-based similarity

calculations. Banage et al. [19] proposed new similarity calculations using machine-

learning methods such as SVMs. Their method generated feature vectors through

extracted terms from Google and Wikipedia. Similarity calculations involved

converting the SVM output into posterior probabilities. Our previous approach [18]

proposed a new similarity calculation method that combined an ontology-based

method [17] and an SVM-based method [19] that gave more-efficient results.

 Shi et al. [55] acquired the semantic similarity between Web-application-program

interfaces and mash-ups by proposing an enhanced cosine-similarity calculation

method, where a penalty term for the dissimilarity of two vectors was introduced. Lei

et al. [56] proposed both a Web-service similarity-measurement method and a

recommendation method based on ontology and IR techniques. Their method

calculated similarities and classified services according to their topics, functionality

and semantics. Chen et al. [14] proposed an unsupervised self-organizing-map neural

network algorithm, again based on a kernel cosine-similarity measure, for clustering

Web services automatically. Paik et al. [43] used the Web-based measuring methods

Web-PMI, Web-Dice, Web-Jaccard and Web-Overlap for similarity computation.

Latent terms hidden in the Web document could be provided via a similarity

20

calculation measure using a search engine, thereby giving more flexibility to finding

similar terms to terms in a query.

2.6.3. Web service clustering

 In previous studies [17,18], an agglomerative clustering algorithm has been used in

the cluster-center identification approach to clustering the Web services. This is a

bottom-up hierarchical clustering method and starts by assigning each service to its

own cluster. The CAS method uses a spatial clustering technique called the associated

keyword space, which was effective for noisy data [19]. It projected the clustering

results for a three-Dimensional (3D) sphere onto a two-Dimensional (2D) spherical

surface for 2D visualization.

 Zhou et al. [57] used unsupervised clustering with K-means clustering on attrition

rates to determine an appropriate segmentation and number of segments. The

clustering method starts by choosing appropriate attributes. Final clustering results are

converted into a score for a recommendation. Mabrouk et al. [49] investigated

clustering techniques that used a K-means algorithm based on a QoS-Aware Service

Selection Algorithm (QASSA). It grouped service candidates associated with an

activity into several clusters according to their QoS values. QASSA defines service

selection under global QoS requirements as a set-based bi-level optimization problem,

representing a mathematical model for the problem. Liu and Wong [16] proposed an

integrated feature-mining and automatic-clustering approach dedicated to Web-service

clustering. A tree-traversing ant algorithm [58] was used for clustering Web services

by introducing a new semantic-relatedness measure based on a combination of four

types of extracted features.

2.6.4. Term specificity

 Term specificity has not been discussed in recent work. Caraballo et al. [59] used a

large text corpus and proposed a method for determining the relative specificity of

nouns, i.e., some nouns are more specific than others. The approach calculated the

specificity of general nouns using the distribution of modifiers. It was based on the

assumption that general nouns are usually modified, whereas specific nouns are rarely

modified. Aizawa [60] measured term specificity through information-theoretic

21

methods based on the pairwise mutual information of terms. Ryu et al. [61] used

specificity-measuring methods for terms based on information theory, such as

measures that use the compositional and contextual information of terms.

2.6.5. CF

 CF [29] leverages the experiences of similar users in the system to predict the

target users’ personalized preferences and make recommendations. It only requires

past user ratings to predict the remaining unknown ratings; then, items can be

recommended to users according to the predictions [62, 63]. Many CF approaches

have been developed in industrial and academic fields in both memory-based and

model-based categories. Memory-based methods simply recall the rating matrix and

make recommendations based on the correlation between the users and items. Model-

based methods build a model that can predict the user’s ratings using a given rating

matrix and then make recommendations based on the fitted model.

 In [64], presented a mashup service recommendation approach by integrating the

implicit API correlations regularization into the matrix factorization model. When

determining the future invocation of APIs by a target mashup, they considered both

the content features of APIs and the historical invocation relations between APIs and

mashups are essential. Yu et al. [65] proposed an item-based CF method that explores

the latent bundling relationships between products and integrates the semantics of

bundling sets with building sequential patterns to model user-item behaviors. Adeniyi

et al. [66] applied memory-based methods such as the k-nearest neighbor

classification method to measure the user–item similarity through the entire user–item

matrix and thereby make recommendations. Zuo et al. [9] proposed the use of a

model-based method, such as a neural network-based method, to extract the in-depth

features from tag space layer by layer. Based on those extracted abstract features, the

user’s profile was then updated and recommendations were made. Engelbert et al.

[67] outlined a recommendation method based on a Bayesian model; their proposed

system adapted the method for use in the application area of television and analyzed

the user’s behavior to present new content choices.

22

2.6.6. Challenges of user-based CF algorithms

 Figure 2.7 explained the way of selecting a proposed clustering approach for the

new recommendation process.

Figure 2.7 Selecting a sparsity alleviating method

2.6.6.1. The sparsity problem

 A major issue that limits the performance of CF is the sparsity problem, which

occurs due to the lack of previous user-service feedback data and causes difficulties in

identifying similarities between users’ preferences.

 Some existing approaches have been used to alleviate the sparsity problem. Chen

et al. [29] managed the sparsity problem successfully by using association retrieval

23

technology and proposed a new CF algorithm to improve recommendation

performance. They examined the transitive associations based on the user’s feedback

data. They proposed a direct similarity and an indirect similarity between users and

computed the similarity matrix through the relative distance between the users’ rating.

To obtain the recommendation matrix, the association retrieval approach and the

direct similarity matrix were combined and the sparsity problem was thereby

managed with increasing recommendation precision. Yildirim and Krishnamoorthy

[31] proposed a novel item-oriented algorithm, the random walk recommender, which

first infers transition probabilities between items based on their similarities, and

models finite length random walks on the item space to compute predictions. Huang

et al. [31] used a bipartite graph to represent the consumer-product matrix; using the

graph, they proposed exploring the global graph structure to facilitate CF under sparse

data.

 In [68], improved the CF-based Web service recommendation approach by

considering social balance theory (SBT), and put forward a novel data-sparsity

tolerant recommendation approach. Instead of looking for similar friends of the target

user or similar services of the target services in traditional CF-based recommendation

approaches, they first looked for the “enemies” of the target user, and further

determined the “possible friends” of the target user indirectly based on SBT.

Shrivastava and Singh [32] used k-mean clustering, k-medoid clustering, and a

combination of the harmonic mean and Euclidean distance method to solve the

sparsity problem. They examined the sparsity problem in a movie recommendation

system that can recommend movies to a new user as well as to others. Sarwar et al.

[34] showed that by reducing the dimensionality of the product space, density can be

increased and thereby more ratings can be found. Their approach successfully dealt

with the sparsity problem and LSI [69] was used to reduce the dimensionality of the

customer–product ratings matrix. Li et al. [35] proposed a Simplified Similarity

Measure (SSM) for CF recommendation to handle the sparsity problem. By

converting the value of the user-item matrix into a binary preference value (0/1), they

found similar groups of users and proposed an SSM for speeding up the process for

the sparsity problem. Instead of computing similarities between users, Sarwar et al.

[36] proposed a method that used the same correlation-based and cosine-based

techniques to compute similarities between items and results used to address both the

scalability and sparsity problems. There is a hidden correlation among users and Web

24

services and in [70] defined such hidden correlation with an asymmetric matrix. Their

goal was to employ such asymmetric correlation among users and Web services to

alleviate the data sparsity problem and further enhance the prediction accuracy in Web

service recommendation.

 Table 2.1 shows the summary of the existing sparsity alleviating methods.

Table 2.1 Summary of the existing sparsity alleviating methods

2.6.6.2. The cold-start problem

 It is very difficult to make a recommendation to a new user or new item if the

profile is empty and there are no available ratings. This is the so-called cold-start

problem, which decreases the effectiveness of a recommendation. Wei et al. [26]

proposed a hybrid recommendation model to address the cold-start problem. Their

model explores the item content features learned from a deep learning neural network

and applies them to the time SVD++ CF model. In [71], a novel inverse CF approach

is introduced to help alleviate the cold-start problem in Web service recommendation.

They first looked for the target user’s enemy, and then determine the target user’s

“possible friends” based on SBT (e.g., “enemy’s enemy is a friend” rule). Afterwards,

Current approaches Description

Association retrieval

method

Explored the transitive associations based on the user’s

feedback data using association retrieval technology.

Binary preference-based

method

By converting the value of user-item matrix into binary

preference value found the similar group of users and propose

a method for sparsity problem.

Correlation-based and

cosine-based techniques

Instead of computing similarities between users, the method

proposed using the same correlation-based and cosine-based

techniques to compute similarities between items and result

used to addressed sparsity problem.

Clustering-based methods Reduce the sparsity by applying the clustering result.

25

“the Web services preferred by “possible friends” of target user” or “the Web services

disliked by enemies of target user” are recommended to the target user, so as to

alleviate the cold-start problem.

 Ye and Wang [27] proposed a new method to solve the cold-start problem by using

worker performance in different types of human intelligence tasks published by

different requesters. They also proposed a method to differentiate homogeneous

workers, a new similarity to improve the accuracy of predictions, and a novel trust

subnetwork extraction approach to tackle the data sparsity and cold-start problems.

Barjasteh et al. [72] proposed an algorithmic framework based on matrix factorization

that exploits similarity information about users and items to manage the cold-start

problem. The proposed method successfully decoupled the completion of unobserved

ratings and transduction of knowledge and used that result for the computation.

26

Chapter 3 Specificity-Aware Ontology

Generation for Improving Web Service

Clustering

3.1. Motivation for New Clustering Approach

3.1.1. Motivation for Selecting a Ontology-based Clustering

Approach

 Accurate similarity calculation is the main point for achieving better clustering

results. There are some existing approaches to similarity calculation. But, as described

in Table 1.1 existing clustering approaches still suffer from several drawbacks.

 Figure 3.1 explained the motivation to a new approach with the existing

approaches problems. Here HTS [17] shows better results than the existing methods,

but they also didn’t consider the domain specificity of information when generating

the ontology.

 Ontology generation is showing better results than other similarity calculation

methods. As shown in the following example ontology-based methods can identify the

similarity between terms more accurately.

Eg:

Using other similarity calculation methods,

Library – University_Library  0.5/0.6

Using ontology generation-based methods,

Library – University_Library  0.8/0.9

27

 In this example, Library and University_Library should have a high similarity

value like 0.8/0.9 based on the super-sub like term relationship. It proves that

ontology-based similarity calculation shows the more accurate results.

Figure 3.1 Motivation to new approach

 There have been several approaches for ontology learning/generation such as

Formal Concept Analysis method, Lexical Syntactic method, Specificity and

Similarity-based method, and Terms Clustering/Dividing based method. In our

approach, we have used a combination of lexical-syntactic method, and specificity

and similarity-based method. Because they are suitable for applying to service data.

28

3.1.2. Motivation from Comparing New Apporach with

Previous HTS Apporach

 Our proposed new approach can give better clustering results than the previous

HTS method. Figure 3.2 shows the incorrectly clustered services in the HTS method.

But the new approach successfully identified those services. The new approach is

considered the specificity of terms and it compares each term using specificity

calculations. Because of that, it can identify key terms of every term successfully and

improve the clustering performance.

Figure 3.2 Examples of incorrectly placed cluster groups in the HTS method

 And also new approach is introduced new machine filters (Eg: Near-Descendants,

Shared-Ancestor, Far-Descendants) for the similarity calculation. It also helps

to identify the correct relationships between terms and improve the clustering

performance.

 When checking the generated ontology hierarchy as shown in Figure 3.3 and

Figure 3.4, in the HTS method ontology nodes spread diffusely over the ontology

hierarchy in many places. But in the new method, they have clearly separated

automatically into hierarchies according to the domains. This hierarchy overview also

helps to improve the clustering performance in the new method.

29

Figure 3.3 Part of a generated ontology – HTS

Figure 3.4 Part of a generated ontology – New

30

3.1.3. Motivating Example Involving Domain Specificity

3.1.3.1. Term specificity and term similarity

 In this paper, we propose a novel ontology-generation method using hybrid

information produced by combining self-information and context-information. In

addition, a simple similarity calculation is used for the ontology generation to increase

the accuracy of the ontology structure. Figure 3.5 shows two terms, �� and ��, in

specificity and similarity relationships.

Figure 3.5 Specificity and similarity relationship for two terms �� and ��

 Research approaches in the last decade have focused on general terms in

generating an ontology and did not take advantage of the domain-specific information

contained in the terms. However, the specificity of a term explains the quantity of

domain-specific information contained in the term. Specific terms contain a larger

quantity of domain-specific information than general terms. The performance of

similarity calculations and service clustering can be improved by focusing on the

ontology-generating procedure and considering domain-specific information.

