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Abstract

Global interconnects are becoming the principal performance bottleneck for high

performance Systems-on-Chips (SoCs). Since the main purpose for these systems is

to shrink the size of the chip as smaller as possible while seeking at the same time

for more scalability, higher bandwidth, and lower latency. Conventional bus-based-

systems are no longer reliable architecture for SoCs due to the lack of scalability

and parallelism integration, high latency and power dissipation, and low throughput.

During this last decade, Network-on-Chip (NoC) interconnect has been proposed as a

promising solution for future SoC designs. It offers more scalability than the shared-

bus based interconnection and allows more processors to operate concurrently.

Despite the higher scalability and parallelism integration offered by NoC over

traditional shared-bus based systems, it is still not an ideal solution for future large

scale SoCs. This is due to some limitations such as high power consumption, high

cost communication, and low throughput. Recently, merging NoC to the third

dimension (3D-NoCs) has been proposed to deal with those problems, as it was a

solution offering lower power consumption and higher speed.

As 3D-NoC architectures started to show their outperformance and energy ef-

ficiency against 2D-NoC systems, questions about their reliability to sustain their

performance growth begun to arise. This is mainly due to challenges inherited from

both 3D-ICs and NoCs: On one side, the complex nature of 3D-IC fabrics and the
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continuing shrinkage of semiconductor components. Furthermore, the significant

heterogeneity in 3D chips which are likely to mix logic layers with memory layers

and even more complex technologies increases the fault’s probability in a system.

On the other side, the single-point-failure nature of NoC introduces a big concern

to their reliability as they are the sole communication medium. As a result, 3D-

NoC systems are becoming susceptible to a variety of faults caused by crosstalk,

electromagnetic interferences, impact of radiations, oxide breakdown, and so on. A

simple failure in a single transistor caused by one of these factors may compromise

the entire system reliability where the failure can be illustrated in corrupted mes-

sage delivery, time requirements unsatisfactory, or even sometimes the entire system

collapse.

In this thesis, we propose 3D-Fault-Tolerant-OASIS (3D-FTO), a robust fault-

tolerant 3D-NoC router architecture endorsed with reliable and graceful routing

algorithms. The proposed design handles a large number of faults in the input-

buffer, crossbar, and links (which are the most susceptible components to faults

in 3D-NoC systems) leveraging the inherent structural redundancy in the archi-

tecture to work around errors. Contrary to previous works, the proposed system

tolerates multiple faults in a single crossbar with no considerable performance degra-

dation. In addition, the used algorithms are always minimal (as long as there exist

one minimal path) and with the aid of Random-Access-Buffer (RAB) mechanism,

deadlock-freedom is ensured with no significant area nor power overhead.

The proposed 3D-FTO system was synthesized using Synopsys Design Compiler

at 45nm technology CMOS process technology and its layout is obtained using

Cadence SoC Encounter. The evaluation results showed the ability of 3D-FTO

to work around different kinds of faults ensuring graceful performance degradation

while minimizing the additional hardware complexity and remaining power-efficient.
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Chapter 1

Introduction

1.1 Background

Nowadays, the technology has become an essential pawn in our life that is not

restricted anymore to academic research or critical missions; but, it is moving away

to provide the simplest and easiest services that we need or desire for our daily

life. With the expanse of technology and the rising of new trends every day, the

necessity to process information anywhere and anytime is becoming the main goal

of developers and manufacturers. Therefore, embedded systems are getting more

popular day after day and they have several applications in all domains: video, audio,

home appliances, medical systems, robotics, security, cryptography, aeronautics, and

so on.

1.1.1 System-on-Chips

Systems-on-Chips (SoCs) [1,2] are embedded systems composed of several mod-

ules on a single chip (processors, memories, input/output peripherals). With SoCs,

it is now possible to process information and execute critical tasks at higher speed

and lower power on a tiny chip. This is due to the increasing number of transistors

that can be embedded on a single chip which keeps doubling every 18 months as

Gordon Moore predicted [3]. This made shrinking the chip size while maintain-

ing high performance possible. This technology scaling has allowed SoCs to grow

continuously in component count and complexity and evolve to systems with many

1



1.1. Background 2

processors embedded on a single SoC. As an example, the Intel Xeon processor [4]

includes 2.3 billion transistors. With such high integration level available, the devel-

opment of many cores on a single die has become possible. These systems are called

Multiprocessor Systems-on-Chip (MPSoC). For instance, the Tilera Tile64 [5] and

Intel Polaris [6] contain 64 and 80 cores, respectively.

Figure 1.1: SOC Design Complexity Trends [7]

Figure 1.1 illustrates the SoC design complexity trends made by International

Technology Road-map for Semiconductors 2011 (ITRS) [7]. ITRS predicts that

the number of Processing Engines will grow rapidly in subsequent years to reach

the 6000 PEs by 2026. Also, the amount of main memory is assumed to increase

proportionally with the number of Processing Elements (PEs). In the same way,

the number of Data Processing Engines (DPEs) will increase significantly, leading

to more than 70 TFlops processing performance [7].

As the number of cores keeps increasing, and in order to efficiently take advantage

of this large number, specific constraints must be taken into consideration. For

example, design complexity, low energy dissipation, small silicon area, manufacturer

and yield, resource management, etc.. In particular, the interconnection network
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starts to play a more and more important role in determining the performance and

also the power consumption of the entire chip [8]. Interconnects consume more than

50% of dynamic power, and this percentage is expected to increase [9]. Those factors

made conventional shared-bus and Point-to-Point (P2P) systems no longer reliable

architectures for SoCs, due to the lack of scalability and parallelism integration,

high latency and power dissipation, and low throughput. Figure 1.2 (a) and Fig.1.2

(b) show shared-bus and P2P interconnects, respectively.

(a) (b)

Figure 1.2: Conventional SoC architectures: (a) Shared-bus, (b) Point-2-Point

1.1.2 Network-on-Chips

Network-on-Chips (NoCs) [10–18] were introduced as a promising method which

can respond to the issues mentioned above. Based on a simple and scalable ar-

chitecture platform, NoC connects processors, memory, and other custom designs

together using switching packets on a hop-by-hop basis in order to provide a higher

bandwidth and more enhanced performance. As shown in Fig.1.3, NoC architectures

are based upon connecting segment (or wires) and switching blocks to combine the

benefits of the two previous architectures while solving their disadvantages, such

as the large numbers of long wires in P2P and the lack of scalability in shared-bus

systems.
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Figure 1.3: Network-on-Chip architecture

NoC main components

Observing Fig.1.3, we can distinguish three main components in a given NoC

system:

• Routers: Routers, labeled R in Fig.1.3, handle the transfer of packets between

each other in a hop-by-hop fashion until they arrive to their destination. They

are considered as the backbone of any NoC architecture. This is because

they perform the routing, switching, and flow-control functions to establish

a correct packet transfer between a given source and destination pair. These

functions will be discussed in details in the next chapter.

• Links: Links provide the connection between the different routers and allow

the exchange of data between them. Links can be bi- or uni-directional, or they

can contain several physical or logical channels. They may also be pipelined

to enhance the system overall performance. This depends on the target appli-

cation and its performance requirements that need to be satisfied.

• Network-Interface (NI): Usually, NIs constitute the sole medium interface be-

tween Processing Elements (PE) and routers. As the communication protocol
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between these two components is different, NIs handle the conversion of data

coming from the PE (for example, Load instruction) into the NoC format rep-

resented in packets or flits. NIs’ functions may be extended to satisfy some

parameter constraints. For example, when the data coming from the PE ex-

ceeds the link capacity (due to a limited hardware budget), NIs may handle

the packetization of this data into small packets. When they arrive to their

destination node, these packets are assembled to their initial data state in the

attached NI. This process is known as depacketization. With this property,

reducing the number of links can be achieved (thus, reducing the area and

power overhead) while making sure that the performance remains unchanged.

In addition, using a Network-Interface allows hiding the implementation de-

tails of the communication structure. This means that the network have no

information about the attached PE, and vice versa.

Challenges

At the same time, future applications are getting more and more complex, de-

manding a good architecture to ensure a sufficient bandwidth for any transaction

between memories and cores as well as communication between different cores on the

same chip. All of these factors made NoC not enough reliable for future systems,

especially when we talk about hundreds and thousands of cores. This limitation

comes basically from the high diameter that NoC suffers from. The network’s diam-

eter is the number of hops that a flit traverses in the longest possible minimal path

between a (source, destination) pair. The diameter is an important parameter for

the NoC design since a large network diameter has a negative impact on the worst

case routing latency in the network. For all these facts, the seek for optimizing

NoC-based architectures becomes more and more necessary. A lot of research have

been conducted to achieve this goal in various approaches, such as: developing fast

routers [19–22] or designing new network topologies [23–25].
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1.1.3 3D-Network-on-Chips

One of the proposed solutions to enhance the performance of NoC systems and al-

leviate their limitations, was evolving it to the third dimension. In the past decade,

3-Dimensional Integrated Circuits (3D-ICs) [26, 27] have attracted a lot of atten-

tion as a potential solution to resolve the interconnect bottleneck. A 3-dimensional

chip is a stack of multiple device layers with direct vertical interconnects tunnel-

ing through them [28, 29]. The research made so far have shown that 3D-ICs can

achieve higher packing density due to the addition of a third dimension to the con-

ventional two-dimensional layout; and thanks to the reduced average interconnect

length, 3D-ICs can achieve higher performance. Besides that, with this reduction

of total wiring a lower interconnect-power consumption can be obtained [30, 31].

Not forget to mention that circuitry is more immune to noise with 3D-ICs [27].

This may offer an opportunity to continue performance improvement using CMOS

process with smaller form factors, higher integration density, and supporting the

realization of mixed-technology chips [32]. As Topol et al. in [31] stated, 3D-ICs

can improve the system performance even in absence of scalability. Combining the

NoC structure with the benefits of the 3D integration leads us to present 3D-NoC

as a new architecture. This architecture responds to the scaling demands for future

SoC, exploiting the short vertical links between the adjacent layers that can clearly

enhance the system performance. This combination may provide a new horizon for

NoC designs to satisfy the high requirements of future large scale applications.

1.2 Problems and Motivation

As 3D-NoC architectures started to show their outperformance and energy ef-

ficiency against 2D-NoC systems, questions about their reliability to sustain their

performance growth begun to arise [33]. This is mainly due to challenges inherited

from both 3D-ICs and NoCs: On one side, the complex nature of 3D-IC fabrics and

the continuing shrinkage of semiconductor components. Furthermore, the significant

heterogeneity in 3D chips which are likely to mix logic layers with memory layers and
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even more complex technologies increases the fault’s probability in a system [34].

On the other side, the single-point-failure nature of NoCs introduces a big concern

to their reliability as they are the sole communication medium. As a result, 3D-NoC

systems are becoming susceptible to a variety of faults caused by crosstalk [36], im-

pact of radiations [37], oxide breakdown [98], and so on [124]. A simple failure in a

single transistor caused by one of these factors may compromise the entire system

reliability where the failure can be illustrated in corrupted message delivery, time

requirements unsatisfactory, or even sometimes the entire system collapse. In fact,

it is predicted that on a future 100-billion transistor chip, 20-billion transistors will

be malmanufactured and further 10-billion will fail during operation [35]. This fore-

cast might be pessimistic; nevertheless, it is evident that the failure rate is going to

substantially increase in future CMOS technologies [37–39].

To ensure reliability, 3D-NoC systems should be able to detect first the fault

occurrence then working on reconfiguring the system resources to recover from these

faults and guarantee the continuous correct functionality of the system. Detection

can be obtained by relying on custom testing mechanisms or other detection scheme

based on codes. Codes are largely used in NoC systems and they were proposed to

detect and correct errors in specific components of the system at the presence of a

specific type of fault. For instance, Crosstalk Avoidance Codes (CAC) [40, 41] are

used for transmission wires and they are considered more efficient than the already

existing methods (e.g., shielding [42]) to avoid crosstalk. For errors whose presence

could not be detected, Error Detection Codes (EDC) and Error Correcting Codes

(ECC) [43] are used to detect and correct these errors. Checking mechanisms in

3D-NoC systems are out of the scoop of this thesis and we are mainly interested

in correcting the faults detected by reconfiguring the system components to recover

from these faults.

1.3 Thesis objectives and contributions

Starting from all the facts mentioned above, in this thesis we propose 3D-Fault-

Tolerant-OASIS (3D-FTO), a reliable fault-tolerant 3D-NoC system endorsed with
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efficient routing algorithms. The proposed system is leveraging on adaptive resource

allocation to handle a large number of transient, intermittent, and permanent faults.

Along the thesis, we show the ability of the proposed techniques to be easily adopted

to any kind of topology, switching policy, flow control, or detection mechanisms. The

main contributions of this research are:

• Routing: To address link faults, graceful fault-tolerant routing algorithms are

proposed:

– We first present an efficient fault-tolerant routing algorithm, named Look-

Ahead-Fault-Tolerant (LAFT) [11], to mitigate the different kinds of link

faults. LAFT takes advantage of look-ahead routing to boost the per-

formance of 3D-NoCs while ensuring link fault-tolerance and minimizing

the additional hardware. Moreover, when errors cannot be contained in

a single router (entire input-buffer or crossbar is declared faulty), LAFT

is invoked to declare the router as faulty, then reconfigured to bypass it

to avoid any information loss.

– We present later a second routing that deals with LAFT’s weakpoints.

We called this optimized routing algorithm Hybrid-Look-Ahead-Fault-

Tolerant (HLAFT) [10]. HLAFT combines both local and look-ahead

routing to further enhance the router’s throughput under worst-case fault

scenarios and make the performance degradation as graceful as possible.

• Reliable router architecture relying on adaptive resource allocation to the most

susceptible components to faults with redundant resources to insure fault-

tolerance:

– Input-buffer: To encounter these faults, a smart buffering mechanism,

named Random-Access-Buffer (RAB) [10, 44, 45], was firstly introduced

for deadlock-recovery. RAB was also extended and endorsed with Traffic-

Prediction-Unit (TPU) to tolerate faults in the input-buffer slots.

– Crossbar: We employed Bypass-Link-on-Demand (BLoD) [45] approach

that provides the appropriate and minimal bypass channels as alternative
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escapes whenever crossbar channels are detected faulty.

• Evaluation: The proposed architecture was synthesized using Synopsys De-

sign Compiler with 45nm CMOS process and evaluated with different parallel

benchmarks and traffic patterns. Evaluation results and analysis are provided

to show the benefits gained with the proposed architecture.

1.4 Thesis outline

The rest of the thesis is organized as follows:

• In Chapter 2, we first overview on-chip interconnect main components and we

highlight the ones that are proper to 3D-NoC systems. Later, we present the

different types of faults in NoC systems and their main causes.

• Chapter 3 presents some of the important previously conducted work that dealt

with fault-tolerance in NoC systems. We focus mainly on routing algorithms

targeting the link failure in 3D-NoC systems, and also works presenting reliable

router architectures presented for 2D-NoC architectures, but can be adopted

in the third dimension.

• Chapter 4 is dedicated to the fault-tolerant routing algorithms proposed in

this thesis to solve the link failure. We start first by presenting Look-Ahead-

Fault-Tolerant (LAFT) routing and we show its benefits. Then we explain

how we can further optimize LAFT by combining both look-ahead and local

routing for better routing decision making. The optimized routing algorithm

is named Hybrid-Look-Ahead-Fault-Tolerant routing algorithm (HLAFT).

• Chapter 5 introduces the proposed 3D-FTO router architecture and its main

components. We start first by presenting a brief overview of the baseline

3D-OASIS-NoC router. Second, we introduce Random-Access-Buffer (RAB)

mechanism and its efficiency to recover from deadlock and also to tackle the

failure problem in input-buffers. Third, the Traffic-Prediction-Unit (TPU)

that we proposed for further traffic balance and reduce the buffer congestion
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is also explained. Finally, we explain Bypass-Link-on-Demand (BLoD) aimed

to ensure fault-tolerance in the crossbar.

• We dedicate Chapter 6 for the evaluation methodology and results. We de-

scribe the different adopted benchmarks and assumed parameters, then we

provide a comprehensive evaluation and analysis of the different techniques

and algorithms proposed in this thesis.

• Finally in Chapter 7, we end this thesis with the conclusion. We also discuss

how this work can be optimized furtherer.



Chapter 2

On-Chip Interconnects and

Reliability

In this chapter, we introduce the on-chip interconnect paradigm and we explain

its main components including topology, switching policy, flow-control, and routing

algorithms. We also highlight the transition from 2D- to 3D-NoC including the

necessary modifications in addition to the parameters that are proper to 3D-NoC

systems. Moreover, we state the main advantages and challenges of these latter

systems. Finally, we present the different types of faults in NoC systems and their

main causes.

2.1 Overview of on-Chip interconnect

The on-Chip interconnection is characterized by several components and param-

eters. The selection of each one of these is based on some reasons and backgrounds

regarding the fulfillment of the bandwidth requirements for specific applications and

parallel computing applications as well. NoC systems can be implemented using dif-

ferent topologies, forwarding methods, flow controls, routing algorithms, and so on.

The understanding of these categories is primordial before starting the design phase.

Since each type of this technique has its own characteristics and impacts on the sys-

tem overall performance. In this section, we explain the importance of each one of

these keywords and we present the different types of each one of them.

11
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2.1.1 Topology

The topology defines the way routers and links are interconnected. Topology is

an important design choice as it defines the communication distance and its uni-

formity. Some of the most used topologies are depicted in Fig. 2.1. The choice

of a topology depends on its advantages and drawbacks [46, 47]. Usually, regular

topologies (Fig. 2.1 (a-e)) are preferred over irregular ones (Fig. 2.1 (f)), because of

their scalability and reusable pattern. Otherwise, irregular or mixed topologies can

be more conveniently adapted to specific needs of the application. This depends on

the target application which may require some area, power, or timing constraints

that need to be strictly satisfied. In this case, regular topologies might not be the

right approach to implement such special applications, and custom irregular ones

offer better flexibility to meet the desired requirements. On the other hand, one of

the main problems that irregular topologies suffer from is the design time needed

to profile the application and decide the best topology layout that satisfies these

design requirements.

The Mesh [48, 49] and Torus [50] based topologies are considered as the most

commonly used on-chip network topologies. Together they constitute over 60% of

2D-NOC topology cases [51]. Mesh and Torus are depicted in Figs. 2.1 (a) and (b),

respectively. Both of them can have four neighboring connections; but, only Torus

has wraparound links connecting the nodes on network edges. Other topologies like

Butterfly, Fat-tree, and Ring (depicted in Figs. 2.1 (c), (d) and (e), respectively)

have roughly even proportions.

Compared with other on-chip network topologies, the mesh topology in particular

can achieve better application scalability. The implementation of routing functions

in mesh topology is also simpler and can be characterized well. In the on-chip

interconnection networks for on-chip multiprocessor systems, the mesh architecture

is widely used and preferable. An example of on-chip multiprocessor system that

uses mesh topology is Intel-Teraflops system [6]. The 80 homogeneous computing

elements are interconnected through NoC routers in the 2D mesh 8×10 network

topology.
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2.1.2 Forwarding methods

There exist two kinds of forwarding methods in NoC interconnects: 1) circuit

switching and 2) packet switching. In the first method, the path between a given

source and destination pair should be firstly established and reserved before starting

to send the actual data. This offers some performance guarantees as the message is

sure to be transferred to its destination without the need for buffering, repeating,

or regenerating. Moreover, if during the establishment of the path a problem is

detected (such as failure or high congestion), the source node can recompute another

safer path to be reserved again. However, the path setup required for each message

increases the latency overhead, in addition to the extra congestion caused by the

different control data traveling the network and competing with the actual data for

the network resources. Therefore, it is best suited for predictable transfers that are

long enough to amortize the setup latency.

