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Visual secret sharing schemes encrypting
multiple images
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Abstract—The aim of this work is to maximize the range of the
access control of visual secret sharing (VSS) schemes encrypting
multiple images. First, the formulation of access structures for
a single secret is generalized to that for multiple secrets. This
generalization is maximal in the sense that the generalized for-
mulation makes no restrictions on access structures; in particular,
it includes the existing ones as special cases. Next, a sufficient
condition to be satisfied by the encryption of VSS schemes
realizing an access structure for multiple secrets of the most
general form is introduced, and two constructions of VSS schemes
with encryption satisfying this condition are provided. Each of
the two constructions has its advantage against the other; one is
more general and can generate VSS schemes with strictly better
contrast and pixel expansion than the other, while the other has a
straightforward implementation. Moreover, for threshold access
structures, the pixel expansions of VSS schemes generated by the
latter construction are estimated and turn out to be the same as
those of the existing schemes called the threshold multiple-secret
visual cryptographic schemes (MVCS). Finally, the optimality of
the former construction is examined, giving that there exist access
structures for which it generates no optimal VSS schemes.

Index Terms—Visual secret sharing, General access structures,
Multiple secrets, Information-theoretic security

I. INTRODUCTION

The secret sharing (SS) scheme is a cryptosystem which
encrypts a secret into multiple shares so that any qualified
combination of shares can reconstruct the secret, while any
forbidden combination of shares reveals no information about
the secret. Here, the sets of the qualified combinations and
the forbidden combinations are called a qualified set and a
forbidden set, respectively, and the pair of the qualified and
forbidden sets is called an access structure. A typical example
of SS schemes is the (k, n)-threshold SS scheme [4], [17],
in which a secret is encrypted into n shares so that any k or
more shares can reconstruct the secret, while any k−1 or less
shares leak no information about the secret.

In contrast to the ordinary cryptosystems, there exist SS
schemes whose decryption can be performed by humans
without any numerical computations. The visual secret sharing
(VSS) scheme [15] is an example of such SS schemes. This
scheme encrypts a visual secret into visual shares so that
humans can visually reconstruct the secret with their eyes
by superposing a qualified combination of visual shares each
printed on a transparency. One of the applications in which
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VSS schemes are essential is for the authentication by a human
recipient without any trusted communication channels. More
precisely, the problem here is to authenticate a message from
an informant to a human recipient through an insecure channel
which is under full control of an adversary. This arises, for
example, in the interactions between a human and an electronic
device without screen such as a smartcard. It is hard to provide
a solution to this problem without assuming a secure channel,1

and the authentication based on VSS schemes, called the visual
authentication [14], has been the only secure solution so far.

A. Related works

The SS scheme encrypting multiple secrets can trivially
be realized by a collection of multiple SS schemes each
encrypting each secret. Therefore, this work considers the VSS
scheme encrypting multiple secrets in which each participant
receives a single visual share and any qualified combination
of participants for each visual secret can reconstruct the secret
by superposing their visual shares.2 So far there have been
proposed the following VSS schemes encrypting multiple
secrets: extended visual cryptographic schemes (EVCS) [1],
visual secret sharing schemes for plural secret images (VSS-
q-PI) [13] and threshold multiple-secret visual cryptographic
schemes (MVCS) [21]. Here, EVCS assumes an access struc-
ture such that all but one of its qualified sets consist of (the
combination of) a single share, VSS-q-PI an access structure
whose forbidden sets are identical for all secrets3 (although its
qualified sets can be arbitrary) and MVCS a threshold access
structure (for details, see (3a)–(3c) in section III-A). This work
provides the formulation and constructions of VSS schemes
realizing a general access structure for multiple secrets without
any restrictions. Table I summarizes the existing works as well
as this work, where the classification is based on only the range
of their access control.4

It should be stated that there has been proposed another
type of VSS schemes encrypting multiple images in which
additional operations in the decryption, such as the rotation
of shares with multiple relative angles, are introduced (see

1In using a smartcard for payment, for instance, one is supposed to trust
the place of sale to show the correct price charged to the smartcard; in other
words, it is assumed that the price is announced from an informant (smartcard)
to a human recipient through a secure channel.

2This work considers only monochrome images. For VSS schemes encrypt-
ing color images, see e.g. [8], [13], [23].

3It should be noted that VSS-q-PI can encrypt color images.
4From this point of view, (k, n)-visual cryptographic schemes with mean-

ingful shares ((k, n)-VCS-MS) [18] and region incrementing visual crypto-
graphic schemes (RIVCS) [24] are special cases of EVCS and MVCS, respec-
tively, and fully incrementing visual cryptography (FIVC) [7] is equivalent to
MVCS.
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TABLE I
COMPARISON AMONG THE EXISTING WORKS AND THIS WORK

VSS scheme Restriction on access structure

EVCS [1] All but one of the qualified sets have to consist of
(the combination of) a single share

VSS-q-PI [13] Forbidden sets have to be identical for all secrets
MVCS [21] An access structure has to be of threshold type
This work No restrictions

e.g. [19], [20], [26]). In VSS schemes of this type, different
operations correspond to different secret images, while in the
VSS schemes in Table I, different combinations of shares
correspond to different secret images. Therefore, from a point
of view of the access control, which is the goal of the
secret sharing, the former schemes can be reduced to a single
VSS scheme encrypting a single secret (into which multiple
secret images are connected), while there exist no such simple
reductions for the latter ones even for the simplest access
structures.5 This is a major difference between the former and
the latter schemes.