 Specificity can be measured for each term as its included information quantity.

Specificity plays a significant role in generating hierarchical relationships between

31

terms [20], and highly specific terms tend to be located at deeper levels of the

hierarchy. That is, if ��, ��, ��, �	 and �
 are five terms included in a hierarchy, as

shown in Figure 3.6, the terms’ specificity can be estimated according to their level in

the hierarchy:

 ��
����� � ��
����� � ��
����� � ��
���	� � ��
���
� �3.1�

 Figure 3.6 Term specificity and term similarity differences in a hierarchy

As shown in Figure 3.6, if term �� is a subclass of term �� and term �� a subclass

of term �� in a hierarchy, then the specificity of �� is greater than that of �� and the

specificity of �� is greater than that of ��. Based on this, there is a high probability

that ��, �� and �� have an ancestor relationship, and therefore that ��, �� and �� have a

semantically similar relationship. However, �	 and �
 are not semantically similar to �� and �� and do not have an ancestor relationship, but, based on the hierarchy levels,

the specificity of �	 and �
 will be greater than that of �� and ��.

In this paper, we introduce a new term-specificity measuring method by

classifying information into two categories, namely self-information and context-

information, based on the composition of component words. The final specificity

value is measured as a combination of self-information and context-information. Most

terms are compound terms with a set of modifiers, enabling self-information to be

significant for representing a set of domain characteristics. Context-information helps

to cover any shortage of self-information.

32

3.1.3.2. Self-information

 Self-information includes information in compositional words and the internal

anatomy of terms. Most domain-specific terms are compound terms, and that helps

represent the meaning of terms. The characteristics of each component word and/or

the internal anatomy of terms are both useful for measuring term specificity. When

measuring self-information, modifiers play a major role in creating new terms by

adding modifiers to existing terms.

 Using the modifier-head structure, the specificity of the term can be calculated

incrementally, starting from the head word. If the term contains more than one word,

the specificity of the term is always larger than that of the head term. With this

condition, we can assume that a more specific term has higher specificity:

 ��= NovelAuthor ��= FictionNovelAuthor ��= ScienceFictionNovelAuthor

 Consider these three terms ��, �� and �� as modifier-head structures. In each term,

Author represents the head and Novel, Fiction, and Science represent modifiers. ��

has one modifier, �� has two modifiers and �� has three modifiers. The compound

term �� is created by adding the modifier Novel to the existing word Author. Here,

Author is considered an ancestor of Novel. The meaning of the compound term �� can

be predicted by using the two compounding words Novel and Author that describe

their unique characteristics. �� is created by adding a new modifier Fiction to the

term �� and �� is created by adding a new modifier Science to the term ��. In this

manner, as the number of modifiers is increased, the compound term can achieve a

more specific meaning. Therefore, multiword terms have a higher specificity value

than single-word terms. The specificity of the terms ��, �� and �� are ordered as

follows: ��
����� � ��
����� � ��
����� (3.2)

33

3.1.3.3. Context-information

 Some information cannot be accessed by self-information derived from the

composition of multiword terms. Some terms have the ability to describe their own

characteristics independently without sharing common words, such as:

 ��= FilmInformation ��= MovieDetails

 Consider these two terms �� and ��, which do not share any common words. These

new terms would have been created independently of existing terms. In this word

format, it is ineffective to measure the specificity values using self-information

because the compounding words of �� and �� are completely different from each

other. In such cases, assessing compound words independently cannot give the correct

information for the compound term.

 These limitations can be overcome using context-information that represents the

characteristics of the terms indirectly. General terms are usually modified by other

words, but domain-specific terms are rarely modified by other words because they

already contain sufficient information [20,59]. Using this idea, we can use the

probabilistic distribution of modifiers as context-information to measure the

specificity of terms [20].

 Based on this theory of information and basic similarity calculation, we propose a

new method to improve the accuracy of the ontology hierarchy, Web-service

similarity calculations and the clustering procedure.

3.2. Proposed New Approach

 Figure 3.7 shows clustering example using five domains. Figure 3.8 shows five

phases of our new approach and the architecture of the proposed approach is shown

Figure 3.9.

34

Figure 3.7 Clustering example using five domains

Figure 3.8 The five phases of the new approach

35

Figure 3.9 Architecture of the new approach

3.2.1. Feature extraction

 There are many standards for Web service descriptions, including WSDL [13],

OWL-S [40], semantic annotations for WSDL [73], XML schema [74] and Web

service modeling ontology [41]. We used WSDL documents in extracting features that

describe the characteristics included in the Web services. Real world Web service

repositories and the OWL-S (http://projects.semwebcentral.org/projects/owls-tc/) test

collection were used as the services dataset for the WSDL documents related to five

domains, namely Vehicle, Medical, Film, Food and Book. We extracted five features

from WSDL documents, namely service name from the WSDL documents’ main

element <service>, operation name from <port type>, port name from <Port>, and

input message and output message from <message>. These features help to

differentiate the characteristics and functionalities of each Web service:

Feature 1: Service name. The WSDL file contains a Web-service name extracted

as a feature. It provides a unique name among all services using composite

names.

36

Feature 2: Operation name. An operation is an abstract description of an action

supported by the service and is not required to be unique.

Feature 3: Port name. A port defines an individual endpoint by specifying a single

address for a binding.

Feature 4: Input message. This element in an WSDL document describes the

names and format of the messages that are a parameter of the Web services

sent to the Web service provider from consumers.

Feature 5: Output message. This is similar to an input message, but sent from the

Web service provider to consumers.

Figure 3.10 Part of a WSDL file that shows the structure of NovelAuthorService

 Figure 3.10 shows part of the WSDL file structure for NovelAuthorService. Each

extracted term was used as an ontology node without splitting into words. For the

specificity and similarity calculations, we split each complex term into individual

words based on several assumptions. For example, the NovelAuthor, Novel-Author

and Novel_Author terms would be divided into two parts, namely Novel and Author,

based on the assumption that capitalized characters indicate the start of a new word,

that a hyphen (-) is used to join two words and that an underscore (_) is also used to

join two words. The Author-of-Novel term would be divided into three parts, namely

Author, of, and Novel, then stop-word filtering would be performed to remove any

stop words such as of. This set of words then forms the corpus to be used for the

specificity and similarity weight calculations.

 The specificity and similarity weights depend on the set of all domain-related

words contained in the corpus. The accuracy of the ontology generation can be

improved by adding more domain-related terms to the corpus. We added more

37

domain-specific terms by extracting frequently used terms in the particular domains

related to Food, Vehicle, Medical, Book and Film domains, which are the domains we

selected for our WSDL documents. We used the domain name as the search query and

used Google as the search engine. We obtained 100 snippets from the search engine.

The final word set was compiled by computing the Term Frequency-Inverse

Document Frequency (TF-IDF) values for all terms in each domain, as expressed in

(3.3), and selecting the set of terms with the highest TF–IDF values.

 ������,� � ���,� X � ! � "#��,�� �3.3�
 Here, ������,� is the TF-IDF value for term i in snippet s, ���,� is the term

frequency for term i in snippet s, #��,� is the number of snippets that contain term i

and n is the total number of snippets. Figure 3.11 and Algorithm 3.1 show the process

of extracting frequently used terms.

Figure 3.11 Process of extracting frequently used terms

 Only service-specific terms relevant to the service domain and the more

meaningful terms would be identified using this TF-IDF calculation procedure.

 Each term extracted from the WSDL documents and the Google search engine is

used in the hybrid specificity calculation and as an ontology node. Five separate

ontologies, one for each of the five feature types, were generated by considering

domain specificity and similarity weights.

38

3.2.2. Domain-specificity weight and similarity weight calculations

for ontology generation

 According to the hybrid specificity and the similarity of terms, we calculated the

domain-specificity weight and similarity weight, respectively. Figure 3.12 shows the

steps of calculating domain specificity weight and similarity weight.

Figure 3.12 Steps of calculating domain specificity weight and similarity weight

Algorithm 3.1: Extracting Frequently Used Terms

Input I : Array of domain names

Output O : Frequently used terms

1: For each domain #� in I do

2: S = getSnippets (#�); //get total 100 snippets from Google

search engine

3: end-for

4: For each domain #� in I do

5: For each snippets �$ in S do

6: StopWord_filtering(S);

7: end-for

8: �#� = Calculate_term_frequency();

9: end-for

10: For each domain #� in I do

11: For each term �% in �#� do

12: ��%= calculate_TF-IDF(�%);

13: end-for

14: &'(= FrequentlyUsedTerms (); //select terms with highest

TF-IDF value

15: end-for

39

3.2.2.1. Domain-specificity weight for ontology generation

Figure 3.13 Phases of the domain-specificity weight calculation

 As shown in Figure 3.13, we first calculate the self-specificity and context-

specificity using extracted features of terms from WSDL and extracted terms from the

Google search engine. Those values are then combined to evaluate the hybrid

specificity, based on information theory from theoretical specificity-measuring

methods [20]. Finally, we calculate the domain-specificity weight values from the

hybrid specificity values.

 Self-specificity value

 As described in Section 3.1.3.2, self-specificity is based on a set of compound

terms. Figure 3.14 shows an example corpus with frequencies of compound terms and

their component words found in the corpus. Each �� describes a term and)$ describes

the individual words contained in each term.

 "*+ � 1 "*, � 2 "*. � 3 "*/ � 1 "*0 � 1

T � 1��,��, ��, �	, �
} 2' Total number of terms = 8

40

Figure 3.14 Example of a service corpus

"(345678*�53 � 4 ":6�;< � 7 ">8%�7?7 � 5 "A55B � 4 "C5D<E � 1

A � 1)�,)�, …)GH � 1�"� IJ)�K ",LIK�
, M)NKJOJ, P Q, 2 R
�H 2S Total number of words = 21

 Here, 2' is used to describe the total number of terms in a corpus. ��= 1��,��, … �TH

is the set of terms found in the corpus and "*U is used to count each term separately.

Terms consist of one or more words. The count of all words in the corpus is given by 2S. Here,)$ � 1)�,)�, …)GH, and "8V is used to count each word separately.

 If a term �� is found in the corpus, the information quantity of the event of �� is
observed by I(J�) and can be measured via information-theoretic methods [20].

Based on this, the specificity of �� is assigned as the following (3.4).

41

 ��
����� = I(J�) (3.4)

 The joint probability distribution L1��,#$H is given by �� ∊ X and #$ ∊ �. We can

assume �� for selecting a term from T and #$ for selecting a word from A.

Events 1��,��, … �T} and 1#�,#�, … #G} are defined by the random variables C and D. �*U is a set of #$ that are associated with the words Y*U . The mutual information

between �� and #$ compares the probability of observing �� and #$ together and

independently, as given by (3.5).

 ����, #$� � � ! L���, #$�L����LZ #$[�3.5�

 The specificity of term �� is represented by the value I(��, �), which indicates the

mutual information between �� and D. I(��, �) is estimated using the frequency of

terms and words in a corpus according to the following equation (3.6).

 Spec (��) ≈ I(��, �)

 = \ LZ��, #$[� ! L(��, #$)
L(��)L(#$)

]V∊^_U

 = \ L(��|#$)L(#$) � ! L(��|#$)
L(��)

]V∊^_U

 ≈ \ ("8V . ��)
"*U

"*U2' � ! ("8V . ��)
"*U

2S"8V8V∊S_U

 �
����
�(��) ≈ 12' \ (a . � ! 2S"*U . "8V
) (3.6)

8V∊S_U

 Extracted terms from WSDL documents contain one or two words, according to

the normal format of WSDL. Because of this consideration, ("8V . ��), the number of

the words in ��, is assumed to be 1. The weighting scheme for the specificity of the

modifier represented by α is based on linguistic knowledge [20]. Adding two or three

42

words of head-modifiers enables the final specificity to be high. Because of this

consideration and from experimental results, α=1 is selected from the range 0≤ α ≤1.

According to the final result (3.6), "*U and "8V alone contribute to the self-specificity

value because 2', 2S and α become fixed values. Therefore, the self-specificity

depends on the number of compound words that contain the term, the frequency of the

term and the frequency of each term containing its words.