Packet-switching is more common and it is utilized in about 80% of the studied

NoCs [51]. In packet switching, routers communicate through transmitting packet-

s/flits through the network. The transmission of a given packet should not block the

communication of other ones in the network. To solve this problem, a forwarding

method (switching policy) can be selected to define how the network resources (link

and switched) are reserved and how they are torn down after the transfer completion.

The forwarding methods have a big impact on the NoC performance and each one

of them has its advantages and drawbacks. In packet switching, Store-and-Forward

(SF), Wormhole Switching (WH), and Virtual-Cut-Through (VCT) are considered

as the main switching methods [52].

Store-and-Forward (SF) switching

In this switching method, each message should be divided into several packets.

As depicted in Fig. 2.2, each packet is completely stored in a First-In-First-Out

(FIFO) buffer before it is forwarded into the next router. Therefore, the size (depth)

of FIFO buffers in the router is set similar to the size of the packet in order to be able

to completely store the packet. This represents the main drawback of this switching

policy since it requires a significant amount of buffer resources which increases as
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Figure 2.2: Store-and-Forward switching.

we increase the packet size. This amount of allocated buffer slots has a huge impact

on the area and power consumption of the NoC system. Moreover, as can be seen

in Fig. 2.2, node (0,2) has two empty slots since the first two flits of Packet-4 (P4F1

and P4F2) have been already transmitted. Despite the available two slots, Packet-5

(P5) in node (0,1) is still stalled. This is because in order to be forwarded, all the

four slots in node (0,2) should be freed; therefore, P5 can be forwarded only when

P4 is forwarded as well and the buffer slots are freed. Store-and-Forward was the

first switching method that has been used in many parallel machines [53–55]. It was

also in the first prototypes and designs of NoC [56–60].

Wormhole (WH) switching

Wormhole switching (WH) is one of the most popular, well-used, and well suited

for NoC systems. In WH switching method, represented in Fig. 2.3, packets are

divided into a number of flits. As can be seen in Fig. 2.3, the four flits of Packet-1
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Figure 2.3: Wormhole switching.

(P1F1, P1F2, P1F3, and P1F4) are dispersed in four different routers. Therefore,

no need for buffer resources to host the entire packet. The main advantage of the

wormhole switching is that the buffer size can be set as small as possible to reduce the

buffering area cost. This responds to the area and power overhead of SF. However,

blocking is one of its major drawbacks. As depicted in Fig. 2.3, the last flit of P1 is

located at the head of the south input-buffer of node (1,0). At the tail of the same

input-buffer, the first flit of Packet-2 (P2) is requesting the grant to be forwarded

to the north output-port (heading for node (2,0)). In this scenario, there is a tight

dependency between the first P1F4 and the second P2F1. In other words, if P1F4

is forwarded then P2F1 can be forwarded as well; however, in case where P1F4 is

blocked for congestion or failure reasons in the downstream nodes, then P2F1 is

blocked too. Consequently, the remaining flits of P2 and the dependent other flits

will be blocked as well. This will lead to the partial or entire system deadlock and

a significant performance degradation. One of the solutions to solve this problem in



2.1. Overview of on-Chip interconnect 17

Figure 2.4: Virtual-Cut-Through switching.

WH switching is the use Virtual-channels [61]. This is discusses later in this chapter

(Section 2.1.5). The wormhole switching method was firstly introduced in [62]. The

work in [63] has presented also the performance of the wormhole switching in k-ary

n-cube interconnection networks.

Virtual-Cut-Through (VCT) switching

Figure 2.4 demonstrates Virtual-Cut-Through (VCT) switching. VCT is an in-

termediate forwarding method that has the properties of both SF and WH. As

represented in 2.4, with VCT it is possible to forward flits one after another. So,

flits from different packets can share the same input-buffer eliminating the stalling

caused by SF. In order to solve the blocking problem found in WH switching, VCT

requires that the buffer depth should be equal to the packet size (number of flits in

the packet). This buffer size is needed to store blocked flits. When blocking happens,

flits are stored in a router next to the blocked one. The buffer size is larger than
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Figure 2.5: ON/OFF flow control.

WH switching since the entire packet is stored. However, the forwarding latency is

much smaller than SF switching. This is because in the Store-and-Forward packet

switching method the packet is completely stored before it is forwarded to the next

router and the delay to wait for the complete packet storing is very long.

2.1.3 Flow control

Flow control determines how resources, such as buffers and channels bandwidth

are allocated, and how packet collisions are resolved [16]. Whenever the packet is

buffered, blocked, dropped, or misrouted, this depends on the flow control strategy.

A good flow control strategy should avoid channel congestion while reducing the

latency. ON/OFF, Credit-based, and ACK/NACK are commonly used control flows

used in NoC [13] and are explained in this subsection.

ON/OFF flow control

ON/OFF flow control [64] has protocols which can manage data flow from up-

stream routers while issuing a minimal amount of control signals. It is able to do

this because it has only two states: ON or OFF. This control flow has threshold

values, which are dependent on the number of free buffers in downstream routers.
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Figure 2.6: Credit-based flow control.

The threshold values are used to decide the states of the control signals. When the

number of free buffers is over the threshold, downstream routers emit an OFF signal

to upstream routers, stopping the flow of flits. Meanwhile, downstream routers send

flits to other nodes, and the number of free buffers becomes less than the threshold

value. At that time, downstream routers emit an ON signal to upstream routers,

restarting the flow of flits. Since the ON/OFF signals are just sent to switches only,

there is a low calculation time. Figure 2.5 indicates one transmission example with

ON/OFF flow control.

Credit-based flow control

In Credit-based flow control (CB) [13, 16, 65, 66], upstream nodes have informa-

tion about the number of empty slots in downstream buffers. We call this informa-

tion CN (Credit Number). Each time an upstream node sends a flit to downstream

buffers, the number is decremented by one. When downstream buffers send some

flits to other nodes, they also send a credit control signal to upstream routers, and

when the upstream router receives the signal, the CN associated with the path is

incremented appropriately. Figure 2.6 illustrates the data flow and an example of

transmission. In this example, initially Router 2 is blocked, and CN is decremented.
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Figure 2.7: ACK/NACK flow control.

Next Router 2 starts sending flits and credit signals are emitted to Router 1, which

receives the signal and re-starts sending flits to Router 2.

ACK/NACK flow control

The above flow controls send signals from the downstream buffers to upstream

ones and decide whether or not to send flits. On the other hand, ACK/NACK flow

control [13, 64] does not need to wait and calculate such signals from downstream

buffers. In this flow control model, as flits are sent from source to destination, a copy

is kept in each of the node buffers to resend it, if necessary, in case where some flits

are dropped. An ACK signal is sent from a downstream node when a flit is received.

When the upstream node receives this signal, it deletes its copy from its buffers. If

the downstream node cannot or does not receive the correct flits, it sends NACK

signal to the upstream node, and the upstream node rewinds its output queue and

starts resending a copy of the corrupted flit. 2.7 depicts an example of this flow

control.
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2.1.4 Routing algorithms

This subsection presents some basic backgrounds and concept about routing

algorithms. In general, the selected routing algorithm for a network is topology

dependent. This section will give only a brief description about routing algorithms

and their taxonomy. Routing algorithms can be classified according to several cri-

teria [67]:

• Number of destinations: According to the number of destination nodes, to

which packets will be routed, routing algorithms can be classified into unicast

routing and multicast routing as shown in 2.8. The unicast routing sends the

packets from a single source node to single a destination node. The multicast

routing sends the packets from a single node to multiple destination nodes. The

multicast routing algorithm can be divided further into Tree-based multicast

routing and Path-based multicast routing.

Figure 2.8: Categorization of routing algorithms according to the number of desti-

nations: (a) unicast, (b) multicast.

• Routing decision locality: According to the place where the routing de-

cisions are made, routing algorithms (unicast or multicast routing) can be

classified into source routing and distributed routing. As depicted in 2.9, in the

distributed routing, there will be one header probe (for unicast routing case)
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Figure 2.9: Categorization of routing algorithms according to decision locality: (a)

distributed, (b) source.

containing the address of the destination node (the source node address can

be also embedded). The routing information is locally computed each time

the header probe enters a switch node. In the source routing, paths are com-

puted at the source node. The pre-computed routing information for every

intermediate node, to where a message will travel, will be written in a routing

probe. All routing probes that represent the routing paths from the source to

destination node will then be assembled as packet headers for the message.

• Adaptivity: In all cases of the routing implementation seen so far, the routing

algorithm can be either deterministic or adaptive (as represented in 2.10).

In deterministic routing, the computed paths from a source and destination

pair are statically computed and will always be similar. In adaptive routing

algorithms, the paths from source to destination can be different, because the

adaptive routing selects adaptively the alternative output ports. An output

channel is selected based on the congestion information or the channel status

of the alternative output ports. Adaptive routing algorithms generally guide

messages away from congested or faulty regions in the network and they can

be further classified according to the number of alternative adaptive turns as
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Figure 2.10: Categorization of routing algorithms according to adaptivity: (a)

deterministic, (b) adaptive.

Fully adaptive and Partially adaptive routing algorithms.

• Minimality: According to the minimality of the routing path, routing al-

gorithms can be classified into minimal or non-minimal algorithm (see Fig.

2.11). The minimal adaptive routing algorithm will not allow a message to

move away from its destination node. In other words, the message will always

be routed closer to its destination node traversing the minimal number of hops

to reach its destination. In the non-minimal algorithm, the message can be

routed away from its destination node. This can be performed randomly or

following some rules and restrictions usually found in adaptive routing algo-

rithms.

2.1.5 Deadlock and Livelock

Deadlock

Deadlock is caused by the cyclic dependency between packets in the network. It

is one of the major issues in NoC systems which is caused when packets in different
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Figure 2.11: Categorization of routing algorithms according to minimality: (a)

minimal, (b) non-minimal.

buffers are unable to progress because they are dependent on each other forming

a dependency cycle. It can occur because packets are allowed to make all turns in

clock-wise and counter clock-wise turn directions.

Figure 2.12 illustrates a deadlock example in an adaptive NoC system. The

dependency is caused by the flits exchange between R02 and R01. Due to the presence

of faults, the choices for a minimal routing is limited and both communications are

dependent on each other; thus, none of them can make progress along the network.

On the same figure, we can see that flits Dest10 and Dest00, stored in the input-ports

of R11 and R01 respectively, are victims of this deadlock; i.e., even their output-

channels are free, they have to wait in the buffer until the blocking is resolved.

Virtual-Channel (VC) [61] is one of the most well used techniques for deadlock

avoidance. As illustrated in Fig. 2.13, VC divides the input-buffer in smaller queues

which are independent on each other and managed by an arbiter. When a blockage

happens in one VC, the other ones are not affected and they continue asking requests

for their corresponding output-channels. In this fashion, non-blocked requests are

served and their slots are freed to host other incoming flits.

Another technique used for deadlock-avoidance is called Virtual-Output-Queue

(VOQ) [68]. In VOQ, as shown in Fig. 2.14, the input-buffer is divided into different
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Figure 2.12: Deadlock example in adaptive NoC systems.

Figure 2.13: Virtual-Channel-based router architecture.
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queues to host incoming flits which are stored depending on their corresponding

output-channel; i.e., VOQ (i,j) stores flits coming from input-port i wishing to access

output-port j. For each output-channel, a 7x1 crossbar(i) is dedicated to handle the

traversal of flits coming from the different input-channels and asking the grant for

the output-channel(j). According to [69], VOQ can achieve less switch delay than

VC with the same efficiency.

Figure 2.14: Virtual-Output-Queue-based router architecture.

Both VC and VOQ ensure deadlock-freedom; however, the employment of such

techniques is costly in terms of hardware and implementation complexity. This is

caused by the arbitration needed to handle the different requests coming from the

multiple VCs/VOQs at each input-port. To solve this overhead, another solution

for deadlock avoidance can be achieved by applying allowed turns and prohibiting

one turn in every clock-wise and counter clock-wise turn direction. The prohibited

turns will avoid cyclic dependency between packets in the network. Some routing
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algorithms are solving the deadlock problem based on these prohibitions which are

called turn models. The design of adaptive routing algorithms based on turn models

has been introduced in [70]. The work has presented examples of turn models for

adaptive routing algorithms in 2D mesh-based interconnection network.

Livelock

If the packets are allowed to make non-minimal adaptive routing, then a problem

called livelock configuration may occur. The livelock is a situation where a packet

moves around a destination node but it never reaches the destination node. The

livelock can be avoided by only allowing the packets to make minimal routings;

however, if the non-minimal routing is allowed, then a mechanism to detect livelock

must be implemented.

2.2 3D-Network-on-Chip

3D-Network-on-Chip (3D-NoC), is a natural evolution of 2D-NoC. As depicted in

Fig. 2.15, the simplest way is to add two additional ports to a given 2D-NoC router

for the vertical up and down directions. As in 2D-NoCs, 3D-NoCs are character-

ized by several components and parameters that designers should carefully decide.

Some of them are the same as in conventional 2D-NoCs. This includes the flow

control, switching policy, arbitration mechanism, and other methodologies that do

not strongly depend on the architecture whether it is 2D or 3D. However, other

components and parameters are different when we move to the third dimension.

Therefore, in this section we give an attention to these components and methods to

better understand the challenges and advantages of 3D-NoC.

2.2.1 Topology and router architecture

3D-NoC is a widely studied research topic and many works have been conducted

so far to solve the various challenges in 3D-NoC designs. Few of these works focused

on the router architecture and how to ensure the vertical connection between routers

from different layers. For example, Li et al. [72] has modified the 7x7 Symmetric 3D
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Figure 2.15: 4x4x4 3D-NoC mesh topology.

router [71] by using a dTDMA bus (distributed Time Division Multiple Access) as

a communication interface between the different layers of the network, to create a

3D NoC-Bus Hybrid architecture, as shown in Fig. 2.16. This kind of architectures

reduces the number of ports in each router from 7 to 6. However, flits wishing to

travel from one layer to another should compete the access to the shared bus, since

it is the only inter-layer communication medium. Besides that, to travel from one

layer to another each packet should undergo two buffers (one output buffer in the

upstream node, then an input buffer in the downstream node). This may increase the

dynamic power consumption, in addition to the static power and latency overhead
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caused by the deployment of the output buffer. All these reasons may lead to

undesirable performance degradation especially under a heavy inter-layer traffic.

Figure 2.16: 3x3x3 3D-NoC Bus Hybrid topology [73].

Kim et al. [74], also proposed another structure for the 3D-router called True-

NoC. By implementing all the vertical links into a single 3D-crossbar, the router has

only 5 ports since we do not need any more additional ports for the vertical con-

nections. An optimized architecture of True-NoC has been introduced and named

3D Dimensionally-Decomposed (DimDe) [74]. DimDe provides a good tradeoff be-

tween circuit complexity and performance benefits presenting consistently the lowest

latency [74]. In fact, both systems present promising results by reducing the inter-

layer distance, and making the travel between the different layers in one single hop

possible. But, this kind of routers also dramatically increases the arbiter cost and

power consumption, besides the implementation complexity of such structure.

Ramanujam et al. [75] considered the load balancing in 3D-NoC and presented

a layer-multiplexed 3D design for vertical communication. The main drawback of

this architecture is the two-stage crossbar that every flit should traverse which is

considered as non-efficient in terms of power. Park et al. [76], presented a Multi-

Layered On-Chip Interconnect Router Architecture (MIRA) that implements a 2D

mesh multiprocessor-chip in the third dimension. However, with such technique

the processor cores are assumed to be designed in 3D which makes existing highly

optimized 2D processor cores difficult to be reused. Matsutani et al. [77] introduced

XNoTs. This architecture requires large vertical links which makes it a less power

efficient solution.
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2.2.2 Routing algorithms

Another important design challenge that should be taken care of while designing

a 3D-NoC is the routing algorithm. Many routing algorithms have been proposed

for NoC systems but most of them focused only on 2D-NoC topologies. Among all

the studies conducted for 3D-NoCs, few of them targeted routing algorithms and

they can be classified into two categories. The first one includes some of the well

known routing schemes in 2D-NoC that were extended to the third dimension, such

as Dimension Ordered Routing (DOR) [78], Valiant [79], ROMM [80], O1TURN

[81]. The routing algorithms in the second category are specially proposed for 3D-

NoC architectures including some custom routing schemes that aim to balance the

traffic along the network or to reduce the thermal power. For instance, Ramanujam

et al. [82] presented an oblivious routing algorithm called Randomized Partially

Minimal (RPM) that targets balancing the traffic along the network, improving then

the worst case scenario. RPM sends packets to a random layer first, then routes

them along their X and Y dimensions using either XY or YX routing with equal

probability. Finally, packets are sent to their final destination along the Z dimension.

In a quite similar technique, Chao et al. [83] addressed the thermal power problem

in 3D-NoCs. Starting from the fact that the upper layers in the network detain

the highest thermal power of the design, they proposed a thermal aware downward

routing scheme that sends first the traffic to a downer layer, routes along the X and

Y dimensions before sending the packets back up to their destination node. This

technique avoids communication in upper layers, where the thermal power is more

important than the downer ones, and then can ensure the thermal safety of the

design.

2.2.3 Through Silicon Via (TSV)

Contrary to horizontal links in 2D-NoC, 3D NoC vertical links consist in bundles

of Through Silicon Vias (TSVs) [84,85]. Represented in Fig. 2.17, a TSV is a vertical

connection which is made into silicon. The positive side of TSVs is that it enables

vertical interconnections, and allows the stacking of different dies. This enables the
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reduction of the chip footprint, and at the same time improves the performance due

to the vertical interconnections. We highlight in the next two paragraphs the size

and placement challenges of TSVs and their important role in defining the reliability

of 3D-NoC systems.

Figure 2.17: TSV channel in a 3D Wafer Level Packaging [86].

TSV Dimensions

A TSV can have different diameters and different pitch. As depicted in Fig.

2.18, the pitch is the required distance between two given TSVs. The diameter and

the pitch have a strong relationship. The smaller the diameter is, the smaller the

pitch, and the denser the design. The problem with TSVs is that it cannot shrink

the same way like transistors do. This is why TSVs are far bigger than transistors.

One of the reasons the TSV cannot be shrunk under a certain size is if the diameter

of a TSV is shrunk, the wafer thickness should also be smaller, because of via filling

reasons [85]. [85] states that when using TSVs with diameters of 10 nm and less, the

density can go as high as 10000 TSV/mm2. Nevertheless, very small diameter TSVs

have been designed where 4 nm wide TSV have been patterned with lithography

using 3.2 µm thick photo-resist [87].
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Figure 2.18: 3x3 TSV array.

Placement

The placement of TSVs on a chip determines the reliability and speed. For exam-

ple, a regular placement of TSVs improves the exposure quality of the lithographic

process and therefore improves the yield [89]. On the other hand, the keep-out-zone

(KOZ) (as shown in Fig. 2.18) is an area outside of the TSV, where no transistor

can be placed because of reliability issues. But, because of this, the pitch of the

TSVs becomes larger, so does the area which will be covered by TSVs and KOZ.

Authors in [88] compare several TSV placement topologies, and states that area and

performance wise, the shielded and isolated topologies are preferred.

2.2.4 3D-NoC advantages and challenges

3D-NoC systems inherit several advantages from the 3D-Integration. We can

summarize them as follow:

• Footprint: More functionalities fit into a smaller space and the device density

increases. This extends Moore’s Law and enables a new generation of tiny but

powerful devices.

• Speed: The average wire length becomes much shorter with 3D-NoC, and
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since the propagation delay is proportional to the square of the wire length,

the overall performance is enhanced and the bandwidth is increased compared

to System-in-Package (SiP).