B. Our contributions

The aim of this work is to maximize the range of the access
control of VSS schemes encrypting multiple images. As a
first step, the preliminary version [16] maximally generalized
the formulations of access structures and VSS schemes for
multiple secrets, and then provided a construction of VSS
schemes of the most general form. This paper provides further
developments of this generalization described below.6 First,
this paper justifies the above construction in a more general
framework. More precisely, this paper introduces a more
general construction (Construction 11) which includes the
previous one as a special case. In particular, this inclusion
is strict in the sense that the former (Construction 11) can
generate VSS schemes with strictly better contrast and pixel
expansion than the latter, which is demonstrated by the last
two examples in section III-C. Then, this paper proves that for
any given access structure of the most general form, the former
indeed generates a VSS scheme realizing the access structure
(in Theorem 12), and also the latter is a special case of the
former (in Corollary 14); this completes the justification of the
latter (previous) construction, which was not given in [16].
Here, to describe the former construction, this paper has
introduced two notions (Definitions 7 and 10), which, together
with the proofs to characterize and justify the construction
(Lemma 9 and Theorem 12), reveal a sufficient condition to
be satisfied by the encryption of VSS schemes for multiple
secrets. Moreover, it is demonstrated that for threshold access
structures, the latter construction generates VSS schemes with
the same pixel expansion as (k, n, s)-MVCS and (k, n, s, R)-
MVCS [21] (in section III-D).7 Finally, the optimality of the

5A perfect access structure Γ2 =
{
(Ai

Q, Ai
F )

}2

i=1
on {s1, s2} for two

secrets with A1
Q = {{s1}, {s1, s2}} and A2

Q = {{s2}, {s1, s2}} (see
Definition 4 for this notation) is an example of such access structures.

6All of these are contributions of this paper relative to the preliminary
version [16].

7It should be noted that our constructions are not restricted to threshold
access structures, but can apply to arbitrary ones.

former (more general) construction is examined, giving that
there exist access structures for which it generates no optimal
VSS schemes (in section III-E).

II. PRELIMINARIES

In this section, we provide definitions and notations that will
be used later. For details of definitions in information theory
and secret sharing, see e.g. [2], [9], [22].

A. Basic definitions and notations

For n ∈ N, let [n] denote the set of natural numbers less
than or equal to n; i.e. [n] = {k ∈ N|k ≤ n}. The power
set of a set S is denoted by 2S ; i.e. 2S = {a|a ⊆ S}. For
a subset A of a power set partially ordered by inclusion, let(
A
)
0

denote the set of the minimal elements of A with respect
to this order; i.e.(

A
)
0
= {a ∈ A|∀a′ ∈ A(a′ �⊂ a)}

(where we have used the symbol ⊂ to represent the strict
inclusion). For an ordered set S = {s1, s2, · · · , sn}, the order
of si in S is denoted by ordS(si); i.e. ordS(si) = i.

For random variables X and Y over the same domain,
we write X = Y if X and Y are equal almost surely (i.e.
Pr[X = Y ] = 1), and X ∼ Y if X and Y have the
same probability distribution. For a set S , let SU denote a
probabilistic function which outputs an element of S according
to the uniform distribution over S .

For x ∈ {0, 1}n, b ∈ {0, 1} and i ∈ [n], let xxi=b denote
the string x with the i-th element xi replaced by b; i.e.

xxi=b = (x1, · · · , xi−1, b, xi+1, · · · , xn).

For x ∈ {0, 1}n, let Gray(x) denote the gray level of x; i.e.

Gray(x) =

∣∣{i|xi = 1}∣∣
n

.

The gray level of the empty string ε is defined to be 0; i.e.
Gray(ε) = 0.

B. Access structure and secret sharing

Let S = {s1, s2, · · · , sn} be the set of all the shares. The
subset of 2S any of whose elements can decrypt the secret is
called a qualified set and is denoted by AQ. The subset of 2S

any of whose elements leaks no information about the secret
is called a forbidden set and is denoted by AF . The pair Γ of
the qualified and forbidden sets, Γ = (AQ, AF ), is called an
access structure on S . The access structure has to satisfy the
monotonicity:

A ∈ AQ ∧A ⊆ B ⇒ B ∈ AQ,

B ∈ AF ∧A ⊆ B ⇒ A ∈ AF ,

for all A,B ⊆ S . A qualified set AQ is uniquely determined
by its minimal elements

(
AQ

)
0
:(

AQ

)
0
=

(
A′

Q

)
0
⇒ AQ = A′

Q

for all qualified sets AQ and A′
Q on S . An access structure

is called perfect if every subsets of the shares are included in
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TABLE II
ENCRYPTION OF A SINGLE PIXEL, AND THE SETS C0 AND C1 OF

REPRESENTING MATRICES (0: WHITE, 1: BLACK, ROW: SHARE, COLUMN:
SUBPIXEL IN SHARE)

Pixel Pattern1 Pattern2 Pattern1 Pattern2

Share 2

Share 1

Share 2

Share 1

Share 2

C0 =

{(
01
01

)
,

(
10
10

)}

C1 =

{(
01
10

)
,

(
10
01

)}

either the qualified set or the forbidden set. The perfect access
structure can be determined by only a qualified set.

Example 1 ((k, n)-threshold access structure). Let S be a
finite set of size n. A (k, n)-threshold access structure on S
consists of the qualified set AQ and the forbidden set AF given
by AQ =

{
a ⊆ S∣∣k ≤ |a|} and AF =

{
a ⊆ S∣∣k > |a|}.

Since AQ∪AF = 2S , this access structure is perfect. A secret
sharing scheme realizing a (k, n)-threshold access structure is
called a (k, n)-threshold secret sharing scheme.

C. Visual secret sharing

In the ordinary SS schemes, the secrets and shares are
both numerical data, and their decryption is performed by
computers. In contrast, in the VSS schemes, the secrets and
shares are both visual, and their decryption can visually be
performed by human eyes.8 Each black-white pixel in a secret
image is encrypted into a set of black-white subpixels in
shares. Hence, the encryption of each pixel can be represented
as a pair of matrices Cb = (cbij) with b ∈ {0, 1}, where b = 0
for a white pixel in a secret image and b = 1 otherwise, and
cbij = 0 for a white j-th subpixel in the i-th share and cbij = 1
otherwise.

For an illustrative purpose, let us consider a (2, 2)-threshold
VSS scheme. A secret image is encrypted into two shares.
Each share is indistinguishable from noise images, and so
leaks no information about the secret. On the other hand, the
secret image can be reconstructed when both of the shares
are superposed. This can be constructed as follows. A pixel
e in the secret image is encrypted into two subpixels in each
of the two shares. If e is white (resp. black), then Pattern
1 or Pattern 2 in the upper (resp. lower) row of Table II is
chosen at random. The superposition of the two shares has
one black subpixel and one white subpixel (resp. two black
subpixels) if e is white (resp. black). This construction can
be represented by the sets C0 and C1 of matrices in Table II;
more precisely, the above encryption and decryption can be

8For audio secret sharing (ASS) schemes, whose decryption can acousti-
cally be performed by human ears, see e.g. [11], [25]

represented by the functions Enc : {0, 1} → {0, 1}2×2 and
Dec : {0, 1}2×2 → {0, 1}2 given by

Enc(b) = Cb
U and Dec(M) = (m11 ∨m21,m12 ∨m22)

for b ∈ {0, 1} and M = (mij) ∈ {0, 1}2×2, respectively,
where ∨ denotes the OR operation.