Context-specificity value

 Context-specificity is based on the entropy of the probabilistic distribution of

modifiers for a term [20].

 c75](*U) = − e L(J #7, ��) � ! L(J #7, ��) (3.7)
� f7f g

 Here, F is the set of modifiers of ��. The probability that J #7 modifies �� is
given by (J #7, ��). The relative frequency of (J #7, ��) in all ZJ #4 , ��[pairs in a

corpus is estimated for 1 ≤ f ≤ F. The entropy value is given by the average

information in all (J #7 , ��) pairs. Because domain-specific terms have simple

modifier distributions, specific terms have low entropy. Therefore, the result of (3.7)

is converted as an inverse entropy and assigned to I(J�), as given by (3.8), giving a

large quantity of information [20].

 X "��
�(��) ≈ �(J�) ≈ J)N �f$fh c75](*V) − c75](*U) (3.8)

 Here, K includes all modifiers with the same head and c75](*V) is used for each

modifier.

Hybrid-specificity value

 The two methods just described are powerful tools for calculating specificity

values. Self-specificity helps to cover the component words’ characteristics, and

context-information addresses areas that cannot be handled by self-information.

 We therefore combine the results from (3.6) and (3.8) to form a hybrid specificity

as given by (3.9) that takes advantage of both methods:

43

 &j��
�(��) ≈ �(J�) = 1
k l 1�
����
�(��)m n (1 − k) 1X "��
�(��)

 (3.9)

 Here, β is in the range 0≤ β ≤1 and was given the value 0.7 by experimentation.

That is, self-specificity makes the major contribution to the final hybrid specificity

value. This hybrid method is applied whenever both methods are applicable. Because

of the normalization, all results for �
����
�(��), X "��
�(��) and HySpec(��) were

between 0 and 1.

Domain-specificity weight value for ontology generation

 The optimal ontology structure is based on the domain-specificity weight, which is

calculated using sibling terms. Here we used the theoretical substructure, with sibling

terms of similar specificity being assigned a higher score.

Figure 3.15 Ontology example for sibling terms

 In the example of Figure 3.15,

��
�(�3<p) ≈ ��
�(�) and ��
�(�3<p) ≈ ��
�(��)

 The domain-specificity weight of a substructure is calculated using (3.10), as

follows:

 qrs<;(&�) = 1 d ∑ |��
����� d ��
���3<p�|*u∊g_u

v�*uv
 �3.10�

0.5

44

 Here, �*u is the number of sibling terms of the new term �3<p and �� is the set of

siblings in &�. ��
����� describes the specificity of each sibling term and ��
���3<p�

describes the specificity of new term. If �*u is empty, qrs<;�&�� is directly assigned

as 0.5 from experimentation.

3.2.2.2. Term similarity weight for ontology generation

 When generating the ontology, finding an optimal structure is also based on the

similarity weight. As shown in Figure 3.16, we first calculate the similarity value

using the simple similarity calculation method and its result is then used for the

similarity weight calculation.

Figure 3.16 Phases of similarity weight calculation

Term similarity value for ontology generation

 Here, we use the basic similarity calculation procedure by comparing the words

common to two terms.

 �KJ��% , �3<p� �
2 ��*x,*yz{�

v�*xv n v �*yz{v
 �3.11�

For example,

Sim(Fiction Novel Author, Novel Author) = 0.8

Sim(Fiction Novel Author, Author) = 0.5

 Here, ��*x,*yz{� is the number of common words of �% and �3<p. �*x and �|yz{

describe the number of compositional words in each term. This result is used to

calculate the similarity weight values, as given by (3.12) below.

45

Term similarity weight value for ontology generation

 The optimal ontology structure is selected through similarity weight, which is

based on the parent, child and sibling terms. Here, we assume that a substructure with

more similar terms clustered around the new term will have a higher score. We use all

the terms connected to the new term, which are parent, child and sibling terms, as

more-similar terms.

 Figure 3.17 shows two substructures &� and &� with an added �3<p. Here,

&�Z��
�|yz{[˃ &�Z��
�|yz{[because &�(�3<p) contains parent, sibling and child

nodes ��, �	 and �
, respectively, whereas &���3<p� contains �� and �� (parent and

sibling) only. Therefore, there are more similar terms clustered around &���3<p� and &�Z��
�|yz{[is therefore higher than &�Z��
�|yz{[.

Figure 3.17 Ontology example for similar terms clustered around a new term

 The similarity weight value is calculated by using the results from (3.11) to

produce (3.12):

 qr�7�&�� � ∑ |�KJ��% , �3<p�|*x∊h

|�| d 1
 �3.12�

 Here, � is the total number of parent, sibling and child terms. �% is the set of all

terms, with �% ∊ �.

46

3.2.3. Ontology generation

 An ontology is a formal specification of a shared conceptualization of a domain of

interest. Ontology learning is a subtask of information extraction.

 Here, each extracted term from the WSDL documents becomes a node in the

ontology hierarchy. The ontology-generating procedure considers each term’s

relations in the ontology and depends on the calculated specificity weight (3.10) and

similarity weight (3.12). This is a top-down approach that builds the hierarchy by

starting from the top root node and adding other nodes one by one to the current

hierarchy, as shown in the example of Figure 3.18. We cannot guarantee the exact

order for incorporating new nodes. In principle, it can be any node in the current

ontology structure.

Figure 3.18 Example of the steps in ontology generation

 Figure 3.19 outlines the flow of incremental taxonomy construction, which

involves three elements, namely subsumption information, contextual information and

optimal structure selection:

• Subsumption information (see Figure 3.5)

− Similarity: conceptual overlapping

− Specificity: domain-specific information in terms

• Contextual information

− Similarity weight: semantically similar terms close together in the taxonomy

− Specificity weight: sibling terms have similar specificity levels

47

Figure 3.19 Flow of incremental taxonomy construction

 Incremental insertion of a new term �3<p into the taxonomy is achieved by the

following steps:

Step 1. The calculated hybrid specificity values are arranged in ascending order and

the first three values are selected as the first three nodes for starting the ontology

generation procedure.

Step 2. The terms are then added to the ontology hierarchy in ascending order. Target

substructures for a �3<p to be combined as a new term, as shown in Figure 3.20,

are selected based on the hybrid specificity values of the new node and the

existing nodes of the ontology. We select target nodes that satisfy ��
���3<p� d0.3 < ��
���%) � ��
���3<p� n 0.3, where �% is an existing node of the

ontology.

48

Figure 3.20 Target area of the existing ontology

Step 3. With this set of target nodes, we can identify a set of candidate substructures,

as shown in Figure 3.21.

Figure 3.21 Candidate target-area substructures for the example of Figure 3.20

Step 4. The optimal substructure is found by calculating the specificity weight (3.10)

and similarity weight (3.12) for each candidate substructure associated with the �3<p and finding the maximum q4�38E�&�� by combining them:

 &� � arg J)N �U∊��

q�&�|&' , �3<p� �3.13�

 The optimal structure &� is selected by comparing all &S candidate substructures

and finding the maximum weight value. Equation (3.14) gives the final calculation by

which we select the optimal ontology structure that has the highest q4�38E�&�� value.

49

 q4�38E�&�� � ɤ. qrs<;�&�� n �1 d ɤ�. qr�7�&�� (3.14)

 Here, ɤ was assigned as 0.4 through experimentation. This procedure iterates until

the ontology hierarchy is complete, with all terms added in the prepared order.

 Figure 3.22 shows a screenshot of part of a generated ontology that contains terms

from the vehicle and book domains. They are separated automatically into hierarchies

according to the domains. Algorithm 3.2 describes the ontology-generation procedure.

Figure 3.22 Screenshot of part of a generated ontology

Algorithm 3.2: Ontology Generation

 Input �� =: Array of WSDL extracted terms

 Input �� =: Array of Google search engine extracted terms

 Output �� : Ontology

1: For �� and �� do

2: I = Array of (��+ ��) ascending order; //create an array using all terms

according to the hybrid specificity

3: end-for

4: �� = Select 1
st
 three nodes from I;

5: Start ontology �� with ��;

6: For ontology �� do

50

3.2.4. Service-similarity calculation in an ontology

 Similarity calculation is achieved by comparing generated ontology term

relationships by calculation.

Service similarity calculation steps:

Step 1. To measure the similarity of two Web services, we first take the relevant

extracted features from the two WSDL files.

Step 2. We then match these two terms via the generated ontology without splitting

the words.

Step 3. There are two possibilities: they can be identical or they can differ. If two

terms match exactly, we assign the term to the extract filter (see below) and give it

the highest similarity value, i.e., 1. If there is no exact match in the ontology, we

define a procedure for similarity calculation involving six different filters,

weighted toward different relationships. If we find that the two extracted terms in

our generated ontology satisfy one of our defined filters, then a similarity

calculation is performed using the appropriate equation.

Step 4. If the two extracted terms do not satisfy any of the defined filters, then we use

an IR-based method to calculate the similarity.

7: For each remaining term �3<p in I do

8: if (Spec(�3<p)–0.3 < Spec(existing nodes of ontology (�3)) < Spec(�3<p)+0.3)

9: select target nodes as �3; //target area nodes will be selected

10: end

11: For each �3 in �� do

12: add �3<p &� � candidate substructures; // set of candidate substructures will

be generated

13: qrs<;�&�� = Calculate domain-specificity weight;

14: qr�7�&�� = Calculate similarity weight;

15: q4�38E�&��= Find final maximum weight;

16: �� = Substructure of maximum weight (from q4�38E�&��); //select optimal

substructure

17: end-for

18: end-for

19: end-for

51

3.2.4.1. Ontology-based similarity calculation

 We now describe the machine filters we used in the similarity calculations. Three

of the filters were used in previous research work [17,18] and there are four new

filters in our proposed approach. The seven machine filters are called extract, siblings,

parent–child, near-descendants, shared-ancestor, far-descendants and fail. They are

used to compute the degree of semantic similarity for a pair of services.

 Figure 3.23 shows an example ontology that contains nine terms describing nine

WSDL files for one feature among five features such as service name, operation

name, etc. The functions of the seven filters, together with examples from Figure

3.23. are:

Figure 3.23 Example ontology hierarchy

Filter 1: Exact. If term �� and term �$ are the same and represent the same

feature, then the services exactly match.

Example: �� �)�)� and �� �)�)�

Filter 2: Siblings. Term �� and term �$ plug into term �s with �� ∊

DirectChildren(�s) and �$ ∊ DirectChildren(�s).

Example: �� �)�)� and �� �)�)�

Filter 3: Parent–Child. Term �� plugs into term �$ with �� ∊ DirectChildren(t�).
Example: �� =)�)� and �� =)�

52

Filter 4: Near-Descendants. Term �; plugs into term �� and term �$ plugs into

term �; with �; ∊ DirectChildren(t�) and �$ ∊ DirectChildren(t�).

Example: �� =)�)� and �� =)
))�)�

Filter 5: Shared-Ancestor. Term �� and term �$ plug into a child term of term ��
with �� ∊ Ancestor(��) and �� ∊ Ancestor(�$).

Example: �	 �))�)� and �
 �))�)�

Filter 6: Far-Descendants. Term �� and term �$ have a far-descendants

relationship with �$ ∊ FarAncestor(��).
Example: �� �)� and �� �)
))�)�

Filter 7: Fail. If none of the other filters generates a match, then there is a fail.

 To investigate the strength of the defined filters, we conducted experiments and

assigned weight values for each filter in the following order, based on the strength in

logic-based matching: Exact > Siblings > Parent–Child > Near-Descendants >

Shared-Ancestor > Far-Descendants > Fail.

 If the filter is an exact match, then the similarity is assigned the highest value of 1.

The remaining filters and their weight assignments are listed in Table 3.1.

Table 3.1 Assigned matching filters and weights

 If the matching filter is a one of Siblings, Parent–Child, Near-Descendants,

Shared-Ancestor or Far-Descendants, then we use equations (3.15) and (3.16) below

with the relevant weight values to calculate the similarity:

Matching filter Weight �� ��

Extract Similarity = 1

Siblings 0.9 0.1

Parent–Child 0.8 0.2

Near-Descendants 0.78 0.22

Shared-Ancestor 0.65 0.35

Far-Descendants 0.62 0.38

Fail Used IR-based methods

53

 ��3*5���, ��) = −� ! #(��, ��)
2� �3.15)

 This calculation is an edge-count-based method. Here, #(��, ��) describes the

shortest distance between the two terms �� and ��, and � describes the maximum

depth of the generated ontology.

 �KJg���, ��) = q� n q� ��3*5���, ��) (3.16)

 Here, ��3*5(��, ��) is assigned using the results from (3.15) and q� and q� are

assigned according to the relevant filter values in Table 3.1. For normalization

purposes in the similarity values, we select values that satisfy q� n q�=1. Further,

the final similarity value is between 0 and 1.

3.2.4.2. IR-based similarity calculation

 If the two selected terms do not match any of the above five relationships or

exhibit exact matching, then we calculate similarity using IR-based methods such as

thesaurus-based term similarity or SEB term similarity, as described below.