• Power: 3D-NoCs offer two features that contribute in the power reduction:

1) keeping the signals on-chip (and not off-chip) which reduces the power

consumption by ten to a hundred times [90], 2) and also by reducing the wire

length, power consumption can be also decreased by producing less parasitic

capacitance.

• Heterogeneous integration: Circuit layers can be built with different pro-

cesses, or even on different types of wafers. This means that components can

be optimized to a much greater degree than if they were built together on a

single wafer. Even more interesting, components with completely incompat-

ible manufacturing could be combined in a single device [91], enabling new

features.

Despite the advantages mentioned above which are promising to open several

new possibilities for new, secure and flexible design possibilities, 3D-NoCs are facing

several challenges:

• Yield: Each extra manufacturing step (layer thinning, TSV creation, bond-

ing) adds a supplementary risk for defects: misalignment, dislocation, void

formation, oxide film formation over copper interfaces, pad detaching, defects

due to temperature, coupling and so on. In addition, the accumulated effects

of these defects are very difficult to predict and prevent.

• Heat: Thermal buildup within the stack must be prevented or dissipated.

Different solutions have been proposed, including thermal TSVs [92].

• Design complexity: Taking full advantage of 3D requires intricate and ele-

gant multi-level designs. Chip designers will need new CAD tools to address

the 3D paradigm [93]. This has an important effect on the time-to-market as

it is an important constraint.
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• TSV footprint: The footprint of a vertical link is huge with respect to the

2D counterparts, because of the very large TSV diameter and pitch (tens of

mm [94,95]).

2.3 Reliability in on-chip interconnect

Faults can occur at any component of a 3D-NoC system (i.e., link, router, buffers,

crossbar, and so on). Their rates of occurrence, reasons, and places depend on the

design, technology, environment and operation conditions.

2.3.1 Reliability and time

From a time perspective, the duration of faults is paramount especially for real-

time 3D-NoC systems and it can be categorized into three main types [96]: 1)

Transient faults: they occur and remain in the system for a particular period of

time before disappearing; 2) Intermittent faults: they are transient faults that occur

from time to time; 3) Permanent faults: they start at a particular time and remain

in the system until they are repaired.

2.3.2 Failure and main factors

The three types of faults can be caused by several internal or external factors.

While previous works presented in details the different failure mechanisms [124], we

just briefly highlight below some of the most well-known and well-studied faults:

Transistor Infant Mortality (TIM) [138]: This failure is a direct result of

the continuing shrinkage of the transistor dimensions shrinkage. This makes the

manufacturing of transistors quite complex and the early transistor failure is more

often to happen. Burn-in is one of the processes that most of the manufacturers use

to quickly eliminate the weakest and most vulnerable transistors by applying high

voltage and temperature. By the end of this process, only components possessing

robust transistors will survive. However, this process is starting to lose its efficiency

in nanometer technology scaling due to the increased temperature leading to leakage



2.3. Reliability in on-chip interconnect 35

current which leads to yet higher increasing temperature. As a result, aggressive

burn-in will destroy even robust transistors.

Electromigration (EM) [97]: EM is caused by the diffusion of metal atoms

along the conductor in the direction of electron flow. This happens when the metal

conductor gets smaller and, in consequence, its current density increases. Therefore,

the ions in the conductor start to migrate leaving holes in the metals. As a result,

some regions of built up unwanted metal can short to an adjacent trace.

Time Dependent Dielectric Breakdown (TDDB) [98]: TDDB occurs when

the thin Oxide insulator between the gate and the induced channel begins to wear-

out by time. The main consequence for this phenomenon is the formation of a

conducting path through the Oxide to the substrate. At the presence of such path, a

leakage current through the Oxide to the substrate starts to flow. As the technology

allowed the Oxide to be thinner and thinner, TDDB is one of the main concerns of

manufacturers and ASIC designers.

Hot carrier degradation (HCD) [99]: the presence of a strong electrical field

causes the carriers to heat-up. This heat causes the transistor transconductance to

slowly degrade and the threshold voltage to change. With threshold voltage shifted,

some parts of the circuit do not meet their time requirements leading to time faults

or in some cases the entire device may encounter failure.

Process variation (PV) [100]: PV is one of the common concerns resulted from

the evolution of technology and manufacturing process. The continuous variation

of transistor dimensions and doping concentration leads to increasing concerns, as

well as higher possibility for low performance devices.

Single-Event Upset (SEU) [101]: SEU is a logic glitch and a main factor that

may cause the wrong computation of a given combinational logic. Despite the fact

that many earlier works tried to diminish the importance of such failures and that

many major manufacturers assure that the problem is solved in their products, SEU

still remain a big concern especially due to the growing chip density and reduced

supply voltage.
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2.3.3 Reliability and locality

From a locality perspective, it is important to analyze the behavior of faults in the

different components of the system to find the ones where the faults are more often

to occur. According to [141], input-buffers and crossbar occupy the largest area in

3D-NoC system that can reach the 80% and 10%, respectively. While each one of the

remaining components do not pass the 3% of the router total area. Consuming the

largest portion of the router area, the fault occurrence probability is very high in the

input-buffers and crossbar if we assume that the faults’ distribution is proportional

to the area distribution. Therefore, adopting fault-tolerance for inter-router links

(as in most 3D-NoC systems) is not enough to build a reliable system, and faults’

consideration should also include the buffers and crossbar.

2.4 Conclusion

In this chapter, we presented the key components and parameters of NoC sys-

tems including topology, switching policy, flow-control, and routing algorithms. We

demonstrated their different categories and their corresponding effects on the per-

formance of a given NoC. We also introduced the additional components needed for

the transition from 2D- to 3D-NoC. We focused mainly on the necessary modifica-

tions and parameters that are proper to 3D-NoC system (i.e., Through-Silicon-Vias)

in addition to the advantages and drawbacks of these systems. At the end of this

chapter, we analyzed the different types of faults that NoC systems are vulnerable

to and how they can be classified regarding time and locality. In the next chapter,

we focus on how prior works tried to solve the failure issue in on-chip interconnect.



Chapter 3

Related Work to Fault-Tolerant

Techniques in NoCs

In this chapter, we discuss some of the important related works which dealt with

fault-tolerance in NoC systems. We focus mainly on routing algorithms targeting

the link failure in 3D-NoC systems, and also works presenting reliable router archi-

tectures presented for 2D-NoC designs, but can be adopted in the third dimension.

3.1 Fault-tolerant solutions for 2D-NoC systems

Many works have been conducted to tackle fault-tolerance in NoC systems where

they can be classified based on the target system, the fault’s type, or the faults’

handling mechanism (e.g., using routing algorithms or architectural solutions). The

majority of the fault-tolerant solutions were proposed for 2D-NoC systems. Some of

them added restrictions to the number of faults as a security requirement for their

systems. For instance, a single link or single node failure tolerance was presented

in [102]. Gomez et al. [103] presented a solution that can handle five failures with the

aid of Virtual channels (VCs). For n-dimensional mesh, Duato et al. [104] presented

a routing algorithm which can tolerate up to n-1 faults.

Another part of the proposed solutions eliminated the number of faults restriction

and instead limited the location of faults to a specific part of the network. They

called these restricted subnetworks fault-regions which can be disabled, if necessary,

37
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to ensure fault-tolerance of the system. These restrictions can be represented by the

shape of the fault-regions (convex [105], rectangular [106], or polygon [107]), their

locations (excluding faults located at the edges of the network [108]), or assuming

the absence of faults in some specific parts of the router (datapath [109], links and

crossbar [110]).

Some works were presented without adding any restriction to either number

of faults or locations. For example, uLBDR [111] routing for 2D mesh topology,

based on Virtual-cut-through, incurs a high complexity despite its great perfor-

mance. Works in [112,113] are based on stochastic approaches to tolerate transient

and permanent faults. In another adaptive routing algorithm, named Immunet [114],

packets use a reserved VC as an escape channel to reach their destination and avoid

a faulty link.

Other works [116, 117] focused on the importance of adopting minimal routing

algorithms to reduce the congestion caused by the presence of faults. They proposed

minimal routing schemes which are able to adaptively route packets through the

shortest paths, as long as a path exists. Authors in [115], presented a comprehensive

investigation about 2D/3D fault-tolerant routing algorithms’ implementation. They

discussed the different turn models, fault conditions, and the fault occurrence in both

links and routers.

3.2 Fault-tolerant solutions for 3D-NoC systems

3.2.1 Fault-tolerant routing algorithms

Due to the important negative impact of faults on 3D-NoCs system performance,

implementing fault aware techniques is extremely important to avoid any compo-

nent or entire system failure. In this direction, some of the proposed fault-tolerant

solutions for 3D-NoC systems primarily focused on permanent faults occurring in

Through-Silicon-Vias (TSVs). For example, Loi et al. [125] addressed the TSV

yield improvement by presenting a solution based on spare via insertion. Pasricha

et al. [126] introduced serialization to achieve the same goal. On-chip sequential

elements protection techniques were also proposed in [127, 128] to deal with single
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event upsets.

The other existing works for 3D-NoC systems focused on link failure in general by

adopting fault-tolerant routing algorithms. For example, Rahmani et al. [129] pre-

sented a fault-tolerant routing algorithm for named AdaptiveZ targeted for Hybrid-

3D-NoC architecture. Feng et al. [119] proposed a low overhead deflection routing

algorithm based on routing tables. However, the deployment of routing tables is

still costly in terms of hardware and suffers from poor scalability due to the area

required for the tables.

Nordbotten et al. [130] presented an adaptive and fault-tolerant routing for 3D

meshes and tori based on storing at each node a table for routing containing informa-

tion about destination and the list of intermediate nodes. A fault-tolerant routing

algorithm for a 3D torus was presented by Yamin et al. [131]. With up to 30%

faulty-node rate, the proposed algorithm can find a valid link between two faulty

nodes with a probability higher than 90%. The Planar Adaptive Routing (PAR) for

large scale 3D topologies was introduced by Chien et al. [132] who used three virtual

channels (VC) for deadlock avoidance and employed also some routing rules. Wu

et al. [118, 133] extended this scheme to adopt at least four VCs to avoid deadlock.

In [134] a fault model based on PAR, named 3D minimum-connected component

(MCC), was presented. Each fault-free node needs to store four copies of safety

information, one for each subnet. Later, Xiang et al. [135] proved that, despite the

advantages obtained when compared to PAR, MCC may mislead a packet to a dead

end, and they claimed that their proposed fault model, named planar network (PN),

needs to store much less safety information at each faulty-free node (PN needs to

keep 16-bit safety information and 32-bit for 3D MCC [135]). The problem with

the solutions mentioned above is that they introduce an extremely expensive hard-

ware complexity and implementation cost besides the energy overhead making them

undesirable for the 3D-NoC implementation.

In another work, Feng et al. [119] proposed a low overhead deflection routing

algorithm based on routing tables. They proposed a routing table for each 2D-Mesh

layer, and two TSV state vectors for the vertical links. This solution reduces the area

overhead, when compared to Global Routing Table [120]; however, the deployment
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of routing tables is still costly in terms of hardware and suffers from poor scalability

due to the area required for the tables. Pasricha et al. [136] extended a 2D turn

model for partially adaptive routing to the third dimension. The proposed scheme

combines both 4N-FIRST and 4P-FIRST schemes to propose a lightweight 4NP-

FIRST. On the other hand, this turn model introduces some routing restriction

to prevent from deadlock. These restrictions cause a nonminimal routing selection

where in some cases it may take too many additional hops for the packet to reach

its destination, even when a nonfaulty minimal path exists. This has a negative

effect on the zero-load latency and also the dynamic power consumption due to the

increasing number of hops.

To ensure a minimal path for flits while considering link faults, Wu et al. [121]

presented an adaptive and minimal routing algorithm based on limited-global safety

information. Despite the merits of such technique, the main problem of this proposal

is that the algorithm is based on faulty node model (and not faulty link). This means

that many working parts or nodes are disabled even if they have nonfaulty links that

can be used. A recent work by Akbari et al. [137] focused mainly on faults links

and proposed an algorithm named AFRA. This algorithm routes packets through

ZXY in the absence of link faults. When faults are detected, the algorithm switches

the routing to XZXY: The flits are sent first to an escape node through X, and

then they continue to their destination through ZXY as it is in the no-fault case.

The authors presented simplicity, good performance and robustness as the main

features of this algorithm. However, we complement this solution due to two major

aspects. First, AFRA tolerates only vertical links, and horizontal links are not

taken into consideration. Second, the network congestion status is not taken into

consideration, especially when more than one possible minimal path is available. In

that case, a static minimal path selection does not eventually lead to low latency

(i.e. a minimal path may contain a high congestion while other alternative ones do

not).

Ebrahimi et al. [122] stated that AFRA requires a fault distribution mechanism

to know about the fault information on all vertical links along each row. They

proposed a more reliable routing algorithm named HamFA which does not require
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any fault distribution, additional fault information, or any virtual channels. They

modified the basic form of the Hamiltonian path in order to be able to switch between

high and low channel subnetworks. In fact, HamFA provides much more reliability

than AFRA; however, it requires that the faulty links should belong to the same

subnetwork in order to tolerate multiple vertical or horizontal one-faulty links. As

a result, this limits the reliability of this approach to 95% when considering the

presence of a single faulty link. In our approach, no restrictions are added to the

fault locations and they can be anywhere in the network as long as there exists a

valid path between a given (source, destination) pair.

3.2.2 Router architecture solutions

In this subsection, we focus on the earlier conducted works which tried to ad-

dress the fault issue in the router level. Constantinides et al. [138] proposed the

BulletProof router which is based on N-modular redundancy (NMR) technique to

ensure fault tolerance. The NMR method requires the presence of N copies of a

given targeted component. Thus, N times extra silicon area is needed; therefore,

such method is very expensive in terms of area. Moreover, as the area increases the

fault occurrence probability increases, as well. As a result, duplicating components

may not lead to endorse the reliability.

Kim et al. [139] proposed RoCo that employs decoupled parallel arbiters and

uses smaller crossbars for row and column connections in order to allow the router

to be decomposed. Look-ahead routing is used to tolerate faults in the Routing

Computation stage (RC). By sharing arbiters from Virtual Channel Allocation stage

(VCA), fault tolerance in the Switch Allocation stage (SA) can be ensured. However,

this router cannot tolerate faults in VCA and Crossbar Traversal (CT) stages where

the area is more important and faults are more likely to occur.

Poluri et al. [140] presented an improved router design where they added a small

minimal correction circuitry to provide better fault-tolerance in each one of the

pipeline stages. The proposed router adds a redundant routing computation unit in

each input-port to ensure fault-tolerance in the RC stage. With the help of some

extra state fields in the input port, a faulty VC can use the arbiter of another VC that
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belongs to the same input-port. To solve the fault occurrence in the SA stage, they

created a bypass path at the presence of faulty arbiters. Finally for the CT stage,

they proposed to have two paths to reach a particular output-port of the crossbar.

Evaluation results showed the performance benefits of their proposed router. They

also claimed that the proposed router provides higher reliability when compared

to earlier works; however, they do not consider the presence of faults in the input

buffer. As we stated earlier, buffers consume the largest portion of area and power;

therefore, the probability of fault occurrence is the highest when compared to the

other components of the router.

An interesting work was proposed by DeOrio et al. [141] which targets permanent

faults. They presented a reliable architecture based on resource redundancy reconfig-

uration endorsed with a distributed routing algorithm. They proposed flexible-fifo

to deal with permanent faults in the input-buffers by indexing the tail and head

pointers through redirection-table that manages to increment (or decrement) the

head (or tail) counter multiple times before accessing the next functional register,

thereby skipping over failed registers [141]. To deal with faults in the crossbar, they

introduced Crossbar-Bypass-Bus which provides an alternative path when a faulty

crossbar link is detected.

The proposed architecture by DeOrio et al. showed great results under various

topologies and different fault-rates; however, it has three main drawbacks. First,

this architecture deals with only permanent faults and does not consider transient

and intermittent faults. As Lehtonen et al. stated in [142], transient faults cause

the majority of failures (80%), while the rest of them originate mainly in permanent

and intermittent faults. On the other hand, this should not diminish the importance

of permanent faults; thus, analyzing the three types of failures is imperative to

represent the real behavior of 3D-NoC systems. The second drawback is that when

multiple faulty crossbar paths are detected, flits from different input-ports should

compete for the access for this single bypass-bus. This puts under question the

scalability of this approach when the latency may increase at the presence of more

than one faulty crossbar link. Third, the companion routing protocol contains some

restrictions and turns to ensure the system deadlock-freedom; however, and as we
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previously said, the addition of such rules may lead to nonminimal path, thus,

increasing the latency of the flit.

The main motivation of this work is to enhance the performance of our base-

line 2D-OASIS-NoC architecture by taking advantage of the high performance and

energy efficiency of 3D-NoC system. Initially as a stepping stone, an exploration

of the design issues in Gigascale NoC architectures was presented in [16]. The

first OASIS-NoC system was then presented in [123] which uses deterministic XY

routing, wormhole switching, a First-Come, First-Served (FCFS) scheduler, and

re-transmission flow control which is like ACK/NACK flow control.

Later, OASIS-2 system [17] was introduced to optimize the earlier one. With

the aid of Matrix-arbitration scheduler, Stall-Go flow control, and Look-ahead-XY,

OASIS-2 showed better performance then the earlier one. To solve the high diameter

of 2D-NoC, in [18] we presented ONoC-SPL which establishes a Short-Pass-Link

(SPL) to reduce the communication latency for performance enhancement in data-

intensive computation applications.

ONoC-SPL showed great performance compared to the previous designs; how-

ever, it is still not scalable enough for large systems. Therefore, we opted for three-

dimensional NoC and presented 3D-OASIS-NoC in [143] which is a natural extension

of the baseline 2D-OASIS-NoC. In [144,145] we introduced Look-Ahead-XYZ (LA-

XYZ) which reduces the router delay to increase the system throughput.

3.3 Conclusion

In this chapter, we discussed some of the important related works that dealt

with fault-tolerance in NoC systems. Mainly routing algorithms have been investi-

gated, especially those targeting the link failure in 3D-NoC systems. In addition,

we reviewed the works presenting reliable router architectures presented for 2D-NoC

architecture, but can be adopted in the third dimension. At the end of this chapter,

we showed the different steps conducted in this work starting from the building stone

OASIS-NoC system arriving to 3D-OASIS-NoC which is considered as the baseline

design in this thesis.
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Despite the encouraging results obtained with the baseline 3D-OASIS-NoC, it

still does not support fault tolerance which makes it vulnerable to any risk of false

calculation, information loss, timing violation, or the entire system failure. In the

next two chapters, we present the different algorithms and techniques that we pro-

pose to ensure fault-tolerance at low cost and without considerable performance

degradation.



Chapter 4

Efficient Fault-tolerant Routing

Algorithms for Robust

Architectures

This chapter focuses on the routing algorithms proposed in this thesis. We start

first by presenting an overview of the Look-Ahead-XYZ routing algorithm that our

baseline 3D-OASIS-NoC router uses. This aims to provide a comprehensive discus-

sion on the benefits of look-ahead routing and the reasons why we want to take

advantage of it. Second, we explain our first proposed Look-Ahead-Fault-Tolerant

routing (LAFT) routing algorithm. We demonstrate its key features and advantages

and discuss its weakpoints. In the last section, we propose the optimized and sec-

ond algorithm Hybrid-Look-Ahead-Fault-Tolerant routing (HLAFT) algorithm that

deals with its predecessor’s drawbacks.