The relative difference in gray level between superposed
shares that come from a white pixel and a black pixel in the
secret image is called the contrast. In the above example, the
reconstructed pixel has a gray level of 2

2 = 1 if e is black, and
a gray level of 1

2 if e is white; therefore, Contrast = 2
2− 1

2 = 1
2 .

The higher contrast makes it easier to recognize reconstructed
images.

The number of subpixels in shares encrypted from a pixel
in a secret is called the pixel expansion. In the above example,
a pixel in a secret is encrypted into two subpixels in shares;
therefore, Pixel expansion = 2. The lower pixel expansion
allows the more practical resolution of share images. A VSS
scheme and its encryption are called optimal if they have the
lowest pixel expansion.

D. Notations for matrices
For two matrices A and B of the same number of rows, let

A|B denote the concatenation of A and B. In the same way
as [13], we introduce an equivalence relation ∼ on the set M
of matrices; for two matrices A and B of the same size, we
write A ∼ B if A can be obtained by a column permutation
of B. For R ∈ M, let 〈R〉 denote the set of all the matrices
A such that A ∼ R; i.e.

〈R〉 = {A ∈ M | A ∼ R}.
By using this notation, C0 and C1 in Table II can be written
as

C0 =
〈(

01
01

)〉
and C1 =

〈(
01
10

)〉
.

A pair of matrices C0 and C1 is called basis matrices for
a VSS scheme with encryption Enc if the random column
permutation of them gives the encryption Enc; i.e. Enc(b) =
〈Cb〉U for b ∈ {0, 1}. Hence, the above two matrices are basis
matrices for the (2,2)-threshold VSS scheme.

For n ∈ N, let C0
n,n and C1

n,n denote basis matrices for an
optimal (n, n)-threshold VSS scheme. For example,

C0
1,1 = (0) , C0

2,2 =
(
01
01

)
, C0

3,3 =

(
0011
0101
0110

)
,

C1
1,1 = (1) , C1

2,2 =
(
01
10

)
, C1

3,3 =

(
1001
1010
1100

)
,

have been shown to give optimal (n, n)-threshold VSS
schemes for n = 1, 2, 3, respectively [15].

III. VISUAL SECRET SHARING SCHEMES ENCRYPTING
MULTIPLE IMAGES

A. Formulation
In this subsection, we provide a formulation of VSS

schemes encrypting multiple images. We begin with the fol-
lowing definition of two matrix operations, which are con-
venient for describing the security and constructions of VSS
schemes.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIFS.2017.2750104

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Definition 2 (Supermatrix and submatrix with respect to an
ordered subset [16]). Let S = {s1, s2, · · · , sn} be an ordered
set of size n, and a be an ordered subset of S of size n′. For
an n′ × m matrix M = (mij), let [M ]a denote the n × m
matrix defined by

([M ]a)ij =

{
morda(si)j if si ∈ a,

1 otherwise.

The matrix [M ]a is called the supermatrix of M with respect
to a.

For an n×m matrix M = (mij), let [M ]a denote the n′×m
submatrix of M defined by

([M ]a)orda(si)j = mij

for si ∈ a. The matrix [M ]a is called the submatrix of M with
respect to a. The submatrix with respect to the empty set ∅ is
defined to be the empty string ε; i.e. [M ]∅ = ε for all M .

Example 3. Let S = {s1, s2, s3} be an ordered set, and a1
and a2 be ordered subsets of S given by a1 = {s2} and
a2 = {s1, s3}, respectively. Then

[(0)]
a1 =

(
1
0
1

)
,

[(
01
10

)]a2

=

(
01
11
10

)
,

[(
1
0
1

)]
a1

= (0) ,

[(
1001
1010
1100

)]
a2

=
(
1001
1100

)
.

To consider VSS schemes encrypting multiple images, it is
necessary to generalize the definition of an access structure
for a single secret. The following definition is a natural
generalization from a single secret to multiple ones in which
each secret is allowed to have its own access structure.

Definition 4 (Access structure for multiple secrets [16]). Let
S be a finite set, and q ∈ N. For i ∈ [q], let Ai

Q and Ai
F

be subsets of 2S such that Ai
Q ∩ Ai

F = ∅. The pairs Γq of
the subsets Ai

Q and Ai
F , Γq =

{
(Ai

Q, A
i
F )

}q

i=1
, is called an

access structure on S for q secrets if Ai
Q and Ai

F satisfy the
monotonicity,

A ∈ Ai
Q ∧A ⊆ B ⇒ B ∈ Ai

Q,

B ∈ Ai
F ∧A ⊆ B ⇒ A ∈ Ai

F ,
(1)

for all A,B ⊆ S and i ∈ [q], and the uniqueness,

i �= j ⇒ (
Ai

Q

)
0
∩ (

Aj
Q

)
0
= ∅ (2)

for all i, j ∈ [q]. For an access structure Γq =
{
(Ai

Q, A
i
F )

}q

i=1
,

Ai
Q and Ai

F are called the qualified set and the forbidden
set for the i-th secret, respectively. An access structure Γq ={
(Ai

Q, A
i
F )

}q

i=1
is called minimally refined if every qualified

sets have only one minimal element; i.e. |(Ai
Q

)
0
| = 1 for all

i ∈ [q].

Note that each access structure (Ai
Q, A

i
F ) can be taken inde-

pendently without any restrictions except for the uniqueness
condition (2). This condition is necessary for VSS schemes
because their decryption is restricted to the superposition of
visual shares, and so each qualified combination of shares has
to be assigned a unique visual secret to be decrypted by the

superposition. (Hence, this condition may be removed for the
ordinary SS schemes).