Thesaurus-based term similarity

 Our thesaurus-based term similarity calculation uses WordNet as the knowledge

base. It helps to cover any failed ontology relationships by providing a large lexical

database for expressing distinct concepts and synonym rings that are interlinked by

means of conceptual-semantic and lexical relations [75]. This method can be

considered as a knowledge-rich similarity-measuring technique, which requires a

semantic network or a semantically tagged corpus.

SEB term similarity

 Some terms used in Web services may not be included in a thesaurus. For example,

“IphoneInformation” and “SamsungInformation” are absent from WordNet.

Furthermore, some latent semantics of terms fail to be identified by WordNet, such as

“Apple” and “Computer.” SEB term similarity is used to cover new technological and

Internet-related data that are omitted from WordNet. We use three algorithms, namely

Web-Jaccard (3.17), Web-Dice (3.18) and Web-PMI (3.19) for the calculations [76].

54

 Here, H(��) and H(��) are page counts for the queries �� and ��, respectively. &���⋂��� is the conjunction query �� and ��. All the coefficients are set to zero if &���⋂��� is less than a threshold, c, because two terms may appear by accident on the

same page. N is the number of documents indexed by the search engine.

 Algorithm 3.3 shows the similarity calculation procedure using both ontology-

based and IR-based methods.

Algorithm 3.3: Similarity Calculation

Input I: Array of ontology-contained terms

Output �: Array of similarity values

1: For each term in I do

2: Take term ��;

3: For each term in I do

4: Take term ��;

5: Compare with ontology defined filters;

6: If (filter is available)

7: Calculate by equations;

8: End

9: Calculate by IR-based methods;

10: end-for

11: end-for

55

3.2.5. Web-service clustering

3.2.5.1. Feature integration

 Generating the ontology and calculating the similarities is performed separately for

each extracted feature such as service name, operation name, port name, input

message and output message. We then integrate the five similarity values for the five

different features, with clustering being achieved according to the integrated similarity

values. The similarity values were integrated as follows (3.20):

�KJK�)IK�jg�38E���, ��) =
q8 �gZ�")J
*+, �")J
*,[n q� �gZ�")J
*+ , �")J
*,[n
q; �gZL")J
*+, L")J
,[n q] �gZ�"J�!+ , �"J�!*,[n
q< �gZ�O�J�!*+ , �O�J�!*,[�3.20)

 The final similarity value �KJK�)IK�jg�38E(��, ��) integrates the individual

similarity values in terms of weights q8 , q� , q; , q] and W� (each in the range 0–1)

[20].

3.2.5.2. Clustering

 We used an agglomerative clustering algorithm based on the cluster-center method

using TF-IDF values for Web-service clustering [17]. This is a bottom-up hierarchical

clustering method. It starts by assigning every Web service to its own cluster and

continues, using the TF–IDF values of the service names, until the number of clusters

reduces to 5. To merge clusters, a cluster-center identification approach is used [17,

77]. Finally, the services are grouped into five different clusters, namely Food, Book,

Medical, Film and Vehicle. Algorithm 3.4 describes the method used in our clustering

approach.

56

Algorithm 3.4: Clustering Algorithm

Input ��: Array of calculated Web-service similarity

values

Input ��: Number of required clusters

Output �: Five domain clusters

1: Let each service be a cluster;

2: ComputeProximityMatrix(C);

3: N=Number of services;

4: while N != �� do

5: Merge two closest clusters;

6: N=getNumberOfCurrentClusters();

7: Calculate center value of all services in all

clusters;

8: Select service with highest value of each

cluster as

 cluster centers;

9: UpdateProximityMatrix();

10: end-while

57

Chapter 4 Improving Web Service

Recommendation by Alleviating the

Sparsity with a Novel Ontology-based

Clustering

4.1. Motivation for Sparsity Reduction

4.1.1. Problem identification

 In CF systems, users and services are typically represented by user ratings or

purchase history. When the numbers of services increase, the number of selection

possibilities increases. For example, if users have rated only a few services among the

total number of available services in a dataset or if services have been rated by only a

few of the total available users in the dataset, then the sparsity problem occurs. The

cold-start problem occurs with new users or new items that enter into the system. If

there is a new user without a rating on any items, or a new item with no rating from

any users, then there is no information for the prediction. CF requires a large number

of available ratings; thus, with a sparse rating matrix, it is challenging to identify the

relationship between users and services and thereby make an effective

recommendation.

 Figure 4.1 shows a simple Web service-user rating graph of a social network

consisting of seven Web service users u = {O�, O�, O�} and eight Web services s =

{��, ��, ��}. In this example, O� invokes only three Web services, O� and O

invoke only two Web services, O�, O	, and O� invoke just one service among eight

Web services, and O� invokes no Web service.

Figure 4.1 Example of a Web service-user rating graph

58

 As shown in Figure 4.1, even if users are very active, they may invoke only a few

Web services among the available web services. In practice, when the numbers of

users and Web services become large, the number of invoking ratings becomes

limited. In addition, as the number of users or services keeps growing, the data matrix

becomes sparse and does not have enough ratings to make accurate and reliable

predictions in the recommendation algorithm.

 Example of the sparsity problem:

Figure 4.2 Example of the sparsity problem

 Let O� be the active user, and we need to determine whether �� should be

recommended to O�. To do this, the neighborhood-based (trust-based) CF algorithm

first finds neighbor(s) of O� by calculating a similarity (trust weight) value. In this

example, similar neighbors will be user(s) who invoked �� previously. However, in

Figure 4.2, �� is only previously invoked by O�, and there is no common previously

invoked experience between O� and O�. This situation occurs because of sparsity

limitations.

 Example of the cold-start problem:

Figure 4.3 Example of the cold-start problem

59

 In Figure 4.3, Web services �	 and �� are not invoked by any users and O� does not

invoke any Web service. As there is no information available about these items, if we

attempt to make recommendations related to �	, ��, and O�, then it becomes difficult

without an existing history between users and Web services. This situation occurs

because of cold-start limitations.

 In our approach, the main task is to add missing rating values in the user-service

matrix using a new clustering approach and reduced sparsity. By increasing the user

interaction between service items, we can compare more invocations between users

and improve the recommendation performance.

4.1.2. Choosing a better clustering method

 Web service clustering is used to create single databases within a large-scale

database based on their characteristics, aggregating them according to their

similarities. To alleviate sparsity, choosing a better clustering method is the main

means of gaining improved performance in the recommendation result. A review of

several existing Web service clustering approaches indicates that they use different

methods for similarity calculation and clustering. Based on clustering performance,

we mainly consider three approaches.

 (i) The HTS method [17] uses an ontology learning method for the clustering. The

HTS method identifies hidden semantic patterns such as subclass–superclass, data

property, and object property relationships from complex terms in Web services

description language (WSDL) documents to generate the ontology. After generating

the ontology, similarity is calculated using the generated ontology relationships. If this

fails, IR-based methods are used for the similarity calculation. Finally, the

agglomerative clustering algorithm is used for the clustering.

 (ii) The CAS method [19] uses a machine learning-based method for the

clustering. It uses a support vector machine (SVM) in its similarity calculation. SVMs

are trained to produce a model for computing the similarity of services (SoS) for

different domains. A spherical associated keyword space (SASKS) algorithm [78] is

applied to visualize the service clusters. It projects the clustering results for a three-

dimensional (3D) sphere onto a two-dimensional (2D) spherical surface for 2D

visualization.

60

 (iii) In addition, our previously proposed clustering approach [79] uses the novel

specificity-aware ontology generating method for the similarity calculation and the

agglomerative clustering algorithm for the clustering.

 We chose these approaches for the comparison because they use interesting

clustering methods rather than a simple clustering method; moreover, they have

shown better clustering performance, and also use the same Web service dataset that

we used.

 These methods [17], [19] are based on the formal concepts and super-subrelations

of general terms and do not consider the specificity of the terms. However, the

specificity of a term explains the quantity of domain-specific information contained in

the term, which is essential in generating a more efficient detailed hierarchy. Our

proposed clustering approach [79] takes advantage of this domain specificity and we

selected the method to alleviate sparsity by evaluation with the high performance of

the clustering results as well as the recommendation.

 As an example of the better clustering performance of our approach, Figure 4.4

shows the clustering results with a comparison of the HTS and CAS methods. Each

method uses five clustering groups, Vehicle, Medical, Film, Food, and Book for

clustering. Figure 4.4 shows cluster groups with some Web service clustering

examples with incorrectly placed clusters. The novel specificity-based clustering

method was able to identify the real ontological concept very well by differentiating

Book, Food, Vehicle, Car, Hospital, and Medical as key terms that failed to be

identified in the previous methods and thus showed better clustering performance.

Figure 4.4 Examples of incorrectly placed cluster groups in the HTS and CAS

methods

61

4.2. Overview of the Proposed Recommendation Approach

 The architecture of the proposed approach is shown in Figure 4.5. It contains five

steps, namely collect user-service rating data, alleviate sparsity by the ontology-based

clustering approach, calculate the trust weight between users, user’s rating prediction,

and service recommendation.

 Figure 4.5 Architecture of the proposed method for recommending web services

 As shown in Figure 4.5, first we collect the user-service rating data after the user

invokes available Web services. Following the next steps shown in the Figure 4.5, we

fill the nonrated values using the clustering results and continue until the

recommendation.

4.2.1. Collect user-service rating data

 The user-service rating graph (u � s) shows each user’s (u) ratings (I?�) for each

Web service (s). As shown in (4.1), the ratings indicate whether user u had invoked

service s in the past or not and their level of preference, which ranges from 1 to 5

where 5 is the highest possible rating. If user u did not previously invoke the Web

service s, then I?� � 0.

62

 r, r = 1, 2, 3, 4, 5 if user u rated service s, (4.1)

 0, otherwise

4.2.2. Alleviate sparsity by the ontology-based clustering approach

4.2.2.1. Proposed ontology-based clustering approach

 Here, we apply our proposed ontology-based clustering approach. With comparing

the previous clustering approaches we selected this for a sparsity alleviating with the

best performance.

4.2.2.2. Sparsity alleviation

 Figure 4.6 Sparsity alleviation example

 Figure 4.6. shows sparsity alleviation example using clustering results. The user-

service matrix explains each user’s invoking history on Web services with their

preference in the range 1 to 5. When we consider a larger user-service matrix with a

high number of users and services, it contains more 0 values with a high sparsity

level. Figure 4.7 shows the user-service matrix for eight users and twenty Web

services. The steps for alleviating the sparsity are as follows.

 Step 1: We identify each user’s preferred cluster group(s) according to the history

of each user’s ratings. The new ontology-based clustering approach outputs the five

clustering groups (Food, Book, Medical, Film, and Vehicle) related to different

domains of Web services. First, we obtain the addition (A) of ratings for each of the

five separate identified service cluster groups and using a threshold value we decide

on the highest A group(s) as the user’s preferred cluster group(s). We continue this

process for every user. The one limitation of existing approaches is that they do not

consider the situation when a user prefers more than one cluster domain and assumes

that each user belongs to a single cluster. However, we deal with this situation by

 I?�

63

giving a threshold value to consider the rating information.

Figure 4.7 Alleviating the sparsity of the user-service rating matrix using a clustering

process

Eg:

Figure 4.7 (b) shows the addition (A) of ratings for each of the five separate service

cluster groups for each user. Here, A=8 is used as a threshold value, and as shown in

Figure 4.7 (b), the highest A group(s) are selected as the user’s preferred cluster

group(s). According to the addition values A, O
 preferred two service cluster groups

(Food and Vehicle) and users O� (Food), O�(Book), O�(Book), O	(Medical), O�(Film), O�(Medical), and O�(Medical) preferred only one cluster group.

 Step 2: If user u contains nonrated data (set as 0) inside their most preferred

cluster(s), we fill it using a Gaussian distribution random number generator. This

process continues for all users by filling the 0 values and the updated user-service

matrix is used for further calculations.

64

Eg:

As shown in Figure 4.7 (b), O�’s preferred cluster group is Food. Then, 0 values of O�
under the Food cluster group are filled using the GRNG (r) as shown in Figure 4.7

(c). This process continues for all users.

 It shows how the sparsity is successfully alleviated by random number r after

applying this clustering process.

4.2.3. Calculation of the similarity between users

 Similarity calculation is based on the history of ratings of users who have similar

preferences for Web services. Existing recommendation approaches use different

ways to calculate the similarity, in particular PCC and cosine-based methods, which

depend on the user ratings of items that both users have rated. We assign the similarity

as a trust weight and use PCC for the calculation since it can be easily implemented

and can achieve high accuracy. A trust-based system analyzes not only user group

similarity but also the social relationships between users.