4.1 Look-Ahead-XYZ Routing Algorithm Overview

Conventional XYZ routing [78,83,158,159] compares the address of the process-

ing node with the destination node’s address to determine the Output-Port. The

computed information is sent to the Switch-Arbiter requesting access of the selected

output-port. Despite its simplicity, XYZ suffers from inefficient pipeline stage us-

age [22,160], which can incur high communication latency and, thus, degrading the

45
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system throughput [146].

Figure 4.1: Conventional XYZ routing router pipeline stages.

Figure 4.1 shows a conventional router pipeline design based on the XYZ scheme.

Virtual Channels are not taken into consideration for improving the performance of

best-effort traffic. This figure shows the router’s four pipeline stages: Buffer Writ-

ing (BW), Routing Calculation (RC), Switch Arbitration (SA), and the Crossbar

Traversal stage (CT). This router’s design increases the flit latency because any flit

should go through all these stages at each hop while traveling from source to destina-

tion [22, 160]. This can introduce undesirable overall system performance degrada-

tion, especially with a large network size where the network diameter scales [20]. In

these routing algorithms, the pipeline stages are dependent on each other, and each

one of them cannot perform its computation unless it receives information from the

previous stage. This dependency is especially seen between the RC and SA stages.

To solve this dependency problem, Look-Ahead-XYZ (LA-XYZ) parallelizes the

RC, now referred as Next-Port-Calculation stage (NPC), and SA stages and elim-

inates the dependency between them [144, 145]. To avoid any confusion, it is im-

portant to mention that the NPC stage with LA-XYZ plays the same role as of

RC in conventional routing. The difference is RC calculates the output-port for the

current node, and NPC calculates the output-port for the next downstream node as

explained later.

LA-XYZ precomputes the Next-Port direction of the downstream router and

then embeds it in the flit [145]. When arriving to the downstream node, this hot

encoded Next-Port identifier will be used by the Switch-Arbiter directly to request

authorization for using the selected output-port and reaching the next neighboring

node. At the same time, when the grant is computed in SA, the RC calculates, in
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parallel, the direction of the Next-Port which will be used by the next downstream

node. This parallel process optimizes the pipeline stages as shown in Fig. 4.2.

LA-XYZ computation goes under two steps: Assign next address and Define

new Next-port. The first step decodes the Next-Port identifier from the incoming

flit. Depending on the direction of this identifier, the address of the next downstream

node can be computed. This address is then used in the second step by comparing

it with the destination address of the flit, which is also fetched from the flit’s head.

At the end of this process, information about the Next-Port is issued and embedded

again in the flit to be used as a source of information for the Switch-Arbiter in the

downstream node.

Figure 4.2: Look-Ahead-XYZ routing router pipeline stages.

LA-XYZ’s lack of support of fault tolerance outweighs the performance merits

obtained when compared to other 3D routings (XYZ [78] and RPM [82]) [144,145].

In addition, it suffers from a low worst-case throughput since the network congestion

is not considered in the routing decision process.

4.2 Look-Ahead-Fault-Tolerant routing algorithm

4.2.1 Assumptions

To keep the benefits of the look-ahead routing, the proposed Look-Ahead-Fault-

Tolerant (LAFT) performs the routing decision for the next node taking into consid-

eration its link status and selects the best minimal path. Before starting to explain

LAFT, there are two important assumptions that should be mentioned. First, the

links connecting the PE to the local input and output ports are always nonfaulty.
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Second, we assume that there exists at least one minimal path between a (source,

destination) pair. These assumptions are natural and necessary to deliver any flit

from source to destination.

4.2.2 Fault detection

We employed a simple fault detection mechanism based on a single multiplexer

in each input-port that reads the incoming flit and verifies whether it is corrupted

or not. Depending on this verification, the Fault-Control-Module (FCM) sends a

single-bit signal to the upstream node that can be either 0 or 1, for valid or faulty,

respectively, as shown in Fig. 4.3 (Details about FCM will be provided in the next

chapter). Each router sends the collected information corresponding to its own fault

status to each one of the six neighboring nodes and also to the Network-Interface

of the attached PE (see Fig. 4.3). This information is represented in a 6-bit signal

representing the router link status in each direction (North, East, Up, South, West,

and Down).

It is important to mention that the choice of using control signals to transfer the

fault information rather than using control flits is taken to enhance the performance.

Using the latter approach will increase the congestion in the router, where we might

find data and control flits competing for the router resources.

4.2.3 Algorithm

The fault information is read by each input-port where LAFT is executed. Al-

gorithm 1 illustrates LAFT algorithm. The first phase of this algorithm calculates

the next node address depending on the next-port identifier read from the flit. This

phase is the same as in LA-XYZ. For a given node wishing to send a flit to a given

destination, there exist at most three possible directions through X, Y, and Z di-

mensions, respectively. In the second phase, LAFT performs the calculation of these

three directions by comparing x, y and z coordinates of both current and destination

nodes concurrently.
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At the same time, as these directions are being computed, the fault-control mod-

ule reads the next-port identifier from the flit and sends the appropriate fault infor-

mation to the corresponding input-port. By the end of this second phase, LAFT has

information about the next node fault status and also the three possible directions

for a minimal routing. In the next phase, the routing selection is performed.

Algorithm 1: Look-Ahead-Fault-Tolerant routing algorithm (LAFT)

// Destination address

Input: Xdest, Ydest, Zdest

// Current node address

Input: Xcur, Ycur, Zcur

// Next-port identifier

Input: Next-port

// Link status information

Input: Fault-in

// New-next-port for next node

Output: New-next-port

// Calculate the next-node address

Next← Next-node (Xcur, Ycur, Zcur, Next-port);

// Read fault information for the next-node

Next-fault← Next-status (Fault-in, Next-port);

// Calculate the three possible directions for the next-node

Next-dir← poss-dir (Xdest, Ydest, Zdest, Nextx, Nexty, Nextz);

// Evaluate the diversity number of three minimal paths

Div1 ← path-div (Xdest, Ydest, Zdest, poss− dir1);

Div2 ← path-div (Xdest, Ydest, Zdest, poss− dir2);

Div3 ← path-div (Xdest, Ydest, Zdest, poss− dir3);

// Evaluate the New-next-port direction

if (|Next-dir| > 1) then

if (Div1==Div2==Div3) then

New-next-port ← min-congestion (poss− dir1, poss− dir2, poss− dir3);

else

New-next-port ← max-diversity (poss− dir1, poss− dir2, poss− dir3);

end

else

if (Next-dir == 1) then
New-next-port← Next− dir1;

else New-next-port← nonminimal (Xdest, Ydest, Zdest, Xcur, Ycur, Zcur, Fault-in);

end

For this decision, we adopted a set of prioritized conditions to ensure fault tol-

erance and high performance either in the presence or absence of faults:

1. The selected direction should ensure a minimal path, and it is given the highest
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priority in the routing selection.

2. We should select the direction with the largest next hope path diversity.

3. The congestion status is given the lowest priority.

Depending on these priorities, LAFT reads the fault status of the next node

received from the fault-control module and checks the number of possible nonfaulty

minimal directions. As illustrated in algorithm 1, if only one nonfaulty minimal

direction is obtained, this direction will be selected as out-port for the next node.

If more than one possible minimal direction is available, the algorithm selects the

direction that leads to a node with higher path diversity. The diversity value for a

given node is the number of possible directions leading to the destination through

a minimal path. A node with high diversity results in more routing choices. This

means that the probability of finding a nonfaulty link is greater when considering

faults. When no faults are detected in the system, selecting the direction with the

highest diversity gives more choices to find the least congested direction. As stated

in [136], to obtain directions with high diversity, we should select those leading to

nodes located in the center of the mesh and avoid routing to the edges of the network.

When the three possible directions are minimal and have the same diversity, the

routing selection is made depending on the congestion of each output port. This

congestion information is obtained by the stop signal issued from the flow control

used in our 3D-OASIS-NoC system. When there is no valid minimal route available,

LAFT chooses a nonminimal route while also considering the 2nd and 3rd priorities

(path diversity and congestion) as illustrated in algorithm 1.

4.2.4 Example

To understand better how LAFT works, we observe Fig. 4.4. Assuming that the

current node (labeled C) received an incoming flit where the next port identifier,

calculated in the previous node, indicates that the out-port for this flit is East (Red

arrow). Applying algorithm 1, the next node address is calculated (labeled N).

Three minimal directions are possible for routing: East, North, or Up. The East

direction will not be selected since the link in this direction is faulty.
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Therefore, either North or Up can be selected, which both are minimal and

nonfaulty. In this case, the diversity priority is taken into consideration. If Up is

selected, where the node in this direction is on one of the network edges, the diversity

value is equal to 2 (two minimal possible directions: East or North). However if

North is selected, its diversity value is equal to 3 (East, North, or Up). Having the

highest priority, the North out-port (Green arrow) is selected for the next node and

it is embedded in the flit to be used in the downstream node to allow the routing

calculation and switch allocation to be performed both in parallel.

As long as the chosen route is minimal, the livelock problem does not exist

either. However, it can be observed when a nonminimal direction is selected. For

this reason, some restrictions are added when selecting the nonminimal route in

addition to the one mentioned above. The first restriction forbids the flit to turn

back to the same direction where it came from. The second one forbids selecting a

path that is in the opposite direction of the faulty link (i.e., if ”East” is faulty, then

”West” should not be selected). Adopting these restrictions guarantees the livelock

freedom of LAFT, and the flits will continue to advance and search for a route until

it finds a valid link. The deadlock problem may arise with LAFT. This problem

is solved thanks to the proposed Random-Access-Buffer mechanism (RAB) that we

discuss in the next chapter.

4.2.5 Weakpoints

Employing look-ahead routing reduces the router latency and improves the sys-

tem overall performance [11]. However, due to the limited information restricted

to only one switch ahead, in some cases LAFT may not select the best route. Ob-

serving the example in Fig. 4.5 (a), we can see that the North route is leading to a

blocked path where all the minimal possible directions to the destination are faulty.

Therefore, nonminimal routing is required causing several additional clock cycles.

When arriving to the next node (labeled N), the out-port is already decided and

sent to the Switch-allocator due to the look-ahead routing restraints. This is despite

the fact that this path is leading to a blocking path and also a better blocking-free

route exists (Up).
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Optimizing LAFT and making it able to detect whether the route precalculated

in the previous upstream node would lead to a blocked path or not is necessary.

To enable this, the benefits of look-ahead routing should be combined with local

routing for better routing selection.

4.3 Hybrid-Look-Ahead-Fault-Tolerant routing al-

gorithm

The new Hybrid-Look-Ahead-Fault-Tolerant routing algorithm (HLAFT) solves

the earlier mentioned problems of LAFT [10]. At every incoming flit, HLAFT makes

a simple computation to judge whether the precalculated Next-port identifier will

lead to a blocking path or not. In case where a possible nonminimal route might

occur, HLAFT recomputes the route depending on the local and neighboring nodes

fault status.

4.3.1 Algorithm

Algorithm 2 represents the new HLAFT routing. At first, the fault-control mod-

ule at each input-port reads the Next-port identifier and destination addresses from

the flit. Depending on the Next-port value, the next-node can be calculated. After

acquiring information about the next-node, the three possible minimal directions

are computed and checked whether a valid minimal route leading to the destination

exists or not. In case where at least a valid minimal link leading to the destination

exits, the Next-port identifier is sent to the Switch-allocator and the look-ahead-

routing-computation (LA-RC) modules at the same time. In the opposite case (i.e.,

all the possible three directions are faulty), a flag is issued triggering the local-

routing-calculation module (Loc-RC) to recalculate the output-port by verifying

the status of the current and neighboring nodes links. The same three priorities,

earlier explained in the previous subsection (i.e., minimal valid, higher diversity, and

less congested), are taken into consideration while selecting the new out-port. The

recalculated out-port issued from Loc-RC is sent to the Switch-allocator to perform
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the arbitration, and also sent to the LA-RC module to compute the Next-port for

the next-node to continue the look-ahead routing cycle.

Algorithm 2: Hybrid-Look-Ahead-Fault-Tolerant routing algorithm

(HLAFT)

// Destination address

Input: Xdest, Ydest, Zdest

// Current node address

Input: Xcur, Ycur, Zcur

// Next-port identifier

Input: Next-port

// Link status information

Input: Fault-in

// New-next-port for next node

Output: New-next-port

// Calculate the next-node address

Next← Next-node (Xcur, Ycur, Zcur, Next-port);

// Read fault information for the next-node

Next-fault← Next-status (Fault-in, Next-port);

// Calculate the three possible directions for the next-node

Next-dir← poss-dir (Xdest, Ydest, Zdest, Nextx, Nexty, Nextz);

// Evaluate the flag

if (|Next-dir| == 0) then
flag← 1;

else flag← 0;;

// Evaluate the New-next-port

if (flag == 1) then

// Trigger local-routing

out-port← local-routing (Fault-in, Xcur, Ycur, Zcur, Xdest, Ydest, Zdest);

// Execute LAFT with the new recomputed out-port

New-next-port← LAFT-routing (Xcur, Ycur, Zcur, Xdest, Ydest, Zdest, out-port, Fault-in);

else

// Execute LAFT with the inputed Next-port identifier

New-next-port ← LAFT-routing (Xcur, Ycur, Zcur, Xdest, Ydest, Zdest, Next-port, Fault-in);

end

4.3.2 Example

As illustrated in Fig. 4.5 (b), when the flit arrives to the node labeled C and

having a current out-port North precalculated in the previous node, the fault-control

checks the fault status of the links of the next-node in the north direction. When

performing the checking, all the possible minimal paths are found faulty; thus, Loc-
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RC is triggered and computes Up as the new best route (since East is faulty). Then,

the newly calculated Up direction is sent to the LA-RC module which issues North

as the Next-out-port.

Figure 4.6: Hybrid-Look-Ahead-Fault-Tolerant routing router pipeline stages.

Figure 4.6 depicts the HLAFT pipeline stages which takes advantage of look-

ahead routing to parallelize both Next-Port-Calculation (NPC) and Switch-Arbitration

(SA) stages. We can also observe first that a pipeline stage is dedicated for the fault-

control module (FTC) to issue the flag and whether trigger local-routing or not. This

simple computation is done in parallel with the Buffer Writing stage (BW) to further

reduce the computation latency in the router without creating any critical paths. In

the cases where no flag is issued, the Local-Routing-Calculation stage (Local-RC)

is bypassed and then Next-Port-Calculation and Switch-Arbitration stages are per-

formed in parallel (NPC/SA). In the presence of a flag, Local-RC is performed and

then the results are sent to NPC/SA stage before the final Crossbar Traversal stage

(CT) handles the flit transfer to the next neighboring node.

4.4 Adaptivity

Hybrid-Look-Ahead-Fault-Tolerant routing (HLAFT) showed its efficiency to

provide a minimal path while ensuring both fault-tolerance and congestion-aware

properties. In this research, the proposed algorithms were implemented on a Mesh-

based system. However, it is important to say that they are tightly dependent on

the mesh topology and it can be easily adopted for other ones, whether regular or

irregular. This is because the only portion which is topology-dependent and should

be modified in the algorithms is the calculation of the three possible directions for
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the next-node, as depicted in algorithm 1. While the remaining parts are not only

restricted to the adopted Mesh topology. Therefore, both LAFT and HLAFT are

flexible routing algorithms that can be easily altered to fit with any 3D-NoC topol-

ogy.

4.5 Conclusion

In this chapter, we presented two efficient routing algorithms that aim to tackle

the fault occurrence in inter- and intra-layer links. We started by explaining the

baseline Look-Ahead-XYZ routing algorithm that our baseline 3D-OASIS-NoC router

is based upon. Then, we introduced the first Look-Ahead-Fault-Tolerant routing

(LAFT) routing algorithm and we showed its ability to reduce the router latency

by exploiting the benefits of look-ahead routing and traffic awareness. As seen in

Chapter 6, LAFT shows its ability to reduce the latency by an average of 32% when

compared to conventional routing algorithms. More details about LAFT routing

algorithm can be seen in [11,44].

After discussing the weak points of LAFT, we proposed Hybrid-Look-Ahead-

Fault-Tolerant routing (HLAFT) algorithm to solve LAFT’s drawbacks. We showed

that combining both local and look-ahead routing enhances the path variety and

minimizes the probability for nonminimal routing. HLAFT was presented in [10],

and from the evaluation results (see Chapter 6) it made the performance degradation

further graceful by 12% when compared to LAFT. At the same time, only a small

area and power overhead has been observed. The implementation of both LAFT

and HLAFT routing algorithms in in Verilog-HDL can be seen in the appendix.

Both LAFT and HLAFT have shown their efficiency in dealing with the fault

occurrence in inter- intra-layer links. On the other hand, with a large number of cores

and layers, 3D-NoC systems face greater challenges and become more vulnerable to

faults. At this high core density, considering faults only in the inter-router links does

not provide the optimal reliability. Other components such as input-buffers and

crossbar should be given greater attention to ensure fault tolerance and enhance

the system reliability. These components consume a large portion of the entire
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router area and power budget. To this aim, we present in the next chapter different

modules added to address the reliability in 3D-NoC systems in order to address the

fault occurrence in the input-buffers and the crossbar circuit.





Chapter 5

Reliable Router Architecture and

Design for Fault-Tolerant 3D-NoC

Systems

In this chapter, we introduce the proposed 3D-FTO router architecture and its

main components. We start first by presenting a brief overview of the baseline 3D-

OASIS-NoC router. Second, we introduce Random-Access-Buffer (RAB) mechanism

and its efficiency to recover from deadlock and also to tackle the failure problem

in input-buffers. The Traffic-Prediction-Unit (TPU) that we proposed for further

traffic balance and reduce the buffer congestion is also explained. Next, we explain

the Bypass-Link-on-Demand (BLoD) aimed to ensure fault-tolerance in the crossbar.

Finally, we dedicate the last subsection to describe the main functionalities of the

Fault-Control-Module (FCM) and its important role in orchestrating the different

process inside the router.

5.1 3D-OASIS-NoC baseline router architecture

overview

The baseline 3D-OASIS-NoC system architecture and the router block diagram

with its three main pipeline stages (Buffer Writing, Routing calculation/Switch Ar-

60
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bitration and the Crossbar Traversal) are represented in Fig.5.1.

5.1.1 Switching method

3D-OASIS-NoC adopts Wormhole-like switching [52]. The forwarding method,

chosen in a given instance, depends on the level of the packet fragmentation. For

instance, when the buffer size is greater than or equal to the number of flits, Virtual-

Cut-Through is used. However, when the buffer size is less than or equal to the

number of flits, Wormhole switching is used. In this way, packet forwarding can be

executed in an efficient way while maintaining a small buffer size.

5.1.2 Router architecture

The router is the back-bone component of the 3D-OASIS-NoC design. Each

router has a maximum number of 7-input and 7-output ports, where 6 input/out-

put ports are dedicated to the connection to the neighboring routers and one in-

put/output port is used to connect the switch to the local computation tile. The

number of input-ports depends on the router position in the network because we

need to eliminate any unused ports to reduce the area and power consumption. The

3D-OASIS-NoC router contains seven Input-port modules, one for each direction, in

addition to the Switch-Allocator and the Crossbar module that handles the transfer

of flits to the next neighboring node [143].

5.1.3 Input-port circuit

The Input-port module is shown in Fig.5.2. It is composed of two main ele-

ments: Input-buffer and the Route module. Incoming flits from different neighboring

routers, or from the connected computation tile, are first stored in the Input-buffer.