If we make the restrictions

∀i ∈ [|S|]((Ai
Q

)
0
= {{si}}

)
with q = |S|+ 1, (3a)

∃AF∀i ∈ [q]
(
Ai

F = AF

)
, (3b)

∀i ∈ [q]∃k∀aQ ∈ Ai
Q∀aF ∈ Ai

F

(|aQ| ≥ k ∧ |aF | < k
)
,
(3c)

then Definition 4 coincides with those for EVCS [1], VSS-q-
PI [13] and MVCS [21], respectively. That is, this definition
includes the existing ones as special cases.

Definition 4 does not consider correlation among secrets,
and we may assume any correlation among them. This allows
us to introduce equivalence between access structures as
follows.

Definition 5 (Equivalence between access structures). Let S
be a finite set and p, p′, q, q′ ∈ N. Let ν = {vi}i∈[q] and
ν′ = {v′i}i∈[q′] be sets of random variables over the same
domain. A partition {Ii}i∈[p] of [q] (i.e.

⋃
i Ii = [q] and i �=

j ⇒ Ii ∩ Ij �= ∅) is called an index partition of ν if

∀k ∈ Ii∀l ∈ Ij(i = j ⇔ vk = vl)

for all i, j ∈ [p]. Let Γ =
{
(Ai

Q, A
i
F )

}
i∈[q]

and Γ′ ={
(A′i

Q, A
′i
F )

}
i∈[q′] be access structures on S for ν and ν′,

respectively. The pairs (Γ, ν) and (Γ′, ν′) are called equivalent
if there exist index partitions {Ii}i∈[p] and {I ′i}i∈[p′] of ν and
ν′, respectively, such that⋃
k∈Ii

Ak
Q =

⋃
k∈I′

i

A′k
Q ,

⋂
k∈Ii

Ak
F =

⋂
k∈I′

i

A′k
F and vri = v′r′i

for all i ∈ [p] with p = p′, where ri and r′i are any elements
(representative indices) of Ii and I ′i , respectively.

It readily follows from this definition that any access struc-
ture can equivalently be transformed into a minimally refined
one (with the duplication of secret images allowed).

Having provided a definition of an access structure for
multiple secrets, we are ready to give a definition of VSS
schemes encrypting multiple images.

Definition 6 (VSS schemes encrypting multiple images [16]).
Let S be an ordered set of size n, and m, q ∈ N. Let
Γq =

{
(Ai

Q, A
i
F )

}q

i=1
be an access structure on S for q

secrets. Let Enc be a probabilistic function from {0, 1}q to
{0, 1}nm and Dec be a deterministic function from {0, 1}n′m

to {0, 1}m with n′ ∈ [n]. The pair V SS of functions Enc and
Dec, V SS = (Enc,Dec), is called a visual secret sharing
scheme realizing Γq if Dec is given as the bitwise OR of the
rows of input matrices M = (mij),

(Dec(M))j =
∨

i∈[n′]

mij (4)

for all j ∈ [m] (with Dec(ε) = ε), and Enc and Dec satisfy the
following two conditions, called the reconstruct and security
conditions respectively,

∀a ∈ (
Ai

Q

)
0

(
γi
1(a)− γi

1(a) > 0
)
, (5)

∀a ∈ Ai
F∀b ∈ {0, 1}q([Enc(bbi=0)]a ∼ [Enc(bbi=1)]a

)
, (6)
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for all i ∈ [q], where we have defined

γi
1(a) = min

b∈{0,1}q
max{γ|Pr[g(a; bbi=1) ≥ γ] = 1},

γi
0(a) = max

b∈{0,1}q
min{γ|Pr[g(a; bbi=0) ≤ γ] = 1},

with

g(a; b) = Gray(Dec([Enc(b)]a)) (7)

for a ⊆ S and b ∈ {0, 1}q . The positive constant

ci(a) = γi
1(a)− γi

0(a)

in (5) is called the contrast of the i-th secret for a. For a VSS
scheme V SS = (Enc,Dec), the number m of the subpixels
generated by Enc is called the pixel expansion of V SS. A VSS
scheme and its encryption are called optimal if the scheme has
the lowest pixel expansion.

Note that the reconstruct condition (5) has a relaxed form
in the sense that the reconstructability is required only for the
minimal qualified sets

(
Ai

Q

)
0
. This relaxation is necessary for

VSS schemes for the same reason as before (see the remark
below Definition 4).

Let I(X : Y |Z) denote the mutual information between
random variables X and Y conditioned on random variable Z.
Then, the security condition (6) can be written in an equivalent
form

∀a ∈ Ai
F

(
I(bi : [Enc(b)]a|b1, · · · , bi−1, bi+1, · · · , bq) = 0

)
for all random variables b over {0, 1}q . This equivalent form
may help to see that bi may correlate with [Enc(b)]a via other
secrets bj , which is sufficient and useful for our purpose. In
what follows, we suppose that the decryption function Dec is
the bitwise OR given by (4).

B. Constructions

In this subsection, we introduce a sufficient condition to
be satisfied by the encryption of a VSS scheme realizing a
general access structure for multiple secrets, and then provide
two constructions of VSS schemes with encryption satisfying
this condition. To describe the sufficient condition, we first
introduce the set of share combinations whose superposition
has a constant gray level (with probability 1), and then prove
a lemma characterizing it.

Definition 7 (Constant gray level set). Let S be an ordered set
of size n, and m ∈ N. Let Enc be a probabilistic function from
{0, 1} to {0, 1}nm. The constant gray level set GrC(Enc) of
Enc is defined by

GrC(Enc) = {a ⊆ S|∃γ∀b(Pr[g(a; b) = γ] = 1
)},

where we have defined

g(a; b) = Gray(Dec([Enc(b)]a))

for a ⊆ S and b ∈ {0, 1}.

Example 8. Let S = {s1, s2, s3} be an ordered set. Let

C0 =

(
11
01
01

)
and C1 =

(
11
01
10

)
,

and define Enc(b) = 〈Cb〉U . It readily follows that

g(∅; b) = 0 and g(a; b) = 1

for all b ∈ {0, 1} and a ⊆ S such that s1 ∈ a, with proba-
bility 1. Note here that any column permutation of a binary
matrix does not change the gray level of its (superposed) rows.
Hence, it can be seen that

g(a; b) =
1

2

for all b ∈ {0, 1} and a ∈ {{s2}, {s3}}, with probability 1.
On the other hand, it follows that

g({s2, s3}; 0) = 1

2
and g({s2, s3}; 1) = 1,

with probability 1. Therefore

GrC(Enc) = 2S − {{s2, s3}}.
Lemma 9. Let S be an ordered set of finite size. Suppose that
C0 and C1 are a pair of matrices such that (Enc,Dec) with
Enc(b) = 〈Cb〉U for b ∈ {0, 1} realizes an access structure
(AQ, AF ) on S (for a single secret). Then,(

AQ

)
0
∩GrC(Enc) = ∅ and AF ⊆ GrC(Enc).