 �KJZ O� , O$[� e ZI OK,� − I O�����[�I O�,� − I O�������∈r
�e ZI ?U,� − I ?�����[��∈r �e �I ?V,� − I ? ����� ��∈r

 �4.2)

 Here, S= � ?U⋂ � ?V is the subset of Web service items that both users O� and O$ have invoked previously. In addition, I ?U,� and I ?V,� denote the rating values of

Web service s invoked by service user O�, and Web service s invoked by service

user O$, respectively. I ?����� and I ? ���� represent the average rating values of different Web

services observed by service users O� and O$, respectively. According to this

measurement, the final trust weight value of two service users is in the range [–1, 1],

where a larger trust weight value indicates that service users i and j are more similar.

In addition, if S = null, this means that we cannot measure the similarity between two

users due to the lack of history of information between them. In this situation, we

assumed that they don’t have common invocations means their trust value becomes

low and �KJZ O�, O$[� 0.

65

 We improve the calculated similarity value by applying the significance weighting

calculation [80], which helps to overestimate the similarities of service users who are

actually not similar but happen to have similar rating experience of Web services. The

calculation helps to reduce the number of similar users who do not otherwise share

much similarity.

 �KJZ O� , O$[¡ � 2 � |q ?U⋂q ?V| |q ?U| n |q ?V| �KJZ O� , O$[�4.3)

 |q ?U⋂q ?V| indicates the number of Web services that are invoked by both users O� and O$. |q ?U| and |q ?V| are the number of Web services invoked by users O� and O$, respectively. The new similarity value �KJZ O� , O$[¡
 is also in the range [–1, 1].

As the number of common invoked services |q ?U⋂q ?V| increases, the final

similarity also becomes high. Similar users for each user are identified and the final

similarity �KJZ O� , O$[¡
 is assigned as a trust value between those users. This weight

should be related to the trust from user O� toward user O$.

4.2.4. User’s rating prediction

 Then, each user’s rating is predicted based on the updated user-service rating

matrix and the calculated trust weight value from the previous step. This approach

creates the trust network between users and makes predictions based on the user

ratings that are directly or indirectly trusted by the user seeking a recommendation

[81].

 To recommend service s to user u, the first task is to find similar users who rated

the same service s. If we want to compute a prediction �L ?U,�) for user O� on target

service s and if we discover that user O$ rated the same service s and users O� and O$

trusted each other, then we can aggregate their ratings for the calculation with

confidence. Equation (4.4) is used for the prediction calculation:

66

 �L ?U,�) � I ?����� n e q ?U, ?V �I ?V,� − I ? ����� ?V∈¢e q ?U, ?V ?V∈¢
 �4.4)

 where q ?U, ?V is the trust value (�KJZ O�, O$[¡
) between users O� and O$ calculated

by equation (4.3), which describes the effect of user O$ on user O�. I ?£���� and I ?¤���� are the

average ratings of users O� and O$, respectively.

4.2.5. Service recommendation

 All the rating values of the user-service matrix are predicted using equation (4.4);

finally, the top s services are recommended to the users based on the predicted ratings.

The overall process of service recommendation is described in algorithm 4.1.

Algorithm 4.1: Web Service Recommendation

Input S: Web Service dataset

 U: User’s dataset

 R: User-service invokes data

 C: Web service clustering results

Output O: Recommendation results

1: For each user U do

2:

3:

4:

5:

6:

 X�=Calculate summation of ratings data (I?�) in R separately

for each C cluster group; //for each user separately for five domain

clusters

 M=Maximum cluster(s) X�;
 For M do ¥¡=Update nonrated services in M using Gaussian

distribution;

 end-for

7: end-for

8:

9:

For each user U do

 T=calculate trust rate between each user;

10: end-for

11: For each user, invoke data (I?�) in ¥¡ do

12: P=New predicted ratings using T and updated ¥¡;
13: end-for

14: O=Do recommendations using P; //select top P

67

Chapter 5 Experiments and

Evaluations

5.1 Experiments and Evaluations on Web Service

Clustering Process

5.1.1. Comparison of clustering approach

Table 5.1 presents the comparison of clustering approaches. Here, we consider

the term similarity calculation approach that use in current clustering approaches and

proposed clustering approach.

Table 5.1 Comparison of clustering approaches

Feature

 Proposed

Approach

String-based

(KM, Cosine

similarity,

etc.)

Knowledg

e-based

(Ontology,

WordNet)

Corpus-

based

(Web-

PMI,

NGD,

etc.)

HTS CAS Based on

specificity-

aware

ontology

Domain specific

context is used

No No No No Yes Yes

Use up-to-date

knowledge from

the Web data

No No Yes No Yes Yes

Consideration for

different type of

relationship among

Web services

No No No Yes No Yes

Need assistance No Yes No No No No

68

 According to the experiment results, we can show that our new approach

addressed the issues of current clustering approaches. We summarized those issues in

Table 1.1.

5.1.2 Experiments and evaluations

 The experimental platform used Microsoft Windows 10 on a PC with an Intel

Core i7-6500 at 2.59 GHz and 8.00 GB of RAM. Java was used for programming the

ontology generation and the service-clustering procedure. The generated ontology was

displayed visually by using JTree. In each experiment, we used a set of extracted

features from 400 WSDL files.

 Performance evaluation of the clustering results involved precision, recall, F-

measure, purity and entropy in a comparison to previous approaches. (Note that the

“entropy” measure here is totally different from that defined in equation (3.7).)

from domain

expertise

Use domain

knowledge

No Yes Yes Yes Yes Yes

Identification of

real semantic exist

between services

under particular

domain

(Multi-domain

nature)

Nil Low Medium Medium High Medium

Encode fined

grained

information

No No No Yes Yes Yes

Use unnecessary

information

No No Yes No No No

69

 Precision is used to measure result relevancy and recall is used to quantify the

numbers of properly related results being returned. F-measure is a combination of

precision and recall. These three criteria can be expressed as equations (5.1), (5.2) and

(5.3):

 LI
�K�K "�N, j) = 2%¦2¦ �5.1)

 ¥
�)���N, j) = 2%¦2% �5.2)

 ��N, j) = 2 × LI
�K�K "�N, j) × ¥
�)���N, j)
LI
�K�K "(N, j) n ¥
�)���N, j) �5.3)

 Here, 2%¦ is the number of members of class x in cluster y, 2¦ is the number of

members in cluster y and 2% is the number of members in class x. The F-measure of

cluster x with respect to class y is defined in (5.3).

 The proportion of properly classified classes per cluster is measured by purity:

 LOIK�j � 12 \ J)N{2 �K}
B

�¨�
 �5.4)

 Here, N is the total number of services, k is the number of clusters and 2 $� is the

numbers of services in cluster i belonging to domain class j.

 The distribution of semantic classes within each cluster is measured by entropy. A

lower entropy means better clustering. The entropy of a cluster is defined as:

 c�X� � d 1� ! © \ " �s"s
ª

�¨�
 � ! " �s"s �5.5)

 Here, L is the number of domain classes in the data set, " �s is the number of

services of the q
th

 domain class that was assigned to the p
th

 cluster and "s is the

number of services in cluster p. The entropy of the entire cluster is defined as:

70

 c"�I �j � e "s2 c�X�ª
s¨� �5.6�

5.1.2.1. Evaluation of domain-specificity weight and similarity weight

calculations

Figure 5.1 Evaluation of domain-specificity weight and similarity weight calculations

 First, to show the impact of purity and entropy for the self-specificity calculation

in equation (3.6), we varied the value of ∝ from 0.8 to 1.2. Figure 5.1(a) shows that

optimal purity and entropy values occur when ∝=1.

71

 Next, we measured the purity and entropy values while changing the β parameter

in the hybrid specificity calculation (see equation (3.9)). It gives optimal results for

purity and entropy when β=0.7 within the range 0.5 to 0.9, as shown in Figure 5.1(b).

We can note that self-specificity makes a higher contribution to the final hybrid

specificity value than does context-specificity.

 The domain-specificity weight of a substructure, as calculated in equation (3.10), is

dependent on the number of sibling terms of the new term �3<p. If �3<p has no

sibling terms, then we assign a fixed value of 0.5 for the domain-specificity weight. It

was found by experimentation with values from 0.4 to 0.7 that 0.5 gives optimal

results for purity and entropy. Figure 5.1(c) shows the results for purity and entropy as

the assigned value varies.

 Figure 5.1(d) shows variations in the parameter ɤ for the final calculation (see

equation (3.14)) of the domain-specificity weight and similarity weight combination

that we used to select the optimal ontology structure with the highest weight value.

We assigned ɤ =0.4 from the range 0.3 to 0.7, given the high contribution from

similarity weight.

 Figure 5.1(e) shows the variation in the total number of words (2S) and the total

number of terms (2') as the number of services varies from 100 to 400. Equation

(3.6) uses these values in the calculation of self-specificity. The total numbers of

words and terms both increased as the number of services increased. Note that the rate

of increase for words is greater than the rate of increase for terms as the number of

Web services increases.

5.1.2.2. Evaluation of ontology generation

 Here, we measure the extent to which ontology learning helps to improve

similarity calculations and clustering by generating the ontology in a more readable

manner. We experimented with several factors as we sought improvements in

ontology generation.

 When adding a new term to a partially generated ontology, we first need to select a

suitable target area of nodes. Expanding the target area will provide opportunities for

more nodes to be tested and will indicate the most suitable nodes for adding the new

term. Figure 5.2(a) shows the different results for precision, recall and F-measure for

72

two different target areas in an existing ontology. Target area-1 ranged from ��
���3<p� – 0.1 to ��
���3<p� + 0.1 and Target area-2 ranged from ��
���3<p� –

0.3 to ��
���3<p� + 0.3. Expanding the target area will also increase the computation

time for the program. We chose to use a target area in the existing ontology that

ranged from ��
���3<p� – 0.3 to ��
���3<p� + 0.3 because this would help to

improve the performance with respect to clustering results.

 In addition, we found that we could improve the ontology performance by adding

more domain-specific terms to it. Adding frequently used terms extracted from the

Google search engine resulted in better precision, recall and F-measure values. Figure

5.2(b) shows the change in average precision, recall and F-measure values before and

after adding Web-based data.

Figure 5.2 Evaluation of ontology generation

 Figure 5.3 shows the differences in the ontology hierarchy before and after adding

the data from the Google search engine. In this figure, (a), (c) and (e) show the status

before adding the Web-based data, with (b), (d) and (f) showing the status afterwards.

The second version has an improved arrangement of domain-specific data because of

73

Figure 5.3 Differences in the ontology hierarchy before and after adding Web-based

data

the new Web-based words “drug,” “novel” and “auto” in these three areas,

respectively.

 Next, we compared the number of nodes in our new ontology with a previous

HTS-based ontology [17]. (We checked the ontologies without adding the Web-based

data in our method.) As shown in Figure 5.2(c), the previous method contains more

ontology nodes, which means that complex terms were more likely to be divided into

individual terms in generating their ontology. Because we generate our ontology

directly using the original terms, the new method will contain fewer nodes.

 A comparison of the ontologies generated by the previous HTS approach and by

the new approach is given in Table 5.2, for various ontology criteria, characteristics

and parameters.

5.1.2.3. Evaluation of similarity calculations

 We evaluated the assignment of different weight values for q� and q� in the

similarity-calculation equation (3.16), as shown in Table 5.3.

 We chose the Weight 2 option from this table for q� and q� because the

similarity-calculation results for the seven matching filters were better than for other

values.

74

Table 5.2 Comparison of ontologies for the previous HTS approach and for the new

approach

Criteria Evaluation

Previous HTS approach New approach

Correctness of

class hierarchy

- Same domain classes are attached

to the ontology in groups. However,

they are spread diffusely over the

ontology hierarchy in many places,

with each of the many domain groups

containing few nodes.

- Each level of ontology classes contains

more classes of similar specificity values.

Traversing the ontology hierarchy from top

to bottom, the specificity increases level by

level.

- Same domain classes are attached to the

ontology in groups. Most of the nodes for a

domain are attached together in one group.

Graph shape Ontology graph is balanced with a

number of ontology levels and a

number of child classes.

Ontology graph is balanced with a number

of ontology levels and a number of child

classes.

Node

characteristics

More non-child classes at the top. Child classes are diffused equally over the

ontology.

Graph characteristics

Number of

classes

Many classes, because component

words also become nodes in the

ontology.

Number of nodes is the same as for the

original nodes. Therefore, the graph is

uncluttered, with few nodes.