This step is considered as the first pipeline stage of the flit’s life-cycle BW. Each

input-buffer can host up to 4 flits. Figure 5.3 demonstrates the 3D-OASIS-NoC’s

flit format. The first bit indicates the tail informing the end of the packet. The

next three bits are dedicated to indicate the Next-Port that will be used by the

Look Ahead Fault Tolerant routing algorithm to define the direction of the next
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Figure 5.1: Baseline 3D-OASIS-NoC system architecture.
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Figure 5.2: Input-port module architecture.
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downstream neighboring node where the flit will be sent to. Then, three bits are

used to store destination information of each xdest, ydest and zdest. Finally, the

remaining 64 bits are dedicated to store the payload. Since 3D-OASIS-NoC is tar-

geted for various applications, the payload size can be easily modified in order to

satisfy the requirements of some specific applications. In addition, the architecture

does not provide a separate head flit and every flit therefore identifies its X, Y, and

Z destination addresses and carries an additional single bit to indicate whether it is

a tail flit or not.

Figure 5.3: 3D-OASIS-NoC flit format.

Figure 5.4: Switch allocator block diagram.

After being stored, the flit is read from the FIFO buffer and advances to the

next pipeline stage. The destination addresses (xdest, ydest and zdest) are decoded



5.1. 3D-OASIS-NoC baseline router architecture overview 65

in order to extract the information about the destination address, in addition to

the Next-Port identifier which is pre-calculated in the previous upstream node, and

the fault information received from Fault Controller. These values are sent to the

Route circuit where LAFT is executed to determine the New-next-Port direction for

the next downstream node. At the same time, the Next-Port identifier is also used

by the Switch Request Controller to generate the request for the Switch-Allocator

asking for permission to use the selected output port via sw-req and port-req signals.

5.1.4 Switch-Allocator circuit

The sw-req and port req signals issued from each Input-port module, and giving

information about the desired output-port, are transmitted to the Switch-Allocator

module to perform the arbitration between the different requests. This process is

done in parallel with the routing computation in the Input-port module to form

the second pipeline stage RA/SA. At the end, the Switch-Allocator sends the sw-

cntrl signal that contains all the information needed by the Crossbar circuit about

the scheduling result. The latter, forming the last pipeline stage CT, reads the

corresponding flit from the granted Input-port and sends it to its allocated output-

channel. The switch allocator module is composed of two main components: Stall-

Go flow control and Matrix Arbiter Scheduling (Fig.5.4).

Stall-Go flow control module

When the buffer exceeds its flit storage capacity, a flow control has to be consid-

ered to prevent buffer overflow and packet dropping. We use Stall-Go flow control

for 3D-OASIS-NoC since it proves to be a low-overhead efficient design choice show-

ing remarkable performance compared to the other flow control schemes such as

ACK-NACK or Credit based flow control [64]. Stall-Go module, whose mechanism

is represented in Fig.5.5, uses two control signals: nearly-full and data-sent. Nearly-

full signal is sent to the downstream node to indicate that the buffer is almost full

and only one slot is available to host one last flit. After receiving this signal, the

FIFO buffer suspends sending flits. The data-sent signal is issued when the flit is

transmitted informing that one slot in the buffer is released.
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Matrix arbiter Scheduling module

The switch allocator in our design employs a least recently served priority scheme

[17]. Thus, it can treat each communication as a partially fixed transmission latency

[147, 148]. Matrix-arbiter is used for a least recently served priority scheme. In

order to adopt the Matrix-arbiter scheduling for 3D-OASIS-NoC, we implemented a

6x6 scheduling-matrix for each output-port. The scheduling module accepts all the

requests from each of the different connected input-ports and their desired output-

ports before assigning a priority for each request. The scheduling module verifies

the scheduling-matrix, compares the priorities of the different requests, and grants

access to the one possessing the highest priority. The scheduling module updates

the matrix with the new priorities of each request to ensure that every input-port

will be served in a fair way.

Complete details about the baseline 3D-OASIS-NoC architecture and compre-

hensive evaluation results can be fond in [149].

5.2 Proposed 3D-Fault-Tolerant-OASIS-NoC router

architecture

Figure 5.6 depicts the high-level representation of 3D-Fault-Tolerant-OASIS (3D-

FTO) baseline router (in white) in addition to the enhancement added (colored)

for fault-tolerance and robustness enhancement. 3D-FTO router relies on simple

detection and recovery techniques based on system reconfiguration with redundant

structural resources to contain faults’ occurrence (in input-buffers, crossbar, and

links) and prevent from the system failure, or information corruption or loss.

As shown in Fig.5.6, 3D-FTO router contains seven input-ports, a switch-allocator,

a crossbar, and a Fault-Control-Module (FCM). In this section, we explain the en-

hancements added in 3D-FTO router including, first, the Random-Access-Buffer

(RAB) for deadlock-recovery and fault-tolerance with the help of the Traffic-Prediction-

Unit (TPU) in the input-buffer. Second, the Bypass-Link-on-Demand (BLoD) ap-

proach to handle multiple faulty channels in the crossbar.
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Finally, the FCM module responsible for the assignment and control of the dif-

ferent detection and recovery tasks to the previously mentioned techniques.

5.2.1 Random-Access-Buffer mechanism

Deadlock-recovery

As is the case for every adaptive routing algorithm, the deadlock issue may rise.

As we previously mentioned in Section 1, most of the existing routing algorithms

use either Virtual-channels (VCs) or add restrictions to the routing selection to

avoid deadlock. These solutions either suffer from high implementation complexity

or incur an additional delay due to the nonminimal approach. In our case, we

implemented a similar technique to VCs, but it is much simpler and less complex.

This technique, named Random-Access-Buffer (RAB), detects first the flit being

the reason of deadlock in the buffer, drops its request and then looks for another

flit whose request can be granted to free some slots in the buffer and break the

dependency.

Random-Access-Buffer for deadlock-recovery architecture Figure 5.7 shows

an example how RAB works. In each input-port, a buffer-controller (BC) manages

the detection of deadlock and handles the assignment of wr-adr and rd-adr addresses.

The detection mechanism is based on a timer which after a period of time, if the

request being processed is not served, a flag is issued informing the presence of a

deadlock (Fig. 5.7 (a)). This is done by reading the sw-grnt signal received from

the Switch-allocator. In this case, the BC reads the head of the next packet in the

buffer and checks whether the requested out-port is different from the one previously

flagged as blocked or not. When it finds a request whose channel is free (Fig. 5.7

(b)), it sends a request to the Switch-allocator to be served. When the request is

granted, the flits of the granted packet are read from the buffer and the freed slots

can be used to host another incoming packet (Fig. 5.7 (c)). After new flits are

written in the buffer, the blocked packet is checked again (Fig. 5.7 (d)). The BC

receives a grant for the direction requested (North) and the packet is read from the

buffer.
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The timer’s value is one of the important choices that should be carefully taken.

This is because the deadlock occurrence is strongly dependent on the application

for any adaptive routing algorithm. Moreover, the presence of faults in the system

adds a higher probability for the deadlock occurrence; therefore, before selecting the

value of the timer, we profiled each one of the used applications and analyzed the

task graph of each one of them. During this analysis we took into consideration the

fault-rate and its impact on the congestion and deadlock occurrence.

Overwriting avoidance mechanism In order to avoid any flit overwriting caused

by mismanaging the wr-adr and rd-adr addresses, we added a small status register

(SR) which keeps information about the flits being flagged (i.e., not served yet).

When a flit is read from the buffer, the BC checks the status register and makes

sure not to write the incoming flit in a flagged slot. Observing, Figs. 5.7 (a) and

(b), we can see that status[0] and status[1], which are keeping information about the

two flits of the flagged packet are updated to 1. As shown in Fig. 5.7 (c), when an

incoming flit arrives to the buffer, BC makes sure that it will not be stored in one

of these two flits’ locations, but instead it is stored in an empty one. When a flit

which was previously flagged, and after of period of time its request is granted, the

BC should update the status register to free the flagged slot so it can be used by

other incoming flits, as it is show in Fig. 5.7 (d) (status[0] is updated to 0).

With this simple technique, performance and deadlock-freedom are ensured while

guaranteeing a small overhead. Moreover, instead of managing many requests at the

same time, as it is the case of VCs requiring then additional complexity and delay

for the arbitration, RAB handles each request at a time. Despite the delay penalty

required by the timer to detect the deadlock, this technique is still faster and simpler

to implement than Virtual-channels.

Power management For the proposed system, we used a power management

scheme to reduce the dynamic power in the system. This scheme is based on clock-

gating to turn-off the clock in some specific components which, in some periods of

time, they are in a waiting state and not performing any computation. Therefore,

it is important to switch off these components when they are not necessary for the
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correct working of the system and they are awakened when the system requires their

services.

Figure 5.8: Random-Access-Buffer for deadlock recovery block diagram.

We employed the power management scheme in three main components. First,

when a router detects that one of its links is faulty, it immediately switches off the

clock from the entire input-port associated to this faulty link. In this case, an im-

portant amount of dynamic power can be saved since input-ports occupy the largest

portion of the system power budget due to the presence of buffers which are consid-

ered as the hungriest components in the entire system in terms of power. Second,

we turn off the clock in the local-routing module that we added to recompute the

incoming route if necessary. Thus, the local-routing module is initially not fed by

the clock. Whenever the fault-control module signals the necessity to recompute

the route, the local-routing module is awakened and performs the necessary compu-

tation. Otherwise, it is disconnected from the clock and the unnecessary dynamic

power is spared. Finally, the last component is the RAB circuit. As we previously

mentioned, RAB deadlock-recovery technique is triggered only at the presence of

deadlock. When no blocking happens, the buffer is managed by the conventional
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First-In-First-Out (FIFO) buffer controller, as shown in Fig. 5.8. For dynamic-

power saving, RAB is put asleep at the absence of deadlock (deadlock-flag is equal

to zero) and it is working only when the timer (deadlock-flag) informs it that dead-

lock is occurring. In this fashion, deadlock-recovery is insured at a low-cost with no

unnecessary power waste.

Fault-tolerance

RAB was extended to be able to detect transient, intermittent, and permanent

faults in the input-buffer. For the detection we assume the presence of a mod-

ule (fault-detect in Fig. 5.9) that checks the buffer slots fault-status. In fact, the

proposed 3D-FTO system including the different techniques is independent of the

fault-detection mechanism that can be adopted. As long as the fault-tolerant mod-

ules in the router receive information about the presence and locations of the faults,

they can efficiently and adaptively recover from them. Therefore, whether we use er-

ror detection codes (such as, Error-Detection-Codes (EDC), Error-Correcting-Codes

(ECC), Cyclic-Redundancy-Check (CRC), and so on) or specific modules to detect

errors, such as Built-In-Self-Test (BIST), 3D-FTO can efficiently handle this fault

information regardless of the adopted detection mechanism.

When a fault is detected in one of the buffer slots, it can send one of two signals:

(1) Int-Tr-faulty-slot to inform the RAB-manager module the presence of a transient

or intermittent fault. When receiving this signal, the RAB-manager will take into

consideration the flagged slots when assigning Wr-adr and Rd-adr addresses. These

two latter signals are very important since they define the locations of the read and

written flit that are computed according to the fault status of the buffer slots. At the

same time, the RAB-manager keeps checking the flagged slots whether their faults

were recovered or not. This is because the buffer contains temporary faults that can

disappear after a period of time. (2) In case where a permanent fault is detected,

the fault-detect module sends a Perm-faulty-slot signal to the RAB-manager. This

information is important because if the RAB-manager finds that only one buffer slot

is nonfaulty, and the remaining ones are permanently faulty, it sends a Faulty-buffer

signal to the Fault-control-module to disable the entire input-port and update the
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Link-status array (shown in Fig. 5.6).

As we can see here, the distinction between the two Int-Tr-faulty-slot and Perm-

faulty-slot signals is extremely important to the behavior of the RAB-manager.

Depending on which signal is received, the RAB-manager is able to decide whether

to avoid writing/reading to/from a buffer slot since the detected faults are temporary

and can stop to exist after a period of time, or to disable the entire input-port

since the buffer contains permanent faults that cannot be recovered. By disabling

the entire port, fault-tolerance can be achieved (i.e., we make sure that the stored

information is correct). Moreover, the power overhead of this faulty buffer can be

also alleviated, since it is no longer functional and there is no need for powering it

on.

Optimized status-register To keep record of the faulty slots, the status register

(SR), previously presented for deadlock-recovery, was extended to an array that

hosts n 2-bit items (where n is the buffer depth). The value of each item can be

00 to inform that the corresponding flit is not causing the deadlock and the buffer

slot is not faulty. 01 indicates that the buffer slot is not faulty but the request

of the hosted flit is causing deadlock; therefore, this slot can be consulted again

to check whether the deadlock is removed or not, but it cannot be used to store

incoming flits to avoid flit overwriting. An element in the status array is updated

to 10, if a transient or intermittent fault is detected in the corresponding buffer

slot. Then, the slot cannot either consulted or used to store incoming flits (to avoid

additional latency for consulting broken slots). Finally, 11 is used to declare that the

corresponding slot is permanently faulty. As we previously said, these information

will be used to issue the Faulty-buffer signal.

In addition to the timer, the RAB mechanism is triggered by the fault-detect

module where in case of transient or intermittent is removed from a given slot, the

fault-detect informs the RAB-manager to update the status array of the correspond-

ing slot to 00 so it can be used by other incoming flits.

Example Figure 5.10 shows an example how the RAB mechanism works. In

each input-port, a RAB-controller (RAB-cntrl) manages the detection of deadlock
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Figure 5.9: Random-Access-Buffer for deadlock recovery and fault-tolerance block

diagram.
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(a)

(b)

(c)

Figure 5.10: Example of Random-Access-Buffer mechanism for deadlock-recovery

and fault-tolerance. Red crosses represent permanent faults, and the green one

represents intermittent or transient faults
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and faults and handles the proper assignment of wr-adr and rd-adr addresses. In

Fig. 5.10 (a), and after a permanent fault was detected (red cross) in one of the

buffer slots, RAB-manager updates the corresponding element in the status array to

11. Furthermore, by reading the sw-grnt signal received from the Switch-allocator,

the timer issues a deadlock-flag and the RAB-manager updates the corresponding

slot to 01. The RAB-cntrl reads the head of the next packet in the buffer and

checks whether the requested out-port is different from the one previously flagged

as blocked or not. When it finds a request whose channel is free, it sends a request

to the Switch-allocator to be served. When the request is granted, the flits of the

granted packet are read from the buffer and the freed slots can be used to host

another incoming packet which is stored in a slot whose value in the status array

is 00. After new flits are written in the buffer, the blocked packet is checked again

(Figure 5.10 (b)). When, the RAB-cntrl receives a grant for the direction requested

(North), the packet is read from the buffer and the status array is updated to 00.

At the same time, the fault-detect module has found an intermittent fault (green

cross), then again the status array to 10 to prevent from reading or writing into the

corresponding slot before the fault is removed (Figure 5.10 (c)).

5.2.2 Traffic-Prediction Unit

An interesting case often to happen is where a given input-buffer has some faulty

slots, the remaining ones are occupied by other flits, and other input-buffers in the

same router are empty. In order to enhance the performance and fully exploit the

entire router resources, we opted for a technique that allows sharing the input-

buffers’ resources among all the input-ports. This means that when an input-buffer

is not able to host more flits (due to the presence of faulty slots and the occupancy

of the remaining ones), it can redirect the incoming flits to another neighboring

empty input-buffer to quickly forward them to their destination. To achieve this

goal, knowing the best candidate to receive the redirected flits among the available

empty input-buffers is extremely crucial.
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Architecture

A simplified example explaining the proposed approach is illustrated in Fig. 5.11.

In this figure, we used a Traffic-Prediction-Unit (TPU) which collects information

about the traffic load (red signals) of each input-port (IP) at a specified time interval.

This information is received from monitoring probes (Prb) attached to each one of

the input-ports in the router. The collected traffic snapshots are first stored in the

Prediction-Table (shown in Fig. 5.11), and then used to calculate the average flit

arrival at each input-buffer. Depending on these traffic snapshots, the TPU can

decide the best input-port that can host the faulty input-buffer’s flits in order to

reduce the congestion. When the best input-buffer is selected (in this example the

East buffer), the TPU sends Best buff signal (in green) to the corresponding input-

buffer giving information about the elected best buffer. When receiving this signal,

RAB-manager stores this information in a small three bit register (labeled BB in

Fig. 5.9) and assigns a new input-buffer which will host any incoming flits until

some slots are freed and the faulty input-buffer can receive again new flits.

When receiving this signal, RAB-manager stores this information in a small three

bit register (labeled BB in Fig. 5.9) and assigning a new input-buffer which will host

any incoming flits until some slots are freed and the faulty input-buffer can receive

again any incoming flits.

Sharing and flow-control

To allow the buffer sharing among all the input ports, a technique (named FVS

[150]) which was used faulty Virtual-Channels was modified and ported to our router

design. With this technique and with the aid of a light-weight arbiter controlled by

the TPU, flits can be redirected from one input-port to another. In addition, TPU

makes sure that at each time, only one input-port can use the calculated Best buff.

With his restriction, we avoid the case where two input-ports (or more) wants to use

the same Best buff as an escape channel. The final function of TPU is to smartly

redirect the flow-control signals of each input-port. When the input-ports switches

to the calculated Best buff, TPU makes sure to also swap the proper flow-control

signals to avoid any flit dropping. All these functionalities gained with TPU comes
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with a small overhead on the router critical path.

Considerations

There exists a case where some flits of a given packet are stored in the buffer

and then this later is declared faulty and full. Following the RAB mechanism, the

remaining flits of this packet will be stored in a different buffer. In such case, there

is a possibility where these flits may arrive out of order since they are stored in

different buffers. As a result, there must be a reordering process at the destination

node, or a delay that should be added to some flits so they can arrive at the same

time with the remaining ones. In our case, we opted for a simpler solution where we

start redirecting flits only if it is a header one. In this fashion, the remaining flits of

this packet will be stored in the same buffer as the header flit. With this additional

restriction, we are sure that packet’s flits will arrive in order with small additional

hardware/power overhead.

5.2.3 Bypass-Link-on-Demand

Architecture

The Bypass-Link-on-Demand mechanism, depicted in Fig. 5.12 (a), provides an

additional escape channel whenever the number of faults in the baseline 7x7 crossbar

increases. In this figure, we considered two Bypass-links for simplicity. The ctrl unit,

shown in this figure, manages to check the crossbar link status. In the case where a

fault is detected in one or several links, it sends flags to the FCM which disables the

faulty crossbar links and enables the appropriate number of bypass channels. The

easiest approach is to provide a dedicated Bypass-Link for every crossbar channel.

In this fashion, both fault-tolerance and performance are guaranteed because the

input-ports requests do not share the Bypass-Links, even when all the baseline 7x7

crossbar links are faulty. However, this technique is the same as duplicating the

entire crossbar; therefore, additional area and power overhead is certain to occur.

In addition, when the fault-rate is low, only one or two Bypass-Links are enough

to handle the requests of the faulty crossbar-links. According to these facts, we
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decided to perform an incremental approach, where we analyze the used benchmark

and the assumed fault-rate and we increment the number of Bypass-Links until the

performance is steady or almost unchanged.

Optimizations

The number of Bypass-links is very important and it should be minimized as

much as possible to reduce the area and power overhead. Therefore, we decided to

exploit the unused crossbar links already existing in the system. These links are

the ones located at the edges of the network where there is no neighboring node

and, therefore, the corresponding crossbar link is unused. With this optimization,

an important area and power saving can be achieved while keeping the performance

at its peak.

Example Assuming the example in Fig. 6 (a) where three faults are detected:

two are permanent in the North- and East-links (red), and the other is transient

in the West-link (green). When detecting these two faults, the ctrl module sends a

Faulty-Cross signal to the Fault-control-module (FCM) informing the presence and

the positions of faulty crossbar-links. Upon receiving this signal, the FCM sends a

Crss-flag signal to sw-req-ctrl (located in the input port as depicted in Fig. 2) to

prevent from requesting the faulty crossbar links. At the same time, the FCM also

computes the necessary number of bypass-links and sends an Enable-bypass signal

back to the ctrl module in order to enable the convenient number of bypass-links.