Moreover, let S∗ be an ordered set of finite size such that S is
its ordered subset. Define Enc∗(b) = 〈[Cb]S〉U for b ∈ {0, 1}
(where we have used S ⊆ S∗), and

A∗ = {a ⊆ S∗|a ∩ (S∗ − S) �= ∅}.
Then,

A∗ ⊆ GrC(Enc
∗),

and (Enc∗,Dec) realizes (A∗
Q, A

∗
F ) on S∗ (for a single secret),

where we have introduced A∗
Q and A∗

F by(
A∗

Q

)
0
=

(
AQ

)
0

and A∗
F = {a ∪ â|a ∈ AF , â ⊆ (S∗ − S)}.

Furthermore, if (AQ, AF ) is perfect, then so is (A∗
Q, A

∗
F ).

Proof. The contrast condition (5) of VSS schemes (see Defi-
nition 6) for a single secret implies that

∀a ∈ (
AQ

)
0

(
Pr[g(a; 1)− g(a; 0) > 0] = 1

)
,

and so ∀a ∈ (
AQ

)
0

(
a �∈ GrC(Enc)

)
, or equivalently,(

AQ

)
0
∩GrC(Enc) = ∅.

The security condition (6) of VSS schemes for a single secret
gives that for all a ∈ AF ,

[Enc(0)]a ∼ [Enc(1)]a,

which is equivalent to

[C0]a ∼ [C1]a.

Again, note that any column permutation of a binary matrix
does not change the gray level of its (superposed) rows. Hence,
for all a ∈ AF , there exists γa such that

g(a; 0) = g(a; 1) = γa
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with probability 1, and so

AF ⊆ GrC(Enc).

Also, it follows from the definition of the supermatrix that for
all b ∈ {0, 1} and a ∈ A∗, every column of [Enc∗(b)]a has 1
at rows corresponding to (S∗ − S), and so

g(a; b) = 1,

with probability 1. Hence,

A∗ ⊆ GrC(Enc
∗).

We next show that (Enc∗,Dec) realizes (A∗
Q, A

∗
F ). Since

(Enc,Dec) realizes (AQ, AF ) and
(
A∗

Q

)
0
=

(
AQ

)
0
, it fol-

lows from the definition of Enc∗ that (Enc∗,Dec) satisfies the
contrast condition (5) of VSS schemes for

(
A∗

Q

)
0
. Moreover,

the definition of the supermatrix gives that for all â ⊆ (S∗−S),
both [Enc∗(0)]â and [Enc∗(1)]â are an all-1 matrix with
probability 1, and so

[Enc∗(0)]â ∼ [Enc∗(1)]â.

This, together with [Enc(0)]a ∼ [Enc(1)]a for a ∈ AF , gives

[Enc∗(0)]a∗ ∼ [Enc∗(1)]a∗

for all a∗ ∈ A∗
F = {a ∪ â|a ∈ AF , â ⊆ (S∗ − S)}, and so

(Enc∗,Dec) satisfies the security condition (6) for A∗
F .

To show the last part of the lemma, suppose that a∗ �∈ A∗
F .

Then, on noting that

A∗
F = {a ∪ â|a ∈ AF , â ⊆ (S∗ − S)}
= {a∗ ⊆ S∗|(a∗ ∩ S) ∈ AF },

we have (a∗ ∩ S) �∈ AF , and so (a∗ ∩ S) ∈ AQ because
(a∗ ∩ S) ⊆ S and (AQ, AF ) is perfect. Therefore, the
monotonicity (1) of the qualified set AQ gives that there exists
a ∈ (

AQ

)
0
=

(
A∗

Q

)
0

such that

a ⊆ (a∗ ∩ S) ⊆ a∗,

which implies a∗ ∈ A∗
Q. That is, if a∗ �∈ A∗

F , then a∗ ∈ A∗
Q,

and so (A∗
Q, A

∗
F ) is also perfect. This completes the proof.

We are now ready to introduce a property, called the
compatibility, for a set of VSS encryptions. The subsequent
construction and theorem show that this property is indeed a
sufficient condition to be satisfied by a set of VSS encryptions
whose concatenation with random column permutation gives
the encryption of a VSS scheme realizing a general access
structure for multiple secrets.

Definition 10 (Compatible encryption). Let S be an ordered
set of size n, and q ∈ N. For i ∈ [q], let Enci be a probabilistic
function from {0, 1} to {0, 1}nmi with mi ∈ N. Let Γq ={
(Ai

Q, A
i
F )

}q

i=1
be an access structure on S for q secrets. A

set {Enci}qi=1 of probabilistic functions is called compatible
with respect to Γq if the following two conditions hold:

1) (Enci,Dec) realizes (Ai
Q, A

i
F ) for all i ∈ [q],

2) i �= j ⇒ (
Ai

Q

)
0
⊆ GrC(Encj) for all i, j ∈ [q].

Construction 11 (General construction). Let S be an ordered
set of finite size, and q ∈ N. Let Γq =

{
(Ai

Q, A
i
F )

}q

i=1
be

an access structure on S for q secrets. Let {(C0
i , C

1
i )}qi=1 be

pairs of matrices such that the set {Enci}qi=1 of encryption
functions Enci(b) = 〈Cb

i 〉U is compatible with respect to Γq .
Define Enc by

Enc(b) =
〈
Cb1

1 |Cb2
2 | · · · |Cbq

q

〉
U

for b ∈ {0, 1}q .

Theorem 12. Let S be an ordered set of finite size, and q ∈ N.
Let Γq be an access structure on S for q secrets. Then, V SS =
(Enc,Dec) given by Construction 11 is a visual secret sharing
scheme realizing Γq .