Number of

edges

Edges are spread diffusely across the

classes.

Edges are spread diffusely across the

classes.

Total weight of

specificity

 More terms of similar specificity exist at the

same level of the ontology. Total weight of

specificity in the ontology is balanced

across sibling classes and ontology levels.

Total weight of

similarity

 Total weight of similarity in the ontology is

equally balanced across parent, child and

sibling classes.

Parameter

Total number of

input terms

(Options were

100, 200, 300

and 400)

- Final clustering performance and the

correctness of ontology structure

decrease when the numbers of inputs

increase.

- The correctness of ontology structure

improves as the number of inputs increases.

- Final clustering result deteriorates as the

numbers of inputs are increased, but the rate

of deterioration is low in comparison with

that of the previous approach.

75

Table 5.3 Experimental values for q� and q�

Machine filter

Weight 1 Weight 2 Weight 3 Weight 4 �� �� �� �� �� �� �� ��

Siblings 0.95 0.05 0.9 0.1 0.87 0.13 0.82 0.18

Parent–Child 0.85 0.15 0.8 0.2 0.78 0.22 0.75 0.25

Near-

Descendants

0.8 0.2 0.78 0.22 0.75 0.25 0.73 0.27

Shared-Ancestor 0.7 0.3 0.65 0.35 0.62 0.38 0.6 0.4

Far-Descendants 0.65 0.35 0.62 0.38 0.6 0.4 0.57 0.43

5.1.2.4. Evaluation of Web-service clustering

 Five different domains were considered, namely Vehicle, Medical, Film, Food and

Book. Performance evaluation of clustering results involved purity, entropy, precision,

recall and F-measure in a comparison with previous approaches. We compared an

edge-count-based method, an HTS approach that used ontology learning [17], a CAS

approach that used machine learning [19] and our new approach, which uses

specificity-based ontology learning.

 Table 5.4 gives the experimental results, comparing precision, recall and F-

measure values. From these clustering results, the best cluster performance was

achieved by our new approach, which placed services correctly for more of the

clusters than did the other methods. Our new approach offered improvements in the

average precision values of 21.46%, 1.56% and 6.03%, the average recall values of

28.38%, 1.38% and 0.94 %, and the average F-measure values of 26.45%, 1.73% and

3.57%, over those for the edge-count-based, HTS and CAS methods, respectively. In

fact, all results for the new approach exceed 84%.

 Based on these clustering results, we can note that extracting features from WSDL

documents alone is insufficient to identify the correct cluster for some terms.

 Figure 5.4(a) and Figure 5.4(b) show the variation in purity and entropy values,

respectively, as the number of Web services increases from 100 to 400. As the number

of Web services increases, our approach gives increasingly better results than previous

approaches in terms of purity decrease and entropy increase. From these results, the

new approach gives better accuracy for a high number of inputs. In addition, our new

approach gave lower entropy and higher purity values throughout, with the rate of

purity-value decrease and the rate of entropy-value increase both being smaller. This

76

comparative study of alternative approaches supports the validity of the proposed

approach.

Table 5.4 Performance measures for clusters using precision, recall and F-measure

Figure 5.4 Cluster performance of new and existing approaches

Cluster

Edge-Count-Based (Using

WordNet) (%)

HTS Approach

(%)

Precision Recall F-Measure Precision Recall F-Measure

Vehicle 56.00 80.90 66.20 81.60 94.80 87.70

Medical 100.00 70.00 82.40 100.00 83.10 90.80

Food 55.00 60.00 57.40 96.00 91.30 93.60

Book 67.10 61.30 64.10 86.70 100.00 92.90

Film 77.70 50.00 60.80 91.00 88.00 89.50

Average

71.16

64.44

66.18

91.06

91.44

90.90

Cluster

CAS Approach

(%)

New Approach

(%)
Precision Recall F-Measure Recall Precision F-Measure

Vehicle 89.47 89.47 89.47

90.80

91.86

91.33

Medical 88.10 100.00 93.6 93.67

94.64

84.13

89.08

Food 85.71 93.10 89.26

92.86

96.30

94.55

Book 82.14 92.00 86.79

90.59

96.25

93.33

Film 87.50 84.85 86.15

94.20

95.59

94.89

Average

86.59

91.89

89.07

92.62

92.82

92.63

77

5.2 Experiments and Evaluations on Web Service

Recommendation Process

 In the recommendation process, we first collect input data as the user-service

rating preference, which includes each user’s invoking history to available Web

services. As a user-service dataset, we simulated 200 users’ ratings using 400 real Web

services. We extracted five Web service features from the services dataset, including

real-world Web service repositories and the OWL-S

(http://projects.semwebcentral.org/projects/owls-tc/) test collection dataset for the

WSDL documents related to the five domains.

 Although we used real Web services data, it was difficult to obtain real

recommendation data for those Web services. We therefore had to use a simulated

dataset by generating data using some method. There are some existing approaches

that are used to simulate data [81]–[83] and there are some existing methods for

generating data such as Gaussian random number generators (GRNG) [84], [85] and

scale-free network theory [86], which propose a method to generate a large dataset

using neighborhood data nodes. They generate a large dataset using a small dataset

based on each service node relationship. However, service recommendation is not the

area of scale-free network theory and, usually, recommendation and sparsity follow

the GRNG. So, we chose a GRNG and then confirmed its correctness through

evaluation by taking the same result compared with the simple manually generated

dataset. When generating the numbers, we used a GRNG for two situations.

(i) To select rated and nonrated services, random numbers are generated as a binary

option. It helps to create a space matrix.

(ii) Then, random numbers are generated to assign ratings for the above-selected rated

services in the range of 1 to 5.

 The GRNG is described in equation (5.7). Here « is the mean, ¬ is the standard

deviation, and ¬� is the variance.

 ��N� � 1
√2®¬�
N� ¯−(N − «)�

2¬� ° �5.7)

78

 Evaluation was carried out based on the ontology-based clustering and on the

sparsity-alleviating methods using MAE and RMSE. We also used different sparsity

levels, such as 85%, 70%, and 55% by varying the data density from 15% to 45%.

 ��)I�K�j �
R
� � 2OJ±
I � 2 "��
�K�K
I)�K"!�2OJ±
I �)�� � ��K±�
 I)�K"!� �5.8)

 MAE measures the deviation of predictions generated by the recommender system

from the existing rating values invoked by the user. RMSE is the square root of the

average of squared differences between prediction and actual observation. Smaller

values of MAE and RMSE indicate a better prediction result. These two criteria can

be expressed as equations (5.9) and (5.10):

 MYc � 12 e |I?,� − �?,�| C
�¨� �5.9�

 ¥M�c � ²12 eZI?,� − �?,�[�C

�¨�
 �5.10)

where I?,� and �?,� denote the existing rating value invoked by user u on Web service

s and the predicted rating value of user u on Web service s, respectively. N is the

number of predicted values.

5.2.1. Evaluation based on specificity-aware ontology-based

clustering

 We measured the recommendation performance by changing different parameters

of the ontology generation procedure. This showed that recommendation performance

has a positive correlation with the clustering results.

79

 Figure 5.5 Evaluation based on different ontology generation parameters

 The self-specificity calculation depends on the α value (see equation (3.6)) and we

varied α from 0.8 to 1.2. Figure 5.5(a) and Figure 5.5(b) show that the lowest MAE

and RMSE values occurred when α = 1.

 Then, we changed the β value in the hybrid specificity calculation (see equation

(3.9)) from 0.5 to 0.9. Figure 5.5(c) and Figure 5.5(d) show that the lowest MAE and

RMSE values occurred when β = 0.7. This demonstrates that self-specificity provides

the main contribution to hybrid specificity compared with context specificity.

 Then, we checked the effect of the ɤ value (see equation (3.14)) when combining

the domain-specificity weight and the similarity weight to ascertain the optimal

ontology hierarchy. The best performance was obtained when ɤ = 0.4 within the range

0.3 to 0.7 (Figure 5.5(e) and Figure 5.5(f)).

80

Figure 5.6 Evaluation based on different ontology generation parameters and

ontology generation steps

 When calculating the domain-specificity weight (see equation (3.10)), we should

assign a direct value if no sibling terms are contained in the new term. That value was

selected as 0.5 by experimentation in the range from 0.4 to 0.7 (Figure 5.6(a) and

Figure 5.6(b)).

 Then, to check how the Google extracted terms affected the recommendation

performance, we performed the experiments shown in Figure 5.6(c). We established

that adding more domain-related terms helped to improve the performance.

 Then, we checked the performance by changing the target area by adding a new

term to the existing ontology. We used Target area-1, which ranged from ��
���3<p�

– 0.1 to ��
���3<p� + 0.1 and Target area-2, which ranged from ��
���3<p� – 0.3 to ��
���3<p� + 0.3. Target area-2 showed the lowest error rate as shown in Figure

81

5.6(d). It can be seen that expanding the target area provided more opportunities to

select the best node but it reason for the computation time for the program.

 Finally, evaluation was conducted by changing the number of clusters in the

agglomerative clustering algorithm from three to seven. The lowest error rate

occurred with the number of clusters set at five (Figure 5.6(e) and Figure 5.6(f)).

5.2.2. Evaluation based on sparsity-alleviating methods

 Rather than applying clustering methods, some existing approaches for sparsity

alleviation can be applied, for example, the association retrieval method [29] and the

binary method (through assigning 0/1) [35].

 (i) In the association retrieval method, the sparsity problem was managed

successfully and a new CF algorithm was proposed to improve recommendation

performance. The transitive associations based on the user’s feedback data were

examined. A direct similarity and an indirect similarity between users were proposed

and the similarity matrix was calculated through the relative distance between the

users’ ratings. To obtain the recommendation matrix, the association retrieval

approach and the direct similarity matrix were combined and the sparsity problem was

thereby managed with increasing recommendation precision.

 (ii) The binary method proposed a simplified similarity measure (SSM) for CF

recommendation to handle the sparsity problem. By converting the value of the user-

item matrix into a binary preference value, similar groups of users were found and an

SSM was proposed for speeding up the process for the sparsity problem. The so-

called binary preference value means the feedback rating is greater than the average

feedback level.

 We compared those methods as shown in Figure 5.7(a). According to the results,

our clustering approach showed better performance with the lowest MAE and RMSE

values. It seems that the clustering approach can successfully identify the user

preference than the above existing approaches. Clustering result can identify the

domain of each service successfully than identifying an association between users.

And also clustering result give higher accuracy than considering the binary

preference.

82

Figure 5.7 Evaluation based on sparsity-alleviating methods

 We then checked which clustering approach was best for sparsity alleviation. As

shown in Figure 5.7(b) and Figure 5.7(c), we verified this without using clustering,

using the CAS clustering method, using the HTS clustering method, and with our

proposed clustering method, while changing the agglomerative clustering and k-

means clustering. According to the results, our proposed approach with agglomerative

clustering showed the lowest error rate. Finally, we conducted evaluation to ascertain

the suitable value for assigning the 0 nonrated values in the matrix to increase the data

matrix density. We evaluated this by assigning an average value of the user ratings in

the specific cluster that the user had previously invoked, that is, the median value of

the ratings (2.5) from the ratings range of 1–5, and by assigning a random value using

a Gaussian distribution random number generator. As shown in Figure 5.7(d), the

lowest error rate was given for Gaussian distribution.

 According to the experimental results, the proposed approach shows better

performance in not only the sparsity problem but also in the cold-start problem. When

we are adding new Web services to the system, we don’t have any user rating

information related to them. But by applying the clustering process, we identified those

services related domain cluster and alleviate the user ratings based on its domain and

continue the recommendation process. So, we can successfully overcome the item-

based cold-start problem through this.

83

 Here, if contain only very few numbers (less than 5) of ratings from a user, we

consider it as user-based cold start problem. By considering the available ratings' related

domains we alleviate the sparsity and continue the recommendation. Using this process

we can successfully overcome the user-based cold-start problem.

84

Chapter 6 Conclusion and Future work

We have first proposed a new domain-specificity-based ontology-generation

method, with Web-service clustering being achieved via similarity calculations based

on the generated ontology relationships. New machine filters are proposed for the

similarity calculations that compare ontology relationships. This new approach is

expected to help improve the clustering performance of Web services.

 The new approach takes advantage of the information in specific terms instead of

relying on more-general terms. Specific terms are more significant than general terms

when classifying domain-related information. Previous approaches have focused on

general terms and have not taken advantage of specific terms. Our measurements of

specificity values showed that we could achieve high accuracy. Furthermore,

according to our experimental results, our new information-theory-based approach

gave improved validity and accuracy when compared with previous methods such as

the edge-count-based, HTS and CAS approaches. We achieved superior clustering

results in terms of precision, recall, F-measure, entropy and purity.