Upon receiving this latter signal, the corresponding bypass channels are activated to

handle the incoming requests from the different input-ports allocated to the faulty

crossbar links. After a period of time, the transient fault is removed and the ctrl

module sends information to the FCM (via the Faulty-Cross signal) which re-enables

again the West-link and deactivates one of the Bypass-Links (Bypass-2 in Fig. 6 (b)

is deactivated (gray)) as it is no longer necessary.
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5.2.4 Fault-Control

The Fault-control-module (FCM) is one of the main components of our system.

This is because it manages the diagnosis and recovery from all kinds of faults in

three main components: inter-router links, input-buffers, and the crossbar. Starting

with the inter-router links, the link status of each router and those of its neighboring

nodes are stored in a small array named Link-status. These information are always

sent to the LAFT-routing module to be used during the selection of the Next-port.

For input-ports, the Traffic-Prediction-Unit handles the allocation of other buffer

resources when needed, as explained earlier. However, when only one buffer slot is

valid and the remaining one are permanently faulty, the FCM receives a signal

Faulty-Buffer (shown in Fig. 5.6) from the RAB-cntrl. When receiving this signal,

the FCM disables the entire input-port to save dynamic power. At the same time,

FCM updates the Link-status array by flagging the link connected to the faulty

buffer. These information are constantly sent to all the FCMs in all neighboring

nodes.

Finally, to handle the faults in the crossbar FCM interacts with the ctrl unit in

the crossbar circuit to exchange fault information and control signals. As shown in

Fig. 5.12 (1), the ctrl unit is the medium between the baseline 7x7 crossbar and

the additional Bypass-links. The main task of this unit is to detect the presence of

faults in the crossbar and to keep informing the FCM about its fault status. The

FCM monitors these incoming fault information and stores them in a register named

Crss-link status (Fig. 5.6). When a fault is detected, the FCM sends three signals

concurrently: two for the ctrl unit to enable one of the Bypass-links and disable the

faulty crossbar link, and the second one to the Sw-req-cntrl (Fig. 5.6) to prevent

flits from requesting the faulty crossbar link and ask the permission to use one of

the Bypass-links instead.

When the number of faults increases, the FCM manages to distribute the different

requests on the available Bypass-links in a fair way. On the other side, the ctrl unit

has the task to enable and disable the Bypass-links for power saving depending on

the signals received from the FCM. This means that when the crossbar is valid,

the Bypass-links are put asleep to save dynamic power (as represented in Fig. 5.12
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(2)). When faults are detected, the ctrl unit awakes the appropriate number of

Bypass-links depending on the information received from the FCM.

5.3 Conclusion

A reliable router architecture for 3D-NoC systems was presented in this chapter.

The proposed 3D-FTO router is equipped with three main components to further

enhance both reliability and performance. First, we presented Random-Access-

Buffer (RAB) which is a smart mechanism that deals with both deadlock and failure

occurrence in the input buffers by efficiently managing the assignment of reading and

writing addresses while avoiding overwriting or flit dropping. RAB was endorsed

with Traffic-Prediction-Unit (TPU) which aims to relieve the congestion in the input

buffer caused by failed slots. TPU is based on sharing the input-buffers’ resources

among all the remaining ones, if needed. To tackle the failure in the crossbar circuit,

Bypass-Link-on-Demand mechanism is proposed to provide escape channels in case

where failures are detected in the baseline crossbar links. Both RAB and BLoD

were presented in [45] and they showed great ability on absorbing the performance

degradation at high fault-rate and make it as graceful as possible. With these three

components combined with the routing algorithms presented in the previous chapter,

the proposed 3D-FTO router provides high reliability with a graceful performance

degradation and while maintaining a low hardware cost. This is further analyzed in

the next chapter.





Chapter 6

Evaluation

Our proposed 3D-Fault-Tolerant-OASIS (3D-FTO) system was designed in Verilog-

HDL, synthesized using Synopsys Design Compiler with 45nm CMOS technology

[156]. We dedicate this chapter to evaluate the performance of the proposed system

and discuss the performance variation and its reasons. We start first by explaining

the four benchmarks used for the evaluation. Second, we present evaluation param-

eters and assumptions taken into consideration. Finally, we provide the evaluation

results in terms of hardware complexity, latency per flit, and throughput.

6.1 Evaluation methodology

To evaluate the performance of the proposed system, we selected Matrix-multiplication

[151,152] and JPEG-encoder [153] as real benchmarks and also two traffic patterns:

Transpose [154] and Uniform [155].

Benchmarks

Matrix-multiplication We chose Matrix-multiplication because it is one of the

most fundamental problems in computer science and mathematics, which forms

the core of many important algorithms such as engineering and image processing

applications [151,152].

First we assume that an ixk matrix A has i rows and k columns, where Aik is an

element of A at the i -th row and k -th column. As demonstrated in Fig.6.1, an ixk

85
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Figure 6.1: Matrix multiplication example: The multiplication of an ixk matrix A

by a kxj matrix B results in an ixj matrix R.

Figure 6.2: Simple example demonstrating the Matrix-multiplication calculation.

matrix A can be multiplied by a kxj matrix B to obtain an ixj matrix R. Figure.6.2

presents how the matrix R can be obtained according to Formula 6.1.1.

Ri,j =
k−1∑
n=0

Ai,n.Bn,k (6.1.1)

When implemented onto 3D-ONoC, and for seek of convenience, we can assume

that all the matrices are square and having nxn size. In 3D-ONoC, each element

of the three matrices is assigned to a computation module which is connected to

one router. As a result the number of routers connected to the network is the sum

of all the elements of three matrices which is equal to 3n2. Each element of the

matrix B receives n flits from n different elements of the matrix A in order to make

the multiplication. Then, each element of the matrix B sends n flits to n different

elements of the matrix R where all the received values are summed. Then, the final

resulted value is outputted. In total, 2n3 flits travel the network for a nxn square

matrix multiplication.

To evaluate 3D-OASIS-NoC system’s performance with Matrix-multiplication,
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we set the matrix size to 6×6. We also decided to calculate from 1 to 100 different

matrices at the same time. This aims to increase the number of flits traveling the

network at the same time and see the impact of congestion on the performance of

the proposed system with different traffic loads.

JPEG encoder The second application used for the evaluation is the JPEG-

encoder [153], which is a well-known application frequently used in a lot of research

and includes some parallel tasks. This can be suitable for evaluating the performance

of NoC systems. For instance, we took into consideration the task implementation

shown in Fig.6.3.For additional analysis, we made further divisions to the Y:d-q-h,

Cb:d-q-h, Cr:d-q-h and FIFO modules, and the resulted task graph is illustrated in

Fig.6.4.

Figure 6.3: Task graph of the JPEG encoder

This extension aims to increase the network size and deploy more parallel exe-

cution of the different modules of the application, and then take advantage of the

scalability and the reduced number of hops offered by our design.

As we analyze the modified task graph represented in Fig.6.4, we noticed that the

communication bandwidth between DCT, Quantization and Huffman modules are
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Figure 6.4: Extended task graph of the JPEG encoder
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very high (640 bits) compared with those found between the different other modules

of the application (8, 24 and 32 bits). This bandwidth gap will cause unbalanced

traffic distribution especially when implemented on hardware, since we will increase

the link size in addition to the size and number of flits in the packet format, causing

higher latency and thermal power. All these factors, will eventually decrease the

overall performance of our system, instead of enhancing it.

To increase the network size and introduce more parallelism, we implemented

four JPEG systems which run concurrently and whose tasks share three shared

memories where the input and output images are stored.

Transpose traffic pattern The Transpose traffic pattern is a communication

method based matrix transposition. Each node sends messages to another node

with the address of the reversed dimension index [154]. The Transpose workload is

often used to evaluate the NoC throughput and power consumption since it creates a

bottleneck due to the long communication distance exhibited between (transmitter

and receiver) pairs.

Uniform traffic pattern The Uniform traffic pattern is a standard benchmark

used in on-chip and off-chip network routing studies which can be considered as a

traffic model for well-balanced shared memory computations [155]. Each node sends

messages to other nodes with equal probability (i.e., destination nodes are chosen

randomly using a uniform probability distribution function). In our evaluation with

the two traffic patterns, we set 4x4x4 as a network size where all the nodes were

assigned for both transmitter and receiver nodes. Each transmitter node injects from

102 to 105 flits into the network. While on the other side, receiver nodes verify the

correctness of the received flits. At the end, we calculated the average latency/flit

over the different injection rates.

Fault-rate consideration

Using these four benchmarks, we evaluated the latency/flit and throughput of

the proposed 3D-FTO system under each of the aforementioned applications. We

observed the performance variation of 3D-FTO under different fault-rates of link,
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crossbar-link, and buffer-slots (0%, 5%, 10%, and 20%). During the evaluation,

we divided the faults into three portions: the biggest portion is allocated for tran-

sient faults and the remaining two smaller portions are considered for permanent

and intermittent according to the assumption made in [142]. The number of links,

crossbar-links, and buffer slots can be calculated using formula (6.1.2) [14, 157],

(6.1.3), and (6.1.4), respectively:

#links = N1.N2.(N3 − 1) +N1.N3.(N2 − 1) +N2.N3.(N1 − 1) (6.1.2)

#Crossbar − links = OP.N1.N2.N3 (6.1.3)

#Buffer − slots = BD.IP.N1.N2.N3 (6.1.4)

Where N1, N2 and N3 are the respective network’s X, Y and Z dimensions. OP is

the number of output-ports, IP is the number of input-ports, and BD is the buffer

depth.

Experiments

First, we evaluated the performance of 3D-FTO when compared to the baseline

LA-XYZ- [144] and LAFT-based [11] systems while considering faults only in the

input-buffer. In this experiment, we assume that each input-buffer can host four

flits. We evaluated second the performance of the Bypass-Link-on-Demand (BLoD)

technique separately by considering faults occurring only in the crossbar (the fault-

rates for both link and buffer-slots are set to 0%). This experiment aims to observe

the behavior of 3D-FTO under different numbers of Bypass-links and to know the

appropriate necessary number of them for each application. Finally, we evaluated

the complete 3-FTO architecture under different fault-rates and assuming the pres-

ence of the three types of faults in the three targeted components of the router

together (i.e., faults occurring in the links, crossbar-links, and buffer-slots). The re-

sults of this evaluation are compared with the baseline LA-XYZ- and conventional

XYZ-based systems [78]. For the fault distribution, we made sure that the fault

occurrence is relative to the area occupied by each of the target components. As
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a result, we considered the biggest portion of faults in the input buffers, a smaller

number of faults are considered for the crossbar circuit, and finally faults in links are

considered to be the smallest portion. For the hardware complexity of 3D-FTO, we

compared the results to the baseline LA-XYZ-based system (which does not have

fault-tolerance support). Table 6.1 represents the configuration parameters used for

our evaluation.

Table 6.1: Simulation configuration.
Parameters / System XYZ-based Baseline 3D-FTO

Network Size
JPEG 3x3x3 3x3x3 3x3x3

(Mesh)
Matrix 3x6x6 3x6x6 3x6x6

Transpose & Uniform 4x4x4 4x4x4 4x4x4

Flit size

JPEG 27 bits 30 bits 30 bits

Matrix 31 bits 34 bits 34 bits

Transpose & Uniform 31 flit 34 flit 34 flit

Header size

JPEG 10 bits 13 bits 13 bits

Matrix 10 bits 13 bits 13 bits

Transpose & Uniform 10 bits 13 bits 13 bits

Payload size

JPEG 16 bits 16 bits 16 bits

Matrix 21 bits 21 bits 21 bits

Transpose & Uniform 21 bits 21 bits 21 bits

Flits per packet 4 4 4

Buffer Depth 4 4 4

Switching Wormhole-like Wormhole-like Wormhole-like

Flow control Stall-Go Stall-Go Stall-Go

Scheduling Matrix-Arbiter Matrix-Arbiter Matrix-Arbiter

Routing XYZ LA-XYZ LAFT

6.2 Performance evaluation results

6.2.1 Look-Ahead-Fault-Tolerant routing algorithm evalua-

tion

Latency evaluation

First, we evaluated the communication latency of LAFT by calculating the av-

erage latency/flit. Figure 6.5 (a) illustrates the latency/flit results under Transpose

traffic pattern. When no faults are detected (0%), the proposed algorithm shows
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the best performance and reduces the latency/flit with an average of 39.8% and

19.4% when compared to XYZ and LA-XYZ routings respectively. As we stated

previously, LAFT takes advantage of the look-ahead routing to forward the flits to

the next neighboring node faster than XYZ routing algorithm. Moreover, LAFT

takes into consideration the congestion status and the traffic balance, and thanks to

these features, it performs better than LA-XYZ. As a result, the latency/flit along

the network is reduced. When observing the latency variation over different fault-

rates, LAFT performs better than XYZ and LA-XYZ even under 10% fault-rate,

and when this rate reaches the 15% and 20%, the latency increased with only 12%

and 24% respectively.

This performance is strongly related to the nature of the Transpose application.

As we previously stated, the Transpose traffic exhibits long distance communica-

tions. LAFT takes advantage of this property since when the source and destina-

tion are located in different dimensions, the path choices are more diverse. In this

fashion, when a faulty link is detected in one dimension, there still exists other ones

with valid links. In such situations, the probability to route the flit through a min-

imal path is very high and the performance does not significantly drop. However,

when we increase the fault-rate (15% and 20%), not only is the probability to find

a minimal path is lower, but the absence of valid links is also reduced. Thus, the

congestion is more important, since more flits have to share the links. This explains

the performance drop at higher fault-rates which is mainly caused by the traffic

congestion more than the non-minimal routing.

To better see the effects of non minimal routing, we observe the latency results of

the Uniform traffic pattern illustrated in Fig. 6.5 (b). In the case where no faults are

adopted, LAFT still reduces the latency with 36.29% and 13.08% when compared

to XYZ and LA-XYZ respectively. However, the latency is higher than LA-XYZ

starting from 5% fault-rate, and 10% for XYZ. The latency gets its highest value at

20% fault-rate with a high flit injection (50.000 to 100.000 flits) and reaches the 31%

and 49% increase when compared to XYZ and LA-XYZ respectively. The Uniform

traffic includes a lot of short distance communications. This kind of communication

is made between nodes located in the same layer and even between two adjacent
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(a)

(b)

(c)

Figure 6.5: Look-Ahead-Fault-Tolerant routing algorithm latency per flit evaluation

with: (a) Transpose (b) Uniform (c) 6x6 Matrix.
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nodes. In this case, any faulty link causes several non-minimal routings, and when

the fault-rate increases, this non-minimal routing number keeps increasing as well.

In addition to the congestion caused by the faulty links explained above, the non-

minimal routing has an important impact on the latency.

To observe an average case which combines both short and long distances and

exhibits a moderate behavior, we can take a look at the Matrix-multiplication shown

in Fig. 6.5 (c). From this figure, we see that in absence of faults, LAFT decreases the

latency with 38.57% and 16.3% when compared to XYZ and LA-XYZ respectively.

At the presence of 1% and 5% fault-rates, LAFT keeps its advantage against both

of the other two algorithms. At 10% fault-rate, the latency is almost the same as

LA-XYZ and 22.85% better than XYZ. Starting from 15% and 20%, and when the

number of calculated matrices increases, the latency increases as it is the case for

Transpose and Uniform traffic patterns. At these fault-rates, the latency is increased

with 23% and 31%.

Throughput evaluation

For the second evaluation, we calculated the throughput of each algorithm us-

ing the three applications. Again, we observed the variation of the throughput

over different traffic loads and fault-rates. The results of the throughput evaluation

are shown in Fig. 6.6 (a), (b) and (c). Compared to the other two algorithms,

the proposed algorithm shows the highest throughput when no faults are adopted

(0%), or with a small fault-rate (1%) that can reach a 51%, 31% improvement

when compared to XYZ and LA-XYZ using the Transpose traffic. When compared

to XYZ, the throughput of LAFT does not show a significant drop at high fault-

rates that does not pass 22%. For the Uniform pattern, the throughput is a little

lower than the Transpose traffic due to the communication exhibited by this traf-

fic that we previously explained. LAFT enhances the throughput up to 39% and

32% respectively. High fault-rates and high flit injection, results in LAFT’s worst

throughput illustrated by a 34% throughput drop compared to XYZ. Finally, ex-

ecuting the Matrix-multiplication at low fault-rate, LAFT offers a 48% and 25%

throughput enhancement compared to XYZ and LA-XYZ respectively, and only a
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17.29% throughput decrease is obtained at high fault-rate when compared to XYZ.

Observing the results in Fig. 6.6, we can see that with light traffic loads, the

increase in throughput is more subtle than the latency/flit (Figure 6.5). This can

be clearly seen especially with Transpose and Uniform traffic patterns. In these two

traffic patterns, the delay of the long distance communication distance affects the

execution time and consequently the throughput. When the traffic load increases,

we noticed that long distance communications were not considerably affected as is

the case with short distance ones. This is explained by the fact that long distance

communication (source, destination) pairs are usually located in different dimen-

sions. This gives them better routing choices for less congested channels while short

communications have less choices due to the minimal routing constraint. Therefore,

even if the latency/flit increases linearly, the increase in throughput is more subtle.

However, the increase in throughput with Matrix-multiplication is more obvious (es-

pecially for 0% and 1% fault-rate). This is due to the nature of the communication

pattern in this application which is more balanced and does not cause an important

congestion with light traffic.

6.2.2 Hybrid-Look-Ahead-Fault-Tolerant routing algorithm

evaluation

Latency evaluation

For the performance evaluation, we first calculated the latency/flit for XYZ and

LA-XYZ with 0% fault-rate, and LAFT and HLAFT under fault-rates varying be-

tween 0% and 20% and we observed the performance variation. Figures 6.7 and

6.8 show the latency/flit results for each of the used applications. At the absence

of faults, both LAFT and HLAFT have the same latency/flit. This means that

the Local-routing was not triggered and HLAFT has the same behavior as LAFT.

In Uniform application (Fig. 6.7 (b)) the latency/flit reduction with HLAFT and

LAFT can reach the 48% and 33% when compared to XYZ and LA-XYZ, respec-

tively. This reduction is a result of the ability of both algorithms to detect the

congestion caused by such traffic and makes the best routing decision for less con-
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(a)

(b)

(c)

Figure 6.6: Look-Ahead-Fault-Tolerant routing algorithm throughput evaluation

with: (a) Transpose (b) Uniform (c) 6x6 Matrix.
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gested channels. When we increased the fault-rate and place the fault links in some

critical locations, the previous deadlock-recovery of LAFT fails and deadlock hap-

pens at 20% (Matrix and Transpose) and starting from 10% (Uniform and JPEG)

fault-rates as illustrated in Figs. 6.7 and 6.8. On the other hand, HLAFT manages

to avoid deadlock and, moreover, its latency is still smaller than XYZ even under

20% fault-rate with JPEG application (Fig. 6.8 (b)) while observing a small over-

head when compared to LA-XYZ illustrated in 1.5% in Transpose traffic. In average

and under 20% fault-rate, the latency/flit is increased with HLAFT with 13.75% and

3.2% when compared to LA-XYZ and XYZ, respectively. When we re-observe the

latency/flit results, we can see that even when LAFT succeeds in avoiding deadlock,

its latency is always equal or higher than that of HLAFT. The outperformance of

HLAFT compared to LAFT can reach the 6.2 and 12.6% latency/flit reduction un-

der 5% and 10% fault-rates, respectively, with Matrix application. This performance

improvement is obtained thanks to the employment of both local- and look-ahead

routing which gives our system the opportunity to recompute the route if it finds

out that the already calculated one will lead to a blocking path costing several clock

cycles for nonminimal routing.