Proof. We first show that (Enc,Dec) satisfies the contrast
condition (5). Let i ∈ [q] and a ∈ (

Ai
Q

)
0
. It follows from the

condition 2) of the compatible encryption (see Definition 10)
that for all j ∈ [q] such that j �= i, there exists lj ∈ {0}∪ [mj ]
such that

gj(a; 0) = gj(a; 1) =
lj
mj

with probability 1, where mj is the pixel expansion of Encj
and we have defined

gj(a; b) = Gray(Dec([Encj(b)]a))

as before (see (7)). It also follows from the condition 1) of the
compatible encryption that there exists di ∈ [mi] such that

gi(a; 1)− gi(a; 0) ≥ di
mi

with probability 1. Therefore, the contrast of the i-th secret
for a is lower-bounded as

ci(a) ≥ di
m

> 0

with m =
∑

i∈[q] mi, from which the contrast condition (5)
follows.

We next show that (Enc,Dec) satisfies the security con-
dition (6). Let i ∈ [q] and a ∈ Ai

F . It follows from the
condition 1) of the compatible encryption that[〈

C0
i

〉
U

]
a
∼ [〈

C1
i

〉
U

]
a
,

which is equivalent to [
C0

i

]
a
∼ [

C1
i

]
a
.

This at once gives[
Cb1

1 | · · · |C0
i | · · · |Cbq

q

]
a
∼ [

Cb1
1 | · · · |C1

i | · · · |Cbq
q

]
a

for all b ∈ {0, 1}q , and so[〈
Cb1

1 | · · · |C0
i | · · · |Cbq

q

〉
U

]
a
∼ [〈

Cb1
1 | · · · |C1

i | · · · |Cbq
q

〉
U

]
a
,

from which the security condition (6) follows. This completes
the proof.

It should be stated that Construction 11 assumes the exis-
tence of the basis matrices {(C0

i , C
1
i )}qi=1, and does not spec-

ify the way to find them. We now provide another construction
which specifies the basis matrices, and so can straightfor-
wardly be implemented. Since any access structure can be
transformed into a minimally refined one (with the duplication
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of secret images allowed), the following construction also
applies to general access structures for multiple secrets (see
Definition 4 for minimally refined access structures). As will
be seen in the proof of Corollary 14 below, this construction
is a special case of Construction 11.

Construction 13 (Construction with a straightforward imple-
mentation [16]). Let S be an ordered set of finite size, and
q ∈ N. Let Γq =

{
(Ai

Q, A
i
F )

}q

i=1
be a minimally refined

access structure on S for q secrets. For i ∈ [q], let aiq be
the element of

(
Ai

Q

)
0
; i.e.

(
Ai

Q

)
0
= {aiq} with aiq ⊆ S . For

b ∈ {0, 1} and i ∈ [q], let Cb
i = [Cb

ni,ni
]a

i
q with ni = |aiq|.

Define Enc by

Enc(b) =
〈
Cb1

1 |Cb2
2 | · · · |Cbq

q

〉
U

for b ∈ {0, 1}q (see section II-D for the definition of Cb
n,n).

Corollary 14. Let S be an ordered set of finite size, and
q ∈ N. Let Γq =

{
(Ai

Q, A
i
F )

}q

i=1
be a minimally refined

access structure on S for q secrets. Then, V SS = (Enc,Dec)
given by Construction 13 is a visual secret sharing scheme
realizing Γq .

Proof. Define Enci(b) = 〈Cb
i 〉U for i ∈ [q] and b ∈ {0, 1}.

We now show that {Enci}qi=1 is compatible with respect to
Γq . Since {Cb

n,n}b∈{0,1} are basis matrices for a VSS scheme
realizing an (n, n)-threshold access structure, which is perfect,
it follows from Lemma 9 that (Enci,Dec) realizes (Ai

Q, A
i∗
F )

with Ai∗
F = 2S − Ai

Q. Here, on noting that Ai
Q and Ai

F are
disjoint, we have Ai

F ⊆ Ai∗
F . Therefore, the condition 1) of

the compatible encryption follows.
Moreover, Lemma 9 yields that

{aiq} �⊆ GrC(Enci) and A ⊆ GrC(Enci)

with

A = {a|a ⊂ aiq} ∪ {a ⊆ S|a ∩ (S − aiq) �= ∅}.
Therefore,

GrC(Enci) = 2S − {aiq},
and so the condition 2) of the compatible encryption follows
from the uniqueness (2) of Γq . Consequently, the corollary
follows from Theorem 12.

C. Illustrative examples

Let S = {s1, s2, s3} be a set of shares. We now give three
VSS schemes according to Constructions 11 and 13. First,
we consider the following minimally refined perfect access
structure Γ7 =

{
(Ai

Q, A
i
F )

}7

i=1
on S for seven secret images

{vi}7i=1 of the same size, where(
A1

Q

)
0
= {{s1}},

(
A2

Q

)
0
= {{s2}},

(
A3

Q

)
0
= {{s3}},(

A4
Q

)
0
= {{s1, s2}},

(
A5

Q

)
0
= {{s1, s3}},(

A6
Q

)
0
= {{s2, s3}},

(
A7

Q

)
0
= {{s1, s2, s3}}

with Ai
F = 2S − Ai

Q for all i ∈ [7]. Since Γ7 is minimally
refined, Construction 13 directly applies to this access structure

Share 1 (v1) Share 2 (v2) Share 3 (v3)

Share 1+2 (v4) Share 1+3 (v5) Share 2+3 (v6)

Share 1+2+3 (v7)

Fig. 1. Example of a VSS scheme realizing Γ7 with secret images {vi}7i=1
representing the additive mixture of the primary colors red, green and blue.
In this example, Cb1

1 , Cb2
2 and Cb3

3 are concatenated twice to make the pixel
expansion m a square: m = 1 × 3 × 2 + 2 × 3 + 4 × 1 = 42. Hence, the
contrast is 2

16
for {vi}3i=1 and 1

16
for {vi}7i=4.

as follows. Let {C0
i , C

1
i }7i=1 be pairs of matrices defined

according to Construction 13; namely,

C0
1 =

(
0
1
1

)
, C0

2 =

(
1
0
1

)
, C0

3 =

(
1
1
0

)
, C0

7 =

(
0011
0101
0110

)
,

C1
1 =

(
1
1
1

)
, C1

2 =

(
1
1
1

)
, C1

3 =

(
1
1
1

)
, C1

7 =

(
1001
1010
1100

)
,

C0
4 =

(
01
01
11

)
, C0

5 =

(
01
11
01

)
, C0

6 =

(
11
01
01

)
,

C1
4 =

(
01
10
11

)
, C1

5 =

(
01
11
10

)
, C1

6 =

(
11
01
10

)
.