 We then proposed a Web service recommendation approach using our novel

clustering approach. The performance of existing Web service recommendation

approaches is lacking due to the data sparsity and cold-start limitations. Our main

objective here was to improve recommendation quality even if we lacked information

about user-service ratings. We proposed to deal with these problems by applying a

novel clustering approach based on domain specificity and it was used to improve the

density of the user-service matrix. This clustering approach could successfully

alleviate the sparsity problem and then the service user similarity was measured using

PCC. Finally, new rating values were predicted using the updated user-service matrix

and calculated PCC values, with the recommendation based on the predicted rating

values. Our experimental results verify that our approach successfully eliminated the

data sparsity and cold-start problems and significantly improved the prediction

accuracy with the best recommendation performance.

 In our future research, We hope to be able to investigate other significant aspects of

service discovery and recommendation. We aim to apply deep learning-based methods

to Web service recommendation and consider other CF problems, such as scalability,

synonymy, and shilling attack.

85

References

[1] S. Dasgupta, S. Bhat, & Y. Lee, Taxonomic clustering and query matching for

efficient service discovery, In Proceeding of the 9th IEEE International

Conference on Web Services, Washington,DC, 2011, pp. 363– 370,

doi:10.1109/ICWS.2011.112.

[2] Y. Xia, P. Chen, L. Bao, M. Wang , & J. Yang, A QoS-aware web service selection

algorithm based on clustering, In Proceeding of the 9th IEEE International

Conference on Web Services, Washington, DC, 2011, pp. 428–435,

doi:10.1109/ICWS.2011.36.

[3] W. Chen, I. Paik and P.C.K Hung, Constructing a Global Social Service Network

for Better Quality of Web Service Discovery, IEEE Transactions on Services

Computing, 2013.

[4] G. Adomavicius and A. Tuzhilin, Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE

transactions on knowledge and data engineering, 2005, 17(6), pp.734-749.

[5] T. Peng, W. Wang, X. Gong, Y. Tian, X. Yang and J. Ma, A Graph Indexing

Approach for Content-Based Recommendation System, In Multimedia and

Information Technology (MMIT), Second International Conference on, Kaifeng,

2010, pp. 93-97, doi: 10.1109/MMIT.2010.84.

[6] J. Li, J. Wang, Q. Sun, A. Zhou, emporal Influences-Aware Collaborative

Filtering for QoS-Based Service Recommendation, IEEE International

Conference on Web Services (ICWS), June, 2017, pp. 471-474.

[7] L. Yao, Q.Z. Sheng, , A.H. Ngu, , J. Yu and A. Segev, Unified collaborative and

content-based web service recommendation. IEEE Transactions on Services

Computing, , 2015, pp.453-466.

[8] Z. Zheng, H. Ma, M. R. Lyu and I. King, Collaborative Web Service QoS

Prediction via Neighborhood Integrated Matrix Factorization, in IEEE

Transactions on Services Computing, July-Sept. 2013, vol. 6, no. 3, pp. 289-299.

[9] Y. Zuo, J. Zeng, M. Gong et al., Tag-aware recommender systems based on deep

neural networks[J]. Neurocomputing, 204, 2016, pp.51-60.

[10] D. Lau and J. Mylopoulos, Designing Web services with Tropos, in: Proceedings

of the 2004 IEEE International Conference on Web Services (ICWS 2004), 2004,

pp. 306–313, doi:10.1109/ICWS.2004.1314752

[11] K. Elgazzar, A. E. Hassan, and P. Martin. Clustering WSDL documents to

bootstrap the discovery of Web services, in: IEEE International Conference on

Web Services (ICWS 2010), Miami, Florida, USA, July 5–10, 2010, pp. 147–154,

2010, doi:10.1109/ICWS.2010.31

[12] L. Chen, L. Hu, Z. Zheng, J. Wu, J. Yin, Y. Li, and S. Deng. WTCluster: Utilizing

86

tags for Web services clustering, in Service-Oriented Computing, Springer, 2011,

pp. 204–218. doi: 10.1007/978-3-642-25535-9_14

[13] Web Services Description Language (WSDL) 1.1, https://www.w3.org/TR/wsdl

(accessed 03.03.2017).

[14] L. Chen, G. Yang, Y. Zhang and Z. Chen, Web services clustering using SOM

based on kernel cosine similarity measure, in: Proceedings of the 2nd

International Conference on Information Science and Engineering, Hangzhou,

China, December 4–6, 2010, pp. 846–850. do i:10.1109/ICISE.2010.5689254

[15] J. Ma, Y. Zhang and J. He, Efficiently finding Web services using a clustering

semantic approach, in: Proceedings of the International Workshop on Context-

enabled Source and Service Selection, Integration and Adaptation, Organized

with the 17th International World Wide Web Conference, Beijing, China, April 22,

2008, pp. 1–8. doi:10.1145/1361482.1361487

[16] W. Liu and W. Wong, Web service clustering using text mining techniques,

International Journal of Agent-Oriented Software Engineering, 3(1), 2009, pp. 6–

26. doi:10.1504/IJAOSE.2009.022944

[17] B.T.G.S. Kumara et al., Web service clustering using a hybrid term-similarity

measure with ontology learning, in: International Journal of Web Services

Research (IJWSR), vol. 11, no. 2, 2014, pp. 24–45, doi:

10.4018/ijwsr.2014040102

[18] R.A.H.M. Rupasingha, I. Paik, and B.T.G.S. Kumara, Calculating Web service

similarity using ontology learning with machine learning, in: 2015 IEEE

International Conference on Computational Intelligence and Computing

Research (ICCIC), IEEE, 2015, pp. 1-8, doi: 10.1109/ICCIC.2015.7435686

[19] B.T.G.S. Kumara, I. Paik, H. Ohashi, Y. Yaguchi and W. Chen, Context-Aware

Web Service Clustering and Visualization, in: International Journal of Web

Services Research, 2014

[20] P. Buitelaar, An information-theoretic approach to taxonomy extraction for

ontology learning, Ontology Learning from Text: Methods, Evaluation and

Applications, Frontiers in Artificial Intelligence and Applications, IOS Press,

Amsterdam, vol. 123, July, 2005, p. 15.

[21] A. Alnahdi, and S. H. Liu, Identifying characteristic attributes for estimating cost

of service in service oriented architecture. IEEE International Conference on

Services Computing, 2017, pp. 467–470.

[22] D. Kluver, M. D. Ekstrand, and J. A. Konstan, Rating-based collaborative

filtering: algorithms and evaluation. Social Information Access. In: Brusilovsky

P., He D. (eds) Lecture Notes in Computer Science, vol. 10100, Springer, Cham,

2018, pp. 344–390.

[23] L. Ren, W. Wang, An SVM-based collaborative filtering approach for Top-N web

services recommendation. Future Generation Computer Systems, 2018, 78(Part

87

2), pp. 531–543.

[24] S. Meng, W. Dou, X. Zhang, and J. Chen, KASR: a keyword-aware service

recommendation method on mapreduce for big data applications. IEEE

Transactions on Parallel and Distributed Systems, 2014, 25(12), pp.3221-3231.

[25] S. Kant, T. Mahara, Merging user and item based collaborative filtering to

alleviate data sparsity. International Journal of System Assurance Engineering

and Management, 2018, 9(1), pp. 173–179.

[26] M. Polato, F. Aiolli, Exploiting sparsity to build efficient kernel based

collaborative filtering for top-N item recommendation. Neuro computing, 2017,

268, pp. 17-26.

[27] J. Wei, J. He, K. Chen, Y. Zhou, and Z. Tang, Collaborative filtering and deep

learning based recommendation system for cold start items. Expert Systems with

Applications, 2017, 69: 29-39.

[28] B. Ye, Y. Wang, Crowdrec: Trust-aware worker recommendation in

crowdsourcing environments. IEEE International Conference on Web Services

(ICWS), 2016, pp.1-8.

[29] Y. Chen, C. Wu, M. Xie, and X. Guo, Solving the sparsity problem in

recommender systems using association retrieval. Journal of computers, 2011,

6(9), pp. 1896-1902.

[30] H. Yildirim, M. S. Krishnamoorthy, A random walk method for alleviating the

sparsity problem in collaborative filtering. In Proceedings of the 2008 ACM

conference on Recommender systems, 2008, pp. 131-138.

[31] Z. Huang, D. Zeng, and H. Chen, A link analysis approach to recommendation

under sparse data. AMCIS 2004 Proceedings, 2004, p. 239.

[32] R. Shrivastava, H. Singh, K-Means Clustering based solution of sparsity problem

in rating based movie recommendation system. International Journal of

Engineering and Management Research (IJEMR) 2017, 7(2), pp. 309-314.

[33] M. Ahmed, M. T. Imtiaz, and R. Khan, Movie recommendation system using

clustering and pattern recognition network. In: Computing and Communication

Workshop and Conference (CCWC), IEEE, 2018, pp. 143-147.

[34] B. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl, Application of

dimensionality reduction in recommender systems: No. TR-00-043. Minnesota

Univ Minneapolis Dept of Computer Science, 2000.

[35] L. H. Li, F. M. Lee, B. L. Chen, and S. F. Chen, A simplified method for

improving the performance of product recommendation with sparse data. IEEE

8th International Conference on Awareness Science and Technology, 2017, pp.

318-323

[36] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Item-based collaborative

filtering recommendation algorithms. In Proceedings of the 10th International

88

World Wide Web Conference. ACM 2001, pp. 285–295.

[37] R. A. H. M. Rupasingha, I. Paik, B. T. G. S. Kumara, and T. H. A. S. Siriweera.

Domain-aware web service clustering based on ontology generation by text

mining. In Information Technology, Electronics and Mobile Communication

Conference (IEMCON), 2016 IEEE 7th Annual, IEEE, 2016, pp. 1-7.

[38] R. A. H. M. Rupasingha, I. Paik, and B. T. G. S. Kumara. Improving Web service

clustering through a novel ontology generation method by domain specificity. In

Web Services (ICWS), 2017 IEEE International Conference on, IEEE, 2017, pp.

744-751.

[39] R. A. H. M. Rupasingha, I. Paik, Domain information measure with novel

ontology generation for Web service clustering. IEICE Service Computing Branch

Meeting Technical Report, 2017, Vol. 117.

[40] M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S. Mcilraith, SNarayanan, M.

Paolucci, B. Parsia, T. payne, E. Sirin, N. Srinvasan, K. Sycara, D. Martin(ed.),

OWL-S: Semantic Markup for Web Services, W3C Member Submission, 2004.

[41] H. Lausen, A. Plleres, Web Service Modeling Ontology (WSMO), W3C Member

Submission, 2005.

[42] C. Platzer, F. Rosenberg and S. Dustdar, Web service clustering using

multidimensional angles as proximity measures, ACM Transactions on Internet

Technology TOIT , vol. 9, no. 3, pp. 1–26, July 2009.

[43] I. Paik, E. Fujikawa, Web Service Matchmaking Using Web Search Engine and

Machine Learning, International Journal of Web Engineering, SAP, 1(1), pp. 1-5,

2012.

[44] T. Wen, G. Sheng, Y. Li, & Q. Guo, Research on web service discovery with

semantics and clustering. In Proceeding of the 6th IEEE Joint International

Information Technology and Artificial Intelligence Conference, Chongqing, China

2011, pp. 62–67, doi:10.1109/ITAIC.2011.6030151

[45] Y. Lee, & C. Kim, A learning ontology method for RESTful semantic web

services, In Proceeding of the 9th IEEE International Conference on Web

Services, Washington, DC, 2011, (pp. 251–258). doi:10.1109/ICWS.2011.59

[46] B. T. G. S. Kumara, I. Paik, K. R. C. Koswatte, W. Chen, Improving Web service

clustering through post filtering to bootstrap the service discovery, International

Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July – Sept.

2014. pp. 1-13.

[47] Q. Yu, H. Wang, L. Chen, Learning Sparse Functional Factors for Large-scale

Service Clustering, Proceedings of International Conference on Web Service

(ICWS 2015), New York, June 27 2015-July 2 2015.

[48] J. Zhou and S. Li, Semantic Web service discovery approach using service

clustering, in Proc. International Conference on Information Engineering and

Computer Science, pp. 1-5, 2009.

89

[49] N. B. Mabrouk, N. Georgantas, and V. Issarny, Setbased Bi-level Optimisation

for QoS-aware Service Composition in Ubiquitous Environments, Proceedings of

International Conference on Web Service (ICWS 2015), New York, June 27 2015-

July 2 2015.