In this fashion, HLAFT optimizes the routing decision and minimizes the proba-

bility of finding a blocking path (that leads to a nonminimal route) while keeping the

routing efficiently minimal as long as one minimal path exists. Thus, with the help

of RAB, both fault-tolerance and deadlock-recovery are insured with no considerable

performance degradation.

Throughput evaluation

In the second performance evaluation, we computed the throughput of each

routing-based system as shown in Figs. 6.9 and 6.10. Under 0% fault-rate, the

throughput enhancement with LAFT and HLAFT reached the 53% and 23% when

compared to XYZ and LA-XYZ, respectively, with Matrix application (Fig. 6.10

(a)). Under 5% and 10% fault-rates, HLAFT keeps its advantage against XYZ for all

applications; and even under 20% fault-rates, HLAFT still outperforms XYZ with

Matrix, Transpose and JPEG application observing 12% throughput degradation
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(a)

(b)

Figure 6.7: Hybrid-Look-Ahead-Fault-Tolerant routing algorithm latency per flit

comparison results between XYZ, LA-XYZ, LAFT, and HLAFT based 3D-NoC

systems with: (a) Transpose; (b) Uniform.
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(a)

(b)

Figure 6.8: Hybrid-Look-Ahead-Fault-Tolerant routing algorithm latency per flit

comparison results between XYZ, LA-XYZ, LAFT, and HLAFT based 3D-NoC

systems with: (a) 6 × 6 Matrix; (b) JPEG.
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(a)

(b)

Figure 6.9: Hybrid-Look-Ahead-Fault-Tolerant routing algorithm throughput com-

parison results between XYZ, LA-XYZ, LAFT, and HLAFT based 3D-NoC systems

with: (a) Transpose; (b) Uniform.
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(a)

(b)

Figure 6.10: Hybrid-Look-Ahead-Fault-Tolerant routing algorithm throughput

comparison results between XYZ, LA-XYZ, LAFT, and HLAFT based 3D-NoC

systems with: (a) 6 × 6 Matrix; (b) JPEG.
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with Uniform traffic-pattern. When compared to LA-XYZ, HALFT’s throughput

is the highest under 5% and 10% fault-rates for all applications except for Uniform

(10%) where we observed a slight 2.3% degradation. The final throughput compari-

son considered the performance of HLAFT and LAFT. As we previously mentioned,

LAFT fails to avoid deadlock when the fault-rate exceeds the 10% while HLAFT

(with the help of the RAB deadlock-recovery technique) manages to detect and

eliminate the deadlock. Moreover, even when LAFT succeeds to avoid deadlock,

its throughput is always equal or lower than that of HLAFT. The enhancement of

HLAFT against LAFT can reach the 5.4% and 11.8% under 5% and 10% fault-rates,

respectively, with Transpose application.

Reliability evaluation

Table 6.2: HLAFT reliability evaluation results.

Routing Algorithm / Faulty-links 1 faulty link 2 faulty links 3 faulty links

AFRA [137] 33% 7% 3%

HamFA [122] 95% 44% 20%

HLAFT (Proposed) 100% 100% 100%

In this subsection, we discuss the reliability of HLAFT. We define reliability as

the capability of the system to deliver all the packets to their destinations. If all

packets are delivered except for one, the system is considered as unreliable. We

compared the results with both AFRA [137] and HamFA [122] algorithms. The

reliability results of these schemes are obtained from [122] where Uniform traffic

pattern was used and one, two, and three faulty links are considered.

As depicted in Table 6.2 HamFA could tolerate one, two, and three faulty links

by 95%, 44%, 20% reliability, respectively, while AFRA could tolerate 33%, 7%,

and 3% for the same number of faulty links, respectively [122]. For the proposed

HLAFT, the system could deliver all the flits to their destinations with no single

dropped flit (100% reliability) when considering three faulty links. Moreover, all the

packets could reach their destinations when running all the used benchmarks, even
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when considering a large number of faulty links, sometimes reaching 252 faulty links

(case of 20% fault-rate in Matrix-multiplication application).

We can explain this reliability by the fact that HLAFT always finds a path

form source to destination, no matter where the fault is located and how heavy the

traffic is. The only possible reason that can prevent the arrival of a given packet

to its destination is the presence of deadlock; however, thanks to the adopted RAB

mechanism, deadlock is avoided, therefore, all packets can reach their destinations

providing complete reliability under different fault-rates and with different injection-

rates.

6.2.3 Random-Access-Buffer and Traffic-Prediction-Unit tech-

niques evaluation

In this second experiment, we evaluated the performance of 3D-FTO when em-

ploying the RAB mechanism and we tried to see how the companion TPU affects

its performance. Here again, we assumed that there are no faults in the crossbar

nor in the links. The latency/flit results of 3D-FTO, when compared to the baseline

(LA-XYZ-based) system, are shown in Figs. 6.11 and 6.12.

The first thing to notice from these graphs is the performance improvement

of 3D-FTO at low fault-rates. For all applications, the proposed system delivers

the messages faster than the baseline LA-XYZ-based system, even at 5% fault-

rate. It is important to mention that the performance gained when employing RAB

comes essentially from LAFT routing used in 3D-FTO and does not come from

RAB. On the other hand, RAB has the main task of recovering from deadlock and

ensuring correct flits’ writing/reading in/from the input-buffers. When we observe

the behavior of 3D-FTO employing only RAB mechanism, we can see that the

latency keeps increasing linearly as we consider more faulty slots. This is natural

because fewer buffer resources are available which are shared between the traveling

flits in the network. As a result, a high congestion is created and consequently

additional latency.

To reduce this latency and make the performance degradation less important,

Traffic-Prediction-Unit (TPU) is used to share all input-buffers’ resources between
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the router’s seven input-ports. When endorsing RAB with TPU, the 3D-FTO la-

tency is much more reduced and is smaller than that of the baseline system for

three applications (Transpose, Matrix, and JPEG) even at 20% fault-rate, while the

latency is slightly higher when compared to the baseline system for Uniform applica-

tion. When analyzing the task graph of Uniform, we could see that flits in this kind

of traffic patterns are sent uniformly to different nodes in the network. This means

that flits are entering from different input-ports requesting different out-ports. As a

result, the different input-buffers of the same router are most of the time occupied

by other flits which makes sharing the buffer’s resources between each others less

efficient. With the other applications, for example JPEG, transmitter-nodes have

usually few receiver-ones that most of the time are one hope or two hopes away. This

makes few input-ports being used while the remaining ones are not. It is the best

case for 3D-FTO+RAB+TPU to reduce the latency about 15% when compared to

the 3D-FTO+RAB system only.

6.2.4 Bypass-Link-on-Demand technique evaluation

Figures 6.13 and 6.14 illustrate the latency/flit results of 3D-FTO under dif-

ferent fault-rates when considering the fault occurrence only in the crossbar. As

can be seen in these figures, we made a comparison between 3D-FTO system (with

different number of bypass-links), LA-XYZ-, and LAFT-based ones while running

the four benchmarks. In the absence of faulty crossbar-links, LAFT based system

has the best performance while observing a negligible difference when compared to

3D-FTO system with different number of Bypass-links (BLs) for all applications.

For all applications, employing a single BL was not enough to handle the congestion

created by the faulty crossbar-links; therefore, the latency keeps increasing as we

increase the fault-rate. When observing 3D-FTO’s behavior with Transpose appli-

cation (Figure 6.13 (a)), the latency starts to stabilize starting with two BLs having

a negligible overhead when compared to those when employing three and four BLs.

For the remaining applications, employing two BLs was not enough either and the

performance starts to stabilize with three BLs. As we previously stated, Transpose

traffic patterns exhibit long distance communications, where a single transmitter
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(a)

(b)

Figure 6.11: Random-Access-Buffer and Traffic-Prediction-Unit latency/flit evalu-

ation with: (a) Transpose; (b) Uniform.
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(a)

(b)

Figure 6.12: Random-Access-Buffer and Traffic-Prediction-Unit latency/flit evalu-

ation with: (a) 6 × 6 Matrix; (b) JPEG.
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is assigned to a single receiver. Therefore, flits entering a certain router request

the same output-port, and a single crossbar-link. As a result, several crossbar-links

are unused. In this kind of a situation, the benefits of the optimization that we

proposed to exploit the unused crossbar-links becomes clear where no additional

BLs are necessary since the unused crossbar-links already existing in the router are

relieving the congestion on the BLs. On the other hand, applications like Uniform

or JPEG are likely to have short distance communications, and flits entering the

router from different input-ports are requesting the same output-port, as we pre-

viously said. Therefore, these flits compete to use the BL; thus, adding additional

latency. From these graphs, we can see that employing three BLs provides the lowest

performance degradation which is almost similar to when employing four. Moreover,

at 20% fault-rate, 3D-FTO with three BLs performs better than the baseline LA-

XYZ-based system in three applications (Transpose, Matrix, and JPEG) and a small

9.1% overhead is observed when running the Uniform application.

As we explained earlier in the previous evaluation, the outperformance of 3D-

FTO system is obtained thanks to LAFT routing algorithm [11] which reduces the

congestion in the network, and the employed BLoD technique manages to make

the performance degradation as graceful as possible at the presence of faults in the

crossbar.

6.2.5 3D-Fault-Tolerant-OASIS router evaluation

In this fourth and final evaluation, we evaluated the performance of the complete

3D-FTO. We set the number of Bypass-links in BLoD to three, as it seemed to be

the best tradeoff between performance and complexity. For the input-buffer, we set

the buffer depth to four and employed both RAB mechanism and TPU. We set the

fault-rate for each one of the targeted components (input-buffer, crossbar, and links)

proportionally to their corresponding percentage of the entire router’s area.

Latency evaluation

The results of the latency/flit evaluation are depicted in Figs. 6.15 and 6.16.

We can see that in the absence of faults, 3D-FTO system has the best performance,
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(a)

(b)

Figure 6.13: Bypass-Link-on-Demand technique latency/flit evaluation with: (a)

Transpose; (b) Uniform.
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(a)

(b)

Figure 6.14: Bypass-Link-on-Demand technique latency/flit evaluation with: (a) 6

× 6 Matrix; (b) JPEG.
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thanks to the employed LAFT routing, when compared to XYZ- and the LA-XYZ-

based systems, even at 5% (Uniform and Matrix) or 10% (Transpose) fault-rates.

This latency/flit reduction can reach an average of 37% and 18.5% when compared to

the XYZ- and LA-XYZ-based systems, respectively. When the fault-rate increases

in the three components (link, crossbar, and input-buffer), 3D-FTO’s latency in-

creases as well. However, in some applications (Transpose and Matrix) 3D-FTO

still performs better than XYZ-based system (no fault consideration) even at 20%

fault-rate, but higher latency than that of the baseline LA-XYZ-based design. With

the Uniform and JPEG applications, the latency degradation is more important

which can reach an average of 12.1% and 31.7% when compared to XYZ- and the

LA-XYZ based systems. This performance degradation is caused mainly by the

nonminimal routing required in such communication types. In JPEG and Uniform

(as we previously mentioned), neighboring nodes tend to communicate between each

other. Even a single fault in a buffer-slot or a crossbar-link will not considerably

affect the system performance. However, a single faulty-link causes nonminimal

routings. As a consequence, additional clock cycles are necessary to perform the

rerouting. But, with other applications (Transpose or Matrix) exhibiting long dis-

tance communications, 3D-FTO performs better or almost the same as XYZ-based

system when considering 20% fault-rate.

Throughput evaluation

The throughput evaluation results are shown in Figs. 6.17 and 6.18. The 3D-

FTO system exhibits the best throughput when compared to the other two systems

in the absence of faults. This throughput outperformance can reach 51% and 38%

when compared to XYZ- and LA-XYZ- based systems, respectively. Even in the

presence of faults, 3D-FTO still maintains a sustainable throughput, and as we

increase the fault-rate, the throughput degrades gracefully. This can be concluded

from the fact that 3D-FTO provides higher throughput than XYZ-based system

even when considering 20% fault-rate (Transpose and Matrix-multiplication). When

running Uniform and JPEG-encoder, 3D-FTO provides an average of 11.2% and 30%

less throughput than those of XYZ- and LA-XYZ- based systems, respectively.
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(a)

(b)

Figure 6.15: 3D-Fault-Tolerant-OASIS latency/flit evaluation with: (a) Transpose;

(b) Uniform.
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(a)

(b)

Figure 6.16: 3D-Fault-Tolerant-OASIS latency/flit evaluation with: (a) 6 × 6

Matrix; (b) JPEG.
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(a)

(b)

Figure 6.17: 3D-Fault-Tolerant-OASIS throughput evaluation with: (a) Transpose;

(b) Uniform.
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(a)

(b)

Figure 6.18: 3D-Fault-Tolerant-OASIS throughput evaluation with: (a) 6 × 6

Matrix; (b) JPEG.



6.3. Prototyping results 115

Again, we remind that both XYZ- and LA-XYZ- based systems do not support

fault-tolerance, and any single failure may lead to corrupted information or an entire

system crash.

6.3 Prototyping results

Design prototyping steps

As we mentioned earlier, our proposed system was designed in Verilog-HDL and

synthesized using Synopsys Design Compiler with 45nm CMOS technology. Before

we give the hardware complexity of 3D-FTO router, we briefly describe the main

design steps adopted for its prototyping. These steps are illustrated in the flowchart

depicted in Fig. 6.19.

In the first step, we specify the logical behavior of 3D-FTO router in Verilog-

HDL which is usually described in the RTL level of abstraction. In order to test

this logical behavior, a test-bench is provided. The used test-bench is a simple

program, also written in Verilog-HDL, where random flits are injected from all the

seven input-ports of the 3D-FTO router. This aims to verify that all the relevant

input signals and output results are logically valid. To achieve this goal, we used

Cadence Simvision simulator.

Now that we made sure that the RTL code is correct, in the next step we use

Synopsys Design Compiler (DC) to synthesize and map the RTL design on the

adopted standard cells and macros [156]. But before that, we should specify the

design constraints. These constraints are basically those regarding clock speed,

clock latency, input/output delay, etc.

When the synthesis is completed, different reports are generated from DC. These

reports includes the number of gates, the amount of used area in addition to the

timing reports. From these reports, we check whether the timing is correct. If not,

we should modify the constraints previously specified, as depicted in Fig. 6.19.

After the correct synthesis of the design we perform a second simulation. This

simulation is similar to the one performed before the synthesis. The only difference

is that we used the Standard Delay Format (SDC) file generated from DC for this



6.3. Prototyping results 116

Figure 6.19: Flow chart of the design prototyping steps.
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simulation. This file contains the delay values for the used standard cells in addition

to the interconnect delays. When performing the simulation, we can check whether

the obtained waveforms are correct or not. If they are false, we should go back again

and adjust the design constraints in DC.

To perform the next Place and Route step (PaR), we must specify the different

constraints that must be taken into consideration. These setup constraints include

the specification of the different files required for this operation, such as the netlist,

the Library Exchange Format (LEF), and the Synopsys Design Constraints (SDC)

files. For the PaR step, we use Cadence SoC encounter to place the macro blocks

and the inclusion of power rings, lines, and stripes. This can be done using the

tool’s Graphical-User-Interface or by using scripts embedded in a Tool Command

Language (TCL) file. At the end of this step, a real die is obtained where the macros

and standard cells are placed and interconnected with signal and power lines. As the

case of DC, SoC encounter generates reports including various information. Here,

we check again the timing reports and we need to adjust the PaR constraints again

if the timing requirements are not met.

After we obtain the layout of our router, we should perform a third simulation,

called the post-layout simulation. In this final simulation, we make sure again that

the signals in our design are free from any erroneous behavior. This simulation

also serves to extract the switching activities which are embedded in Value Change

Dump (VCD) file in an ASCII format. The VCD file will be then converted to a

Switching Activity Interchange Format (SAIF) file which will be used by Design

Compiler Power Analyzer to evaluate the total power consumption. In the final

design step, we proceed to IO pad insertion. In this step, we re-perform the Place

and Route phase while inserting the Input/Output (IO) pads and establishing the

connection between the IO pins/ IO pads, and the input signals of 3D-FTO router.

Figure 6.20 shows the final layout of 3D-FTO using 45 nm CMOS technology [156].

It is obtained after performing all the design steps mentioned above.
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Figure 6.20: 3D-Fault-Tolerant-OASIS final router layout using 45 nm CMOS

process.
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Complexity evaluation

Table 6.3 illustrates the hardware complexity results of 3D-FTO in terms of area

and power (static+dynamic) with 1.1V as supply voltage, when compared to the

baseline router [144,145]. We set the the clock frequency to 0.9 GhZ as it showed to

be the highest frequency that 3D-FTO router can run on with no timinig violations

along the different prototyping steps. It is important to mention, that the maximum

clock frequency of 3D-FTO is slightly lower than that of the baseline router, and

the difference between the two did not pass 0.01 GhZ.

From table 6.3, we can see that the proposed router requires 42.4% additional

area and 35% increased power. When observing in details the complexity of each

component, the HLAFT and LAFT routing modules require 26.7% and 13% larger

area and 42.6% and 18.04% more power when compared to the baseline LA-XYZ

routing module, respectively. When compared to the baseline crossbar circuit, the

proposed BLoD module exhibits 17.1% and 19.9% area and power overhead, respec-

tively. When evaluating the proposed input-buffer which includes both RAB and

TPU mechanisms, a 27.8% additional area and a 29.4% increasing power was ob-

served. It is important to mention that the power overhead became less important

when connecting all the modules together and disabling the unused components. D

6.4 Reliability evaluation

In this evaluation we analyze the reliability of the proposed 3D-FTO router.

We compare its reliability with BulletProof [138] router which is based on Triple-

Modular-Redundancy (TMR). TMR is a very well-known and well-used technique

in many fault-tolerant systems. TMR based systems ensure 0% performance degra-

dation by providing two redundant versions for each component, and the fault de-

tection and correction is based on voting. However, if one of these two redundant

components fails, the entire systems may fails; thus, making these systems unreli-

able. Contrary to BulletProof and other NMR based systems, 3D-FTO was able

to deal with a large number of faults while maintaining its complete functionality

during the several experiments conducted; therefore, 3D-FTO showed its ability to
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provide 100% reliability no matter where the position of the fault is.

Vicis [141] is another reliable router, similar to ours, which was proposed for

2D-NoC systems. Vicis was also able to provide 100% reliability at the expense of

the area overhead which is 51% when compared to its baseline router, while 3D-

FTO exhibits only 42%. When moved to the third dimension, Vicis’ area overhead

is expected to increase significantly. This is because of the larger crossbar and the

two extra input-buffers that are necessary and which are the hungriest components

in a given NoC system. Not forget to mention the extra control logic necessary to

ensure reliability in the third dimensions. On the other side, TMR based systems,

such as BulletProof, necessitate over 200% extra hardware due to the presence of

the redundant components. We emphasize on the area overhead for the fact that

in fault-tolerant systems, the area overhead is a very important factor since there

is a tight relation between area and reliability. As long as we increase the area,

the fault probability increases as well due the increasing power and thermal issues

which contribute to the increasing possibility of the system components’ wear-outs.

In this work, we define a reliable NoC as system which satisfies three important

requirements: 1) 100% functionality regardless of the location of faults 2) graceful

performance degradation 3) low power and area overhead. Thus, 3D-FTO showed

its ability to efficiently satisfy these three requirements.