Suppose that the top-left pixels of the secret images {vi}7i=1

have values b ∈ {0, 1}7, where bi = 0 if the corresponding
pixel in vi is white and bi = 1 otherwise. Then, the encryption
of values b of the top-left pixels is given by

Enc(b) =
〈
Cb1

1 |Cb2
2 | · · · |Cb7

7

〉
U
.

All the other pixels of the secret images are encrypted in
the same way. It follows from Corollary 14 that the VSS
scheme with this encryption realizes Γ7. Figure 1 illustrates
an example of this VSS scheme (slightly modified to make
the pixel expansion a square).

Next, we consider the following perfect access structure
Γ2 =

{
(Ai

Q, A
i
F )

}2

i=1
on S for two secret images {vi}2i=1

of the same size, where(
A1

Q

)
0
= {{s1, s2}, {s1, s3}},

(
A2

Q

)
0
= {{s2, s3}}
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Share 1 Share 2 Share 3

Share 1+2 (v1) Share 1+3 (v1) Share 2+3 (v2)

Share 1+2+3

Fig. 2. Example of a VSS scheme realizing Γ2 with secret images {vi}2i=1.
The pixel expansion is 2+2 = 4, and the contrast is 1

4
for all the reconstructed

images. In this construction, Share 1+2+3, which is not a minimal element
of the qualified sets, reveals the secret v1.

with Ai
F = 2S − Ai

Q for all i ∈ [2]. Note that Γ2 is not
minimally refined (|(A1

Q

)
0
| > 1), and so Construction 13 is

not (directly) applicable to this access structure. Hence, we
first apply Construction 11 to Γ2 as follows. Let {C0

i , C
1
i }2i=1

be pairs of matrices defined by

C0
1 =

(
01
01
01

)
, C0

2 =

(
11
01
01

)
,

C1
1 =

(
01
10
10

)
, C1

2 =

(
11
01
10

)
,

respectively, and define Enci(b) = 〈Cb
i 〉 for b ∈ {0, 1} and

i ∈ [2]. Then, {Enci}2i=1 is compatible with respect to Γ2. In
fact, it can be seen from the above definitions that (Enci,Dec)
realizes (Ai

Q, A
i
F ) for all i ∈ [2], and

GrC(Enc1) = {∅, {s1}, {s2}, {s3}, {s2, s3}},
GrC(Enc2) = 2S − {{s2, s3}},

and so(
A1

Q

)
0
⊆ GrC(Enc2),

(
A2

Q

)
0
⊆ GrC(Enc1).

Therefore, Theorem 12 ensures that the VSS scheme with the
encryption defined by

Enc(b) =
〈
Cb1

1 |Cb2
2

〉
U

for b ∈ {0, 1}2 realizes Γ2. Figure 2 illustrates an example of
this VSS scheme.

We can also provide a VSS scheme realizing Γ2 accord-
ing to Construction 13. For this purpose, we introduce a

minimally refined access structure which, together with an
appropriate supposition on secret images, is equivalent to Γ2.
Let Γ3 =

{
(A′i

Q, A
′i
F )

}3

i=1
be the minimally refined perfect

access structure on S for three secret images {v′i}3i=1 of the
same size such that(

A′1
Q

)
0
= {{s1, s2}},

(
A′2

Q

)
0
= {{s1, s3}},(

A′3
Q

)
0
= {{s2, s3}},

with A′i
F = 2S − A′i

Q for all i ∈ [3]. Since Γ3 is minimally
refined, Construction 13 directly applies to this access structure
as before. Let {C0

i , C
1
i }3i=1 be pairs of matrices defined

according to Construction 13; namely,

C0
1 =

(
01
01
11

)
, C0

2 =

(
01
11
01

)
, C0

3 =

(
11
01
01

)
,

C1
1 =

(
01
10
11

)
, C1

2 =

(
01
11
10

)
, C1

3 =

(
11
01
10

)
.

It then follows from Corollary 14 that the VSS scheme with
the encryption defined by

Enc(b) =
〈
Cb1

1 |Cb2
2 |Cb3

3

〉
U

for b ∈ {0, 1}3 realizes Γ3. Here, note that

A1
Q = A′1

Q ∪A′2
Q, A2

Q = A′3
Q,

A1
F = A′1

F ∩A′2
F , A2

F = A′3
F .

Hence, if we suppose that

v1 = v′1 = v′2 and v2 = v′3,

then (Γ3, {v′i}3i=1) and (Γ2, {vi}2i=1) are equivalent. Figure 3
illustrates an example of this VSS scheme (slightly modified
to make the pixel expansion a square). The last two examples
show that Construction 11 can generate a VSS scheme with
strictly better contrast and pixel expansion than Construc-
tion 13. We close this subsection by noting that no existing
schemes can realize the above access structures for multiple
secrets, which can be confirmed by checking that these access
structures satisfy none of the formulas (3a)–(3c).

D. Comparison with existing schemes for threshold access
structures

For n ∈ N and s ∈ [n], consider the following threshold
access structure Γs =

{
(Ai

Q, A
i
F )

}
i∈[s]

on S = {s1, · · · , sn}
for s secrets, where

Ai
Q =

{
a ⊆ S∣∣|a| ≥ n− i+ 1

}
with Ai

F = 2S − Ai
Q for all i ∈ [s], which can be realized

by (k, n, s)-MVCS with k = n − s + 1 [21]. It readily
follows from this definition that

∣∣(Ai
Q

)
0

∣∣ = nCn−i+1, where
nCk denotes the binomial coefficient indexed by n and k.
Hence, by transforming Γs into a minimally refined one and
then applying Construction 13 to it, we have a VSS scheme
realizing Γs with the pixel expansion

s∑
i=1

nCn−i+12
(n−i+1)−1 =

n∑
i=k

nCi2
i−1,
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Share 1 Share 2 Share 3

Share 1+2 (v′1) Share 1+3 (v′2) Share 2+3 (v′3)

Share 1+2+3

Fig. 3. Example of a VSS scheme realizing Γ3 with secret images {v′i}3i=1,
where (Γ3, {v′i}3i=1) is equivalent to (Γ2, {vi}2i=1). In this example, all the
matrices are concatenated 6 times to make the pixel expansion m a square:
m = (2 + 2 + 2) × 6 = 62 (we may take m = 2 + 2 + 2 = 6 if m need
not be a square). The contrast is 1

6
for all the reconstructed images. In this

construction, Share 1+2+3, which is not a minimal element of the qualified
sets, is an all-black image.

where we have used the fact that the pixel expansion of
an optimal (n, n)-threshold VSS scheme is 2n−1 [15]. This
formula gives exactly the same pixel expansions as those of
(k, n, s)-MVCS for 2 ≤ k ≤ n ≤ 8 and s = n − k + 1
(see Table I in [21]). We note that the pixel expansions of
(k, n, s)-MVCS are not explicitly given in a general form but
determined by solving linear programming problems for each
instance.