[50] C. Wu, W. Qiu, Z. Zheng, X. Wang, X. Yang, QoS Prediction of Web Services

based on Two-Phase K-Means Clustering, Proceedings of International

Conference on Web Service (ICWS 2015), New York, June 27 2015-July 2 2015.

[51]C. Wuhui, and I. Paik. Toward Better Quality of Service Composition Based on a

Global Social Service Network. Parallel and Distributed Systems, IEEE

Transactions on 26.5 (2015): 1466-1476.

[52] D. Fang et al, An agility-oriented and fuzziness-embedded semantic model for

collaborative cloud service search, retrieval and recommendation, in:Future

Generation Comp. Syst., vol. 56, 2016, pp. 11–26, doi:

10.1016/j.future.2015.09.025

[53] L.-L. Xie, F.-Z. Chen and J.-S. Kou, Ontology-based semantic Web services

clustering, in:Proceedings of the 18th IEEE International Conference on

Industrial Engineering and Engineering Management, 2011, pp. 2075–2079, doi:

10.1109/ICIEEM.2011.6035578

[54] H. Xia and T. Yoshida, Web Service recommendation with ontology-based

similarity measure, in: 2nd International Conference on Innovative Computing,

Information and Control, Kumamoto, 2007, pp. 412–412,

doi:10.1109/ICICIC.2007.620

[55] M. Shi, J. Liu, D. Zhou, M. Tang, F. Xie and T. Zhang, A Probabilistic Topic

Model for Mashup Tag Recommendation, in: 2016 IEEE International

Conference on Web Services (ICWS), IEEE, June, 2016, pp. 444–451, doi:

10.1109/ICWS.2016.64

[56] Y. Lei, Z. Jiantao, Z. Junxing, W. Fengqi and W. Juan, Time-aware semantic Web

service recommendation, in: IEEE International Conference on Services

Computing, New York, 2015, pp. 664–671, doi: 10.1109/SCC.2015.95

[57] N. Zhou, W.M. Gifford, J. Yan and H. Li, End-to-End Solution with Clustering

Method for Attrition Analysis, in: 2016 IEEE International Conference on

Services Computing (SCC), 2016, pp. 363–370. doi:10.1109/SCC.2016.54

[58] W. Wong, W. Liu and M. Bennamoun, M, Tree-traversing ant algorithm for term

clustering based on featureless similarities, in: Data Mining and Knowledge

Discovery, vol. 15, no. 3, 2007, pp. 349–381, doi:10.1007/s10618-007-0073-y

[59] S.A. Caraballo and E. Charniak, Determining the Specificity of Nouns from Text,

in: Proceedings of the Joint SIGDAT Conference on EMNLP and Very Large

Corpora, 1999, pp.63-70.

[60] A. Aizawa, An information-theoretic perspective of tf-idf measures, in:Journal of

Information Processing and Management 39(1), pp.45-65, (2003),

doi:10.1016/S0306-4573(02)00021-3

90

[61] P.M. Ryu and K.S Choi, Determining the Specificity of Terms based on

Information Theoretic Measures, insulin, 18(452.297), p.267., 2004.

[62] S. Zhang, W. Wang, and J. Ford, Learning from incomplete ratings using non-

negative matrix factorization. SIAM, 2006, pp. 549–553.

[63] Y. Koren, Collaborative filtering with temporal dynamics. Communications of

the ACM, 2010, 53(4), pp. 89-97.

[64] L. Yao, X. Wang, Q.Z. Sheng, B. Benatallah, and C. Huang, Mashup

Recommendation by Regularizing Matrix Factorization with API Co-Invocations,

IEEE Transactions on Services Computing, 2018.

[65] W. Yu, L. Li, X. Xu, D. Wang, J. Wang, and S. Chen, ProductRec: Product

Bundle Recommendation Based on User’s Sequential Patterns in Social

Networking Service Environment. IEEE International Conference on Web

Services (ICWS), 2017, pp. 301-308.

[66] D. A. Adeniyi, Z. Wei, and Y. Yongquan. Automated web usage data mining and

recommendation system using K-Nearest Neighbor (KNN) classification method.

Applied Computing & Informatics, 2016, 12(1), pp. 90-108.

[67] B. Engelbert, M.B. Blanken, R. Kruthoff-Brüwer, and K. Morisse, A user

supporting personal video recorder by implementing a generic Bayesian classifier

based recommendation system. IEEE International Conference on Pervasive

Computing and Communications Workshops, 2011, pp. 567-571.

[68] L. Qi, Z. Zhou, J. Yu and Q. Liu, Data-sparsity tolerant web service

recommendation approach based on improved collaborative filtering. IEICE

Transactions on Information and Systems, 2017, 100(9), pp.2092-2099.

[69] N. E. Evangelopoulos, Latent semantic analysis. Wiley Interdisciplinary

Reviews: Cognitive Science, 4(6), 2013, pp. 683-692.

[70] Q. Xie, S. Zhao, Z. Zheng, J. Zhu, and M.R. Lyu, Asymmetric correlation

regularized matrix factorization for web service recommendation. IEEE

International Conference on Web Services (ICWS), 2016, pp. 204-211.

[71] L. Qi, W. Dou, and X. Zhang, An inverse collaborative filtering approach for

cold-start problem in web service recommendation. In Proceedings of the

Australasian Computer Science Week Multi conference, ACM , 2017, p. 46.

[72] I. Barjasteh, R. Forsati, F. Masrour, A. H. Esfahanian, and H. Radha, Cold-start

item and user recommendation with decoupled completion and transduction. 9th

ACM Conference on Recommender Systems (RecSys '15). ACM, 2015, 91-98.

[73] Semantic Annotations for WSDL, https://www.w3.org/TR/2006/WD-sawsdl-

20060928/ (accessed 03.03.2017).

[74] XML Schema, https://www.w3.org/standards/xml/schema (accessed 03.03.2017).

91

[75] WordNet-A lexical database for English, https://wordnet.princeton.edu/ (accessed

06.02.17).

[76] D. Bollegala, Y. Matsuo and M. Ishizuka, Measuring Semantic Similarity

between Words using Web Search Engines, in: Proceedings of the 16th

International World Wide Web Conference (WWW2007), May, 2007, pp.757-766,

doi: 10.1145/1075389.1075392

[77] B.T.G.S. Kumara, I. Paik and W. Chen, Web-service clustering with a hybrid of

ontology learning and information-retrieval-based term similarity, in:Proceedings

of the IEEE International Conference on Web Services, USA, 2013, pp. 340–347,

doi: 10.1109/ICWS.2013.53

[78] Y. Yaguchi and R. Oka, Spherical visualization of image data with clustering. In

Awareness Science and Technology (iCAST), 2012 4th International Conference

on (pp. 200-206). IEEE.

[79] R. A. H. M. Rupasingha, I. Paik, and B. T. G. S. Kumara, Specificity-aware

ontology generation for improving Web service clustering, IEICE Transactions on

Information and Systems, 2018 Aug 1, 101(8), pp.2035-2043.

[80] Z. Zheng, H. Ma, M. R. Lyu, and I. King, Qos-aware web service

recommendation by collaborative filtering. IEEE Transactions on services

computing, 2011, 4(2), pp. 140-152.

[81] Moghaddam, S., Jamali, M., Ester, M. and Habibi, J., 2009, October.

FeedbackTrust: using feedback effects in trust-based recommendation systems. In

Proceedings of the third ACM conference on Recommender systems (pp. 269-

272). ACM.

[82] A.M. Rashid, G. Karypis, and J. Riedl, Learning preferences of new users in

recommender systems: an information theoretic approach. Acm Sigkdd

Explorations Newsletter, 2008, 10(2), pp.90-100.

[83] K. Reschke, A. Vogel, and D. Jurafsky, Generating recommendation dialogs by

extracting information from user reviews. In Proceedings of the 51st Annual

Meeting of the Association for Computational Linguistics, 2013, Vol. 2, pp. 499-

504.

[84] D.B.Thomas, W. Luk, P.H. Leong and J. D. Villasenor, Gaussian random number

generators, ACM Computing Surveys (CSUR), 2007, 39(4), p.11.

[85] T. Symul, S. M. Assad, and P. K. Lam, Real time demonstration of high bitrate

quantum random number generation with coherent laser light. Applied Physics

Letters, 2011, 98(23), p.231103.

[86] S.C. Oh, D.Lee, and S.R Kumara, Effective web service composition in diverse

and large-scale service networks. IEEE Transactions on Services Computing,

2008, 1(1), pp.15-32.

92

Publications

[Academic Journals (Refereed)]

[1] R. A. H. M. Rupasingha, I. Paik, and B. T. G. S. Kumara, Specificity-Aware

Ontology Generation for Improving Web Service Clustering, IEICE Transactions on

Information and Systems, 2018 Aug 1, 101(8), pp.2035-2043.

[2] R. A. H. M. Rupasingha, I. Paik, Alleviating Sparsity by Specificity-Aware

Ontology-Based Clustering for Improving Web Service Recommendation, IEEJ

Transactions on Electrical and Electronic Engineering, (In review).

[Proceedings at International Conferences (Refereed)]

[3] R. A. H. M. Rupasingha, I. Paik, Evaluation of Web Service Recommendation

Performance via Sparsity Alleviating by Specificity-Aware Ontology-Based

Clustering, In 2018 9th International Conference on Awareness Science and

Technology (iCAST), IEEE, Fukuoka, Japan, 19-21 Sep. 2018, DOI:

10.1109/ICAwST.2018.8517251, pp. 279-284.

[4] T. Miyagi , R. A. H. M. Rupasingha, I. Paik, Analysis of Web Service Using Word

Embedding by Deep Learning, In 2018 9th International Conference on Awareness

Science and Technology (iCAST), IEEE, Fukuoka, Japan, 19-21 Sep. 2018, DOI:

10.1109/ICAwST.2018.8517167, pp. 336-341.

[5] R. A. H. M. Rupasingha, I. Paik, Improving Service Recommendation by

Alleviating the Sparsity with a Novel Ontology-Based Clustering, In 2018 25
th

IEEE

International Conference on Web Services (ICWS), San Francisco, CA, USA, 2-7 July

2018, DOI: 10.1109/ICWS.2018.00059, pp. 351-354.

[6] R. A. H. M. Rupasingha, I. Paik, and B. T. G. S. Kumara, Improving Web Service

Clustering through a Novel Ontology Generation Method by Domain Specificity, In

Web Services (ICWS), 2017 24th IEEE International Conference on, IEEE, Honolulu,

HI, USA , 25-30 June 2017, DOI: 10.1109/ICWS.2017.134, pp. 744-751.

93

[7] R. A. H. M. Rupasingha, I. Paik, B. T. G. S. Kumara, and T. H. A. S. Siriweera,

Domain-aware web service clustering based on ontology generation by text mining. In

Information Technology, Electronics and Mobile Communication Conference

(IEMCON), 2016 IEEE 7
th

 Annual, Vancouver, BC, Canada, 13-15 Oct. 2016, DOI:

10.1109/IEMCON.2016.7746301, pp. 1-7.

[Proceedings at Technical Committee (Non-Refereed)]

[8] R. A. H. M. Rupasingha, I. Paik, Evaluation of the Effectiveness of

Recommendation while Managing the Data Density of the Web Service-User

Preference, 09-10 Nov 2018, IEICE technical report, Japan, In press.

[9] R. A. H. M. Rupasingha, T. Yui, I. Paik, Readability Categorization of Japan

EIKEN Document using Machine Learning with TF-IDF, 01 June 2018, IEICE

technical report, Japan, In press.

[10] R. A. H. M. Rupasingha, I. Paik, Domain Information Measure with Novel

Ontology Generation for Web Service Clustering, 02 June 2017, IEICE technical

report, Japan, Vol. 117, Issue 75, pp 27-32.

[11] R. A. H. M. Rupasingha, I. Paik, and B. T. G. S. Kumara, Web Service Clustering

through Calculating Semantic Similarity of Web Services using Novel Ontology

Learning Method, 04 Nov. 2016, IEICE technical report, Japan, Vol. 116, Issue 287,

pp 13-18.

[12] H. Sakai, R. A. H. M. Rupasingha, I. Paik, Performance Evaluation of Taxonomy

Classification Using Machine Learning, 03 June 2016, Poster presented at: IEICE

technical report, Japan.

[13] R. A. H. M. Rupasingha, I. Paik, and B. T. G. S. Kumara, Improving Web Service

Clustering using Ontology Learning with Machine Learning, 03 June 2016, IEICE

technical report, Japan, Vol. 116, Issue 76, pp. 23-28.

94