6.5 Conclusion

From the evaluation results, we could observe how the proposed system was able

to efficiently recover from a high number of faults. Thus, ensuring that all the flits

injected in the network reach their destination correctly and uncorrupted proving its

fault-tolerance capability. Furthermore, even at high fault-rates, 3D-FTO system

provides a graceful performance degradation where its performance is sometimes

better than conventional systems, even at 20% fault-rate. At this high fault-rate,

the proposed system is able to continue the correct transfer of all flits even when

having over 250 faults distributed along links, buffer-slots, and crossbar links.





Chapter 7

Conclusions

7.1 Summary

In this thesis, we presented a reliable fault-tolerant 3D-NoC architecture, called

3D-Fault-Tolerant-OASIS (3D-FTO), endorsed with two reliable and graceful rout-

ing algorithms. The proposed architecture manages to avoid the system failure at the

presence of a large number of faults while ensuring graceful performance degradation

and minimizing the additional hardware complexity and remaining power-efficient.

To tackle the link failure problem, we presented an efficient routing algorithm,

called Look-Ahead-Fault-Tolerant (LAFT). LAFT takes advantage of the benefits of

the baseline router’s look-ahead routing to reduce the communication latency and

enhances the system performance while maintaining a reasonable hardware com-

plexity and ensuring fault tolerance in links. We also proposed Hybrid-Look-Ahead-

Fault-Tolerant (HLAFT), which takes advantage of both local and look-ahead rout-

ing to boost the performance of 3D-NoC systems while ensuring graceful perfor-

mance degradation.

The proposed 3D-FTO architecture leverages on adaptive resources’ allocation

to handle the fault occurrence in the input-buffers thanks to a smart mechanism,

called Random-Access-Buffer (RAB). RAB is also used as light-weight solution to

recover from deadlock. We endorsed RAB mechanism with a Traffic-Prediction-Unit

(TPU) to further reduce the latency caused by the presence of faulty buffer-slots.

Moreover, a technique named Bypass-Link-on-Demand was introduced to relieve the

122
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congestion caused by faults in the crossbar.

From the performance evaluation, the proposed system still performs better than

XYZ-based system with Transpose and Matrix-multiplication applications, even at

20% fault-rate. In terms of hardware complexity, 3D-FTO exhibits 29.3% additional

area and 24.6% power overhead when compared to the baseline LA-XYZ-based

system. The power overhead could be controlled thanks to the power-management

employed in 3D-FTO which is based on disabling the unused components and faulty

input-ports.

7.2 Future work

Despite the good results obtained with the proposed 3D-FTO architecture, some

points should be fixed to enhance its performance and reliability. The first one is

that it lacks the fault-detection mechanism and it just assumes the presence of such

module. Therefore, a more comprehensive study should be conducted to analyze

the best techniques which can be implemented with 3D-FTO. The solution can be

based on testing modules or on Error-Detection-Codes that can be embedded in the

flits.

In this thesis, we did not study the thermal power problem and the effects of

the proposed system on such important parameter. The importance came from the

fact that thermal power is one of the main issues in 3D-NoC systems. It is one of

the main reasons for increasing fault-rates, especially for permanent faults, and also

decreasing the Mean-Time-To-Failure which represents the lifetime of a given system

and its vulnerability to failure during time. We want to focus on this parameter,

especially in the TSV level. Employing some of the well known techniques such

as serialization, spare-pad insertion, or reducing the TSV numbers seems to be

convenient. Completing the fault-detection mechanism and implementing thermal-

power-aware techniques aim to improve the reliability of 3D-FTO and guard the

obtained good performance.
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Appendix A

LAFT and HLAFT Routing

algorithms implementation in

Verilog-HDL

This appendix includes the implementation of Look-Ahead-Fault-Tolerant (LAFT)

and Hybrid-Look-Ahead-Fault-Tolerant routing algorithms in Verilog-HDL. These

algorithms are depicted in algorithms 1 and 2, respectively, in Chapter 4. Figure

A.1 represents the Verilog-HDL file hierarchy of the proposed 3D-FTO router. As

depicted in this figure, the Verilog-HDL module where the LAFT algorithm is ex-

ecuted is under network.v/router.v/input-port.v/. In the first section, we give the

Verilog-HDL code for the implementation of the LAFT algorithm (LAFT.v file)

whose file hierarchy is represented in Fig. A.2 including the necessary steps:

• Read the fault information.

• Calculate the next node address.

• Compute the three possible directions along the X, Y, and Z dimensions.

• Evaluate the diversity of each direction

• Make th decision of selecting minimal or non-minimal routing according to the

availability of the latter one.

144
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Note that the calculation of the non-minimal routing is not included. This is

because the non-minimal routing follows the same steps as in minimal routing and

the Verilog-HDL code is quite similar. The only difference is the inclusion of some

routing rules to prevent from Live-lock.

In the second section, we focus on Hybrid-Look-Ahead-Fault-Tolerant (HLAFT)

routing algorithm. As HLAFT is based on LAFT, several portions of its code are

the same as of those of its predecessor. Therefore, we focus mainly on the flag.v file

which is responsible to check the incoming next-port identifier and judge whether it

leads to a blocking path or not. The output of this file is a signal that is raised to 1

in case where a blocking is detected. This signal is used to enable local-routing, as

previously explained in Chapter 4.
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A.1 LAFT Routing Algorithm (LAFT.v)

‘ifndef VCS

‘include "defines.v"

‘endif

module LAFT( xdest, ydest,zdest,

xaddr, yaddr, zaddr,

nextport,

faulty_in,

new_nextport);

parameter NOUT = 7;

parameter FAULTY = 6;

// ***********************************

// Variable assignment

// ***********************************

input [‘L2NET_SIZE-1:0] xdest, ydest, zdest; // destination address

input [‘L2NET_SIZE-1:0] xaddr, yaddr, zaddr; // current node address

input [2:0] nextport; // Next-port identifier

input [35:0] faulty_in; // fault information

output[2:0] new_nextport; // The new calculated Next-port identifier

wire [8:0] next;

wire [8:0] poss_directions;

wire [2:0] forb_dir;

wire [5:0] fault;

wire [‘L2NET_SIZE-1:0] next_xaddr, next_yaddr, next_zaddr;

wire [2:0] poss_x;

wire [2:0] poss_y;

wire [2:0] poss_z;

wire [8:0] next_nodex;

wire [8:0] next_nodey;

wire [8:0] next_nodez;

wire [2:0] val_nodex;

wire [2:0] val_nodey;

wire [2:0] val_nodez;

wire [2:0] div_nodex;
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wire [2:0] div_nodey;

wire [2:0] div_nodez;

wire [2:0] min_nextport;

wire [2:0] non_min_nextport;

// **********************************************************************

// Reading the fault information of the next node

// **********************************************************************

assign fault = (nextport == ‘north) ? faulty_in[5:0]:

(nextport == ‘east) ? faulty_in[11:6]:

(nextport == ‘south) ? faulty_in[17:12]:

(nextport == ‘west) ? faulty_in[23:18]:

(nextport == ‘up) ? faulty_in[29:24]:faulty_in[35:30];

// **********************************************************************

// Calculate the forbidden port that should not be selected

// to ensure Livelock freedom.

// The forbidden port is always the opposite direction of the

// current Next-port identifier (next_ports)

// **********************************************************************

function [2:0] forbidden;

input [2:0] next_ports;

begin

if (next_ports== ‘self) forbidden = ‘self;

else begin

if (next_ports == ‘east)

forbidden = ‘west;

else begin

if (next_ports == ‘west)

forbidden = ‘east;

else begin

if (next_ports == ‘north)

forbidden = ‘south;

else begin

if (next_ports == ‘south)

forbidden = ‘north;

else begin

if (next_ports == ‘up)

forbidden = ‘down;

else forbidden = ‘up;

end

end
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end

end

end

end

endfunction // route

assign forb_dir = forbidden (nextport);

// **********************************************************************

// Calculate the address of the three possible next nodes:

// along x, y, and Z directions

// This is done by decrementing or incrementing the current node

// address according to the current Next-port identifier

// (next_ports)

// **********************************************************************

function [8:0] next_address; //calculate next node address

input [‘L2NET_SIZE-1:0] xaddr, yaddr, zaddr;

input [2:0] nextport;

begin

//**********assign next addresses**********

if (nextport == ‘east) next_address [2:0]= xaddr + 1’b1;

else if (nextport == ‘west) next_address[2:0] = xaddr - 1’b1;

else next_address[2:0] = xaddr;

if (nextport == ‘north) next_address [5:3]= yaddr + 1’b1;

else if (nextport == ‘south) next_address[5:3] = yaddr - 1’b1;

else next_address[5:3] = yaddr;

if (nextport == ‘up) next_address[8:6] = zaddr + 1’b1;

else if (nextport == ‘down) next_address[8:6] = zaddr - 1’b1;

else next_address[8:6] = zaddr;

end

endfunction // route

assign next = next_address (xaddr, yaddr, zaddr, nextport);

// **********************************************************************

// Assign the three possible next-nodes

// to three different variables

// **********************************************************************

assign next_xaddr= next [2:0];

assign next_yaddr= next [5:3];

assign next_zaddr= next [8:6];

// **********************************************************************
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// Calculate the output ports of the three possible next nodes.

// The calculation is done by comparing their addresses with the

// destination node’s address while taking into consideration

// the corresponding fault information.

// **********************************************************************

function [8:0] poss_direc;

input [‘L2NET_SIZE-1:0] xdest, ydest, zdest;

input [‘L2NET_SIZE-1:0] next_xaddr, next_yaddr, next_zaddr;

input [2:0] next_port;

input [5:0] fault;

begin

//**********assign next addresses**********

if ((next_xaddr < xdest)& (!fault[1]))

poss_direc[2:0] = ‘east;

else begin

if ((next_xaddr > xdest)& (!fault[3]))

poss_direc[2:0] = ‘west;

else poss_direc[2:0] = ‘none;

end

if ((next_yaddr < ydest)& (!fault[0]))

poss_direc[5:3] = ‘north;

else begin

if ((next_yaddr > ydest)& (!fault[2]))

poss_direc[5:3] = ‘south;

else poss_direc[5:3] = ‘none;

end

if ((next_zaddr < zdest)& (!fault[4]))

poss_direc[8:6] = ‘up;

else begin

if ((next_zaddr > zdest)& (!fault[5]))

poss_direc[8:6] = ‘down;

else poss_direc[8:6] = ‘none;

end

end

endfunction // route

assign poss_directions= poss_direc( xdest, ydest, zdest,

next_xaddr, next_yaddr, next_zaddr,

nextport,

fault);

assign poss_x= poss_directions [2:0];
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assign poss_y= poss_directions [5:3];

assign poss_z= poss_directions [8:6];

// **********************************************************************

// Calculate the possible directions to the destination for

// the already calculated possible next-nodes.

// This is needed to calculate the diversity value.

// The forbidden port is not taken into account during this calculation.

// **********************************************************************

function [8:0] next_next_address; //calculate next node address

input [‘L2NET_SIZE-1:0] xaddr, yaddr, zaddr;

input [2:0] nextport;

input [2:0] forbiden;

begin

//**********assign next addresses**********

if (nextport == forbiden) next_next_address = 9’b111111111;

else begin

if (nextport == ‘east) next_next_address [2:0]= xaddr + 1’b1;

else if (nextport == ‘west) next_next_address[2:0] = xaddr - 1’b1;

else next_next_address[2:0] = xaddr;

if (nextport == ‘north) next_next_address [5:3]= yaddr + 1’b1;

else if (nextport == ‘south) next_next_address[5:3] = yaddr - 1’b1;

else next_next_address[5:3] = yaddr;

if (nextport == ‘up) next_next_address[8:6] = zaddr + 1’b1;

else if (nextport == ‘down) next_next_address[8:6] = zaddr - 1’b1;

else next_next_address[8:6] = zaddr;

end

end

endfunction // route

assign next_nodex = (poss_x!=‘none) ?

next_next_address (next_xaddr, next_yaddr, next_zaddr,poss_x, forb_dir) : 9’b111111111;

assign next_nodey = (poss_y!=‘none) ?

next_next_address (next_xaddr, next_yaddr, next_zaddr,poss_y, forb_dir) : 9’b111111111;

assign next_nodez = (poss_z!=‘none) ?

next_next_address (next_xaddr, next_yaddr, next_zaddr,poss_z, forb_dir) : 9’b111111111;

// **********************************************************************

// Calculate the diversity value of each one of the possible

// three possible directions

// **********************************************************************

function [2:0] div_val;
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input [‘L2NET_SIZE-1:0] xdest, ydest, zdest;

input [8:0] next_adr;

input [2:0] nextport;

begin

if (next_adr==9’b111111111)

div_val= 3’b000;

else begin

if ((next_adr [2:0]<=xdest)&&(nextport!=‘west)) div_val[0]= 1’b1;

else begin

if ((next_adr [2:0]>=xdest)&&(nextport!=‘east)) div_val[0]= 1’b1;

else div_val[0]= 1’b0;

end

if ((next_adr [5:3]<=ydest)&&(nextport!=‘south)) div_val[1]= 1’b1;

else begin

if ((next_adr [5:3]>=ydest)&&(nextport!=‘north)) div_val[1]= 1’b1;

else div_val[1]= 1’b0;

end

if ((next_adr [8:6]<=zdest)&&(nextport!=‘down)) div_val[2]= 1’b1;

else begin

if ((next_adr [8:6]>=zdest)&&(nextport!=‘up)) div_val[2]= 1’b1;

else div_val[2]= 1’b0;

end

end

end

endfunction // route

assign val_nodex = div_val(xdest, ydest, zdest,next_nodex,poss_x);

assign val_nodey = div_val(xdest, ydest, zdest,next_nodey,poss_y);

assign val_nodez = div_val(xdest, ydest, zdest,next_nodez,poss_z);

assign div_nodex = val_nodex[0]+val_nodex[1]+val_nodex[2];

assign div_nodey = val_nodey[0]+val_nodey[1]+val_nodey[2];

assign div_nodez = val_nodez[0]+val_nodez[1]+val_nodez[2];

// **********************************************************************

// Calculate the direction with the highest diversity value

// **********************************************************************

function [2:0] route;

input [2:0] div_nodex;

input [2:0] div_nodey;

input [2:0] div_nodez;
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input [2:0] poss_x;

input [2:0] poss_y;

input [2:0] poss_z;

begin

if ((div_nodex >= div_nodey)&&(div_nodex >= div_nodez))

route = poss_x;

else begin

if ((div_nodey >= div_nodex)&&(div_nodey >= div_nodez))

route = poss_y;

else route = poss_z;

end

end

endfunction // route

// **********************************************************************

// Select the direction with the highest diversity value

// **********************************************************************

assign min_nextport = ((next_xaddr==xdest) && (next_yaddr==ydest) && (next_zaddr==zdest))?

‘self : route(div_nodex, div_nodey, div_nodez, poss_x, poss_y, poss_z);

// **********************************************************************

// Calculate a non-minimal route according

// following the previous steps

// **********************************************************************

//non minimal routing module

non_minimal #(NOUT, FAULTY) nm( .xdest(xdest),

.ydest(ydest),

.zdest(zdest),

.xaddr(next_xaddr), .yaddr(next_yaddr), .zaddr(next_zaddr),

.nextport(nextport), .fault(fault),

.non_min_port(non_min_nextport));

// **********************************************************************

// Assign as new-next-port a non-minimal or minimal route

// according to the availability of this latter.

// **********************************************************************

assign new_nextport = (min_nextport == ‘none)? non_min_nextport: min_nextport;

endmodule // LAFT.v
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A.2 HLAFT Routing Algorithm (flag.v)

‘ifndef VCS

‘include "defines.v"

‘endif

module flag (next_port, xaddr, yaddr, zaddr, xdest, ydest, zdest, faulty_in, trigger);

// ***********************************

// Variable assignment

// ***********************************

input [‘L2NET_SIZE-1:0] xdest, ydest, zdest; // destination address

input [‘L2NET_SIZE-1:0] xaddr, yaddr, zaddr; // current node address

input [2:0] nextport; // Next-port identifier

input [35:0] faulty_in; // fault information

output trigger; // output decider

wire [5:0] fault;

wire [8:0] next;

wire [2:0] next_xaddr, next_yaddr, next_zaddr;

wire [8:0] poss_directions;

wire [2:0] poss_x;

wire [2:0] poss_y;

wire [2:0] poss_z;

// **********************************************************************

// Reading the fault information of the next node

// **********************************************************************

assign fault = (next_port == ‘north) ? faulty_in[5:0]:

(next_port == ‘east) ? faulty_in[11:6]:

(next_port == ‘south) ? faulty_in[17:12]:

(next_port == ‘west) ? faulty_in[23:18]:

(next_port == ‘up) ? faulty_in[29:24]:faulty_in[35:30];

// **********************************************************************

// Compute the address of the next node

// **********************************************************************

function [8:0] next_address;

input [‘L2NET_SIZE-1:0] xaddr, yaddr, zaddr;

input [2:0] nextport;

begin

//**********assign next addresses**********
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if (nextport == ‘east) next_address [2:0]= xaddr + 1’b1;

else if (nextport == ‘west) next_address[2:0] = xaddr - 1’b1;

else next_address[2:0] = xaddr;

if (nextport == ‘north) next_address [5:3]= yaddr + 1’b1;

else if (nextport == ‘south) next_address[5:3] = yaddr - 1’b1;

else next_address[5:3] = yaddr;

if (nextport == ‘up) next_address[8:6] = zaddr + 1’b1;

else if (nextport == ‘down) next_address[8:6] = zaddr - 1’b1;

else next_address[8:6] = zaddr;

end

endfunction // next_address

assign next = next_address (xaddr, yaddr, zaddr, next_port);

assign next_xaddr= next [2:0];

assign next_yaddr= next [5:3];

assign next_zaddr= next [8:6];

// **********************************************************************

// Calculate the three possible directions

// If one direction is blocked by a broken link,

// its value is set to "0"

// **********************************************************************

function [8:0] poss_direc;

input [‘L2NET_SIZE-1:0] xdest, ydest, zdest;

input [‘L2NET_SIZE-1:0] next_xaddr, next_yaddr, next_zaddr;

input [2:0] next_port;

input [5:0] fault;

begin

//**********assign next addresses**********

if (next_xaddr!=xdest) begin

if (((next_xaddr < xdest)& (fault[1]))||((next_xaddr > xdest)& (fault[3])))

poss_direc[2:0] = ‘none;

else poss_direc[2:0] = ‘down;

end

else poss_direc[2:0] = ‘self;

if (next_yaddr!=ydest) begin

if (((next_yaddr < ydest)& (fault[2]))||((next_yaddr > ydest)& (fault[0])))

poss_direc[5:3] = ‘none;

else poss_direc[5:3] = ‘down;

end

else poss_direc[5:3] = ‘self;
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if (next_zaddr!=zdest) begin

if (((next_zaddr < zdest)& (fault[1]))||((next_zaddr > zdest)& (fault[3])))

poss_direc[8:6] = ‘none;

else poss_direc[8:6] = ‘down;

end

else poss_direc[8:6] = ‘self;

end

endfunction // poss_direc

assign poss_directions= poss_direc( xdest, ydest, zdest,

next_xaddr, next_yaddr, next_zaddr,

next_port,

fault);

assign poss_x= poss_directions [2:0];

assign poss_y= poss_directions [5:3];

assign poss_z= poss_directions [8:6];

// **********************************************************************

// Decide the whether the current next-port leads to blocking

// path or not.

// A next-port is judged blocked only if the values of all

// the three possible directions are zeros.

// **********************************************************************

assign trigger= ((poss_x+poss_y+poss_z)>3’b001)? 1’b0:1’b1;

endmodule // flag.v