Next, let n ∈ N, k ∈ [n] and s ∈ [n − k + 1], and
suppose that a list R = (rk, · · · , rn) satisfies the following
two conditions: (i) ri ∈ {0} ∪ [s] for any i ∈ {k, · · · , n}
and (ii) |{i ∈ {k, · · · , n}|ri = s′}| = 1 for any s′ ∈ [s]
(see [21] for details of the revealing list R). Now, let us
consider the threshold access structure Γ̂s =

{
(Ai

Q, A
i
F )

}
i∈[s]

on S = {s1, · · · , sn} for s secrets, where

Ai
Q =

{
a ⊆ S∣∣|a| ≥ indexR(i)

}
with Ai

F = 2S − Ai
Q for all i ∈ [s], which can be

realized by (k, n, s, R)-MVCS [21]. Here, for s′ ∈ [s] and
R = (rk, · · · , rn) satisfying the above conditions (i) and (ii)
such that ri = s′ (where the existence and uniqueness of such
ri follow from the condition (ii)), we have defined

indexR(s
′) = i

(note that i ∈ {k, · · · , n}). By transforming Γs into a mini-
mally refined one and then applying Construction 13 to it as

before, we have a VSS scheme realizing Γ̂s with the pixel
expansion

s∑
i=1

nCindexR(i)2
indexR(i)−1.

This formula also gives exactly the same pixel expansions as
those of (k, n, s, R)-MVCS for 2 ≤ k ≤ n − s, k + s ≤
n ≤ 8 and 2 ≤ s ≤ 4 (see Table II–IV in [21]). Again, we
note that the pixel expansions of (k, n, s, R)-MVCS are not
explicitly given in a general form but determined by solving
linear programming problems for each instance.

E. On optimality

In general, it is difficult to (directly) examine the optimality
of SS schemes realizing a general access structure (see, e.g.,
[3], [10]); in fact, the optimality has been shown so far only
for very limited classes of SS schemes such as threshold
SS schemes [17], threshold VSS schemes [5], [6] and (non-
perfect) uniform SS schemes [12].9 Hence, instead of directly
examining the optimality, we now examine the possibility that
the optimality of Construction 11 may be reduced to that of
each encryption Enci. For this purpose, consider first a simple
access structure Γ =

{
(Ai

Q, A
i
F )

}2

i=1
on S = {s1, s2} for 2

secrets, given by(
A1

Q

)
0
=

{{s1}} and
(
A2

Q

)
0
=

{{s2}}
with Ai

F = 2S−Ai
Q for all i ∈ [2]. This access structure can be

realized by a VSS scheme with the (deterministic) encryption
given by

Enc(b) =
(
b1
b2

)
for b ∈ {0, 1}2, while any VSS scheme generated by Con-
struction 11 has the pixel expansion no less than 2. Note that
the above matrix is the concatenation of the basis matrices
Cb1

1,1 and Cb2
1,1 with respect to the row (not column).

More generally, let Γ =
{
(Ai

Q, A
i
F )

}q

i=1
be an access

structure for q secrets, and for i ∈ [q], let Si
0 be the union

of
(
Ai

Q

)
0
; i.e. Si

0 =
⋃

a∈(Ai
Q)0

a. Moreover, let Ai�
Q and Ai�

F

be the restrictions of AQ and AF on Si
0, respectively; i.e.

Ai∗
Q = Ai

Q ∩ 2S
i
0 and Ai∗

F = Ai
F ∩ 2S

i
0 .

Suppose further that
{Si

0

}q

i=1
are disjoint, i �= j ⇒ Si

0∩Sj
0 =

∅ for all i, j ∈ [q], and let V SSi = (Enc�i ,Dec) be an optimal
VSS scheme realizing (Ai�

Q , Ai�
F ), with pixel expansion mi.

Then we can construct an optimal VSS scheme realizing Γ
by defining its encryption to be the concatenation of {Enc�i }i
with respect to the row (with padding 1 if necessary). Hence
the optimal pixel expansion for Γ is maxi mi (which comes
from the row concatenation), while any VSS scheme generated
by Construction 11 has the pixel expansion no less than∑

i mi (which comes from the column concatenation). Since
maxi mi <

∑
i mi for q ≥ 2, this shows that there exist access

structures for which Construction 11 generates no optimal VSS
schemes.

9An SS scheme is called uniform if it realizes an access structure which is
invariant under a permutation of the shares.
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IV. CONCLUDING REMARKS

We close this paper by mentioning an application of our
VSS schemes. In the authentication based on VSS schemes
encrypting a single secret image, one way to detect tampering
by an adversary is to divide the secret image into two disjoint
areas: one for a message and the other for the detection (see
e.g. the first method “content areas and black areas” in [14]).
On the other hand, VSS schemes encrypting multiple images
allow the authentication which can take the above two areas
identical; for instance, the second example in section III-C al-
lows the authentication in which Shares 1 and 3 are distributed
to a human recipient, Share 2 is generated by an informant, and
the two secrets v1 and v2 are taken to be an all-black image
for the detection and an image for a message, respectively.
(Here, we note that v1 and v2 can be decrypted by superposing
two (not three) shares and the reconstructed images have pixel
expansion 4 and contrast 1

4 .) This authentication, equipped
with the idea behind the third method “black and gray” in [14],
ensures that an adversary cannot tamper with the latter image
without tampering with the former, which makes its security
analysis simpler and more practical. It will be the subject of
future work to investigate this authentication in more detail.
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